

 sasl

 v4.2.1

 [image: Logo]

 Table of contents

 	SASL Release Notes

 	User's Guides

 	Introduction

 	SASL Error Logging

 	References

 	sasl

 	appup

 	rel

 	relup

 	script

 	Modules

 	alarm_handler

 	rb

 	release_handler

 	systools

SASL Release Notes

This document describes the changes made to the SASL application.

 SASL 4.2.1

 Fixed Bugs and Malfunctions

	Improved error message from systools:make_script, when .app parameters
contain duplicates. The parameters that will be checked are modules,
applications and registered.
Own Id: OTP-18300 Aux Id: PR-6389

 SASL 4.2

 Fixed Bugs and Malfunctions

	Fix systools:make* to recursively search for source code when doing a
src_tests.
Own Id: OTP-17752 Aux Id: PR-5302

 Improvements and New Features

	An Erlang installation directory is now relocatable on the file system given
that the paths in the installation's RELEASES file are paths that are
relative to the installations root directory. The
`release_handler:create_RELEASES/4 function can generate a RELEASES
file with relative paths if its RootDir parameter is set to the empty
string.
Own Id: OTP-17304

 SASL 4.1.2

 Fixed Bugs and Malfunctions

	Fix bug in systools:make_script/1 documentation.
Own Id: OTP-17854 Aux Id: PR-5596

 SASL 4.1.1

 Fixed Bugs and Malfunctions

	Make release_handler even more resilient against exiting processes during
upgrade. Same kind of bug fix as OTP-16744 released in sasl-4.0.1 (OTP 23.1).
Own Id: OTP-17748 Aux Id: GH-5387, PR-5389

 SASL 4.1

 Improvements and New Features

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Recognize new key 'optional_applications' in application resource files.
Own Id: OTP-17189 Aux Id: PR-2675

	Removed timestamps from files generated by sasl and reltool to enable
deterministic builds.
Own Id: OTP-17292 Aux Id: PR-4685, PR-4684

 SASL 4.0.2

 Fixed Bugs and Malfunctions

	Fix dependent application to be stopped after the primary application when
upgrading a release and the primary and dependent application is removed.
Example: In a release where app1 depends on app2 and we should remove app1 and
app2 using a release upgrade. When the release upgrade is done app1 should be
stopped and purged before app2 as otherwise app1 could start crashing when its
dependency is removed.
This bugfix changes the order of removal to be correct.
Own Id: OTP-17113 Aux Id: ERL-1410 PR-2882

 SASL 4.0.1

 Fixed Bugs and Malfunctions

	Make release_handler more resilient against exiting processes during
upgrade.
Own Id: OTP-16744 Aux Id: ERL-1247, PR-2666

 SASL 4.0

 Improvements and New Features

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	systools:make_script/2 now accepts the name of the boot file to create, it
is not restricted to only RelName.boot or start.boot.
systools:make_tar/2 now accepts the option extra_files to add any extra
non release related files to the tar file.
Own Id: OTP-16561 Aux Id: PR-2420

	systools:make_tar/1,2 now filters out any tools
from erts if included in the release tar ball. See the documentation for more
details.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16603

 SASL 3.4.2

 Improvements and New Features

	A socket "registry" has been added making it possible to list current open
sockets.
Own Id: OTP-16309

 SASL 3.4.1

 Improvements and New Features

	The net module has been split into 'net' (kernel) and prim_net (preloaded).
Own Id: OTP-15765

 SASL 3.4

 Improvements and New Features

	Change the first module called by erts to be named erl_init instead of
otp_ring0. systools in sasl have been updated to reflect this change.
Own Id: OTP-15336 Aux Id: PR-1825

 SASL 3.3

 Improvements and New Features

	New counters and atomics modules supplies access to highly efficient
operations on mutable fixed word sized variables.
Own Id: OTP-13468

 SASL 3.2.1

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 SASL 3.2

 Improvements and New Features

	A new logging API is added to Erlang/OTP, see the logger manual page, and
section Logging in the Kernel User's Guide.
Calls to error_logger are automatically redirected to the new API, and
legacy error logger event handlers can still be used. It is, however,
recommended to use the Logger API directly when writing new code.
Notice the following potential incompatibilities:
	Kernel configuration parameters error_logger still works, but is overruled
if the default handler's output destination is configured with Kernel
configuration parameter logger.
In general, parameters for configuring error logger are overwritten by new
parameters for configuring Logger.

	The concept of SASL error logging is deprecated, meaning that by default the
SASL application does not affect which log events are logged.
By default, supervisor reports and crash reports are logged by the default
Logger handler started by Kernel, and end up at the same destination
(terminal or file) as other standard log event from Erlang/OTP.
Progress reports are not logged by default, but can be enabled by setting
the primary log level to info, for example with the Kernel configuration
parameter logger_level.
To obtain backwards compatibility with the SASL error logging functionality
from earlier releases, set Kernel configuration parameter
logger_sasl_compatible to true. This prevents the default Logger handler
from logging any supervisor-, crash-, or progress reports. Instead, SASL
adds a separate Logger handler during application start, which takes care of
these log events. The SASL configuration parameters sasl_error_logger and
sasl_errlog_type specify the destination (terminal or file) and severity
level to log for these events.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce
changes to the Logger API and functionality in patches following this release.
These changes might or might not be backwards compatible with the initial
version.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13295

	The old and outdated "Status Inspection" tool (modules si and si_sasl_sup)
is removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14469

	When creating the release tar file, systools now includes sys.config.src if it
exists in the $ROOT/releases/<vsn>/ directory. This is to allow adjustments,
e.g. resolving environment variables, after unpacking the release, but before
installing it. This functionality requires a custom tool which uses
sys.config.src as input and creates a correct sys.config file.
Own Id: OTP-14950 Aux Id: PR-1560

 SASL 3.1.2

 Fixed Bugs and Malfunctions

	When upgrading with instruction 'restart_new_emulator', the generated
temporary boot file used 'kernelProcess' statements from the old release
instead of the new release. This is now corrected.
This correction is needed for upgrade to OTP-21.
Own Id: OTP-15017

 SASL 3.1.1

 Fixed Bugs and Malfunctions

	The Report Browser, rb, could earlier not handle reports that were not lists,
for example generated by error_logger:info_report({some, tuple}). This term
is allowed as input to error_logger, but rb would state that "A report on bad
form was encountered". This is now corrected.
Own Id: OTP-13906 Aux Id: ERL-261

 SASL 3.1

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

	Files generated by release_handler and reltool, which might contain
Unicode characters, are now encoded as UTF-8 and written with format "~tp" or
"~ts". If the file is to be read by file:consult/1, an encoding comment is
added.
Own Id: OTP-14463

	The SASL error logger event handler, sasl_report_file_h, will now by default
open its log file with encoding UTF-8. This can be overridden when configuring
SASL, see configuration parameter sasl_error_logger in the SASL reference
manual.
Own Id: OTP-14618

 SASL 3.0.4

 Fixed Bugs and Malfunctions

	Documented default values for the 'mod' and 'start_phases' fields in .app
files were not allowed as actual values in a .app file. This is now corrected.
Own Id: OTP-14029

 Improvements and New Features

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

 SASL 3.0.3

 Fixed Bugs and Malfunctions

	When both options 'warnings_as_errors' and 'silent' were given to
systools:make_script or systools:make_relup, no error reason would be returned
if warnings occurred. Instead only the atom 'error' was returned. This is now
corrected.
Options 'warnings_as_errors' and 'no_warn_sasl' are now also allowed for
systools:make_tar.
Own Id: OTP-14170

 SASL 3.0.2

 Fixed Bugs and Malfunctions

	code:add_pathsa/1 and command line option -pa both revert the given list
of directories when adding it at the beginning of the code path. This is now
documented.
Own Id: OTP-13920 Aux Id: ERL-267

 SASL 3.0.1

 Improvements and New Features

	Improved dirty scheduler support. A purge of a module can now be performed
without having to wait for completion of all ongoing dirty NIF calls.
Note that when enabling support for dirty schedulers, a new purge strategy
will as of ERTS version 8.1 be enabled. This new strategy is not fully
backwards compatible with the strategy used by default. For more information
see the documentation of erlang:check_process_code/3.
Own Id: OTP-13808 Aux Id: OTP-13833

	A new purge strategy has been introduced. The new strategy will by default be
disabled during the OTP 19 release, but will be the only strategy available as
of the OTP 20 release.
The new strategy is slightly incompatible with the strategy being used by
default in OTP 19. Using the default strategy, processes holding funs that
refer to the module being purged either fail a soft purge, or will be killed
during a hard purge. The new strategy completely ignores funs. If funs
referring to the code being purged exist, and are used after a purge, an
exception will be raised upon usage. That is, the behavior will be exactly the
same as the case when a fun is received by a process after the purge.
The new strategy can optionally be enabled when building OTP during OTP 19,
and will automatically be enabled if the runtime system is built with support
for dirty schedulers.
For more information see the documentation of erlang:check_process_code/3.
Own Id: OTP-13833

 SASL 3.0

 Improvements and New Features

	The module 'overload' is removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13184

 SASL 2.7

 Fixed Bugs and Malfunctions

	During upgrade, the release_handler collects a list of supervisor pids in
order to list all processes in the supervisor tree. If one of the supervisors
(legitimately) exits before release_handler can examine it, then
sys:get_status/1 would earlier be called with a dead pid, causing a
'noproc' error. This has been corrected.
Own Id: OTP-13291

 Improvements and New Features

	The module overload is deprecated and will be removed in OTP 19.
Own Id: OTP-13057

	Improve implementation of supervisor child count, making it faster and more
accurate for dynamic processes of a simple_one_for_one supervisor.
Own Id: OTP-13290

 SASL 2.6.1

 Improvements and New Features

	Documentation improvements
Own Id: OTP-13000

 SASL 2.6

 Improvements and New Features

	A mechanism for limiting the amount of text that the built-in error logger
events will produce has been introduced. It is useful for limiting both the
size of log files and the CPU time used to produce them.
This mechanism is experimental in the sense that it may be changed if it turns
out that it does not solve the problem it is supposed to solve. In that case,
there may be backward incompatible improvements to this mechanism.
See the documentation for the config parameter error_logger_format_depth in
the Kernel application for information about how to turn on this feature.
Own Id: OTP-12864

 SASL 2.5

 Fixed Bugs and Malfunctions

	The undocumented upgrade instruction
{remove_module,PrePurge,PostPurge,DepMods} is removed. This instruction was
added for symmetry reasons in OTP R7B, but was never documented or tested.
The existing instruction {add_module,Mod,DepMods} is now documented, and the
complementing instruction {delete_module,Mod,DepMods} is added.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11540

 Improvements and New Features

	The sasl_error_logger configuration parameter now supports the value
{file,FileName,Modes} which allows the log file to be opened in other mode
than write (for example, append mode).
Own Id: OTP-12778

 SASL 2.4.1

 Fixed Bugs and Malfunctions

	The documentation erroneously specified that alarm_handler:clear_alarm/1
would clear all alarms with id AlarmId. This is now corrected according to
the implementation - only the latest received alarm with the given AlarmId
is cleared by the simple default handler.
Own Id: OTP-12025

 SASL 2.4

 Fixed Bugs and Malfunctions

	The upgrade instruction 'restart_application' would earlier ignore the restart
type configured in the .rel file and always restart the application as
permanent. This is now changed, and the restart type from the .rel file is
used. If restart type is 'load', the application will only be loaded and not
started. If the restart type is 'none', the application will not be loaded nor
started, but all modules in the application will be loaded. (Thanks to Tobias
Schlager for reporting this problem)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11716

	If systools:make_script/2 failed with reason duplicate_modules, and the
silent flag was not used, a crash with reason function_clause would occur
when systools tried to format the error message. This has been corrected.
(Thanks to Jean-Sébastien Pédron)
Own Id: OTP-11819

 Improvements and New Features

	Calls to erlang:open_port/2 with 'spawn' are updated to handle space in the
command path.
Own Id: OTP-10842

	Some more documentation is added to explain the behavior when an upgrade
includes new versions of ERTS, Kernel, STDLIB or SASL.
Own Id: OTP-11717

 SASL 2.3.4

 Fixed Bugs and Malfunctions

	Don't try to add the log_mf_h handler in sasl unless configured to do so.
Thanks to Richard Carlsson.
Own Id: OTP-11464

	Fix confusing documentation about error handlers in SASL.(Thanks to Richard
Carlsson)
Own Id: OTP-11507

	A bug in the mechanism for upgrading core parts of Erlang/OTP (emulator,
kernel, stdlib, sasl) caused a switch of paths between stdlib and sasl in the
intermediate .script/.boot file. The bug was introduces along with this
upgrade mechanism in R15B. It has now been corrected. (Thanks to Tobias
Schlager)
Own Id: OTP-11529

 Improvements and New Features

	Added a boot file which skips loading the "$HOME/.erlang" file on startup.
Enable by starting erlang with "erl -boot no_dot_erlang".
* INCOMPATIBILITY with false *
Own Id: OTP-8479 Aux Id: seq11510

 SASL 2.3.3

 Improvements and New Features

	Add Fd usage in rb logging. Thanks to Eric Pailleau.
Own Id: OTP-11252

 SASL 2.3.2

 Fixed Bugs and Malfunctions

	Fix receive support in erl_eval with a BEAM module. Thanks to Anthony Ramine.
Own Id: OTP-11137

 SASL 2.3.1

 Improvements and New Features

	Some updates are made to systools and release_handler for handling of unicode.
Own Id: OTP-10782

