

 parsetools

 v2.5

 [image: Logo]

 Table of contents

 	Parsetools Release Notes

 	Modules

 	leex

 	yecc

Parsetools Release Notes

This document describes the changes made to the Parsetools application.

 Parsetools 2.5

 Improvements and New Features

	Leex has been extended with optional column number support.
Own Id: OTP-18491 Aux Id: PR-6882

 Parsetools 2.4.1

 Improvements and New Features

	There is a new configure option, --enable-deterministic-build, which will
apply the deterministic compiler option when building Erlang/OTP. The
deterministic option has been improved to eliminate more sources of
non-determinism in several applications.
Own Id: OTP-18165 Aux Id: PR-5965

 Parsetools 2.4

 Improvements and New Features

	In the generated code, yecc will now quote all atoms coming from terminals
in the grammar, in order to avoid conflicts with future reserved words.
Own Id: OTP-17755

 Parsetools 2.3.2

 Fixed Bugs and Malfunctions

	The default parser include file for yecc (yeccpre) will no longer crash when
attempting to print tokens when reporting an error.
Own Id: OTP-17721

 Parsetools 2.3.1

 Fixed Bugs and Malfunctions

	Fix a bug in Leex which caused the Erlang Compiler to generate warnings.
Own Id: OTP-17499 Aux Id: GH-4918

	Fix a bug in Yecc which caused the Erlang Compiler to generate warnings.
Own Id: OTP-17535 Aux Id: GH-5067

 Parsetools 2.3

 Improvements and New Features

	Add types and specifications for documentation.
Own Id: OTP-16957

	Let Leex and Yecc recognize the environment variable ERL_COMPILER_OPTIONS. Add
Yecc option {error_location, column | line}.
Own Id: OTP-17023

 Parsetools 2.2

 Improvements and New Features

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

 Parsetools 2.1.8

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 Parsetools 2.1.7

 Improvements and New Features

	Calls to erlang:get_stacktrace() are removed.
Own Id: OTP-14861

 Parsetools 2.1.6

 Fixed Bugs and Malfunctions

	Warnings about unused functions in leexinc.hrl are suppressed.
Own Id: OTP-14697

 Parsetools 2.1.5

 Fixed Bugs and Malfunctions

	Minor documentation fixes
Own Id: OTP-14276 Aux Id: PR-1357

 Improvements and New Features

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

 Parsetools 2.1.4

 Fixed Bugs and Malfunctions

	Correct counting of newlines when rules with newlines are used in Leex.
Own Id: OTP-13916 Aux Id: ERL-263

	Correct handling of Unicode in Leex.
Own Id: OTP-13919

 Parsetools 2.1.3

 Fixed Bugs and Malfunctions

	Yecc generates Dialyzer suppressions to avoid warnings when operator
precedence declarations are used.
Own Id: OTP-13681

 Parsetools 2.1.2

 Improvements and New Features

	Internal changes
Own Id: OTP-13551

 Parsetools 2.1.1

 Fixed Bugs and Malfunctions

	Correct the documentation of the error tuple returned by Yecc and Leex.
Own Id: OTP-13031

 Parsetools 2.1

 Improvements and New Features

	The new -dialyzer() attribute is used for suppressing Dialyzer warnings in
generated code.
Own Id: OTP-12271

 Parsetools 2.0.12

 Fixed Bugs and Malfunctions

	The line counter becomes invalid when rules with linewrap are used. This issue
appears because the parsing FSM does not roll back the line counter after
attempting such a rule.
Own Id: OTP-12238

 Parsetools 2.0.11

 Fixed Bugs and Malfunctions

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	A Yecc example has been updated in the documentation (Thanks to Pierre
Fenoll.)
Own Id: OTP-11749

 Parsetools 2.0.10

 Fixed Bugs and Malfunctions

	A bug causing Yecc to generate badly formed parsers when encountering very
simple recursive rules has been fixed. (Thanks to Eric Pailleau.)
Own Id: OTP-11269

	A bug where Unicode filenames combined with Latin-1 encoding could crash Yecc
and Leex has been fixed.
Own Id: OTP-11286

 Improvements and New Features

	Fix leex module`s inability to build unicode-aware lexers. Thanks to Pierre
Fenoll.
Own Id: OTP-11313

 Parsetools 2.0.9

 Improvements and New Features

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

 Parsetools 2.0.8

 Improvements and New Features

	Support for Unicode has been implemented.
Own Id: OTP-10302

	The file esyntax.yrl has been removed.
Own Id: OTP-10660

 Parsetools 2.0.7

 Improvements and New Features

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

 Parsetools 2.0.6

 Fixed Bugs and Malfunctions

	Dialyzer warnings have been removed.
Own Id: OTP-8318

	yecc: add warnings_as_errors option(Thanks to Tuncer ayaz)
Own Id: OTP-9376

	Fix incorrect order of pseudo variables in yecc example
The example is for converting from infix to prefix. This change uses to
correct ordering of the triplet. (Thanks to Garret Smith)
Own Id: OTP-9484

	Implement or fix -Werror option
If -Werror is enabled and there are warnings no output file is written. Also
make sure that error/warning reporting is consistent. (Thanks to Tuncer Ayaz)
Own Id: OTP-9536

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Parsetools 2.0.5

 Improvements and New Features

	The formatting of Yecc's error messages has been improved. (Thanks to Joe
Armstrong.)
Own Id: OTP-8919

 Parsetools 2.0.4

 Fixed Bugs and Malfunctions

	Running HiPE-compiled Yecc parsers no longer results in a function_clause
error.
Own Id: OTP-8771

