

 megaco

 v4.5

 [image: Logo]

 Table of contents

 	Megaco Release Notes

 	User's Guides

 	Introduction

 	Architecture

 	Running the stack

 	Internal form and its encodings

 	Transport mechanisms

 	Implementation examples

 	Megaco mib

 	Performance comparison

 	Testing and tools

 	Modules

 	megaco

 	megaco_codec_meas

 	megaco_codec_mstone1

 	megaco_codec_mstone2

 	megaco_codec_transform

 	megaco_digit_map

 	megaco_edist_compress

 	megaco_encoder

 	megaco_flex_scanner

 	megaco_sdp

 	megaco_tcp

 	megaco_transport

 	megaco_udp

 	megaco_user

Megaco Release Notes

This document describes the changes made to the Megaco system from version to
version. The intention of this document is to list all incompatibilities as well
as all enhancements and bugfixes for every release of Megaco. Each release of
Megaco thus constitutes one section in this document. The title of each section
is the version number of Megaco.

 Megaco 4.5

 Improvements and New Features

	Make megaco transports handle gen_tcp | gen_udp with socket backend on Windows
(completion).
Own Id: OTP-18599 Aux Id: OTP-18029

 Megaco 4.4.4

 Fixed Bugs and Malfunctions

	Removed configure option --enable-sanitizers. It was untested and broken.
Address sanitizer for the emulator has better support by the asan build
target.
Own Id: OTP-18538 Aux Id: GH-7031, PR-7078

 Megaco 4.4.3

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Megaco 4.4.2

 Improvements and New Features

	A very minor improvement to the measurement tool.
Own Id: OTP-18298

 Megaco 4.4.1

 Fixed Bugs and Malfunctions

	Fixed various dialyzer related issues in the examples and the application
proper.
Own Id: OTP-18179 Aux Id: ERIERL-836

 Improvements and New Features

	There is a new configure option, --enable-deterministic-build, which will
apply the deterministic compiler option when building Erlang/OTP. The
deterministic option has been improved to eliminate more sources of
non-determinism in several applications.
Own Id: OTP-18165 Aux Id: PR-5965

 Megaco 4.4

 Improvements and New Features

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Megaco test suite(s) use the new peer module for node starts.
Own Id: OTP-17910

 Megaco 4.3

 Fixed Bugs and Malfunctions

	The compilation time is no longer recorded in BEAM files. There remained
several undocumented functions that attempted to retrieve compilation times.
Those have now been removed.
Own Id: OTP-17962

 Improvements and New Features

	Update the performance and debug chapters of the megaco user's guide. Also
some updates to the meas tools.
Own Id: OTP-17839

 Megaco 4.2

 Improvements and New Features

	[megaco_tcp] When connect fails, include more info in the error reason.
Own Id: OTP-17817

 Megaco 4.1

 Improvements and New Features

	It is now possible to configure the built-in transports (megaco_tcp and megaco
udp) to use the new (gen_udp- and gen_tcp-) option 'inet_backend'.
Own Id: OTP-17533

 Megaco 4.0.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Megaco 4.0

 Improvements and New Features

	All the pre-v3 codec(s) (prev3a, prev3b and prev3c) was deprecated in
OTP-23.0. They have now been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16560

	Removed deprecated functions marked for removal.
Own Id: OTP-17049

 Megaco 3.19.5.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Megaco 3.19.5

 Fixed Bugs and Malfunctions

	Fixed usage of AC_CONFIG_AUX_DIRS() macros in configure script sources.
Own Id: OTP-17093 Aux Id: ERL-1447, PR-2948

 Megaco 3.19.4

 Fixed Bugs and Malfunctions

	Empty statistics descriptor (now) allowed in both encode and decode for
version 3.
Own Id: OTP-17012 Aux Id: ERL-1405

 Megaco 3.19.3

 Fixed Bugs and Malfunctions

	The expected number of warnings when (yecc) generating v2 and v3 (text)
parser's was incorrect.
Own Id: OTP-16836

 Megaco 3.19.2

 Fixed Bugs and Malfunctions

	The v2 and v3 parsers could not properly decode some IPv6 addresses.
Own Id: OTP-16818 Aux Id: ERIERL-526

 Megaco 3.19.1

 Fixed Bugs and Malfunctions

	The mini parser could not properly decode some IPv6 addresses.
Own Id: OTP-16631 Aux Id: ERIERL-491

 Megaco 3.19

 Improvements and New Features

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	The preliminary version 3 codec(s) prev3a, prev3b and prev3c has been
deprecated and will be removed in OTP 24. The encoding config option
'version3' will continue to work until OTP 24.
Own Id: OTP-16531

 Megaco 3.18.8.4

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Megaco 3.18.8.3

 Fixed Bugs and Malfunctions

	Empty statistics descriptor (now) allowed in both encode and decode for
version 3.
Own Id: OTP-17012 Aux Id: ERL-1405

 Megaco 3.18.8.2

 Fixed Bugs and Malfunctions

	The v2 and v3 parsers could not properly decode some IPv6 addresses.
Own Id: OTP-16818 Aux Id: ERIERL-526

 Megaco 3.18.8.1

 Fixed Bugs and Malfunctions

	The mini parser could not properly decode some IPv6 addresses.
Own Id: OTP-16631 Aux Id: ERIERL-491

 Megaco 3.18.8

 Fixed Bugs and Malfunctions

	The documented function megaco:get_sdp_record_from_PropertGroup/2 was a
wrapper for megaco_sdp:get_sdp_record_from_PropertGroup/2 but did not actually
exist. This has now been fixed.
Own Id: OTP-16449

 Improvements and New Features

	Test suite completely reworked. Add (timestamp) utility functions for
debugging and testing.
Own Id: OTP-16158

 Megaco 3.18.7

 Fixed Bugs and Malfunctions

	The meas example had not been updated for a long time, which caused it to not
work. Also, it made use of deprecated functions (now()). This has now been
fixed.
Own Id: OTP-16061

 Megaco 3.18.6

 Fixed Bugs and Malfunctions

	Fix various minor issues related to Dialyzer. Mostly these are dialyzer
warnings, but there was also some minor bugs detected by Dialyzer.
Own Id: OTP-15882

 Megaco 3.18.5

 Improvements and New Features

	Minor updates to build system necessary due to move of configuration of
crypto application.
Own Id: OTP-15262 Aux Id: OTP-15129

	Minor adjustments made to build system for parallel configure.
Own Id: OTP-15340 Aux Id: OTP-14625

 Megaco 3.18.4

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 Megaco 3.18.3

 Fixed Bugs and Malfunctions

	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

 Megaco 3.18.2

 Improvements and New Features

	Typos have been fixed.
Own Id: OTP-14387

 Megaco 3.18.1

 Improvements and New Features

	Internal changes
Own Id: OTP-13551

 Megaco 3.18

 Improvements and New Features

	The runtime dependencies in the application resource file have been updated.
Own Id: OTP-12762

 Megaco 3.17.3

 Improvements and New Features

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

 Megaco 3.17.2

 Fixed Bugs and Malfunctions

	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

 Megaco 3.17.1

 Improvements and New Features

	The default encoding of Erlang files has been changed from ISO-8859-1 to
UTF-8.
The encoding of XML files has also been changed to UTF-8.
Own Id: OTP-10907

 Megaco 3.17.0.3

 Improvements and New Features

	Updated doc files to utf8.
Own Id: OTP-10907

 Megaco 3.17.0.2

 Improvements and New Features

	Introduced functionality for inspection of system and build configuration.
Own Id: OTP-11196

 Megaco 3.17.0.1

 Improvements and New Features

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

 Megaco 3.17

Version 3.17 supports code replacement in runtime from/to version 3.16.0.3 and
and 3.16.0.2.

 Improvements and new features

-

 Fixed bugs and malfunctions

	Buffer overrun error while flex scanner processing property parm groups.
This error occured only for large messages if a buffer realloc was needed
while processing the property parm groups.
Own Id: OTP-10998
Aux Id: Seq 12263

 Incompatibilities

-

 Megaco 3.16.0.3

Version 3.16.0.2 supports code replacement in runtime from/to version 3.16.0.1,
3.16, 3.15.1.1, 3.15.1 and 3.15.

 Improvements and new features

	Where necessary, a comment stating encoding has been added to Erlang files.
The comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

 Fixed bugs and malfunctions

-

 Incompatibilities

	A number of binary encoding alternatives has been removed. The binary encoding
option driver has been removed since this (the use of the asn1 linked in
driver) is now default and there is now way to not use it. See
configuration of binary encoding for more
info.

 Megaco 3.16.0.2

Version 3.16.0.2 supports code replacement in runtime from/to version 3.16.0.1,
3.16, 3.15.1.1, 3.15.1 and 3.15.

 Improvements and new features

	Allow whitespaces in installation path.
It is now possible to give configure and make an installation/release path
with whitespaces in it.
Own Id: OTP-10107

	Fix parallel make for behaviours.

	Removed use of deprecated system flag, global_haeps_size, in the measurement
tool mstone1.

 Fixed bugs and malfunctions

-

 Incompatibilities

-

 Megaco 3.16.0.1

Version 3.16.0.1 supports code replacement in runtime from/to version 3.16,
3.15.1.1, 3.15.1 and 3.15.

 Improvements and new features

	Fixed some faulty test cases.

	Removed use of deprecated system flag, scheduler_bind_type, in the
measurement tool mstone1.
Own Id: OTP-9949

 Fixed bugs and malfunctions

-

 Incompatibilities

-

 Megaco 3.16

Version 3.16 supports code replacement in runtime from/to version 3.15.1.1,
3.15.1 and 3.15.

 Improvements and new features

	Minor improvements to the measurement tool mstone1.
Own Id: OTP-9604

	ASN.1 no longer makes use of a driver to accelerate encode/decode, instead it
uses NIFs. The encoding config option is still the same, i.e. driver.
Own Id: OTP-9672

	The profiling test tool has been rewritten.
Håkan Mattsson
Own Id: OTP-9679

	The flex driver has been updated to support the new driver format (changed to
enable 64-bit aware drivers).
Own Id: OTP-9795

 Fixed bugs and malfunctions

-

 Incompatibilities

-

 Megaco 3.15.1.1

Version 3.15.1.1 supports code replacement in runtime from/to version 3.15.1 and
3.15.

 Improvements and new features

	Correct various XML errors.
Own Id: OTP-9550

 Fixed bugs and malfunctions

-

 Megaco 3.15.1

Version 3.15.1 supports code replacement in runtime from/to version 3.15,
3.14.1.1, 3.14.1 and 3.14.

 Improvements and new features

-

 Fixed bugs and malfunctions

	Fixing miscellaneous things detected by dialyzer.
Own Id: OTP-9075

 Megaco 3.15

 Improvements and New Features

	Fixing auto-import issues.
Own Id: OTP-8842

 Fixed bugs and malfunctions

-

 Megaco 3.14.1.1

Version 3.14.1.1 supports code replacement in runtime from/to version 3.14.1,
3.14, 3.13, 3.12 and 3.11.3.

 Improvements and new features

	Updated the performance chapter.
Own Id: OTP-8696

 Fixed bugs and malfunctions

-

 Megaco 3.14.1

Version 3.14.1 supports code replacement in runtime from/to version 3.14, 3.13,
3.12 and 3.11.3.

 Improvements and new features

	A minor compiler related performance improvement.
Own Id: OTP-8561

 Fixed bugs and malfunctions

	A race condition when, during high load, processing both the original and a
resent message and delivering this as two separate messages to the user.
Note that this solution only protects against multiple reply deliveries!
Own Id: OTP-8529
Aux Id: Seq 10915

	Fix shared libraries installation.
The flex shared lib(s) were incorrectly installed as data files.
Peter Lemenkov
Own Id: OTP-8627

	Eliminated a possible race condition while creating pending counters.
Own Id: OTP-8634
Aux Id: Seq 11579

 Megaco 3.14

Version 3.14 supports code replacement in runtime from/to version 3.13, 3.12 and
3.11.3.

 Improvements and new features

	Various changes to configure and makefile(s) to facilitate cross compilation
(and other build system improvements).
Own Id: OTP-8323

	Added a help target in the test Makefile to explain the most useful make
targets, used when testing the application using the test-server provided with
megaco.
Own Id: OTP-8362

	Adapted megaco_filter to the new internal format.
Own Id: OTP-8403

 Fixed bugs and malfunctions

	Callbacks, when the callback module is unknown (undefined), results in warning
messages.
A race condition scenario. As part of a cancelation operation, replies with
waiting acknowledgements is cancelled. This includes informing the user (via a
call to the handle_trans_ack callback function). It is possible that at this
point the connection data has been removed, which makes it impossible for
megaco to perform this operation, resulting in the warning message. The
solution is to also store the callback module with the other reply
information, to be used when cleaning up after a cancelation.
Own Id: OTP-8328
Aux Id: Seq 11384

 Megaco 3.13

Version 3.13 supports code replacement in runtime from/to version 3.12 and
3.11.3.

 Improvements and new features

	A minor optimization by using ets:update_element instead of ets:insert for
some table updates.
Own Id: OTP-8239

	The documentation is now built with open source tools (xsltproc and fop)
that exists on most platforms. One visible change is that the frames are
removed.
Own Id: OTP-8249

 Fixed bugs and malfunctions

-

 Incompatibilities

-

Introduction

Megaco/H.248 is a protocol for control of elements in a physically decomposed
multimedia gateway, enabling separation of call control from media conversion. A
Media Gateway Controller (MGC) controls one or more Media Gateways (MG).
This version of the stack supports version 1, 2 and 3 as defined by:
	version 1 - RFC 3525 and H.248-IG (v10-v13)
	version 2 - draft-ietf-megaco-h248v2-04 & H.248.1 v2 Corrigendum 1 (03/2004)
	version 3 - Full version 3 as defined by ITU H.248.1 (09/2005) (including
segments)

The semantics of the protocol has jointly been defined by two standardization
bodies:
	IETF - which calls the protocol Megaco
	ITU - which calls the protocol H.248

 Scope and Purpose

This manual describes the Megaco application, as a component of the Erlang/Open
Telecom Platform development environment. It is assumed that the reader is
familiar with the Erlang Development Environment, which is described in a
separate User's Guide.