 SASL 2.3

 Fixed Bugs and Malfunctions

	release_handler_SUITE:otp_9864 deleted parts of the release_handler_SUITE_data
directory so the test suite could not be executed twice without
re-installation. This has been corrected.
Own Id: OTP-10394 Aux Id: kunagi-187 [98]

	It is no longer possible to have {Mod,Vsn} in the 'modules' list in a .app
file.
This was earlier possible, although never documented in the .app file
reference manual. It was however visible in the documentation of
application:load/[1,2], where the same term as in a .app file can be used as
the first argument.
The possibility has been removed since the Vsn part was never used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10417

	release_handler:upgrade_script and release_handler:downgrade_script could not
read appup files with regexps. This has been corrected. (Thanks to Ulf Wiger)
Own Id: OTP-10463

 Improvements and New Features

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

 SASL 2.2.1

 Fixed Bugs and Malfunctions

	If sys.config existed, but was not readable or parseable, this would not be
detected until after the upgrade and at the next node restart. The possibility
for this to happen is now reduced by adding a check to systools:make_tar which
fails the creation of the tar file if sys.config or relup does not have
reasonable contents. Note that there are no detailed checks, only parsing and
erlang term format check.
Own Id: OTP-9539

	systools:make_script would allow {kernel,Vsn,load} in the .rel file, causing
a .boot file which only loaded kernel and did not start it. This has been
corrected. Only start type 'permanent', which is the default, is now allowed
for kernel and stdlib.
Own Id: OTP-9652

	release_handler:remove_release/1 now handles symlinked files properly
Own Id: OTP-9864

	If stdlib was stated with a start type different from permanent in a .rel
file, systools would incorrectly say that sasl had faulty start type. This has
been corrected.
Own Id: OTP-9888

	Sasl documentation earlier said that the InclApps parameters in a .rel file
defaults to the empty list. This is not correct. It defaults to the same value
as specified in the .app file. This has been corrected.
Own Id: OTP-9980

	Applications that are listed in {applications,Apps} in the .app file were
not sorted correctly by systools:make_script/1,2. They got the reverse order
of how they were listed in the .app file. This is corrected so they are now
sorted (internally between each other) in the same order as they are listed in
the .rel file (i.e. the order they are listed in the .app file does no longer
matter).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9984

	Documentation of .appup files now also states that UpFromVsn and DownToVsn
can be specified as regular expressions in order to avoid duplicated upgrade
instructions.
Own Id: OTP-10001

	Reltool would sometimes generate a .app file containing
{start_phases,undefined}, which would cause an exception in systools at
parse time. This has been corrected so reltool now omits the start_phases
entry if the value is undefined. (Thanks to Juan Jose Comellas)
In order to align with reltool, sasl will also omit start_phases entries
with value undefined in .script files.
Own Id: OTP-10003

 SASL 2.2

 Fixed Bugs and Malfunctions

	Fix the mechanism for upgrading emulator.
The appup files for kernel, stdlib and sasl do now recognize two major
releases back and include a 'restart_new_emulator' instruction.
Appup files can include regular expressions for matching earlier releases.
The mechanism for upgrading the emulator is changed so 'restart_new_emulator'
will be the first instruction executed. The rest of the upgrade instruction
will be executed after the emulator restart.
A new upgrade instruction 'restart_emulator' is added for the case where the
emulator shall be restarted after all other upgrade instructions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9438

	Add release_handler:which_releases/1
This is an extension to which_releases that allows a user to specify the
status of the releases they wish to be returned. For instance it allows for
quickly determining which release is 'permanent' without the need of parsing
the entire release list. (Thanks to Joe Williams)
Own Id: OTP-9717

	Add copy of rel file in releases/Vsn in release tar file
systool:make_tar stores the rel file in the releases directory. When unpacking
with release_handler:unpack_release, the file is automatically moved to
releases/Vsn/. If, however, the tar file is unpacked manually, the rel file
might not be moved, and the next release unpacked might overwrite the rel
file. To overcome this, systools:make_tar now stores a copy of the rel file in
releases/Vsn/ directly and it is not longer necessary to move the file after
unpacking.
The reason for keeping the file in the releases directory also is that is
needs to be extracted separately before the release version (Vsn) is known.
Own Id: OTP-9746

 SASL 2.1.10

 Fixed Bugs and Malfunctions

	The release_handler functionality on windows services was broken. This has
been corrected.
Own Id: OTP-9306

	If a new version of an application did not include any erlang module changes,
the code path of the application was not updated by the release_handler unless
a 'load_object_code' instruction was added for the application. This would be
a problem if e.g. only some files in the priv dir were changed since calls to
code:lib_dir or code:priv_dir would then point to the old location of the
application. This has been corrected - now code:replace_path/2 will be called
for all applications that are changed (i.e. when the application's vsn is
changed in the .rel file).
Own Id: OTP-9402

	The appup instruction 'delete_module' would cause a crash during upgrade if
the module to be deleted was not loaded. This has been corrected.
Own Id: OTP-9417

	If a path was given as ONLY 'ebin' and not for example './ebin', then
systools:make_tar would fail with a function_clause exception in
filename:join/1. This has been corrected. (Thanks to Nikola Skoric for
reporting).
Own Id: OTP-9507

	Implement or fix -Werror option
If -Werror is enabled and there are warnings no output file is written. Also
make sure that error/warning reporting is consistent. (Thanks to Tuncer Ayaz)
Own Id: OTP-9536

	Improved error information for timeouts during
release_handler:install_release.
This patch addresses two cases where a timeout will occur during upgrade. 1)
if a supervisor is suspended (call to get children from supervisor will
hang) 2) if the child spec for a supervisor incorrectly states that it is a
worker with a dynamic set of modules (call to get modules from gen_event will
hang)
An error report will now be printed, and the return value of
release_handler:install_release will indicate what happened. (Thanks to joe
williams)
Own Id: OTP-9546

 Improvements and New Features

	release_handler:install_release could be very slow when there are many
processes in the system. Some optimization work has been done both in erts and
in the release handler in order to improve this.
A new option, purge, is added to release_handler:check_install_release
which can be called first in order to speed up the execution of
release_handler:install_release.
Own Id: OTP-9395

 SASL 2.1.9.4

 Fixed Bugs and Malfunctions

	Remove traces of release_handler reading from filesystem when it has Masters
list
There are a couple of places in release_handler and release_handler_1 that
assumed it has a disk to read from, which in the case of an erl_prim_loader
Loader other than efile is not necessarily true
Add check_paths/2 to do the equivalent of check_path/1 for when there is a
Masters list
Change get_vsn to no longer get sent File paths but instead use the Bin since
beam_lib:version being sent a file path causes it to read the local file
system
Add get_current_vsn/1 as an equivalent to beam_lib:version(code:which(Mod)),
but using erl_prim_loader:get_file instead of reading from local file system
(Thanks to Steven Gravell)
Own Id: OTP-9142

	rb:stop did sometimes return {error,running}. This came from
supervisor:delete_child and happened when the rb_server has not yet terminated
when this function was called. Instead of having a separate gen_server call to
rb_server for stopping the process, supervisor:terminate_child is now called.
This is a synchronous function - i.e. it waits for the process to actually
terminate before it returns.
A file descriptor leak in rb:scan_files is corrected. The index file was never
closed after reading.
A mismatch in the behavior of rb:filter, when filter included 'no', is
corrected. Such filters will now return all non-matching reports, not only
the 'proplist' reports.
Own Id: OTP-9149

	Start and end date for rb:filter/2 was specified as {{Y-M-D},...} in the
help text instead of {{Y,M,D},...}. This has been corrected.
Own Id: OTP-9166

	If some, but not all, of the sasl environment variables related to the
log_mf_h error handler were missing sasl would successfully start but silently
skip starting log_mf_h. This is corrected so sasl startup will now fail if one
or two of the three variables are given. If none of the variables are given,
sasl will start as before without starting log_mf_h.
Own Id: OTP-9185

 Improvements and New Features

	Change default behaviour to not check src code when creating release
Add new option src_tests to systools:make_script and systools:make_tar. The
old option no_module_tests is now ignored as this is the default behaviour.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9146 Aux Id: seq11803

 SASL 2.1.9.3

 Improvements and New Features

	Honor start type in .rel files when building relup files
Previously, relup file always included an application:start(Application,
permanent) apply instruction for every application that appear in the
UpTo/DowFrom release file, whatever their start type in the release file.
The new implementation fixes this bug by honoring the start type according to
the rel(5) format. If the start type is none, no apply line is included in the
relup. If the start type is load, the relup includes instruction to only load
the application. Otherwise, the relup includes an instruction to start the
application to the according type.
The fix is implemented by adding a new parameter to the add_application high
level appup instruction. This new parameter is documented in appup(5).
Own Id: OTP-9097

 SASL 2.1.9.2

 Fixed Bugs and Malfunctions

	In R13B04 sys:get_status was modified to invoke format_status/2 in the
callback module if the module exports that function. This resulted in a change
to the term returned from calling sys:get_status on the supervisor module,
since supervisor is a gen_server and gen_server exports format_status. The
sasl release_handler_1 module had a dependency on the pre-R13B04 term returned
by sys:get_status when invoked on a supervisor, so the R13B04 change broke
that dependency.
This problem has been fixed by change release_handler_1 to handle both the
pre-R13B04 and R13B04 terms that sys:get_status can return from a supervisor.
Own Id: OTP-8619 Aux Id: seq11570

 SASL 2.1.9.1

 Improvements and New Features

	Use an infinity timeout in all calls to gen_server:call() in the SASL
application.
Own Id: OTP-8506 Aux Id: seq11509

 SASL 2.1.9

 Improvements and New Features

	The re:grep/1 function now uses the 're' module instead of the deprecated
'regexp' module. There are new functions rb:filter/1 and rb:filter/2 for
easier filtering of reports. (Thanks to Alvaro Videla.)
Own Id: OTP-8443

	There is new function sasl_report:format_report/3 that works like the
existing sasl_report:write_report/3 function except that it returns a
formatted string. Note that there is currently no documentation for the
sasl_report module. (Thanks to Jay Nelson.)
Own Id: OTP-8445

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

 SASL 2.1.8

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

 SASL 2.1.7

 Improvements and New Features

	The Windows utility Erlsrv, run in interactive mode now accepts options for
registering internal service name and description field of Windows registry
database.
Own Id: OTP-8132

 SASL 2.1.6

 Fixed Bugs and Malfunctions

	When using the SASL application configuration parameter masters the error
tuple {error,{no_such_file,{Master,FileName}}} was sometimes returned even
though the file FileName existed.
Own Id: OTP-7667

 Improvements and New Features

	Missing preloaded modules added
Own Id: OTP-7820

 SASL 2.1.5.4

 Improvements and New Features

	A Dialyzer warning was eliminated
Own Id: OTP-7635

 SASL 2.1.5.3

 Improvements and New Features

	Minor changes.
Own Id: OTP-7388

 SASL 2.1.5.2

 Improvements and New Features

	Minor updates.
Own Id: OTP-6998

 SASL 2.1.5.1

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689

	Obsolete guard tests (such as list()) have been replaced with the modern guard
tests (such as is_list()).
Own Id: OTP-6725

 SASL 2.1.5

 Fixed Bugs and Malfunctions

	Removed some dead code from erlsrv:get_service/2,
release_handler:do_write_file/2, systools_relup:foreach_baserel_up/7 and
systools_relup:foreach_baserel_dn/7.
Own Id: OTP-6499

 SASL 2.1.4

 Improvements and New Features

	Added an option {outdir,Dir} to the functions in systools, making it
possible to specify in which directory a boot script, relup file or release
package file should be placed.
Also, when using systools:make_tar/2 to create a release package file, the
boot script, relup file and sys.config are now searched for also in the
current working directory and any directory specified by the path option,
not only in the directory of the .rel file.
As part of the work some minor bugs have been corrected:
	systools:make_script/1,2 now returns error if the .script and/or
.boot file could not be opened for writing, not ok.
	systools:make_tar/1,2 can now handle a RelName argument which includes a
path. Previously this would cause the .rel file to end up in the wrong
directory in the resulting tar file.
	A documentation error for systools:make_tar/1,2: The .rel file is placed
in the releases directory in the tar file, not releases/RelVsn.

Own Id: OTP-6226

 SASL 2.1.3

 Fixed Bugs and Malfunctions

	release_handler:upgrade_app/2 and release_handler:downgrade_app/2,3 --
used for testing application upgrade and downgrade according to the .appup
file -- now update application configuration parameters correctly. (Thanks to
Serge Aleynikov)
Own Id: OTP-6162

 SASL 2.1.2

 Fixed Bugs and Malfunctions

	Fixed some minor bugs in release_handler found by Dialyzer.
Own Id: OTP-6039

 SASL 2.1.1

 Improvements and New Features

	Added a number of functions to release_handler which makes it possible to
test upgrade and downgrade of applications according to an .appup file "on
the fly":
- upgrade_app/2
- upgrade_script/2
- downgrade_app/2,3
- downgrade_script/3
- eval_appup_script/4
Own Id: OTP-5858

 SASL 2.1

 Improvements and New Features

	A new option {update_paths,Bool} has been added for
release_handler:install_release/2. It indicates if all application code
paths should be updated (Bool==true), or if only code paths for modified
applications should be updated (Bool==false, default).
release_handler:set_unpacked/2 now returns an error tuple if a specified
application directory does not exist.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5761

 SASL 2.0.1

 Improvements and New Features

	A bug that made it impossible to call rb:show(N) (N being an integer)
twice without getting an error has been fixed.
Own Id: OTP-5287

Introduction

 Scope

The SASL application provides support for:
	Error logging
	Alarm handling
	Release handling
	Report browsing

Section SASL Error Logging describes the error handler that
produces the supervisor, progress, and crash reports, which can be written to
screen or to a specified file. It also describes the Report Browser (RB).
The sections about release structure and release handling have been moved to
section OTP Design Principles in System
Documentation.