 Parsetools 2.0.3

 Fixed Bugs and Malfunctions

	Yecc failed to report reduce/reduce conflicts where one of the reductions
involved the root symbol. This bug has been fixed. (Thanks to Manolis
Papadakis.)
Own Id: OTP-8483

	A bug introduced in Parsetools 1.4.4 (R12B-2) has been fixed. (Thanks to
Manolis Papadakis.)
Own Id: OTP-8486

 Parsetools 2.0.2

 Improvements and New Features

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

 Parsetools 2.0.1

 Improvements and New Features

	Leex no longer uses the deprecated regexp module. (Thanks to Robert
Virding.).
Own Id: OTP-8231

 Fixed Bugs and Malfunctions

	A minor bug in leex has been fixed.
Own Id: OTP-8197

 Parsetools 2.0

 Improvements and New Features

	Leex, a lexical analyzer generator for Erlang, has been added to Parsetools.
This initial version should be considered experimental; it is known that there
will be changes and additions. (Thanks to Robert Virding.).
Own Id: OTP-8013

 Fixed Bugs and Malfunctions

	The parsers generated by Yecc now report correct error lines when possible.
Own Id: OTP-7969

 Parsetools 1.4.7

 Fixed Bugs and Malfunctions

	A bug in yeccpre.hrl introduced in R13A has been fixed.
Own Id: OTP-7945

 Parsetools 1.4.6

 Improvements and New Features

	Updated file headers.
Own Id: OTP-7798

 Parsetools 1.4.5

 Improvements and New Features

	The yecc grammar has been augmented with an optional header section. (Thanks
to Richard Carlsson.)
Own Id: OTP-7292

 Parsetools 1.4.4

 Improvements and New Features

	The size of the code generated by Yecc has been reduced. The code is also
faster.
Macros can now be used in actions.
Own Id: OTP-7224

 Parsetools 1.4.3

 Improvements and New Features

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

 Parsetools 1.4.2

 Improvements and New Features

	The size of the code generated by yecc has been reduced.
A note regarding the includefile option: although yecc can cope with
includefiles based on some earlier yeccpre.hrl it is recommended for
efficiency reasons to update includefiles as to follow the pattern in the
latest yeccpre.hrl.
Own Id: OTP-6851

 Parsetools 1.4.1.1

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689

 Parsetools 1.4.1

 Fixed Bugs and Malfunctions

	A bug concerning precedence declarations of non-terminals "one level up" has
been fixed in yecc.
Own Id: OTP-6362

 Parsetools 1.4

 Improvements and Fixed Bugs

Several modifications of Yecc have been made:
	The new functions file/1,2 take the role of the old functions yecc/2,3,4.
The latter functions are no longer documented but are kept for backward
compatibility.
	More checks of the grammar file have been implemented. Examples are warnings
for unused non-terminals and duplicated declarations.
	Invalid pseudo variables are no longer replaced by '$undefined' but cause a
failure.
	Reserved words no longer need to be quoted when used as terminals or
non-terminals.
	When compiling the generated parser file errors and warnings concerning user
code refer to the grammar file, not the parser file.
	Yecc emits a warning if there are conflicts in the grammar. The new
declaration Expect can be used to suppress this warning.
	The new operator precedence declaration Nonassoc can be used to declare
operators with no associativity.
	Precedence can be given to more than one operator with one single operator
precedence declaration.
	The function parse_and_scan/1 in the default includefile accepts
{Function, A} as well as {{M,F}, A} as tokenizer function. Exceptions in
the tokenizer are never caught.
	The functions yecc:file/1,2 can be accessed from the Erlang shell via the
new functions c:y/1,2 in STDLIB.

See yecc(3) for further details.
Own Id: OTP-5366

 Parsetools 1.3.2

 Fixed Bugs and Malfunctions

	A bug in Yecc that was introduced in R9B has been removed. Another bug
concerning precedence declaration "one level up" has been fixed.
Own Id: OTP-5461

 Parsetools 1.3.1

 Fixed Bugs and Malfunctions

	A bug in the file parsetools/include/yeccpre.hrl caused
yecc:parse_and_scan/1 to always report a parse failure when the lexer
reported end-of-file. This problem has been fixed.
Own Id: OTP-5369

leex

Lexical analyzer generator for Erlang
A regular expression based lexical analyzer generator for Erlang, similar to lex
or flex.
Note
The Leex module should be considered experimental as it will be subject to
changes in future releases.

 Default Leex Options

The (host operating system) environment variable ERL_COMPILER_OPTIONS can be
used to give default Leex options. Its value must be a valid Erlang term. If the
value is a list, it is used as is. If it is not a list, it is put into a list.
The list is appended to any options given to file/2.
The list can be retrieved with compile:env_compiler_options/0.

 Input File Format

Erlang style comments starting with a % are allowed in scanner files. A
definition file has the following format:
<Header>

Definitions.

<Macro Definitions>

Rules.

<Token Rules>

Erlang code.

<Erlang code>
The "Definitions.", "Rules." and "Erlang code." headings are mandatory and must
occur at the beginning of a source line. The <Header>, <Macro Definitions> and
<Erlang code> sections may be empty but there must be at least one rule.
Macro definitions have the following format:
NAME = VALUE
and there must be spaces around =. Macros can be used in the regular
expressions of rules by writing {NAME}.
Note
When macros are expanded in expressions the macro calls are replaced by the
macro value without any form of quoting or enclosing in parentheses.

