

 stdlib

 v5.2.1

 [image: Logo]

 Table of contents

 	STDLIB Application

 	STDLIB Release Notes

 	User's Guides

 	Introduction

 	The Erlang I/O Protocol

 	Using Unicode in Erlang

 	Uniform Resource Identifiers

 	References

 	assert.hrl

 	

 	Modules

 	ALGORITHMS

 	erl_tar

 	rand

 	random

 	zip

 	CODE

 	beam_lib

 	epp

 	erl_anno

 	erl_eval

 	erl_expand_records

 	erl_features

 	erl_id_trans

 	erl_internal

 	erl_lint

 	erl_parse

 	erl_pp

 	erl_scan

 	ms_transform

 	DATA STRUCTURES

 	array

 	dets

 	dict

 	digraph

 	digraph_utils

 	ets

 	gb_sets

 	gb_trees

 	orddict

 	ordsets

 	proplists

 	qlc

 	queue

 	sets

 	sofs

 	DATATYPES

 	binary

 	lists

 	maps

 	math

 	DATE & TIME

 	calendar

 	timer

 	NODES

 	argparse

 	escript

 	peer

 	slave

 	win32reg

 	PROCESSES

 	gen_event

 	gen_fsm

 	gen_server

 	gen_statem

 	log_mf_h

 	pool

 	proc_lib

 	supervisor

 	supervisor_bridge

 	sys

 	SHELL

 	c

 	edlin

 	edlin_expand

 	shell

 	shell_default

 	shell_docs

 	STRINGS

 	base64

 	erl_error

 	file_sorter

 	filelib

 	filename

 	io

 	io_lib

 	re

 	string

 	unicode

 	uri_string

STDLIB Application

 Description

The STDLIB application is mandatory in the sense that the minimal system based
on Erlang/OTP consists of Kernel and STDLIB. The STDLIB application contains no
services.

 Configuration

The following configuration parameters are defined for the STDLIB application.
For more information about configuration parameters, see the
app(4) module in Kernel.
	shell_esc = icl | abort - Can be used to change the
behavior of the Erlang shell when ^G is pressed.

	restricted_shell = module() - Can be used to run
the Erlang shell in restricted mode.

	shell_catch_exception = boolean() - Can be
used to set the exception handling of the evaluator process of Erlang shell.

	shell_expand_location = above | below - Sets
where the tab expansion text should appear in the shell. The default is
below. This will open a pager below the cursor that is scrollable one line
at a time with Up/Down arrow keys or 5 lines at a time with PgUp/PgDn.

	shell_history_length = integer() >= 0 - Can be
used to determine how many commands are saved by the Erlang shell. See
edlin for more.

	shell_keymap = #{} - Can be used to override the
default keymap configuration for the shell.

	format_shell_func = {Mod, Func} | string() | default - Can be used to set the formatting of the Erlang shell output. This has
an effect on commands that have been submitted and how it is saved in history
or if the formatting hotkey is pressed while editing an expression (Alt-f by
default). You can specify a Mod:Func/1 that expects the whole expression as a
string and returns a formatted expressions as a string. See
shell:format_shell_func/1 for how to set it from inside the shell.
If instead a string is provided, it will be used as a shell command. Your
command must include ${file} somewhere in the string, for the shell to know
where the file goes in the command.
-stdlib format_shell_func "\"emacs -batch \${file} -l ~/erlang-format/emacs-format-file -f emacs-format-function\""
-stdlib format_shell_func "{shell, erl_pp_format_func}"

	shell_prompt_func = {Mod, Func} | default - where
	Mod = atom()
	Func = atom()

Can be used to set a customized Erlang shell prompt function.

	shell_multiline_prompt = {Mod, Func} | string() | default - where
	Mod = atom()
	Func = atom()

Can be used to set a customized multiline shell prompt function. The multiline
prompt function takes the main prompt as its only parameter.

	shell_saved_results = integer() >= 0 - Can be
used to determine how many results are saved by the Erlang shell.

	shell_session_slogan = string() | fun() -> string()) - The slogan printed when starting an Erlang shell.
Example:
$ erl -stdlib shell_session_slogan '"Test slogan"'
Erlang/OTP 26 [DEVELOPMENT] [erts-13.0.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]

Test slogan
1>

	shell_slogan = string() | fun(() -> string()) - The
slogan printed when starting the Erlang shell subsystem. Example:
$ erl -stdlib shell_slogan '"Test slogan"'
Test slogan
Eshell V13.0.2 (abort with ^G)
1>
The default is the return value of
erlang:system_info(system_version).

	shell_strings = boolean() - Can be used to determine
how the Erlang shell outputs lists of integers.

 See Also

app(4), application, shell

STDLIB Release Notes

This document describes the changes made to the STDLIB application.

 STDLIB 5.2.1

 Fixed Bugs and Malfunctions

	The help texts shown by argparse will now display sub-command arguments in the correct order.
Own Id: OTP-18900 Aux Id: PR-7945, GH-7934

	Clarified the argparse documentation regarding the user-defined help template.
Own Id: OTP-18937

	Fix shell expansion to not crash when expanding invalid using invalid atoms.
Own Id: OTP-18953 Aux Id: GH-8016 PR-8075

 STDLIB 5.2

 Fixed Bugs and Malfunctions

	Make shell_docs correctly trim the newline at the end of code blocks.
Own Id: OTP-18777 Aux Id: PR-7663

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Fixed a bug where autocompletion could crash the shell when trying to expand a
nested tuple.
Own Id: OTP-18822 Aux Id: PR-7796

	Removed auto closing feature, in autocompletion, for function arguments,
tuples, records and maps, since this could interfere with autocompletion of
atoms.
Own Id: OTP-18823

	Fixed a bug where autocompletion string formatting would remove suggestions
that had the same name but different case.
Own Id: OTP-18824

	Fix so that ctrl+h, ctrl+backspace in the shell only removes one character
instead of a whole word.
Own Id: OTP-18826 Aux Id: PR-7797

	Fix so that its possible to override the default keyboard shortcuts for the
shell.
Own Id: OTP-18827 Aux Id: PR-7797

	Allow shell local func v(), in a restricted shell
Own Id: OTP-18828 Aux Id: PR-7799

	Report syntax error when writing an invalid attribute like '1> -hej.'
Own Id: OTP-18829 Aux Id: PR-7799

	When attempting to match part of a record in the key of a map generator, the
entire record would be matched.
Own Id: OTP-18866 Aux Id: GH-7875, PR-7878

 Improvements and New Features

	The warning for accidental use of a future triple-quoted string delimiter has
been upgraded to instead warn for adjacent strings without intervening white
space, which effectively is the same at a string start, but also covers the
same situation at a string end.
Own Id: OTP-18821 Aux Id: OTP-18746

	The removal of the deprecated slave module, originally planned for OTP 27,
has been postponed to OTP 29.
Own Id: OTP-18840 Aux Id: PR-7629

	Guards have been added to gen_*:start* API functions to catch bad arguments
earlier. Before this change, in some cases, a bad argument could tag along and
cause the server to fail later, right after start.
Own Id: OTP-18857 Aux Id: GH-7685

 STDLIB 5.1.1

 Improvements and New Features

	Garbage collect the shell process when reducing the amount of saved history
and results.
Own Id: OTP-18773 Aux Id: PR-7691

 STDLIB 5.1

 Fixed Bugs and Malfunctions

	The compiler could run forever when compiling a call to
is_record/3 with a huge positive tuple size. The call
is_record(A, a, 0) would crash the compiler when used in a
function body. When used in a guard the compiler would emit incorrect code
that would accept {a> as a record.
Own Id: OTP-18605 Aux Id: GH-7298, GH-7317

	Fix bug in ets:tab2file that could make it fail if another Erlang process
created the same file at the same time.
Own Id: OTP-18614 Aux Id: GH-7162, PR-7237

	An {else_clause,Value} exception will now be reported nicely in the shell.
Own Id: OTP-18616 Aux Id: GH-7258

	Correct return value for error case, so that it matches the documented and
intended return value {error, {already_started, pid()} when local
registered names are used.
Own Id: OTP-18627 Aux Id: PR-7072

	sys:get_state/1,2 and sys:replace_state/2,3 has been corrected to handle a
state named error as a state name, not as a failed system callback.
For the standard server behaviours this was an issue only for gen_statem
(and gen_fsm) when the state name was error, and for gen_server if the
complete state was {error,_}.
Own Id: OTP-18633

	Multiple problems were fixed in filelib:safe_relative_path/2. If its second
argument was a path that contained symbolic links, an incorrect result patch
could be returned. Also, paths were sometimes falsely considered unsafe.
Own Id: OTP-18655 Aux Id: GH-6460, PR-7208

	Fix deadlock when erl.exe is used as part of a pipe on Windows and trying to
set the encoding of the standard_io device.
Own Id: OTP-18675 Aux Id: PR-7473 GH-7459

	Expanded the documentation about how to use the standard_io,
standard_error and user I/O devices.
Added the types io:standard_io/0,
io:standard:error/0 and io:user/0.
Own Id: OTP-18676 Aux Id: PR-7473 GH-7459

	Fix h/2,3 to properly render multi-clause documentation.
Own Id: OTP-18683 Aux Id: PR-7502

	Timers created by timer:apply_after/4, apply_interval/4, and
apply_repeatedly/4 would silently fail to do the apply if it was not
possible to spawn a process when the timer expired. This has now been
corrected, and if the spawn fails, the system will be taken down producing a
crash dump.
Own Id: OTP-18759 Aux Id: GH-7606

	When an Erlang source file lacked a module definition, there would be a
spurious "module name must not be empty" diagnostic for each spec in the file.
Own Id: OTP-18763 Aux Id: GH-7655

 Improvements and New Features

	The argument descriptions for option types in argparse have been made less
ambiguous.
Own Id: OTP-18679 Aux Id: ERIERL-965

	Clarified the documentation of normal shutdown reason on gen_server:call/2,3
Own Id: OTP-18690 Aux Id: PR-7511, GH-7510

	Pattern matching and equivalence (=:=, =/=) comparisons on 0.0 will now
raise a warning, as it will no longer be considered equivalent to -0.0 in
OTP 27.
If a match on 0.0 specifically is desired (distinct from -0.0), the
warning can be suppressed by writing +0.0 instead.
The arithmetic comparison operators are unaffected, including arithmetic
equality (==).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18696

	The semantics of the gen_{server,statem,event} behaviour's synchronous start
behaviour introduced in OTP-26.0 with OTP-18471, has been clarified in the
documentation.
Own Id: OTP-18705 Aux Id: GH-7524, OTP-18471, GH-6339, PR-6843

	Added functionality to set a custom multiline prompt.
Own Id: OTP-18736 Aux Id: PR-7564

	A warning for (accidental use of) Triple-Quoted Strings has been implemented
as per
EEP 64.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18746 Aux Id: PR-7313, PR-7456

	The keyboard shortcuts for the shell are now configurable.
Own Id: OTP-18754 Aux Id: PR-7604 PR-7647

 STDLIB 5.0.2

 Fixed Bugs and Malfunctions

	Fix bug where when you entered Alt+Enter in the terminal, the cursor would
move to the last line, instead of moving to the next line.
Own Id: OTP-18580 Aux Id: PR-7242

	Fix eof handling when reading from stdin when erlang is started using
-noshell.
Own Id: OTP-18640 Aux Id: PR-7384 GH-7368 GH-7286 GH-6881

	Fixed problem where output would disappear if it was received after a prompt
was written in the shell.
Own Id: OTP-18652 Aux Id: PR-7242

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 5.0.1

 Fixed Bugs and Malfunctions

	The POSIX error exdev was sometimes incorrectly described as "cross domain
link" in some error messages.
Own Id: OTP-18578 Aux Id: GH-7213

 STDLIB 5.0

 Fixed Bugs and Malfunctions

	All process calls in dets have been updated to use the receive queue
optimizations.
Own Id: OTP-18275 Aux Id: PR-6045

	proc_lib:start*/* has become synchronous when the started process fails.
This requires that a failing process use a new function
proc_lib:init_fail/2,3, or exits, to indicate failure. All OTP behaviours
have been fixed to do this.
All these start functions now consume the 'EXIT' message from a process link
for all error returns. Previously it was only the start_link/* functions
that did this, and only when the started function exited, not when it used
init_ack/1,2 or init_fail/2,3 to create the return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18471 Aux Id: GH-6339, PR-6843

	Fixed a bug where file:read(standard_io, ...) unexpectedly returned eof in
binary mode.
Own Id: OTP-18486 Aux Id: PR-6881

	In the shell, v(N) would fail to retrieve the command if the command's
return value was undefined.
Own Id: OTP-18548 Aux Id: PR-6967

 Improvements and New Features

	The Erlang shell has been improved to support the following features:
	Auto-complete variables, record names, record field names, map keys,
function parameter types and filenames.
	Open external editor in the shell (with C-o) to edit the current expression
in an editor.
	Support defining records (with types), functions and function typespecs, and
custom types in the shell.
	Do not save pager commands, and input to io:getline in history.

Own Id: OTP-14835 Aux Id: PR-5924

	Gen_server now caches external functions for use in handle_call, handle_cast
and handle_info.
Own Id: OTP-15597 Aux Id: PR-5831

	The TTY/terminal subsystem has been rewritten by moving more code to Erlang
from the old linked-in driver and implementing all the I/O primitives needed
in a NIF instead.
On Unix platforms the user should not notice a lot of difference, besides
better handling of unicode characters and fixing of some long standing bugs.
Windows users will notice that erl.exe has the same functionality as a normal
Unix shell and that werl.exe has been removed and replaced with a symlink to
erl.exe. This makes the Windows Erlang terminal experience identical to that
of Unix.
The re-write brings with it a number of bug fixes and feature additions:
	The TTY is now reset when Erlang exits, fixing zsh to not break when
terminating an Erlang session.
	standard_error now uses the same unicode mode as standard_io.
	Hitting backspace when searching the shell history with an empty search
string no longer breaks the shell.
	Tab expansion now works on remote nodes started using the JCL interface.
	It is now possible to configure the shell slogan and the session slogans
(that is the texts that appear when you start an Erlang shell). See the
kernel documentation for more details.
	Added shell:start_interactive for starting the interactive shell from a
non-interactive Erlang session (for example an escript).
	On Windows, when starting in detached mode the standard handler are now set
to nul devices instead of being unset.
	Standard I/O now always defaults to unicode mode if supported. Previously
the default was latin1 if the runtime system had been started with
-oldshell or -noshell (for example in an escript). To send raw bytes
over standard out, one now explicitly has to specify
io:setopts(standard_io, [{encoding, latin1}]).

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17932 Aux Id: PR-6144 GH-3150 GH-3390 GH-4343 GH-4225

	Added the zip:zip_get_crc32/2 function to retrieve the CRC32 checksum from
an opened ZIP archive.
Own Id: OTP-18159 Aux Id: PR-6904

	Added the options post_process_args and detached to the peer:start
function.
Own Id: OTP-18176 Aux Id: PR-6118

	The re:replace/3,4 functions now accept a fun as the replacement argument.
Own Id: OTP-18221 Aux Id: PR-6197

	The performance of the base64 module has been significantly improved. For
example, on an x86_64 system with the JIT both encode and decode are more than
three times faster than in Erlang/OTP 25.
Own Id: OTP-18228 Aux Id: GH-5639

	Improved implementation of timer:apply_interval/4 reducing load on the timer
server, and introduction of the new function timer:apply_repeatedly/4.
timer:apply_repeatedly/4 is similar to timer:apply_interval/4, but
timer:apply_repeatedly/4 prevents parallel execution of triggered apply
operations which timer:apply_interval/4 does not.
Own Id: OTP-18236 Aux Id: PR-6256

	The base64 module now supports encoding and decoding with an alternate URL
safe alphabet, and an option for accepting or adding missing = padding
characters.
Own Id: OTP-18247 Aux Id: PR-6280, PR-6711

	Add shell:whereis/0 which can be used to locate the current shell process.
Own Id: OTP-18272 Aux Id: PR-6279

	The Erlang shell's auto-completion when typing tab has been changed to
happen after the editing current line instead of before it.
This behaviour can be configured using a the shell_expand_location STDLIB
configuration parameter.
Own Id: OTP-18278 Aux Id: PR-6260

	New function ets:lookup_element/4 with a Default argument returned if the
key did not exist in the table. The old ets:lookup_element/3 raises a
badarg exception which can be both inconvenient and slower.
Own Id: OTP-18279 Aux Id: PR-6234

	Typing Ctrl+L in a shell now clears the screen and redraws the current line
instead of only redrawing the current line. To only redraw the current line,
you must now type Alt+L. This brings the behaviour of Ctrl+L closer to how
bash and other shells work.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18285 Aux Id: PR-6262

	peer nodes using standard_io connections now include standard error from
the node in the io stream from the started node.
Own Id: OTP-18287 Aux Id: PR-5955

	A limitation in the binary syntax has been removed. It is now possible to
match binary patterns in parallel. Example: <<A:8>> = <<B:4,C:4>> = Bin
Own Id: OTP-18297 Aux Id: GH-6348

	Improve type specification of unicode:characters_to_list().
Own Id: OTP-18301 Aux Id: PR-6350

	In the lists module, the zip family of functions now takes options to
allow handling lists of different lengths.
Own Id: OTP-18318 Aux Id: PR-6347

	It is documented that $\^X is the ASCII code for Control X, where X is an
uppercase or lowercase letter. However, this notation would work for any
character X, even then it didn't make sense.
In Erlang/OTP 26, it is now documented that the following characters are also
allowed to follow the \^ characters: @, [, \,], ^, _, and ?.
Attempt to use other characters will be rejected with a compiler error.
The value for $\^? is now 127 (instead of 31 as in earlier releases).
Own Id: OTP-18337 Aux Id: GH-6477, PR-6503

	The binary:encode_hex/2 function has been added to allow the encoded
hexadecimal digits to be in either lower or upper case.
Own Id: OTP-18354 Aux Id: PR-6297

	Variants of timer:tc() with user specified time unit have been introduced.
Own Id: OTP-18355 Aux Id: PR-6507

	New function math:tau/0. Returns 2*math:pi().
Own Id: OTP-18361 Aux Id: PR-6536

	The BIFs min/2 and max/2 are now allowed to be used
in guards and match specs.
Own Id: OTP-18367 Aux Id: GH-6544

	Optimized gen_server:multi_call().
Own Id: OTP-18385 Aux Id: PR-6698

	Map comprehensions as suggested in EEP 58 has now been implemented.
Own Id: OTP-18413 Aux Id: EEP-58, PR-6727

	Some map operations have been optimized by changing the internal sort order of
atom keys. This changes the (undocumented) order of how atom keys in small
maps are printed and returned by maps:to_list/1 and maps:next/1. The new
order is unpredictable and may change between different invocations of the
Erlang VM.
For applications where order is important, there is a new function
maps:iterator/2 for creating iterators that return the map elements in a
deterministic order. There are also new modifiers k and K for the format
string for io:format() to support printing map elements
ordered.
Own Id: OTP-18414 Aux Id: PR-6151

	Make gen_server fail "silently" with a new return value for init/1.
Own Id: OTP-18423 Aux Id: https://github.com/erlang/backlog/issues/142

	Improved the selective receive optimization, which can now be enabled for
references returned from other functions.
This greatly improves the performance of gen_server:send_request/3,
gen_server:wait_response/2, and similar functions.
Own Id: OTP-18431 Aux Id: PR-6739

	It is no longer necessary to enable a feature in the runtime system in order
to load modules that are using it. It is sufficient to enable the feature in
the compiler when compiling it.
That means that to use feature maybe_expr in Erlang/OTP 26, it is sufficient
to enable it during compilation.
In Erlang/OTP 27, feature maybe_expr will be enabled by default, but it will
be possible to disable it.
Own Id: OTP-18445

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18474 Aux Id: PR-6895

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	Support has been added in ms_transform for the actions caller_line/0,
current_stacktrace/0, and current_stacktrace/1.
Own Id: OTP-18494 Aux Id: PR-6924

	The family of enumeration functions in module lists has been extended with
enumerate/3 that allows a step value to be supplied.
Own Id: OTP-18495 Aux Id: PR-6943

	Update Unicode to version 15.0.0.
Own Id: OTP-18500

	The regular expression library powering the re module is likely to be
changed in Erlang/OTP 27. See
Upcoming Potential Incompatibilities.
Own Id: OTP-18511 Aux Id: PR-7017

	Improved the performance of sets:subtract/2 when subtracting a small number
of elements.
Own Id: OTP-18515 Aux Id: GH-6990

	The linter will no longer raise warnings for underspecified opaque types.
Own Id: OTP-18518 Aux Id: GH-7015

	Added the new built-in type dynamic/0 introduced in EEP-61, improving
support for gradual type checkers.
Own Id: OTP-18522

	The by gen_statem previously used call proxy process that was used for
preventing late replies from reaching the client at timeout or connection loss
has been removed. It is no longer needed since process aliases take care of
this, are used, and supported by all Erlang nodes that an OTP 26 Erlang node
can communicate with.
Own Id: OTP-18537 Aux Id: PR-7081

	Added the argparse module for simplified argument handling in escripts and
similar.
Own Id: OTP-18558 Aux Id: PR-6852

	Added support for multiple line expressions and navigation in the shell. Added
new keybindings:
	navigate up (ctrl+up)/(alt+up)
	navigate down (ctrl+down)/(alt+down)
	insert newline in middle of line (alt+enter)
	navigate top (alt+<)/(alt+shift+up)
	navigate bottom (alt+>)/(alt+shift+down)
	clear current expression (alt+c)
	cancel search (alt+c)
	opening editor on mac (option+o)/(alt+o)

Modifies the prompt for new lines to make it clearer that the prompt has
entered multi-line mode. Supports terminal with small window size, recommend
not go lower than 7 rows and 40 columns. Modifies the search prompt to support
multi-line statements. Redraw the prompt after continuing from JCL menu.
Own Id: OTP-18575 Aux Id: PR-7169

 STDLIB 4.3.1.3

 Improvements and New Features

	Garbage collect the shell process when reducing the amount of saved history
and results.
Own Id: OTP-18773 Aux Id: PR-7691

 STDLIB 4.3.1.2

 Fixed Bugs and Malfunctions

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 4.3.1.1

 Improvements and New Features

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18556

 STDLIB 4.3.1

 Fixed Bugs and Malfunctions

	The type specs in the erl_parse module has been updated to include the
maybe construct and the ! operator.
Own Id: OTP-18506 Aux Id: GH-6956

 STDLIB 4.3

 Fixed Bugs and Malfunctions

	Fixed a bug that would cause analysis to crash.
Own Id: OTP-18372 Aux Id: GH-6580

	Fixed a crash when formatting stack traces for error reports.
Own Id: OTP-18375 Aux Id: GH-6591

	Instead of crashing, the list_to_integer/1 and
list_to_integer/2 BIFs now raise the system_limit
exception for overlong lists that can't be converted to integers. Similarly,
the string:to_integer/1 BIF now returns {error,system_limit} for overlong
lists.
Own Id: OTP-18475 Aux Id: PR-6897

 Improvements and New Features

	Removal of non-necessary undefined types added to the state's supervisor
record.
Own Id: OTP-18393 Aux Id: PR-6666

 STDLIB 4.2

 Fixed Bugs and Malfunctions

	erl_tar can now read gzip-compressed tar files that are padded. There is a
new option compressed_one for file:open/2 that will read a single member
from a gzip file,
Own Id: OTP-18289 Aux Id: PR-6343

	A concurrent call to ets:rename could cause ets:delete_all_objects to fail
halfway through with badarg.
Own Id: OTP-18292 Aux Id: PR-6366

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

	The compiler could crash when using a record with complex field initialization
expression as a filter in a list comprehension.
Own Id: OTP-18336 Aux Id: GH-6501, PR-6502

	unicode:characters_to_binary() could build unnecessarily large call stack.
Own Id: OTP-18351 Aux Id: ERIERL-885, PR-6529

 Improvements and New Features

	Improve error message for ets:new/2 name clash. Say "name already exists"
instead of less specific "invalid options".
Own Id: OTP-18283 Aux Id: PR-6338

 STDLIB 4.1.1

 Fixed Bugs and Malfunctions

	peer nodes failed to halt when the process supervising the control
connection crashed. When an alternative control connection was used, this
supervision process also quite frequently crashed when the peer node was
stopped by the node that started it which caused the peer node to linger
without ever halting.
Own Id: OTP-18249 Aux Id: PR-6301

 STDLIB 4.1

 Fixed Bugs and Malfunctions

	Fixed inconsistency bugs in global due to nodeup/nodedown messages not
being delivered before/after traffic over connections. Also fixed various
other inconsistency bugs and deadlocks in both global_group and global.
As building blocks for these fixes, a new BIF erlang:nodes/2 has been
introduced and net_kernel:monitor_nodes/2 has been extended.
The -hidden and
-connect_all command line arguments did
not work if multiple instances were present on the command line which has been
fixed. The new kernel parameter
connect_all has also been introduced
in order to replace the -connect_all command line argument.
Own Id: OTP-17934 Aux Id: PR-6007

	Fix the public_key:ssh* functions to be listed under the correct release in
the Removed Functionality User's Guide.
Own Id: OTP-18139 Aux Id: PR-6060

	The type spec for format_status/1 in gen_statem, gen_server and
gen_event has been corrected to state that the return value is of the same
type as the argument (instead of the same value as the argument).
Own Id: OTP-18142 Aux Id: PR-6078

	If the timer server child spec was already present in kernel_sup but it
was not started, the timer server would fail to start with an
{error, already_present} error instead of restarting the server.
Own Id: OTP-18146 Aux Id: PR-5983

	When changing callback module in gen_statem the state_enter calls flag from
the old module was used in for the first event in the new module, which could
confuse the new module and cause malfunction. This bug has been corrected.
With this change some sys debug message formats have been modified, which
can be a problem for debug code relying on the format.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18239

 Improvements and New Features

	There is a new configure option, --enable-deterministic-build, which will
apply the deterministic compiler option when building Erlang/OTP. The
deterministic option has been improved to eliminate more sources of
non-determinism in several applications.
Own Id: OTP-18165 Aux Id: PR-5965

	The rfc339_to_system_time/1,2 functions now allows the minutes part to be
omitted from the time zone.
Own Id: OTP-18166 Aux Id: PR-6108

	The receive statement in gen_event has been optimized to not use selective
receive (which was never needed, and could cause severe performance
degradation under heavy load).
Own Id: OTP-18194 Aux Id: PR-6199

	Add new API function erl_features:configurable/0
Own Id: OTP-18199 Aux Id: PR-5790

 STDLIB 4.0.1

 Fixed Bugs and Malfunctions

	In the initial release of Erlang/OTP 25, the expression bound to the _
pseudo-field in a record initialization would always be evaluated once, even
if all other fields in the record were explicitly initialized. That would
break the use case of binding the expression error(...) to _ in order to
get an exception if not all fields were initialized.
The behavior of binding to _ has been reverted to the pre-OTP 25 behavior,
that is, to not evaluate the expression if all fields have been bound to
explicit values.
Own Id: OTP-18110 Aux Id: GH-6000

 STDLIB 4.0

 Fixed Bugs and Malfunctions

	Improve the Erlang code linter's check of unused types.
Own Id: OTP-17370 Aux Id: GH-4784

	Fix race condition in proc_lib:stop/3 where the process is not stopped when
the timeout given is very short.
Own Id: OTP-17480 Aux Id: GH-4853 PR-4872

	Maps are now fully supported in by ms_transform.
Own Id: OTP-17518 Aux Id: GH-4915

	Fix gen_server:call with the first argument as self() to throw an error
instead of failing with a timeout.
The same fix has also been done for gen_statem:call/3, gen_event:sync_notify/2
and any other functionality relying on the internal gen:call/3 function.
A similar fix was also done when using io:format/2 and the current
group_leader was set to the current process.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17544 Aux Id: PR-5008

	erl_pp printed unary - and + operators with a space between the operator and
the operand. This is fixed by not having any space in between.
Own Id: OTP-17566 Aux Id: PR-5095, GH-5093

	Adjust uri_string:normalize behavior for URIs with undefined port (URI string
with a port colon but no port value or URI map with port => undefined).
Remove redundant normalization from http_request module.
Before this change, normalize would not remove port subcomponent in such cases
and could for example return "http://localhost:" URI.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17627