 Prerequisites

The following prerequisites are required for understanding the material in the
Megaco User's Guide:
	the basics of the Megaco/H.248 protocol
	the basics of the Abstract Syntax Notation One (ASN.1)
	familiarity with the Erlang system and Erlang programming

The application requires Erlang/OTP release R10B or later.

 About This Manual

In addition to this introductory chapter, the Megaco User's Guide contains the
following chapters:
	Chapter 2: "Architecture" describes the architecture and typical usage of the
application.
	Chapter 3: "Internal form and its encodings" describes the internal form of
Megaco/H.248 messages and its various encodings.
	Chapter 4: "Transport mechanisms" describes how different mechanisms can be
used to transport the Megaco/H.248 messages.
	Chapter 5: "Debugging" describes tracing and debugging.

 Where to Find More Information

Refer to the following documentation for more information about Megaco/H.248 and
about the Erlang/OTP development system:
	version 1, RFC 3525
	old version 1, RFC 3015
	Version 2 Corrigendum 1
	version 2, draft-ietf-megaco-h248v2-04
	H.248.1 version 3
	the ASN.1 application User's Guide
	the Megaco application Reference Manual
	Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN
0-13-508301-X.

Architecture

 Network view

Megaco is a (master/slave) protocol for control of gateway functions at the edge
of the packet network. Examples of this is IP-PSTN trunking gateways and analog
line gateways. The main function of Megaco is to allow gateway decomposition
into a call agent (call control) part (known as Media Gateway Controller, MGC) -
master, and an gateway interface part (known as Media Gateway, MG) - slave. The
MG has no call control knowledge and only handle making the connections and
simple configurations.
SIP and H.323 are peer-to-peer protocols for call control (valid only for some
of the protocols within H.323), or more generally multi-media session protocols.
They both operate at a different level (call control) from Megaco in a
decomposed network, and are therefor not aware of whether or not Megaco is being
used underneath.
[image: Network architecture]
Megaco and peer protocols are complementary in nature and entirely compatible
within the same system. At a system level, Megaco allows for
	overall network cost and performance optimization
	protection of investment by isolation of changes at the call control layer
	freedom to geographically distribute both call function and gateway function
	adaption of legacy equipment

 General

This Erlang/OTP application supplies a framework for building applications that
needs to utilize the Megaco/H.248 protocol.
We have introduced the term "user" as a generic term for either an MG or an MGC,
since most of the functionality we support, is common for both MG's and MGC's. A
(local) user may be configured in various ways and it may establish any number
of connections to its counterpart, the remote user. Once a connection has been
established, the connection is supervised and it may be used for the purpose of
sending messages. N.B. according to the standard an MG is connected to at most
one MGC, while an MGC may be connected to any number of MG's.
For the purpose of managing "virtual MG's", one Erlang node may host any number
of MG's. In fact it may host a mix of MG's and MGC's. You may say that an Erlang
node may host any number of "users".
The protocol engine uses callback modules to handle various things:
	encoding callback modules - handles the encoding and decoding of messages.
Several modules for handling different encodings are included, such as ASN.1
BER, pretty well indented text, compact text and some others. Others may be
written by you.
	transport callback modules - handles sending and receiving of messages.
Transport modules for TCP/IP and UDP/IP are included and others may be written
by you.
	user callback modules - the actual implementation of an MG or MGC. Most of the
functions are intended for handling of a decoded transaction (request, reply,
acknowledgement), but there are others that handles connect, disconnect and
errors cases.

Each connection may have its own configuration of callback modules, re-send
timers, transaction id ranges etc. and they may be re-configured on-the-fly.
In the API of Megaco, a user may explicitly send action requests, but generation
of transaction identifiers, the encoding and actual transport of the message to
the remote user is handled automatically by the protocol engine according to the
actual connection configuration. Megaco messages are not exposed in the API.
On the receiving side the transport module receives the message and forwards it
to the protocol engine, which decodes it and invokes user callback functions for
each transaction. When a user has handled its action requests, it simply returns
a list of action replies (or a message error) and the protocol engine uses the
encoding module and transport module to compose and forward the message to the
originating user.
The protocol stack does also handle things like automatic sending of
acknowledgements, pending transactions, re-send of messages, supervision of
connections etc.
In order to provide a solution for scalable implementations of MG's and MGC's, a
user may be distributed over several Erlang nodes. One of the Erlang nodes is
connected to the physical network interface, but messages may be sent from other
nodes and the replies are automatically forwarded back to the originating node.

 Single node config

Here a system configuration with an MG and MGC residing in one Erlang node each
is outlined:
[image: Single node config]

 Distributed config

In a larger system with a user (in this case an MGC) distributed over several
Erlang nodes, it looks a little bit different. Here the encoding is performed on
the originating Erlang node (1) and the binary is forwarded to the node (2) with
the physical network interface. When the potential message reply is received on
the interface on node (2), it is decoded there and then different actions will
be taken for each transaction in the message. The transaction reply will be
forwarded in its decoded form to the originating node (1) while the other types
of transactions will be handled locally on node (2).
Timers and re-send of messages will be handled on locally on one node, that is
node(1), in order to avoid unnecessary transfer of data between the Erlang
nodes.
[image: Distributes node config]

 Message round-trip call flow

The typical round-trip of a message can be viewed as follows. Firstly we view
the call flow on the originating side:
[image: Message Call Flow (originating side)]
Then we continue with the call flow on the destination side:
[image: Message Call Flow (destination side)]

Running the stack

 Starting

A user may have a number of "virtual" connections to other users. An MG is
connected to at most one MGC, while an MGC may be connected to any number of
MG's. For each connection the user selects a transport service, an encoding
scheme and a user callback module.
An MGC must initiate its transport service in order to listen to MG's trying to
connect. How the actual transport is initiated is outside the scope of this
application. However a send handle (typically a socket id or host and port) must
be provided from the transport service in order to enable us to send the message
to the correct destination. We do however not assume anything about this, from
our point of view, opaque handle. Hopefully it is rather small since it will
passed around the system between processes rather frequently.
A user may either be statically configured in a .config file according to the
application concept of Erlang/OTP or dynamically started with the configuration
settings as arguments to megaco:start_user/2. These configuration settings may
be updated later on with megaco:update_conn_info/2.
The function megaco:connect/4 is used to tell the Megaco application about which
control process it should supervise, which MID the remote user has, which
callback module it should use to send messages etc. When this "virtual"
connection is established the user may use megaco:call/3 and megaco:cast/3 in
order to send messages to the other side. Then it is up to the MG to send its
first Service Change Request message after applying some clever algorithm in
order to fight the problem with startup avalanche (as discussed in the RFC).
The originating user will wait for a reply or a timeout (defined by the
request_timer). When it receives the reply this will optionally be acknowledged
(regulated by auto_ack), and forwarded to the user. If an interim pending reply
is received, the long_request_timer will be used instead of the usual
request_timer, in order to enable avoidance of spurious re-sends of the request.
On the destination side the transport service waits for messages. Each message
is forwarded to the Megaco application via the megaco:receive_message/4 callback
function. The transport service may or may not provide means for blocking and
unblocking the reception of the incoming messages.
If a message is received before the "virtual" connection has been established,
the connection will be setup automatically. An MGC may be real open minded and
dynamically decide which encoding and transport service to use depending on how
the transport layer contact is performed. For IP transports two ports are
standardized, one for textual encoding and one for binary encoding. If for
example an UDP packet was received on the text port it would be possible to
decide encoding and transport on the fly.
After decoding a message various user callback functions are invoked in order to
allow the user to act properly. See the megaco_user module for more info about
the callback arguments.
When the user has processed a transaction request in its callback function, the
Megaco application assembles a transaction reply, encodes it using the selected
encoding module and sends the message back by invoking the callback function:
	SendMod:send_message(SendHandle, ErlangBinary)

Re-send of messages, handling pending transactions, acknowledgements etc. is
handled automatically by the Megaco application but the user is free to override
the default behaviour by the various configuration possibilities. See
megaco:update_user_info/2 and megaco:update_conn_info/2 about the possibilities.
When connections gets broken (that is explicitly by megaco:disconnect/2 or when
its controlling process dies) a user callback function is invoked in order to
allow the user to re-establish the connection. The internal state of kept
messages, re-send timers etc. is not affected by this. A few re-sends will of
course fail while the connection is down, but the automatic re-send algorithm
does not bother about this and eventually when the connection is up and running
the messages will be delivered if the timeouts are set to be long enough. The
user has the option of explicitly invoking megaco:cancel/2 to cancel all
messages for a connection.

 MGC startup call flow

In order to prepare the MGC for the reception of the initial message, hopefully
a Service Change Request, the following needs to be done:
	Start the Megaco application.
	Start the MGC user. This may either be done explicitly with
megaco:start_user/2 or implicitly by providing the -megaco users configuration
parameter.
	Initiate the transport service and provide it with a receive handle obtained
from megaco:user_info/2.

When the initial message arrives the transport service forwards it to the
protocol engine which automatically sets up the connection and invokes
UserMod:handle_connect/2 before it invokes UserMod:handle_trans_request/3 with
the Service Change Request like this:
[image: MGC Startup Call Flow]

 MG startup call flow

In order to prepare the MG for the sending of the initial message, hopefully a
Service Change Request, the following needs to be done:
	Start the Megaco application.
	Start the MG user. This may either be done explicitly with megaco:start_user/2
or implicitly by providing the -megaco users configuration parameter.
	Initiate the transport service and provide it with a receive handle obtained
from megaco:user_info/2.
	Setup a connection to the MGC with megaco:connect/4 and provide it with a
receive handle obtained from megaco:user_info/2.

If the MG has been provisioned with the MID of the MGC it can be given as the
RemoteMid parameter to megaco:connect/4 and the call flow will look like this:
[image: MG Startup Call Flow]
If the MG cannot be provisioned with the MID of the MGC, the MG can use the atom
'preliminary_mid' as the RemoteMid parameter to megaco:connect/4 and the call
flow will look like this:
[image: MG Startup Call Flow (no MID)]

 Configuring the Megaco stack

There are three kinds of configuration:
	User info - Information related to megaco users. Read/Write.
A User is an entity identified by a MID, e.g. a MGC or a MG.
This information can be retrieved using
megaco:user_info.

	Connection info - Information regarding connections. Read/Write.
This information can be retrieved using
megaco:conn_info.

	System info - System wide information. Read only.
This information can be retrieved using
megaco:system_info.

 Initial configuration

The initial configuration of the Megaco should be defined in the Erlang system
configuration file. The following configured parameters are defined for the
Megaco application:
	users = [{Mid, [user_config()]}].
Each user is represented by a tuple with the Mid of the user and a list of
config parameters (each parameter is in turn a tuple: {Item, Value}).

	scanner = flex | {Module, Function, Arguments, Modules}
	flex will result in the start of the flex scanner with default options.
	The MFA alternative makes it possible for Megaco to start and supervise a
scanner written by the user (see supervisor:start_child for an explanation
of the parameters).

See also
Configuration of text encoding module(s) for
more info.

 Changing the configuration

The configuration can be changed during runtime. This is done with the functions
megaco:update_user_info and
megaco:update_conn_info

 The transaction sender

The transaction sender is a process (one per connection), which handle all
transaction sending, if so configured (see
megaco:user_info and
megaco:conn_info).
The purpose of the transaction sender is to accumulate transactions for a more
efficient message sending. The transactions that are accumulated are transaction
request and transaction ack. For transaction ack's the benefit is quite large,
since the transactions are small and it is possible to have ranges (which means
that transaction acks for transactions 1, 2, 3 and 4 can be sent as a range 1-4
in one transaction ack, instead of four separate transactions).
There are a number of configuration parameter's that control the operation of
the transaction sender. In principle, a message with everything stored (ack's
and request's) is sent from the process when:
	When trans_timer expires.
	When trans_ack_maxcount number of ack's has been received.
	When trans_req_maxcount number of requests's has been received.
	When the size of all received requests exceeds trans_req_maxsize.
	When a reply transaction is sent.
	When a pending transaction is sent.

When something is to be sent, everything is packed into one message, unless the
trigger was a reply transaction and the added size of the reply and all the
requests is greater then trans_req_maxsize, in which case the stored
transactions are sent first in a separate message and the reply in another
message.
When the transaction sender receives a request which is already "in storage"
(indicated by the transaction id) it is assumed to be a resend and everything
stored is sent. This could happen if the values of the trans_timer and the
request_timer is not properly chosen.

 Segmentation of transaction replies

In version 3 of the megaco standard, the concept of segmentation package was
introduced. Simply, this package defines a procedure to segment megaco messages
(transaction replies) when using a transport that does not automatically do this
(e.g. UDP).
Although it would be both pointless and counterproductive to use segmentation on
a transport that already does this (e.g. TCP), the megaco application does not
check this. Instead, it is up to the user to configure this properly.
	Receiving segmented messages:
This is handled automatically by the megaco application. There is however one
thing that need to be configured by the user, the
segment_recv_timer option.
Note that the segments are delivered to the user differently depending on
which function is used to issue the original request. When issuing the request
using the megaco:cast function, the segments are delivered
to the user via the handle_trans_reply callback
function one at a time, as they arrive. But this obviously doe not work for
the megaco:call function. In this case, the segments are
accumulated and then delivered all at once as the function returns.

	Sending segmented messages:
This is also handled automatically by the megaco application. First of all,
segmentation is only attempted if so configured, see the
segment_send option. Secondly, megaco relies on the
ability of the used codec to encode action replies, which is the smallest
component the megaco application handles when segmenting. Thirdly, the reply
will be segmented only if the sum of the size of the action replies (plus an
arbitrary message header size) are greater then the specified max message size
(see the max_pdu_size option). Finally, if
segmentation is decided, then each action reply will make up its own (segment)
message.

Internal form and its encodings

This version of the stack is compliant with:
	Megaco/H.248 version 1 (RFC3525) updated according to Implementors Guide
version 10-13.
	Megaco/H.248 version 2 as defined by draft-ietf-megaco-h248v2-04 updated
according to Implementors Guide version 10-13.
	Megaco/H.248 version 3 as defined by ITU H.248.1 (09/2005).