Rules have the following format:
<Regexp> : <Erlang code>.
The <Regexp> must occur at the start of a line and not include any blanks; use
\t and \s to include TAB and SPACE characters in the regular expression. If
<Regexp> matches then the corresponding <Erlang code> is evaluated to generate a
token. With the Erlang code the following predefined variables are available:
	TokenChars - A list of the characters in the matched token.

	TokenLen - The number of characters in the matched token.

	TokenLine - The line number where the token occurred.

	TokenCol - The column number where the token occurred (column of the
first character included in the token).

	TokenLoc - Token location. Expands to {TokenLine,TokenCol} (even when
error_location is set to line.

The code must return:
	{token,Token} - Return Token to the caller.

	{end_token,Token} - Return Token and is last token in a tokens call.

	skip_token - Skip this token completely.

	{error,ErrString} - An error in the token, ErrString is a string
describing the error.

It is also possible to push back characters into the input characters with the
following returns:
	{token,Token,PushBackList}
	{end_token,Token,PushBackList}
	{skip_token,PushBackList}

These have the same meanings as the normal returns but the characters in
PushBackList will be prepended to the input characters and scanned for the
next token. Note that pushing back a newline will mean the line numbering will
no longer be correct.
Note
Pushing back characters gives you unexpected possibilities to cause the
scanner to loop!

The following example would match a simple Erlang integer or float and return a
token which could be sent to the Erlang parser:
D = [0-9]

{D}+ :
 {token,{integer,TokenLine,list_to_integer(TokenChars)}}.

{D}+\.{D}+((E|e)(\+|\-)?{D}+)? :
 {token,{float,TokenLine,list_to_float(TokenChars)}}.
The Erlang code in the "Erlang code." section is written into the output file
directly after the module declaration and predefined exports declaration so it
is possible to add extra exports, define imports and other attributes which are
then visible in the whole file.

 Regular Expressions

The regular expressions allowed here is a subset of the set found in egrep and
in the AWK programming language, as defined in the book, The AWK Programming
Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of
the following characters:
	c - Matches the non-metacharacter c.

	\c - Matches the escape sequence or literal character c.

	. - Matches any character.

	^ - Matches the beginning of a string.

	$ - Matches the end of a string.

	[abc...] - Character class, which matches any of the characters
abc.... Character ranges are specified by a pair of characters separated by
a -.

	[^abc...] - Negated character class, which matches any character except
abc....

	r1 | r2 - Alternation. It matches either r1 or r2.

	r1r2 - Concatenation. It matches r1 and then r2.

	r+ - Matches one or more rs.

	r* - Matches zero or more rs.

	r? - Matches zero or one rs.

	(r) - Grouping. It matches r.

The escape sequences allowed are the same as for Erlang strings:
	\b - Backspace.

	\f - Form feed.

	\n - Newline (line feed).

	\r - Carriage return.

	\t - Tab.

	\e - Escape.

	\v - Vertical tab.

	\s - Space.

	\d - Delete.

	\ddd - The octal value ddd.

	\xhh - The hexadecimal value hh.

	\x{h...} - The hexadecimal value h....

	\c - Any other character literally, for example \\ for backslash, \"
for ".

The following examples define simplified versions of a few Erlang data types:

Atoms [a-z][0-9a-zA-Z_]*

Variables [A-Z_][0-9a-zA-Z_]*

Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?
Note
Anchoring a regular expression with ^ and $ is not implemented in the
current version of Leex and just generates a parse error.

 Summary

 Types

 error_info()

 The standard error_info/0 structure that is returned from all I/O modules.
ErrorDescriptor is formattable by format_error/1.

 error_ret()

 errors()

 leex_ret()

 ok_ret()

 warnings()

 GENERATED SCANNER EXPORTS

 string(String)

 Equivalent to string/2

 string(String, StartLoc)

 Scans String and returns all the tokens in it, or an error. StartLoc and
EndLoc are either erl_anno:line() or
erl_anno:location(), depending on the
error_location option.

 token(Cont, Chars)

 Equivalent to token/3

 token(Cont, Chars, StartLoc)

 This is a re-entrant call to try and scan one token from Chars. If there are
enough characters in Chars to either scan a token or detect an error then this
will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to token() with more characters to try
an scan the token. This is continued until a token has been scanned. Cont is
initially [].

 tokens(Cont, Chars)

 Equivalent to tokens/3

 tokens(Cont, Chars, StartLoc)

 This is a re-entrant call to try and scan tokens from Chars. If there are
enough characters in Chars to either scan tokens or detect an error then this
will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to tokens() with more characters to try
an scan the tokens. This is continued until all tokens have been scanned. Cont
is initially [].

 Functions

 file(FileName)

 Equivalent to file/2

 file(FileName, Options)

 Generates a lexical analyzer from the definition in the input file. The input
file has the extension .xrl. This is added to the filename if it is not given.
The resulting module is the Xrl filename without the .xrl extension.

 format_error(ErrorDescriptor)

 Returns a descriptive string in English of an error reason ErrorDescriptor
returned by leex:file/1,2 when there is an error in a regular
expression.

 Types

 Link to this type

 error_info()

 View Source

 (not exported)

 -type error_info() :: {erl_anno:line() | none, module(), ErrorDescriptor :: term()}.

The standard error_info/0 structure that is returned from all I/O modules.
ErrorDescriptor is formattable by format_error/1.

 Link to this type

 error_ret()

 View Source

 (not exported)

 -type error_ret() :: error | {error, Errors :: errors(), Warnings :: warnings()}.