	Fix reduction counting bug in re:run that caused the function to yield too
frequently when doing global matches.
Own Id: OTP-17661 Aux Id: PR-5165

	Fix the memory value returned from ets:info(Tid,memory) when the
read_concurrency option is used.
Before this fix the memory used by the scheduler specific lock cache lines was
not counted towards the total. This caused the returned memory usage to be
very incorrect on systems with many schedulers for tables with man locks.
Own Id: OTP-17832 Aux Id: PR-5494

	Avoid confusion by correcting the argument order in the gen_event crash log
printout.
Own Id: OTP-17878

	Fixed string:next_grapheme/1 to return an empty binary in the tail for
binary input for the last grapheme cluster.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18009 Aux Id: PR-5785

	Fixed type specifications of the supervisor:sup_name/0 and
supervisor:sup_ref/0 types.
Own Id: OTP-18034 Aux Id: PR-4661, GH-4622

	If a default record field initialization (_ = Expr) was used even though all
records fields were explicitly initialized, Expr would not be evaluated.
That would not be a problem, except when Expr would bind a variable
subsequently used, in which case the compiler would crash.
As an example, if record #r{} is defined to have only one field a, the
following code would crash the compiler:
#r{a=[],_=V=42}, V
To fix that problem, the compiler will make sure that Expr is always
evaluated at least once. The compiler will now rewrite the example to
essentially:
V=42, #r{a=[]}, V
Own Id: OTP-18083

 Improvements and New Features

	Users can now configure ETS tables with the {write_concurrency, auto}
option. This option forces tables to automatically change the number of locks
that are used at run-time depending on how much concurrency is detected. The
{decentralized_counters, true} option is enabled by default when
{write_concurrency, auto} is active.
Benchmark results comparing this option with the other ETS optimization
options are available here:
https://erlang.org/bench/ets_bench_result_lock_config.html
Own Id: OTP-15991 Aux Id: PR-5208

	The format_status/2 callback for gen_server, gen_statem and gen_event
has been deprecated in favor of the new format_status/1 callback.
The new callback adds the possibility to limit and change many more things
than the just the state, such as the last received message, the reason for
terminating and more events specific to each type of behavior. See the
respective modules documentation for more details.
Own Id: OTP-17351 Aux Id: GH-4673 PR-4952

	The timer module has been modernized and made more efficient, which makes
the timer server less susceptible to being overloaded. The timer:sleep/1
function now accepts an arbitrarily large integer.
Own Id: OTP-17481 Aux Id: PR-4811

	Add lists:enumerate/[1,2].
Own Id: OTP-17523 Aux Id: PR-4928

	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

	Support native time unit in calendar functions system_time_to_rfc3339/2
and rfc3339_to_system_time.
Own Id: OTP-17592 Aux Id: ERIERL-663, PR-5243

	The tagged tuple tests and fun-calls have been optimized and are now a little
bit cheaper than previously.
These optimizations become possible after making sure that all boxed terms
have at least one word allocated after the arity word. This has been
accomplished by letting all empty tuples refer to the same empty tuple literal
which also reduces memory usage for empty tuples.
Own Id: OTP-17608

	The signal queue benchmark in parallel_messages_SUITE and the ETS benchmark in
ets_SUITE have benchmark result visualization HTML pages with "fill-screen"
buttons to make the graphs bigger. This button did not work as intended
before. When pressing the button for a graph, the last graph got replaced with
a bigger version and not the one over the button. This is now fixed.
Own Id: OTP-17630

	The new module peer supersedes the slave module. The slave module is now
deprecated and will be removed in OTP 27.
peer contains an extended and more robust API for starting erlang nodes.
Own Id: OTP-17720 Aux Id: PR-5162

	This change introduces quote and unquote functions in uri_string module - a
replacement for deprecated encode and decode functions from http_uri.
Own Id: OTP-17778 Aux Id: GH-5368

	In order to make it easier for the user to manage multiple outstanding
asynchronous call requests, new functionality utilizing request identifier
collections have been introduced in
erpc,
gen_server,
gen_statem, and
gen_event.
Own Id: OTP-17784 Aux Id: PR-5792

	Update to the Unicode 14.0 specification.
Own Id: OTP-17869 Aux Id: PR-5595

	The following ets types have been renamed to a clearer name: tab/0 to
table/0 and comp_match_spec/0 to compiled_match_spec/0.
The types table_access/0 and table_type/0 have been exported.
Own Id: OTP-17901 Aux Id: GH-4968 PR-5649

	Add support for locating .asn1 files to the default search rules of
filelib:find_file/1 and filelib:find_source/1.
Own Id: OTP-17908 Aux Id: GH-5655 PR-5669

	Type specifications have been added to the gen_server, and the documentation
has been updated to utilize this.
This surfaced a few type violations that has been corrected in global,
logger_olp and rpc.
Own Id: OTP-17915 Aux Id: PR-5751, GH-2375, GH-2690

	The non-local function handler for the erl_eval can now be called with
either two or three arguments. When called with three arguments, the first
argument is the annotation for the node in the abstract format.
All errors during evaluation will now be passed through erlang:raise/3. If
the restricted shell is active and it does not let erlang:raise/3 through,
evaluation errors will be printed in less clear way. See the documentation for
restricted shell in shell.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17925 Aux Id: PR-5631

	Added filelib:ensure_path/1 that ensures that all directories for the given
path exists (unlike filelib:ensure_dir/1, which will not create the last
segment of the path).
Own Id: OTP-17953 Aux Id: PR-5621

	The functions groups_from_list/2 and groups_from_list/3 have been added to
the maps module.
Own Id: OTP-17969 Aux Id: PR-5588

	gen_server has been refactored to throw more readable exceptions when a
callback returns bad values in the Timeout field
(timeout() | 'hibernate' | {'continue,_}), and also to verify that argument
in the gen_server:enter_loop/3,4,5 API function.
Own Id: OTP-17974 Aux Id: GH-5683

	The functions uniq/1 and uniq/2 for removing duplicates have been added to
the lists module.
Own Id: OTP-17977 Aux Id: GH-5606, PR-5766

	Added support for configurable features as described in EEP-60. Features can
be enabled/disabled during compilation with options
(-enable-feature Feature, -disable-feature Feature and
+{feature, Feature, enable|disable}) to erlc as well as with directives
(-feature(Feature, enable|disable).) in the file. Similar options can be
used to erl for enabling/disabling features allowed at runtime. The new
maybe expression (EEP-49) is fully supported as the feature maybe_expr.
The features support is documented in the reference manual.
Own Id: OTP-17988

	The function filename:safe_relative_path/1, which has been deprecated since
OTP 25, has been removed. Use filelib:safe_relative_path/2 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17991

	A new PRNG have been added to the rand module: mwc59 which has been
developed in collaboration with Sebastiano Vigna. It is intended for
applications that need really fast pseudo-random numbers, and it comes with
two output value scramblers, one fast and one thorough.
Two internal functions for the exsp generator have also been exported so
they can be used outside the rand plug-in framework to shave off some
overhead.
The internal splitmix64 generator has also been exported which can be useful
for seeding other kinds of PRNG:s than its own.
Own Id: OTP-18011

 STDLIB 3.17.2.4

 Fixed Bugs and Malfunctions

	The following functions are now much faster when given a long list or binary:
	erlang:list_to_integer/1
	erlang:binary_to_integer/1
	erlang:binary_to_integer/2
	erlang:list_to_integer/2
	string:to_integer/1

Own Id: OTP-18659 Aux Id: PR-7426

 STDLIB 3.17.2.3

 Improvements and New Features

	Static supervisors are very idle processes after they have started so they
will now be hibernated after start to improve resource management.
Own Id: OTP-18556

 STDLIB 3.17.2.2

 Fixed Bugs and Malfunctions

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

 STDLIB 3.17.2.1

 Fixed Bugs and Malfunctions

	When changing callback module in gen_statem the state_enter calls flag from
the old module was used in for the first event in the new module, which could
confuse the new module and cause malfunction. This bug has been corrected.
With this change some sys debug message formats have been modified, which
can be a problem for debug code relying on the format.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18239

 STDLIB 3.17.2

 Fixed Bugs and Malfunctions

	The type specifications for shell_docs:get_doc/3,
shell_docs:get_callback_doc/3, and shell_docs:get_type_doc/3 incorrectly
stated that the returned Metadata was an empty map.
Own Id: OTP-18081

 STDLIB 3.17.1

 Fixed Bugs and Malfunctions

	The compilation time is no longer recorded in BEAM files. There remained
several undocumented functions that attempted to retrieve compilation times.
Those have now been removed.
Own Id: OTP-17962

 STDLIB 3.17

 Fixed Bugs and Malfunctions

	Fix rendering of nbsp on terminals that do not support unicode.
Own Id: OTP-17662 Aux Id: PR-5206

	Improved the erl_error printout for when re fails to compile a regular
expression to also print hints about why the compilation failed.
Own Id: OTP-17750 Aux Id: PR-5366

	Fixed spec for supervisor_bridge:start_link().
Own Id: OTP-17766 Aux Id: PR-5362

	Added missing shutdown clauses in supervisor which could cause erroneous
error reports.
Own Id: OTP-17767 Aux Id: PR-5344

 Improvements and New Features

	Add the no_auto_import_types to erl_lint to allow a module to define types
of the same name as a predefined type.
Own Id: OTP-17744 Aux Id: PR-5292

 STDLIB 3.16.1

 Fixed Bugs and Malfunctions

	Fixed a bug that could cause a child to become orphaned when a supervisor died
between unlinking and sending the shutdown signal to this child.
There was also a possibility for erratic supervisor reports caused by a race
between a supervisor shutting down a child and that child exiting by itself at
the same time.
Own Id: OTP-17649 Aux Id: GH-5193, PR-5201

 STDLIB 3.16

 Fixed Bugs and Malfunctions

	Fix io:format with ~p to no longer interpret floats as printable
characters.
Own Id: OTP-17424 Aux Id: GH-4801 PR-4803

	Fix specs for base64 encode/decode functions to also include 0.
Own Id: OTP-17429 Aux Id: GH-4761

	The failing call io:format("~p\n") would result in a warning for line number
0 instead of the correct line and column numbers. This has been corrected, and
all warnings for failing calls to io:format() has been
rephrased to make it clearer exactly what the problem is.
Own Id: OTP-17430

	When the options warn_missing_spec and export_all were given, there would
only be warnings for missing specs for functions that had been explicitly
exported using an -export attribute.
Own Id: OTP-17434 Aux Id: GH-4772

	Calling c:ls/1 with an atom whose contents is the the name of a file (as
opposed to a directory) would crash.
Own Id: OTP-17463 Aux Id: GH-4916

	The MODULE and MODULE_STRING macros would always appear to be defined
(when tested by -ifdef), even though no -module() declaration had been
seen yet. Changed so that -ifdef ?MODULE. will not consider ?MODULE defined
if -module() has not been previously seen.
Own Id: OTP-17505 Aux Id: GH-4995

	Fix bug with rendering of missing types and callbacks in shell_docs.
Own Id: OTP-17573 Aux Id: ERL-1264 GH-4270

	When the deterministic option was given to the compiler, the ?FILE macro
would be expanded to full path of the source file before the first include
directive and to base part of the filename after include directive.
Own Id: OTP-17581 Aux Id: PR-5141

	Fixed broken win32reg:delete_key and fixed win32reg:value for default
value.
Own Id: OTP-17622 Aux Id: PR-5038

	Fixed error information for the call maps:get(some_key, #{}).
Own Id: OTP-17634 Aux Id: GH-5196

 Improvements and New Features

	Most output functions in the io module now print extra error information
when provided with invalid arguments. The functions are: io:format,
io:fwrite, io:put_chars, io:nl and io:write.
Own Id: OTP-17317 Aux Id: PR-4757

	EEP-54 (Provide more information about errors) now includes two new return
values for the format_error callback, general and reason.
Multi-line error descriptions returned from a format_error callback are now
correctly indented.
The documentation for erl_error, error/3 and
Errors and Error Handling in the Erlang Reference
Manual have been extended.
Own Id: OTP-17454 Aux Id: PR-4764

	In the documentation for the lists module, it has been clarified that
predicate funs must return a boolean.
Own Id: OTP-17503 Aux Id: GH-4985

	The documentation for c:c/1, c:c/2, and c:c/3 has been clarified.
Own Id: OTP-17571 Aux Id: GH-5103

 STDLIB 3.15.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.15.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.15

 Fixed Bugs and Malfunctions

	Time-outs in gen_statem with relative time 0 did not behave quite
according to the intended model. This has now been corrected.
The correction introduces a small potential incompatibility e.g when combining
a state time-out with inserted events, and the inserted event does a state
change in the state with the time-out. Before this correction the state
time-out could be delivered even after the second state change, but now it is
guaranteed that a state time-out is only delivered in the state it was started
for, even in this corner case.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15107 Aux Id: ERL-1381, PR-2813

	Fix bugs in erl_eval concerning bitstring comprehensions.
Own Id: OTP-16865

	File names that start with a dot (such as ".gitignore" are now treated as
file names and not extensions by filename:extension/1 and
filename:rootname/1.
Own Id: OTP-16905

	Fixed a bug where beam_lib:chunks/3 with the allow_missing_chunks option
would crash if a named chunk was missing.
Own Id: OTP-16950 Aux Id: ERL-1378

	A floating point zero (0.0) can be both positive (+0.0) and negative (-0.0).
Multiple bugs in the compiler, runtime system, and STDLIB have been fixed to
ensure that the minus sign on 0.0 is not lost.
Own Id: OTP-17077 Aux Id: ERL-1431, PR-2903, PR-2905, PR-2906

	Eliminated a Dialyzer crashed when the -MMD option is used to generate a
dependency file and a BEAM file a the same time.
Own Id: OTP-17118 Aux Id: PR-2825

	Fixed bug in shell_docs and erl_docgen that interpreted em tags as
strong.
Own Id: OTP-17122

	On Solaris, the math:acos/1 and math:asin/1 functions would not fail for
arguments outside the valid domain.
Own Id: OTP-17133

	Silence unused_record warnings when using ms_transform. The parse
transform ms_transform replaces records with tuples, which can cause the
Erlang code linter to emit warnings about unused records.
Own Id: OTP-17186

	Documented a deficiency in the re module regarding the [:ascii:] character
class matching Latin-1 characters.
Own Id: OTP-17222 Aux Id: GH-4544

	Fixed spec of start functions in generic behaviors.
Own Id: OTP-17342 Aux Id: GH-4725 PR-4726

	Supervisors rejected child specs with a shutdown value of 0.
Own Id: OTP-17364 Aux Id: PR-4747

 Improvements and New Features

	In the rand module it is now possible to seed the default algorithm using an
algorithm alias: default.
Generating pseudo random binaries has been implemented with rand:bytes/1 and
rand:bytes_s/2.
Own Id: OTP-14646 Aux Id: PR-2920

	New functions have been added to the proplists module: to_map/1,2 and
from_map/1.
Own Id: OTP-14647 Aux Id: PR-2910

	New functions have been added to the queue module: all/2, any/2,
delete/2, delete_r/2, delete_with/2, and delete_with_r/2.
Own Id: OTP-14650 Aux Id: PR-2850

	New function have been added to the queue module: fold/2 and
filtermap/2.
Own Id: OTP-14793 Aux Id: PR-2791

	Support for handling abstract code created before OTP R15 has been dropped.
Own Id: OTP-16678 Aux Id: PR-2627

	Extended error information for failing BIF calls as proposed in
EEP 54 has been
implemented.
When a BIF call from the Erlang shell fails, more information about which
argument or arguments that were in error will be printed. The same extended
error information will by proc_lib, common_test, and qlc when BIF calls
fail.
For applications that wish to provide the same extended error information,
there are new functions erl_error:format_exception/3 and
erl_error:format_exception/4.
There is a new error/3 BIF that allows applications or
libraries to provide extended error information in the same way for their own
exceptions.
Own Id: OTP-16686

	The process alias feature
as outlined by
EEP 53 has been
introduced. It is introduced in order to provide a lightweight mechanism that
can prevent late replies after timeout or connection loss. For more
information, see EEP 53 and the documentation of the new
alias/1 BIF and the new options to the
monitor/3 BIF.
The call operation in the framework used by gen_server, gen_statem, and
gen_event has been updated to utilize alias in order to prevent late
responses. The gen_statem behavior still use a proxy process in the
distributed case, since it has always prevented late replies and aliases wont
work against pre OTP 24 nodes. The proxy process can be removed in OTP 26.
The alias feature also made it possible to introduce new functions similar to
the erpc:receive_response() function in the gen
behaviors, so the new functions
gen_server:receive_response(),
gen_statem:receive_response(),
gen_event:receive_response() have also
been introduced.
Own Id: OTP-16718 Aux Id: PR-2735

	Improved documentation about exit signals emitted when a gen_server
terminates.
Own Id: OTP-16910 Aux Id: PR-2771

	New functions have been added to the maps module: merge_with/3,
intersect/2, intersect_with/3, filtermap/2, from_keys/2, and
maps:foreach/2.
maps:merge_with/3 is the same as merge/2 but takes an extra fun that is
used to combine items with the same key.
maps:intersect/2 computes the intersection of two maps.
maps:intersect_with/3 is the same as intersect/2 but takes an extra fun
that is used to combine intersecting items.
maps:filtermap/2 allows filtering and mapping of a map in a single pass.
maps:from_keys/2 constructs a map from a list of keys and a single value and
can be used to to optimize sets operations such as from_list/1, filter/2,
intersection/2, and subtract/2.
maps:foreach/2 allows iteration over a map without returning any value.
Own Id: OTP-16936 Aux Id: ERL-1367

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	The filename:src/1 function which was deprecated in OTP 20 has been removed.
Use filelib:find_source/1,3 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16971

	The pretty printer for floating point number have been changed to make it
easier to see if the integer part of the number has been rounded. After the
change the digit that may have been rounded always appears last or just before
the exponent character (e or E). This is accomplished by always printing the
number using scientific notation if it is so large that the integer part could
be rounded.
Own Id: OTP-16980 Aux Id: ERL-1308

	Accept references up to a size of 160-bits from remote nodes. This is the
first step in an upgrade path toward using references up to 160-bits in a
future OTP release.
Own Id: OTP-17005 Aux Id: OTP-16718

	Add option location to erl_parse:abstract/2.
Own Id: OTP-17024

	All long running functions in the maps API are now yielding. In previous
releases the functions maps:from_list/1, maps:keys/1 and maps:values/1
did not yield. This could cause unfair scheduling of processes.
Own Id: OTP-17057

	The sets module now has an optional map-based implementation, as described
in EEP 50.
To use this implementation, pass the {version,2} option to sets:new/1 or
sets:from_list/2.
Own Id: OTP-17059 Aux Id: PR-2864

	Added shell_docs:supported_tags/0. This function can be used to retrieve the
tags currently supported by shell_docs.
Own Id: OTP-17120

	The application/erlang+html documentation storage format used by
shell_docs has been updated to include the tags b, strong, h4, h5
and h6.
Own Id: OTP-17121

	Do not pretty-print catch expressions with unnecessary parentheses. The
re-write of the Erlang parser grammar in PR-2584 implies that parentheses
around catch expressions are in many cases no longer required.
Own Id: OTP-17169 Aux Id: PR-2584

	Improved explanation of {continue,Continue} in Module:init/1 of the
gen_server documentation.
Own Id: OTP-17171 Aux Id: PR-3011

	The erl_eval module now accepts a map for keeping track of bindings. Using
an orddict for bindings will still work.
Own Id: OTP-17175

	Documented epp:scan_erl_form/1 and added epp:scan_file/2.
Own Id: OTP-17199 Aux Id: PR-2658

	The standard floating point printing algorithm used by the io and io_lib
modules has been changed from the algorithm described in [1] to the Ryu
algorithm [2]. This gives a significant speed improvement for the printing of
most floating point numbers and a small memory consumption improvement.
[1]: Robert G. Burger and R. Kent Dybvig. 1996. Printing floating-point
numbers quickly and accurately. In Proceedings of the ACM SIGPLAN 1996
conference on Programming language design and implementation (PLDI '96).
Association for Computing Machinery, New York, NY, USA, 108–116.
DOI:https://doi.org/10.1145/231379.231397
[2]: Ulf Adams. 2018. Ryū: fast float-to-string conversion. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2018). Association for Computing Machinery, New York, NY,
USA, 270–282. DOI:https://doi.org/10.1145/3192366.3192369
Thanks to Thomas Depierre
Own Id: OTP-17210

	Add hex encoding and decoding functions in the binary module.
Own Id: OTP-17236 Aux Id: PR-3014

	The undocumented and partially broken ets:filter/3 function has been
removed.
Own Id: OTP-17263

	Add support in shell_docs to display any "text" documentation format.
This means that h(Module) in the shell now can display the "text/markdown"
of Elixir documentation.
Own Id: OTP-17267

	The internal hashing of keys within ETS tables of types set, bag,
duplicate_bag has been salted to diverge from erlang:phash2. This to avoid
bad hashing if phash2 is used to distribute the keys over separate
tables/nodes.
Own Id: OTP-17276 Aux Id: PR-2979

	Updated to the Unicode 13.0 specification.
Own Id: OTP-17327 Aux Id: PR-4707

	Add compiler option {nowarn_unused_record, RecordNames}. Document compiler
option nowarn_unused_type.
Own Id: OTP-17330

	Implementation of
EEP 56 in
supervisor. It adds the concept of significant children as well as the
auto_shutdown supervisor flag.
See the supervisor manual page for more information.
Own Id: OTP-17334 Aux Id: PR-4638, EEP-56

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

 STDLIB 3.14.2.3

 Fixed Bugs and Malfunctions

	It is not allowed to call functions from guards. The compiler failed to reject
a call in a guard when done by constructing a record with a default
initialization expression that called a function.
Own Id: OTP-18325 Aux Id: GH-6465, GH-6466

 STDLIB 3.14.2.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.14.2.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.14.2

 Fixed Bugs and Malfunctions

	Dictionaries that have become zipped by the zip module did not get executable
permission (for the file owner) which makes the files inside the dictionary
inaccessible. This is fixed by giving dictionaries inside a zip archive XRW
permission.
Own Id: OTP-17295 Aux Id: GH-4687

 STDLIB 3.14.1

 Fixed Bugs and Malfunctions

	Handle maps in erl_parse:tokens().
Own Id: OTP-16978

	The erlang shell function rr has been fixed to be able to read records from
files within a code archive.
Own Id: OTP-17182 Aux Id: PR-3002

	If beam_lib is asked to return abstract code for a BEAM file produced by
Elixir and Elixir is not installed on the computer, beam_lib will no longer
crash, but will return an error tuple. The cover:compile_beam() and
cover:compile_beam_directory() functions have been updated to also return an
error tuple in that situation.
Own Id: OTP-17194 Aux Id: GH-4353

	Correct example module erl_id_trans regarding the {char, C} type.
Own Id: OTP-17273

 STDLIB 3.14

 Fixed Bugs and Malfunctions

	This change fixes the handling of deep lists in the path component when using
uri_string:recompose/1.
Own Id: OTP-16941

	Fix shell_docs to clear shell decorations (bold/underline) when paginating
output.
Fix various small renderings issues when integrating shell_docs with edoc.
Own Id: OTP-17047

 Improvements and New Features

	Improved the API and documentation of the uri_string module.
Added a new chapter to the Users Guide about Uniform Resource Identifiers and
their handling with the new API.
Added two new API functions: uri_string:allowed_characters/0 and
uri_string:percent_decode/1.
This change has been marked as potentially incompatible as
uristring:normalize/2 used to decode percent-encoded character triplets that
corresponded to characters not in the reserved set. After this change,
uri_string:normalize/2 will only decode those percent-encoded triplets that
correspond to characters in the unreserved set (ALPHA / DIGIT / "-" / "." /
"" / "~").
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16460

	The shell_docs module has been expanded with the possibility to configure
unicode, ansi and column size for the rendered text.
Own Id: OTP-16990

 STDLIB 3.13.2

 Fixed Bugs and Malfunctions

	The functions digraph:in_edges/2 and digraph:out_edges/2 would return
false edges if called for a vertex that had a '_' atom in its name term.
Own Id: OTP-16655

	filelib:wildcard("not-a-directory/..") should return an empty list. On
Windows it returned "not-a-directory/..".
Own Id: OTP-16700

	Fix the typespec of shell_docs:render to use the correct type for an MFA.
Own Id: OTP-16739

	Fix uri_string:recompose/1 when host is present but input path is not
absolute.
This change prevents the recompose operation to change the top level domain of
the host when the path does not start with a slash.
Own Id: OTP-16751 Aux Id: ERL-1283

	The epp module would return a badly formed error term when an 'if'
preprocessor directive referenced an undefined symbol. epp:format_error/1
would crash when called with the bad error term.
Own Id: OTP-16816 Aux Id: ERL-1310

	lists:sublist(List, Start, Len) failed with an exception if
Start > length(List) + 1 even though it is explicitly documented that "It is
not an error for Start+Len to exceed the length of the list".
Own Id: OTP-16830 Aux Id: ERL-1334, PR-2718

 STDLIB 3.13.1

 Fixed Bugs and Malfunctions

	When a temporary child of a simple_one_for_one supervisor died, the internal
state of the supervisor would be corrupted in a way that would cause the
supervisor to retain the start arguments for subsequent children started by
the supervisor, causing unnecessary growth of the supervisor's heap. There
state corruption could potentially cause other problems as well.
Own Id: OTP-16804

 STDLIB 3.13

 Fixed Bugs and Malfunctions

	Compiling a match specification with excessive nesting caused the runtime
system to crash due to scheduler stack exhaustion. Instead of crashing the
runtime system, effected functions will now raise a system_limit error
exception in this situation.
Own Id: OTP-16431 Aux Id: ERL-592

	Initialization of record fields using _ is no longer allowed if the number
of affected fields is zero.
Own Id: OTP-16516

	Fix bugs in eval_bits.
Own Id: OTP-16545

 Improvements and New Features

	Improved the printout of single line logger events for most of the OTP
behaviours in STDLIB and Kernel. This includes proc_lib, gen_server,
gen_event, gen_statem, gen_fsm, supervisor, supervisor_bridge and
application.
Improved the chars_limit and
depth handling in proc_lib and when
formatting of exceptions.
Own Id: OTP-15299

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Improved ETS scalability of concurrent calls that change the size of a table,
like ets:insert/2 and ets:delete/2.
This performance feature was implemented for ordered_set in OTP 22.0 and
does now apply for all ETS table types.
The improved scalability may come at the cost of longer latency of
ets:info(T,size) and ets:info(T,memory). A new table option
decentralized_counters has therefore been added. It is default true for
ordered_set with write_concurrency enabled and default false for all
other table types.
Own Id: OTP-15744 Aux Id: OTP-15623, PR-2229

	Handle Unicode filenames in the zip module.
Own Id: OTP-16005 Aux Id: ERL-1003, ERL-1150

	Unicode support was updated to the Unicode 12.1 standard.
Own Id: OTP-16073 Aux Id: PR-2339

	All of the modules proc_lib,
gen_server,
gen_statem, and
gen_event have been extended with a
start_monitor() function. For more information, see the documentation of
start_monitor() for these modules.
Own Id: OTP-16120 Aux Id: ERIERL-402, PR-2427

	Updates for new erlang:term_to_iovec() BIF.
Own Id: OTP-16128 Aux Id: OTP-15618

	Documented a quirk regarding extraction from file descriptors in erl_tar.
Own Id: OTP-16171 Aux Id: ERL-1057

	Added ok as return value to gen_server:reply/2
Own Id: OTP-16210 Aux Id: PR-2411

	New functions have been added to c for printing embedded documentation for
Erlang modules. The functions are:
	h/1,2,3 - Print the documentation for a Module:Function/Arity.

	ht/1,2,3 - Print the type documentation for a Module:Type/Arity.