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

SASL Error Logging

Note
The SASL error logging concept described in this section is deprecated since
Erlang/OTP 21.0, when the new logging API was
introduced.
The new default behaviour is that the SASL application no longer affects which
log events that are logged.
Supervisor reports and
crash reports are logged via the default
logger handler which is setup by Kernel.
Progress reports are by default not
logged, but can be enabled by setting the primary log level to info, for
example by using the Kernel configuration parameter
logger_level.
The old SASL error logging behaviour can be re-enabled by setting the Kernel
configuration parameter
logger_sasl_compatible to
true.
The mechanism for
multi-file error report logging as
described in this section is also kept for backwards compatibility. However,
the new logging API also introduces logger_disk_log_h, which is a logger
handler that can print to multiple files using disk_log.

 SASL reports

The SASL application introduces three types of reports:
	Supervisor report
	Progress report
	Crash report

When the SASL application is started, it adds a Logger handler that formats and
writes these reports, as specified in the
configuration parameters for SASL.

 Supervisor Report

A supervisor report is issued when a supervised child terminates unexpectedly. A
supervisor report contains the following items:
	Supervisor - Name of the reporting supervisor.

	Context - Indicates in which phase the child terminated from the
supervisor's point of view. This can be start_error, child_terminated, or
shutdown_error.

	Reason - Termination reason.

	Offender - Start specification for the child.

 Progress Report

A progress report is issued when a supervisor starts or restarts a child. A
progress report contains the following items:
	Supervisor - Name of the reporting supervisor.

	Started - Start specification for the successfully started child.

 Crash Report

Processes started with functions proc_lib:spawn or
proc_lib:spawn_link are wrapped within a catch. A
crash report is issued when such a process terminates with an unexpected reason,
which is any reason other than normal, shutdown, or {shutdown,Term}.
Processes using behaviors gen_server, gen_fsm or gen_statem are
examples of such processes. A crash report contains the following items:
	Crasher - Information about the crashing process, such as initial
function call, exit reason, and message queue.

	Neighbours - Information about processes that are linked to the crashing
process and do not trap exits. These processes are the neighbours that
terminate because of this process crash. The information gathered is the same
as the information for Crasher, described in the previous item.

 Example

The following example shows the reports generated when a process crashes. The
example process is a permanent process supervised by the test_sup
supervisor. A division by zero is executed and the error is first reported by
the faulty process. A crash report is generated, as the process was started
using function proc_lib:spawn/3. The supervisor generates a supervisor report
showing the crashed process. A progress report is generated when the process is
finally restarted.
 =ERROR REPORT==== 27-May-1996::13:38:56 ===
 <0.63.0>: Divide by zero !

 =CRASH REPORT==== 27-May-1996::13:38:56 ===
 crasher:
 pid: <0.63.0>
 registered_name: []
 error_info: {badarith,{test,s,[]}}
 initial_call: {test,s,[]}
 ancestors: [test_sup,<0.46.0>]
 messages: []
 links: [<0.47.0>]
 dictionary: []
 trap_exit: false
 status: running
 heap_size: 128
 stack_size: 128
 reductions: 348
 neighbours:

 =SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
 Supervisor: {local,test_sup}
 Context: child_terminated
 Reason: {badarith,{test,s,[]}}
 Offender: [{pid,<0.63.0>},
 {name,test},
 {mfa,{test,t,[]}},
 {restart_type,permanent},
 {shutdown,200},
 {child_type,worker}]

 =PROGRESS REPORT==== 27-May-1996::13:38:56 ===
 Supervisor: {local,test_sup}
 Started: [{pid,<0.64.0>},
 {name,test},
 {mfa,{test,t,[]}},
 {restart_type,permanent},
 {shutdown,200},
 {child_type,worker}]

 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages received by
error_logger. The error messages are stored in several files and each file is
smaller than a specified number of kilobytes. No more than a specified number of
files exist at the same time. The logging is very fast, as each error message is
written as a binary term.
For more details, see the
sasl(6) application in the
Reference Manual.

 Report Browser

The report browser is used to browse and format error reports written by the
error logger handler log_mf_h defined in STDLIB.
The log_mf_h handler writes all reports to a report logging directory, which
is specified when configuring the SASL application.
If the report browser is used offline, the reports can be copied to another
directory specified when starting the browser. If no such directory is
specified, the browser reads reports from the SASL error_logger_mf_dir.

 Starting Report Browser

Start the rb_server with function rb:start([Options]) as
shown in the following example:
 5> rb:start([{max, 20}]).
 rb: reading report...done.
 rb: reading report...done.
 rb: reading report...done.
 rb: reading report...done.
 {ok,<0.199.0>}

 Online Help

Enter command rb:help() to access the report browser online
help system.

 List Reports in Server

Use function rb:list() to list all loaded reports:
 4> rb:list().
 No Type Process Date Time
 == ==== ======= ==== ====
 20 progress <0.17.0> 1996-10-16 16:14:54
 19 progress <0.14.0> 1996-10-16 16:14:55
 18 error <0.15.0> 1996-10-16 16:15:02
 17 progress <0.14.0> 1996-10-16 16:15:06
 16 progress <0.38.0> 1996-10-16 16:15:12
 15 progress <0.17.0> 1996-10-16 16:16:14
 14 progress <0.17.0> 1996-10-16 16:16:14
 13 progress <0.17.0> 1996-10-16 16:16:14
 12 progress <0.14.0> 1996-10-16 16:16:14
 11 error <0.17.0> 1996-10-16 16:16:21
 10 error <0.17.0> 1996-10-16 16:16:21
 9 crash_report release_handler 1996-10-16 16:16:21
 8 supervisor_report <0.17.0> 1996-10-16 16:16:21
 7 progress <0.17.0> 1996-10-16 16:16:21
 6 progress <0.17.0> 1996-10-16 16:16:36
 5 progress <0.17.0> 1996-10-16 16:16:36
 4 progress <0.17.0> 1996-10-16 16:16:36
 3 progress <0.14.0> 1996-10-16 16:16:36
 2 error <0.15.0> 1996-10-16 16:17:04
 1 progress <0.14.0> 1996-10-16 16:17:09
 ok

 Show Reports

Use function rb:show(Number) to show details of a specific
report:
7> rb:show(4).

PROGRESS REPORT <0.20.0> 1996-10-16 16:16:36
===
supervisor {local,sasl_sup}
started
[{pid,<0.24.0>},
{name,release_handler},
{mfa,{release_handler,start_link,[]}},
{restart_type,permanent},
{shutdown,2000},
{child_type,worker}]

ok
8> rb:show(9).

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered_name release_handler
error_info {undef,{release_handler,mbj_func,[]}}
initial_call
{gen,init_it,
[gen_server,
<0.20.0>,
<0.20.0>,
{erlang,register},
release_handler,
release_handler,
[],
[]]}
ancestors [sasl_sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap_exit false
status running
heap_size 610
stack_size 142
reductions 54

ok

 Search Reports

All reports containing a common pattern can be shown. Suppose a process crashes
because it tries to call a non-existing function release_handler:mbj_func/1.
The reports can then be shown as follows:
12> rb:grep("mbj_func").
Found match in report number 11

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** undefined function: release_handler:mbj_func[] **
Found match in report number 10

ERROR REPORT <0.24.0> 1996-10-16 16:16:21
===

** Generic server release_handler terminating
** Last message in was {unpack_release,hej}
** When Server state == {state,[],
"/home/dup/otp2/otp_beam_sunos5_p1g_7",
[{release,
"OTP APN 181 01",
"P1G",
undefined,
[],
permanent}],
undefined}
** Reason for termination ==
** {undef,{release_handler,mbj_func,[]}}
Found match in report number 9

CRASH REPORT <0.24.0> 1996-10-16 16:16:21
===
Crashing process
pid <0.24.0>
registered_name release_handler
error_info {undef,{release_handler,mbj_func,[]}}
initial_call
{gen,init_it,
[gen_server,
<0.20.0>,
<0.20.0>,
{erlang,register},
release_handler,
release_handler,
[],
[]]}
ancestors [sasl_sup,<0.18.0>]
messages []
links [<0.23.0>,<0.20.0>]
dictionary []
trap_exit false
status running
heap_size 610
stack_size 142
reductions 54

Found match in report number 8

SUPERVISOR REPORT <0.20.0> 1996-10-16 16:16:21
===
Reporting supervisor {local,sasl_sup}

Child process
errorContext child_terminated
reason {undef,{release_handler,mbj_func,[]}}
pid <0.24.0>
name release_handler
start_function {release_handler,start_link,[]}
restart_type permanent
shutdown 2000
child_type worker

ok

 Stop Server

Use function rb:stop() to stop the rb_server:
13> rb:stop().
ok

sasl

The SASL application

 Description

The SASL application provides the following services:
	alarm_handler
	release_handler
	systools

Note
The SASL application in OTP has nothing to do with "Simple Authentication and
Security Layer" (RFC 4422).

 Configuration

The following configuration parameters are defined for the SASL application. For
more information about configuration parameters, see
app(4) in Kernel.
All configuration parameters are optional.
	start_prg = string() - Specifies the program to be used when restarting
the system during release installation. Default is $OTPROOT/bin/start.

	masters = [atom()] - Specifies the nodes used by this node to read/write
release information. This parameter is ignored if parameter client_directory
is not set.

	client_directory = string() - This parameter specifies the client
directory at the master nodes. For details, see
Release Handling in OTP Design Principles.
This parameter is ignored if parameter masters is not set.

	static_emulator = true | false - Indicates if the Erlang emulator is
statically installed. A node with a static emulator cannot switch dynamically
to a new emulator, as the executable files are written into memory statically.
This parameter is ignored if parameters masters and client_directory are
not set.

	releases_dir = string() - Indicates where the releases directory is
located. The release handler writes all its files to this directory. If this
parameter is not set, the OS environment parameter RELDIR is used. By
default, this is $OTPROOT/releases.

 Deprecated Error Logger Event Handlers and Configuration

In Erlang/OTP 21.0, a new API for logging was added. The old error_logger
event manager, and event handlers running on this manager, still work, but they
are not used by default.
The error logger event handlers sasl_report_tty_h and sasl_report_file_h,
were earlier used for printing the so called SASL reports, i.e. supervisor
reports, crash reports, and progress reports. These reports are now also
printed by the default logger handler started by the Kernel application.
Progress reports are by default stopped by the primary log level, but can be
enabled by setting this level to info, for example by using the Kernel
configuration parameter logger_level.
If the old error logger event handlers are still desired, they must be added by
calling error_logger:add_report_handler/1,2.
	sasl_report_tty_h - Formats and writes supervisor reports, crash
reports, and progress reports to stdio. This error logger event handler
uses
error_logger_format_depth
in the Kernel application to limit how much detail is printed in crash and
supervisor reports.

	sasl_report_file_h - Formats and writes supervisor reports, crash
report, and progress report to a single file. This error logger event
handler uses
error_logger_format_depth
in the Kernel application to limit the details printed in crash and supervisor
reports.

A similar behaviour, but still using the new logger API, can be obtained by
setting the Kernel application environment variable
logger_sasl_compatible to
true. This adds a second instance of the standard Logger handler, named
sasl, which only prints the SASL reports. No SASL reports are then printed by
the Kernel logger handler.
The sasl handler is configured according to the values of the following SASL
application environment variables.
	sasl_error_logger = Value - Value is one of the following:
	tty - Installs sasl_report_tty_h in the error logger. This is the
default option.

	{file,FileName} - Installs sasl_report_file_h in the error logger.
All reports go to file FileName, which is a string. The file is opened in
write mode with encoding utf8.

	{file,FileName,Modes} - Same as {file,FileName}, except that Modes
allows you to specify the modes used for opening the FileName given to the
file:open/2 call. By default, the file is opened in write mode with
encoding utf8. Use [append] to have the FileName open in append mode.
A different encoding can also be specified. FileName is a string.

	false - No SASL error logger handler is installed.

	errlog_type = error | progress | all - Restricts the error logging
performed by the specified sasl_error_logger to error reports or progress
reports, or both. Default is all.

	utc_log = true | false - If set to true, all dates in
textual log outputs are displayed in Universal Coordinated Time with the
string UTC appended.

The error logger event handler log_mf_h can also still be used. This event
handler writes all events sent to the error logger to disk. Multiple files and
log rotation are used. For efficiency reasons, each event is written as a
binary. For more information about this handler, see
the STDLIB Reference Manual.
To activate this event handler, three SASL configuration parameters must be set:
	error_logger_mf_dir = string() | false - Specifies in which directory
log_mf_h is to store its files. If this parameter is undefined or false,
the log_mf_h handler is not installed.

	error_logger_mf_maxbytes = integer() - Specifies the maximum size of
each individual file written by log_mf_h. If this parameter is undefined,
the log_mf_h handler is not installed.

	error_logger_mf_maxfiles = 0<integer()<256 - Specifies the number of
files used by log_mf_h. If this parameter is undefined, the log_mf_h
handler is not installed.

The new logger_disk_log_h might be an alternative to log_mf_h if log
rotation is desired. This does, however, write the log events in clear text and
not as binaries.

 See Also

alarm_handler, error_logger, logger, log_mf_h, rb,
release_handler, systools

appup

Application upgrade file

 Description

The application upgrade file defines how an application is upgraded or
downgraded in a running system.
This file is used by the functions in systools when generating a release
upgrade file relup.