 Link to this type

 errors()

 View Source

 (not exported)

 -type errors() :: [{file:filename(), [error_info()]}].

 Link to this type

 leex_ret()

 View Source

 (not exported)

 -type leex_ret() :: ok_ret() | error_ret().

 Link to this type

 ok_ret()

 View Source

 (not exported)

 -type ok_ret() ::
 {ok, Scannerfile :: file:filename()} | {ok, Scannerfile :: file:filename(), warnings()}.

 Link to this type

 warnings()

 View Source

 (not exported)

 -type warnings() :: [{file:filename(), [error_info()]}].

 GENERATED SCANNER EXPORTS

 Link to this function

 string(String)

 View Source

 -spec string(String) -> StringRet
 when
 String :: string(),
 StringRet :: {ok, Tokens, EndLoc} | ErrorInfo,
 Tokens :: [Token],
 Token :: term(),
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 EndLoc :: erl_anno:location().

Equivalent to string/2

 Link to this function

 string(String, StartLoc)

 View Source

 -spec string(String, StartLoc) -> StringRet
 when
 String :: string(),
 StringRet :: {ok, Tokens, EndLoc} | ErrorInfo,
 Tokens :: [Token],
 Token :: term(),
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 StartLoc :: erl_anno:location(),
 EndLoc :: erl_anno:location().

Scans String and returns all the tokens in it, or an error. StartLoc and
EndLoc are either erl_anno:line() or
erl_anno:location(), depending on the
error_location option.
Note
It is an error if not all of the characters in String are consumed.

 Link to this function

 token(Cont, Chars)

 View Source

 -spec token(Cont, Chars) -> {more, Cont1} | {done, TokenRet, RestChars}
 when
 Cont :: [] | Cont1,
 Cont1 :: tuple(),
 Chars :: string() | eof,
 RestChars :: string() | eof,
 TokenRet :: {ok, Token, EndLoc} | {eof, EndLoc} | ErrorInfo,
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 Token :: term(),
 EndLoc :: erl_anno:location().

Equivalent to token/3

 Link to this function

 token(Cont, Chars, StartLoc)

 View Source

 -spec token(Cont, Chars, StartLoc) -> {more, Cont1} | {done, TokenRet, RestChars}
 when
 Cont :: [] | Cont1,
 Cont1 :: tuple(),
 Chars :: string() | eof,
 RestChars :: string() | eof,
 TokenRet :: {ok, Token, EndLoc} | {eof, EndLoc} | ErrorInfo,
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 Token :: term(),
 StartLoc :: erl_anno:location(),
 EndLoc :: erl_anno:location().

This is a re-entrant call to try and scan one token from Chars. If there are
enough characters in Chars to either scan a token or detect an error then this
will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to token() with more characters to try
an scan the token. This is continued until a token has been scanned. Cont is
initially [].
It is not designed to be called directly by an application but used through the
i/o system where it can typically be called in an application by:
io:request(InFile, {get_until,unicode,Prompt,Module,token,[Loc]})
 -> TokenRet

 Link to this function

 tokens(Cont, Chars)

 View Source

 -spec tokens(Cont, Chars) -> {more, Cont1} | {done, TokensRet, RestChars}
 when
 Cont :: [] | Cont1,
 Cont1 :: tuple(),
 Chars :: string() | eof,
 RestChars :: string() | eof,
 TokensRet :: {ok, Tokens, EndLoc} | {eof, EndLoc} | ErrorInfo,
 Tokens :: [Token],
 Token :: term(),
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 EndLoc :: erl_anno:location().

Equivalent to tokens/3

 Link to this function

 tokens(Cont, Chars, StartLoc)

 View Source

 -spec tokens(Cont, Chars, StartLoc) -> {more, Cont1} | {done, TokensRet, RestChars}
 when
 Cont :: [] | Cont1,
 Cont1 :: tuple(),
 Chars :: string() | eof,
 RestChars :: string() | eof,
 TokensRet :: {ok, Tokens, EndLoc} | {eof, EndLoc} | ErrorInfo,
 Tokens :: [Token],
 Token :: term(),
 ErrorInfo :: {error, error_info(), erl_anno:location()},
 StartLoc :: erl_anno:location(),
 EndLoc :: erl_anno:location().

This is a re-entrant call to try and scan tokens from Chars. If there are
enough characters in Chars to either scan tokens or detect an error then this
will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to tokens() with more characters to try
an scan the tokens. This is continued until all tokens have been scanned. Cont
is initially [].
This functions differs from token in that it will continue to scan tokens up
to and including an {end_token,Token} has been scanned (see next section). It
will then return all the tokens. This is typically used for scanning grammars
like Erlang where there is an explicit end token, '.'. If no end token is
found then the whole file will be scanned and returned. If an error occurs then
all tokens up to and including the next end token will be skipped.
It is not designed to be called directly by an application but used through the
i/o system where it can typically be called in an application by:
io:request(InFile, {get_until,unicode,Prompt,Module,tokens,[Loc]})
 -> TokensRet

 Functions

 Link to this function

 file(FileName)

 View Source

 (since OTP R16B02)

 -spec file(FileName) -> leex_ret() when FileName :: file:filename().