The embedded documentation is created when building the Erlang/OTP
documentation.
Own Id: OTP-16222

	Add indent and linewidth to the options of the erl_pp module's
functions.
Own Id: OTP-16276 Aux Id: PR-2443

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

	The compiler will now raise a warning when inlining is used in modules that
load NIFs.
Own Id: OTP-16429 Aux Id: ERL-303

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Extend erl_parse:abstract/1,2 to handle external fun expressions
(fun M:F/A).
Own Id: OTP-16480

	Added filelib:safe_relative_path/2 to replace
filename:safe_relative_path/1, which did not safely handle symbolic links.
filename:safe_relative_path/1 has been deprecated.
Own Id: OTP-16483 Aux Id: PR-2542

	The module shell_docs has been added. The module contains functions for
rendering, validating and normalizing embedded documentation.
Own Id: OTP-16500

	Module and function auto-completion in the shell now looks at all available
modules instead of only those loaded. A module is considered available if it
either is loaded already or would be loaded if called.
The auto-completion has also been expanded to work in the new h/1,2,3
function in c.
Own Id: OTP-16501 Aux Id: OTP-16494, OTP-16222, OTP-16406, OTP-16499,
OTP-16500, PR-2545, ERL-708

	Updated the internal pcre library to 8.44.
Own Id: OTP-16557

 STDLIB 3.12.1.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting tuples using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17525 Aux Id: GH-5053

 STDLIB 3.12.1.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-17459 Aux Id: GH-4824, GH-4842

 STDLIB 3.12.1

 Fixed Bugs and Malfunctions

	[re:run(Subject, RE, [unicode])](re:run/3) returned nomatch instead of
failing with a badarg error exception when Subject contained illegal utf8
and RE was passed as a binary. This has been corrected along with
corrections of reduction counting in re:run() error cases.
Own Id: OTP-16553

 STDLIB 3.12

 Fixed Bugs and Malfunctions

	Fix type specification for uri_string:normalize/2 that may also return
error().
Own Id: OTP-16322

	Improve error handling in uri_string:normalize/2. This change fixes a crash
when the input URI has faulty percent-encoding.
Own Id: OTP-16351

	Fix minor bugs in the Erlang pretty printer (erl_pp).
Own Id: OTP-16435

	Fix the Erlang parser regarding consecutive unary operators.
Own Id: OTP-16439

	Let calendar:rfc3339_to_system_time() crash when the time offset is missing.
Own Id: OTP-16514 Aux Id: ERL-1182

 Improvements and New Features

	Implement uri_string:resolve/{2,3} that can be used to resolve a URI
reference against a base URI.
Own Id: OTP-16321

	In gen_statem it is now possible to change the callback module for a running
server. See gen_statem's documentation for change_callback_module,
push_callback_module, and pop_callback_module.
Own Id: OTP-16477 Aux Id: PR-2531

 STDLIB 3.11.2

 Fixed Bugs and Malfunctions

	A directory traversal vulnerability has been eliminated in erl_tar. erl_tar
will now refuse to extract symlinks that points outside the targeted
extraction directory and will return {error,{Path,unsafe_symlink}}. (Thanks
to Eric Meadows-Jönsson for the bug report and for suggesting a fix.)
Own Id: OTP-16441

 STDLIB 3.11.1

 Fixed Bugs and Malfunctions

	The ets:update_counter/4 core dumped when given an ordered_set with
write_concurrency enabled and an invalid position. This bug has been fixed.
Own Id: OTP-16378 Aux Id: ERL-1125

 STDLIB 3.11

 Fixed Bugs and Malfunctions

	The functions unicode:characters_to_list()
and unicode:characters_to_binary()
raised a badarg exception instead of returning an error tuple when passed
very large invalid code points as input.
Own Id: OTP-16052

	Fixed a bug in the linter where list and binary comprehensions could suppress
unsafe variable errors.
Own Id: OTP-16053 Aux Id: ERL-1039

	Fixed incorrect type specifications for erl_tar:open/2, create/2,3, and
add/4.
Own Id: OTP-16085 Aux Id: PR-2379

	Fixed erroneous type spec for binary:list_to_bin/1. Argument type was
changed from iodata/0 to iolist/0.
Own Id: OTP-16132 Aux Id: ERL-1041

	Fix a race in pool:pspawn_link that caused a noproc error to be thrown
when using it to spawn a very short lived process.
Own Id: OTP-16211

	Fixed a performance issue in ETS lookup when using the compressed option and
the term contained atoms. Before this fix the decompress algorithm for atoms
would unnecessarily take a global lock to validate the atom.
Own Id: OTP-16316

 Improvements and New Features

	Added a new compiler/linter option to disable warnings for unused types
(nowarn_unused_type).
Own Id: OTP-16262 Aux Id: ERIERL-435

	ETS tables have been optimized to not use any locks when running in a system
with only one scheduler enabled. This can provide significant performance
gains for applications that use ETS tables heavily.
Own Id: OTP-16315

 STDLIB 3.10

 Fixed Bugs and Malfunctions

	re:run() now yields when validating utf8 in a large subject.
Own Id: OTP-15836 Aux Id: ERL-876

	Upgraded the ERTS internal PCRE library from version 8.42 to version 8.43. See
http://pcre.org/original/changelog.txt
for information about changes made to PCRE. This library implements major
parts of the re regular expressions module.
Own Id: OTP-15889

	The bug with ID ERL-717 has been fixed. The functions io:columns() and
io:rows() only worked correctly inside interactive erlang shells before this
fix. These functions returned {error,enotsup} before this fix even if stdout
and stdin were connected to a terminal when they were invoked from an escript
or a program started with e.g., erl -noshell.
Own Id: OTP-15959 Aux Id: ERL-717

	Fixed handling of ".." and "@" in wildcards. ".." would only work when
preceded by a literal pattern such as in "a/..", not when preceded by wildcard
characters such as in "*/..". The combination "@/.." was also broken, and in
addition "@" in a pattern could degrade performance of the wildcard matching.
Own Id: OTP-15987 Aux Id: ERL-1029

	Make sure ets:fun2ms() can handle ++/2 in the head of functions when
called from the shell.
Own Id: OTP-15992 Aux Id: PR-2322

 Improvements and New Features

	Debugging of time-outs in gen_statem has been improved. Starting a time-out
is now logged in sys:log and sys:trace. Running time-outs are visible in
server crash logs, and with sys:get_status. Due to this system events
{start_timer, Action, State} and {insert_timout, Event, State} have been
added, which may surprise tools that rely on the format of these events.
New features: The EventContent of a running time-out can be updated with
{TimeoutType, update, NewEventContent}. Running time-outs can be cancelled
with {TimeoutType, cancel} which is more readable than using
Time = infinity.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15510

	re:run() now avoids validating utf8 in the subject more than once in the
same call. This validation could previously be performed multiple times when
the global option was passed.
Own Id: OTP-15831 Aux Id: ERL-876

	ETS ordered_set tables with write_concurrency enabled has got a
performance issue fixed. There were no limits for the values of internal
statistics counters before this fix. This could result in that the data
structure sometimes reacted slowly to a change in how many parallel processes
were using it.
Own Id: OTP-15906

	The ordsets:union/1 is now faster when passed a long list of ordsets.
Own Id: OTP-15927

	unicode:characters_to_binary() could return very small binaries as reference
counted off heap binaries. This could cause an unnecessary large memory usage
and an unnecessary load on the binary allocator. Small binaries are now always
returned as heap binaries.
Own Id: OTP-16002 Aux Id: ERIERL-366

	Display a more meaningful error message when a bad I/O server is used in a
script written in Erlang (escript).
Own Id: OTP-16006 Aux Id: ERL-992

	New feature ets:info(_, binary) to get information about all reference
counted binaries kept by a table. This is the same kind of debug information
that process_info(_, binary) returns for a process.
Own Id: OTP-16035 Aux Id: ERIERL-366

	Corrected ETS documentation about the behavior of compiled match
specifications when serialized through external format.
Own Id: OTP-16038 Aux Id: PR-2366

 STDLIB 3.9.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-15875 Aux Id: ERL-967

 STDLIB 3.9.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a failure when formatting binaries using the
control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15847 Aux Id: ERL-957

 STDLIB 3.9

 Fixed Bugs and Malfunctions

	Fix a bug in string:lexemes/2.
The bug was found when optimizing the handling of deep lists of Unicode
characters in the string module.
Own Id: OTP-15649

	A bug has been fixed in the maps implementation that could cause a crash or
memory usage to grow until the machine ran out of memory. This could happen
when inserting a new key-value pair with a key K1 containing a binary B1
into a map M having a key K2 with a binary B2 if the following
conditions were met:
	B1 =/= B2
	size(B1) >= 4294967296
	size(B2) >= 4294967296
	size(M) >= 32
	(size(B1) rem 4294967296) == (size(B2) rem 4294967296)
	the first (size(B1) rem 4294967296) bytes are the same both in B1 and
B2
	substituting B1 in K1 with B2 would create a term with the same value
as K2

The root cause of the problem is that the maps implementation only hashed
the first (X rem 4294967296) bytes of binaries so that different binaries
could get the same hash value independently of the hash seed.
Own Id: OTP-15707

	Since the introduction of the stack trace variable, the Erlang Pretty Printer
has left out the exception class throw even when the stack trace variable
cannot be left out, which is not correct Erlang code. The fix is to always
include the exception class throw.
Own Id: OTP-15751

	record_info/2 is a pseudo-function that requires literal arguments known at
compile time. Therefore, the following usage is illegal: fun record/info/2.
The compiler would crash when during compilation of that kind of code.
Corrected to issue a compilation error.
Own Id: OTP-15760 Aux Id: ERL-907

 Improvements and New Features

	A new rand module algorithm, exro928ss (Xoroshiro928**), has been
implemented. It has got a really long period and good statistical quality for
all output bits, while still being only about 50% slower than the default
algorithm.
The same generator is also used as a long period counter in a new crypto
plugin for the rand module, algorithm crypto_aes. This plugin uses AES-256
to scramble the counter which buries any detectable statistical artifacts.
Scrambling is done in chunks which are cached to get good amortized speed
(about half of the default algorithm).
Own Id: OTP-14461 Aux Id: PR-1857

	Types related to server naming and starting have been exported from
gen_statem. These are: server_name/0, server_ref/0, start_opt/0,
start_ret/0 and enter_loop_opt/0.
Own Id: OTP-14724 Aux Id: PR-2056

	The default algorithm for the rand module has been changed to exsss
(Xorshift116**) which is a combination of the Xorshift116 (exsp) state
update and a new scrambler "StarStar" from the 2018 paper "Scrambled Linear
Pseudorandom Number Generators" by David Blackman and Sebastiano Vigna. This
combination should not have the caveat of weak low bits that the previous
default algorithm(s) have had, with the cost of about 10% lower speed. See
GitHub pull request #1969.
Own Id: OTP-14731 Aux Id: PR-1969

	The generic state machine behaviour gen_statem has gotten code cleanup and
documentation improvements from GitHub Pull Request #1855, even though the PR
itself was rejected.
Own Id: OTP-14737 Aux Id: PR-1855

	Update Unicode specification to version 11.0.
Own Id: OTP-15111

	ETS option write_concurrency now also affects and improves the scalability
of ordered_set tables. The implementation is based on a data structure
called contention adapting search tree, where the lock granularity adapts to
the actual amount of concurrency exploited by the applications in runtime.
Own Id: OTP-15128

	Optimized maps:new/0 with trivial Erlang implementation, making use of
literal terms (the empty map) not needing dynamic heap allocation.
Own Id: OTP-15200 Aux Id: PR-1878

	The gen_* behaviours have been changed so that if logging of the last N
messages through sys:log/2,3 is active for the server, this log is included
in the terminate report.
To accomplish this the format of "System Events" as defined in the man page
for sys has been clarified and cleaned up, a new function sys:get_log/1
has been added, and sys:get_debug/3 has been deprecated. Due to these
changes, code that relies on the internal badly documented format of "System
Events", need to be corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15381

	The gen_statem behaviour engine loop has been optimized for better
performance in particular when the callback module returns some actions, that
is better performance for more realistic applications than the Echo Benchmark.
Own Id: OTP-15452

	Do not allow function specifications for functions residing in other modules.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15563 Aux Id: ERL-845, OTP-15562

	The persistent_term functions put/2 and erase/1
are now yielding.
Own Id: OTP-15615

	Previously, all ETS tables used centralized counter variables to keep track of
the number of items stored and the amount of memory consumed. These counters
can cause scalability problems (especially on big NUMA systems). This change
adds an implementation of a decentralized counter and modifies the
implementation of ETS so that ETS tables of type ordered_set with
write_concurrency enabled use the decentralized counter. Experiments
indicate that this change substantially improves the scalability of ETS
ordered_set tables with write_concurrency enabled in scenarios with
frequent ets:insert/2 and ets:delete/2 calls.
Own Id: OTP-15623 Aux Id: PR-2190

	Use ssh instead of rsh as the default remote shell.
Own Id: OTP-15633 Aux Id: PR-1787

	Added beam_lib:strip/2 and friends, which accept a list of chunks that
should be preserved when stripping.
Own Id: OTP-15680 Aux Id: PR-2114

	Optimize printing of maps with io_lib:write(). Also optimize pretty printing
of strings (~s and ~ts) when limiting the output with the chars_limit
option.
Own Id: OTP-15705

	There are new compiler options nowarn_removed and {nowarn_removed,Items}
to suppress warnings for functions and modules that have been removed from
OTP.
Own Id: OTP-15749 Aux Id: ERL-904

	Let the Erlang Pretty Printer put atomic parts on the same line.
Own Id: OTP-15755

	Add option quote_singleton_atom_types to the Erlang Pretty Printer's
functions. Setting the option to true adds quotes to all singleton atom
types.
Own Id: OTP-15756

 STDLIB 3.8.2.4

 Fixed Bugs and Malfunctions

	[re:run(Subject, RE, [unicode])](re:run/3) returned nomatch instead of
failing with a badarg error exception when Subject contained illegal utf8
and RE was passed as a binary. This has been corrected along with
corrections of reduction counting in re:run() error cases.
Own Id: OTP-16553

 STDLIB 3.8.2.3

 Fixed Bugs and Malfunctions

	A directory traversal vulnerability has been eliminated in erl_tar. erl_tar
will now refuse to extract symlinks that points outside the targeted
extraction directory and will return {error,{Path,unsafe_symlink}}. (Thanks
to Eric Meadows-Jönsson for the bug report and for suggesting a fix.)
Own Id: OTP-16441

 STDLIB 3.8.2.2

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a loop when formatting terms using the control
sequences p or P and limiting the output with the option chars_limit.
Own Id: OTP-15875 Aux Id: ERL-967

 STDLIB 3.8.2.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a failure when formatting binaries using the
control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15847 Aux Id: ERL-957

 STDLIB 3.8.2

 Fixed Bugs and Malfunctions

	A bug in gen_statem has been fixed where the internal timeout message could
arrive as an info to the callback module during high load due to incorrect use
of asynchronous timer cancel.
Own Id: OTP-15295

 STDLIB 3.8.1

 Fixed Bugs and Malfunctions

	Fixed a performance regression when reading files opened with the compressed
flag.
Own Id: OTP-15706 Aux Id: ERIERL-336

 STDLIB 3.8

 Fixed Bugs and Malfunctions

	Fix a bug in the Erlang Pretty Printer: long atom names in combination with
<<>> could cause a crash.
Own Id: OTP-15592 Aux Id: ERL-818

	Fix bugs that could cause wrong results or bad performance when formatting
lists of characters using the control sequences p or P and limiting the
output with the option chars_limit.
Own Id: OTP-15639

 Improvements and New Features

	Improved ETS documentation about safe table traversal and the partially bound
key optimization for ordered_set.
Own Id: OTP-15545 Aux Id: PR-2103, PR-2139

	Optimize calendar:gregorian_days_to_date/1.
Own Id: OTP-15572 Aux Id: PR-2121

	Optimize functions calendar:rfc3339_to_system_time() and
calendar:system_time_to_rfc3339().
Own Id: OTP-15630

 STDLIB 3.7.1

 Fixed Bugs and Malfunctions

	Optimize pretty printing of terms. The slower behaviour was introduced in
Erlang/OTP 20.
Own Id: OTP-15573 Aux Id: ERIERL-306

 STDLIB 3.7

 Fixed Bugs and Malfunctions

	Document bit_size in match specifications and allow it in ets:fun2ms.
Own Id: OTP-15343 Aux Id: PR-1962

	The beam() type in beam_lib is defined as
module() | file:filename() | binary(). The module/0 is misleading.
Giving the module name as an atom will only work if the BEAM file is in a
current directory.
To avoid confusion, module/0 has been removed from the type. That means
that there will be a Dialyzer warning for code that call beam_lib with an
atom as filename, but the calls will still work.
Own Id: OTP-15378 Aux Id: ERL-696

	unicode_util crashed on certain emoji grapheme clusters in binary strings.
Own Id: OTP-15428 Aux Id: ERL-777

	When an external fun was used, warnings for unused variables could be
suppressed.
Own Id: OTP-15437 Aux Id: ERL-762

	Fix reduction count in lists:member/2
Own Id: OTP-15474 Aux Id: ERIERL-229

 Improvements and New Features

	When specified, the +{source,Name} option will now override the actual file
name in stack traces, instead of only affecting the return value of
Mod:module_info().
The +deterministic flag will also affect stack traces now, omitting all path
information except the file name, fixing a long-standing issue where
deterministic builds required deterministic paths.
Own Id: OTP-15245 Aux Id: ERL-706

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

	calendar:system_time_to_rfc3339/1,2 no longer remove trailing zeros from
fractions.
Own Id: OTP-15464

 STDLIB 3.6

 Fixed Bugs and Malfunctions

	The specs of filename:basedir/2,3 are corrected.
Own Id: OTP-15252 Aux Id: ERL-667

 Improvements and New Features

	Let dets:open_file() exit with a badarg message if given a raw file name
(a binary).
Own Id: OTP-15253 Aux Id: OTP-13229, ERL-55

	The Format argument of the formatting functions in modules io and io_lib
is accepted even if it is, for example, a list of binaries. This is how it
used to be before Erlang/OTP 21.0.
Own Id: OTP-15304

 STDLIB 3.5.1

 Fixed Bugs and Malfunctions

	Fix a bug that could cause a crash when formatting a list of non-characters
using the control sequences p or P and limiting the output with the option
chars_limit.
Own Id: OTP-15159

 STDLIB 3.5

 Fixed Bugs and Malfunctions

	gen_statem improvements.
When using an exception that is valid but not allowed in a state enter call,
the reason has been changed from {bad_action_from_state_function,Action} to
{bad_state_enter_action_from_state_function,Action}.
Timer parsing has been improved. Many erroneous timeout tuples was not handled
correctly.
The documentation has been updated, in particular the User's Guide and the
pointer to it from the Reference Manual is much more obvious.
Own Id: OTP-14015

	The type specifications for file:posix/0 and
inet:posix/0 have been updated according to which errors
file and socket operations should be able to return.
Own Id: OTP-14019 Aux Id: ERL-550

	File operations used to accept filenames containing
null characters (integer value zero). This caused the name to be truncated and
in some cases arguments to primitive operations to be mixed up. Filenames
containing null characters inside the filename are now rejected and will
cause primitive file operations to fail.
Also environment variable operations used to accept
names and values of
environment variables containing null characters (integer value zero). This
caused operations to silently produce erroneous results. Environment variable
names and values containing null characters inside the name or value are now
rejected and will cause environment variable operations to fail.
Primitive environment variable operations also used to accept the $=
character in environment variable names causing various problems. $=
characters in environment variable names are now also rejected.
Also os:cmd/1 now reject null characters inside its
command.
erlang:open_port/2 will also reject null characters inside the port name
from now on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14543 Aux Id: ERL-370

	Make io_lib:unscan_format/1 work with pad char and default precision.
Own Id: OTP-14958 Aux Id: PR-1735

	The control sequence modifiers t and l can be used together in the same
control sequence which makes it possible to have Unicode atoms and no
detection of printable character lists at the same time.
Own Id: OTP-14971 Aux Id: PR-1743

	Fix a bug in the Erlang code linter: the check of guard expressions no longer
returns false if the map syntax is used. The bug affected the Erlang shell,
the Debugger, and other modules evaluating abstract code.
Own Id: OTP-15035 Aux Id: ERL-613

	A sys debug fun of type {Fun,State} should not be possible to install twice.
This was, however, possible if the current State was 'undefined', which was
mistaken for non-existing fun. This has been corrected.
Own Id: OTP-15049

	Fix io:putchars/2 stacktrace rewriting at errors to point to a valid
function.
Own Id: OTP-15101

 Improvements and New Features

	The gen_server has gotten a new callback handle_continue/2 for check
pointing the state. This is useful at least when implementing behaviours on
top of gen_server and for some start up scenarios.
Own Id: OTP-13019 Aux Id: PR-1490

	The semantics of timeout parameter {clean_timeout,infinity} to
gen_statem:call/3 has been changed to use a proxy process for the call. With
this change clean_timeout implicates a proxy process with no exceptions.
This may be a hard to observe incompatibility: in the presence of network
problems a late reply could arrive in the caller's message queue when catching
errors. That will not happen after this correction.
The semantics of timeout parameter infinity has not been changed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13073 Aux Id: PR-1595

	A new logging API is added to Erlang/OTP, see the logger manual page, and
section Logging in the Kernel User's Guide.
Calls to error_logger are automatically redirected to the new API, and
legacy error logger event handlers can still be used. It is, however,
recommended to use the Logger API directly when writing new code.
Notice the following potential incompatibilities:
	Kernel configuration parameters error_logger still works, but is overruled
if the default handler's output destination is configured with Kernel
configuration parameter logger.
In general, parameters for configuring error logger are overwritten by new
parameters for configuring Logger.

	The concept of SASL error logging is deprecated, meaning that by default the
SASL application does not affect which log events are logged.
By default, supervisor reports and crash reports are logged by the default
Logger handler started by Kernel, and end up at the same destination
(terminal or file) as other standard log event from Erlang/OTP.
Progress reports are not logged by default, but can be enabled by setting
the primary log level to info, for example with the Kernel configuration
parameter logger_level.
To obtain backwards compatibility with the SASL error logging functionality
from earlier releases, set Kernel configuration parameter
logger_sasl_compatible to true. This prevents the default Logger handler
from logging any supervisor-, crash-, or progress reports. Instead, SASL
adds a separate Logger handler during application start, which takes care of
these log events. The SASL configuration parameters sasl_error_logger and
sasl_errlog_type specify the destination (terminal or file) and severity
level to log for these events.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce
changes to the Logger API and functionality in patches following this release.
These changes might or might not be backwards compatible with the initial
version.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13295

	Add functions calendar:system_time_to_local_time/2 and
calendar:system_time_to_universal_time/2.
Own Id: OTP-13413

	Functions rand:uniform_real/0 and rand:uniform_real_s/1 have been added.
They produce uniformly distributed numbers in the range 0.0 =< X < 1.0 that
are as close to random real numbers as Normalized IEEE 754 Double Precision
allows. Because the random real number exactly 0.0 is infinitely improbable
they will never return exactly 0.0.
These properties are useful when you need to call for example math:log(X) or
1 / X on a random value X, since that will never fail with a number from
these new functions.
Own Id: OTP-13764 Aux Id: PR-1574

	Added maps:iterator/0 and maps:next/1 to be used for iterating over the
key-value associations in a map.
Own Id: OTP-14012

	Changed the default behaviour of .erlang loading: .erlang is no longer
loaded from the current directory. c:erlangrc(PathList) can be used to
search and load an .erlang file from user specified directories.
escript, erlc, dialyzer and typer no longer load an .erlang at all.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14439

	Added new uri_string module to stdlib for handling URIs (RFC 3986).
Own Id: OTP-14496

	Update Unicode specification to version 10.0.
Own Id: OTP-14503

	filelib:wildcard() now allows characters with a special meaning to be
escaped using backslashes.
This is an incompatible change, but note that the use of backslashes in
wildcards would already work differently on Windows and Unix. Existing calls
to filelib:wildcard() needs to be updated. On Windows, directory separators
must always be written as a slash.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14577

	The supervisor now stores its child specifications in a map instead of a list.
This causes a significant improvement when starting many children under a
non-simple_one_for_one supervisor.
Own Id: OTP-14586

	The base64 module is optimized.
Note that the functions encode/1, decode/1, and mime_decode/1 fail
unless called with an argument of the documented type. They used to accept any
iodata/0.
Own Id: OTP-14624 Aux Id: PR-1565

	Add function lists:search/2.
Own Id: OTP-14675 Aux Id: PR-102

	uri_string module extended with functions for handling
application/x-www-form-urlencoded query strings based on the HTML5
specification.
Own Id: OTP-14747

	Add functions calendar:rfc3339_to_system_time/1,2 and
calendar:system_time_to_rfc3339/1,2.
Own Id: OTP-14764

	The stack traces returned by the functions of the erl_eval module more
accurately reflect where the exception occurred.
Own Id: OTP-14826 Aux Id: PR 1540

	Add options atime, mtime, ctime, uid, and gid to the
erl_tar:add/3,4 functions.
Own Id: OTP-14834 Aux Id: PR 1608

	Added ets:whereis/1 for retrieving the table identifier of a named table.
Own Id: OTP-14884

	Improved URI normalization functions in the uri_string module.
Own Id: OTP-14910

	The new functions io_lib:fwrite/3 and io_lib:format/3 take a third
argument, an option list. The only option is chars_limit, which is used for
limiting the number of returned characters. The limit is soft, which means
that the number of returned characters exceeds the limit with at most a
smallish amount. If the limit is set, the functions format/3 and fwrite/3
try to distribute the number of characters evenly over the control sequences
pPswW. Furthermore, the control sequences pPwP try to distribute the
number of characters evenly over substructures.
A modification of the control sequences pPwW is that even if there is no
limit on the number of returned characters, all associations of a map are
printed to the same depth. The aim is to give a more consistent output as the
order of map keys is not defined. As before, if the depth is less than the
number of associations of a map, the selection of associations to print is
arbitrary.
Own Id: OTP-14983

	Add functions ordsets:is_empty/1 and sets:is_empty/1.
Own Id: OTP-14996 Aux Id: ERL-557, PR-1703

	Improve performance of string:uppercase/1, string:lowercase/1 and
string:casefold/1 when handling ASCII characters.
Own Id: OTP-14998

	External funs with literal values for module, name, and arity (e.g.
erlang:abs/1) are now treated as literals. That means more efficient code
that produces less garbage on the heap.
Own Id: OTP-15003

	sys:statistics(Pid,get) did not report 'out' messages from gen_server. This is
now corrected.
Own Id: OTP-15047

	A sys debug function can now have the format {Id,Fun,State} in addition to
the old {Fun,State}. This allows installing multiple instances of a debug
fun.
Own Id: OTP-15048

	The lib module is removed:
	lib:error_message/2 is removed.
	lib:flush_receive/0 is removed.
	lib:nonl/1 is removed.
	lib:progname/0 is replaced by ct:get_progname/0.
	lib:send/2 is removed.
	lib:sendw/2 is removed.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15072 Aux Id: PR 1786, OTP-15114

	Function ets:delete_all_objects/1 now yields the scheduler thread for large
tables that take significant time to clear. This to improve real time
characteristics of other runnable processes.
Own Id: OTP-15078

	In control sequences of the functions io:fwrite/2,3 and io_lib:fwrite/2,3
containing p or P, a field width of value 0 means that no line breaks
are inserted. This is in contrast to the old behaviour, where 0 used to
insert line breaks after every subterm. To insert line breaks after every
subterm, a field width of value 1 can be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15103 Aux Id: ERL-607

 STDLIB 3.4.5.1

 Improvements and New Features

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

 STDLIB 3.4.5

 Fixed Bugs and Malfunctions

	The Module:init/1 function in gen_statem may return an actions list
containing any action, but an erroneous check only allowed state enter actions
so e.g {next_event,internal,event} caused a server crash. This bug has been
fixed.
Own Id: OTP-13995

 STDLIB 3.4.4

 Fixed Bugs and Malfunctions

	Correct filelib:find_source() and filelib:find_file() to by default also
search one level below src. This is in accordance with the Design Principles
which states that an application can have Erlang source files one level below
the src directory.
Own Id: OTP-14832 Aux Id: ERL-527

	The contract of erl_tar:table/2 is corrected.
Own Id: OTP-14860 Aux Id: PR 1670

	Correct a few contracts.
Own Id: OTP-14889

	Fix string:prefix/2 to handle an empty string as second argument.
Own Id: OTP-14942 Aux Id: PR-1702