 Internal form of messages

We use the same internal form for both the binary and text encoding. Our
internal form of Megaco/H.248 messages is heavily influenced by the internal
format used by ASN.1 encoders/decoders:
	"SEQUENCE OF" is represented as a list.
	"CHOICE" is represented as a tagged tuple with size 2.
	"SEQUENCE" is represented as a record, defined in
"megaco/include/megaco_message_v1.hrl".
	"OPTIONAL" is represented as an ordinary field in a record which defaults to
'asn1_NOVALUE', meaning that the field has no value.
	"OCTET STRING" is represented as a list of unsigned integers.
	"ENUMERATED" is represented as a single atom.
	"BIT STRING" is represented as a list of atoms.
	"BOOLEAN" is represented as the atom 'true' or 'false'.
	"INTEGER" is represented as an integer.
	"IA5String" is represented as a list of integers, where each integer is the
ASCII value of the corresponding character.
	"NULL" is represented as the atom 'NULL'.

In order to fully understand the internal form you must get hold on a ASN.1
specification for the Megaco/H.248 protocol, and apply the rules above. Please,
see the documentation of the ASN.1 compiler in Erlang/OTP for more details of
the semantics in mapping between ASN.1 and the corresponding internal form.
Observe that the 'TerminationId' record is not used in the internal form. It has
been replaced with a megaco_term_id record (defined in
"megaco/include/megaco.hrl").

 The different encodings

The Megaco/H.248 standard defines both a plain text encoding and a binary
encoding (ASN.1 BER) and we have implemented encoders and decoders for both. We
do in fact supply five different encoding/decoding modules.
In the text encoding, implementors have the choice of using a mix of short and
long keywords. It is also possible to add white spaces to improve readability.
We use the term compact for text messages with the shortest possible keywords
and no optional white spaces, and the term pretty for a well indented text
format using long keywords and an indentation style like the text examples in
the Megaco/H.248 specification).
Here follows an example of a text message to give a feeling of the difference
between the pretty and compact versions of text messages. First the pretty, well
indented version with long keywords:
 MEGACO/1 [124.124.124.222]
 Transaction = 9998 {
 Context = - {
 ServiceChange = ROOT {
 Services {
 Method = Restart,
 ServiceChangeAddress = 55555,
 Profile = ResGW/1,
 Reason = "901 Cold Boot"
 }
 }
 }
 }
Then the compact version without indentation and with short keywords:

 !/1 [124.124.124.222]
 T=9998{C=-{SC=ROOT{SV{MT=RS,AD=55555,PF=ResGW/1,RE="901 Cold Boot"}}}}
And the programmers view of the same message. First a list of ActionRequest
records are constructed and then it is sent with one of the send functions in
the API:
 Prof = #'ServiceChangeProfile'{profileName = "resgw", version = 1},
 Parm = #'ServiceChangeParm'{serviceChangeMethod = restart,
 serviceChangeAddress = {portNumber, 55555},
 serviceChangeReason = "901 Cold Boot",
 serviceChangeProfile = Prof},
 Req = #'ServiceChangeRequest'{terminationID = [?megaco_root_termination_id],
 serviceChangeParms = Parm},
 Actions = [#'ActionRequest'{contextId = ?megaco_null_context_id,
 commandRequests = {serviceChangeReq, Req}}],
 megaco:call(ConnHandle, Actions, Config).
And finally a print-out of the entire internal form:
 {'MegacoMessage',
 asn1_NOVALUE,
 {'Message',
 1,
 {ip4Address,{'IP4Address', [124,124,124,222], asn1_NOVALUE}},
 {transactions,
 [
 {transactionRequest,
 {'TransactionRequest',
 9998,
 [{'ActionRequest',
 0,
 asn1_NOVALUE,
 asn1_NOVALUE,
 [
 {'CommandRequest',
 {serviceChangeReq,
 {'ServiceChangeRequest',
 [
 {megaco_term_id, false, ["root"]}],
 {'ServiceChangeParm',
 restart,
 {portNumber, 55555},
 asn1_NOVALUE,
 {'ServiceChangeProfile', "resgw", version = 1},
 "901 MG Cold Boot",
 asn1_NOVALUE,
 asn1_NOVALUE,
 asn1_NOVALUE
 }
 }
 },
 asn1_NOVALUE,
 asn1_NOVALUE
 }
]
 }
]
 }
 }
]
 }
 }
 }
The following encoding modules are provided:
	megaco_pretty_text_encoder - encodes messages into pretty text format, decodes
both pretty as well as compact text.
	megaco_compact_text_encoder - encodes messages into compact text format,
decodes both pretty as well as compact text.
	megaco_binary_encoder - encode/decode ASN.1 BER messages. This encoder
implements the fastest of the BER encoders/decoders. Recommended binary codec.
	megaco_ber_encoder - encode/decode ASN.1 BER messages.
	megaco_per_encoder - encode/decode ASN.1 PER messages. N.B. that this format
is not included in the Megaco standard.
	megaco_erl_dist_encoder - encodes messages into Erlangs distribution format.
It is rather verbose but encoding and decoding is blinding fast. N.B. that
this format is not included in the Megaco standard.

 Configuration of Erlang distribution encoding module

The encoding_config of the megaco_erl_dist_encoder module may be one of these:
	[] - Encodes the messages to the standard distribution format. It is rather
verbose but encoding and decoding is blinding fast.
	[megaco_compressed] - Encodes the messages to the standard distribution
format after an internal transformation. It is less verbose, but the total
time of the encoding and decoding will on the other hand be somewhat slower
(see the performance chapter for more info).
	[{megaco_compressed, Module}] - Works in the same way as the
megaco_compressed config parameter, only here the user provide their own
compress module. This module must implement the megaco_edist_compress
behaviour.
	[compressed] - Encodes the messages to a compressed form of the standard
distribution format. It is less verbose, but the encoding and decoding will on
the other hand be slower.

 Configuration of text encoding module(s)

When using text encoding(s), there is actually two different configs controlling
what software to use:
	[] - An empty list indicates that the erlang scanner should be used.
	[{flex, port()}] - Use the flex scanner when decoding (not optimized for
SMP). See initial configuration for more info.
	[{flex, ports()}] - Use the flex scanner when decoding (optimized for SMP).
See initial configuration for more info.

The Flex scanner is a Megaco scanner written as a linked in driver (in C). There
are two ways to get this working:
	Let the Megaco stack start the flex scanner (load the driver).
To make this happen the megaco stack has to be configured:
	Add the {scanner, flex} (or similar) directive to an Erlang system config
file for the megaco app (see
initial configuration chapter for details).
	Retrieve the encoding-config using the system_info
function (with Item = text_config).
	Update the receive handle with the encoding-config (the encoding_config
field).

The benefit of this is that Megaco handles the starting, holding and the
supervision of the driver and port.

	The Megaco client (user) starts the flex scanner (load the driver).
When starting the flex scanner a port to the linked in driver is created. This
port has to be owned by a process. This process must not die. If it does the
port will also terminate. Therefor:
	Create a permanent process. Make sure this process is supervised (so that if
it does die, this will be noticed).
	Let this process start the flex scanner by calling the
megaco_flex_scanner:start/0,1 function.
	Retrieve the encoding-config and when initiating the
megaco_receive_handle, set the field encoding_config accordingly.
	Pass the megaco_receive_handle to the transport module.

 Configuration of binary encoding module(s)

When using binary encoding, the structure of the termination id's needs to be
specified.
	[native] - skips the transformation phase, i.e. the decoded message(s) will
not be transformed into our internal form.
	[integer()] - A list containing the size (the number of bits) of each
level. Example: [3,8,5,8].
	integer/0 - Number of one byte (8 bits) levels. N.B. This is currently
converted into the previous config. Example: 3 ([8,8,8]).

 Handling megaco versions

There are two ways to handle the different megaco encoding versions. Either
using dynamic version detection (only valid for for incoming messages) or by
explicit version setting in the connection info.
For incoming messages:
	Dynamic version detection
Set the protocol version in the megacoreceive_handle to dynamic (this is
the default).
This works for those codecs that support partial decode of the version,
currently _text, and ber_bin (megaco_binary_encoder and
megaco_ber_bin_encoder).
This way the decoder will detect which version is used and then use the proper
decoder.

	Explicit version
Explicitly set the actual protocol version in the megaco_receive_handle.
Start with version 1. When the initial service change has been performed and
version 2 has been negotiated, upgrade the megaco_receive_handle of the
transport process (control_pid) to version 2. See
megaco_tcp and
megaco_udp.
Note that if udp is used, the same transport process could be used for
several connections. This could make upgrading impossible.
For codecs that does not support partial decode of the version, currently
megaco_ber_encoder and megaco_per_encoder, dynamic will revert to
version 1.

For outgoing messages:
	Update the connection info protocol_version.
	Override protocol version when sending a message by adding the item
{protocol_version, integer()} to the Options. See call or
cast.
Note that this does not effect the messages that are sent autonomously by the
stack. They use the protocol_version of the connection info.

 Encoder callback functions

The encoder callback interface is defined by the megaco_encoder behaviour, see
megaco_encoder.

Transport mechanisms

 Callback interface

The callback interface of the transport module contains several functions. Some
of which are mandatory while others are only optional:
	send_message - Send a message. Mandatory

	block - Block the transport. Optional
This function is usefull for flow control.

	unblock - Unblock the transport. Optional

For more detail, see the megaco_transport behaviour definition.

 Examples

The Megaco/H.248 application contains implementations for the two protocols
specified by the Megaco/H.248 standard; UDP, see megaco_udp, and TCP/TPKT,
see megaco_tcp.

Implementation examples

 A simple Media Gateway Controller

In megaco/examples/simple/megaco_simple_mgc.erl there is an example of a simple
MGC that listens on both text and binary standard ports and is prepared to
handle a Service Change Request message to arrive either via TCP/IP or UDP/IP.
Messages received on the text port are decoded using a text decoder and messages
received on the binary port are decoded using a binary decoder.
The Service Change Reply is encoded in the same way as the request and sent back
to the MG with the same transport mechanism UDP/IP or TCP/IP.
After this initial service change message the connection between the MG and MGC
is fully established and supervised.
The MGC, with its four listeners, may be started with:
 cd megaco/examples/simple
 erl -pa ../../../megaco/ebin -s megaco_filter -s megaco
 megaco_simple_mgc:start().
or simply 'gmake mgc'.
The -s megaco_filter option to erl implies, the event tracing mechanism to be
enabled and an interactive sequence chart tool to be started. This may be quite
useful in order to visualize how your MGC interacts with the Megaco/H.248
protocol stack.
The event traces may alternatively be directed to a file for later analyze. By
default the event tracing is disabled, but it may dynamically be enabled without
any need for re-compilation of the code.

 A simple Media Gateway

In megaco/examples/simple/megaco_simple_mg.erl there is an example of a simple
MG that connects to an MGC, sends a Service Change Request and waits
synchronously for a reply.
After this initial service change message the connection between the MG and MGC
is fully established and supervised.
Assuming that the MGC is started on the local host, four different MG's, using
text over TCP/IP, binary over TCP/IP, text over UDP/IP and binary over UDP/IP
may be started on the same Erlang node with:
 cd megaco/examples/simple
 erl -pa ../../../megaco/ebin -s megaco_filter -s megaco
 megaco_simple_mg:start().
or simply 'gmake mg'.
If you "only" want to start a single MG which tries to connect an MG on a host
named "baidarka", you may use one of these functions (instead of the
megaco_simple_mg:start/0 above):
 megaco_simple_mg:start_tcp_text("baidarka", []).
 megaco_simple_mg:start_tcp_binary("baidarka", []).
 megaco_simple_mg:start_udp_text("baidarka", []).
 megaco_simple_mg:start_udp_binary("baidarka", []).
The -s megaco_filter option to erl implies, the event tracing mechanism to be
enabled and an interactive sequence chart tool to be started. This may be quite
useful in order to visualize how your MG interacts with the Megaco/H.248
protocol stack.
The event traces may alternatively be directed to a file for later analyze. By
default the event tracing is disabled, but it may dynamically be enabled without
any need for re-compilation of the code.

Megaco mib

 Intro

The Megaco mib is as of yet not standardized and our implementation is based on
draft-ietf-megaco-mib-04.txt. Almost all of the mib cannot easily be
implemented by the megaco application. Instead these things should be
implemented by a user (of the megaco application).
So what part of the mib is implemented? Basically the relevant statistic
counters of the MedGwyGatewayStatsEntry.

 Statistics counters

The implementation of the statistic counters is lightweight. I.e. the statistic
counters are handled separately by different entities of the application. For
instance our two transport module(s) (see megaco_tcp and
megaco_udp) maintain their own counters and the
application engine (see megaco) maintain its own counters.
This also means that if a user implement their own transport service then it has
to maintain its own statistics.

 Distribution

Each megaco application maintains its own set of counters. So in a large
(distributed) MG/MGC it could be necessary to collect the statistics from
several nodes (each) running the megaco application (only one of them with the
transport).