Equivalent to file/2

 Link to this function

 file(FileName, Options)

 View Source

 (since OTP R16B02)

 -spec file(FileName, Options) -> leex_ret()
 when
 FileName :: file:filename(),
 Options :: Option | [Option],
 Option ::
 {dfa_graph, boolean()} |
 {includefile, Includefile :: file:filename()} |
 {report_errors, boolean()} |
 {report_warnings, boolean()} |
 {report, boolean()} |
 {return_errors, boolean()} |
 {return_warnings, boolean()} |
 {return, boolean()} |
 {scannerfile, Scannerfile :: file:filename()} |
 {verbose, boolean()} |
 {warnings_as_errors, boolean()} |
 {deterministic, boolean()} |
 {error_location, line | column} |
 {tab_size, pos_integer()} |
 dfa_graph | report_errors | report_warnings | report | return_errors |
 return_warnings | return | verbose | warnings_as_errors.

Generates a lexical analyzer from the definition in the input file. The input
file has the extension .xrl. This is added to the filename if it is not given.
The resulting module is the Xrl filename without the .xrl extension.
The current options are:
	dfa_graph - Generates a .dot file which contains a description of the
DFA in a format which can be viewed with Graphviz, www.graphviz.com.

	{includefile,Includefile} - Uses a specific or customised prologue file
instead of default lib/parsetools/include/leexinc.hrl which is otherwise
included.

	{report_errors, boolean()} - Causes errors to be printed as they occur.
Default is true.

	{report_warnings, boolean()} - Causes warnings to be printed as they
occur. Default is true.

	{report, boolean()} - This is a short form for both report_errors and
report_warnings.

	{return_errors, boolean()} - If this flag is set,
{error, Errors, Warnings} is returned when there are errors. Default is
false.

	{return_warnings, boolean()} - If this flag is set, an extra field
containing Warnings is added to the tuple returned upon success. Default is
false.

	{return, boolean()} - This is a short form for both return_errors and
return_warnings.

	{scannerfile, Scannerfile} - Scannerfile is the name of the file that
will contain the Erlang scanner code that is generated. The default ("") is
to add the extension .erl to FileName stripped of the .xrl extension.

	{verbose, boolean()} - Outputs information from parsing the input file
and generating the internal tables.

	{warnings_as_errors, boolean()} - Causes warnings to be treated as
errors.

	{deterministic, boolean()} - Causes generated -file() attributes to only
include the basename of the file path.

	{error_location, line | column} - If set to column, error location
will be {Line,Column} tuple instead of just Line. Also, StartLoc and
EndLoc in string/2, token/3, and
tokens/3 functions will be {Line,Column} tuple instead of
just Line. Default is line. Note that you can use TokenLoc for token
location independently, even if the error_location is set to line.
Unicode characters are counted as many columns as they use bytes to represent.

	{tab_size, pos_integer()} - Sets the width of \t character (only
relevant if error_location is set to column). Default is 8.

Any of the Boolean options can be set to true by stating the name of the
option. For example, verbose is equivalent to {verbose, true}.
Leex will add the extension .hrl to the Includefile name and the extension
.erl to the Scannerfile name, unless the extension is already there.

 Link to this function

 format_error(ErrorDescriptor)

 View Source

 -spec format_error(ErrorDescriptor) -> io_lib:chars() when ErrorDescriptor :: term().

Returns a descriptive string in English of an error reason ErrorDescriptor
returned by leex:file/1,2 when there is an error in a regular
expression.

yecc

LALR-1 Parser Generator
An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar
definition as input, and produces Erlang code for a parser.
To understand this text, you also have to look at the yacc documentation in
the UNIX(TM) manual. This is most probably necessary in order to understand the
idea of a parser generator, and the principle and problems of LALR parsing with
finite look-ahead.

 Default Yecc Options

The (host operating system) environment variable ERL_COMPILER_OPTIONS can be
used to give default Yecc options. Its value must be a valid Erlang term. If the
value is a list, it is used as is. If it is not a list, it is put into a list.
The list is appended to any options given to file/2.
The list can be retrieved with compile:env_compiler_options/0.

 Pre-Processing

A scanner to pre-process the text (program, etc.) to be parsed is not provided
in the yecc module. The scanner serves as a kind of lexicon look-up routine.
It is possible to write a grammar that uses only character tokens as terminal
symbols, thereby eliminating the need for a scanner, but this would make the
parser larger and slower.
The user should implement a scanner that segments the input text, and turns it
into one or more lists of tokens. Each token should be a tuple containing
information about syntactic category, position in the text (e.g. line number),
and the actual terminal symbol found in the text:
{Category, Position, Symbol}.
If a terminal symbol is the only member of a category, and the symbol name is
identical to the category name, the token format may be {Symbol, Position}.
A list of tokens produced by the scanner should end with a special
end_of_input tuple which the parser is looking for. The format of this tuple
should be {Endsymbol, EndPosition}, where Endsymbol is an identifier that is
distinguished from all the terminal and non-terminal categories of the syntax
rules. The Endsymbol may be declared in the grammar file (see below).
The simplest case is to segment the input string into a list of identifiers
(atoms) and use those atoms both as categories and values of the tokens. For
example, the input string aaa bbb 777, X may be scanned (tokenized) as:
[{aaa, 1}, {bbb, 1}, {777, 1}, {',' , 1}, {'X', 1},
 {'$end', 1}].
This assumes that this is the first line of the input text, and that '$end' is
the distinguished end_of_input symbol.
The Erlang scanner in the io module can be used as a starting point when
writing a new scanner. Study yeccscan.erl in order to see how a filter can be
added on top of io:scan_erl_form/3 to provide a scanner for Yecc that
tokenizes grammar files before parsing them with the Yecc parser. A more general
approach to scanner implementation is to use a scanner generator. A scanner
generator in Erlang called leex is under development.