 STDLIB 3.4.3

 Fixed Bugs and Malfunctions

	Make ets:i/1 exit cleaner when ^D is input while browsing a table. Only the
old Erlang shell is affected (erl flag -oldshell).
Own Id: OTP-14663

	Fixed handling of windows UNC paths in module filename.
Own Id: OTP-14693

 Improvements and New Features

	Improve performance of the new string functionality when handling ASCII
characters.
Own Id: OTP-14670

	Added a clarification to the documentation of unicode:characters_to_list/2.
Own Id: OTP-14798

 STDLIB 3.4.2

 Fixed Bugs and Malfunctions

	Fix a bug in the Erlang shell where recursively defined records with typed
fields could cause a loop.
Own Id: OTP-14488 Aux Id: PR-1489

	Make edlin handle grapheme clusters instead of codepoints to improve the
handling multi-codepoints characters.
Own Id: OTP-14542

	There could be false warnings for erlang:get_stacktrace/0 being used outside
of a try block when using multiple catch clauses.
Own Id: OTP-14600 Aux Id: ERL-478

 Improvements and New Features

	The Erlang code linter no longer checks that the functions mentioned in
nowarn_deprecated_function options are declared in the module.
Own Id: OTP-14378

	General Unicode improvements.
Own Id: OTP-14462

 STDLIB 3.4.1

 Fixed Bugs and Malfunctions

	A bug in proc_lib:format() introduced in Erlang/OTP 20.0 is corrected.
Own Id: OTP-14482 Aux Id: PR-1488

	Fix string:len/1 to be compatible with previous versions.
Own Id: OTP-14487 Aux Id: ERIERL-40

	In OTP-20.0, the behavior of c, make, and ct_make was changed so that in some
cases the beam files by default would be written to the directory where the
source files were found. This is now changed back to the old behavior so beam
files are by default written to current directory.
Own Id: OTP-14489 Aux Id: ERL-438

 STDLIB 3.4

 Fixed Bugs and Malfunctions

	For many releases, it has been legal to override a BIF with a local function
having the same name. However, calling a local function with the same name as
guard BIF as filter in a list comprehension was not allowed.
Own Id: OTP-13690

	A new (default) pseudo-random number generator algorithm Xoroshiro116+ has
been implemented in the rand module.
The old algorithm implementations had a number of flaws so they are all
deprecated, but corrected versions of two of them have been added. See the
documentation.
Own Id: OTP-14295 Aux Id: PR-1372

	The Erlang shell, qlc:string_to_handle(), and the Debugger (the Evaluator
area and Edit variable window of the Bindings area) can parse pids, ports,
references, and external funs, as long as they can be created in the running
system.
Own Id: OTP-14296

	Internal code change: Calls to catch followed by a call to
erlang:get_stacktrace/0 has been rewritten to use try instead of catch
to make the code future-proof.
Own Id: OTP-14400

	The ms_transform module, used by ets:fun2ms/1 and dbg:fun2ms/1,
evaluates constant arithmetic expressions. This is necessary since the Erlang
compiler, which normally evaluates constant expressions, does not recognize
the format generated by ms_transform.
Own Id: OTP-14454 Aux Id: ERIERL-29

	The state machine engine gen_statem can now handle generic time-outs
(multiple named) as well as absolute time-out time. See the documentation.
The gen_statem callback Module:init/1 has become mandatory to harmonize
with other gen_* modules. This may be an incompatibility for gen_statem
callback modules that use gen_statem:enter_loop/4-6.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14531

 Improvements and New Features

	Improved unicode support for strings. Added normalization functions in the
unicode module. Extended the string module API with new functions with
improved unicode handling and that works on grapheme clusters. The new
functions operates on the unicode:chardata() type,
thus they also accept UTF-8 binaries as input.
The old string API have been marked as obsolete. The return values have been
changed for some error cases.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10289 Aux Id: OTP-10309

	There are two new guard BIFs 'floor/1' and
'ceil/1'. They both return integers. In the 'math' module,
there are two new BIFs with the same names that return floating point values.
Own Id: OTP-13692

	Making code_change, terminate and handle_info callbacks optional in the OTP
behaviours.
Own Id: OTP-13801

	The support for Dets files created with Erlang/OTP R7 and earlier is removed.
Own Id: OTP-13830

	Replaced usage of deprecated symbolic time unit
representations.
Own Id: OTP-13831 Aux Id: OTP-13735

	The function fmod/2 has been added to the math module.
Own Id: OTP-14000

	The EXIT signals received from processes using proc_lib now looks like EXIT
signals from processes that were spawned using spawn_link. In particular,
that means that the stack trace is now included in the EXIT signal so that it
can see where the process crashed.
Own Id: OTP-14001

	sets:add_element/2 is faster when adding an element that is already present,
and sets:del_element/2 is faster when the element to be deleted is not
present. This optimization can make certain operations, such as sets:union/2
with many overlapping elements, up to two orders of magnitude faster.
Own Id: OTP-14035

	Add information in doc about supervisor shutdown reason when maximum restart
frequency is reached.
Own Id: OTP-14037 Aux Id: PR-1233

	Added rand:jump/[0|1] functions.
Own Id: OTP-14038 Aux Id: PR-1235

	Functions for detecting changed code has been added. code:modified_modules/0
returns all currently loaded modules that have changed on disk.
code:module_status/1 returns the status for a module. In the shell and in
c module, mm/0 is short for code:modified_modules/0, and lm/0 reloads
all currently loaded modules that have changed on disk.
Own Id: OTP-14059

	Each assert macro in assert.hrl now has a corresponding version with an
extra argument, for adding comments to assertions. These can for example be
printed as part of error reports, to clarify the meaning of the check that
failed.
Own Id: OTP-14066

	error_logger_tty_h and error_logger_file_h now inserts the node
information for nonlocal messages before the message itself instead of after,
both for readability and so as not to change the line termination property at
the end of the message.
Own Id: OTP-14068

	The Erlang code linter checks for badly formed type constraints.
Own Id: OTP-14070 Aux Id: PR-1214

	By default, there will now be a warning when export_all is used. The warning
can be disabled using nowarn_export_all.
Own Id: OTP-14071

	When a gen_server process crashes, the stacktrace for the client will be
printed to facilitate debugging.
Own Id: OTP-14089

	Optimized ETS operations by changing table identifier type from integer to
reference. The reference enables a more direct mapping to the table with less
potential lock contention and makes especially creation and deletion of tables
scale much better.
The change of the opaque type for the ETS table identifiers may cause failure
in code that make faulty assumptions about this opaque type.
Note
The number of tables stored at one Erlang node used to be limited. This is
no longer the case (except by memory usage). The previous default limit was
about 1400 tables and could be increased by setting the environment variable
ERL_MAX_ETS_TABLES before starting the Erlang runtime system. This hard
limit has been removed, but it is currently useful to set the
ERL_MAX_ETS_TABLES anyway. It should be set to an approximate of the
maximum amount of tables used. This since an internal table for named tables
is sized using this value. If large amounts of named tables are used and
ERL_MAX_ETS_TABLES hasn't been increased, the performance of named table
lookup will degrade.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14094

	take/2 has been added to dict, orddict, and gb_trees. take_any/2 has
been added to gb_trees.
Own Id: OTP-14102

	Extend gen_event API to handle options as well.
Own Id: OTP-14123

	Advice on how to tune the supervisor restart frequency (intensity and period)
is added to System Documentation - Design Principles - Supervisor Behaviour.
Own Id: OTP-14168 Aux Id: PR-1289

	gen_fsm is deprecated and is replaced by gen_statem, however for backwards
compatibility reasons gen_fsm may continue to exist as an undocumented feature
for quite some time.
Own Id: OTP-14183

	The shell functions c/1 and c/2 have been extended so that if the argument
is a module name instead of a file name, it automatically locates the .beam
file and the corresponding source file, and then recompiles the module using
the same compiler options (plus any options passed to c/2). If compilation
fails, the old beam file is preserved. Also adds c(Mod, Opts, Filter), where
the Filter argument allows you to remove old compiler options before the new
options are added.
New utility functions file_find/2/3 and find_source/1/2/3 have been added
to filelib.
Own Id: OTP-14190

	erl_tar in previous versions of OTP only supports the USTAR format. That
limited path names to at most 255 bytes, and did not support Unicode
characters in names in a portable way.
erl_tar now has support for reading tar archives in the formats currently in
common use, such as v7, STAR, USTAR, PAX, and GNU tar's extensions to the
STAR/USTAR format. When writing tar archives, erl_tar can now write them in
the PAX format if necessary (for example, to support very long filenames or
filenames with Unicode characters). If possible, erl_tar will still write
tar archives in the USTAR for maximum portability.
Own Id: OTP-14226

	base64:mime_decode/1 has been optimized so that it is now almost as fast
asbase64:decode/1; it used be noticeably slower.
Own Id: OTP-14245

	erl_tar will now strip any leading '/' from pathnames when extracting
files from a tar archive and write a message to the error logger. There is
also new check for directory traversal attacks; if a relative path points
above the current working directory the extraction will be aborted.
Own Id: OTP-14278

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

	The Crypto application now supports generation of cryptographically strong
random numbers (floats < 1.0 and integer arbitrary ranges) as a plugin to the
'rand' module.
Own Id: OTP-14317 Aux Id: PR-1372

	Add new function ets:select_replace/2 which performs atomic
"compare-and-swap" operations for ETS objects using match specifications.
Own Id: OTP-14319 Aux Id: PR-1076

	The Erlang code linter checks for bad dialyzer attributes. It also checks
for bad type variables in type declarations.
Own Id: OTP-14323

	Two new functions has been implemented in the rand module; normal/2 and
normal_s/3, that both produce normal distribution (pseudo) random numbers
with mean value and variance according to arguments.
Own Id: OTP-14328 Aux Id: PR-1382

	Upgraded the OTP internal PCRE library from version 8.33 to version 8.40. This
library is used for implementation of the re regular expressions module.
Besides various bug fixes, the new version allows for better stack protection.
In order to utilize this feature, the stack size of normal scheduler threads
is now by default set to 128 kilo words on all platforms. The stack size of
normal scheduler threads can be set upon system start by passing the
+sss command line argument to
the erl command.
See
http://pcre.org/original/changelog.txt
for information about changes made to PCRE between the versions 8.33 and 8.40.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14331 Aux Id: ERL-208

	Added function re:version/0 which returns information about the OTP internal
PCRE version used for implementation of the re module.
Own Id: OTP-14347 Aux Id: PR-1412

	The format of debug information that is stored in BEAM files (when
debug_info is used) has been changed. The purpose of the change is to better
support other BEAM-based languages such as Elixir or LFE.
All tools included in OTP (dialyzer, debugger, cover, and so on) will handle
both the new format and the previous format. Tools that retrieve the debug
information using beam_lib:chunk(Beam, [abstract_code]) will continue to
work with both the new and old format. Tools that call
beam_lib:chunk(Beam, ["Abst"]) will not work with the new format.
For more information, see the description of debug_info in the documentation
for beam_lib and the description of the {debug_info,{Backend,Data}} option
in the documentation for compile.
Own Id: OTP-14369 Aux Id: PR-1367

	Add option hibernate_after to gen_server, gen_statem and gen_event. Also added
to the deprecated gen_fsm behaviour.
Own Id: OTP-14405

	The size of crash reports created by gen_server, gen_statem and proc_lib
is limited with aid of the Kernel application variable
error_logger_format_depth. The purpose is to limit the size of the messages
sent to the error_logger process when processes with huge message queues or
states crash.
The crash report generated by proc_lib includes the new tag
message_queue_len. The neighbour report also includes the new tag
current_stacktrace. Finally, the neighbour report no longer includes the
tags messages and dictionary.
The new function error_logger:get_format_depth/0 can be used to retrieve the
value of the Kernel application variable error_logger_format_depth.
Own Id: OTP-14417

 STDLIB 3.3

 Fixed Bugs and Malfunctions

	An escript with only two lines would not work.
Own Id: OTP-14098

	Characters ($char) can be used in constant pattern expressions. They can
also be used in types and contracts.
Own Id: OTP-14103 Aux Id: ERL-313

	The signatures of erl_parse:anno_to_term/1 and erl_parse:anno_from_term/1
are corrected. Using these functions no longer results in false Dialyzer
warnings.
Own Id: OTP-14131

	Pretty-printing of maps is improved.
Own Id: OTP-14175 Aux Id: seq13277

	If any of the following functions in the zip module crashed, a file would be
left open: extract(), unzip(), create(), or zip(). This has been
corrected.
A zip file having a "Unix header" could not be unpacked.
Own Id: OTP-14189 Aux Id: ERL-348, ERL-349

	Improve the Erlang shell's tab-completion of long names.
Own Id: OTP-14200 Aux Id: ERL-352

	The reference manual for sys had some faulty information about the
'get_modules' message used by processes where modules change dynamically
during runtime. The documentation is now corrected.
Own Id: OTP-14248 Aux Id: ERL-367

 Improvements and New Features

	Bug fixes, new features and improvements to gen_statem:
A new type init_result/1 has replaced the old init_result/0, so if you used
that old type (that was never documented) you have to change your code, which
may be regarded as a potential incompatibility.
Changing callback modes after code change did not work since the new callback
mode was not recorded. This bug has been fixed.
The event types state_timeout and {call,From} could not be generated with a
{next_event,EventType,EventContent} action since they did not pass the
runtime type check. This bug has now been corrected.
State entry calls can now be repeated using (new) state callback returns
{repeatstate,...}, {repeat_state_and_data,} and repeat_state_and_data.
There have been lots of code cleanup in particular regarding timer handling.
For example is async cancel_timer now used. Error handling has also been
cleaned up.
To align with probable future changes to the rest of gen_*, terminate/3 has
now got a fallback and code_change/4 is not mandatory.
Own Id: OTP-14114

	filename:safe_relative_path/1 to sanitize a relative path has been added.
Own Id: OTP-14215

 STDLIB 3.2

 Fixed Bugs and Malfunctions

	When a simple_one_for_one supervisor is shutting down, and a child exits with
an exit reason of the form {shutdown, Term}, an error report was earlier
printed. This is now corrected.
Own Id: OTP-13907 Aux Id: PR-1158, ERL-163

	Allow empty list as parameter of the fun used with dbg:fun2ms/1.
Own Id: OTP-13974

 Improvements and New Features

	The new behaviour gen_statem has been improved with 3 new features: the
possibility to use old style non-proxy timeouts for gen_statem:call/2,3, state
entry code, and state timeouts. These are backwards compatible. Minor code and
documentation improvements has been performed including a borderline semantics
correction of timeout zero handling.
Own Id: OTP-13929 Aux Id: PR-1170, ERL-284

 STDLIB 3.1

 Fixed Bugs and Malfunctions

	The zip:unzip/1,2 and zip:extract/1,2 functions have been updated to
handle directory traversal exploits. Any element in the zip file that contains
a path that points to a directory above the top level working directory,
cwd, will instead be extracted in cwd. An error message is printed for any
such element in the zip file during the unzip operation. The keep_old_files
option determines if a file will overwrite a previous file with the same name
within the zip file.
Own Id: OTP-13633

	Correct the contracts for ets:match_object/1,3.
Own Id: OTP-13721 Aux Id: PR-1113

	Errors in type specification and Emacs template generation for
gen_statem:code_change/4 has been fixed from bugs.erlang.org's Jira cases
ERL-172 and ERL-187.
Own Id: OTP-13746 Aux Id: ERL-172, ERL-187

 Improvements and New Features

	gen_statem has been changed to set the callback mode for a server to what
Module:callback_mode/0 returns. This facilitates e.g code downgrade since the
callback mode now becomes a property of the currently active code, not of the
server process.
Exception handling from Module:init/1 has also been improved.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13752

 STDLIB 3.0.1

 Fixed Bugs and Malfunctions

	Correct a bug regarding typed records in the Erlang shell. The bug was
introduced in OTP-19.0.
Own Id: OTP-13719 Aux Id: ERL-182

 STDLIB 3.0

 Fixed Bugs and Malfunctions

	Fix a race bug affecting dets:open_file/2.
Own Id: OTP-13260 Aux Id: seq13002

	Don't search for non-existing Map keys twice
For maps:get/2,3 and maps:find/2, searching for an immediate key, e.g. an
atom, in a small map, the search was performed twice if the key did not exist.
Own Id: OTP-13459

	Avoid stray corner-case math errors on Solaris, e.g. an error is thrown on
underflows in exp() and pow() when it shouldn't be.
Own Id: OTP-13531

	Fix linting of map key variables
Map keys cannot be unbound and then used in parallel matching.
Example: #{ K := V } = #{ k := K } = M. This is illegal if 'K' is not
bound.
Own Id: OTP-13534 Aux Id: ERL-135

	Fixed a bug in re on openbsd where sometimes re:run would return an incorrect
result.
Own Id: OTP-13602

	To avoid potential timer bottleneck on supervisor restart, timer server is no
longer used when the supervisor is unable to restart a child.
Own Id: OTP-13618 Aux Id: PR-1001

	The Erlang code preprocessor (epp) can handle file names spanning over many
tokens. Example: -include("a" "file" "name")..
Own Id: OTP-13662 Aux Id: seq13136

 Improvements and New Features

	The types of The Abstract Format in the erl_parse module have been refined.
Own Id: OTP-10292

	Undocumented syntax for function specifications,
-spec F/A :: Domain -> Range, has been removed (without deprecation).
Using the is_subtype(V, T) syntax for constraints (in function
specifications) is no longer documented, and the newer syntax V :: T should
be used instead. The Erlang Parser still recognizes the is_subtype syntax,
and will continue to do so for some time.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11879

	The 'random' module has been deprecated. Use the 'rand' module instead.
Own Id: OTP-12502 Aux Id: OTP-12501

	Background: In record fields with a type declaration but without an
initializer, the Erlang parser inserted automatically the singleton type
'undefined' to the list of declared types, if that value was not present
there. That is, the record declaration:
-record(rec, {f1 :: float(), f2 = 42 :: integer(), f3 ::
some_mod:some_typ()}).
was translated by the parser to:
	-record(rec, {f1 :: float()	'undefined', f2 = 42 :: integer(), f3 ::
	some_mod:some_typ()	'undefined'}).

The rationale for this was that creation of a "dummy" #rec{} record should
not result in a warning from dialyzer that, for example, the implicit
initialization of the #rec.f1 field violates its type declaration.
Problems: This seemingly innocent action has some unforeseen consequences.
For starters, there is no way for programmers to declare that e.g. only floats
make sense for the f1 field of #rec{} records when there is no "obvious"
default initializer for this field. (This also affects tools like PropEr that
use these declarations produced by the Erlang parser to generate random
instances of records for testing purposes.)
It also means that dialyzer does not warn if e.g. an
is_atom/1 test or something more exotic like an
atom_to_list/1 call is performed on the value of the
f1 field.
Similarly, there is no way to extend dialyzer to warn if it finds record
constructions where f1 is not initialized to some float.
Last but not least, it is semantically problematic when the type of the field
is an opaque type: creating a union of an opaque and a structured type is very
problematic for analysis because it fundamentally breaks the opacity of the
term at that point.
Change: To solve these problems the parser will not automatically insert the
'undefined' value anymore; instead the user has the option to choose the
places where this value makes sense (for the field) and where it does not and
insert the | 'undefined' there manually.
Consequences of this change: This change means that dialyzer will issue a
warning for all places where records with uninitialized fields are created and
those fields have a declared type that is incompatible with 'undefined'
(e.g. float/0). This warning can be suppressed easily by adding
| 'undefined' to the type of this field. This also adds documentation that
the user really intends to create records where this field is uninitialized.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12719

	Remove deprecated functions in the modules erl_scan and erl_parse.
Own Id: OTP-12861

	The pre-processor can now expand the ?FUNCTION_NAME and ?FUNCTION_ARITY
macros.
Own Id: OTP-13059

	A new behaviour gen_statem has been implemented. It has been thoroughly
reviewed, is stable enough to be used by at least two heavy OTP applications,
and is here to stay. But depending on user feedback, we do not expect but
might find it necessary to make minor not backwards compatible changes into
OTP-20.0, so its state can be designated as "not quite experimental"...
The gen_statem behaviour is intended to replace gen_fsm for new code. It
has the same features and add some really useful:
	State code is gathered
	The state can be any term
	Events can be postponed
	Events can be self generated
	A reply can be sent from a later state
	There can be multiple sys traceable replies

The callback model(s) for gen_statem differs from the one for gen_fsm, but
it is still fairly easy to rewrite from gen_fsm to gen_statem.
Own Id: OTP-13065 Aux Id: PR-960

	Optimize binary:split/2 and binary:split/3 with native BIF implementation.
Own Id: OTP-13082

	Background: The types of record fields have since R12B been put in a separate
form by epp:parse_file(), leaving the record declaration form untyped. The
separate form, however, does not follow the syntax of type declarations, and
parse transforms inspecting -type() attributes need to know about the
special syntax. Since the compiler stores the return value of
epp:parse_file() as debug information in the abstract code chunk ("Abst"
or abstract_code), tools too need to know about the special syntax, if they
inspect -type() attributes in abstract code.
Change: No separate type form is created by epp:parse_file(), but the type
information is kept in the record fields. This means that all parse transforms
and all tools inspecting -record() declarations need to recognize
{typed_record_field, Field, Type}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13148

	Unsized fields of the type bytes in binary generators are now forbidden.
(The other ways of writing unsized fields, such as binary, are already
forbidden.)
Own Id: OTP-13152

	The type map/0 is built-in, and cannot be redefined.
Own Id: OTP-13153

	Let dets:open_file() exit with a badarg message if given a raw file name
(a binary).
Own Id: OTP-13229 Aux Id: ERL-55

	Add filename:basedir/2,3
basedir returns suitable path(s) for 'user_cache', 'user_config', 'user_data',
'user_log', 'site_config' and 'site_data'. On linux and linux like systems the
paths will respect the XDG environment variables.
Own Id: OTP-13392

	There are new preprocessor directives -error(Term) and -warning(Term) to
cause a compilation error or a compilation warning, respectively.
Own Id: OTP-13476

	Optimize '++' operator and lists:append/2 by using a single pass to build
a new list while checking for properness.
Own Id: OTP-13487

	Add maps:update_with/3,4 and maps:take/2
Own Id: OTP-13522 Aux Id: PR-1025

	lists:join/2 has been added. Similar to string:join/2 but works with
arbitrary lists.
Own Id: OTP-13523

	Obfuscate asserts to make Dialyzer shut up.
Own Id: OTP-13524 Aux Id: PR-1002

	Supervisors now explicitly add their callback module in the return from
sys:get_status/1,2. This is to simplify custom supervisor implementations. The
Misc part of the return value from sys:get_status/1,2 for a supervisor is now:
[{data, [{"State", State}]},{supervisor,[{"Callback",Module}]}]
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13619 Aux Id: PR-1000

	Relax translation of initial calls in proc_lib, i.e. remove the restriction
to only do the translation for gen_server and gen_fsm. This enables user
defined gen based generic callback modules to be displayed nicely in c:i()
and observer.
Own Id: OTP-13623

	The function queue:lait/1 (misspelling of liat/1) is now deprecated.
Own Id: OTP-13658

 STDLIB 2.8.0.1

 Improvements and New Features

	List subtraction (The -- operator) will now yield properly on large inputs.
Own Id: OTP-15371

 STDLIB 2.8

 Fixed Bugs and Malfunctions

	Fix evaluation in matching of bound map key variables in the interpreter.
Prior to this patch, the following code would not evaluate:
X = key,(fun(#{X := value}) -> true end)(#{X => value})
Own Id: OTP-13218

	Fix erl_eval not using non-local function handler.
Own Id: OTP-13228 Aux Id: ERL-32

	The Erlang Code Linter no longer crashes if there is a -deprecated()
attribute but no -module() declaration.
Own Id: OTP-13230 Aux Id: ERL-62

	The timestamp in the result returned by dets:info(Tab, safe_fixed) was
unintentionally broken as a result of the time API rewrites in OTP 18.0. This
has now been fixed.
Own Id: OTP-13239 Aux Id: OTP-11997

	A rare race condition in beam_lib when using encrypted abstract format has
been eliminated.
Own Id: OTP-13278

	Improved maps:with/2 and maps:without/2 algorithms
The new implementation speeds up the execution significantly for all sizes of
input.
Own Id: OTP-13376

 Improvements and New Features

	Time warp safety improvements.
Introduced the options monotonic_timestamp, and strict_monotonic_timestamp
to the trace, sequential trace, and system profile functionality. This since
the already existing timestamp option is not time warp safe.
Introduced the option safe_fixed_monotonic_time to ets:info/2 and
dets:info/2. This since the already existing safe_fixed option is not time
warp safe.
Own Id: OTP-13222 Aux Id: OTP-11997

	In the shell Ctrl+W (delete word) will no longer consider "." as being part of
a word.
Own Id: OTP-13281

 STDLIB 2.7

 Fixed Bugs and Malfunctions

	The Erlang Pretty Printer uses :: for function type constraints.
A bug concerning pretty printing of annotated type union elements in map pair
types has been fixed.
Some minor issues regarding the documentation of types and specs have been
corrected.
Own Id: OTP-13084

	The shell command rp prints strings as lists of integers if pretty printing
of lists is set to false.
Own Id: OTP-13145

	The shell would crash if a bit syntax expression with conflicting types were
given (e.g. if a field type was given as 'integer-binary'). (Thanks to
Aleksei Magusev for reporting this bug.)
Own Id: OTP-13157

	The rand:export_seed/0 would never return 'undefined' even if no seed has
previously been created. Fixed to return 'undefined' if there is no seed in
the process dictionary.
Own Id: OTP-13162

 Improvements and New Features

	Add support for the Delete, Home and End keys in the Erlang shell.
Own Id: OTP-13032

	beam_lib:all_chunks/1 and beam_lib:build_module/1 have been documented.
Own Id: OTP-13063

 STDLIB 2.6

 Fixed Bugs and Malfunctions

	In OTP 18.0, qlc does not handle syntax errors well. This bug has been
fixed.
Own Id: OTP-12946

	Optimize zip:unzip/2 when uncompressing to memory.
Own Id: OTP-12950

	The STDLIB reference manual is updated to show correct information about the
return value of gen_fsm:reply/2.
Own Id: OTP-12973

	re:split2,3 and re:replace/3,4 now correctly handles pre-compiled patterns
that have been compiled using the 'unicode' option.
Own Id: OTP-12977

	Export shell:catch_exception/1 as documented.
Own Id: OTP-12990

 Improvements and New Features

	A mechanism for limiting the amount of text that the built-in error logger
events will produce has been introduced. It is useful for limiting both the
size of log files and the CPU time used to produce them.
This mechanism is experimental in the sense that it may be changed if it turns
out that it does not solve the problem it is supposed to solve. In that case,
there may be backward incompatible improvements to this mechanism.
See the documentation for the config parameter error_logger_format_depth in
the Kernel application for information about how to turn on this feature.
Own Id: OTP-12864

 STDLIB 2.5

 Fixed Bugs and Malfunctions

	Fix handling of single dot in filename:join/2
The reference manual says that filename:join(A,B) is equivalent to
filename:join([A,B]). In some rare cases this turns out not to be true. For
example:
filename:join("/a/.","b") -> "/a/./b" vs
filename:join(["/a/.","b"]) -> "/a/b".
This has been corrected. A single dot is now only kept if it occurs at the
very beginning or the very end of the resulting path.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12158

	The undocumented option generic_debug for gen_server has been removed.
Own Id: OTP-12183

	erl_lint:icrt_export/4 has been rewritten to make the code really follow the
scoping rules of Erlang, and not just in most situations by accident.
Own Id: OTP-12186

	Add 'trim_all' option to binary:split/3
This option can be set to remove _ALL_ empty parts of the result of a call
to binary:split/3.
Own Id: OTP-12301

	Correct orddict(3) regarding evaluation order of fold() and map/0.
Own Id: OTP-12651 Aux Id: seq12832

	Correct maps module error exceptions
Bad input to maps module function will now yield the following exceptions:
	{badmap, NotMap}, or
	badarg.