Performance comparison

 Comparison of encoder/decoders

The Megaco/H.248 standard defines both a plain text encoding and a binary
encoding (ASN.1 BER) and we have implemented encoders and decoders for both. We
do supply a bunch of different encoding/decoding modules and the user may in
fact implement their own (like our erl_dist module). Using a non-standard
encoding format has its obvious drawbacks, but may be useful in some
configurations.
We have made four different measurements of our Erlang/OTP implementation of the
Megaco/H.248 protocol stack, in order to compare our different
encoders/decoders. The result of each one is summarized in the table below.
	Codec and config	Size	Encode	Decode	Total
	pretty	336	5	12	17
	pretty [flex]	336	5	11	16
	compact	181	4	10	14
	compact [flex]	181	4	9	13
	per bin	91	6	6	12
	per bin [native]	91	4	3	7
	ber bin	165	6	6	12
	ber bin [native]	165	4	3	7
	erl_dist	875	2	5	7
	erl_dist [megaco_compressed]	405	1	2	3
	erl_dist [compressed]	345	15	9	24
	erl_dist [megaco_compressed,compressed]	200	11	4	15

Table: Codec performance

 Description of encoders/decoders

In Appendix A of the Megaco/H.248 specification (RFC 3525), there are about 30
messages that shows a representative call flow. We have also added a few extra
version 1, version 2 and version 3 messages. We have used these messages as
basis for our measurements. Our figures have not been weighted in regard to how
frequent the different kinds of messages that are sent between the media gateway
and its controller.
The test compares the following encoder/decoders:
	pretty - pretty printed text. In the text encoding, the protocol stack
implementors have the choice of using a mix of short and long keywords. It is
also possible to add white spaces to improve readability. The pretty text
encoding utilizes long keywords and an indentation style like the text
examples in the Megaco/H.248 specification.
	compact - the compact text encoding uses the shortest possible keywords and
no optional white spaces.
	ber - ASN.1 BER.
	per - ASN.1 PER. Not standardized as a valid Megaco/H.248 encoding, but
included for the matter of completeness as its encoding is extremely compact.
	erl_dist - Erlang's native distribution format. Not standardized as a valid
Megaco/H.248 encoding, but included as a reference due to its well known
performance characteristics. Erlang is a dynamically typed language and any
Erlang data structure may be serialized to the erl_dist format by using
built-in functions.

The actual encoded messages have been collected in one directory per encoding
type, containing one file per encoded message.
Here follows an example of a text message to give a feeling of the difference
between the pretty and compact versions of text messages. First the pretty
printed, well indented version with long keywords:
MEGACO/1 [124.124.124.222]
 Transaction = 9998 {
 Context = - {
 ServiceChange = ROOT {
 Services {
 Method = Restart,
 ServiceChangeAddress = 55555,
 Profile = ResGW/1,
 Reason = "901 MG Cold Boot"
 }
 }
 }
 }
Then the compact text version without indentation and with short keywords:
!/1 [124.124.124.222] T=9998{
 C=-{SC=ROOT{SV{MT=RS,AD=55555,PF=ResGW/1,RE="901 MG Cold Boot"}}}}

 Setup

The measurements has been performed on a Dell Precision 5550 Laptop with a
Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz, with 40 GB memory and running Ubuntu
20.04 x86_64, kernel 5.4.0-91-generic. Software versions was open source OTP
24.2 (megaco-4.2).

 Summary

In our measurements we have seen that there are no significant differences in
message sizes between ASN.1 BER and the compact text format. Some care should be
taken when using the pretty text style (which is used in all the examples
included in the protocol specification and preferred during debugging sessions)
since the messages can then be quite large. If the message size really is a
serious issue, our per encoder should be used, as the ASN.1 PER format is much
more compact than all the other alternatives. Its major drawback is that it is
has not been approved as a valid Megaco/H.248 message encoding.
When it comes to pure encode/decode performance, it turns out that:
	our fastest binary encoder (ber) is about equal to our fastest text encoder
(compact).
	our fastest binary decoder (ber) is about 66% faster than our fastest text
decoder (compact).

If the pure encode/decode performance really is a serious issue, our erl_dist
encoder could be used, as the encoding/decoding of the erlang distribution
format is much faster than all the other alternatives. Its major drawback is
that it is has not been approved as a valid Megaco/H.248 message encoding.
There is no performance advantage of building (and using) a non-reentrant flex
scanner over a reentrant flex scanner (if flex supports building such a
scanner).
Note
Please, observe that these performance figures are related to our
implementation in Erlang/OTP. Measurements of other implementations using
other tools and techniques may of course result in other figures.

Testing and tools

 Tracing

We have instrumented our code in order to enable tracing. Running the
application with tracing deactivated, causes a negligible performance overhead
(an external call to a function which returns an atom). Activation of tracing
does not require any recompilation of the code, since we rely on Erlang/OTP's
built in support for dynamic trace activation. In our case tracing of calls to a
given external function.
Event traces can be viewed in a generic message sequence chart tool, et, or as
standard output (events are written to stdio).
See enable_trace,
disable_trace and set_trace
for more info.

 Measurement and transformation

We have included some simple tool(s) for codec measurement (meas), performance
tests (mstone1 and mstone2) and message transformation.
The tool(s) are located in the example/meas directory.

 Requirement

	Erlang/OTP, version 24.2 or later.
	Version 4.2 or later of this application.
	Version 5.0.17 or later of the asn1 application.
	The flex libraries. Without it, the flex powered codecs cannot be used.

 Meas results

The results from the measurement run (meas) is four excel-compatible textfiles:
	decode_time.xls -> Decoding result
	encode_time.xls -> Encoding result
	total_time.xls -> Total (Decoding+encoding) result
	message_size.xls -> Message size

 Instruction

The tool contain four things:
	The transformation module
	The measurement (meas) module(s)
	The mstone (mstone1 and mstone2) module(s)
	The basic message file

Message Transformation
The messages used by the different tools are contained in single message package
file (see below for more info). The messages in this file is encoded with just
one codec. During measurement initiation, the messages are read and then
transformed to all codec formats used in the measurement.
The message transformation is done by the transformation module. It is used to
transform a set of messages encoded with one codec into the other base codec's.
Measurement(s)
There are two different measurement tools:
	meas:
Used to perform codec measurements. That is, to see what kind of performance
can be expected by the different codecs provided by the megaco application.
The measurement is done by iterating over the decode/encode function for
approx 2 seconds per message and counting the number of decodes/encodes.
Is best run by modifying the meas.sh.skel skeleton script provided by the
tool.
To run it manually do the following:
 % erl -pa <path-megaco-ebin-dir> -pa <path-to-meas-module-dir>
 Erlang (BEAM) emulator version 5.6 [source]

 Eshell V12.2 (abort with ^G)
 1> megaco_codec_meas:start().
 ...
 2> halt().
or to make it even easier, assuming a measure shall be done on all the codecs
(as above):
 % erl -noshell -pa <path-megaco-ebin-dir> \\
 -pa <path-to-meas-module-dir> \\
 -s megaco_codec_meas -s init stop
When run as above (this will take some time), the measurement process is done
as follows:
For each codec:
 For each message:
 Read the message from the file
 Detect message version
 Measure decode
 Measure encode
 Write results, encode, decode and total, to file

	mstone1 and mstone2:
These are two different SMP performance monitoring tool(s).
mstone1 creates a process for each codec config supported by the megaco
application and let them run for a specific time (all at the same time),
encoding and decoding megaco messages. The number of messages processed in
total is the mstone1(1) value.
There are different ways to run the mstone1 tool, e.g. with or without the use
of drivers, with only flex-empowered configs.
Is best run by modifying the mstone1.sh.skel skeleton script provided by the
tool.
The mstone2 is similar to the mstone1 tool, but in this case, each created
process makes only one run through the messages and then exits. A soon as a
process exits, a new process (with the same config and messages) is created to
takes its place. The number of messages processed in total is the mstone2(1)
value.

Both these tools use the message package (time_test.msgs) provided with the
tool(s), although it can run on any message package as long as it has the same
structure.
Message package file
This is simply an erlang compatible text-file with the following structure:
{codec_name(), messages_list()}.
codec_name() = pretty | compact | ber | per | erlang (how the messages are encoded)
messages_list() = [{message_name(), message()}]
message_name() = atom()
message() = binary()
The codec name is the name of the codec with which all messages in the
message_list() has been encoded.
This file can be exported to a file structure by calling the
export_messages function. This can
be usefull if a measurement shall be done with an external tool. Exporting the
messages creates a directory tree with the following structure:
<message package>/pretty/<message-files>
 compact/
 per/
 ber/<message-files>
 erlang/
The file includes both version 1, 2 and version 3 messages.

 Notes

Binary codecs
There are two basic ways to use the binary encodings: With package related name
and termination id transformation (the 'native' encoding config) or without.
This transformation converts package related names and termination id's to a
more convenient internal form (equivalent with the decoded text message).
The transformation is done _after_ the actual decode has been done.
Therefor in the tests, binary codecs are tested with two different encoding
configs to determine exactly how the different options effect the performance:
with transformation ([]) and without transformation ([native]).
Included test messages
Some of these messages are ripped from the call flow examples in an old version
of the RFC and others are created to test a specific feature of megaco.
Measurement tool directory name
Be sure not no name the directory containing the measurement binaries starting
with 'megaco-', e.g. megaco-meas. This will confuse the erlang application
loader (erlang applications are named, e.g. megaco-5.2).

megaco

Main API of the Megaco application
Interface module for the Megaco application

 Summary

 Types

 action_reply()

 action_reps()

 action_reqs()

 action_request()

 conn_handle()

 conn_info_item()

 This type is a basic (atom) lookup key (for info on an active connection). The
corresponding value can be of any type.

 counter()

 counter_value()

 digit_map_event()

 digit_map_kind()

 digit_map_letter()

 digit_map_value()

 error_desc()

 global_counter()

 megaco_message()

 megaco_timer()

 mid()

 The Megaco Identifier.

 property_group()

 property_groups()

 property_parm()

 protocol_version()

 receive_handle()

 sdp()

 sdp_property_group()

 sdp_property_groups()

 sdp_property_parm()

 segment_no()

 send_handle()

 Opaque send handle whose contents is internal for the send module. May be any
term.

 system_info_item()

 trace_data()

 The trace data passed to the trace handler fun (in the second argument) and
returned by same. For instance this could be a file descriptor, that the trace
handler fun can use to print the event to a file.

 trace_event()

 The trace event generated by dbg.

 trace_handler()

 The trace handler fun is used to "process" each trace event (for instance print
to file or to stdout after formating).

 trace_level()

 How much trace events should be produced. min (=0) means no trace events are
produced, which is the default.

 transaction_id()

 transaction_reply()

 user_info_item()

 	connections - Lists all active connections for this user. Returns a list
of megaco_conn_handle records.

 megaco_codec_meas - megaco v4.5

megaco_codec_meas

This module implements a simple megaco codec measurement tool.
Results are written to file (excel compatible text files) and on stdout.
Note that this module is not included in the runtime part of the
application.

 Summary

 Functions

 start()

 Equivalent to start/1

 start/1

 start(MessagePackage) -> void()

 Functions

 Link to this function

 start()

 View Source

Equivalent to start/1

 Link to this function

 start/1

 View Source

start(MessagePackage) -> void()
This function runs the measurement on all the official codecs; pretty,
compact, ber, per and erlang.

 megaco_codec_mstone1 - megaco v4.5

megaco_codec_mstone1

This module implements a simple megaco codec-based performance tool.
This module implements the mstone1 tool, a simple megaco codec-based
performance tool.
The results, the mstone value(s), are written to stdout.
Note that this module is not included in the runtime part of the
application.

 Summary

 Functions

 start()

 Equivalent to start/2

 start/1

 Equivalent to start/2

 start/2

 start(MessagePackage, Factor) -> void()

 start_flex()

 Equivalent to start_flex/2

 start_flex/1

 Equivalent to start_flex/2

 start_flex(MessagePackage, Factor)

 start_flex(MessagePackage, Factor) -> void()

 start_no_drv()

 Equivalent to start_no_drv/2

 start_no_drv/1

 Equivalent to start_no_drv/2

 start_no_drv(MessagePackage, Factor)

 start_no_drv(MessagePackage, Factor) -> void()

 start_only_drv()

 Equivalent to start_only_drv/2

 start_only_drv/1

 Equivalent to start_only_drv/2

 start_only_drv(MessagePackage, Factor)

 start_only_drv(MessagePackage, Factor) -> void()

 Functions

 Link to this function

 start()

 View Source

Equivalent to start/2

 Link to this function

 start/1

 View Source

Equivalent to start/2

 Link to this function

 start/2

 View Source

start(MessagePackage, Factor) -> void()
This function starts the mstone1 performance test with all codec configs.
Factor (defaults to 1) processes are started for every supported codec
config.
Each process encodes and decodes their messages. The number of messages
processed in total (for all processes) is the mstone value.

 Link to this function

 start_flex()

 View Source

Equivalent to start_flex/2

 Link to this function

 start_flex/1

 View Source

Equivalent to start_flex/2

 Link to this function

 start_flex(MessagePackage, Factor)

 View Source

start_flex(MessagePackage, Factor) -> void()
This function starts the mstone1 performance test with only the flex codec
configs (i.e. pretty and compact with flex). The same number of processes
are started as when running the standard test (using the start/0,1 function).
Each process encodes and decodes their messages. The number of messages
processed in total (for all processes) is the mstone value.

 Link to this function

 start_no_drv()

 View Source

Equivalent to start_no_drv/2

 Link to this function

 start_no_drv/1

 View Source

Equivalent to start_no_drv/2

 Link to this function

 start_no_drv(MessagePackage, Factor)

 View Source

start_no_drv(MessagePackage, Factor) -> void()
This function starts the mstone1 performance test with codec configs not using
any drivers (i.e. pretty and compact without flex, ber and per without
driver and erlang without compressed). The same number of processes are
started as when running the standard test (using the start/0,1 function). Each
process encodes and decodes their messages. The number of messages processed in
total (for all processes) is the mstone value.

 Link to this function

 start_only_drv()

 View Source

Equivalent to start_only_drv/2

 Link to this function

 start_only_drv/1

 View Source

Equivalent to start_only_drv/2

 Link to this function

 start_only_drv(MessagePackage, Factor)

 View Source

start_only_drv(MessagePackage, Factor) -> void()
This function starts the mstone1 performance test with only the driver using
codec configs (i.e. pretty and compact with flex, and ber and per with
driver and erlang with compressed). The same number of processes are
started as when running the standard test (using the start/0,1 function). Each
process encodes and decodes their messages. The number of messages processed in
total (for all processes) is the mstone value.

 megaco_codec_mstone2 - megaco v4.5

megaco_codec_mstone2

This module implements a simple megaco codec-based performance tool.
This module implements the mstone2 tool, a simple megaco codec-based
performance tool.
The results, the mstone value(s), are written to stdout.
Note that this module is not included in the runtime part of the
application.

