

 tftp

 v1.1.1

 [image: Logo]

 Table of contents

 	TFTP Release Notes

 	User's Guides

 	Introduction

 	Getting Started

 	Modules

 	tftp

 	tftp_logger

TFTP Release Notes

 Tftp 1.1.1

 Fixed Bugs and Malfunctions

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

 Tftp 1.1

 Improvements and New Features

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

 Tftp 1.0.4

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Tftp 1.0.3

 Fixed Bugs and Malfunctions

	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

 Tftp 1.0.2

 Improvements and New Features

	Removed compiler warnings.
Own Id: OTP-16317 Aux Id: OTP-16183

 Tftp 1.0.1

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 TFTP 1.0

 First released version

	Inets application was split into multiple smaller protocol specific
applications. The TFTP application is a standalone TFTP client and server with
the same functionality as TFTP in Inets.
Own Id: OTP-14113

Introduction

 Purpose

The Trivial File Transfer Protocol or TFTP is a very simple protocol used to
transfer files.
It has been implemented on top of the User Datagram protocol (UDP) so it may be
used to move files between machines on different networks implementing UDP. It
is designed to be small and easy to implement. Therefore, it lacks most of the
features of a regular FTP. The only thing it can do is read and write files (or
mail) from/to a remote server. It cannot list directories, and currently has no
provisions for user authentication.
The tftp application implements the following IETF standards:
	RFC 1350, The TFTP Protocol (revision 2)
	RFC 2347, TFTP Option Extension
	RFC 2348, TFTP Blocksize Option
	RFC 2349, TFTP Timeout Interval and Transfer Size Options

The only feature that not is implemented is the netascii transfer mode.

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language,
concepts of OTP, and has a basic understanding of the TFTP protocol.

Getting Started

 General Information

The start/1 function starts a daemon process listening for UDP
packets on a port. When it receives a request for read or write, it spawns a
temporary server process handling the transfer.
On the client side, function read_file/3 and
write_file/3 spawn a temporary client process
establishing contact with a TFTP daemon and perform the file transfer.
tftp uses a callback module to handle the file transfer. Two such callback
modules are provided, tftp_binary and tftp_file. See
read_file/3 and write_file/3 for
details. You can also implement your own callback modules, see
CALLBACK FUNCTIONS. A callback module provided by the
user is registered using option callback, see DATA TYPES.

 Using the TFTP client and server

This is a simple example of starting the TFTP server and reading the content of
a sample file using the TFTP client.
Step 1. Create a sample file to be used for the transfer:
 $ echo "Erlang/OTP 21" > file.txt
Step 2. Start the TFTP server:
 1> {ok, Pid} = tftp:start([{port, 19999}]).
 {ok,<0.65.0>}
Step 3. Start the TFTP client (in another shell):
 1> tftp:read_file("file.txt", binary, [{port, 19999}]).
 {ok,<<"Erlang/OTP 21\n">>}

tftp behaviour

Trivial FTP.
Interface module for the tftp application.

 DATA TYPES

ServiceConfig = Options
Options = [option()]
Most of the options are common for both the client and the server side, but some
of them differs a little. The available option()s are as follows:
	{debug, Level} -
Level = none | error | warning | brief | normal | verbose | all
Controls the level of debug printouts. Default is none.

	{host, Host} - Host = hostname(), see inet.
The name or IP address of the host where the TFTP daemon resides. This option
is only used by the client.

	{port, Port} - Port = int()
The TFTP port where the daemon listens. Defaults is the standardized
number 69. On the server side, it can sometimes make sense to set it to 0,
meaning that the daemon just picks a free port (which one is returned by
function info/1).
If a socket is connected already, option {udp, [{fd, integer()}]} can be
used to pass the open file descriptor to gen_udp. This can be automated by
using a command-line argument stating the prebound file descriptor number. For
example, if the port is 69 and file descriptor 22 is opened by
setuid_socket_wrap, the command-line argument "-tftpd_69 22" triggers the
prebound file descriptor 22 to be used instead of opening port 69. The UDP
option {udp, [{fd, 22}]} is automatically added. See init:get_argument/
about command-line arguments and gen_udp:open/2 about UDP options.