 File Syntax

The application upgrade file is to be called Application.appup, where
Application is the application name. The file is to be located in the ebin
directory for the application.
The .appup file contains one single Erlang term, which defines the
instructions used to upgrade or downgrade the application. The file has the
following syntax:
{Vsn,
 [{UpFromVsn, Instructions}, ...],
 [{DownToVsn, Instructions}, ...]}.
	Vsn = string() - Current application version.

	UpFromVsn = string() | binary() - An earlier application version to
upgrade from. If it is a string, it is interpreted as a specific version
number. If it is a binary, it is interpreted as a regular expression that can
match multiple version numbers.

	DownToVsn = string() | binary() - An earlier application version to
downgrade to. If it is a string, it is interpreted as a specific version
number. If it is a binary, it is interpreted as a regular expression that can
match multiple version numbers.

	Instructions - A list of release upgrade instructions, see
Release Upgrade Instructions. It
is recommended to use high-level instructions only. These are automatically
translated to low-level instructions by systools when creating the relup
file.

To avoid duplication of upgrade instructions, it is allowed to use regular
expressions to specify UpFromVsn and DownToVsn. To be considered a regular
expression, the version identifier must be specified as a binary. For example,
the following match all versions 2.1.x, where x is any number:
<<"2\\.1\\.[0-9]+">>
Notice that the regular expression must match the complete version string, so
this example works for, for example, 2.1.1, but not for 2.1.1.1.

 Release Upgrade Instructions

Release upgrade instructions are interpreted by the release handler when an
upgrade or downgrade is made. For more information about release handling, see
OTP Design Principles in System
Documentation.
A process is said to use a module Mod if Mod is listed in the Modules
part of the child specification used to start the process, see supervisor.
In the case of gen_event, an event manager process is said to use Mod if
Mod is an installed event handler.

 High-Level Instructions

{update, Mod}
{update, Mod, supervisor}
{update, Mod, Change}
{update, Mod, DepMods}
{update, Mod, Change, DepMods}
{update, Mod, Change, PrePurge, PostPurge, DepMods}
{update, Mod, Timeout, Change, PrePurge, PostPurge, DepMods}
{update, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepMods}
 Mod = atom()
 ModType = static | dynamic
 Timeout = int()>0 | default | infinity
 Change = soft | {advanced,Extra}
 Extra = term()
 PrePurge = PostPurge = soft_purge | brutal_purge
 DepMods = [Mod]
Synchronized code replacement of processes using module Mod.
All those processes are suspended using sys:suspend, the
new module version is loaded, and then the processes are resumed using
sys:resume.
	Change - Defaults to soft and defines the type of code change. If it
is set to {advanced,Extra}, implemented processes using gen_server,
gen_fsm, gen_statem, or gen_event transform their internal state
by calling the callback function code_change. Special processes call the
callback function system_code_change/4. In both cases, the term Extra is
passed as an argument to the callback function.

	PrePurge - Defaults to brutal_purge. It controls what action to take
with processes executing old code before loading the new module version. If
the value is brutal_purge, the processes are killed. If the value is
soft_purge, release_handler:install_release/1 returns
{error,{old_processes,Mod}}.

	PostPurge - Defaults to brutal_purge. It controls what action to take
with processes that are executing old code when the new module version has
been loaded. If the value is brutal_purge, the code is purged when the
release is made permanent and the processes are killed. If the value is
soft_purge, the release handler purges the old code when no remaining
processes execute the code.

	DepMods - Defaults to [] and defines other modules that Mod is
dependent on. In the relup file, instructions for suspending processes using
Mod come before instructions for suspending processes using modules in
DepMods when upgrading, and conversely when downgrading. In case of circular
dependencies, the order of the instructions in the appup file is kept.

	Timeout - Defines the time-out when suspending processes. If no value or
default is specified, the default value for sys:suspend
is used.

	ModType - Defaults to dynamic. It specifies if the code is "dynamic",
that is, if a process using the module spontaneously switches to new code, or
if it is "static". When doing an advanced update and upgrade, the new version
of a dynamic module is loaded before the process is asked to change code. When
downgrading, the process is asked to change code before loading the new
version. For static modules, the new version is loaded before the process is
asked to change code, both in the case of upgrading and downgrading. Callback
modules are dynamic.

update with argument supervisor is used when changing the start
specification of a supervisor.
{load_module, Mod}
{load_module, Mod, DepMods}
{load_module, Mod, PrePurge, PostPurge, DepMods}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge
 DepMods = [Mod]
Simple code replacement of the module Mod.
For a description of PrePurge and PostPurge, see update above.
DepMods defaults to [] and defines which other modules Mod is dependent
on. In the relup file, instructions for loading these modules come before the
instruction for loading Mod when upgrading, and conversely when downgrading.
{add_module, Mod}
{add_module, Mod, DepMods}
 Mod = atom()
 DepMods = [Mod]
Loads a new module Mod.
DepMods defaults to [] and defines which other modules Mod is dependent
on. In the relup file, instructions related to these modules come before the
instruction for loading Mod when upgrading, and conversely when downgrading.
{delete_module, Mod}
{delete_module, Mod, DepMods}
 Mod = atom()
Deletes a module Mod using the low-level instructions remove and purge.
DepMods defaults to [] and defines which other modules Mod is dependent
on. In the relup file, instructions related to these modules come before the
instruction for removing Mod when upgrading, and conversely when downgrading.
{add_application, Application}
{add_application, Application, Type}
 Application = atom()
 Type = permanent | transient | temporary | load | none
Adding an application means that the modules defined by the modules key in the
.app file are loaded using add_module.
Type defaults to permanent and specifies the start type of the application.
If Type = permanent | transient | temporary, the application is loaded and
started in the corresponding way, see application. If Type = load, the
application is only loaded. If Type = none, the application is not loaded and
not started, although the code for its modules is loaded.
{remove_application, Application}
 Application = atom()
Removing an application means that the application is stopped, the modules are
unloaded using delete_module, and then the application specification is
unloaded from the application controller.
{restart_application, Application}
 Application = atom()
Restarting an application means that the application is stopped and then started
again, similar to using the instructions remove_application and
add_application in sequence. Note that, even if the application has been
started before the release upgrade is performed, restart_application may only
load it rather than start it, depending on the application's start type:
If Type = load, the application is only loaded. If Type = none, the
application is not loaded and not started, although the code for its modules is
loaded.

 Low-Level Instructions

{load_object_code, {App, Vsn, [Mod]}}
 App = Mod = atom()
 Vsn = string()
Reads each Mod from directory App-Vsn/ebin as a binary. It does not load the
modules. The instruction is to be placed first in the script to read all new
code from the file to make the suspend-load-resume cycle less time-consuming.
point_of_no_return
If a crash occurs after this instruction, the system cannot recover and is
restarted from the old release version. The instruction must only occur once in
a script. It is to be placed after all load_object_code instructions.
{load, {Mod, PrePurge, PostPurge}}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge
Before this instruction occurs, Mod must have been loaded using
load_object_code. This instruction loads the module. PrePurge is ignored.
For a description of PostPurge, see the high-level instruction update
earlier.
{remove, {Mod, PrePurge, PostPurge}}
 Mod = atom()
 PrePurge = PostPurge = soft_purge | brutal_purge
Makes the current version of Mod old. PrePurge is ignored. For a description
of PostPurge, see the high-level instruction update earlier.
{purge, [Mod]}
 Mod = atom()
Purges each module Mod, that is, removes the old code. Notice that any process
executing purged code is killed.
{suspend, [Mod | {Mod, Timeout}]}
 Mod = atom()
 Timeout = int()>0 | default | infinity
Tries to suspend all processes using a module Mod. If a process does not
respond, it is ignored. This can cause the process to die, either because it
crashes when it spontaneously switches to new code, or as a result of a purge
operation. If no Timeout is specified or default is specified, the default
value for sys:suspend is used.
{resume, [Mod]}
 Mod = atom()
Resumes all suspended processes using a module Mod.
{code_change, [{Mod, Extra}]}
{code_change, Mode, [{Mod, Extra}]}
 Mod = atom()
 Mode = up | down
 Extra = term()
Mode defaults to up and specifies if it is an upgrade or downgrade. This
instruction sends a code_change system message to all processes using a module
Mod by calling function sys:change_code, passing term
Extra as argument.
{stop, [Mod]}
 Mod = atom()
Stops all processes using a module Mod by calling
supervisor:terminate_child/2. This instruction is useful when the simplest way
to change code is to stop and restart the processes that run the code.
{start, [Mod]}
 Mod = atom()
Starts all stopped processes using a module Mod by calling
supervisor:restart_child/2.
{sync_nodes, Id, [Node]}
{sync_nodes, Id, {M, F, A}}
 Id = term()
 Node = node()
 M = F = atom()
 A = [term()]
apply(M, F, A) must return a list of nodes.
This instruction synchronizes the release installation with other nodes. Each
Node must evaluate this command with the same Id. The local node waits for
all other nodes to evaluate the instruction before execution continues. If a
node goes down, it is considered to be an unrecoverable error, and the local
node is restarted from the old release. There is no time-out for this
instruction, which means that it can hang forever.
{apply, {M, F, A}}
 M = F = atom()
 A = [term()]
Evaluates apply(M, F, A).
If the instruction appears before instruction point_of_no_return, a failure is
caught. release_handler:install_release/1 then returns
{error,{'EXIT',Reason}}, unless {error,Error} is thrown or returned. Then it
returns {error,Error}.
If the instruction appears after instruction point_of_no_return and the
function call fails, the system is restarted.
restart_new_emulator
This instruction is used when the application ERTS, Kernel, STDLIB, or SASL is
upgraded. It shuts down the current emulator and starts a new one. All processes
are terminated gracefully, and the new version of ERTS, Kernel, STDLIB, and SASL
are used when the emulator restarts. Only one restart_new_emulator instruction
is allowed in the relup file, and it must be placed first.
systools:make_relup/3,4 ensures this when the
relup file is generated. The rest of the instructions in the relup file is
executed after the restart as a part of the boot script.
An info report is written when the upgrade is completed. To programmatically
determine if the upgrade is complete, call
release_handler:which_releases/0,1 and
check if the expected release has status current.
The new release must still be made permanent after the upgrade is completed,
otherwise the old emulator is started if there is an emulator restart.
Warning
As stated earlier, instruction restart_new_emulator causes the emulator to
be restarted with new versions of ERTS, Kernel, STDLIB, and SASL. However, all
other applications do at startup run their old versions in this new emulator.
This is usually no problem, but every now and then incompatible changes occur
to the core applications, which can cause trouble in this setting. Such
incompatible changes (when functions are removed) are normally preceded by a
deprecation over two major releases. To ensure that your application is not
crashed by an incompatible change, always remove any call to deprecated
functions as soon as possible.

restart_emulator
This instruction is similar to restart_new_emulator, except it must be placed
at the end of the relup file. It is not related to an upgrade of the emulator
or the core applications, but can be used by any application when a complete
reboot of the system is required.
When generating the relup file,
systools:make_relup/3,4 ensures that there is only
one restart_emulator instruction and that it is the last instruction in the
relup file.

 See Also

release_handler, relup(4), supervisor, systools

rel

Release resource file

 Description

The release resource file specifies which applications are included in a
release (system) based on Erlang/OTP.
This file is used by the functions in systools when generating start scripts
(.script, .boot) and release upgrade files (relup).

 File Syntax

The release resource file is to be called Name.rel.
The .rel file contains one single Erlang term, which is called a release
specification. The file has the following syntax:
{release, {RelName,Vsn}, {erts, EVsn},
 [{Application, AppVsn} |
 {Application, AppVsn, Type} |
 {Application, AppVsn, IncApps} |
 {Application, AppVsn, Type, IncApps}]}.
	RelName = string() - Release name.

	Vsn = string() - Release version.

	EVsn = string() - ERTS version the release is intended for.

	Application = atom() - Name of an application included in the release.

	AppVsn = string() - Version of an application included in the release.

	Type = permanent | transient | temporary | load | none - Start type of
an application included in the release.
If Type = permanent | transient | temporary, the application is loaded and
started in the corresponding way, see application.
If Type = load, the application is only loaded.
If Type = none, the application is not loaded and not started, although the
code for its modules is loaded.
Defaults to permanent

	IncApps = [atom()] - A list of applications that are included by an
application included in the release. The list must be a subset of the included
applications specified in the application resource file (Application.app)
and overrides this value. Defaults to the same value as in the application
resource file.

Note
The list of applications must contain the Kernel and STDLIB applications.

 See Also

application, relup(4), systools

relup

Release upgrade file

 Description

The release upgrade file describes how a release is upgraded in a running
system.
This file is automatically generated by
systools:make_relup/3,4, using a release resource
file (.rel), application resource files (.app), and application upgrade
files (.appup) as input.

 File Syntax

In a target system, the release upgrade file is to be located in directory
$ROOT/releases/Vsn.
The relup file contains one single Erlang term, which defines the instructions
used to upgrade the release. The file has the following syntax:
{Vsn,
 [{UpFromVsn, Descr, Instructions}, ...],
 [{DownToVsn, Descr, Instructions}, ...]}.
	Vsn = string() - Current release version.

	UpFromVsn = string() - Earlier version of the release to upgrade from.

	Descr = term() - A user-defined parameter passed from the function
systools:make_relup/3,4. It is used in the return
value of
release_handler:install_release/1,2.