 Grammar Definition Format

Erlang style comments, starting with a '%', are allowed in grammar files.
Each declaration or rule ends with a dot (the character '.').
The grammar starts with an optional header section. The header is put first in
the generated file, before the module declaration. The purpose of the header is
to provide a means to make the documentation generated by EDoc look nicer. Each
header line should be enclosed in double quotes, and newlines will be inserted
between the lines. For example:
Header "%% Copyright (C)"
"%% @private"
"%% @Author John".
Next comes a declaration of the nonterminal categories to be used in the
rules. For example:
Nonterminals sentence nounphrase verbphrase.
A non-terminal category can be used at the left hand side (= lhs, or head)
of a grammar rule. It can also appear at the right hand side of rules.
Next comes a declaration of the terminal categories, which are the categories
of tokens produced by the scanner. For example:
Terminals article adjective noun verb.
Terminal categories may only appear in the right hand sides (= rhs) of grammar
rules.
Next comes a declaration of the rootsymbol, or start category of the grammar.
For example:
Rootsymbol sentence.
This symbol should appear in the lhs of at least one grammar rule. This is the
most general syntactic category which the parser ultimately will parse every
input string into.
After the rootsymbol declaration comes an optional declaration of the
end_of_input symbol that your scanner is expected to use. For example:
Endsymbol '$end'.
Next comes one or more declarations of operator precedences, if needed. These
are used to resolve shift/reduce conflicts (see yacc documentation).
Examples of operator declarations:
Right 100 '='.
Nonassoc 200 '==' '=/='.
Left 300 '+'.
Left 400 '*'.
Unary 500 '-'.
These declarations mean that '=' is defined as a right associative binary
operator with precedence 100, '==' and '=/=' are operators with
no associativity, '+' and '*' are left associative binary operators,
where '*' takes precedence over '+' (the normal case), and '-' is a
unary operator of higher precedence than '*'. The fact that '==' has no
associativity means that an expression like a == b == c is considered a syntax
error.
Certain rules are assigned precedence: each rule gets its precedence from the
last terminal symbol mentioned in the right hand side of the rule. It is also
possible to declare precedence for non-terminals, "one level up". This is
practical when an operator is overloaded (see also example 3 below).
Next come the grammar rules. Each rule has the general form
Left_hand_side -> Right_hand_side : Associated_code.
The left hand side is a non-terminal category. The right hand side is a sequence
of one or more non-terminal or terminal symbols with spaces between. The
associated code is a sequence of zero or more Erlang expressions (with commas
',' as separators). If the associated code is empty, the separating colon
':' is also omitted. A final dot marks the end of the rule.
Symbols such as '{', '.', etc., have to be enclosed in single quotes when
used as terminal or non-terminal symbols in grammar rules. The use of the
symbols '$empty', '$end', and '$undefined' should be avoided.
The last part of the grammar file is an optional section with Erlang code (=
function definitions) which is included 'as is' in the resulting parser file.
This section must start with the pseudo declaration, or key words
Erlang code.
No syntax rule definitions or other declarations may follow this section. To
avoid conflicts with internal variables, do not use variable names beginning
with two underscore characters ('__') in the Erlang code in this section, or
in the code associated with the individual syntax rules.
The optional expect declaration can be placed anywhere before the last
optional section with Erlang code. It is used for suppressing the warning about
conflicts that is ordinarily given if the grammar is ambiguous. An example:
Expect 2.
The warning is given if the number of shift/reduce conflicts differs from 2, or
if there are reduce/reduce conflicts.

 Examples

A grammar to parse list expressions (with empty associated code):
Nonterminals list elements element.
Terminals atom '(' ')'.
Rootsymbol list.
list -> '(' ')'.
list -> '(' elements ')'.
elements -> element.
elements -> element elements.
element -> atom.
element -> list.
This grammar can be used to generate a parser which parses list expressions,
such as (), (a), (peter charles), (a (b c) d (())), ... provided that your
scanner tokenizes, for example, the input (peter charles) as follows:
[{'(', 1} , {atom, 1, peter}, {atom, 1, charles}, {')', 1},
 {'$end', 1}]
When a grammar rule is used by the parser to parse (part of) the input string as
a grammatical phrase, the associated code is evaluated, and the value of the
last expression becomes the value of the parsed phrase. This value may be used
by the parser later to build structures that are values of higher phrases of
which the current phrase is a part. The values initially associated with
terminal category phrases, i.e. input tokens, are the token tuples themselves.
Below is an example of the grammar above with structure building code added:
list -> '(' ')' : nil.
list -> '(' elements ')' : '$2'.
elements -> element : {cons, '$1', nil}.
elements -> element elements : {cons, '$1', '$2'}.
element -> atom : '$1'.
element -> list : '$1'.
With this code added to the grammar rules, the parser produces the following
value (structure) when parsing the input string (a b c).. This still assumes
that this was the first input line that the scanner tokenized:
{cons, {atom, 1, a}, {cons, {atom, 1, b},
 {cons, {atom, 1, c}, nil}}}
The associated code contains pseudo variables '$1', '$2', '$3', etc.
which refer to (are bound to) the values associated previously by the parser
with the symbols of the right hand side of the rule. When these symbols are
terminal categories, the values are token tuples of the input string (see
above).
The associated code may not only be used to build structures associated with
phrases, but may also be used for syntactic and semantic tests, printout actions
(for example for tracing), etc. during the parsing process. Since tokens contain
positional (line number) information, it is possible to produce error messages
which contain line numbers. If there is no associated code after the right hand
side of the rule, the value '$undefined' is associated with the phrase.
The right hand side of a grammar rule may be empty. This is indicated by using
the special symbol '$empty' as rhs. Then the list grammar above may be
simplified to:
list -> '(' elements ')' : '$2'.
elements -> element elements : {cons, '$1', '$2'}.
elements -> '$empty' : nil.
element -> atom : '$1'.
element -> list : '$1'.