Own Id: OTP-12657

	It is now possible to paste text in JCL mode (using Ctrl-Y) that has been
copied in the previous shell session. Also a bug that caused the JCL mode to
crash when pasting text has been fixed.
Own Id: OTP-12673

	Add uptime() shell command.
Own Id: OTP-12752

	Cache nowarn_bif_clash functions in erl_lint.
This patch stores nowarn_bif_clash in the lint record. By using erlc
+'{eprof,lint_module}' when compiling the erlang parser, we noticed the time
spent on nowarn_function/2 reduced from 30% to 0.01%.
Own Id: OTP-12754

	Optimize the Erlang Code Linter by using the cached filename information.
Own Id: OTP-12772

	If a child of a simple_one_for_one returns ignore from its start function no
longer store the child for any restart type. It is not possible to restart or
delete the child because the supervisor is a simple_one_for_one.
Own Id: OTP-12793

	Make ets:file2tab preserve enabled read_concurrency and
write_concurrency options for tables.
Own Id: OTP-12814

	There are many cases where user code needs to be able to distinguish between a
socket that was closed normally and one that was aborted. Setting the option
{show_econnreset, true} enables the user to receive ECONNRESET errors on
both active and passive sockets.
Own Id: OTP-12841

 Improvements and New Features

	Allow maps for supervisor flags and child specs
Earlier, supervisor flags and child specs were given as tuples. While this is
kept for backwards compatibility, it is now also allowed to give these
parameters as maps, see sup_flags and
child_spec.
Own Id: OTP-11043

	A new system message, terminate, is added. This can be sent with
sys:terminate/2,3. If the receiving process handles system messages properly
it will terminate shortly after receiving this message.
The new function proc_lib:stop/1,3 utilizes this new system message and
monitors the receiving process in order to facilitate a synchronous stop
mechanism for 'special processes'.
proc_lib:stop/1,3 is used by the following functions:
	gen_server:stop/1,3 (new)
	gen_fsm:stop/1,3 (new)
	gen_event:stop/1,3 (modified to be synchronous)
	wx_object:stop/1,3 (new)

Own Id: OTP-11173 Aux Id: seq12353

	Remove the pg module, which has been deprecated through OTP-17, is now
removed from the STDLIB application. This module has been marked experimental
for more than 15 years, and has largely been superseded by the pg2 module
from the Kernel application.
Own Id: OTP-11907

	New BIF: erlang:get_keys/0, lists all keys associated with the process
dictionary. Note: erlang:get_keys/0 is auto-imported.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12151 Aux Id: seq12521

	Add three new functions to io_lib-- scan_format/2, unscan_format/1, and
build_text/1-- which expose the parsed form of the format control sequences
to make it possible to easily modify or filter the input to io_lib:format/2.
This can e.g. be used in order to replace unbounded-size control sequences
like ~w or ~p with corresponding depth-limited ~W and ~P before doing
the actual formatting.
Own Id: OTP-12167

	Introduce the erl_anno module, an abstraction of the second element of
tokens and tuples in the abstract format.
Own Id: OTP-12195

	Support variables as Map keys in expressions and patterns
Erlang will accept any expression as keys in Map expressions and it will
accept literals or bound variables as keys in Map patterns.
Own Id: OTP-12218

	The last traces of Mnemosyne Rules have been removed.
Own Id: OTP-12257

	Properly support maps in match_specs
Own Id: OTP-12270

	New function ets:take/2. Works the same as ets:delete/2 but also returns
the deleted object(s).
Own Id: OTP-12309

	string:tokens/2 is somewhat faster, especially if the list of separators
only contains one separator character.
Own Id: OTP-12422 Aux Id: seq12774

	The documentation of the Abstract Format (in the ERTS User's Guide) has been
updated with types and specification. (Thanks to Anthony Ramine.)
The explicit representation of parentheses used in types of the abstract
format has been removed. Instead the new functions
erl_parse:type_inop_prec() and erl_parse:type_preop_prec() can be used for
inserting parentheses where needed.
Own Id: OTP-12492

	Prevent zip:zip_open/[12] from leaking file descriptors if parent process
dies.
Own Id: OTP-12566

	Add a new random number generator, see rand module. It have better
characteristics and an improved interface.
Own Id: OTP-12586 Aux Id: OTP-12501, OTP-12502

	filename:split/1 when given an empty binary will now return an empty list,
to make it consistent with return value when given an empty list.
Own Id: OTP-12716

	Add sync option to ets:tab2file/3.
Own Id: OTP-12737 Aux Id: seq12805

	Add functions gb_sets:iterator_from() and gb_trees:iterator_from().
(Thanks to Kirill Kinduk.)
Own Id: OTP-12742

	Add maps:filter/2 to maps module.
Own Id: OTP-12745

	Change some internal data structures to Maps in order to speed up compilation
time. Measured speed up is around 10%-15%.
Own Id: OTP-12774

	Update orddict to use parameterized types and specs. (Thanks to UENISHI
Kota.)
Own Id: OTP-12785

	The assert macros in eunit has been moved out to
stdlib/include/assert.hrl. This files get included by eunit.hrl. Thus,
nothing changes for eunit users, but the asserts can now also be included
separately.
Own Id: OTP-12808

 STDLIB 2.4

 Fixed Bugs and Malfunctions

	Behaviour of character types \d, \w and \s has always been to not match
characters with value above 255, not 128, i.e. they are limited to ISO-Latin-1
and not ASCII
Own Id: OTP-12521

 Improvements and New Features

	c:m/1 now displays the module's MD5 sum.
Own Id: OTP-12500

	Make ets:i/1 handle binary input from IO server.
Own Id: OTP-12550

 STDLIB 2.3

 Fixed Bugs and Malfunctions

	The documentation of string:tokens/2 now explicitly specifies that adjacent
separator characters do not give any empty strings in the resulting list of
tokens.
Own Id: OTP-12036

	Fix broken deprecation warnings in ssh application
Own Id: OTP-12187

	Maps: Properly align union typed assoc values in documentation
Own Id: OTP-12190

	Fix filelib:wildcard/2 when 'Cwd' ends with a dot
Own Id: OTP-12212

	Allow Name/Arity syntax in maps values inside attributes.
Own Id: OTP-12213

	Fix edlin to correctly save text killed with ctrl-u. Prior to this fix,
entering text into the Erlang shell and then killing it with ctrl-u followed
by yanking it back with ctrl-y would result in the yanked text being the
reverse of the original killed text.
Own Id: OTP-12224

	If a callback function was terminated with exit/1, there would be no stack
trace in the ERROR REPORT produced by gen_server. This has been corrected.
To keep the backwards compatibility, the actual exit reason for the process is
not changed.
Own Id: OTP-12263 Aux Id: seq12733

	Warnings produced by ms_transform could point out the wrong line number.
Own Id: OTP-12264

 Improvements and New Features

	Supports tar file creation on other media than file systems mounted on the
local machine.
The erl_tar api is extended with erl_tar:init/3 that enables usage of user
provided media storage routines. A ssh-specific set of such routines is hidden
in the new function ssh_sftp:open_tar/3 to simplify creating a tar archive
on a remote ssh server.
A chunked file reading option is added to erl_tar:add/3,4 to save memory on
e.g small embedded systems. The size of the slices read from a file in that
case can be specified.
Own Id: OTP-12180 Aux Id: seq12715

	I/O requests are optimized for long message queues in the calling process.
Own Id: OTP-12315

 STDLIB 2.2

 Fixed Bugs and Malfunctions

	The type spec of the FormFunc argument to sys:handle_debug/4 was erroneously
pointing to dbg_fun(). This is now corrected and the new type is format_fun().
Own Id: OTP-11800

	Behaviors such as gen_fsm and gen_server should always invoke format_status/2
before printing the state to the logs.
Own Id: OTP-11967

	The documentation of dets:insert_new/2 has been corrected. (Thanks to Alexei
Sholik for reporting the bug.)
Own Id: OTP-12024

	Printing a term with io_lib:format and control sequence w, precision P and
field width F, where F< P would fail in one of the two following ways:
	If P < printed length of the term, an infinite loop would be entered,
consuming all available memory.

	If P >= printed length of the term, an exception would be raised.

These two problems are now corrected.
Own Id: OTP-12041

	The documentation of maps:values/1 has been corrected.
Own Id: OTP-12055

	Expand shell functions in map expressions.
Own Id: OTP-12063

 Improvements and New Features

	Add maps:with/2
Own Id: OTP-12137

 STDLIB 2.1.1

 Fixed Bugs and Malfunctions

	OTP-11850 fixed filelib:wildcard/1 to work with broken symlinks. This
correction, however, introduced problems since symlinks were no longer
followed for functions like filelib:ensure_dir/1, filelib:is_dir/1,
filelib:file_size/1, etc. This is now corrected.
Own Id: OTP-12054 Aux Id: seq12660

 STDLIB 2.1

 Fixed Bugs and Malfunctions

	filelib:wildcard("broken_symlink") would return an empty list if
"broken_symlink" was a symlink that did not point to an existing file.
Own Id: OTP-11850 Aux Id: seq12571

	erl_tar can now handle files names that contain Unicode characters. See
"UNICODE SUPPORT" in the documentation for erl_tar.
When creating a tar file, erl_tar would sometime write a too short end of
tape marker. GNU tar would correctly extract files from such tar file, but
would complain about "A lone zero block at...".
Own Id: OTP-11854

	When redefining and exporting the type map/0 the Erlang Code Linter
(erl_lint) erroneously emitted an error. This bug has been fixed.
Own Id: OTP-11872

	Fix evaluation of map updates in the debugger and erl_eval
Reported-by: José Valim
Own Id: OTP-11922

 Improvements and New Features

	The following native functions now bump an appropriate amount of reductions
and yield when out of reductions:
	erlang:binary_to_list/1
	erlang:binary_to_list/3
	erlang:bitstring_to_list/1
	erlang:list_to_binary/1
	erlang:iolist_to_binary/1
	erlang:list_to_bitstring/1
	binary:list_to_bin/1

Characteristics impact:
	Performance - The functions converting from lists got a performance loss
for very small lists, and a performance gain for very large lists.

	Priority - Previously a process executing one of these functions
effectively got an unfair priority boost. This priority boost depended on
the input size. The larger the input was, the larger the priority boost got.
This unfair priority boost is now lost.

Own Id: OTP-11888

	Add maps:get/3 to maps module. The function will return the supplied default
value if the key does not exist in the map.
Own Id: OTP-11951

 STDLIB 2.0

 Fixed Bugs and Malfunctions

	The option dupnames did not work as intended in re. When looking for names
with {capture, [Name, ...]}, re:run returned a random instance of the match
for that name, instead of the leftmost matching instance, which was what the
documentation stated. This is now corrected to adhere to the documentation.
The option {capture,all_names} along with a re:inspect/2 function is also
added to further help in using named subpatterns.
Own Id: OTP-11205

	If option 'binary' was set for standard_input, then c:i() would hang if the
output was more than one page long - i.e. then input after "(c)ontinue (q)uit
-->" could not be read. This has been corrected. (Thanks to José Valim)
Own Id: OTP-11589

	stdlib/lists: Add function droplast/1 This functions drops the last element of
a non-empty list. lists:last/1 and lists:droplast/1 are the dual of hd/1 and
tl/1 but for the end of a list. (Thanks to Hans Svensson)
Own Id: OTP-11677

	Allow all auto imports to be suppressed at once. Introducing the
no_auto_import attribute: -compile(no_auto_import). Useful for code generation
tools that always use the qualified function names and want to avoid the auto
imported functions clashing with local ones. (Thanks to José Valim.)
Own Id: OTP-11682

	supervisor_bridge does no longer report normal termination of children. The
reason is that in some cases, for instance when the restart strategy is
simple_one_for_one, the log could be completely overloaded with reports about
normally terminating processes. (Thanks to Artem Ocheredko)
Own Id: OTP-11685

	The type annotations for alternative registries using the {via, Module,
Name} syntax for sup_name() and sup_ref() in the supervisor module are now
consistent with the documentation. Dialyzer should no longer complain about
valid supervisor:start_link() and supervisor:start_child() calls. (Thanks to
Caleb Helbling.)
Own Id: OTP-11707

	Two Dets bugs have been fixed. When trying to open a short file that is not a
Dets file, the file was deleted even with just read access. Calling
dets:is_dets_file/1 with a file that is not a Dets file, a file descriptor
was left open. (Thanks to Håkan Mattsson for reporting the bugs.)
Own Id: OTP-11709

	Fix race bug in ets:all. Concurrent creation of tables could cause other
tables to not be included in the result. (Thanks to Florian Schintke for bug
report)
Own Id: OTP-11726

	erl_eval now properly evaluates '=='/2 when it is used in guards. (Thanks to
José Valim)
Own Id: OTP-11747

	Calls to proplists:get_value/3 are replaced by the faster lists:keyfind/3 in
io_lib_pretty. Elements in the list are always 2-tuples. (Thanks to Andrew
Thompson)
Own Id: OTP-11752

	A qlc bug where filters were erroneously optimized away has been fixed. Thanks
to Sam Bobroff for reporting the bug.
Own Id: OTP-11758

	A number of compiler errors where unusual or nonsensical code would crash the
compiler have been reported by Ulf Norell and corrected by Anthony Ramine.
Own Id: OTP-11770

	Since Erlang/OTP R16B the Erlang Core Linter (erl_lint) has not emitted
errors when built-in types were re-defined. This bug has been fixed. (Thanks
to Roberto Aloi.)
Own Id: OTP-11772

	The functions sys:get_state/1,2 and sys:replace_state/2,3 are fixed so
they can now be run while the process is sys suspended. To accomplish this,
the new callbacks Mod:system_get_state/1 and Mod:system_replace_state/2
are added, which are also implemented by the generic behaviours gen_server,
gen_event and gen_fsm.
The potential incompatibility refers to:
	The previous behaviour of intercepting the system message and passing a
tuple of size 2 as the last argument to sys:handle_system_msg/6 is no
longer supported.
	The error handling when StateFun in sys:replace_state/2,3 fails is
changed from being totally silent to possibly (if the callback module does
not catch) throw an exception in the client process.

(Thanks to James Fish and Steve Vinoski)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11817

 Improvements and New Features

	Options to set match_limit and match_limit_recursion are added to re:run. The
option report_errors is also added to get more information when re:run fails
due to limits or compilation errors.
Own Id: OTP-10285

	The pre-defined types array/0, dict/0, digraph/0, gb_set/0,
gb_tree/0, queue/0, set/0, and tid/0 have been deprecated. They will
be removed in Erlang/OTP 18.0.
Instead the types array:array/0,
dict:dict/0, digraph:graph/0,
gb_set:set/0, gb_tree:tree/0, queue:queue/0,
sets:set/0, and ets:tid/0 can be used.
(Note: it has always been necessary to use ets:tid/0.)
It is allowed in Erlang/OTP 17.0 to locally re-define the types array/0,
dict/0, and so on.
New types array:array/1,
dict:dict/2, gb_sets:set/1,
gb_trees:tree/2,
queue:queue/1, and sets:set/1 have
been added.
A compiler option, nowarn_deprecated_type, has been introduced. By including
the attribute
-compile(nowarn_deprecated_type).
in an Erlang source file, warnings about deprecated types can be avoided in
Erlang/OTP 17.0.
The option can also be given as a compiler flag:
erlc +nowarn_deprecated_type file.erl
Own Id: OTP-10342

	Calls to erlang:open_port/2 with 'spawn' are updated to handle space in the
command path.
Own Id: OTP-10842

	Dialyzer's unmatched_return warnings have been corrected.
Own Id: OTP-10908

	Forbid unsized fields in patterns of binary generators and simplified
v3_core's translation of bit string generators. (Thanks to Anthony Ramine.)
Own Id: OTP-11186

	The version of the PCRE library Used by Erlang's re module is raised to 8.33
from 7.6. This means, among other things, better Unicode and Unicode Character
Properties support. New options connected to PCRE 8.33 are also added to the
re module (ucd, notempty_atstart, no_start_optimize). PCRE has extended the
regular expression syntax between 7.6 and 8.33, why this imposes a potential
incompatibility. Only very complicated regular expressions may be affected,
but if you know you are using obscure features, please test run your regular
expressions and verify that their behavior has not changed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11204

	Added dict:is_empty/1 and orddict:is_empty/1. (Thanks to Magnus Henoch.)
Own Id: OTP-11353

	A call to either the garbage_collect/1 BIF or the
check_process_code/2 BIF may trigger garbage
collection of another processes than the process calling the BIF. The previous
implementations performed these kinds of garbage collections without
considering the internal state of the process being garbage collected. In
order to be able to more easily and more efficiently implement yielding native
code, these types of garbage collections have been rewritten. A garbage
collection like this is now triggered by an asynchronous request signal, the
actual garbage collection is performed by the process being garbage collected
itself, and finalized by a reply signal to the process issuing the request.
Using this approach processes can disable garbage collection and yield without
having to set up the heap in a state that can be garbage collected.
The garbage_collect/2, and
check_process_code/3 BIFs have been
introduced. Both taking an option list as last argument. Using these, one can
issue asynchronous requests.
code:purge/1 and code:soft_purge/1 have been rewritten to utilize
asynchronous check_process_code requests in order to parallelize work.
Characteristics impact: A call to the
garbage_collect/1 BIF or the
check_process_code/2 BIF will normally take longer
time to complete while the system as a whole wont be as much negatively
effected by the operation as before. A call to code:purge/1 and
code:soft_purge/1 may complete faster or slower depending on the state of
the system while the system as a whole wont be as much negatively effected by
the operation as before.
Own Id: OTP-11388 Aux Id: OTP-11535, OTP-11648

	Improve the documentation of the supervisor's via reference. (Thanks to
MaximMinin.)
Own Id: OTP-11399

	orddict:from_list/1 now uses the optimized sort routines in the lists
module instead of (essentially) an insertion sort. Depending on the input
data, the speed of the new from_list/1 is anything from slightly faster up
to several orders of magnitude faster than the old from_list/1.
(Thanks to Steve Vinoski.)
Own Id: OTP-11552

	EEP43: New data type - Maps
With Maps you may for instance:
	____ - M0 = #{ a => 1, b => 2}, % create associations

	____ - M1 = M0#{ a := 10 }, % update values

	____ - M2 = M1#{ "hi" => "hello"}, % add new associations

	____ - #{ "hi" := V1, a := V2, b := V3} = M2. % match keys with values

For information on how to use Maps please see Map Expressions in the
Reference Manual.
The current implementation is without the following features:
	____ - No variable keys

	____ - No single value access

	____ - No map comprehensions

Note that Maps is experimental during OTP 17.0.
Own Id: OTP-11616

	When tab completing the erlang shell now expands zero-arity functions all the
way to closing parenthesis, unless there is another function with the same
name and a different arity. (Thanks to Pierre Fenoll.)
Own Id: OTP-11684

	The Erlang Code Preprocessor (epp) could loop when encountering a circular
macro definition in an included file. This bug has been fixed.
Thanks to Maruthavanan Subbarayan for reporting the bug, and to Richard
Carlsson for providing a bug fix.
Own Id: OTP-11728

	The Erlang Code Linter (erl_lint) has since Erlang/OTP R13B emitted warnings
whenever any of the types arity/0, bitstring/0, iodata/0, or
boolean/0 were re-defined. Now errors are emitted instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11771

	The encoding option of erl_parse:abstract/2 has been extended to include
none and a callback function (a predicate).
Own Id: OTP-11807

	Export zip option types to allow referal from other modules.
Thanks to Pierre Fenoll and Håkan Mattson
Own Id: OTP-11828

	The module pg has been deprecated and will be removed in Erlang/OTP 18.
Own Id: OTP-11840

 STDLIB 1.19.4

 Fixed Bugs and Malfunctions

	Fix typo in gen_server.erl. Thanks to Brian L. Troutwine.
Own Id: OTP-11398

	Spec for atan2 should be atan2(Y, X), not atan2(X, Y). Thanks to Ary
Borenszweig.
Own Id: OTP-11465

 Improvements and New Features

	Add XML marker for regexp syntax. Thanks to Håkan Mattson.
Own Id: OTP-11442

 STDLIB 1.19.3

 Fixed Bugs and Malfunctions

	The functions dets:foldl/3, dets:foldr/3, and dets:traverse/2 did not
release the table after having traversed the table to the end. The bug was
introduced in R16B. (Thanks to Manuel Duran Aguete.)
Own Id: OTP-11245

	If the fun M:F/A construct was used erroneously the linter could crash.
(Thanks to Mikhail Sobolev.)
Own Id: OTP-11254

	The specifications of io_lib:fread/2,3 have been corrected. (Thanks to Chris
King and Kostis Sagonas for pinpointing the bug.)
Own Id: OTP-11261

 Improvements and New Features

	Fixed type typo in gen_server.
Own Id: OTP-11200

	Update type specs in filelib and io_prompt. Thanks to Jose Valim.
Own Id: OTP-11208

	Fix typo in abcast() function comment. Thanks to Johannes Weissl.
Own Id: OTP-11219

	Make edlin understand a few important control keys. Thanks to Stefan
Zegenhagen.
Own Id: OTP-11251

	Export the edge/0 type from the digraph module. Thanks to Alex Ronne Petersen.
Own Id: OTP-11266

	Fix variable usage tracking in erl_lint and fixed unsafe variable tracking in
try expressions. Thanks to Anthony Ramine.
Own Id: OTP-11268

 STDLIB 1.19.2

 Fixed Bugs and Malfunctions

	The Erlang scanner no longer accepts floating point numbers in the input
string.
Own Id: OTP-10990

	When converting a faulty binary to a list with unicode:characters_to_list, the
error return value could contain a faulty "rest", i.e. the io_list of
characters that could not be converted was wrong. This happened only if input
was a sub binary and conversion was from utf8. This is now corrected.
Own Id: OTP-11080

	The type hook_function() has been corrected in erl_pp, the Erlang Pretty
Printer.
The printing of invalid forms, e.g. record field types, has also been fixed.
It has been broken since R16B.
(Thanks to Tomáš Janoušek.)
Own Id: OTP-11100

	Fix receive support in erl_eval with a BEAM module. Thanks to Anthony Ramine.
Own Id: OTP-11137

 Improvements and New Features

	Delete obsolete note about simple-one-for-one supervisor. Thanks to Magnus
Henoch.
Own Id: OTP-10938

	When selecting encoding of a script written in Erlang (escript) the optional
directive on the second line is now recognized.
Own Id: OTP-10951

	The function erl_parse:abstract/2 has been documented.
Own Id: OTP-10992

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Added sys:get_state/1,2 and sys:replace_state/2,3. Thanks to Steve Vinoski.
Own Id: OTP-11013

	Optimizations to gen mechanism. Thanks to Loïc Hoguin.
Own Id: OTP-11025

	Optimizations to gen.erl. Thanks to Loïc Hoguin.
Own Id: OTP-11035

	Use erlang:demonitor(Ref, [flush]) where applicable. Thanks to Loïc Hoguin.
Own Id: OTP-11039

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

	Fix rest_for_one and one_for_all restarting a child not terminated. Thanks to
James Fish.
Own Id: OTP-11042

	Fix excessive CPU consumption of timer_server. Thanks to Aliaksey
Kandratsenka.
Own Id: OTP-11053

	Rename and document lists:zf/2 as lists:filtermap/2. Thanks to Anthony Ramine.
Own Id: OTP-11078

	Fixed an inconsistent state in epp. Thanks to Anthony Ramine
Own Id: OTP-11079

	c:ls(File) will now print File, similar to ls(1) in Unix. The error messages
have also been improved. (Thanks to Bengt Kleberg.)
Own Id: OTP-11108

	Support callback attributes in erl_pp. Thanks to Anthony Ramine.
Own Id: OTP-11140

	Improve erl_lint performance. Thanks to José Valim.
Own Id: OTP-11143

 STDLIB 1.19.1

 Fixed Bugs and Malfunctions

	Bugs related to Unicode have been fixed in the erl_eval module.
Own Id: OTP-10622 Aux Id: kunagi-351 [262]

	filelib:wildcard("some/relative/path/*.beam", Path) would fail to match any
file. That is, filelib:wildcard/2 would not work if the first component of the
pattern did not contain any wildcard characters. (A previous attempt to fix
the problem in R15B02 seems to have made matters worse.)
(Thanks to Samuel Rivas and Tuncer Ayaz.)
There is also an incompatible change to the Path argument. It is no longer
allowed to be a binary.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10812

 Improvements and New Features

	The new STDLIB application variable shell_strings can be used for
determining how the Erlang shell outputs lists of integers. The new function
shell:strings/1 toggles the value of the variable.
The control sequence modifier l can be used for turning off the string
recognition of ~p and ~P.
Own Id: OTP-10755

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

	Extend ~ts to handle binaries with characters coded in ISO-latin-1
Own Id: OTP-10836

	The +pc flag to erl can be used to set the range of characters considered
printable. This affects how the shell and io:format("~tp",...) functionality
does heuristic string detection. More can be read in STDLIB users guide.
Own Id: OTP-10884

 STDLIB 1.19

 Fixed Bugs and Malfunctions

	Wildcards such as "some/path/*" passed to filelib:wildcard/2 would fail to
match any file. (Thanks to Samuel Rivas for reporting this bug.)
Own Id: OTP-6874 Aux Id: kunagi-190 [101]

	Fixed error handling in proc_lib:start which could hang if the spawned process
died in init.
Own Id: OTP-9803 Aux Id: kunagi-209 [120]

	Allow ** in filelib:wildcard
Two adjacent * used as a single pattern will match all files and zero or more
directories and subdirectories. (Thanks to José Valim)
Own Id: OTP-10431

	Add the \gN and \g{N} syntax for back references in re:replace/3,4 to
allow use with numeric replacement strings. (Thanks to Vance Shipley)
Own Id: OTP-10455

	Export ets:match_pattern/0 type (Thanks to Joseph Wayne Norton)
Own Id: OTP-10472

	Fix printing the empty binary at depth 1 with ~W (Thanks to Andrew Thompson)
Own Id: OTP-10504

	The type ascii_string() in the base64 module has been corrected. The type
file:file_info() has been cleaned up. The type
file:fd() has been made opaque in the documentation.
Own Id: OTP-10624 Aux Id: kunagi-352 [263]

 Improvements and New Features

	Dets tables are no longer fixed while traversing with a bound key (when only
the objects with the right key are matched). This optimization affects the
functions match/2, match_object/2, select/2, match_delete/2, and
select_delete/2.
Own Id: OTP-10097

	Support for Unicode has been implemented.
Own Id: OTP-10302

	The linter now warns for opaque types that are not exported, as well as for
under-specified opaque types.
Own Id: OTP-10436

	The type file:name() has been substituted for the type
file:filename() in the following functions in the
filename module: absname/2, absname_join/2, join/1,2, and split/1.
Own Id: OTP-10474

	If a child process fails in its start function, then the error reason was
earlier only reported as an error report from the error_handler, and
supervisor:start_link would only return {error,shutdown}. This has been
changed so the supervisor will now return {error,{shutdown,Reason}}, where
Reason identifies the failing child and its error reason. (Thanks to Tomas
Pihl)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10490

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	The contracts and types of the modules erl_scan and sys have been
corrected and improved. (Thanks to Kostis Sagonas.)
Own Id: OTP-10658

	The Erlang shell now skips the rest of the line when it encounters an Erlang
scanner error.
Own Id: OTP-10659

	Clean up some specs in the proplists module. (Thanks to Kostis Sagonas.)
Own Id: OTP-10663

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Enable escript to accept emulator arguments when script file has no shebang.
Thanks to Magnus Henoch
Own Id: OTP-10691

	Fix bug in queue:out/1, queue:out_r/1 that makes it O(N^2) in worst case.
Thanks to Aleksandr Erofeev.
Own Id: OTP-10722

	There are new functions in the epp module which read the character encoding
from files. See epp for more information.
Own Id: OTP-10742 Aux Id: OTP-10302

	The functions in io_lib have been adjusted for Unicode. The existing
functions write_string() and so on now take Unicode strings, while the old
behavior has been taken over by new functions write_latin1_string() and so
on. There are also new functions to write Unicode strings as Latin-1 strings,
mainly targetted towards the Erlang pretty printer (erl_pp).
Own Id: OTP-10745 Aux Id: OTP-10302