	Instructions - A list of low-level release upgrade instructions, see
appup(4). It consists of the release upgrade instructions from
the respective application upgrade files (high-level instructions are
translated to low-level instructions), in the same order as in the start
script.

	DownToVsn = string() - Earlier version of the release to downgrade to.

 See Also

app(4), appup(4), rel(4),
release_handler, systools

script

Boot script

 Description

The boot script describes how the Erlang runtime system is started. It
contains instructions on which code to load and which processes and applications
to start.
Command erl -boot Name starts the system with a boot file called Name.boot,
which is generated from the Name.script file, using systools:script2boot/1.
The .script file is generated by systools from a .rel file and from .app
files.

 File Syntax

The boot script is stored in a file with extension .script. The file has the
following syntax:
{script, {Name, Vsn},
 [
 {progress, loading},
 {preLoaded, [Mod1, Mod2, ...]},
 {path, [Dir1,"$ROOT/Dir",...]}.
 {primLoad, [Mod1, Mod2, ...]},
 ...
 {kernel_load_completed},
 {progress, loaded},
 {kernelProcess, Name, {Mod, Func, Args}},
 ...
 {apply, {Mod, Func, Args}},
 ...
 {progress, started}]}.
	Name = string() - Defines the system name.

	Vsn = string() - Defines the system version.

	{progress, Term} - Sets the "progress" of the initialization program.
The init:get_status/0 function returns the current value of the progress,
which is {InternalStatus,Term}.

	{path, [Dir]} - Dir is a string. This argument sets the load path of
the system to [Dir]. The load path used to load modules is obtained from the
initial load path, which is given in the script file, together with any path
flags that were supplied in the command-line arguments. The command-line
arguments modify the path as follows:
	-pa Dir1 Dir2 ... DirN adds the directories
DirN, DirN-1, ..., Dir2, Dir1 to the front of the initial load path.
	-pz Dir1 Dir2 ... DirN adds the directories Dir1, Dir2, ..., DirN to the
end of the initial load path.
	-path Dir1 Dir2 ... DirN defines a set of directories
Dir1, Dir2, ..., DirN, which replace the search path given in the script
file. Directory names in the path are interpreted as follows:	Directory names starting with / are assumed to be absolute path names.
	Directory names not starting with / are assumed to be relative the
current working directory.
	The special $ROOT variable can only be used in the script, not as a
command-line argument. The given directory is relative the Erlang
installation directory.

	{primLoad, [Mod]} - Loads the modules [Mod] from the directories
specified in Path. The script interpreter fetches the appropriate module by
calling erl_prim_loader:get_file(Mod). A
fatal error that terminates the system occurs if the module cannot be located.

	{kernel_load_completed} - Indicates that all modules that must be
loaded before any processes are started are loaded. In interactive mode, all
{primLoad,[Mod]} commands interpreted after this command are ignored, and
these modules are loaded on demand. In embedded mode, kernel_load_completed
is ignored, and all modules are loaded during system start.

	{kernelProcess, Name, {Mod, Func, Args}} - Starts the "kernel process"
Name by evaluating apply(Mod, Func, Args). The start function
is to return {ok, Pid} or ignore. The init process monitors the behavior
of Pid and terminates the system if Pid dies. Kernel processes are key
components of the runtime system. Users do not normally add new kernel
processes.

	{apply, {Mod, Func, Args}}. - The init process evaluates
apply(Mod, Func, Args). The system terminates if this results
in an error. The boot procedure hangs if this function never returns.

Note
In an interactive system, the code loader provides demand-driven code loading,
but in an embedded system the code loader loads all code immediately. The same
version of code is used in both cases. The code server calls
init:get_argument(mode) to determine if it is to
run in demand mode or non-demand driven mode.

 See Also

systools

alarm_handler

An Alarm Handling Process
The alarm handler process is a gen_event event manager process that receives
alarms in the system. This process is not intended to be a complete alarm
handler. It defines a place to which alarms can be sent. One simple event
handler is installed in the alarm handler at startup, but users are encouraged
to write and install their own handlers.
The simple event handler sends all alarms as info reports to the error logger,
and saves all in a list. This list can be passed to a user-defined event
handler, which can be installed later. The list can grow large if many alarms
are generated. This is a good reason to install a better user-defined handler.
Functions are provided to set and clear alarms. The alarm format is defined by
the user. For example, an event handler for SNMP can be defined, together with
an alarm Management Information Base (MIB).
The alarm handler is part of the SASL application.
When writing new event handlers for the alarm handler, the following events must
be handled:
	{set_alarm, {AlarmId, AlarmDescr}} - This event is generated by
alarm_handler:set_alarm({AlarmId, AlarmDecsr}).

	{clear_alarm, AlarmId} - This event is generated by
alarm_handler:clear_alarm(AlarmId).

The default simple handler is called alarm_handler and it can be exchanged by
calling gen_event:swap_handler/3 as
gen_event:swap_handler(alarm_handler, {alarm_handler, swap}, {NewHandler, Args}).
NewHandler:init({Args, {alarm_handler, Alarms}}) is called. For more details,
see gen_event in STDLIB.

 See Also

error_logger, gen_event

 Summary

 Types

 alarm()

 alarm_id()

 Functions

 clear_alarm(AlarmId)

 clear_alarm(AlarmId) -> void()

 get_alarms()

 get_alarms() -> [alarm()]

 set_alarm(alarm())

 Sends event set_alarm to all event handlers.

 Types

 Link to this type

 alarm()

 View Source

 (not exported)

 -type alarm() :: {alarm_id(), AlarmDescription :: term()}.

 Link to this type

 alarm_id()

 View Source

 (not exported)

 -type alarm_id() :: term().

 Functions

 Link to this function

 clear_alarm(AlarmId)

 View Source

 -spec clear_alarm(alarm_id()) -> term().

clear_alarm(AlarmId) -> void()
Sends event clear_alarm to all event handlers.
When receiving this event, the default simple handler clears the latest received
alarm with id AlarmId.

 Link to this function

 get_alarms()

 View Source

 -spec get_alarms() -> [alarm()].

get_alarms() -> [alarm()]
Returns a list of all active alarms. This function can only be used when the
simple handler is installed.

 Link to this function

 set_alarm(alarm())

 View Source

 -spec set_alarm(alarm()) -> term().

Sends event set_alarm to all event handlers.
When receiving this event, the default simple handler stores the alarm.
AlarmId identifies the alarm and is used when the alarm is cleared.

rb

The Report Browser Tool
The Report Browser (RB) tool is used to browse and format error reports written
by the error logger handler log_mf_h in STDLIB.

 Summary

 Types

 filter()

 option()

 regexp()

 type()

 Functions

 filter(Filters)

 Equivalent to filter/2

 filter(Filters, Dates)

 Displays the reports that match the provided filters.

 grep(RegExp)

 All reports matching the regular expression RegExp are displayed. RegExp can
be any of the following

 h()

 Equivalent to help/0

 help()

 Displays online help information.

 list()

 Equivalent to list/1

 list(Type)

 Lists all reports loaded in rb_server. Each report is given a unique number
that can be used as a reference to the report in function show/1.

 log_list()

 Equivalent to log_list/1

 log_list(Type)

 Same as functions list/0 or list/1, but the result is printed to a log file,
if set; otherwise to standard_io.

 rescan()

 Equivalent to rescan/1

 rescan(Options)

 Rescans the report directory. Options is the same as for function start/1.

 show()

 Equivalent to show/1

 show(Report)

 If argument type is specified, all loaded reports of this type are displayed.
If an integer argument is specified, the report with this reference number is
displayed. If no argument is specified, all reports are displayed.

 start()

 Equivalent to start/1

 start(Options)

 Function start/1 starts rb_server with the specified options,
whereas function start/0 starts with default options. rb_server must be
started before reports can be browsed. When rb_server is started, the files in
the specified directory are scanned. The other functions assume that the server
has started.

 start_log(FileName)

 Redirects all report output from the RB tool to the specified file, registered
name, or io_device.

 stop()

 Stops rb_server.

 stop_log()

 Closes the log file. The output from the RB tool is directed to standard_io.

 Types

 Link to this type

 filter()

 View Source

 (not exported)

 -type filter() ::
 {Key :: term(), Value :: term()} |
 {Key :: term(), Value :: term(), no} |
 {Key :: term(), RegExp :: regexp(), re} |
 {Key :: term(), RegExp :: regexp(), re, no}.

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 {start_log, FileName :: string() | atom() | pid()} |
 {max, MaxNoOfReports :: integer() | all} |
 {report_dir, DirString :: string()} |
 {type, ReportType :: type() | [type()] | all} |
 {abort_on_error, boolean()}.

 Link to this type

 regexp()

 View Source

 (not exported)

 -type regexp() ::
 string() |
 {string(), Options :: [re:options()]} |
 re:mp() |
 {re:mp(), Options :: [re:compile_options()]}.

 Link to this type

 type()

 View Source

 (not exported)

 -type type() ::
 error | error_report | info_msg | info_report | warning_msg | warning_report | crash_report |
 supervisor_report | progress | all.

 Functions

 Link to this function

 filter(Filters)

 View Source

 (since OTP R13B04)

 -spec filter(Filters) -> term() when Filters :: [filter()].

Equivalent to filter/2

 Link to this function

 filter(Filters, Dates)

 View Source

 (since OTP R13B04)

 -spec filter(Filters, Dates) -> term()
 when
 Filters :: [filter()],
 Dates :: {DateFrom, DateTo} | {DateFrom, from} | {DateTo, to},
 DateFrom :: calendar:datetime(),
 DateTo :: calendar:datetime().

Displays the reports that match the provided filters.
When a filter includes the no atom, it excludes the reports that match that
filter.
The reports are matched using the proplists module in STDLIB. The report
must be a proplist to be matched against any of the filters.
If the filter has the form {Key, RegExp, re}, the report must contain an
element with key equal to Key and the value must match the regular expression
RegExp.
If parameter Dates is specified, the reports are filtered according to the
date when they occurred. If Dates has the form {DateFrom, from}, reports
that occurred after DateFrom are displayed.
If Dates has the form {DateTo, to}, reports that occurred before DateTo
are displayed.
If two Dates are specified, reports that occurred between those dates are
returned.
To filter only by dates, specify the empty list as the Filters parameter.
For details about parameter RegExp, see rb:grep/1.
For details about data type mp(), see re:mp/0.
For details about data type datetime(), see calendar:datetime/0.

 Link to this function

 grep(RegExp)

 View Source

 -spec grep(RegExp :: regexp()) -> term().

All reports matching the regular expression RegExp are displayed. RegExp can
be any of the following:
	A string containing the regular expression
	A tuple with the string and the options for compilation
	A compiled regular expression
	A compiled regular expression and the options for running it

For a definition of valid regular expressions and options, see the re module
in STDLIB and in particular function re:run/3.
For details about data type mp(), see re:mp/0.

 Link to this function

 h()

 View Source

 -spec h() -> term().

Equivalent to help/0

 Link to this function

 help()

 View Source

 -spec help() -> term().

Displays online help information.

 Link to this function

 list()

 View Source

 -spec list() -> term().

Equivalent to list/1

 Link to this function

 list(Type)

 View Source

 -spec list(Type :: type()) -> term().

Lists all reports loaded in rb_server. Each report is given a unique number
that can be used as a reference to the report in function show/1.
If no Type is specified, all reports are listed.

 Link to this function

 log_list()

 View Source

 (since OTP R16B02)

 -spec log_list() -> term().

Equivalent to log_list/1

 Link to this function

 log_list(Type)

 View Source

 (since OTP R16B02)

 -spec log_list(Type :: type()) -> term().

Same as functions list/0 or list/1, but the result is printed to a log file,
if set; otherwise to standard_io.
If no Type is specified, all reports are listed.

 Link to this function

 rescan()

 View Source

 -spec rescan() -> term().

Equivalent to rescan/1

 Link to this function

 rescan(Options)

 View Source

 -spec rescan(Options) -> term() when Options :: [option()].

Rescans the report directory. Options is the same as for function start/1.

 Link to this function

 show()

 View Source

 -spec show() -> term().

Equivalent to show/1

 Link to this function

 show(Report)

 View Source

 -spec show(Report) -> term() when Report :: integer() | type().

If argument type is specified, all loaded reports of this type are displayed.
If an integer argument is specified, the report with this reference number is
displayed. If no argument is specified, all reports are displayed.

 Link to this function

 start()

 View Source

 -spec start() -> term().

Equivalent to start/1

 Link to this function

 start(Options)

 View Source

 -spec start(Options) -> term() when Options :: [option()].

Function start/1 starts rb_server with the specified options,
whereas function start/0 starts with default options. rb_server must be
started before reports can be browsed. When rb_server is started, the files in
the specified directory are scanned. The other functions assume that the server
has started.
Options:
	{start_log, FileName} - Starts logging to file, registered name, or
io_device. All reports are printed to the specified destination. Default is
standard_io. Option {start_log, standard_error} is not allowed and will be
replaced by default standard_io.

	{max, MaxNoOfReports} - Controls how many reports rb_server is to read
at startup. This option is useful, as the directory can contain a large amount
of reports. If this option is specified, the MaxNoOfReports latest reports
are read. Default is all.

	{report_dir, DirString} - Defines the directory where the error log
files are located. Default is the directory specified by application
environment variable error_logger_mf_dir, see sasl(6).

	{type, ReportType} - Controls what kind of reports rb_server is to
read at startup. ReportType is a supported type, all, or a list of
supported types. Default is all.