	{port_policy, Policy} -
Policy = random | Port | {range, MinPort, MaxPort}
Port = MinPort = MaxPort = int()
Policy for the selection of the temporary port that is used by the
server/client during the file transfer. Default is random, which is the
standardized policy. With this policy a randomized free port is used. A single
port or a range of ports can be useful if the protocol passes through a
firewall.

	{udp, Options} - Options = [Opt], see
gen_udp:open/2.

	{use_tsize, Bool} - Bool = bool()
Flag for automated use of option tsize. With this set to true, the
write_file/3 client determines the filesize and sends it
to the server as the standardized tsize option. A
read_file/3 client acquires only a filesize from the server
by sending a zero tsize.

	{max_tsize, MaxTsize} - MaxTsize = int() | infinity
Threshold for the maximal filesize in bytes. The transfer is aborted if the
limit is exceeded. Default is infinity.

	{max_conn, MaxConn} - MaxConn = int() | infinity
Threshold for the maximal number of active connections. The daemon rejects the
setup of new connections if the limit is exceeded. Default is infinity.

	{TftpKey, TftpVal} - TftpKey = string()
TftpVal = string()
Name and value of a TFTP option.

		{reject, Feature} - `Feature = Mode	TftpKey`
	` Mode = read	write`

TftpKey = string()
Controls which features to reject. This is mostly useful for the server as it
can restrict the use of certain TFTP options or read/write access.

	{callback, {RegExp, Module, State}} - RegExp = string()
Module = atom()
State = term()
Registration of a callback module. When a file is to be transferred, its local
filename is matched to the regular expressions of the registered callbacks.
The first matching callback is used during the transfer. See read_file/3 and
write_file/3.
The callback module must implement the tftp behavior, see
CALLBACK FUNCTIONS.

	{logger, Module} - Module = module()
Callback module for customized logging of errors, warnings, and info messages.
The callback module must implement the tftp_logger behavior. The default
module is tftp_logger.

	{max_retries, MaxRetries} - MaxRetries = int()
Threshold for the maximal number of retries. By default the server/client
tries to resend a message up to five times when the time-out expires.

 CALLBACK FUNCTIONS

A tftp callback module is to be implemented as a tftp behavior and export
the functions listed in the following.
On the server side, the callback interaction starts with a call to open/5 with
the registered initial callback state. open/5 is expected to open the
(virtual) file. Then either function read/1 or
write/2 is invoked repeatedly, once per transferred block. At
each function call, the state returned from the previous call is obtained. When
the last block is encountered, function read/1 or
write/2 is expected to close the (virtual) file and return its
last state. Function abort/3 is only used in error situations.
Function prepare/5 is not used on the server side.
On the client side, the callback interaction is the same, but it starts and ends
a bit differently. It starts with a call to prepare/5 with the same arguments
as open/5 takes. prepare/5 is expected to validate the TFTP options
suggested by the user and to return the subset of them that it accepts. Then the
options are sent to the server, which performs the same TFTP option negotiation
procedure. The options that are accepted by the server are forwarded to function
open/5 on the client side. On the client side, function open/5 must accept
all option as-is or reject the transfer. Then the callback interaction follows
the same pattern as described for the server side. When the last block is
encountered in read/1 or write/2, the returned
state is forwarded to the user and returned from read_file/3 or
write_file/3.
If a callback (performing the file access in the TFTP server) takes too long
time (more than the double TFTP time-out), the server aborts the connection and
sends an error reply to the client. This implies that the server releases
resources attached to the connection faster than before. The server simply
assumes that the client has given up.
If the TFTP server receives yet another request from the same client (same host
and port) while it already has an active connection to the client, it ignores
the new request if the request is equal to the first one (same filename and
options). This implies that the (new) client will be served by the already
ongoing connection on the server side. By not setting up yet another connection,
in parallel with the ongoing one, the server consumes less resources.