 Generating a Parser

To call the parser generator, use the following command:
yecc:file(Grammarfile).
An error message from Yecc will be shown if the grammar is not of the LALR type
(for example too ambiguous). Shift/reduce conflicts are resolved in favor of
shifting if there are no operator precedence declarations. Refer to the yacc
documentation on the use of operator precedence.
The output file contains Erlang source code for a parser module with module name
equal to the Parserfile parameter. After compilation, the parser can be called
as follows (the module name is assumed to be myparser):
myparser:parse(myscanner:scan(Inport))
The call format may be different if a customized prologue file has been included
when generating the parser instead of the default file
lib/parsetools/include/yeccpre.hrl.
With the standard prologue, this call will return either {ok, Result}, where
Result is a structure that the Erlang code of the grammar file has built, or
{error, {Position, Module, Message}} if there was a syntax error in the input.
Message is something which may be converted into a string by calling
Module:format_error(Message) and printed with io:format/3.
Note
By default, the parser that was generated will not print out error messages to
the screen. The user will have to do this either by printing the returned
error messages, or by inserting tests and print instructions in the Erlang
code associated with the syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if
the following call format is used:
myparser:parse_and_scan({Function, Args})
myparser:parse_and_scan({Mod, Tokenizer, Args})
The tokenizer Function is either a fun or a tuple {Mod, Tokenizer}. The call
apply(Function, Args) or
apply({Mod, Tokenizer}, Args) is executed whenever a new token is
needed. This, for example, makes it possible to parse from a file, token by
token.
The tokenizer used above has to be implemented so as to return one of the
following:
{ok, Tokens, EndPosition}
{eof, EndPosition}
{error, Error_description, EndPosition}
This conforms to the format used by the scanner in the Erlang io library
module.
If {eof, EndPosition} is returned immediately, the call to parse_and_scan/1
returns {ok, eof}. If {eof, EndPosition} is returned before the parser
expects end of input, parse_and_scan/1 will, of course, return an error
message (see above). Otherwise {ok, Result} is returned.

 More Examples

1. A grammar for parsing infix arithmetic expressions into prefix notation,
without operator precedence:
Nonterminals E T F.
Terminals '+' '*' '(' ')' number.
Rootsymbol E.
E -> E '+' T: {'$2', '$1', '$3'}.
E -> T : '$1'.
T -> T '*' F: {'$2', '$1', '$3'}.
T -> F : '$1'.
F -> '(' E ')' : '$2'.
F -> number : '$1'.
2. The same with operator precedence becomes simpler:
Nonterminals E.
Terminals '+' '*' '(' ')' number.
Rootsymbol E.
Left 100 '+'.
Left 200 '*'.
E -> E '+' E : {'$2', '$1', '$3'}.
E -> E '*' E : {'$2', '$1', '$3'}.
E -> '(' E ')' : '$2'.
E -> number : '$1'.
3. An overloaded minus operator:
Nonterminals E uminus.
Terminals '*' '-' number.
Rootsymbol E.

Left 100 '-'.
Left 200 '*'.
Unary 300 uminus.

E -> E '-' E.
E -> E '*' E.
E -> uminus.
E -> number.

uminus -> '-' E.
4. The Yecc grammar that is used for parsing grammar files, including itself:
Nonterminals
grammar declaration rule head symbol symbols attached_code
token tokens.
Terminals
atom float integer reserved_symbol reserved_word string char var
'->' ':' dot.
Rootsymbol grammar.
Endsymbol '$end'.
grammar -> declaration : '$1'.
grammar -> rule : '$1'.
declaration -> symbol symbols dot: {'$1', '$2'}.
rule -> head '->' symbols attached_code dot: {rule, ['$1' | '$3'],
 '$4'}.
head -> symbol : '$1'.
symbols -> symbol : ['$1'].
symbols -> symbol symbols : ['$1' | '$2'].
attached_code -> ':' tokens : {erlang_code, '$2'}.
attached_code -> '$empty' : {erlang_code,
 [{atom, 0, '$undefined'}]}.
tokens -> token : ['$1'].
tokens -> token tokens : ['$1' | '$2'].
symbol -> var : value_of('$1').
symbol -> atom : value_of('$1').
symbol -> integer : value_of('$1').
symbol -> reserved_word : value_of('$1').
token -> var : '$1'.
token -> atom : '$1'.
token -> float : '$1'.
token -> integer : '$1'.
token -> string : '$1'.
token -> char : '$1'.
token -> reserved_symbol : {value_of('$1'), line_of('$1')}.
token -> reserved_word : {value_of('$1'), line_of('$1')}.
token -> '->' : {'->', line_of('$1')}.
token -> ':' : {':', line_of('$1')}.
Erlang code.
value_of(Token) ->
 element(3, Token).
line_of(Token) ->
 element(2, Token).
Note
The symbols '->', and ':' have to be treated in a special way, as they are
meta symbols of the grammar notation, as well as terminal symbols of the Yecc
grammar.

5. The file erl_parse.yrl in the lib/stdlib/src directory contains the
grammar for Erlang.
Note
Syntactic tests are used in the code associated with some rules, and an error
is thrown (and caught by the generated parser to produce an error message)
when a test fails. The same effect can be achieved with a call to
return_error(ErrorPosition, Message_string), which is defined in the
yeccpre.hrl default header file.