	{abort_on_error, Bool} - Specifies if logging is to be ended if rb
encounters an unprintable report. (You can get a report with an incorrect form
if function error_logger, error_msg, or info_msg has been called with an
invalid format string)
	If Bool is true, rb stops logging (and prints an error message to
stdout) if it encounters a badly formatted report. If logging to file is
enabled, an error message is appended to the log file as well.
	If Bool is false (the default value), rb prints an error message to
stdout for every bad report it encounters, but the logging process is
never ended. All printable reports are written. If logging to file is
enabled, rb prints * UNPRINTABLE REPORT * in the log file at the
location of an unprintable report.

 Link to this function

 start_log(FileName)

 View Source

 -spec start_log(FileName) -> term() when FileName :: string() | atom() | pid().

Redirects all report output from the RB tool to the specified file, registered
name, or io_device.

 Link to this function

 stop()

 View Source

 -spec stop() -> term().

Stops rb_server.

 Link to this function

 stop_log()

 View Source

 -spec stop_log() -> term().

Closes the log file. The output from the RB tool is directed to standard_io.

release_handler

Unpacking and Installation of Release Packages
The release handler process belongs to the SASL application, which is
responsible for release handling, that is, unpacking, installation, and
removal of release packages.
An introduction to release handling and an example is provided in
OTP Design Principles in System
Documentation.
A release package is a compressed tar file containing code for a certain
version of a release, created by calling
systools:make_tar/1,2. The release package is to be
located in the $ROOT/releases directory of the previous version of the
release, where $ROOT is the installation root directory,
code:root_dir(). Another releases directory can be
specified using the SASL configuration parameter releases_dir or the OS
environment variable RELDIR. The release handler must have write access to
this directory to install the new release. The persistent state of the release
handler is stored there in a file called RELEASES.
A release package is always to contain:
	A release resource file, Name.rel
	A boot script, Name.boot

The .rel file contains information about the release: its name, version, and
which ERTS and application versions it uses.
A release package can also contain:
	A release upgrade file, relup
	A system configuration file, sys.config
	A system configuration source file, sys.config.src

The relup file contains instructions for how to upgrade to, or downgrade from,
this version of the release.
The release package can be unpacked, which extracts the files. An unpacked
release can be installed. The currently used version of the release is then
upgraded or downgraded to the specified version by evaluating the instructions
in the relup file. An installed release can be made permanent. Only one
permanent release can exist in the system, and this release is used if the
system is restarted. An installed release, except the permanent one, can be
removed. When a release is removed, all files belonging to that release only
are deleted.
Each release version has a status, which can be unpacked, current,
permanent, or old. There is always one latest release, which either has
status permanent (normal case) or current (installed, but not yet made
permanent). The meaning of the status values are illustrated in the following
table:
 Status Action NextStatus

 - unpack unpacked
 unpacked install current
 remove -
 current make_permanent permanent
 install other old
 remove -
 permanent make other permanent old
 install permanent
 old reboot_old permanent
 install current
 remove -
The release handler process is a locally registered process on each node. When a
release is installed in a distributed system, the release handler on each node
must be called. The release installation can be synchronized between nodes. From
an operator view, it can be unsatisfactory to specify each node. The aim is to
install one release package in the system, no matter how many nodes there are.
It is recommended that software management functions are written that take care
of this problem. Such a function can have knowledge of the system architecture,
so it can contact each individual release handler to install the package.
For release handling to work properly, the runtime system must know which
release it is running. It must also be able to change (in runtime) which boot
script and system configuration file are to be used if the system is restarted.
This is taken care of automatically if Erlang is started as an embedded system.
Read about this in Embedded System in System
Documentation. In this case, the system configuration file sys.config is
mandatory.
The installation of a new release can restart the system. Which program to use
is specified by the SASL configuration parameter start_prg, which defaults to
$ROOT/bin/start.
The emulator restart on Windows NT expects that the system is started using the
erlsrv program (as a service). Furthermore, the release handler expects that
the service is named NodeName_Release, where NodeName is the first part
of the Erlang node name (up to, but not including the "@") and Release is the
current release version. The release handler furthermore expects that a program
like start_erl.exe is specified as "machine" to erlsrv. During upgrading
with restart, a new service is registered and started. The new service is set to
automatic and the old service is removed when the new release is made permanent.
The release handler at a node running on a diskless machine, or with a read-only
file system, must be configured accordingly using the following SASL
configuration parameters (for details, see sasl(6)):
	masters - This node uses some master nodes to store and fetch release
information. All master nodes must be operational whenever release information
is written by this node.

	client_directory - The client_directory in the directory structure of
the master nodes must be specified.

	static_emulator - This parameter specifies if the Erlang emulator is
statically installed at the client node. A node with a static emulator cannot
dynamically switch to a new emulator, as the executable files are statically
written into memory.

The release handler can also be used to unpack and install release packages when
not running Erlang as an embedded system. However, in this case the user must
somehow ensure that correct boot scripts and configuration files are used if the
system must be restarted.
Functions are provided for using another file structure than the structure
defined in OTP. These functions can be used to test a release upgrade locally.

 Typical Error Reasons

	{bad_masters, Masters} - The master nodes Masters are not alive.

	{bad_rel_file, File} - Specified .rel file File cannot be read or
does not contain a single term.

	{bad_rel_data, Data} - Specified .rel file does not contain a
recognized release specification, but another term Data.

	{bad_relup_file, File} - Specified relup file Relup contains bad
data.

	{cannot_extract_file, Name, Reason} - Problems when extracting from a
tar file, erl_tar:extract/2 returned {error, {Name, Reason}}.

	{existing_release, Vsn} - Specified release version Vsn is already in
use.

	{Master, Reason, When} - Some operation, indicated by the term When,
failed on the master node Master with the specified error reason Reason.

	{no_matching_relup, Vsn, CurrentVsn} - Cannot find a script for
upgrading/downgrading between CurrentVsn and Vsn.

	{no_such_directory, Path} - The directory Pathdoes not exist.

	{no_such_file, Path} - The path Path (file or directory) does not
exist.

	{no_such_file, {Master, Path}} - The path Path (file or directory)
does not exist at the master node Master.

	{no_such_release, Vsn} - The specified release version Vsn does not
exist.

	{not_a_directory, Path} - Path exists but is not a directory.

	{Posix, File} - Some file operation failed for File. Posix is an
atom named from the Posix error codes, such as enoent, eacces, or
eisdir. See file in Kernel.

	Posix - Some file operation failed, as for the previous item in the
list.

 See Also

OTP Design Principles,
config(4), rel(4), relup(4),
script(4), sys, systools

 Summary

 Application Upgrade/Downgrade

 downgrade_app(App, Dir)

 Equivalent to downgrade_app/3

 downgrade_app(App, OldVsn, Dir)

 downgrade_app(App, OldVsn, Dir) -> {ok, Unpurged} | restart_emulator | {error,
Reason}

 downgrade_script(App, OldVsn, Dir)

 downgrade_script(App, OldVsn, Dir) -> {ok, Script}

 eval_appup_script(App, ToVsn, ToDir, Script)

 eval_appup_script(App, ToVsn, ToDir, Script) -> {ok, Unpurged} |
restart_emulator | {error, Reason}

 upgrade_app(App, Dir)

 upgrade_app(App, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}

 upgrade_script(App, Dir)

 upgrade_script(App, Dir) -> {ok, NewVsn, Script}

 Functions

 check_install_release(Vsn)

 Equivalent to check_install_release/2

 check_install_release(Vsn, Opts)

 check_install_release(Vsn,Opts) -> {ok, OtherVsn, Descr} | {error, Reason}

 create_RELEASES(RelDir, RelFile, AppDirs)

 Equivalent to create_RELEASES/4

 create_RELEASES(Root, RelDir, RelFile, AppDirs)

 create_RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}

 install_file(Vsn, File)

 install_file(Vsn, File) -> ok | {error, Reason}

 install_release(Vsn)

 Equivalent to install_release/2

 install_release(Vsn, Opt)

 	install_release(Vsn, [Opt]) -> {ok, OtherVsn, Descr}	{continue_after_restart,
	OtherVsn, Descr}	{error, Reason}

Installs the specified version Vsn of the release. Looks first for a relup
file for Vsn and a script {UpFromVsn,Descr1,Instructions1} in this file for
upgrading from the current version. If not found, the function looks for a
relup file for the current version and a script {Vsn,Descr2,Instructions2}
in this file for downgrading to Vsn.

 make_permanent(Vsn)

 make_permanent(Vsn) -> ok | {error, Reason}

 reboot_old_release(Vsn)

 reboot_old_release(Vsn) -> ok | {error, Reason}

 remove_release(Vsn)

 remove_release(Vsn) -> ok | {error, Reason}

 set_removed(Vsn)

 set_removed(Vsn) -> ok | {error, Reason}

 set_unpacked(RelFile, AppDirs)

 set_unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}

 unpack_release(Name)

 unpack_release(Name) -> {ok, Vsn} | {error, Reason}

 which_releases()

 which_releases() -> [{Name, Vsn, Apps, Status}]

 which_releases(Status)

 which_releases(Status) -> [{Name, Vsn, Apps, Status}]

 Application Upgrade/Downgrade

 Link to this function

 downgrade_app(App, Dir)

 View Source

 -spec downgrade_app(App, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}
 when
 App :: atom(),
 Dir :: string(),
 Unpurged :: [Module],
 Module :: atom(),
 Reason :: term().

Equivalent to downgrade_app/3

 Link to this function

 downgrade_app(App, OldVsn, Dir)

 View Source

 -spec downgrade_app(App, OldVsn, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}
 when
 App :: atom(),
 Dir :: string(),
 OldVsn :: string(),
 Unpurged :: [Module],
 Module :: atom(),
 Reason :: term().

downgrade_app(App, OldVsn, Dir) -> {ok, Unpurged} | restart_emulator | {error,
Reason}
Downgrades an application App from the current version to a previous version
OldVsn located in Dir according to the .appup file.
App is the name of the application, which must be started. OldVsn is the
previous application version and can be omitted if Dir is of the format
"App-OldVsn". Dir is the library directory of the previous version of App.
The corresponding modules and the old .app file are to be located under
Dir/ebin. The .appup file is to be located in the ebin directory of the
current library directory of the application
(code:lib_dir(App)).
The function looks in the .appup file and tries to find a downgrade script to
the previous version of the application using downgrade_script/3. This script
is evaluated using eval_appup_script/4, exactly in the same way as
install_release/1,2 does.
Returns one of the following:
	{ok, Unpurged} if evaluating the script is successful, where Unpurged is a
list of unpurged modules
	restart_emulator if this instruction is encountered in the script
	{error, Reason} if an error occurred when finding or evaluating the script

 Link to this function

 downgrade_script(App, OldVsn, Dir)

 View Source

 -spec downgrade_script(App, OldVsn, Dir) -> {ok, Script}
 when
 App :: atom(),
 OldVsn :: string(),
 Dir :: string(),
 Script :: Instructions :: term().

downgrade_script(App, OldVsn, Dir) -> {ok, Script}
Tries to find an application downgrade script for App from the current version
to a previous version OldVsn located in Dir.
The downgrade script can then be evaluated using eval_appup_script/4. It is
recommended to use downgrade_app/2,3 instead, but this
function (downgrade_script) is useful to inspect the contents of the script.
App is the name of the application, which must be started. Dir is the
previous library directory of App. The corresponding modules and the old
.app file are to be located under Dir/ebin. The .appup file is to be
located in the ebin directory of the current library directory of the
application (code:lib_dir(App)).
The function looks in the .appup file and tries to find a downgrade script
from the current application version. High-level instructions are translated to
low-level instructions. The instructions are sorted in the same manner as when
generating a relup file.
Returns {ok, Script} if successful. For details about Script, see
appup(4).
Failure: If a script cannot be found, the function fails with an appropriate
error reason.

 Link to this function

 eval_appup_script(App, ToVsn, ToDir, Script)

 View Source

 -spec eval_appup_script(App, ToVsn, ToDir, Script :: term()) ->
 {ok, Unpurged} | restart_emulator | {error, Reason}
 when
 App :: atom(),
 ToVsn :: string(),
 ToDir :: string(),
 Unpurged :: [Module],
 Module :: atom(),
 Reason :: term().

eval_appup_script(App, ToVsn, ToDir, Script) -> {ok, Unpurged} |
restart_emulator | {error, Reason}
Evaluates an application upgrade or downgrade script Script, the result from
calling upgrade_script/2 or downgrade_script/3, exactly in the same way as
install_release/1,2 does.
App is the name of the application, which must be started. ToVsn is the
version to be upgraded/downgraded to, and ToDir is the library directory of
this version. The corresponding modules as well as the .app and .appup files
are to be located under Dir/ebin.
Returns one of the following:
	{ok, Unpurged} if evaluating the script is successful, where Unpurged is a
list of unpurged modules
	restart_emulator if this instruction is encountered in the script
	{error, Reason} if an error occurred when finding or evaluating the script

If the restart_new_emulator instruction is found in the script,
eval_appup_script/4 returns {error,restart_new_emulator}. This because
restart_new_emulator requires a new version of the emulator to be started
before the rest of the upgrade instructions can be executed, and this can only
be done by install_release/1,2.