	The new functions proc_lib:format/2 and erl_parse:abstract/2 accept an
encoding as second argument.
Own Id: OTP-10749 Aux Id: OTP-10302

	Increased potential concurrency in ETS for write_concurrency option. The
number of internal table locks has increased from 16 to 64. This makes it four
times less likely that two concurrent processes writing to the same table
would collide and thereby serialized. The cost is an increased constant memory
footprint for tables using write_concurrency. The memory consumption per
inserted record is not affected. The increased footprint can be particularly
large if write_concurrency is combined with read_concurrency.
Own Id: OTP-10787

 STDLIB 1.18.3

 Fixed Bugs and Malfunctions

	Minor test updates
Own Id: OTP-10591

 STDLIB 1.18.2

 Fixed Bugs and Malfunctions

	Fixed bug where if given an invalid drive letter on windows ensure dir would
go into an infinite loop.
Own Id: OTP-10104

	Calls to gen_server:enter_loop/4 where ServerName has a global scope and no
timeout is given now works correctly.
Thanks to Sam Bobroff for reporting the issue.
Own Id: OTP-10130

	fix escript/primary archive reloading
If the mtime of an escript/primary archive file changes after being added to
the code path, correctly reload the archive and update the cache. (Thanks to
Tuncer Ayaz)
Own Id: OTP-10151

	Fix bug that in some cases could cause corrupted binaries in ETS tables with
compressed option.
Own Id: OTP-10182

	Fix filename:nativename/1 on Win32
Don't choke on paths given as binary argument on Win32. Thanks to Jan Klötzke
Own Id: OTP-10188

	Fix bug in ets:test_ms/2 that could cause emulator crash when using '$_'
in match spec.
Own Id: OTP-10190

	Fix bug where zip archives wrongly have a first disk number set to 1
Own Id: OTP-10223

 Improvements and New Features

	The message printed by the Erlang shell as an explanation of the badarith
error has been corrected. (Thanks to Matthias Lang.)
Own Id: OTP-10054

 STDLIB 1.18.1

 Fixed Bugs and Malfunctions

	References to is_constant/1 (which was removed in the R12 release) has been
removed from documentation and code.
Own Id: OTP-6454 Aux Id: seq10407

	Leave control back to gen_server during supervisor's restart loop
When an attempt to restart a child failed, supervisor would earlier keep the
execution flow and try to restart the child over and over again until it
either succeeded or the restart frequency limit was reached. If none of these
happened, supervisor would hang forever in this loop.
This commit adds a timer of 0 ms where the control is left back to the
gen_server which implements the supervisor. This way any incoming request to
the supervisor will be handled - which could help breaking the infinite loop -
e.g. shutdown request for the supervisor or for the problematic child.
This introduces some incompatibilities in stdlib due to new return values from
supervisor:
	restart_child/2 can now return {error,restarting}
	delete_child/2 can now return {error,restarting}
	which_children/1 returns a list of {Id,Child,Type,Mods}, where Child, in
addition to the old pid() or 'undefined', now also can be 'restarting'.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9549

	If a temporary child's start function returned 'ignore', then the supervisor
would keep it's child specification. This has been corrected. Child
specifications for non-existing temporary children shall never be kept.
Own Id: OTP-9782 Aux Id: seq11964

	Use universal time as base in error logger
Previous conversion used the deprecated
calendar:local_time_to_universal_time/1
Own Id: OTP-9854

	Calling a guard test (such as is_list/1) from the top-level in a guard, would
cause a compiler crash if there was a local definition with the same name.
Corrected to reject the program with an error message.
Own Id: OTP-9866

	Fix the type spec from the doc of binary:part/3 (Thanks to Ricardo Catalinas
Jiménez)
Own Id: OTP-9920

	Correct spelling of registered (Thanks to Richard Carlsson)
Own Id: OTP-9925

	Put gb_trees documentation into alphabetical order (Thanks to Aidan Hobson
Sayers)
Own Id: OTP-9929

	Fix bug in ETS with compressed option and insertion of term containing large
integers (>2G) on 64-bit machines. Seen to cause emulator crash. (Thanks to
Diego Llarrull for excellent bug report)
Own Id: OTP-9932

	Add plugin support for alternative name lookup This patch introduces a new way
of locating a behaviour instance: {via, Module, Name}. (Thanks to Ulf Wiger)
Own Id: OTP-9945

	The function digraph_utils:condensation/1 used to create a digraph
containing loops contradicting the documentation which states that the created
digraph is free of cycles. This bug has been fixed. (Thanks to Kostis Sagonas
for finding the bug.)
Own Id: OTP-9953

	When an escript ends now all printout to standard output and standard error
gets out on the terminal. This bug has been corrected by changing the
behaviour of erlang:halt/0,1, which should fix the same problem for other
escript-like applications, i.e that data stored in the output port driver
buffers got lost when printing on a TTY and exiting through erlang:halt/0,1.
The BIF:s erlang:halt/0,1 has gotten improved semantics and there is a new BIF
erlang:halt/2 to accomplish something like the old semantics. See the
documentation.
Now erlang:halt/0 and erlang:halt/1 with an integer argument will close all
ports and allow all pending async threads operations to finish before exiting
the emulator. Previously erlang:halt/0 and erlang:halt(0) would just wait for
pending async threads operations but not close ports. And erlang:halt/1 with a
non-zero integer argument would not even wait for pending async threads
operations.
To roughly the old behaviour, to not wait for ports and async threads
operations when you exit the emulator, you use erlang:halt/2 with an integer
first argument and an option list containing {flush,false} as the second
argument. Note that now is flushing not dependant of the exit code, and you
cannot only flush async threads operations which we deemed as a strange
behaviour anyway.
Also, erlang:halt/1,2 has gotten a new feature: If the first argument is the
atom 'abort' the emulator is aborted producing a core dump, if the operating
system so allows.
Own Id: OTP-9985

	Add escript win32 alternative invocation. escript can now be started as both
"escript.exe" and "escript" (Thanks to Pierre Rouleau)
Own Id: OTP-9997

 STDLIB 1.18

 Fixed Bugs and Malfunctions

	Improved algorithm in module random. Avoid seed values that are even
divisors of the primes and by that prevent getting sub-seeds that are stuck on
zero. Worst case was random:seed(0,0,0) that produced a series of only zeros.
This is an incompatible change in the sense that applications that relies on
reproducing a specific series for a given seed will fail. The pseudo random
output is still deterministic but different compared to earlier versions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8713

	Calls to global:whereis_name/1 have been substituted for calls to
global:safe_whereis_name/1 since the latter is not safe at all.
The reason for not doing this earlier is that setting a global lock masked out
a bug concerning the restart of supervised children. The bug has now been
fixed by a modification of global:whereis_name/1. (Thanks to Ulf Wiger for
code contribution.)
A minor race conditions in gen_fsm:start* has been fixed: if one of these
functions returned {error, Reason} or ignore, the name could still be
registered (either locally or in global. (This is the same modification as
was done for gen_server in OTP-7669.)
The undocumented function global:safe_whereis_name/1 has been removed.
Own Id: OTP-9212 Aux Id: seq7117, OTP-4174

	If a child of a supervisor terminates with reason {shutdown,Term} it is now
handled by the supervisor as if the reason was 'shutdown'.
For children with restart type 'permanent', this implies no change. For
children with restart type 'transient', the child will no longer be restarted
and no supervisor report will be written. For children with restart type
'temporary', no supervisor report will be written.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9222

	Minor improvement of documentation regarding supervisor restart strategy for
temporary and transient child processes.
Own Id: OTP-9381

	A Dets table with sufficiently large buckets could not always be repaired.
This bug has been fixed.
The format of Dets files has been modified. When downgrading tables created
with the new system will be repaired. Otherwise the modification should not be
noticeable.
Own Id: OTP-9607

	A few contracts in the lists module have been corrected.
Own Id: OTP-9616

	Add '-callback' attributes in stdlib's behaviours
Replace the behaviour_info(callbacks) export in stdlib's behaviours with
-callback' attributes for all the callbacks. Update the documentation with
information on the callback attribute Automatically generate 'behaviour_info'
function from '-callback' attributes
'behaviour_info(callbacks)' is a special function that is defined in a module
which describes a behaviour and returns a list of its callbacks.
This function is now automatically generated using the '-callback' specs. An
error is returned by lint if user defines both '-callback' attributes and the
behaviour_info/1 function. If no type info is needed for a callback use a
generic spec for it. Add '-callback' attribute to language syntax
Behaviours may define specs for their callbacks using the familiar spec
syntax, replacing the '-spec' keyword with '-callback'. Simple lint checks are
performed to ensure that no callbacks are defined twice and all types referred
are declared.
These attributes can be then used by tools to provide documentation to the
behaviour or find discrepancies in the callback definitions in the callback
module.
Add callback specs into 'application' module in kernel Add callback specs to
tftp module following internet documentation Add callback specs to
inets_service module following possibly deprecated comments
Own Id: OTP-9621

	If a Dets table had been properly closed but the space management data could
not been read, it was not possible to repair the file. This bug has been
fixed.
Own Id: OTP-9622

	The Unicode noncharacter code points 16#FFFE and 16#FFFE were not allowed to
be encoded or decoded using the unicode module or bit syntax. That was
inconsistent with the other noncharacters 16#FDD0 to 16#FDEF that could be
encoded/decoded. To resolve the inconsistency, 16#FFFE and 16#FFFE can now be
encoded and decoded. (Thanks to Alisdair Sullivan.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9624

	Make epp search directory of current file first when including another file
This completes a partial fix in R11 that only worked for include_lib().
(Thanks to Richard Carlsson)
Own Id: OTP-9645

	ms_transform: Fix incorrect `variable shadowed' warnings
This patch removes incorrect passing of variable bindings from one function
clause to another. (Thanks to Haitao Li)
Own Id: OTP-9646

	Explicitly kill dynamic children in supervisors
According to the supervisor's documentation: "Important note on
simple-one-for-one supervisors: The dynamically created child processes of a
simple-one-for-one supervisor are not explicitly killed, regardless of
shutdown strategy, but are expected to terminate when the supervisor does
(that is, when an exit signal from the parent process is received)."
All is fine as long as we stop simple_one_for_one supervisor manually. Dynamic
children catch the exit signal from the supervisor and leave. But, if this
happens when we stop an application, after the top supervisor has stopped, the
application master kills all remaining processes associated to this
application. So, dynamic children that trap exit signals can be killed during
their cleanup (here we mean inside terminate/2). This is unpredictable and
highly time-dependent.
In this commit, supervisor module is patched to explicitly terminate dynamic
children accordingly to the shutdown strategy.
NOTE: Order in which dynamic children are stopped is not defined. In fact,
this is "almost" done at the same time.
Stack errors when dynamic children are stopped
Because a simple_one_for_one supervisor can have many workers, we stack errors
during its shutdown to report only one message for each encountered error
type. Instead of reporting the child's pid, we use the number of concerned
children. (Thanks to Christopher Faulet)
Own Id: OTP-9647

	Allow an infinite timeout to shutdown worker processes
Now, in child specification, the shutdown value can also be set to infinity
for worker children. This restriction was removed because this is not always
possible to predict the shutdown time for a worker. This is highly
application-dependent. Add a warning to docs about workers' shutdown strategy
(Thanks to Christopher Faulet)
Own Id: OTP-9648

	A badarg would sometimes occur in supervisor when printing error reports and
the child pid was undefined. This has been corrected.
Own Id: OTP-9669

	Fix re:split spec not to accept option 'global'(Thanks to Shunichi Shinohara)
Own Id: OTP-9691

 Improvements and New Features

	Fix a few tests that used to fail on the HiPE platform.
Own Id: OTP-9637

	Variables are now now allowed in 'fun M:F/A' as suggested by Richard O'Keefe
in EEP-23.
The representation of 'fun M:F/A' in the abstract format has been changed in
an incompatible way. Tools that directly read or manipulate the abstract
format (such as parse transforms) may need to be updated. The compiler can
handle both the new and the old format (i.e. extracting the abstract format
from a pre-R15 BEAM file and compiling it using compile:forms/1,2 will work).
The syntax_tools application can also handle both formats.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9643

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

	The deprecated 'regexp' module has been removed. Use the 're' module
instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9737

	filename:find_src/1,2 will now work on stripped BEAM files (reported by Per
Hedeland). The HiPE compiler will also work on stripped BEAM files. The BEAM
compiler will no longer include compilation options given in the source code
itself in M:module_info(compile) (because those options will be applied
anyway if the module is re-compiled).
Own Id: OTP-9752

 STDLIB 1.17.5

 Fixed Bugs and Malfunctions

	erl_tar:extract failed when executed inside a directory with some parent
directory to which the user has no read access. This has been corrected.
Own Id: OTP-9368

	A bug in erl_scan:set_attribute/3 has been fixed.
Own Id: OTP-9412

	The contract of io_lib:fread() has been corrected.
Own Id: OTP-9413 Aux Id: seq11873

	A crash in iolib:fread/2 when end of input data was encountered while trying
to match literal characters, which should return {more,,,} but instead
crashed, has been corrected. Reported by Klas Johansson.
A similar peculiarity for io:fread when encountering end of file before any
field data has also been corrected.
Own Id: OTP-9439

	The contract of timer:now_diff() has been corrected. (Thanks to Alex
Morarash).
Own Id: OTP-9450

	Fix minor typo in gen_fsm documentation (Thanks to Haitao Li)
Own Id: OTP-9456

	The contracts of zip:zip_list_dir/1 and zip:zip_get/2 have been corrected.
Own Id: OTP-9471 Aux Id: seq11887, OTP-9472

	A bug in zip:zip_open() has been fixed.
Own Id: OTP-9472 Aux Id: seq11887, OTP-9471

	Fix trivial documentation errors(Thanks to Matthias Lang)
Own Id: OTP-9498

	Add a proplist() type
Recently I was adding specs to an API and found that there is no canonical
proplist() type defined. (Thanks to Ryan Zezeski)
Own Id: OTP-9499

	fix supervisors restarting temporary children
In the current implementation of supervisors, temporary children should never
be restarted. However, when a temporary child is restarted as part of a
one_for_all or rest_for_one strategy where the failing process is not the
temporary child, the supervisor still tries to restart it.
Because the supervisor doesn't keep some of the MFA information of temporary
children, this causes the supervisor to hit its restart limit and crash.
This patch fixes the behaviour by inserting a clause in terminate_children/2-3
(private function) that will omit temporary children when building a list of
killed processes, to avoid having the supervisor trying to restart them again.
Only supervisors in need of restarting children used the list, so the change
should be of no impact for the functions that called terminate_children/2-3
only to kill all children.
The documentation has been modified to make this behaviour more explicit.
(Thanks to Fred Hebert)
Own Id: OTP-9502

	fix broken edoc annotations (Thanks to Richard Carlsson)
Own Id: OTP-9516

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

	Handle rare race in the crypto key server functionality
Own Id: OTP-9586

 Improvements and New Features

	Types and specifications have been added.
Own Id: OTP-9356

	The contracts of the queue module have been modified.
Own Id: OTP-9418

	Contracts in STDLIB and Kernel have been improved and type errors have been
corrected.
Own Id: OTP-9485

	Types for several BIFs have been extended/corrected. Also the types for types
for lists:keyfind/3, lists:keysearch/3, and lists:keyemember/3 have been
corrected. The incorrect/incomplete types could cause false dialyzer warnings.
Own Id: OTP-9496

 STDLIB 1.17.4

 Fixed Bugs and Malfunctions

	The default value undefined was added to records field types in such a way
that the result was not always a well-formed type. This bug has been fixed.
Own Id: OTP-9147

	Update index file atomically
Since the log_mf_h index file might be read by other processes than the error
handler (e.g. by the rb tool), this file should be updated atomically. This
will avoid hitting the time gap between opening the file in write mode (and
thus emptying the file) and the actual update with the new contents. To do
this, a temporary file is written, and the file:rename/1 used to replace the
real index file.
Own Id: OTP-9148

	Fixed various typos across the documentation (Thanks to Tuncer Ayaz)
Own Id: OTP-9154

	Supervisors should not save child-specs for temporary processes when they
terminate as they should not be restarted. Saving the temporary child spec
will result in that you cannot start a new temporary process with the same
child spec as an already terminated temporary process. Since R14B02 you cannot
restart a temporary temporary process as arguments are no longer saved, it has
however always been semantically incorrect to restart a temporary process.
Thanks to Filipe David Manana for reporting this and suggesting a solution.
Own Id: OTP-9167 Aux Id: OTP-9064

	Various small documentation fixes (Thanks to Bernard Duggan)
Own Id: OTP-9172

	Fix format_status bug for unregistered gen_event processes
Port the gen_fsm code for format_status to gen_event in order to prevent a
lists:concat([...,pid()]) crash when calling sys:get_status/1 on an
unregistered gen_event process.
Refactor formatstatus header code from gen* behaviours to module gen.
Extend the format_status tests in gen_event_SUITE to cover format_status bugs
with anonymous gen_event processes. (Thanks To Geoff Cant)
Own Id: OTP-9218

	List of pids changed to 'set' in supervisor for dynamic temporary children.
Accessing the list would not scale well when adding/deleting many children.
(Thanks to Evgeniy Khramtsov)
Own Id: OTP-9242

	Change pool module to attempt to attach to nodes that are already running
The pool module prints out an error message and takes no further action for
nodes that are already running. This patch changes that behavior so that if
the return from slave:start/3 is {already_running, Node} then an attempt to
attach to the node is still made. This makes sense because the node has been
specified by the user in the .hosts.erlang file indicating a wish for the node
to be part of the pool and a manual attach can be successfully made after the
pool is started.(Thanks to Kelly McLaughlin)
Own Id: OTP-9244

	unicode: document 16#FFFE and 16#FFFF (non chars)(Thanks to Tuncer Ayaz)
Own Id: OTP-9256

	re: remove gratuitous "it " in manpage (Thanks to Tuncer Ayaz)
Own Id: OTP-9307

	A bug in erl_eval(3) has been fixed.
Own Id: OTP-9322

 Improvements and New Features

	Add timer:tc/1 and remove the catch in tc/2 and tc/3. The time measuring
functions will thus no longer trap exits, errors or throws caused by the
measured function.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9169

	Allow supervisor:terminate_child(SupRef,Pid) for simple_one_for_one
supervisors
supervisor:terminate_child/2 was earlier not allowed if the supervisor used
restart strategy simple_one_for_one. This is now changed so that children of
this type of supervisors can be terminated by specifying the child's Pid.
(Thanks to Vance Shipley.)
Own Id: OTP-9201

	Types and specifications have been added.
Own Id: OTP-9267

	Erlang types and specifications are used for documentation.
Own Id: OTP-9271

	Allow Dets tablenames to be arbitrary terms.
Own Id: OTP-9282

	A specification that could cause problems for Dialyzer has been fixed. An
opaque type in erl_eval has been turned in to a ordinary type. This is a
temporary fix.
Own Id: OTP-9333

 STDLIB 1.17.3

 Fixed Bugs and Malfunctions

	Two bugs in io:format for ~F.~Ps has been corrected. When length(S) >=
abs(F) > P, the precision P was incorrectly ignored. When F == P > length(S)
the result was incorrectly left adjusted. Bug found by Ali Yakout who also
provided a fix.
Own Id: OTP-8989 Aux Id: seq11741

	Fix exception generation in the io module
Some functions did not generate correct badarg exception on a badarg
exception.
Own Id: OTP-9045

	Fixes to the dict and orddict module documentation
Fixed grammar and one inconsistency (Key - Value instead of key/value, since
everywhere else the former is used). (thanks to Filipe David Manana)
Own Id: OTP-9083

	Add ISO week number calculation functions to the calendar module in stdlib
This new feature adds the missing week number function to the calendar module
of the stdlib application. The implementation conforms to the ISO 8601
standard. The new feature has been implemented tested and documented (thanks
to Imre Horvath).
Own Id: OTP-9087

 Improvements and New Features

	Implement the 'MAY' clauses from RFC4648 regarding the pad character to make
mime_decode() and mime_decode_to_string() functions more tolerant of badly
padded base64. The RFC is quoted below for easy reference.
"RFC4648 Section 3.3 with reference to MIME decoding: Furthermore, such
specifications MAY ignore the pad character, "=", treating it as non-alphabet
data, if it is present before the end of the encoded data. If more than the
allowed number of pad characters is found at the end of the string (e.g., a
base 64 string terminated with "==="), the excess pad characters MAY also be
ignored."
Own Id: OTP-9020

	Supervisors will no longer save start parameters for temporary processes as
they will not be restarted. In the case of simple_one_for_one workers such as
ssl-connection processes this will substantial reduce the memory footprint of
the supervisor.
Own Id: OTP-9064

	When running escript it is now possible to add the -n flag and the escript
will be compiled using +native.
Own Id: OTP-9076

 STDLIB 1.17.2.1

 Fixed Bugs and Malfunctions

	Several type specifications for standard libraries were wrong in the R14B01
release. This is now corrected. The corrections concern types in
re,io,filename and the module erlang itself.
Own Id: OTP-9008

 STDLIB 1.17.2

 Fixed Bugs and Malfunctions

	When several clients accessed a Dets table simultaneously, one of them calling
dets:insert_new/2, the Dets server could crash. Alternatively, under the
same conditions, ok was sometimes returned instead of true. (Thanks to
John Hughes.)
Own Id: OTP-8856

	When several clients accessed a Dets table simultaneously, inserted or updated
objects were sometimes lost due to the Dets file being truncated. (Thanks to
John Hughes.)
Own Id: OTP-8898

	When several clients accessed a Dets table simultaneously, modifications of
the Dets server's internal state were sometimes thrown away. The symptoms are
diverse: error with reason bad_object; inserted objects not returned by
lookup(); et cetera. (Thanks to John Hughes.)
Own Id: OTP-8899

	If a Dets table was closed after calling bchunk/2, match/1,3,
match_object/1,3, or select/1,3 and then opened again, a subsequent call
using the returned continuation would normally return a reply. This bug has
fixed; now the call fails with reason badarg.
Own Id: OTP-8903

	Cover did not collect coverage data for files such as Yecc parses containing
include directives. The bug has been fixed by modifying epp, the Erlang Code
Preprocessor.
Own Id: OTP-8911

	If a Dets table with fewer slots than keys was opened and then closed after
just a lookup, the contents were no longer well-formed. This bug has been
fixed. (Thanks to Matthew Evans.)
Own Id: OTP-8923

	In a supervisor, when it terminates a child, if that child happens to have
exited fractionally early, with normal, the supervisor reports this as an
error. This should not be reported as an error.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8938 Aux Id: seq11615

 Improvements and New Features

	The documentation filelib:wildcard/1,2 now describes the character set syntax
for wildcards.
Own Id: OTP-8879 Aux Id: seq11683

	Buffer overflows have been prevented in erlc, dialyzer, typer,
run_test, heart, escript, and erlexec.
(Thanks to Michael Santos.)
Own Id: OTP-8892

	Using a float for the number of copies for string:copies/2 resulted in an
infinite loop. Now it will fail with an exception instead. (Thanks to Michael
Santos.)
Own Id: OTP-8915

	New ETS option compressed, to enable a more compact storage format at the
expence of heavier table operations. For test and evaluation, erl +ec can be
used to force compression on all ETS tables.
Own Id: OTP-8922 Aux Id: seq11658

	The default maximum number of slots of a Dets table has been changed as to be
equal to the maximum number of slots. (Thanks to Richard Carlsson.)
Own Id: OTP-8959

 STDLIB 1.17.1

 Fixed Bugs and Malfunctions

	reference() has been substituted for ref() in the documentation.
Own Id: OTP-8733

 Improvements and New Features

	The ms_transform now warns if the fun head shadows surrounding variables (just
like the warnings you would get for an ordinary fun in the same context).
Own Id: OTP-6759

	ets:select_reverse/{1,2,3} are now documented.
Own Id: OTP-7863

	Large parts of the ethread library have been rewritten. The ethread
library is an Erlang runtime system internal, portable thread library used by
the runtime system itself.
Most notable improvement is a reader optimized rwlock implementation which
dramatically improve the performance of read-lock/read-unlock operations on
multi processor systems by avoiding ping-ponging of the rwlock cache lines.
The reader optimized rwlock implementation is used by miscellaneous rwlocks in
the runtime system that are known to be read-locked frequently, and can be
enabled on ETS tables by passing the
{read_concurrency, true} option upon table
creation. See the documentation of ets:new/2 for more information. The
reader optimized rwlock implementation can be fine tuned when starting the
runtime system. For more information, see the documentation of the
+rg command line argument of erl.
There is also a new implementation of rwlocks that is not optimized for
readers. Both implementations interleaves readers and writers during
contention as opposed to, e.g., the NPTL (Linux) pthread rwlock implementation
which use either a reader or writer preferred strategy. The reader/writer
preferred strategy is problematic since it starves threads doing the
non-preferred operation.
The new rwlock implementations in general performs better in ERTS than common
pthread implementations. However, in some extremely heavily contended cases
this is not the case. Such heavy contention can more or less only appear on
ETS tables. This when multiple processes do very large amounts of write locked
operations simultaneously on the same table. Such use of ETS is bad regardless
of rwlock implementation, will never scale, and is something we strongly
advise against.
The new rwlock implementations depend on atomic operations. If no native
atomic implementation is found, a fallback solution will be used. Using the
fallback implies a performance degradation. That is, it is more important now
than before to build OTP with a native atomic implementation.
The ethread library contains native atomic implementations for, x86 (32 and
64 bit), powerpc (32 bit), sparc V9 (32 and 64 bit), and tilera (32 bit). On
other hardware gcc's builtin support for atomic memory access will be used if
such exists. If no such support is found, configure will warn about no
atomic implementation available.
The ethread library can now also use the libatomic_ops library for atomic
memory accesses. This makes it possible for the Erlang runtime system to
utilize optimized native atomic operations on more platforms than before. If
configure warns about no atomic implementation available, try using the
libatomic_ops library. Use the
--with-libatomic_ops=PATH
configure command line argument when specifying where the libatomic_ops
installation is located. The libatomic_ops library can be downloaded from:
http://www.hpl.hp.com/research/linux/atomic_ops/
The changed API of the ethread library has also caused modifications in the
Erlang runtime system. Preparations for the to come "delayed deallocation"
feature has also been done since it depends on the ethread library.
Note: When building for x86, the ethread library will now use instructions
that first appeared on the pentium 4 processor. If you want the runtime system
to be compatible with older processors (back to 486) you need to pass the
--enable-ethread-pre-pentium4-compatibility
configure command line argument when configuring the system.
Own Id: OTP-8544

	Some Built In Functions (BIFs) from the module erlang was never made
autoimported for backward compatibility reasons. As local functions now
override autoimports, new autoimports is no longer a problem, why the
following BIFs are finally made autoimported: monitor/2, monitor/3,
demonitor/2, demonitor/3, error/1, error/2, integer_to_list/2,
list_to_integer/2.
Own Id: OTP-8763

 STDLIB 1.17

 Fixed Bugs and Malfunctions

	The Erlang code preprocessor (epp) sent extra messages on the form
{eof,Location} to the client when parsing the file attribute. This bug,
introduced in R11B, has been fixed.
Own Id: OTP-8470

	The abstract type 'fun' could not be printed by the Erlang pretty printer
(erl_pp). This bug has been fixed.
Own Id: OTP-8473

	The function erl_scan:reserved_word/1 no longer returns true when given
the word spec. This bug was introduced in STDLIB-1.15.3 (R12B-3).
Own Id: OTP-8567

	The documentation of lists:keysort/2 states that the sort is stable.
Own Id: OTP-8628 Aux Id: seq11576

	The shell's line editing has been improved to more resemble the behaviour of
readline and other shells. (Thanks to Dave Peticolas)
Own Id: OTP-8635

	The Erlang code preprocessor (epp) did not correctly handle premature
end-of-input when defining macros. This bug, introduced in STDLIB 1.16, has
been fixed.
Own Id: OTP-8665 Aux Id: OTP-7810

 Improvements and New Features

	The module binary from EEP31 (and EEP9) is implemented.
Own Id: OTP-8217

	The erlang pretty printer (erl_pp) no longer quotes atoms in types.
Own Id: OTP-8501

	The Erlang code preprocessor (epp) now considers records with no fields as
typed.
Own Id: OTP-8503