 Summary

 Functions

 start()

 Equivalent to start/1

 start/1

 start(MessagePackage) -> void()

 Functions

 Link to this function

 start()

 View Source

Equivalent to start/1

 Link to this function

 start/1

 View Source

start(MessagePackage) -> void()
This function starts the mstone2 performance test with all codec configs.
Processes are created dynamically. Each process make one run through their
messages (decoding and encoding messages) and then exits. When one process
exits, a new is created with the same codec config and set of messages.
The number of messages processed in total (for all processes) is the mstone
value.

 megaco_codec_transform - megaco v4.5

megaco_codec_transform

Megaco message transformation utility.
This module implements a simple megaco message transformation utility.
Note that this module is not included in the runtime part of the
application.

 Summary

 Functions

 export_messages()

 Equivalent to export_messages/1

 export_messages(MessagePackage)

 export_messages(MessagePackage) -> void()

 Functions

 Link to this function

 export_messages()

 View Source

Equivalent to export_messages/1

 Link to this function

 export_messages(MessagePackage)

 View Source

export_messages(MessagePackage) -> void()
Export the messages in the MessagePackage (default is time_test).
The output produced by this function is a directory structure with the following
structure:
<message package>/pretty/<message-files>
 compact/<message-files>
 per/<message-files>
 ber/<message-files>
 erlang/<message-files>

 megaco_digit_map - megaco v4.5

megaco_digit_map

Digit Map utility module.
This is a Digit Map utility module (types).

 Summary

 Types

 cancel()

 $z | $Z | cancel

 event()

 kind()

 letter()

 $0..$9 | $a..$k | $A..$K

 one_second()

 $s | $S

 pause()

 ten_seconds()

 $l | $L

 value()

 Types

 Link to this type

 cancel()

 View Source

 -type cancel() :: $z | $Z | cancel.

$z | $Z | cancel

 Link to this type

 event()

 View Source

 -type event() :: letter() | pause() | cancel().

 Link to this type

 kind()

 View Source

 -type kind() :: full | unambiguous.

 Link to this type

 letter()

 View Source

 -type letter() :: $0..$9 | $a..$k | $A..$K.

$0..$9 | $a..$k | $A..$K

 Link to this type

 one_second()

 View Source

 -type one_second() :: $s | $S.

$s | $S

 Link to this type

 pause()

 View Source

 -type pause() :: one_second() | ten_seconds().

 Link to this type

 ten_seconds()

 View Source

 -type ten_seconds() :: $l | $L.

$l | $L

 Link to this type

 value()

 View Source

 -type value() ::
 #'DigitMapValue'{startTimer :: term(),
 shortTimer :: term(),
 longTimer :: term(),
 digitMapBody :: term(),
 durationTimer :: term()}.

 megaco_edist_compress - megaco v4.5

megaco_edist_compress behaviour

Megaco erlang dist compress behaviour.
The following functions should be exported from a megaco_edist_compress
callback module:

 Summary

 Callbacks

 decode(T, Version)

 Decompress a megaco component.

 encode(R, Version)

 Compress a megaco component. The erlang dist encoder makes no assumption on the
how or even if the component is compressed.

 Callbacks

 Link to this callback

 decode(T, Version)

 View Source

 -callback decode(T, Version) -> R
 when
 T :: term(),
 Version :: megaco_encoder:protocol_version() | dynamic,
 R ::
 megaco_encoder:megaco_message() |
 megaco_encoder:transaction() |
 megaco_encoder:action_reply() |
 megaco_encoder:action_request() |
 megaco_encoder:command_request().

Decompress a megaco component.

 Link to this callback

 encode(R, Version)

 View Source

 -callback encode(R, Version) -> T
 when
 R ::
 megaco_encoder:megaco_message() |
 megaco_encoder:transaction() |
 megaco_encoder:action_reply() |
 megaco_encoder:action_request() |
 megaco_encoder:command_request(),
 Version :: megaco_encoder:protocol_version(),
 T :: term().

Compress a megaco component. The erlang dist encoder makes no assumption on the
how or even if the component is compressed.

 megaco_encoder - megaco v4.5

megaco_encoder behaviour

Megaco encoder behaviour.
The following functions should be exported from a megaco_encoder callback
module:

 DATA TYPES

Note
Note that the actual definition of (some of) these records depend on the
megaco protocol version used. For instance, the 'TransactionReply' record
has two more fields in version 3, so a simple erlang type definition cannot be
made here.

protocol_version() = integer()
segment_no() = integer()
megaco_message() = #'MegacoMessage{}'
transaction() = {transactionRequest, transaction_request()} |
 {transactionPending, transaction_reply()} |
 {transactionReply, transaction_pending()} |
 {transactionResponseAck, transaction_response_ack()} |
 {segmentReply, segment_reply()}
transaction_request() = #'TransactionRequest'{}
transaction_pending() = #'TransactionPending'{}
transaction_reply() = #'TransactionReply'{}
transaction_response_ack() = [transaction_ack()]
transaction_ack() = #'TransactionAck'{}
segment_reply() = #'SegmentReply'{}
action_request() = #'ActionRequest'{}
action_reply() = #'ActionReply'{}
command_request() = #'CommandRequest'{}
error_desc() = #'ErrorDescriptor'{}

 Summary

 Types

 action_reply()

 action_request()

 alpha()

 Alpha Numeric characters: A..Z | a..z

 command_request()

 deviceName()

 digit()

 Decimal digits: 0..9

 domainName()

 error_desc()

 ip4Address()

 ip6Address()

 megaco_message()

 mtpAddress()

 There is no way to properly express this type in the Erlang type system, so this
is the best we can do.

 octet()

 octet_string()

 pathName()

 There is no way to properly express this type in the Erlang type system, so this
is the best we can do. The minimum length is 1 and the maximum length is 64.

 protocol_version()

 segment_no()

 segment_reply()

 transaction()

 transaction_ack()

 transaction_pending()

 transaction_reply()

 The problem with TransactionReply is that its definition depend on which version
of the protocol we are using. As of version 3, it has two more fields.

 transaction_request()

 transaction_response_ack()

 Callbacks

 decode_message(EncodingConfig, Version, Bin)

 Decode a megaco message.

 decode_mini_message(EncodingConfig, Version, Bin)

 Perform a minimal decode of a megaco message.

 encode_action_reply(EncodingConfig, Version, AR)

 Encode a megaco action reply. If this, for whatever reason, is not supported,
the function should return the error reason not_implemented.

 encode_action_requests(EncodingConfig, Version, ARs)

 Encode megaco action requests. This function is called when the user calls the
function encode_actions/3. If that function is
never used or if the codec cannot support this (the encoding of individual
actions), then return with error reason not_implemented.

 encode_message(EncodingConfig, Version, Message)

 Encode a megaco message.

 encode_transaction(EncodingConfig, Version, Transaction)

 Encode a megaco transaction. If this, for whatever reason, is not supported, the
function should return the error reason not_implemented.

 Types

 Link to this type

 action_reply()

 View Source

 -type action_reply() :: {'ActionReply', _, _, _}.

 Link to this type

 action_request()

 View Source

 -type action_request() :: {'ActionRequest', _, _, _, _}.

 Link to this type

 alpha()

 View Source

 -type alpha() :: 65..90 | 97..122.

Alpha Numeric characters: A..Z | a..z

 Link to this type

 command_request()

 View Source

 -type command_request() :: {'CommandRequest', _, _, _}.

 Link to this type

 deviceName()

 View Source

 -type deviceName() :: pathName().

 Link to this type

 digit()

 View Source

 -type digit() :: 48..57.

Decimal digits: 0..9

 Link to this type

 domainName()

 View Source

 -type domainName() :: #'DomainName'{name :: term(), portNumber :: term()}.

 Link to this type

 error_desc()

 View Source

 -type error_desc() :: #'ErrorDescriptor'{errorCode :: term(), errorText :: term()}.

 Link to this type

 ip4Address()

 View Source

 -type ip4Address() :: #'IP4Address'{address :: term(), portNumber :: term()}.

 Link to this type

 ip6Address()

 View Source

 -type ip6Address() :: #'IP6Address'{address :: term(), portNumber :: term()}.

 Link to this type

 megaco_message()

 View Source

 -type megaco_message() :: #'MegacoMessage'{authHeader :: term(), mess :: term()}.

 Link to this type

 mtpAddress()

 View Source

 -type mtpAddress() :: octet_string().

There is no way to properly express this type in the Erlang type system, so this
is the best we can do.
A proper definition would be: -type mtpAddress() :: octet_string(2..4).

 Link to this type

 octet()

 View Source

 -type octet() :: 0..255.

 Link to this type

 octet_string()

 View Source

 -type octet_string() :: [octet()].

 Link to this type

 pathName()

 View Source

 -type pathName() :: [$* | alpha() | digit() | $_ | $/ | $$ | $@ | $- | $.].

There is no way to properly express this type in the Erlang type system, so this
is the best we can do. The minimum length is 1 and the maximum length is 64.
Here is the ABNF (copied from the megaco standard) to fill in the blanks:
Total length of pathNAME must not exceed 64 chars.
pathNAME = ["*"] NAME *("/" / "*"/ ALPHA / DIGIT /"_" / "$") ["@" pathDomainName]
ABNF allows two or more consecutive "." although it is meaningless in a path domain name.
pathDomainName = (ALPHA / DIGIT / "*") *63(ALPHA / DIGIT / "-" / "*" / ".")
NAME = ALPHA *63(ALPHA / DIGIT / "_")

 Link to this type

 protocol_version()

 View Source

 -type protocol_version() :: pos_integer().

 Link to this type

 segment_no()

 View Source

 -type segment_no() :: 0..65535.

 Link to this type

 segment_reply()

 View Source

 -type segment_reply() ::
 #'SegmentReply'{transactionId :: term(),
 segmentNumber :: term(),
 segmentationComplete :: term()}.

 Link to this type

 transaction()

 View Source

 -type transaction() ::
 {transactionRequest, transaction_request()} |
 {transactionPending, transaction_reply()} |
 {transactionReply, transaction_pending()} |
 {transactionResponseAck, transaction_response_ack()} |
 {segmentReply, segment_reply()}.

 Link to this type

 transaction_ack()

 View Source

 -type transaction_ack() :: #'TransactionAck'{firstAck :: term(), lastAck :: term()}.

 Link to this type

 transaction_pending()

 View Source

 -type transaction_pending() :: #'TransactionPending'{transactionId :: term()}.

 Link to this type

 transaction_reply()

 View Source

 -type transaction_reply() :: {'TransactionReply', _, _} | {'TransactionReply', _, _, _, _}.

The problem with TransactionReply is that its definition depend on which version
of the protocol we are using. As of version 3, it has two more fields.

 Link to this type

 transaction_request()

 View Source

 -type transaction_request() :: #'TransactionRequest'{transactionId :: term(), actions :: term()}.

 Link to this type

 transaction_response_ack()

 View Source

 -type transaction_response_ack() :: [transaction_ack()].

 Callbacks

 Link to this callback

 decode_message(EncodingConfig, Version, Bin)

 View Source

 -callback decode_message(EncodingConfig, Version, Bin) -> {ok, Message} | Error
 when
 EncodingConfig :: list(),
 Version :: protocol_version() | dynamic,
 Bin :: binary(),
 Message :: megaco_message(),
 Error :: term().

Decode a megaco message.
Note that if the Version argument is dynamic, the decoder should try to figure
out the actual version from the message itself and then use the proper decoder,
e.g. version 1.
If on the other hand the Version argument is an integer, it means that this is
the expected version of the message and the decoder for that version should be
used.

 Link to this callback

 decode_mini_message(EncodingConfig, Version, Bin)

 View Source

 -callback decode_mini_message(EncodingConfig, Version, Bin) -> {ok, Message} | Error
 when
 EncodingConfig :: list(),
 Version :: protocol_version() | dynamic,
 Bin :: binary(),
 Message :: megaco_message(),
 Error :: term().

Perform a minimal decode of a megaco message.
The purpose of this function is to do a minimal decode of Megaco message. A
successfull result is a 'MegacoMessage' in which only version and mid has been
initiated. This function is used by the megaco_messenger module when the
decode_message/3 function fails to figure out the mid
(the actual sender) of the message.
Note again that a successfull decode only returns a partially initiated message.

 Link to this callback

 encode_action_reply(EncodingConfig, Version, AR)

 View Source

 (optional)

 -callback encode_action_reply(EncodingConfig, Version, AR) -> {ok, Bin} | {error, Reason}
 when
 EncodingConfig :: list(),
 Version :: protocol_version(),
 AR :: action_reply(),
 Bin :: binary(),
 Reason :: not_implemented | term().

Encode a megaco action reply. If this, for whatever reason, is not supported,
the function should return the error reason not_implemented.
This function is used when segmentation has been configured. So, for this to
work, this function must be fully supported!

 Link to this callback

 encode_action_requests(EncodingConfig, Version, ARs)

 View Source

 -callback encode_action_requests(EncodingConfig, Version, ARs) -> {ok, Bin} | {error, Reason}
 when
 EncodingConfig :: list(),
 Version :: protocol_version(),
 ARs :: [action_request()],
 Bin :: binary(),
 Reason :: not_implemented | term().

Encode megaco action requests. This function is called when the user calls the
function encode_actions/3. If that function is
never used or if the codec cannot support this (the encoding of individual
actions), then return with error reason not_implemented.

 Link to this callback

 encode_message(EncodingConfig, Version, Message)

 View Source

 -callback encode_message(EncodingConfig, Version, Message) -> {ok, Bin} | Error
 when
 EncodingConfig :: list(),
 Version :: protocol_version(),
 Message :: megaco_message(),
 Bin :: binary(),
 Error :: term().

Encode a megaco message.

 Link to this callback

 encode_transaction(EncodingConfig, Version, Transaction)

 View Source

 -callback encode_transaction(EncodingConfig, Version, Transaction) -> {ok, Bin} | {error, Reason}
 when
 EncodingConfig :: list(),
 Version :: protocol_version(),
 Transaction :: transaction(),
 Bin :: binary(),
 Reason :: not_implemented | term().