 Link to this function

 upgrade_app(App, Dir)

 View Source

 -spec upgrade_app(App, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}
 when
 App :: atom(),
 Dir :: string(),
 Unpurged :: [Module],
 Module :: atom(),
 Reason :: term().

upgrade_app(App, Dir) -> {ok, Unpurged} | restart_emulator | {error, Reason}
Upgrades an application App from the current version to a new version located
in Dir according to the .appup file.
App is the name of the application, which must be started. Dir is the new
library directory of App. The corresponding modules as well as the .app and
.appup files are to be located under Dir/ebin.
The function looks in the .appup file and tries to find an upgrade script from
the current version of the application using upgrade_script/2. This script is
evaluated using eval_appup_script/4, exactly in the same way as
install_release/1,2 does.
Returns one of the following:
	{ok, Unpurged} if evaluating the script is successful, where Unpurged is a
list of unpurged modules
	restart_emulator if this instruction is encountered in the script
	{error, Reason} if an error occurred when finding or evaluating the script

If the restart_new_emulator instruction is found in the script,
upgrade_app/2 returns {error,restart_new_emulator}. This because
restart_new_emulator requires a new version of the emulator to be started
before the rest of the upgrade instructions can be executed, and this can only
be done by install_release/1,2.

 Link to this function

 upgrade_script(App, Dir)

 View Source

 -spec upgrade_script(App, Dir) -> {ok, NewVsn, Script}
 when
 App :: atom(),
 Dir :: string(),
 NewVsn :: string(),
 Script :: Instructions :: term().

upgrade_script(App, Dir) -> {ok, NewVsn, Script}
Tries to find an application upgrade script for App from the current version
to a new version located in Dir.
The upgrade script can then be evaluated using eval_appup_script/4. It is
recommended to use upgrade_app/2 instead, but this function (upgrade_script)
is useful to inspect the contents of the script.
App is the name of the application, which must be started. Dir is the new
library directory of App. The corresponding modules as well as the .app and
.appup files are to be located under Dir/ebin.
The function looks in the .appup file and tries to find an upgrade script from
the current application version. High-level instructions are translated to
low-level instructions. The instructions are sorted in the same manner as when
generating a relup file.
Returns {ok, NewVsn, Script} if successful, where NewVsn is the new
application version. For details about Script, see appup(4).
Failure: If a script cannot be found, the function fails with an appropriate
error reason.

 Functions

 Link to this function

 check_install_release(Vsn)

 View Source

 (since OTP R14B04)

 -spec check_install_release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
 when
 Vsn :: string(),
 OtherVsn :: string(),
 Descr :: term(),
 Reason :: term().

Equivalent to check_install_release/2

 Link to this function

 check_install_release(Vsn, Opts)

 View Source

 (since OTP R14B04)

 -spec check_install_release(Vsn, Opts) -> {ok, OtherVsn, Descr} | {error, Reason}
 when
 Vsn :: string(),
 OtherVsn :: string(),
 Opts :: [Opt],
 Opt :: purge,
 Descr :: term(),
 Reason :: term().

check_install_release(Vsn,Opts) -> {ok, OtherVsn, Descr} | {error, Reason}
Checks if the specified version Vsn of the release can be installed. The
release must not have status current. Issues warnings if relup file or
sys.config is not present. If relup file is present, its contents are
checked and {error,Reason} is returned if an error is found. Also checks that
all required applications are present and that all new code can be loaded;
{error,Reason} is returned if an error is found.
Evaluates all instructions that occur before the point_of_no_return
instruction in the release upgrade script.
Returns the same as install_release/1. Descr defaults to "" if no relup
file is found.
If option purge is specified, all old code that can be soft-purged is purged
after all other checks are successfully completed. This can be useful to reduce
the time needed by install_release/1.

 Link to this function

 create_RELEASES(RelDir, RelFile, AppDirs)

 View Source

 (since OTP 25.0)

 -spec create_RELEASES(RelDir, RelFile, AppDirs) -> ok | {error, Reason}
 when
 RelDir :: string(),
 RelFile :: string(),
 AppDirs :: [{App, Vsn, Dir}],
 App :: atom(),
 Vsn :: string(),
 Dir :: string(),
 Reason :: term().

Equivalent to create_RELEASES/4

 Link to this function

 create_RELEASES(Root, RelDir, RelFile, AppDirs)

 View Source

 (since OTP 25.0)

 -spec create_RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
 when
 Root :: string(),
 RelDir :: string(),
 RelFile :: string(),
 AppDirs :: [{App, Vsn, Dir}],
 App :: atom(),
 Vsn :: string(),
 Dir :: string(),
 Reason :: term().

create_RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
Creates an initial RELEASES file to be used by the release handler. This file
must exist to install new releases.
Root is the root of the installation ($ROOT) as described earlier. RelDir
is the directory where the RELEASES file is to be created (normally
$ROOT/releases). RelFile is the name of the .rel file that describes the
initial release, including the extension .rel. If Root is not given, the
RELEASES file will be location independent (i.e, it will not contain absolute
paths unless there are absolute paths in AppDirs). A RELEASES file should be
made location independent if the installation's $ROOT is unknown. The
release_handler module will interpret relative paths in a running system's
RELEASES file as being relative to $ROOT.
AppDirs can be used to specify from where the modules for the specified
applications are to be loaded. App is the name of an application, Vsn is the
version, and Dir is the name of the directory where App-Vsn is located. The
corresponding modules are to be located under Dir/App-Vsn/ebin. The
directories for applications not specified in AppDirs are assumed to be
located in $ROOT/lib.

 Link to this function

 install_file(Vsn, File)

 View Source

 -spec install_file(Vsn, File) -> ok | {error, Reason}
 when Vsn :: string(), File :: string(), Reason :: term().

install_file(Vsn, File) -> ok | {error, Reason}
Installs a release-dependent file in the release structure. The
release-dependent file must be in the release structure when a new release is
installed: start.boot, relup, and sys.config.
The function can be called, for example, when these files are generated at the
target. The function is to be called after set_unpacked/2 has been called.

 Link to this function

 install_release(Vsn)

 View Source

 -spec install_release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
 when
 Vsn :: string(),
 OtherVsn :: string(),
 Descr :: term(),
 Reason ::
 {already_installed, Vsn} |
 {change_appl_data, term()} |
 {missing_base_app, OtherVsn, App} |
 {could_not_create_hybrid_boot, term()} |
 term(),
 App :: atom().

Equivalent to install_release/2

 Link to this function

 install_release(Vsn, Opt)

 View Source

 -spec install_release(Vsn, [Opt]) ->
 {ok, OtherVsn, Descr} |
 {continue_after_restart, OtherVsn, Descr} |
 {error, Reason}
 when
 Vsn :: string(),
 OtherVsn :: string(),
 Opt ::
 {error_action, Action} |
 {code_change_timeout, Timeout} |
 {suspend_timeout, Timeout} |
 {update_paths, Bool},
 Action :: restart | reboot,
 Timeout :: default | infinity | pos_integer(),
 Bool :: boolean(),
 Descr :: term(),
 Reason ::
 {illegal_option, Opt} |
 {already_installed, Vsn} |
 {change_appl_data, term()} |
 {missing_base_app, OtherVsn, App} |
 {could_not_create_hybrid_boot, term()} |
 term(),
 App :: atom().

	install_release(Vsn, [Opt]) -> {ok, OtherVsn, Descr}	{continue_after_restart,
	OtherVsn, Descr}	{error, Reason}

Installs the specified version Vsn of the release. Looks first for a relup
file for Vsn and a script {UpFromVsn,Descr1,Instructions1} in this file for
upgrading from the current version. If not found, the function looks for a
relup file for the current version and a script {Vsn,Descr2,Instructions2}
in this file for downgrading to Vsn.
If a script is found, the first thing that happens is that the application
specifications are updated according to the .app files and sys.config
belonging to the release version Vsn.
After the application specifications have been updated, the instructions in the
script are evaluated and the function returns {ok,OtherVsn,Descr} if
successful. OtherVsn and Descr are the version (UpFromVsn or Vsn) and
description (Descr1 or Descr2) as specified in the script.
If {continue_after_restart,OtherVsn,Descr} is returned, the emulator is
restarted before the upgrade instructions are executed. This occurs if the
emulator or any of the applications Kernel, STDLIB, or SASL are updated. The new
emulator version and these core applications execute after the restart. For all
other applications the old versions are started and the upgrade is performed as
normal by executing the upgrade instructions.
If a recoverable error occurs, the function returns {error,Reason} and the
original application specifications are restored. If a non-recoverable error
occurs, the system is restarted.
Options:
	error_action - Defines if the node is to be restarted
(init:restart()) or rebooted
(init:reboot()) if there is an error during the
installation. Default is restart.

	code_change_timeout - Defines the time-out for all calls to
sys:change_code. If no value is specified or
default is specified, the default value defined in sys is used.

	suspend_timeout - Defines the time-out for all calls to
sys:suspend. If no value is specified, the values defined
by the Timeout parameter of the upgrade or suspend instructions are
used. If default is specified, the default value defined in sys is used.

	{update_paths,Bool} - Indicates if all application code paths are to be
updated (Bool==true) or if only code paths for modified applications are to
be updated (Bool==false, default). This option has only effect for other
application directories than the default $ROOT/lib/App-Vsn, that is,
application directories specified in argument AppDirs in a call to
create_RELEASES/4 or set_unpacked/2.
Example:
In the current version CurVsn of a release, the application directory of
myapp is $ROOT/lib/myapp-1.0. A new version NewVsn is unpacked outside
the release handler and the release handler is informed about this with a call
as follows:
release_handler:set_unpacked(RelFile, [{myapp,"1.0","/home/user"},...]).
=> {ok,NewVsn}
If NewVsn is installed with option {update_paths,true}, then
code:lib_dir(myapp) returns /home/user/myapp-1.0.

Note
Installing a new release can be time consuming if there are many processes in
the system. The reason is that each process must be checked for references to
old code before a module can be purged. This check can lead to garbage
collections and copying of data.
To speed up the execution of install_release, first
call check_install_release, using option
purge. This does the same check for old code. Then purges all modules that
can be soft-purged. The purged modules do then no longer have any old code,
and install_release does not need to do the checks.
This does not reduce the overall time for the upgrade, but it allows checks
and purge to be executed in the background before the real upgrade is started.

Note
When upgrading the emulator from a version older than OTP R15, an attempt is
made to load new application beam code into the old emulator. Sometimes the
new beam format cannot be read by the old emulator, so the code loading fails
and the complete upgrade is terminated. To overcome this problem, the new
application code is to be compiled with the old emulator. For more information
about emulator upgrade from pre OTP R15 versions, see
Design Principles in System Documentation.

 Link to this function

 make_permanent(Vsn)

 View Source

 -spec make_permanent(Vsn) -> ok | {error, Reason}
 when Vsn :: string(), Reason :: {bad_status, Status :: term()} | term().

make_permanent(Vsn) -> ok | {error, Reason}
Makes the specified release version Vsn permanent.

 Link to this function

 reboot_old_release(Vsn)

 View Source

 -spec reboot_old_release(Vsn) -> ok | {error, Reason}
 when Vsn :: string(), Reason :: {bad_status, Status :: term()} | term().

reboot_old_release(Vsn) -> ok | {error, Reason}
Reboots the system by making the old release permanent, and calls
init:reboot() directly. The release must have status old.

 Link to this function

 remove_release(Vsn)

 View Source

 -spec remove_release(Vsn) -> ok | {error, Reason}
 when Vsn :: string(), Reason :: {permanent, Vsn} | client_node | term().

remove_release(Vsn) -> ok | {error, Reason}
Removes a release and its files from the system. The release must not be the
permanent release. Removes only the files and directories not in use by another
release.

 Link to this function

 set_removed(Vsn)

 View Source

 -spec set_removed(Vsn) -> ok | {error, Reason} when Vsn :: string(), Reason :: {permanent, Vsn} | term().

set_removed(Vsn) -> ok | {error, Reason}
Makes it possible to handle removal of releases outside the release handler.
Tells the release handler that the release is removed from the system. This
function does not delete any files.

 Link to this function

 set_unpacked(RelFile, AppDirs)

 View Source

 -spec set_unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}
 when
 RelFile :: string(),
 AppDirs :: [{App, Vsn, Dir}],
 App :: atom(),
 Vsn :: string(),
 Dir :: string(),
 Reason :: term().

set_unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}
Makes it possible to handle unpacking of releases outside the release handler.
Tells the release handler that the release is unpacked. Vsn is extracted from
the release resource file RelFile.
AppDirs can be used to specify from where the modules for the specified
applications are to be loaded. App is the name of an application, Vsn is the
version, and Dir is the name of the directory where App-Vsn is located. The
corresponding modules are to be located under Dir/App-Vsn/ebin. The
directories for applications not specified in AppDirs are assumed to be
located in $ROOT/lib.

 Link to this function

 unpack_release(Name)

 View Source

 -spec unpack_release(Name) -> {ok, Vsn} | {error, Reason}
 when Name :: string(), Vsn :: string(), Reason :: client_node | term().

unpack_release(Name) -> {ok, Vsn} | {error, Reason}
Unpacks a release package Name.tar.gz located in the releases directory.
Performs some checks on the package, for example, checks that all mandatory
files are present, and extracts its contents.

 Link to this function

 which_releases()

 View Source

 -spec which_releases() -> [{Name, Vsn, Apps, Status}]
 when
 Name :: string(),
 Vsn :: string(),
 Apps :: [AppVsn :: string()],
 Status :: unpacked | current | permanent | old.

which_releases() -> [{Name, Vsn, Apps, Status}]
Returns all releases known to the release handler.

 Link to this function

 which_releases(Status)

 View Source

 (since OTP R15B)

 -spec which_releases(Status) -> [{Name, Vsn, Apps, Status}]
 when
 Name :: string(),
 Vsn :: string(),
 Apps :: [AppVsn :: string()],
 Status :: unpacked | current | permanent | old.

which_releases(Status) -> [{Name, Vsn, Apps, Status}]
Returns all releases, known to the release handler, of a specific status.

systools

A Set of Release Handling Tools
This module contains functions to generate boot scripts (.boot, .script), a
release upgrade file (relup), and release packages.