 Summary

 Types

 access()

 error_code()

 options()

 peer()

 Callbacks

 abort/3

 Invoked when the file transfer is aborted.

 open(Peer, Access, Filename, Mode, SuggestedOptions, State)

 Opens a file for read or write access.

 prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)

 Prepares to open a file on the client side.

 read(State)

 Reads a chunk from the file.

 write/2

 Writes a chunk to the file.

 Functions

 change_config(Pid, Options)

 change_config(Pid, Options) -> Result

 info(Pid)

 info(Pid) -> {ok, Options} | {error, Reason}

 read_file(RemoteFilename, LocalFilename, Options)

 read_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} |
{error, Reason}

 start(Options)

 start(Options) -> {ok, Pid} | {error, Reason}

 write_file(RemoteFilename, LocalFilename, Options)

 write_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} |
{error, Reason}

 Types

 Link to this type

 access()

 View Source

 (not exported)

 -type access() :: read | write.

 Link to this type

 error_code()

 View Source

 (not exported)

 -type error_code() :: undef | enoent | eacces | enospc | badop | eexist | baduser | badopt | integer().

 Link to this type

 options()

 View Source

 (not exported)

 -type options() :: [{Key :: string(), Value :: string()}].

 Link to this type

 peer()

 View Source

 (not exported)

 -type peer() :: {PeerType :: inet | inet6, PeerHost :: inet:ip_address(), PeerPort :: port()}.

 Callbacks

 Link to this callback

 abort/3

 View Source

 (since OTP 18.1)

 -callback abort(Code :: error_code(), string(), State :: term()) -> ok.

Invoked when the file transfer is aborted.
The callback function is expected to clean up its used resources after the
aborted file transfer, such as closing open file descriptors and so on. The
function is not invoked if any of the other callback functions returns an error,
as it is expected that they already have cleaned up the necessary resources.
However, it is invoked if the functions fail (crash).

 Link to this callback

 open(Peer, Access, Filename, Mode, SuggestedOptions, State)

 View Source

 (since OTP 18.1)

 -callback open(Peer :: peer(),
 Access :: access(),
 Filename :: file:name(),
 Mode :: string(),
 SuggestedOptions :: options(),
 State :: [] | [{root_dir, string()}] | term()) ->
 {ok, AcceptedOptions :: options(), NewState :: term()} |
 {error, {Code :: error_code(), string()}}.

Opens a file for read or write access.
On the client side, where the open/5 call has been preceded by a call to
prepare/5, all options must be accepted or rejected.
On the server side, where there is no preceding prepare/5 call, no new options
can be added, but those present in SuggestedOptions can be omitted or replaced
with new values in AcceptedOptions.

 Link to this callback

 prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)

 View Source

 (since OTP 18.1)

 -callback prepare(Peer :: peer(),
 Access :: access(),
 Filename :: file:name(),
 Mode :: string(),
 SuggestedOptions :: options(),
 InitialState :: [] | [{root_dir, string()}]) ->
 {ok, AcceptedOptions :: options(), NewState :: term()} |
 {error, {Code :: error_code(), string()}}.

Prepares to open a file on the client side.
No new options can be added, but those present in SuggestedOptions can be
omitted or replaced with new values in AcceptedOptions.
This is followed by a call to open/4 before any read/write access is
performed. AcceptedOptions is sent to the server, which replies with the
options that it accepts. These are then forwarded to open/4 as
SuggestedOptions.

 Link to this callback

 read(State)

 View Source

 (since OTP 18.1)

 -callback read(State :: term()) ->
 {more, binary(), NewState :: term()} |
 {last, binary(), integer()} |
 {error, {Code :: error_code(), string()}}.