Encode a megaco transaction. If this, for whatever reason, is not supported, the
function should return the error reason not_implemented.
This functionality is used both when the transaction sender is used and for
segmentation. So, for either of those to work, this function must be fully
supported!

 megaco_flex_scanner - megaco v4.5

megaco_flex_scanner

Interface module to the flex scanner linked in driver.
This module contains the public interface to the flex scanner linked in driver.
The flex scanner performs the scanning phase of text message decoding.
The flex scanner is written using a tool called flex. In order to be able to
compile the flex scanner driver, this tool has to be available.
By default the flex scanner reports line-number of an error. But it can be built
without line-number reporting. Instead token number is used. This will speed up
the scanning some 5-10%. Use --disable-megaco-flex-scanner-lineno when
configuring the application.
The scanner will, by default, be built as a reentrant scanner if the flex
utility supports this (it depends on the version of flex). It is possible to
explicitly disable this even when flex support this. Use
--disable-megaco-reentrant-flex-scanner when configuring the application.

 Summary

 Types

 megaco_ports()

 Return value of a successful (flex) scanner start.

 Functions

 is_reentrant_enabled()

 is_reentrant_enabled() -> Boolean

 is_scanner_port(Port, PortOrPorts)

 Checks if a port is a flex scanner port or not (useful when if a port exits).

 scan(Binary, PortOrPorts)

 Scans a megaco message and generates a token list to be passed on the parser.

 start()

 This function is used to start the flex scanner. It locates the library and
loads the linked in driver.

 stop(PortOrPorts)

 This function is used to stop the flex scanner. It also unloads the driver.

 Types

 Link to this type

 megaco_ports()

 View Source

 -type megaco_ports() :: port() | tuple().

Return value of a successful (flex) scanner start.

 Functions

 Link to this function

 is_reentrant_enabled()

 View Source

 -spec is_reentrant_enabled() -> boolean().

is_reentrant_enabled() -> Boolean
Is the flex scanner reentrant or not.

 Link to this function

 is_scanner_port(Port, PortOrPorts)

 View Source

 -spec is_scanner_port(Port, PortOrPorts) -> boolean() when Port :: port(), PortOrPorts :: megaco_ports().

Checks if a port is a flex scanner port or not (useful when if a port exits).

 Link to this function

 scan(Binary, PortOrPorts)

 View Source

 -spec scan(Binary, PortOrPorts) -> {ok, Tokens, Version, LatestLine} | {error, Reason, LatestLine}
 when
 Binary :: binary(),
 PortOrPorts :: megaco_ports(),
 Tokens :: list(),
 Version :: megaco_encoder:protocol_version(),
 LatestLine :: non_neg_integer(),
 Reason :: term().

Scans a megaco message and generates a token list to be passed on the parser.

 Link to this function

 start()

 View Source

 -spec start() -> {ok, PortOrPorts} | {error, Reason}
 when PortOrPorts :: megaco_ports(), Reason :: term().

This function is used to start the flex scanner. It locates the library and
loads the linked in driver.
On a single core system or if it's a non-reentrant scanner, a single port is
created. On a multi-core system with a reentrant scanner, several ports will be
created (one for each scheduler).
Note that the process that calls this function must be permanent. If it dies,
the port(s) will exit and the driver unload.

 Link to this function

 stop(PortOrPorts)

 View Source

 -spec stop(PortOrPorts) -> stopped when PortOrPorts :: megaco_ports().

This function is used to stop the flex scanner. It also unloads the driver.

 megaco_sdp - megaco v4.5

megaco_sdp

SDP utility module.
This module contains various things related to SDP.

 Summary

 Types

 property_group()

 property_groups()

 property_parm()

 sdp()

 sdp_a()

 Session attribute.

 sdp_a_fmtp()

 sdp_a_ptime()

 sdp_a_quality()

 sdp_a_rtpmap()

 sdp_b()

 Bandwidth information.

 sdp_c()

 Connection information.

 sdp_e()

 Email address.

 sdp_i()

 Session information.

 sdp_k()

 Encryption key.

 sdp_m()

 Media name and transport address.

 sdp_o()

 Owner/creator and session identifier.

 sdp_p()

 Phone number.

 sdp_property_group()

 sdp_property_groups()

 sdp_property_parm()

 sdp_r()

 Repeat times.

 sdp_s()

 Session name.

 sdp_t()

 sdp_u()

 URI of description.

 sdp_v()

 Protocol version.

 sdp_z()

 Time zone adjustment.

 Types

 Link to this type

 property_group()

 View Source

 -type property_group() :: [property_parm()].

 Link to this type

 property_groups()

 View Source

 -type property_groups() :: [property_group()].

 Link to this type

 property_parm()

 View Source

 -type property_parm() :: #'PropertyParm'{name :: term(), value :: term(), extraInfo :: term()}.

 Link to this type

 sdp()

 View Source

 -type sdp() ::
 sdp_o() |
 sdp_s() |
 sdp_i() |
 sdp_u() |
 sdp_e() |
 sdp_p() |
 sdp_c() |
 sdp_b() |
 sdp_k() |
 sdp_a() |
 sdp_a_rtpmap() |
 sdp_a_ptime() |
 sdp_z() |
 sdp_t() |
 sdp_r() |
 sdp_m().

 Link to this type

 sdp_a()

 View Source

 -type sdp_a() :: #megaco_sdp_a{attribute :: term(), value :: term()}.

Session attribute.

 Link to this type

 sdp_a_fmtp()

 View Source

 -type sdp_a_fmtp() :: #megaco_sdp_a_fmtp{format :: term(), param :: term()}.

 Link to this type

 sdp_a_ptime()

 View Source

 -type sdp_a_ptime() :: #megaco_sdp_a_ptime{packet_time :: term()}.

 Link to this type

 sdp_a_quality()

 View Source

 -type sdp_a_quality() :: #megaco_sdp_a_quality{quality :: term()}.

 Link to this type

 sdp_a_rtpmap()

 View Source

 -type sdp_a_rtpmap() ::
 #megaco_sdp_a_rtpmap{payload_type :: term(),
 encoding_name :: term(),
 clock_rate :: term(),
 encoding_parms :: term()}.

 Link to this type

 sdp_b()

 View Source

 -type sdp_b() :: #megaco_sdp_b{bwtype :: term(), bandwidth :: term()}.

Bandwidth information.

 Link to this type

 sdp_c()

 View Source

 -type sdp_c() ::
 #megaco_sdp_c{network_type :: term(), address_type :: term(), connection_addr :: term()}.

Connection information.

 Link to this type

 sdp_e()

 View Source

 -type sdp_e() :: #megaco_sdp_e{email :: term()}.

Email address.

 Link to this type

 sdp_i()

 View Source

 -type sdp_i() :: #megaco_sdp_i{session_descriptor :: term()}.

Session information.

 Link to this type

 sdp_k()

 View Source

 -type sdp_k() :: #megaco_sdp_k{method :: term(), encryption_key :: term()}.

Encryption key.

 Link to this type

 sdp_m()

 View Source

 -type sdp_m() ::
 #megaco_sdp_m{media :: term(),
 port :: term(),
 num_ports :: term(),
 transport :: term(),
 fmt_list :: term()}.

Media name and transport address.

 Link to this type

 sdp_o()

 View Source

 -type sdp_o() ::
 #megaco_sdp_o{user_name :: term(),
 session_id :: term(),
 version :: term(),
 network_type :: term(),
 address_type :: term(),
 address :: term()}.

Owner/creator and session identifier.

 Link to this type

 sdp_p()

 View Source

 -type sdp_p() :: #megaco_sdp_p{phone_number :: term()}.

Phone number.

 Link to this type

 sdp_property_group()

 View Source

 -type sdp_property_group() :: [sdp_property_parm()].

 Link to this type

 sdp_property_groups()

 View Source

 -type sdp_property_groups() :: [sdp_property_group()].

 Link to this type

 sdp_property_parm()

 View Source

 -type sdp_property_parm() :: sdp() | property_parm().

 Link to this type

 sdp_r()

 View Source

 -type sdp_r() ::
 #megaco_sdp_r{repeat_interval :: term(), active_duration :: term(), list_of_offsets :: term()}.

Repeat times.

 Link to this type

 sdp_s()

 View Source

 -type sdp_s() :: #megaco_sdp_s{name :: term()}.

Session name.

 Link to this type

 sdp_t()

 View Source

 -type sdp_t() :: #megaco_sdp_t{start :: term(), stop :: term()}.

 Link to this type

 sdp_u()

 View Source

 -type sdp_u() :: #megaco_sdp_u{uri :: term()}.

URI of description.

 Link to this type

 sdp_v()

 View Source

 -type sdp_v() :: #megaco_sdp_v{version :: term()}.

Protocol version.

 Link to this type

 sdp_z()

 View Source

 -type sdp_z() :: #megaco_sdp_z{list_of_adjustments :: term()}.

Time zone adjustment.

 megaco_tcp - megaco v4.5

megaco_tcp

Interface module to TPKT transport protocol for Megaco/H.248.
This module contains the public interface to the TPKT (TCP/IP) version transport
protocol for Megaco/H.248.

 Summary

 Functions

 block(Socket)

 block(Handle) -> ok

 close(Socket)

 close(Handle) -> ok

 connect(SupPid, Parameters)

 connect(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error, Reason}

 get_stats()

 Equivalent to get_stats/2

 get_stats(Socket)

 Equivalent to get_stats/2

 get_stats(Socket, Counter)

 get_stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}

 listen(SupPid, Parameters)

 listen(TransportRef, ListenPortSpecList) -> ok

 reset_stats()

 Equivalent to reset_stats/1

 reset_stats(Socket)

 reset_stats(SendHandle) -> void()

 send_message(Socket, Data)

 send_message(Handle, Message) -> ok

 socket(Socket)

 socket(Handle) -> Socket

 start_transport()

 start_transport() -> {ok, TransportRef}

 unblock(Socket)

 unblock(Handle) -> ok

 upgrade_receive_handle(Pid, NewHandle)

 upgrade_receive_handle(ControlPid, NewHandle) -> ok

 Functions

 Link to this function

 block(Socket)

 View Source

block(Handle) -> ok
Stop receiving incoming messages on the socket.

 Link to this function

 close(Socket)

 View Source

close(Handle) -> ok
This function is used for closing an active TPKT connection.

 Link to this function

 connect(SupPid, Parameters)

 View Source

connect(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error, Reason}
This function is used to open a TPKT connection.
	module - This option makes it possible for the user to provide their own
callback module. The receive_message/4 or process_received_message/4
functions of this module is called when a new message is received. Which one
is called depends on the size of the message;
	small - receive_message

	large - process_received_message

Default value is megaco.

	inet_backend - Choose the inet-backend.
This option make it possible to use a different inet-backend ('default',
'inet' or 'socket').
Default is default (system default).

 Link to this function

 get_stats()

 View Source

Equivalent to get_stats/2

 Link to this function

 get_stats(Socket)

 View Source

Equivalent to get_stats/2

 Link to this function

 get_stats(Socket, Counter)

 View Source

get_stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}
Retreive the TCP related (SNMP) statistics counters.

 Link to this function

 listen(SupPid, Parameters)

 View Source

listen(TransportRef, ListenPortSpecList) -> ok
This function is used for starting new TPKT listening socket for TCP/IP. The
option list contains the socket definitions.
	inet_backend - Choose the inet-backend.
This option make it possible to use a different inet-backend ('default',
'inet' or 'socket').
Default is default (system default).

 Link to this function

 reset_stats()

 View Source

Equivalent to reset_stats/1

 Link to this function

 reset_stats(Socket)

 View Source

reset_stats(SendHandle) -> void()
Reset all TCP related (SNMP) statistics counters.

 Link to this function

 send_message(Socket, Data)

 View Source

send_message(Handle, Message) -> ok
Sends a message on a connection.

 Link to this function

 socket(Socket)

 View Source

socket(Handle) -> Socket
This function is used to convert a socket_handle() to a inet_socket().
inet_socket() is a plain socket, see the inet module for more info.

 Link to this function

 start_transport()

 View Source

start_transport() -> {ok, TransportRef}
This function is used for starting the TCP/IP transport service. Use
exit(TransportRef, Reason) to stop the transport service.

 Link to this function

 unblock(Socket)

 View Source

unblock(Handle) -> ok
Starting to receive incoming messages from the socket again.

 Link to this function

 upgrade_receive_handle(Pid, NewHandle)

 View Source

upgrade_receive_handle(ControlPid, NewHandle) -> ok
Update the receive handle of the control process (e.g. after having changed
protocol version).

 megaco_transport - megaco v4.5

megaco_transport behaviour

Megaco transport behaviour.
The following functions should be exported from a megaco_transport callback
module:
	send_message/2 [mandatory]
	send_message/3 [optional]
	

 resend_message/2 [optional]

 Summary

 Callbacks

 resend_message(Handle, Msg)

 Re-send a megaco message.

 send_message(Handle, Msg)

 send_message(Handle, Msg, Resend)

 Send a megaco message.

 Callbacks

 Link to this callback

 resend_message(Handle, Msg)

 View Source

 (optional)

 -callback resend_message(Handle, Msg) -> ok | {cancel, Reason :: term()} | Error
 when Handle :: term(), Msg :: iodata(), Error :: term().

Re-send a megaco message.
Note that this function will only be called if the user has set the
resend_indication config option to
trueand it is in fact a message resend. If not both of these condition's
are meet, send_message will be called.
If the function returns {cancel, Reason}, this means the transport module
decided not to send the message. This is not an error. No error messages will
be issued and no error counters incremented. What actions this will result in
depends on what kind of message was sent.
In the case of requests, megaco will cancel the message in much the same way as
if megaco:cancel had been called (after a successfull send). The information
will be propagated back to the user differently depending on how the request(s)
where issued: For requests issued using megaco:call, the info
will be delivered in the return value. For requests issued using megaco:cast
the info will be delivered via a call to the callback function
handle_trans_reply.
In the case of reply, megaco will cancel the reply and information of this will
be returned to the user via a call to the callback function
handle_trans_ack.

 Link to this callback

 send_message(Handle, Msg)

 View Source

 -callback send_message(Handle, Msg) -> ok | {cancel, Reason :: term()} | Error
 when Handle :: term(), Msg :: iodata(), Error :: term().