 See Also

app(4), appup(4),
erl(1), rel(4), release_handler,
relup(4), script(4)

 Summary

 Functions

 make_relup(Name, UpFrom, DownTo)

 Equivalent to make_relup/4

 make_relup(ReleaseName, UpNameList, DownNameList, Opts)

 make_relup(Name, UpFrom, DownTo, [Opt]) -> Result

 make_script(Name)

 Equivalent to make_script/2

 make_script(RelName, Opt)

 make_script(Name, [Opt]) -> Result

 make_tar(Name)

 Equivalent to make_tar/2

 make_tar(Name, Opts)

 Creates a release package file Name.tar.gz. This file must be uncompressed and
unpacked on the target system using release_handler before the new release
can be installed.

 script2boot(File)

 script2boot(File) -> ok | error

 Functions

 Link to this function

 make_relup(Name, UpFrom, DownTo)

 View Source

 -spec make_relup(Name, UpFrom, DownTo) -> Result
 when
 Name :: string(),
 UpFrom :: [Name | {Name, Descr}],
 DownTo :: [Name | {Name, Descr}],
 Descr :: term(),
 Result ::
 ok | error |
 {ok, Relup :: term(), Module, Warnings} |
 {error, Module, Error},
 Module :: atom(),
 Warnings :: term(),
 Error :: term().

Equivalent to make_relup/4

 Link to this function

 make_relup(ReleaseName, UpNameList, DownNameList, Opts)

 View Source

 -spec make_relup(Name, UpFrom, DownTo, [Opt]) -> Result
 when
 Name :: string(),
 UpFrom :: [Name | {Name, Descr}],
 DownTo :: [Name | {Name, Descr}],
 Descr :: term(),
 Opt ::
 {path, [Dir]} |
 restart_emulator | silent | noexec |
 {outdir, Dir} |
 warnings_as_errors,
 Dir :: string(),
 Result ::
 ok | error |
 {ok, Relup :: term(), Module, Warnings} |
 {error, Module, Error},
 Module :: atom(),
 Warnings :: term(),
 Error :: term().

make_relup(Name, UpFrom, DownTo, [Opt]) -> Result
Generates a release upgrade file relup containing instructions for upgrading
from or downgrading to one or more previous releases. The instructions are used
by release_handler when installing a new version of a release in runtime.
By default, relup file is located in the current working directory. If option
{outdir,Dir} is specified, the relup file is located in Dir instead.
The release resource file Name.rel is compared with all release resource files
Name2.rel, specified in UpFrom and DownTo. For each such pair, the
following is deducted:
	Which applications to be deleted, that is, applications listed in Name.rel
but not in Name2.rel
	Which applications to be added, that is, applications listed in Name2.rel
but not in Name.rel
	Which applications to be upgraded/downgraded, that is, applications listed in
both Name.rel and Name2.rel but with different versions
	If the emulator needs to be restarted after upgrading or downgrading, that is,
if the ERTS version differs between Name.rel and Name2.rel

Instructions for this are added to the relup file in the above order.
Instructions for upgrading or downgrading between application versions are
fetched from the relevant application upgrade files App.appup, sorted in the
same order as when generating a boot script, see
make_script/1,2. High-level instructions are translated
into low-level instructions and the result is printed to the relup file.
The optional Descr parameter is included "as is" in the relup file, see
relup(4). Defaults to the empty list.
All the files are searched for in the code path. It is assumed that the .app
and .appup files for an application are located in the same directory.
If option {path,[Dir]} is specified, this path is appended to the current
path. Wildcard * is expanded to all matching directories, for example,
lib/*/ebin.
If option restart_emulator is specified, a low-level instruction to restart
the emulator is appended to the relup file. This ensures that a complete
reboot of the system is done when the system is upgraded or downgraded.
If an upgrade includes a change from an emulator earlier than OTP R15 to OTP R15
or later, the warning pre_R15_emulator_upgrade is issued. For more information
about this, see Design Principles in System
Documentation.
By default, errors and warnings are printed to tty and the function returns ok
or error. If option silent is specified, the function instead either returns
{ok,Relup,Module,Warnings}, where Relup is the release upgrade file, or
{error,Module,Error}. Warnings and errors can be converted to strings by
calling Module:format_warning(Warnings) or Module:format_error(Error).
If option noexec is specified, the function returns the same values as for
silent but no relup file is created.
If option warnings_as_errors is specified, warnings are treated as errors.

 Link to this function

 make_script(Name)

 View Source

 -spec make_script(Name) -> Result
 when
 Name :: string(),
 Result :: ok | error | {ok, Module, Warnings} | {error, Module, Error},
 Module :: atom(),
 Warnings :: term(),
 Error :: term().

Equivalent to make_script/2

 Link to this function

 make_script(RelName, Opt)

 View Source

 -spec make_script(Name, [Opt]) -> Result
 when
 Name :: string(),
 Opt ::
 src_tests |
 {path, [Dir]} |
 local |
 {variables, [Var]} |
 exref |
 {exref, [App]} |
 silent |
 {outdir, Dir} |
 no_dot_erlang | no_warn_sasl | warnings_as_errors |
 {script_name, Name},
 Dir :: string(),
 Var :: {VarName, Prefix},
 VarName :: string(),
 Prefix :: string(),
 App :: atom(),
 Result :: ok | error | {ok, Module, Warnings} | {error, Module, Error},
 Module :: atom(),
 Warnings :: term(),
 Error :: term().

make_script(Name, [Opt]) -> Result
Generates a boot script Name.script and its binary version, the boot file
Name.boot, unless the {script_name, ScriptName} option is given, in which
case the names are ScriptName.script and ScriptName.boot The boot file
specifies which code to be loaded and which applications to be started when the
Erlang runtime system is started. See script(4).
The release resource file Name.rel is read to determine which applications are
included in the release. Then the relevant application resource files App.app
are read to determine which modules to be loaded, and if and how the
applications are to be started. (Keys modules and mod, see
app(4).
By default, the boot script and boot file are located in the same directory as
Name.rel. That is, in the current working directory unless Name contains a
path. If option {outdir,Dir} is specified, they are located in Dir instead.
The correctness of each application is checked as follows:
	The version of an application specified in the .rel file is to be the same
as the version specified in the .app file.
	There are to be no undefined applications, that is, dependencies to
applications that are not included in the release. (Key applications in the
.app file).
	There are to be no circular dependencies among the applications.
	There are to be no duplicated modules, that is, modules with the same name but
belonging to different applications.
	If option src_tests is specified, a warning is issued if the source code for
a module is missing or is newer than the object code.

The applications are sorted according to the dependencies between the
applications. Where there are no dependencies, the order in the .rel file is
kept.
The function fails if the mandatory applications Kernel and STDLIB are not
included in the .rel file and have start type permanent (which is default).
If SASL is not included as an application in the .rel file, a warning is
issued because such a release cannot be used in an upgrade. To turn off this
warning, add option no_warn_sasl.
All files are searched for in the current path. It is assumed that the .app
and .beam files for an application are located in the same directory. The
.erl files are also assumed to be located in this directory, unless it is an
ebin directory in which case they can be located in the corresponding src
directory.
If option {path,[Dir]} is specified, this path is appended to the current
path. A directory in the path can be specified with a wildcard *, this is
expanded to all matching directories. Example: "lib/*/ebin".
In the generated boot script all application directories are structured as
App-Vsn/ebin. They are assumed to be located in $ROOT/lib, where $ROOT is
the root directory of the installed release. If option local is specified, the
actual directories where the applications were found are used instead. This is a
useful way to test a generated boot script locally.
Option variables can be used to specify an installation directory other than
$ROOT/lib for some of the applications. If a variable {VarName,Prefix} is
specified and an application is found in a directory
Prefix/Rest/App[-Vsn]/ebin, this application gets the path
VarName/Rest/App-Vsn/ebin in the boot script. If an application is found in a
directory Prefix/Rest, the path is VarName/Rest/App-Vsn/ebin. When starting
Erlang, all variables VarName are given values using command-line flag
boot_var.
Example: If option {variables,[{"TEST","lib"}]} is specified and myapp.app
is found in lib/myapp/ebin, the path to this application in the boot script is
"$TEST/myapp-1/ebin". If myapp.app is found in lib/test, the path is
$TEST/test/myapp-1/ebin.
The checks performed before the boot script is generated can be extended with
some cross reference checks by specifying option exref. These checks are
performed with the Xref tool. All applications, or the applications specified
with {exref,[App]}, are checked by Xref and warnings are issued for calls to
undefined functions.
By default, errors and warnings are printed to tty and the function returns ok
or error. If option silent is specified, the function instead returns
{ok,Module,Warnings} or {error,Module,Error}. Warnings and errors can be
converted to strings by calling Module:format_warning(Warnings) or
Module:format_error(Error).
If option warnings_as_errors is specified, warnings are treated as errors.
If option no_dot_erlang is specified, the instruction to load the .erlang
file during boot is not included.

 Link to this function

 make_tar(Name)

 View Source

 -spec make_tar(Name) -> Result
 when
 Name :: string(),
 Result ::
 ok | error |
 {ok, Module :: module(), Warnings :: term()} |
 {error, Module :: module(), Error :: term()}.

Equivalent to make_tar/2

 Link to this function

 make_tar(Name, Opts)

 View Source

 -spec make_tar(Name, Opts) -> Result
 when
 Name :: string(),
 Opts :: [Opt],
 Opt ::
 {dirs, [IncDir]} |
 {path, [Dir]} |
 {variables, [Var]} |
 {var_tar, VarTar} |
 {erts, Dir} |
 erts_all | src_tests | exref |
 {exref, [App]} |
 silent |
 {outdir, Dir} |
 no_warn_sasl | warnings_as_errors |
 {extra_files, ExtraFiles},
 Dir :: file:filename_all(),
 IncDir :: src | include | atom(),
 Var :: {VarName, PreFix},
 VarName :: string(),
 PreFix :: string(),
 VarTar :: include | ownfile | omit,
 App :: atom(),
 Result ::
 ok | error |
 {ok, Module :: module(), Warnings :: term()} |
 {error, Module :: module(), Error :: term()},
 ExtraFiles :: [{NameInArchive, file:filename_all()}],
 NameInArchive :: string().

Creates a release package file Name.tar.gz. This file must be uncompressed and
unpacked on the target system using release_handler before the new release
can be installed.
The release resource file Name.rel is read to determine which applications are
included in the release. Then the relevant application resource files App.app
are read to determine the version and modules of each application (keys vsn
and modules, see app(4)).
By default, the release package file is located in the same directory as
Name.rel. That is, in the current working directory unless Name contains a
path. If option {outdir,Dir} is specified, it is located in Dir instead.
If SASL is not included as an application in the .rel file, a warning is
issued because such a release cannot be used in an upgrade. To turn off this
warning, add option no_warn_sasl.
By default, the release package contains the directories lib/App-Vsn/ebin and
lib/App-Vsn/priv for each included application. If more directories are to be
included, option dirs is specified, for example, {dirs,[src,examples]}.
All these files are searched for in the current path. If option {path,[Dir]}
is specified, this path is appended to the current path. Wildcard * is
expanded to all matching directories. Example: "lib/*/ebin".
If the {extra_files, ExtraFiles} option is given then the ExtraFiles are
added to the tarball after everything else to be included has been added. The
ExtraFiles list is a list of files or directories in the same format as the
add_type() tuple for erl_tar:add/3,4
Option variables can be used to specify an installation directory other than
lib for some of the applications. If variable {VarName,Prefix} is specified
and an application is found in directory Prefix/Rest/App[-Vsn]/ebin, this
application is packed into a separate VarName.tar.gz file as
Rest/App-Vsn/ebin.
Example: If option {variables,[{"TEST","lib"}]} is specified and myapp.app
is located in lib/myapp-1/ebin, application myapp is included in
TEST.tar.gz:
% tar tf TEST.tar
myapp-1/ebin/myapp.app
...
Option {var_tar,VarTar} can be used to specify if and where a separate package
is to be stored. In this option VarTar is one of the following:
	include - Each separate (variable) package is included in the main
ReleaseName.tar.gz file. This is the default.

	ownfile - Each separate (variable) package is generated as a separate
file in the same directory as the ReleaseName.tar.gz file.

	omit - No separate (variable) packages are generated. Applications that
are found underneath a variable directory are ignored.

A directory releases is also included in the release package, containing
Name.rel and a subdirectory RelVsn. RelVsn is the release version as
specified in Name.rel.
releases/RelVsn contains the boot script Name.boot renamed to start.boot
and, if found, the files relup and sys.config or sys.config.src. These
files are searched for in the same directory as Name.rel, in the current
working directory, and in any directories specified using option path. In the
case of sys.config it is not included if sys.config.src is found.
If the release package is to contain a new Erlang runtime system, the
erts-ErtsVsn/bin directory of the specified runtime system {erts,Dir} is
copied to erts-ErtsVsn/bin. Some erts executables are not copied by default,
if you want to include all executables you can give the erts_all option.
All checks with function make_script are performed before
the release package is created. Options src_tests and exref are also valid
here.
The return value and the handling of errors and warnings are the same as
described for make_script.

 Link to this function

 script2boot(File)

 View Source

 -spec script2boot(File) -> ok | error when File :: string().

script2boot(File) -> ok | error
The Erlang runtime system requires that the contents of the script used to boot
the system is a binary Erlang term. This function transforms the File.script
boot script to a binary term, which is stored in the File.boot file.
A boot script generated using make_script is already
transformed to the binary form.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