Reads a chunk from the file.
The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered, the callback function is expected to
clean up after the aborted file transfer, such as closing open file descriptors,
and so on. In both cases there will be no more calls to any of the callback
functions.

 Link to this callback

 write/2

 View Source

 (since OTP 18.1)

 -callback write(binary(), State :: term()) ->
 {more, NewState :: term()} |
 {last, FileSize :: integer()} |
 {error, {Code :: error_code(), string()}}.

Writes a chunk to the file.
The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered, the callback function is expected to
clean up after the aborted file transfer, such as closing open file descriptors,
and so on. In both cases there will be no more calls to any of the callback
functions.

 Functions

 Link to this function

 change_config(Pid, Options)

 View Source

change_config(Pid, Options) -> Result
Changes configuration for all TFTP daemon processes.
Changes configuration for all TFTP server processes.
Changes configuration for a TFTP daemon, server, or client process.

 Link to this function

 info(Pid)

 View Source

info(Pid) -> {ok, Options} | {error, Reason}
Returns information about all TFTP daemon processes.
Returns information about all TFTP server processes.
Returns information about a TFTP daemon, server, or client process.

 Link to this function

 read_file(RemoteFilename, LocalFilename, Options)

 View Source

read_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} |
{error, Reason}
Reads a (virtual) file RemoteFilename from a TFTP server.
If LocalFilename is the atom binary, tftp_binary is used as callback
module. It concatenates all transferred blocks and returns them as one single
binary in LastCallbackState.
If LocalFilename is a string and there are no registered callback modules,
tftp_file is used as callback module. It writes each transferred block to the
file named LocalFilename and returns the number of transferred bytes in
LastCallbackState.
If LocalFilename is a string and there are registered callback modules,
LocalFilename is tested against the regexps of these and the callback module
corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

 Link to this function

 start(Options)

 View Source

start(Options) -> {ok, Pid} | {error, Reason}
Starts a daemon process listening for UDP packets on a port. When it receives a
request for read or write, it spawns a temporary server process handling the
actual transfer of the (virtual) file.

 Link to this function

 write_file(RemoteFilename, LocalFilename, Options)

 View Source

write_file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState} |
{error, Reason}
Writes a (virtual) file RemoteFilename to a TFTP server.
If LocalFilename is a binary, tftp_binary is used as callback module. The
binary is transferred block by block and the number of transferred bytes is
returned in LastCallbackState.
If LocalFilename is a string and there are no registered callback modules,
tftp_file is used as callback module. It reads the file named LocalFilename
block by block and returns the number of transferred bytes in
LastCallbackState.
If LocalFilename is a string and there are registered callback modules,
LocalFilename is tested against the regexps of these and the callback module
corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

tftp_logger behaviour

Trivial FTP logger.
A tftp_logger callback module is to be implemented as a tftp_logger behavior
and export the following functions:

 Summary

 Callbacks

 error_msg(Format, Data)

 Logs an error message. See error_logger:error_msg/2 for details.

 info_msg(Format, Data)

 Logs an info message. See error_logger:info_msg/2 for details.

 warning_msg(Format, Data)

 Logs a warning message. See error_logger:warning_msg/2 for details.

 Callbacks

 Link to this callback

 error_msg(Format, Data)

 View Source

 (optional)

 (since OTP 18.1)

 -callback error_msg(Format :: string(), Data :: [term()]) -> ok.

Logs an error message. See error_logger:error_msg/2 for details.

 Link to this callback

 info_msg(Format, Data)

 View Source

 (optional)

 (since OTP 18.1)

 -callback info_msg(Format :: string(), Data :: [term()]) -> ok.

Logs an info message. See error_logger:info_msg/2 for details.

 Link to this callback

 warning_msg(Format, Data)

 View Source

 (optional)

 (since OTP 18.1)

 -callback warning_msg(Format :: string(), Data :: [term()]) -> ok.

Logs a warning message. See error_logger:warning_msg/2 for details.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