 Files

lib/parsetools/include/yeccpre.hrl

 See Also

Aho & Johnson: 'LR Parsing', ACM Computing Surveys, vol. 6:2, 1974.

 Summary

 Types

 error_info()

 The standard error_info/0 structure that is returned from all I/O modules.
ErrorDescriptor is formattable by format_error/1.

 error_ret()

 errors()

 ok_ret()

 option()

 warnings()

 yecc_ret()

 Functions

 file(FileName)

 Equivalent to file/2

 file(Grammarfile, Options)

 Grammarfile is the file of declarations and grammar rules. Returns ok upon
success, or error if there are errors. An Erlang file containing the parser is
created if there are no errors. The options are

 format_error(ErrorDescriptor)

 Returns a descriptive string in English of an error reason ErrorDescriptor
returned by yecc:file/1,2. This function is mainly used by the compiler
invoking Yecc.

 Types

 Link to this type

 error_info()

 View Source

 (not exported)

 -type error_info() :: {erl_anno:location() | none, module(), ErrorDescriptor :: term()}.

The standard error_info/0 structure that is returned from all I/O modules.
ErrorDescriptor is formattable by format_error/1.

 Link to this type

 error_ret()

 View Source

 (not exported)

 -type error_ret() :: error | {error, Errors :: errors(), Warnings :: warnings()}.

 Link to this type

 errors()

 View Source

 (not exported)

 -type errors() :: [{file:filename(), [error_info()]}].

 Link to this type

 ok_ret()

 View Source

 (not exported)

 -type ok_ret() :: {ok, Parserfile :: file:filename()} | {ok, Parserfile :: file:filename(), warnings()}.

 Link to this type

 option()

 View Source

 -type option() ::
 {error_location, column | line} |
 {includefile, Includefile :: file:filename()} |
 {report_errors, boolean()} |
 {report_warnings, boolean()} |
 {report, boolean()} |
 {return_errors, boolean()} |
 {return_warnings, boolean()} |
 {return, boolean()} |
 {parserfile, Parserfile :: file:filename()} |
 {verbose, boolean()} |
 {warnings_as_errors, boolean()} |
 {deterministic, boolean()} |
 report_errors | report_warnings | report | return_errors | return_warnings | return |
 verbose | warnings_as_errors.

 Link to this type

 warnings()

 View Source

 (not exported)

 -type warnings() :: [{file:filename(), [error_info()]}].

 Link to this type

 yecc_ret()

 View Source

 -type yecc_ret() :: ok_ret() | error_ret().

 Functions

 Link to this function

 file(FileName)

 View Source

 -spec file(FileName) -> yecc_ret() when FileName :: file:filename().

Equivalent to file/2

 Link to this function

 file(Grammarfile, Options)

 View Source

 -spec file(Grammarfile, Options) -> yecc_ret()
 when Grammarfile :: file:filename(), Options :: Option | [Option], Option :: option().

Grammarfile is the file of declarations and grammar rules. Returns ok upon
success, or error if there are errors. An Erlang file containing the parser is
created if there are no errors. The options are:
	{includefile, Includefile}. - Indicates a customized prologue file which
the user may want to use instead of the default file
lib/parsetools/include/yeccpre.hrl which is otherwise included at the
beginning of the resulting parser file. N.B. The Includefile is included
'as is' in the parser file, so it must not have a module declaration of its
own, and it should not be compiled. It must, however, contain the necessary
export declarations. The default is indicated by "".

	{parserfile, Parserfile}. - Parserfile is the name of the file that
will contain the Erlang parser code that is generated. The default ("") is
to add the extension .erl to Grammarfile stripped of the .yrl extension.

	{report_errors, boolean()}. - Causes errors to be printed as they occur.
Default is true.

	{report_warnings, boolean()}. - Causes warnings to be printed as they
occur. Default is true.

	{report, boolean()}. - This is a short form for both report_errors and
report_warnings.

	{return_errors, boolean()}. - If this flag is set,
{error, Errors, Warnings} is returned when there are errors. Default is
false.

	{return_warnings, boolean()}. - If this flag is set, an extra field
containing Warnings is added to the tuple returned upon success. Default is
false.

	{return, boolean()}. - This is a short form for both return_errors and
return_warnings.

	{verbose, boolean()}. - Determines whether the parser generator should
give full information about resolved and unresolved parse action conflicts
(true), or only about those conflicts that prevent a parser from being
generated from the input grammar (false, the default).

	{warnings_as_errors, boolean()} - Causes warnings to be treated as
errors.

	{error_location, column | line}. - If the value of this flag is line,
the location of warnings and errors is a line number. If the value is
column, the location includes a line number and a column number. Default is
column.

	{deterministic, boolean()} - Causes generated -file() attributes to only
include the basename of the file path.

Any of the Boolean options can be set to true by stating the name of the
option. For example, verbose is equivalent to {verbose, true}.
The value of the Parserfile option stripped of the .erl extension is used by
Yecc as the module name of the generated parser file.
Yecc will add the extension .yrl to the Grammarfile name, the extension
.hrl to the Includefile name, and the extension .erl to the Parserfile
name, unless the extension is already there.

 Link to this function

 format_error(ErrorDescriptor)

 View Source

 -spec format_error(ErrorDescriptor) -> io_lib:chars() when ErrorDescriptor :: term().

Returns a descriptive string in English of an error reason ErrorDescriptor
returned by yecc:file/1,2. This function is mainly used by the compiler
invoking Yecc.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