	Added function zip:foldl/3 to iterate over zip archives.
Added functions to create and extract escripts. See escript:create/2 and
escript:extract/2.
The undocumented function escript:foldl/3 has been removed. The same
functionality can be achieved with the more flexible functions
escript:extract/2 and zip:foldl/3.
Record fields has been annotated with type info. Source files as been adapted
to fit within 80 chars and trailing whitespace has been removed.
Own Id: OTP-8521

	The Erlang parser no longer duplicates the singleton type undefined in the
type of record fields without initial value.
Own Id: OTP-8522

	A regular expression with many levels of parenthesis could cause a buffer
overflow. That has been corrected. (Thanks to Michael Santos.)
Own Id: OTP-8539

	When defining macros the closing right parenthesis before the dot is now
mandatory.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8562

	Some properties of a compiled re pattern are defined to allow for guard tests.
Own Id: OTP-8577

	Local and imported functions now override the auto-imported BIFs when the
names clash. The pre R14 behaviour was that auto-imported BIFs would override
local functions. To avoid that old programs change behaviour, the following
will generate an error:
	Doing a call without explicit module name to a local function having a name
clashing with the name of an auto-imported BIF that was present (and
auto-imported) before OTP R14A
	Explicitly importing a function having a name clashing with the name of an
autoimported BIF that was present (and autoimported) before OTP R14A
	Using any form of the old compiler directive nowarn_bif_clash

If the BIF was added or auto-imported in OTP R14A or later, overriding it with
an import or a local function will only result in a warning,
To resolve clashes, you can either use the explicit module name erlang to
call the BIF, or you can remove the auto-import of that specific BIF by using
the new compiler directive -compile({no_auto_import,[F/A]})., which makes
all calls to the local or imported function without explicit module name pass
without warnings or errors.
The change makes it possible to add auto-imported BIFs without breaking or
silently changing old code in the future. However some current code
ingeniously utilizing the old behaviour or the nowarn_bif_clash compiler
directive, might need changing to be accepted by the compiler.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8579

	The undocumented, unsupport, and deprecated function lists:flat_length/1 has
been removed.
Own Id: OTP-8584

	A bug in re that could cause certain regular expression matches never to
terminate is corrected. (Thanks to Michael Santos and Gordon Guthrie.)
Own Id: OTP-8589

	Nested records can now be accessed without parenthesis. See the Reference
Manual for examples. (Thanks to YAMASHINA Hio and Tuncer Ayaz.)
Own Id: OTP-8597

	receive statements that can only read out a newly created reference are now
specially optimized so that it will execute in constant time regardless of the
number of messages in the receive queue for the process. That optimization
will benefit calls to gen_server:call(). (See gen:do_call/4 for an example
of a receive statement that will be optimized.)
Own Id: OTP-8623

	The beam_lib:cmp/2 function now compares BEAM files in stricter way. The BEAM
files will be considered different if there are any changes except in the
compilation information ("CInf") chunk. beam_lib:cmp/2 used to ignore
differences in the debug information (significant for Dialyzer) and other
chunks that did not directly change the run-time behavior.
Own Id: OTP-8625

	When a gen_server, gen_fsm process, or gen_event terminates abnormally,
sometimes the text representation of the process state can occupy many lines
of the error log, depending on the definition of the state term. A mechanism
to trim out parts of the state from the log has been added (using a
format_status/2 callback). See the documentation.
Own Id: OTP-8630

	Calling sys:get_status() for processes that have globally registered names
that were not atoms would cause a crash. Corrected. (Thanks to Steve Vinoski.)
Own Id: OTP-8656

	The Erlang scanner has been augmented with two new tokens: .. and
Own Id: OTP-8657

	Expressions evaluating to integers can now be used in types and function
specifications where hitherto only integers were allowed ("Erlang_Integer").
Own Id: OTP-8664

	The compiler optimizes record operations better.
Own Id: OTP-8668

	The recently added BIFs erlang:min/2, erlang:max/2 and erlang:port_command/3
are now auto-imported (as they were originally intended to be). Due to the
recent compiler change (OTP-8579), the only impact on old code defining it's
own min/2, max/2 or port_command/3 functions will be a warning, the local
functions will still be used. The warning can be removed by using
-compile({no_auto_import,[min/2,max/2,port_command/3]}). in the source
file.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8669 Aux Id: OTP-8579

	Now, binary_to_term/2 is auto-imported. This will cause a compile warning if
and only if a module has got a local function with that name.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8671

	The predefined builtin type tid() has been removed. Instead, ets:tid() should
be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8687

 STDLIB 1.16.5

 Fixed Bugs and Malfunctions

	Because of a race condition, using filelib:ensure_dir/1 from multiple
processes to create the same path or parts of the same directory structure,
filelib:ensure_dir/1 could return a meaningless {error,eexist}. That race
condition has been eliminated, and {error,eexist} will now be returned only
if there exists a regular file, device file, or some other non-directory file
with the same name. (Thanks to Tuncer Ayaz.)
Own Id: OTP-8389

	A number of bugs concerning re and unicode are corrected:
re:compile no longer loses unicode option, which also fixes bug in re:split.
re:replace now handles unicode charlist replacement argument
re:replace now handles unicode RE charlist argument correctly
re:replace now handles binary unicode output correctly when nothing is
replaced.
Most code, testcases and error isolation done by Rory Byrne.
Own Id: OTP-8394

	The loading of native code was not properly atomic in the SMP emulator, which
could cause crashes. Also a per-MFA information table for the native code has
now been protected with a lock since it turns that it could be accessed
concurrently in the SMP emulator. (Thanks to Mikael Pettersson.)
Own Id: OTP-8397

	user.erl (used in oldshell) is updated to handle unicode in prompt strings
(io:get_line/{1,2}). io_lib is also updated to format prompts with the 't'
modifier (i.e. ~ts instead of ~s).
Own Id: OTP-8418 Aux Id: OTP-8393

	The re module: A regular expression with an option change at the start of a
pattern that had top-level alternatives could cause overwriting and/or a
crash. (Thanks to Michael Santos.)
Own Id: OTP-8438

 Improvements and New Features

	The ability for the gen_server and gen_fsm callback modules to format their
own state for display under the sys:get_status/1,2 calls has been restored and
documented. (Thanks to Steve Vinoski.)
Own Id: OTP-8324

	c:nc/{1,2} used to assume that the beam file was created in the same
directory as the source code and failed to load the code if it was not.
Corrected to look for the beam file in the current directory or in the
directory specified by the {outdir,Dir} option. (Thanks to Alex Suraci.)
Own Id: OTP-8337

	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343

	Shell tab completion now works for quoted module and function names. (Thanks
to Ulf Wiger.)
Own Id: OTP-8383

	Explicit top directories in archive files are now optional.
For example, if an archive (app-vsn.ez) just contains an app-vsn/ebin/mod.beam
file, the file info for the app-vsn and app-vsn/ebin directories are faked
using the file info from the archive file as origin. The virtual direcories
can also be listed. For short, the top directories are virtual if they does
not exist.
Own Id: OTP-8387

	Macros overloading has been implemented. (Thanks to Christopher Faulet.)
Own Id: OTP-8388

	The new function shell:prompt_func/1 and the new application configuration
parameter shell_prompt_func can be used for customizing the Erlang shell
prompt.
Own Id: OTP-8393

	Improved handling of typed records in escripts
Own Id: OTP-8434

	Added supervisor:count_children/1 to count the number of children being
managed without the memory impact of which_children/1. (Thanks to Jay Nelson.)
Own Id: OTP-8436

 STDLIB 1.16.4

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	[escript] The restriction that the first line in escripts must begin with
#! has been removed.
[escript] Some command line options to the escript executable has now been
documented. For example you can run an escript in the debugger by just adding
a command line option.
[escript] The documentation of the escript header syntax has been clarified.
For example the header is optional. This means that it is possible to directly
"execute" .erl, .beam and.zip files.
Own Id: OTP-8215

	Optimized array:from_orddict/1, it is now faster and uses less memory if the
orddict was sparse.
Changed array:reset/2, it will now never expand the array which it could
before for non fixed arrays. See the documentation.
Own Id: OTP-8216

	The Erlang Pretty Printer (erl_pp) now puts the leading [of list
comprehensions as well as the leading << of bit string comprehensions on a
separate line in order to expose the Cover counter of the template.
Own Id: OTP-8227

	The extension ".xrl" used for Leex input files is now recognized by the
compiler.
Own Id: OTP-8232

	Some clarifications have been made in the documentation regarding
gen_server, gen_fsm, and gen_event behavior when handling 'EXIT'
messages from the parent process. For more information see the gen_server,
gen_fsm, and gen_event documentation.
Own Id: OTP-8255 Aux Id: seq11419

	The -on_load() directive can be used to run a function when a module is
loaded. It is documented in the section about code loading in the Reference
Manual.
Own Id: OTP-8295

 STDLIB 1.16.3.1

 Fixed Bugs and Malfunctions

	An erroneous type spec for gen:start/6 caused dialyzer to erroneously issue
warnings when {spawn_opt, SpawnOptionList} was passed in the option list to
the gen_server and gen_fsm start functions.
Own Id: OTP-8068 Aux Id: seq11323, seq11314

 STDLIB 1.16.3

 Fixed Bugs and Malfunctions

	The linter used to crash on invalid -opaque declarations.
Own Id: OTP-8051

	Bugs in digraph:add_edge/5 and digraph:del_path/3 have been fixed. (Thanks
to Crystal Din.)
Own Id: OTP-8066

	When trying to insert objects with dets:insert_new() into a Dets table of
type duplicate_bag, already existing objects would sometimes be duplicated.
This bug has been fixed. (Thanks to Crystal Din.)
Own Id: OTP-8070

	Running erlc in a very deep directory (with a path length of more 256 or more
characters) would cause the emulator to crash in a call to
list_to_atom/1. (Thanks to Chris Newcombe.)
Own Id: OTP-8124

	A few minor bugs have been fixed in the Erlang Code Preprocessor (epp).
Own Id: OTP-8130

	A bug in The Erlang Meta Interpreter (erl_eval) has been fixed: exceptions
generated in the template of bit string comprehensions were not handled
properly. (Thanks to Ulf Wiger.)
Own Id: OTP-8133

 Improvements and New Features

	Option {capture,none} was missing in documentation for re:run/3.
Own Id: OTP-8113

	When erl_scan:tokens() returns an error tuple
{error, ErrorInfo, EndLocation}, the list LeftOverChars is the remaining
characters of the input data, starting from EndLocation. It used to be the
empty list.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8129

	The Erlang Meta Interpreter (erl_eval) has been somewhat optimized when it
comes to interpreting receive-expressions. (Thanks to Richard Carlsson.)
Own Id: OTP-8139

	The Erlang Pretty Printer (erl_pp) has been modified as to handle types.
Own Id: OTP-8150

 STDLIB 1.16.2

 Fixed Bugs and Malfunctions

	The text of tokens returned by the Erlang scanner (erl_scan) was sometimes
empty when the text option was given and StartLocation was a line. This
bug has been fixed.
Own Id: OTP-7965

	The documentation for base64:decode/1 has been updated to point out that it
strips whitespace.
base64:decode/1 and base64:mime_decode/1 would sometimes fail instead of
stripping away non-base64 characters.
Own Id: OTP-7984

	Two types in the gen module were corrected.
Own Id: OTP-8029 Aux Id: seq11296

	array:from_orddict([]) and array:from_list([]) would construct fixed
arrays instead of extendible arrays.
Own Id: OTP-8033

 Improvements and New Features

	Interpreted escripts are now tail recursive.
The function erl_eval:expr/5 has been introduced.
Own Id: OTP-7933

	gen_server:call/2,3 will be somewhat faster if the calling process has a
many messages in its message queue.
Own Id: OTP-7979

	Random now supports seed with arity one, random:seed/1, which takes a
three-tuple.
Own Id: OTP-8019

	The regexp module now recognizes the escape sequences \xXY and \x{X...}.
Own Id: OTP-8024

 STDLIB 1.16.1

 Fixed Bugs and Malfunctions

	The documentation of dets:open_file/1 now states that the file is repaired
if it has not been properly closed. (Thanks to Ulf Wiger.)
Own Id: OTP-7895

 Improvements and New Features

	The Erlang scanner no longer returns the text of tokens when the start
location is a pair of a line and column unless the new option text is
supplied (incompatibility with R13A).
There are new functions to access the attributes of tokens:
attributes_info/1,2 and set_attribute/3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7892 Aux Id: OTP-7810

	Several glitches and performance issues in the Unicode and I/O-system
implementation of R13A have been corrected.
Own Id: OTP-7896 Aux Id: OTP-7648 OTP-7887

	The type spec of filelib:wildcard/2 has been corrected.
Own Id: OTP-7915

	New functions: gb_sets:is_disjoint/2, ordsets:is_disjoint/2, and
gb_sets:is_disjoint/2.
Own Id: OTP-7947

	The function gb_trees:map/2 which was added in R13A is now documented.
Own Id: OTP-7948

 STDLIB 1.16

 Fixed Bugs and Malfunctions

	Fixed a minor race conditions in gen_server:start*: if one of these
functions returned {error,Reason} or ignore, the name could still be
registered (either locally or in global).
A process started by proc_lib in some cases depended on its process
dictionary not to be erased, and would crash when terminating abnormally and
not generate a proper crash report. This has been corrected (but the initial
call will not be shown in the error report if the process dictionary has been
erased). NOTE: There is no longer any need to erase the process dictionary for
memory conservation reasons, since the actual call arguments are no longer
saved in the process dictionary.
Own Id: OTP-7669

	The Erlang preprocessor used wrong line number when stringifying macro
arguments. (Thanks to John Hughes.)
Own Id: OTP-7702

	A bug in the qlc module has been fixed: merge join sometimes failed to
return all answers. (Thanks to Bernard Duggan.)
Own Id: OTP-7714

 Improvements and New Features

	A new option, key_equality, has been added to qlc:table/2. This option
makes it possible for qlc to better handle tables that use ==/2 when
comparing keys for equality (examples of such tables are ordered ETS tables
and gb_table in qlc(3)).
Own Id: OTP-6674

	The functions lists:seq/1,2 return the empty list in a few cases when they
used to generate an exception, for example lists:seq(1, 0). See lists(3) for
details. (Thanks to Richard O'Keefe.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7230

	The order of objects visited in select for ordered_set is now documented.
Own Id: OTP-7339

	It is now possible to debug code in escripts and archives.
Own Id: OTP-7626

	Support for Unicode is implemented as described in EEP10. Formatting and
reading of unicode data both from terminals and files is supported by the io
and io_lib modules. Files can be opened in modes with automatic translation to
and from different unicode formats. The module 'unicode' contains functions
for conversion between external and internal unicode formats and the re module
has support for unicode data. There is also language syntax for specifying
string and character data beyond the ISO-latin-1 range.
The interactive shell will support input and output of unicode characters when
the terminal and operating system supports it.
Please see the EEP and the io/io_lib manual pages as well as the stdlib users
guide for details.
I/O-protocol incompatibilities:
The ioprotocol between io_Server and client is updated to handle protocol
data in unicode formats. The updated protocol is now documented. The
specification resides in the stdlib _users manual, which is a new part of the
manual.
io module incompatibilities:
The io:putchars, io:get_chars and io:get_line all handle and return unicode
data. In the case where binaries can be provided (as to io:put_chars), they
shall be encoded in UTF-8. When binaries are returned (as by
io:get_line/get_chars when the io_server is set in _binary mode) the returned
data is also always encoded as UTF-8. The file module however still returns
byte-oriented data, why file:read can be used instead of io:get_chars to read
binary data in ISO-latin-1.
io_lib module incompatibilities:
io_lib:format can, given new format directives (i.e "~ts" and "~tc"), return
lists containing integers larger than 255.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7648 Aux Id: OTP-7580 OTP-7514 OTP-7494 OTP-7443 OTP-7181 EEP10
EEP11

	The function pool:attach/1 now returns already_attached if the node is
already attached, rather than allready_attached (sic!). (Thanks to Edwin
Fine.)
Own Id: OTP-7653 Aux Id: OTP-7603

	Preprocessor directives are now allowed in escripts. This means that for
example macros may be used in escripts.
Own Id: OTP-7662

	When a process started with proc_lib, gen_server, or gen_fsm exits with
reason {shutdown,Term}, a crash report will no longer be generated (to allow
a clean shutdown, but still provide additional information to process that are
linked to the terminating process).
Own Id: OTP-7740 Aux Id: seq10847

	A new BIF, lists:keyfind/3, has been added. It works like
lists:keysearch/3 except that it does not wrap the returned tuple in a
value tuple in case of success. (Thanks to James Hague for suggesting this
function.)
Own Id: OTP-7752

	lists:suffix(Suffix, List) used to have a a complexity of
length(Suffix)*length(List) (which could become quite slow for some inputs).
It has now been re-implemented so that its complexity is
length(Suffix)+length(List). (Thanks to Richard O'Keefe for the new
implementation.)
Own Id: OTP-7797

	The Erlang scanner has been augmented as to return white spaces, comments, and
exact location of tokens. The functions string/3, tokens/4, and
token_info/1,2 are new. See erl_scan(3) for details.
tokens/3,4 have been modified as to return a list of tokens instead of an
error when eof is encountered before the dot.
Own Id: OTP-7810

	filelib:fold_files/5 now uses the re module instead of the regexp module
for regular expression matching. In practice, this change will not be a
problem for most regular expressions used for filelib:fold_files/5. (The
major difference in regular expression is that parenthesis and curly brackets
is treated as literal characters by regexp but as special characters by
re; fortunately, those characters are rarely used in filenames.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7819

	digraph:new(Type) will now cause a badarg exception if Type is not a
valid type. Similarly, digraph_utils:subgraph/2,3 will now cause a badarg
if the arguments are invalid. (Those functions used to return error tuples if
something was wrong.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7824

	The argument passed to random:uniform/1 must now be an integer (as stated in
the documentation). In previous releases, a floating point number was also
allowed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7827

	The copyright notices have been updated.
Own Id: OTP-7851

	A few missing match spec functions was added to dbg:fun2ms; exception_trace/0
and trace/2,3.
There is a new function queue:member/2.
A bug in io_lib:fread that made it accidentally concatenate fields separated
by newline has been corrected. Reported and analyzed by Matthew Palmer to
erlang-patches.
Own Id: OTP-7865

 STDLIB 1.15.5

 Fixed Bugs and Malfunctions

	A bug in the qlc module has been fixed: when merge joining two query handles
the temporary file used for equivalence classes was not truncated properly
which could result in poor performance.
Own Id: OTP-7552

	The characters 16#C0 and 16#E0 ("A" and "a" with grave accent), were not
properly converted by the string:to_lower/1 and string:to_upper/1
functions. (Thanks to Richard O'Keefe.)
Own Id: OTP-7589

	The function pool:attach/1 now returns already_attached if the node is
already attached, rather than allready_attached (sic!). (Thanks to Edwin
Fine.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7603

	The documentation for io:get_line/1,2 now mentions that the return value can
also be {error,Reason}.
Own Id: OTP-7604 Aux Id: seq11063

 Improvements and New Features

	The split function is now added to the re library. Exceptions and errors from
both run, replace and split are made more consistent.
Own Id: OTP-7514 Aux Id: OTP-7494

	Processes spawned using proc_lib (including gen_server and other library
modules that use proc_lib) no longer keep the entire argument list for the
initial call, but only the arity.
Also, if proc_lib:spawn/1 is used to spawn a fun, the actual fun is not
kept, but only module, function name, and arity of the function that
implements the fun.
The reason for the change is that keeping the initial fun (or a fun in an
argument list), would prevent upgrading the code for the module. A secondary
reason is that keeping the fun and function arguments could waste a
significant amount of memory.
The drawback with the change is that the crash reports will provide less
precise information about the initial call (only Module:Function/Arity
instead of Module:Function(Arguments)). The function
proc_lib:initial_call/1 still returns a list, but each argument has been
replaced with a dummy atom.
Own Id: OTP-7531 Aux Id: seq11036

	There is now experimental support for loading of code from archive files. See
the documentation of code, init, erl_prim_loaderand escript for more
info.
The error handling of escripts has been improved.
An escript may now set explicit arguments to the emulator, such as
-smp enabled.
An escript may now contain a precompiled beam file.
An escript may now contain an archive file containing one or more
applications (experimental).
The internal module code_aux has been removed.
Own Id: OTP-7548 Aux Id: otp-6622

	Enabled explicit control of which types of files that should be compressed in
a ZIP archive.
Own Id: OTP-7549 Aux Id: otp-6622

	In the job control mode, the "s" and "r" commands now take an optional
argument to specify which shell to start. (Thanks to Robert Virding.)
Own Id: OTP-7617

 STDLIB 1.15.4

 Fixed Bugs and Malfunctions

	A bug in the calendar module could cause
calendar:local_time_to_universal_time_dst/1 to return duplicate identical
values for local times in timezones without DST. Multiple values should only
be returned when a local time is within the hour occurring twice due to shift
from DST to non-DST, and certainly only in timezones with DST. The correct
behaviour is now implemented.
Own Id: OTP-7344 Aux Id: seq10960

	The documentation of (d)ets:init_table() has been corrected. (Thanks to Paul
Mineiro.)
Own Id: OTP-7413

	The soft upper limit of 60 on the number of non-white characters on a line,
which was introduced in R12B-0 for the control sequences p and P of the
functions io:fwrite/2,3 and io_lib:fwrite/2, has been removed. This means
that terms whose printed representation fits on a line will have no NEWLINEs.
The Erlang shell still uses the 60 character limit, though.
Own Id: OTP-7421 Aux Id: OTP-6708

	Some debug code has been removed from Dets.
Own Id: OTP-7424

	The documentation of dets:match_delete/2 has been corrected. (Thanks to Paul
Mineiro.)
Own Id: OTP-7445

	Corrections of digraph(3). (Thanks to Vlad Dumitrescu.)
Own Id: OTP-7492

	For the process that an escript runs in, the trap_exit process flag is now
false instead of true (as in previous releases). Scripts that depend on
the previous (counter-intuitive) behaviour might not work. (Thanks to Bengt
Kleberg.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7517

 Improvements and New Features

	The documentation of lists:(u)sort/2 now states what is expected of an
ordering function.
Own Id: OTP-7489

	The re module is extended with repetitive matches (global option) and
replacement function.
Own Id: OTP-7494 Aux Id: OTP-7181

	The Erlang shell now displays a nicer error message when evaluating an
undefined command. (Thanks to Richard Carlsson.)
Own Id: OTP-7495

 STDLIB 1.15.3

 Fixed Bugs and Malfunctions

	zip:unzip to/from binary with empty directories did not work. (Thanks to
Martin Dvorak.)
Own Id: OTP-7248

	The documentation of the control sequence w of the io_lib module now
states that floating point numbers are printed accurately.
Own Id: OTP-7324 Aux Id: OTP-7084

	zip:unzip was not supporting a flavour of the zip format found in jar-files.
Own Id: OTP-7382 Aux Id: seq10970

 Improvements and New Features

	An experimental module "re" is added to the emulator which interfaces a
publicly available regular expression library for Perl-like regular
expressions (PCRE). The interface is purely experimental and will be subject
to change.
The implementation is for reference and testing in connection to the relevant
EEP.
Own Id: OTP-7181

 STDLIB 1.15.2

 Fixed Bugs and Malfunctions

	When inserting many small objects, Dets sometimes crashed when reaching the
maximum number of slots. (Thanks to Daniel Goertzen.)
Own Id: OTP-7146

	Processes linked to the Erlang shell did not get an exit signal when the
evaluator process was killed. This bug, introduced in R12B-0, has been fixed.
Own Id: OTP-7184 Aux Id: OTP-6554

	Invalid arguments to ets:update_counter/3 were not handled correctly. A
tuple position (Pos) less than 1 caused the element directly following the
key to be updated (as if no position at all had been specified). All invalid
values for Pos will now fail with badarg.
Own Id: OTP-7226

	For certain terminals, io:columns/0 could return 0 instead of enotsup. That is
now corrected.
Own Id: OTP-7229 Aux Id: seq10886

	qlc:info() can now handle port identifiers, pids, references, and funs.
(Thanks to Wojciech Kaczmare for reporting this bug.)
When evaluating the parent_fun messages sent to the process calling
qlc:cursor() were sometimes erroneously consumed. This bug has been fixed.
Own Id: OTP-7232

	erl_parse:abstract() can now handle bit strings.
Own Id: OTP-7234

 Improvements and New Features

	The queue module has been rewritten to make it easier to use. Suggestions
and discussion from and with among others Lev Walkin, Anders Ramsell and Rober
Virding in december 2007 on erlang-questions@erlang.org. It was also discussed
to change the internal representation to contain length information which
would speed up len/1 but that change has been postponed. Anyone interested
may write an EEP and try to reach an acceptable compromise for queue overhead
and thereby the speed of all other operations than len/1. The queue module
is now optimized for fast and minimal garbage in/2 and out/1 and such. See
the documentation.
New functions: is_queue/1, get/1, get_r/1, peek/1,
peek_r/1, drop/1, drop_r/1 and liat/1. is_queue/1 is a new
predicate, liat/1 is a correction of an old misspelling, and the others
(get*, peek* and drop*) are new interface functions.
Own Id: OTP-7064

	The functions io_lib:write/1,2 and io_lib:print/1,4 have been changed when
it comes to writing floating point numbers. This change affects the control
sequences p, P, w, and W of the io_lib module. (Thanks to Bob
Ippolito for code contribution.)
Own Id: OTP-7084

	Updated the documentation for erlang:function_exported/3 and io:format/2
functions to no longer state that those functions are kept mainly for
backwards compatibility.
Own Id: OTP-7186

	A new BIF ets:update_element/3. To update individual elements within an
ets-tuple, without having to read, update and write back the entire tuple.
Own Id: OTP-7200

	string:join/2 now accepts an empty list as first argument.
Own Id: OTP-7231 Aux Id: OTP-6671

	qlc:info/1,2 accepts a new option, depth. The type SelectedObjects used
in the description of qlc:table/2 has been augmented.
Own Id: OTP-7238

	tuple_size/1 and byte_size/1 have been
substituted for size/1 in the documentation.
Own Id: OTP-7244

 STDLIB 1.15.1

 Fixed Bugs and Malfunctions

	Ets:select/3 in combination with ets:repair_continuation/2 and ordered_set
data tables could result in function_clause although used as intended. This is
now corrected. Thanks to Paul Mineiro for finding and isolating the bug!
Own Id: OTP-7025

	The compiler warning for the deprecated function ftp:close/1 now mentions
the correct replacement function.
The warning for the removed functions in the httpd_util module have been
changed to say they have been removed, not merely deprecated. (Thanks to
Fredrik Thulin.)
Own Id: OTP-7034 Aux Id: seq10825

	In (Expr)#r{} (no fields are updated), Expr is no longer evaluated more
than once. There is also a test that Expr is of the correct record type.
(Thanks to Dominic Williams.)
Own Id: OTP-7078 Aux Id: OTP-4962

	Documentation bugfixes and clarifications.
(Thanks to Joern (opendev@gmail.com), Matthias Lang, and Richard Carlsson.)
Own Id: OTP-7079

	Duplicated objects were sometimes not deleted from the list of answers when a
QLC table was traversed using a match specification. (Thanks to Dmitri
Girenko.)
Own Id: OTP-7114

 Improvements and New Features

	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

	It is now possible to hibernate a gen_server/gen_event/gen_fsm. In gen_server
and gen_fsm, hibernation is triggered by returning the atom
'hibernate' instead of a timeout value. In the gen_event case hibernation is
triggered by a event handler returning a tuple with an extra element
containing the atom 'hibernate'.
Own Id: OTP-7026 Aux Id: seq10817

	Some undocumented debug functionality has been added to Dets.
Own Id: OTP-7066

	The functions digraph_utils:is_tree/1, digraph_utils:is_arborescence/1,
and digraph_utils:arborescence_root/1 are new.
Own Id: OTP-7081

	The compiler could generate suboptimal code for record updates if the record
update code consisted of multiple source code lines.
Own Id: OTP-7101

 STDLIB 1.15

 Fixed Bugs and Malfunctions

	Bugs have been fixed in qlc:
	Setting the lookup_fun option of qlc:table/2 to undefined could cause
a crash.
	If a QLC restricted some column of a table in such a way that a traversal
using a match specification was possible and the QLC also compared the key
column or some indexed column of the the table with a column of some other
table, qlc always chose to traverse the table first, never considering
lookup join. This has been changed so that lookup join is always preferred;
if an initial traversal using the match specification is desired, the query
needs to be rewritten introducing an extra QLC with the filter(s)
restricting the column.
	When trying to find candidates for match specifications and lookup, filters
using variables from one generator only are ignored unless they are placed
immediately after the generator and possibly other filters using variables
from the same generator. In particular, filters joining two tables should
not be placed between the generator and the filters using the generator
only.
	The call-back function TraverseFun used for implementing QLC tables is
allowed to return a term other than a list since STDLIB 1.14 (OTP-5195).
However, when the returned term was a fun qlc often tried to call the fun
instead of returning it.