 Link to this callback

 send_message(Handle, Msg, Resend)

 View Source

 (optional)

 -callback send_message(Handle, Msg, Resend) -> ok | {cancel, Reason :: term()} | Error
 when Handle :: term(), Msg :: iodata(), Resend :: boolean(), Error :: term().

Send a megaco message.
If the function returns {cancel, Reason}, this means the transport module
decided not to send the message. This is not an error. No error messages will
be issued and no error counters incremented. What actions this will result in
depends on what kind of message was sent.
In the case of requests, megaco will cancel the message in much the same way as
if megaco:cancel had been called (after a successfull send). The information
will be propagated back to the user differently depending on how the request(s)
where issued: For requests issued using megaco:call, the info
will be delivered in the return value. For requests issued using megaco:cast
the info will be delivered via a call to the callback function
handle_trans_reply.
In the case of reply, megaco will cancel the reply and information of this will
be returned to the user via a call to the callback function
handle_trans_ack.
The function send_message/3 will only be called if the
resend_indication config option has been set
to the value flag. The third argument, Resend then indicates if the message
send is a resend or not.

 megaco_udp - megaco v4.5

megaco_udp

Interface module to UDP transport protocol for Megaco/H.248.
This module contains the public interface to the UDP/IP version transport
protocol for Megaco/H.248.

 Summary

 Functions

 block/1

 block(Handle) -> ok

 close/1

 close(Handle) -> ok

 create_send_handle/3

 create_send_handle(Handle, Host, Port) -> send_handle()

 get_stats()

 Equivalent to get_stats/2

 get_stats(SH)

 Equivalent to get_stats/2

 get_stats(SH, Counter)

 get_stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}

 open(SupPid, Options)

 open(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error, Reason}

 reset_stats()

 Equivalent to reset_stats/1

 reset_stats(SH)

 reset_stats(SendHandle) -> void()

 send_message/2

 send_message(SendHandle, Msg) -> ok

 socket/1

 socket(Handle) -> Socket

 start_transport()

 start_transport() -> {ok, TransportRef}

 unblock/1

 unblock(Handle) -> ok

 upgrade_receive_handle(Pid, NewHandle)

 upgrade_receive_handle(ControlPid, NewHandle) -> ok

 Functions

 Link to this function

 block/1

 View Source

block(Handle) -> ok
Stop receiving incoming messages on the socket.

 Link to this function

 close/1

 View Source

close(Handle) -> ok
This function is used for closing an active UDP socket.

 Link to this function

 create_send_handle/3

 View Source

create_send_handle(Handle, Host, Port) -> send_handle()
Creates a send handle from a transport handle. The send handle is intended to be
used by megaco_udp:send_message/2.

 Link to this function

 get_stats()

 View Source

Equivalent to get_stats/2

 Link to this function

 get_stats(SH)

 View Source

Equivalent to get_stats/2

 Link to this function

 get_stats(SH, Counter)

 View Source

get_stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}
Retreive the UDP related (SNMP) statistics counters.

 Link to this function

 open(SupPid, Options)

 View Source

open(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error, Reason}
This function is used to open an UDP/IP socket.
	module - The option makes it possible for the user to provide their own
callback module. The functions receive_message/4 or
process_received_message/4 of this module is called when a new message is
received. Which one depends on the size of the message:
	small - receive_message

	large - process_received_message

Default value is megaco.

	inet_backend - Choose the inet-backend.
This option make it possible to use a different inet-backend ('default',
'inet' or 'socket').
Default is default (system default).

 Link to this function

 reset_stats()

 View Source

Equivalent to reset_stats/1

 Link to this function

 reset_stats(SH)

 View Source

reset_stats(SendHandle) -> void()
Reset all TCP related (SNMP) statistics counters.

 Link to this function

 send_message/2

 View Source

send_message(SendHandle, Msg) -> ok
Sends a message on a socket. The send handle is obtained by
megacoudp:create_send_handle/3. Increments the NumOutMessages and NumOutOctets
counters if message successfully sent. In case of a failure to send, the
NumErrors counter is _not incremented. This is done elsewhere in the megaco
app.

 Link to this function

 socket/1

 View Source

socket(Handle) -> Socket
This function is used to convert a socket_handle() to a inet_socket().
inet_socket() is a plain socket, see the inet module for more info.

 Link to this function

 start_transport()

 View Source

start_transport() -> {ok, TransportRef}
This function is used for starting the UDP/IP transport service. Use
exit(TransportRef, Reason) to stop the transport service.

 Link to this function

 unblock/1

 View Source

unblock(Handle) -> ok
Starting to receive incoming messages from the socket again.

 Link to this function

 upgrade_receive_handle(Pid, NewHandle)

 View Source

upgrade_receive_handle(ControlPid, NewHandle) -> ok
Update the receive handle of the control process (e.g. after having changed
protocol version).

 megaco_user - megaco v4.5

megaco_user behaviour

Callback module for users of the Megaco application
This module defines the callback behaviour of Megaco users. A megaco_user
compliant callback module must export the following functions:
	handle_connect/2,3
	handle_disconnect/3
	handle_syntax_error/3,4
	handle_message_error/3,4
	handle_trans_request/3,4
	handle_trans_long_request/3,4
	handle_trans_reply/4,5
	handle_trans_ack/4,5
	handle_unexpected_trans/3,4
	handle_trans_request_abort/4,5
	handle_segment_reply/5,6

The semantics of them and their exact signatures are explained below.
The user_args configuration parameter which may be used to extend the argument
list of the callback functions. For example, the handle_connect function takes
by default two arguments:
 handle_connect(Handle, Version)
but if the user_args parameter is set to a longer list, such as
[SomePid,SomeTableRef], the callback function is expected to have these (in
this case two) extra arguments last in the argument list:
 handle_connect(Handle, Version, SomePid, SomeTableRef)

Note
Must of the functions below has an optional Extra argument (e.g.
handle_unexpected_trans/4). The functions
which takes this argument will be called if and only if one of the functions
receive_message/5 or
process_received_message/5 was called
with the Extra argument different than ignore_extra.

 DATA TYPES

action_request() = #'ActionRequest'{}
action_reply() = #'ActionReply'{}
error_desc() = #'ErrorDescriptor'{}
segment_no() = integer()
conn_handle() = #megaco_conn_handle{}
The record initially returned by megaco:connect/4,5. It identifies a "virtual"
connection and may be reused after a reconnect (disconnect + connect).
protocol_version() = integer()
Is the actual protocol version. In most cases the protocol version is retrieved
from the processed message, but there are exceptions:
	When handle_connect/2,3 is triggered by an explicit call to
megaco:connect/4,5.
	handle_disconnect/3
	handle_syntax_error/3

In these cases, the ProtocolVersion default version is obtained from the static
connection configuration:
	megaco:conn_info(ConnHandle, protocol_version).

 Summary

 Types

 conn_handle()

 megaco_timer()

 receive_handle()

 Callbacks

 handle_connect(ConnHandle, ProtocolVersion)

 handle_connect(ConnHandle, ProtocolVersion, Extra)

 Invoked when a new connection is established

 handle_disconnect(ConnHandle, ProtocolVersion, Reason)

 Invoked when a connection is teared down

 handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr)

 handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr, Extra)

 Invoked when a received message just contains an error instead of a list of
transactions.

 handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl)

 handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl, Extra)

 This function is called when a segment reply has been received if the
segment_reply_ind config option has been set to true.

 handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED)

 handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED, Extra)

 Invoked when a received message had syntax errors

 handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData)

 handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData, Extra)

 Optionally invoked for a transaction acknowledgement

 handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData)

 handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData, Extra)

 Optionally invoked for a time consuming transaction request

 handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData)

 handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData, Extra)

 Optionally invoked for a transaction reply

 handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests)

 handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests, Extra)

 Invoked for each transaction request

 handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid)

 handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid, Extra)

 Invoked when a transaction request has been aborted

 handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans)

 handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans, Extra)

 Invoked when a unexpected message is received

 Types

 Link to this type

 conn_handle()

 View Source

 -type conn_handle() :: #megaco_conn_handle{local_mid :: term(), remote_mid :: term()}.

 Link to this type

 megaco_timer()

 View Source

 -type megaco_timer() ::
 infinity |
 non_neg_integer() |
 #megaco_incr_timer{wait_for :: term(),
 factor :: term(),
 incr :: term(),
 max_retries :: term()}.

 Link to this type

 receive_handle()

 View Source

 -type receive_handle() ::
 #megaco_receive_handle{local_mid :: term(),
 encoding_mod :: term(),
 encoding_config :: term(),
 send_mod :: term(),
 protocol_version :: term()}.

 Callbacks

 Link to this callback

 handle_connect(ConnHandle, ProtocolVersion)

 View Source

 (optional)

 -callback handle_connect(ConnHandle, ProtocolVersion) -> ok | error | {error, ErrorDescr}
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ErrorDescr :: megaco_encoder:error_desc().

 Link to this callback

 handle_connect(ConnHandle, ProtocolVersion, Extra)

 View Source

 (optional)

 -callback handle_connect(ConnHandle, ProtocolVersion, Extra) -> ok | error | {error, ErrorDescr}
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 Extra :: term(),
 ErrorDescr :: megaco_encoder:error_desc().

Invoked when a new connection is established
Connections may either be established by an explicit call to megaco:connect/4 or
implicitly at the first invocation of megaco:receive_message/3.
Normally a Media Gateway (MG) connects explicitly while a Media Gateway
Controller (MGC) connects implicitly.
At the Media Gateway Controller (MGC) side it is possible to reject a connection
request (and send a message error reply to the gateway) by returning
{error, ErrorDescr} or simply error which generates an error descriptor with
code 402 (unauthorized) and reason "Connection refused by user" (this is also
the case for all unknown results, such as exit signals or throw).
See note above about the Extra argument in
handle_message_error/4.
handle_connect/3 (with Extra) can also be called as
a result of a call to the megaco:connect/5 function (if
that function is called with the Extra argument different than ignore_extra.

 Link to this callback

 handle_disconnect(ConnHandle, ProtocolVersion, Reason)

 View Source

 (optional)

 -callback handle_disconnect(ConnHandle, ProtocolVersion, Reason) -> megaco:void()
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 Reason :: term().

Invoked when a connection is teared down
The disconnect may either be made explicitly by a call to megaco:disconnect/2 or
implicitly when the control process of the connection dies.

 Link to this callback

 handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr)

 View Source

 (optional)

 -callback handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr) -> megaco:void()
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ErrorDescr :: megaco_encoder:error_desc().

 Link to this callback

 handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr, Extra)

 View Source

 (optional)

 -callback handle_message_error(ConnHandle, ProtocolVersion, ErrorDescr, Extra) -> megaco:void()
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ErrorDescr :: megaco_encoder:error_desc(),
 Extra :: term().

Invoked when a received message just contains an error instead of a list of
transactions.
Incoming messages is delivered by megaco:receive_message/4 and successfully
decoded. Normally a message contains a list of transactions, but it may instead
contain an ErrorDescriptor on top level of the message.
Message errors are detected remotely on the other side of the protocol. And you
probably don't want to reply to it, but it may indicate that you have
outstanding transactions that not will get any response (request -> reply; reply
-> ack).
See note above about the Extra argument in
handle_message_error/4.

 Link to this callback

 handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl)

 View Source

 (optional)

 -callback handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 TransNo :: integer(),
 SegNo :: integer(),
 SegCompl :: asn1_NOVALUE | 'NULL'.

 Link to this callback

 handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl, Extra)

 View Source

 (optional)

 -callback handle_segment_reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl, Extra) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 TransNo :: integer(),
 SegNo :: megaco_encoder:segment_no(),
 SegCompl :: asn1_NOVALUE | 'NULL',
 Extra :: term().

This function is called when a segment reply has been received if the
segment_reply_ind config option has been set to true.
This is in effect a progress report.
See note above about the Extra argument in
handle_segment_reply/6.

 Link to this callback

 handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED)

 View Source

 (optional)

 -callback handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED) ->
 reply | {reply, ED} | no_reply | {no_reply, ED}
 when
 ReceiveHandle :: receive_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 DefaultED :: megaco_encoder:error_desc(),
 ED :: megaco_encoder:error_desc().

 Link to this callback

 handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED, Extra)

 View Source

 (optional)

 -callback handle_syntax_error(ReceiveHandle, ProtocolVersion, DefaultED, Extra) ->
 reply | {reply, ED} | no_reply | {no_reply, ED}
 when
 ReceiveHandle :: receive_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 DefaultED :: megaco_encoder:error_desc(),
 ED :: megaco_encoder:error_desc(),
 Extra :: term().

Invoked when a received message had syntax errors
Incoming messages is delivered by megaco:receive_message/4 and normally decoded
successfully. But if the decoding failed this function is called in order to
decide if the originator should get a reply message (reply) or if the reply
silently should be discarded (no_reply).
Syntax errors are detected locally on this side of the protocol and may have
many causes, e.g. a malfunctioning transport layer, wrong encoder/decoder
selected, bad configuration of the selected encoder/decoder etc.
The error descriptor defaults to DefaultED, but can be overridden with an
alternate one by returning {reply,ED} or {no_reply,ED} instead of reply
and no_reply respectively.
Any other return values (including exit signals or throw) and the DefaultED
will be used.
See note above about the Extra argument in
handle_syntax_error/4.

 Link to this callback

 handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData)

 View Source

 (optional)

 -callback handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 AckStatus :: ok | {error, Reason},
 AckData :: term(),
 Reason :: UserCancelReason | SendReason | OtherReason,
 UserCancelReason :: {user_cancel, ReasonForUserCancel},
 ReasonForUserCancel :: term(),
 SendReason :: SendCancelledReason | SendFailedReason,
 SendCancelledReason :: {send_message_cancelled, ReasonForSendCancel},
 ReasonForSendCancel :: term(),
 SendFailedReason :: {send_message_failed, ReasonForSendFailure},
 ReasonForSendFailure :: term(),
 OtherReason :: term().

 Link to this callback

 handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData, Extra)

 View Source

 (optional)

 -callback handle_trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData, Extra) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 AckStatus :: ok | {error, Reason},
 AckData :: term(),
 Extra :: term(),
 Reason :: UserCancelReason | SendReason | OtherReason,
 UserCancelReason :: {user_cancel, ReasonForUserCancel},
 ReasonForUserCancel :: term(),
 SendReason :: SendCancelledReason | SendFailedReason,
 SendCancelledReason :: {send_message_cancelled, ReasonForSendCancel},
 ReasonForSendCancel :: term(),
 SendFailedReason :: {send_message_failed, ReasonForSendFailure},
 ReasonForSendFailure :: term(),
 OtherReason :: term().

Optionally invoked for a transaction acknowledgement
If this function gets invoked or not, is controlled by the reply from the
preceding call to handle_trans_request/3. The handle_trans_request/3 function
may decide to return {handle_ack, ack_data()} or {handle_sloppy_ack,
ack_data()} meaning that you need an immediate acknowledgement of the reply and
that this function should be invoked to handle the acknowledgement.
The ack_data() argument to this function is the Erlang term returned by
handle_trans_request/3.
If the AckStatus is ok, it is indicating that this is a true acknowledgement of
the transaction reply.
If the AckStatus is {error, Reason}, it is an indication that the
acknowledgement or even the reply (for which this is an acknowledgement) was not
delivered, but there is no point in waiting any longer for it to arrive. This
happens when:
	reply_timer - The reply_timer eventually times out.

	reply send failure - When megaco fails to send the reply (see
handle_trans_reply), for whatever reason.

	cancel - The user has explicitly cancelled the wait (megaco:cancel/2).

See note above about the Extra argument in
handle_trans_ack/5.

 Link to this callback

 handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData)

 View Source

 (optional)

 -callback handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData) -> Reply
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ReqData :: term(),
 Reply ::
 {AckAction, ActualReply} |
 {AckAction, ActualReply, SendOptions},
 AckAction ::
 discard_ack |
 {handle_ack, AckData} |
 {handle_sloppy_ack, AckData},
 ActualReply ::
 [megaco_encoder:action_reply()] | megaco_encoder:error_desc(),
 AckData :: term(),
 SendOptions :: [SendOption],
 SendOption ::
 {reply_timer, megaco_timer()} |
 {send_handle, term()} |
 {protocol_version, megaco_encoder:protocol_version()}.

 Link to this callback

 handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData, Extra)

 View Source

 (optional)

 -callback handle_trans_long_request(ConnHandle, ProtocolVersion, ReqData, Extra) -> Reply
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ReqData :: term(),
 Extra :: term(),
 Reply ::
 {AckAction, ActualReply} |
 {AckAction, ActualReply, SendOptions},
 AckAction ::
 discard_ack |
 {handle_ack, AckData} |
 {handle_sloppy_ack, AckData},
 ActualReply ::
 [megaco_encoder:action_reply()] | megaco_encoder:error_desc(),
 AckData :: term(),
 SendOptions :: [SendOption],
 SendOption ::
 {reply_timer, megaco_timer()} |
 {send_handle, term()} |
 {protocol_version, megaco_encoder:protocol_version()}.

Optionally invoked for a time consuming transaction request
If this function gets invoked or not is controlled by the reply from the
preceding call to handle_trans_request/3. The handle_trans_request/3 function
may decide to process the action requests itself or to delegate the processing
to this function.
The req_data() argument to this function is the Erlang term returned by
handle_trans_request/3.
Any other return values (including exit signals or throw) will result in an
error descriptor with code 500 (internal gateway error) and the module name (of
the callback module) as reason.
See note above about the Extra argument in
handle_trans_long_request/4.

 Link to this callback

 handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData)

 View Source

 (optional)

 -callback handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 UserReply :: Success | Failure,
 ReplyData :: term(),
 Success :: {ok, Result},
 Result :: TransactionResult | SegmentResult,
 TransactionResult :: [megaco_encoder:action_reply()],
 SegmentResult ::
 {megaco_encoder:segment_no(),
 LastSegment,
 [megaco_encoder:action_reply()]},
 Failure :: {error, Reason} | {error, ReplyNo, Reason},
 Reason ::
 TransactionReason | SegmentReason | UserCancelReason | SendReason |
 OtherReason,
 TransactionReason :: megaco_encoder:error_desc(),
 SegmentReason ::
 {megaco_encoder:segment_no(),
 LastSegment,
 megaco_encoder:error_desc()},
 OtherReason ::
 timeout |
 {segment_timeout, MissingSegments} |
 exceeded_recv_pending_limit |
 term(),
 LastSegment :: boolean(),
 MissingSegments :: [megaco_encoder:segment_no()],
 UserCancelReason :: {user_cancel, ReasonForUserCancel},
 ReasonForUserCancel :: term(),
 SendReason :: SendCancelledReason | SendFailedReason,
 SendCancelledReason :: {send_message_cancelled, ReasonForSendCancel},
 ReasonForSendCancel :: term(),
 SendFailedReason :: {send_message_failed, ReasonForSendFailure},
 ReasonForSendFailure :: term(),
 ReplyNo :: pos_integer().

 Link to this callback

 handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData, Extra)

 View Source

 (optional)

 -callback handle_trans_reply(ConnHandle, ProtocolVersion, UserReply, ReplyData, Extra) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 UserReply :: Success | Failure,
 ReplyData :: term(),
 Extra :: term(),
 Success :: {ok, Result},
 Result :: TransactionResult | SegmentResult,
 TransactionResult :: [megaco_encoder:action_reply()],
 SegmentResult ::
 {megaco_encoder:segment_no(),
 LastSegment,
 [megaco_encoder:action_reply()]},
 Failure :: {error, Reason} | {error, ReplyNo, Reason},
 Reason ::
 TransactionReason | SegmentReason | UserCancelReason | SendReason |
 OtherReason,
 TransactionReason :: megaco_encoder:error_desc(),
 SegmentReason ::
 {megaco_encoder:segment_no(),
 LastSegment,
 megaco_encoder:error_desc()},
 OtherReason ::
 timeout |
 {segment_timeout, MissingSegments} |
 exceeded_recv_pending_limit |
 term(),
 LastSegment :: boolean(),
 MissingSegments :: [megaco_encoder:segment_no()],
 UserCancelReason :: {user_cancel, ReasonForUserCancel},
 ReasonForUserCancel :: term(),
 SendReason :: SendCancelledReason | SendFailedReason,
 SendCancelledReason :: {send_message_cancelled, ReasonForSendCancel},
 ReasonForSendCancel :: term(),
 SendFailedReason :: {send_message_failed, ReasonForSendFailure},
 ReasonForSendFailure :: term(),
 ReplyNo :: pos_integer().

Optionally invoked for a transaction reply
The sender of a transaction request has the option of deciding, whether the
originating Erlang process should synchronously wait (megaco:call/3) for a
reply or if the message should be sent asynchronously (megaco:cast/3) and the
processing of the reply should be delegated this callback function.
Note that if the reply is segmented (split into several smaller messages;
segments), then some extra info, segment number and an indication if all
segments of a reply has been received or not, is also included in the
UserReply.
The ReplyData defaults to megaco:lookup(ConnHandle, reply_data), but may be
explicitly overridden by a megaco:cast/3 option in order to forward info about
the calling context of the originating process.
At success(), the UserReply either contains:
	A list of 'ActionReply' records possibly containing error indications.
	A tuple of size three containing: the segment number, the
last segment indicator and finally a list of 'ActionReply' records possibly
containing error indications. This is of course only possible if the reply was
segmented.

failure() indicates an local or external error and can be one of the
following:
	A transaction_reason(), indicates that the remote user has replied with an
explicit transactionError.

	A segment_reason(), indicates that the remote user has replied with an
explicit transactionError for this segment. This is of course only possible if
the reply was segmented.

	A user_cancel_reason(), indicates that the request has been canceled by the
user. reason_for_user_cancel() is the reason given in the call to the
cancel function.

	A send_reason(), indicates that the transport module
send_message function did not send the
message. The reason for this can be:
	send_cancelled_reason() - the message sending was deliberately cancelled.
reason_for_send_cancel() is the reason given in the cancel return from
the send_message function.
	send_failed_reason() - an error occurred while attempting to send the
message.

	An other_reason(), indicates some other error such as:
	timeout - the reply failed to arrive before the request timer expired.
	{segment_timeout, missing_segments()} - one or more segments was not
delivered before the expire of the segment timer.
	exceeded_recv_pending_limit - the pending limit was exceeded for this
request.

See note above about the Extra argument in
handle_trans_reply/5.

 Link to this callback

 handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests)

 View Source

 (optional)

 -callback handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests) ->
 Pending | Reply | ignore_trans_request
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ActionRequests :: [megaco_encoder:action_request()],
 Pending :: {pending, ReqData},
 ReqData :: term(),
 Reply ::
 {AckAction, ActualReply} | {AckAction, ActualReply, SendOptions},
 AckAction ::
 discard_ack |
 {handle_ack, AckData} |
 {handle_pending_ack, AckData} |
 {handle_sloppy_ack, AckData},
 ActualReply ::
 [megaco_encoder:action_reply()] | megaco_encoder:error_desc(),
 AckData :: term(),
 SendOptions :: [SendOption],
 SendOption ::
 {reply_timer, megaco_timer()} |
 {send_handle, term()} |
 {protocol_version, integer()}.

 Link to this callback

 handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests, Extra)

 View Source

 (optional)

 -callback handle_trans_request(ConnHandle, ProtocolVersion, ActionRequests, Extra) ->
 Pending | Reply | ignore_trans_request
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 ActionRequests :: [megaco_encoder:action_request()],
 Extra :: term(),
 Pending :: {pending, ReqData},
 ReqData :: term(),
 Reply ::
 {AckAction, ActualReply} | {AckAction, ActualReply, SendOptions},
 AckAction ::
 discard_ack |
 {handle_ack, AckData} |
 {handle_pending_ack, AckData} |
 {handle_sloppy_ack, AckData},
 ActualReply ::
 [megaco_encoder:action_reply()] | megaco_encoder:error_desc(),
 AckData :: term(),
 SendOptions :: [SendOption],
 SendOption ::
 {reply_timer, megaco_timer()} |
 {send_handle, term()} |
 {protocol_version, integer()}.

Invoked for each transaction request
Incoming messages is delivered by megaco:receive_message/4 and successfully
decoded. Normally a message contains a list of transactions and this function is
invoked for each TransactionRequest in the message.
This function takes a list of 'ActionRequest' records and has three main
options:
	Return ignore_trans_request - Decide that these action requests shall be
ignored completely.

	Return pending() - Decide that the processing of these action requests
will take a long time and that the originator should get an immediate
'TransactionPending' reply as interim response. The actual processing of these
action requests instead should be delegated to the the
handle_trans_long_request/3 callback function with the req_data() as one of
its arguments.

	Return reply() - Process the action requests and either return an
error_descr() indicating some fatal error or a list of action replies
(wildcarded or not).
If for some reason megaco is unable to deliver the reply, the reason for this
will be passed to the user via a call to the callback function
handle_trans_ack, unless
ack_action() = discard_ack.
The ack_action() is either:
	discard_ack - Meaning that you don't care if the reply is acknowledged
or not.

	{handle_ack, ack_data()} | {handle_ack, ack_data(), send_options()} -
Meaning that you want an immediate acknowledgement when the other part
receives this transaction reply. When the acknowledgement eventually is
received, the handle_trans_ack/4 callback function will be invoked with the
ack_data() as one of its arguments. ack_data() may be any Erlang term.

	{handle_pending_ack, ack_data()} | {handle_pending_ack, ack_data(), send_options()} -
This has the same effect as the above, if and only if megaco has sent at
least one pending message for this request (during the processing of the
request). If no pending message has been sent, then immediate
acknowledgement will not be requested.
Note that this only works as specified if the sent_pending_limit config
option has been set to an integer value.

	{handle_sloppy_ack, ack_data()}| {handle_sloppy_ack, ack_data(), send_options()} -
Meaning that you want an acknowledgement sometime. When the
acknowledgement eventually is received, the handle_trans_ack/4 callback
function will be invoked with the ack_data() as one of its arguments.
ack_data() may be any Erlang term.

Any other return values (including exit signals or throw) will result in an
error descriptor with code 500 (internal gateway error) and the module name (of
the callback module) as reason.
See note above about the Extra argument in
handle_trans_request/4.

 Link to this callback

 handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid)

 View Source

 (optional)

 -callback handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 TransNo :: integer(),
 Pid :: undefined | pid().

 Link to this callback

 handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid, Extra)

 View Source

 (optional)

 -callback handle_trans_request_abort(ConnHandle, ProtocolVersion, TransNo, Pid, Extra) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 TransNo :: integer(),
 Pid :: undefined | pid(),
 Extra :: term().

Invoked when a transaction request has been aborted
This function is invoked if the originating pending limit has been exceeded.
This usually means that a request has taken abnormally long time to complete.
See note above about the Extra argument in
handle_trans_request_abort/5.

 Link to this callback

 handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans)

 View Source

 (optional)

 -callback handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 Trans ::
 megaco_encoder:transaction_pending() |
 megaco_encoder:transaction_reply() |
 megaco_encoder:transaction_response_ack().

 Link to this callback

 handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans, Extra)

 View Source

 (optional)

 -callback handle_unexpected_trans(ConnHandle, ProtocolVersion, Trans, Extra) -> ok
 when
 ConnHandle :: conn_handle(),
 ProtocolVersion :: megaco_encoder:protocol_version(),
 Trans ::
 megaco_encoder:transaction_pending() |
 megaco_encoder:transaction_reply() |
 megaco_encoder:transaction_response_ack(),
 Extra :: term().

Invoked when a unexpected message is received
If a reply to a request is not received in time, the megaco stack removes all
info about the request from its tables. If a reply should arrive after this has
been done the app has no way of knowing where to send this message. The message
is delivered to the "user" by calling this function on the local node (the node
which has the link).
See note above about the Extra argument in
handle_unexpected_trans/4.

OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._store