A few minor optimizations have been implemented as well.
Own Id: OTP-6673

	A bug concerning the use of parameterized modules from the shell has been
fixed.
Own Id: OTP-6785

	A bug regarding the size expression of the bit syntax has been fixed in the
erl_eval module.
Own Id: OTP-6787

	The log_mf_h event handler didn't close the index file when it was done
reading it causing a file descriptor leak.
Own Id: OTP-6800

	Definitions for the filename() and dirname() types have been added to the
documentation for the filelib module.
Own Id: OTP-6870

	file:write_file/3, file:write/2 and file:read/2 could crash (contrary to
documentation) for odd enough file system problems, e.g write to full file
system. This bug has now been corrected.
In this process the file module has been rewritten to produce better error
codes. Posix error codes now originate from the OS file system calls or are
generated only for very similar causes (for example 'enomem' is generated if a
memory allocation fails, and 'einval' is generated if the file handle in
Erlang is a file handle but currently invalid).
More Erlang-ish error codes are now generated. For example {error,badarg} is
now returned from file:close/1 if the argument is not of a file handle type.
See file(3).
The possibility to write a single byte using file:write/2 instead of a list
or binary of one byte, contradictory to the documentation, has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6967 Aux Id: OTP-6597 OTP-6291

	A bug concerning the evaluation of the ++/2 operator has been fixed in
erl_eval. (Thanks to Matthew Dempsky.)
Own Id: OTP-6977

 Improvements and New Features

	The behaviour of the internal functions gen:call/3,4 has been changed slightly
in the rare case that when the caller was linked to the called server, and the
server crashed during the call; its exit signal was consumed by the
gen:call/3,4 code and converted to an exit exception. This exit signal is no
longer consumed.
To even notice this change, 1) the calling process has to be linked to the
called server.
	the call must not be remote by name that is it must be local or remote by
pid, local by name or global by name.

	the calling process has to have set
process_flag(trap_exit, true).

	the server has to crash during the call.

	the calling process has to be sensitive to getting previously consumed
{'EXIT',Pid,Reason} messages in its message queue.

The old behaviour was once the only way for a client to notice if the server
died, but has since erlang:monitor(process, {Name,Node}) was introduced and
used in gen:call been regarded as an undesired behaviour if not a bug.
The affected user APIs are: gen_server:call/2,3,
gen_fsm:sync_send_event/2,3, gen_fsm:sync_send_all_state_event/2,3,
gen_event:_, sys:_ and maybe a few others that hardly will be noticed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-3954 Aux Id: Seq 4538

	When an exception occurs the Erlang shell now displays the class, the reason,
and the stacktrace in a clearer way (rather than dumping the raw EXIT tuples
as before). proc_lib:format/1 displays the exception of crash reports in the
same clearer way.
The new shell command catch_exception and the new application configuration
parameter shell_catch_exception can be used for catching exceptions that
would normally exit the Erlang shell.
Own Id: OTP-6554 Aux Id: OTP-6289

	The function string:join/2 joins strings in a list with a separator.
Example: 'string:join(["a", "b", "c"], ", ") gives "a, b, c"'
Own Id: OTP-6671

	The control sequence P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 now inserts fewer line breaks when
printing tuples and lists. A soft upper limit of 60 on the number of non-white
characters on a line has been introduced.
Own Id: OTP-6708

	The new module array provides a fast functional array implementation.
Own Id: OTP-6733

	Functions that have long been deprecated have now been removed from the
following modules: dict, erl_eval, erl_pp, io, io_lib, lists,
orddict, ordsets, sets, and string.
The undocumented function lists:zf/3 has also been removed (use a list
comprehension or lists:zf/2 instead).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6845

	Minor documentation corrections for file:pread/2 and file:pread/3.
Own Id: OTP-6853

	Contract directives for modules in Kernel and STDLIB.
Own Id: OTP-6895

	The ets:fixtable/2 function, which has been deprecated for several releases,
has been removed.
The ets:info/1 function has been reimplemented as a BIF, which guarantees
that information returned is consistent.
The ets:info/2 function now fails with reason badarg if the second
argument is invalid. (Dialyzer can be used to find buggy code where the second
argument is misspelled.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6906

	The Erlang pretty printer erl_pp now inserts more newlines in order to
facilitate line coverage analysis by Cover. (Thanks to Thomas Arts.)
Own Id: OTP-6911

	The documentation for ets:safe_fixtable/2, ets:foldl/3, and ets:foldr/3 is now
clearer about what will happen if objects are inserted during table
traversals.
Own Id: OTP-6928 Aux Id: seq10779

	It is now possible to extract files in tar files directly into binaries. It is
also possible to add files to tar files directly from binaries.
Own Id: OTP-6943

	The functions keystore/4 and keytake/3 are new in the lists module.
Own Id: OTP-6953

	The new qlc option tmpdir_usage can be used for outputting messages onto
the error logger when a temporary file is about to be created, or to prohibit
the usage of temporary files altogether.
Own Id: OTP-6964

 STDLIB 1.14.5.3

 Improvements and New Features

	The allowed syntax for -type() and -spec() was updated.
Own Id: OTP-6861 Aux Id: OTP-6834

 STDLIB 1.14.5.2

 Improvements and New Features

	The compiler will for forward compatibility ignore the -type() and -spec()
attributes that will be introduced in the R12B release.
Own Id: OTP-6834

 STDLIB 1.14.5.1

 Fixed Bugs and Malfunctions

	The log_mf_h event handler didn't close the index file when it was done
reading it causing a file descriptor leak.
Own Id: OTP-6800

 Improvements and New Features

	The dict:size/1 and orddict:size/1 functions have been documented.
Own Id: OTP-6818

 STDLIB 1.14.5

 Fixed Bugs and Malfunctions

	Bugs have been fixed in Dets concerning comparison (==) and matching (=:=).
The STDLIB manual pages have been updated as to more carefully state when
terms are matched and when they are compared.
Own Id: OTP-4738 Aux Id: OTP-4685

	The shell has been updated to fix the following flaws: Shell process exit left
you with an unresponsive initial shell if not using oldshell. Starting a
restricted shell with a nonexisting callback module resulted in a shell where
no commands could be used, not even init:stop/0. Fun's could not be used as
parameters to local shell functions (in shell_default or user_default) when
restricted_shell was active.
Own Id: OTP-6537

	A bug in QLC's parse transform has been fixed.
Own Id: OTP-6590

	A bug concerning lists:sort/1 and lists:keysort/2 and a mix of floating
point numbers and integers has been fixed.
Own Id: OTP-6606

	When calling erlang:garbage_collect/0 in the Erlang shell not only the
evaluator process (the one returned by calling self/0 in the Erlang shell)
is garbage collected, but also the process holding the history list.
Own Id: OTP-6659

	Functions of the beam_lib module that used to catch exceptions and return a
tuple {'EXIT',Reason} now exit with the reason Reason.
Own Id: OTP-6711

	The erl_eval module now calls the non-local function handler whenever an
operator is evaluated (exceptions are andalso, orelse, and catch). The
non-local function handler is now also called when the function or operator
occurs in a guard test (such calls used to be ignored).
These changes affect the Erlang shell when running in restricted mode: the
callback function non_local_allowed/3 is now called for operators such as
'!'/2. This means that non_local_allowed/3 may need to
be changed as to let operators through. Note that erlang:'!'/2 as well as
erlang:send/2,3 have to be restricted in order to stop message passing in
the shell.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6714 Aux Id: seq10374

 Improvements and New Features

	The new compiler option warn_obsolete_guard can be used for turning on
warnings for calls to old type testing BIFs.
Own Id: OTP-6585

	For scripts written using escript, there is a new function
escript:script_name/0, which can be used to retrieve the pathame of the
script. The documentation has been clarified regarding pre-defined macros such
as ?MODULE and the module name.
Own Id: OTP-6593

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

 STDLIB 1.14.4

 Fixed Bugs and Malfunctions

	The MD5 calculation of a BEAM file done by code:module_md5/1,
beam_lib:md5/1, and by the compiler for the default value of the vsn
attribute have all been changed so that its result will be the same on all
platforms; modules containing funs could get different MD5s on different
platforms.
Own Id: OTP-6459

	When sorting terms using the file_sorter module (the option Format set to
term), file errors were not always properly handled. This bug has been
fixed.
The directory supplied with the tmpdir option is no longer checked unless it
is actually used. The error reason not_a_directory can no longer be
returned; instead a file_error tuple is returned
Own Id: OTP-6526

	Bugs regarding try/catch have been fixed in the erl_eval module.
Own Id: OTP-6539

	When sorting the operands of a join operation, QLC called file:open/3 with
bad arguments. This bug has been fixed.
Own Id: OTP-6562 Aux Id: seq10606

 Improvements and New Features

	The functions beam_lib:cmp/1 and beam_lib:strip/1 (and similar functions)
have been updated to handle optional chunks (such as "FunT") in more general
way in order to be future compatible.
The function beam_lib:chunks/3 has been added.
The function beam_lib:md5/1 has been added.
Own Id: OTP-6443

	Added base64 as a module to stdlib, encoding and decoding
Own Id: OTP-6470

	Added the functions to_upper/1 and to_lower/1 to the string module. These
provide case conversion for ISO/IEC 8859-1 characters (Latin1) and strings.
Own Id: OTP-6472

	The callback function non_local_allowed/3 used by the restricted shell can
now return the value {{restricted,NewFuncSpec,NewArgList},NewState} which
can be used for letting the shell call some other function than the one
specified.
Own Id: OTP-6497 Aux Id: seq10555

	There is a new escript program that can be used for writing scripts in
Erlang. Erlang scripts don't need to be compiled and any arguments can be
passed to them without risk that they are interpreted by the Erlang system.
Own Id: OTP-6505

	The Format argument of the functions io:fwrite/2,3 and io_lib:fwrite/2
is now allowed to be a binary.
Own Id: OTP-6517

 STDLIB 1.14.3.1

 Fixed Bugs and Malfunctions

	The control sequences p and P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 could cause a badarg failure when
applied to binaries. This bug was introduced in STDLIB 1.14.3. (Thanks to
Denis Bilenko.)
Own Id: OTP-6495

 Improvements and New Features

	Added the option {cwd, Dir} to make zip-archives with relative pathnames
without having to do (a global) file:set_cwd.
Own Id: OTP-6491 Aux Id: seq10551

 STDLIB 1.14.3

 Fixed Bugs and Malfunctions

	The spawn_opt/2,3,4,5 option monitor -- introduced in Kernel 2.11.2 -- is
currently not possible to use when starting a process using proc_lib, that
is, also when starting a gen_server, gen_fsm etc.
This limitation has now been properly documented and the behavior of the
gen_fsm, gen_server, and proc_lib start and start_link functions
when providing this option has been changed from hanging indefinitely to
failing with reason badarg.
(Thanks to Fredrik Linder)
Own Id: OTP-6345

 Improvements and New Features

	The control sequence P of the Format argument of the functions
io:fwrite/2,3 and io_lib:fwrite/2 now replaces the tail of binary strings
with ... when the maximum depth has been reached. For instance,
io:fwrite("~P", [<<"a binary string">>, 3]). prints <<"a binary"...>>.
The indentation takes more care not to exceed the right margin, if possible.
If the maximum depth is reached while printing a tuple, ,... is printed
instead of |... (this change applies to the control sequence W as well).
Own Id: OTP-6354

	The Erlang shell command h/0 that prints the history list now avoids
printing (huge) terms referred to by v/1 but instead just prints the call to
v/1.
Own Id: OTP-6390

 STDLIB 1.14.2.2

 Fixed Bugs and Malfunctions

	The functions dets:select/1,3, dets:match/1,3, and dets:match_object/1,3
have been changed as to never return {[],Continuation}. This change affects
the corresponding functions in Mnesia.
Bugs have been fixed in QLC: qlc:info() could crash if the tmpdir option
did not designate a valid directory; the results of looking up keys are kept
in RAM, which should improve performance.
Own Id: OTP-6359

 STDLIB 1.14.2.1

 Fixed Bugs and Malfunctions

	A bug in erl_pp:exprs() has been fixed.
Own Id: OTP-6321 Aux Id: seq10497

 STDLIB 1.14.2

 Fixed Bugs and Malfunctions

	The control sequences p and P of the Format argument of the functions
io:format/2,3 and io_lib:format/2 did not handle binaries very well. This
bug, introduced in stdlib-1.14, has been fixed.
Own Id: OTP-6230

	filelib:wildcard(Wc, PathWithRedundantSlashes), where
PathWithRedundantSlashes is a directory path containing redundant slashes,
such as /tmp/ or //tmp, could return incorrect results. (Thanks to Martin
Bjorklund.)
Own Id: OTP-6271

	The Erlang code preprocessor crashed if the predefined macros ?MODULE or
?MODULE_STRING were used before the module declaration. This bug has been
fixed.
Own Id: OTP-6277

 Improvements and New Features

	Support for faster join of two tables has been added to the qlc module.
There are two kinds of fast joins: lookup join that uses existing indices, and
merge join that takes two sorted inputs. There is a new join option that can
be used to force QLC to use a particular kind of join in some QLC expression.
Several other changes have also been included:
	The new tmpdir option of cursor/2, eval/2, fold/4, and info/2 can
be used to set the directory that join uses for temporary files. The option
also overrides the tmpdir option of keysort/3 and sort/2.

	The new lookup option can be used to assert that constants are looked up
when evaluating some QLC expression.

	The cache and cache_all options accept new tags: ets, list, and
no. The tag list caches answers in a list using a temporary file if the
answers cannot be held in RAM. Combining {cache,list} and {unique, true}
is equivalent to calling sort/2 with the option unique set to true.
The old tags true (equivalent to ets) and false (equivalent to no)
are recognized for backward compatibility.

	The new option max_list_size can be used to set the limit where merge join
starts to use temporary files for large equivalence classes and when answers
cached in lists are put on temporary files.

	There is a new callback is_sorted_key to be supplied as an option to
table/2.

	QLC analyzes each and every QLC expression when trying to find constants for
the lookup function. Hitherto only QLC expressions with exactly one
generator were analyzed.
Note that only filters with guard syntax placed immediately after the
generator are analyzed. The restriction to guard filters is an incompatible
change. See qlc for further details.

	In a similar way several match specifications for traversal of QLC tables
can be utilized for different generators of one single QLC expression.

	A bug has been fixed: when caching answers to a sufficiently complex query
it could happen that some answers were not returned.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6038

	The Erlang pretty printer (erl_pp) is now much faster when the code is
deeply nested. A few minor bugs have been fixed as well.
Own Id: OTP-6227 Aux Id: OTP-5924

	The Erlang shell now tries to garbage collect large binaries. Under certain
circumstances such binaries could otherwise linger on for an indefinite amount
of time.
Own Id: OTP-6239

	To help Dialyzer find more bugs, many functions in the Kernel and STDLIB
applications now only accept arguments of the type that is documented.
For instance, the functions lists:prefix/2 and lists:suffix/2 are
documented to only accept lists as their arguments, but they actually accepted
anything and returned false. That has been changed so that the functions
cause an exception if one or both arguments are not lists.
Also, the string:strip/3 function is documented to take a character argument
that is a character to strip from one or both ends of the string. Given a list
instead of a character, it used to do nothing, but will now cause an
exception.
Dialyzer will find most cases where those functions are passed arguments of
the wrong type.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6295

 STDLIB 1.14.1

 Fixed Bugs and Malfunctions

	The functions c:y/1,2 which call yecc:file/1,2 are now listed by
c:help/0.
Documentation of c:y/1,2 has been added to c.
The fact that the control sequence character s recognizes binaries and deep
character lists has been documented in io. This feature was added in
R11B-0 (OTP-5403).
Own Id: OTP-6140

	The shell command rr() sometimes failed to read record definitions from
file(s). This problem has been fixed.
Own Id: OTP-6166 Aux Id: OTP-5878

	The nonlocal function handler in erl_eval, which is used for implementing
the restricted mode of the Erlang shell, did not handle calls to
erlang:apply/3 correctly. This bug has been fixed.
Own Id: OTP-6169 Aux Id: seq10374

	ets:rename/1 could deadlock, or crash the SMP emulator when the table wasn't a
named table.
ets:next/2, and ets:prev/2 could return erroneous results on the SMP emulator.
Own Id: OTP-6198 Aux Id: seq10392, seq10415

	When closing a Dets table the space management data was sometimes saved in
such a way that opening the table could not be done without repairing the
file. This bug has been fixed.
Own Id: OTP-6206

 STDLIB 1.14

 Fixed Bugs and Malfunctions

	A bugfix in QLC: two of the call-back functions used for implementing QLC
tables, TraverseFun and LookupFun, are now allowed to return a term other
than a list. Such a term is immediately returned as the results of the current
query, and is useful mostly for returning error tuples.
Several other minor bugs have been also been fixed.
Own Id: OTP-5195

	The STDLIB modules error_logger_file_h and error_logger_tty_h now read the
environment variable utc_log from the SASL application.
Own Id: OTP-5535

	ets:info/1 has been corrected to behave according to the documentation and
return a list of tuples, not a tuple with tuples.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5639

	Referencing a so far undeclared record from the default value of some record
declaration is from now on considered an error by the linter. It is also an
error if the default value of a record declaration uses or binds a variable.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5878

	When a file .hrl file is included using -include_lib, the include path is
temporarily updated to include the directory the .hrl file was found in,
which will allow that .hrl file to itself include files from the same
directory as itself using -include. (Thanks to Richard Carlsson.)
Own Id: OTP-5944

	Corrected filelib:ensure_dir/1 which sometimes returned true and sometimes
ok to always return ok when successful. This goes against the
documentation which said true, but ok was judged to be a more logical
return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5960 Aux Id: seq10240

	The shell now handles records better when used in calls on the form
{Module, Function}(ArgList).
Own Id: OTP-5990 Aux Id: OTP-5876

	The functions lists:ukeysort/2 and lists:ukeymerge/3 have been changed in
such a way that two tuples are considered equal if their keys match.
For the sake of consistency, lists:usort/2 and lists:umerge/3 have been
modified too: two elements are considered equal if they compare equal.
The file_sorter module has been modified in a similar way: the unique
option now applies to the key (keysort() and keymerge()) and the ordering
function (the option {order, Order}).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6019

	Correction in documentation for ets:update_counter/3; failure with badarg
also if the counter to be updated is the key.
Own Id: OTP-6072

	When sorting terms using the file_sorter module and an ordering fun, the
sort was not always stable. This bug has been fixed.
Own Id: OTP-6088

 Improvements and New Features

	Improvements of the linter:
	The compile attribute is recognized after function definitions.
	The new compiler option nowarn_deprecated_function can be used for turning
off warnings for calls to deprecated functions.
	The new compiler option {nowarn_unused_function,[{Name,Arity}]} turns off
warnings for unused local functions for the mentioned functions. The new
options {nowarn_deprecated_function,[{Module,Name,Arity}]} and
{nowarn_bif_clash,[{Name,Arity}]} work similarly.

The Erlang code preprocessor epp now recognizes the file attribute. This
attribute is meant to be used by tools such as Yecc that generate source code
files.
Own Id: OTP-5362

	The formatting option ~s of io:fwrite and io_lib:fwrite has been
extended to handle arguments that are binaries or I/O lists.
Own Id: OTP-5403

	The control sequences p and P of the Format argument of the functions
io:format/2,3 and io_lib:format/2 have been changed as to display the
contents of binaries containing printable characters as strings.
Own Id: OTP-5485

	The linter emits warnings for functions exported more than once in export
attributes.
Own Id: OTP-5494

	A manual for STDLIB has been added, stdlib(6). It mentions the configuration
parameters for the Erlang shell.
Own Id: OTP-5530

	Added the zip module with functions for reading and creating zip archives.
See zip.
Own Id: OTP-5786

	Simple-one-for-one supervisors now store the pids of child processes using
dict instead of a list. This significantly improves performance when there
are many dynamic supervised child processes. (Thanks to Mickaël Rémond et al.)
Own Id: OTP-5898

	When given the new option 'strict_record_tests', the compiler will generate
code that verifies the record type for 'R#record.field' operations in
guards. Code that verifies record types in bodies has already been generated
since R10B, but in this release there will be a '{badrecord,RecordTag}'
instead of a 'badmatch' if the record verification test fails. See the
documentation for the compile module for more information.
The Erlang shell always applies strict record tests.
Own Id: OTP-5915 Aux Id: OTP-5714

	The Erlang pretty printer (erl_pp) now tries to insert line breaks at
appropriate places.
Own Id: OTP-5924

	The public option has been removed from digraph:new/1. The reason is that
several functions in the digraph module are implemented using multiple ETS
accesses, which is not thread safe. (Thanks to Ulf Wiger.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5985

	The function lists:keyreplace/4 checks that the fourth argument (NewTuple)
is a tuple.
Own Id: OTP-6023

	Added an example of how to reconstruct source code from debug info (abstract
code) to beam_lib. (Thanks to Mats Cronqvist who wrote the example.)
Own Id: OTP-6073

	The new compiler option warn_unused_record is used for finding unused
locally defined record types.
Own Id: OTP-6105

 STDLIB 1.13.12

 Fixed Bugs and Malfunctions

	shell_default:xm/1 has been added. It calls xref:m/1.
Own Id: OTP-5405 Aux Id: OTP-4101

	Warnings are output whenever so far undeclared records are referenced from
some default value of a record declaration. In STDLIB 1.14 (R11B) such forward
references will cause a compilation error.
Own Id: OTP-5878

	The linter's check of the deprecated attribute did not take the compile
option export_all into account. This bug has been fixed.
Own Id: OTP-5917

	The Erlang pretty printer did not handle try/catch correctly. This bug has
been fixed.
Own Id: OTP-5926

	Corrected documentation for lists:nthtail/3.
Added documentation for lists:keymap/3.
Tried to clarify some other type declarations and function descriptions in
lists.
Corrected documentation for timer:now_diff/2.
Fixed broken links in gen_fsm, gen_server, io_lib and lib(3).
Own Id: OTP-5931

	Type checks have been added to functions in lists.erl.
Own Id: OTP-5939

 Improvements and New Features

	The new STDLIB module erl_expand_records expands records in abstract code.
It is used by the Erlang shell, which means that Compiler is no longer used by
the shell.
Own Id: OTP-5876 Aux Id: OTP-5435

	The compiler will now warn that the megaco:format_versions/1 function is
deprecated.
Own Id: OTP-5976

 STDLIB 1.13.11

 Fixed Bugs and Malfunctions

	When calling gen_server:enter_loop with a registered server name, it was
only checked that the registered name existed, not that it actually was the
name of the calling process.
Own Id: OTP-5854

 Improvements and New Features

	More detail on beam_lib:version/1 in documentation.
Own Id: OTP-5789

	The new function io:read/3 works like io:read/1,2 but takes a third
argument, StartLine.
Own Id: OTP-5813

	The new function gen_fsm:enter_loop/4,5,6, similar to
gen_server:enter_loop/3,4,5, has been added.
Own Id: OTP-5846 Aux Id: seq10163

	The function c:i/1 is now exported.
Own Id: OTP-5848 Aux Id: seq10164

 STDLIB 1.13.10

 Fixed Bugs and Malfunctions

	A couple of type errors have been fixed in sofs.
Own Id: OTP-5739

	The pre-processor used to complain that the macro definition
'-define(S(S), ??S).' was circular, which it isn't. (Thanks to Richard
Carlsson.)
Own Id: OTP-5777

 STDLIB 1.13.9

 Fixed Bugs and Malfunctions

	The linter, QLC and the module erl_pp did not handle the new 'fun M:F/A'
construct in all situations. This problem has been fixed.
Own Id: OTP-5644

 Improvements and New Features

	The manual pages for most of the Kernel and some of the STDLIB modules have
been updated, in particular regarding type definitions.
The documentation of the return value for erts:info/1 has been corrected.
The documentation for erlang:statistics/1 now lists all possible arguments.
Own Id: OTP-5360

	Replaced some tuple funs with the new fun M:F/A construct.
The high-order functions in the lists module no longer accept bad funs under
any circumstances. 'lists:map(bad_fun, [])' used to return '[]' but now
causes an exception.
Unused, broken compatibility code in the ets module was removed. (Thanks to
Dialyzer.)
Eliminated 5 discrepancies found by Dialyzer in the Appmon application.
Own Id: OTP-5633

	The c:i/0 function will now run in a paged mode if there are more than 100
processes in the system. (Thanks to Ulf Wiger.)
erlang:system_info(process_count) has been optimized and does now return
exactly the same value as length(processes()). Previously
erlang:system_info(process_count) did not include exiting processes which
are included in length(processes()).
The +P flag for erl, which sets the maximum number of processes allowed to
exist at the same, no longer accepts values higher than 134217727. (You will
still probably run out of memory before you'll be able to reach that limit.)
Own Id: OTP-5645 Aux Id: seq9984

 STDLIB 1.13.8

 Fixed Bugs and Malfunctions

	Very minor corrections in beam_lib and its documentation.
Own Id: OTP-5589

 Improvements and New Features

	The erlang:port_info/1 BIF is now documented. Minor corrections of the
documentation for erlang:port_info/2.
Added a note to the documentation of the math module that all functions are
not available on all platforms.
Added more information about the '+c' option in the erl man page in the
ERTS documentation.
Own Id: OTP-5555

	The new fun M:F/A construct creates a fun that refers to the latest version
of M:F/A. This syntax is meant to replace tuple funs {M,F} which have many
problems.
The new type test is_function(Fun,A) (which may be used
in guards) test whether Fun is a fun that can be applied with A arguments.
(Currently, Fun can also be a tuple fun.)
Own Id: OTP-5584

 STDLIB 1.13.7

 Fixed Bugs and Malfunctions

	filelib:wildcard/2 was broken (it ignored its second argument).
Also, filelib:wildcard("Filename") (where the argument does not contain any
meta-characters) would always return ["Filename"]. Corrected so that an
empty list will be returned if "Filename" does not actually exist. (Same
correction in filelib:wildcard/2.) (This change is a slight
incompatibility.)
filelib:wildcard/1,2 will generate a different exception when given bad
patterns such as "{a,". The exception used to be caused by
'exit(missing_delimiter)' but is now
'erlang:error({badpattern,missing_delimiter})'.
Own Id: OTP-5523 Aux Id: seq9824

 Improvements and New Features

	Further improvements of encrypted debug info: New option encrypt_debug_info
for compiler.
Own Id: OTP-5541 Aux Id: seq9837

 STDLIB 1.13.6

 Fixed Bugs and Malfunctions

	When opening a Dets table read only an attempt was sometimes made to re-hash
the table resulting in an error message. This problem has been fixed.
Own Id: OTP-5487 Aux Id: OTP-4989

 Improvements and New Features

	It is now possible to encrypt the debug information in Beam files, to help
keep the source code secret. See the documentation for compile on how to
provide the key for encrypting, and the documentation for beam_lib on how to
provide the key for decryption so that tools such as the Debugger, Xref, or
Cover can be used.
The beam_lib:chunks/2 functions now accepts an additional chunk type
compile_info to retrieve the compilation information directly as a term.
(Thanks to Tobias Lindahl.)
Own Id: OTP-5460 Aux Id: seq9787

 STDLIB 1.13.5

 Fixed Bugs and Malfunctions

	Closing a Dets table kept in RAM would cause a crash if the file could not be
written. This problem has been fixed by returning an error tuple.
Own Id: OTP-5402

	erl_pp now correctly pretty-prints fun F/A.
Own Id: OTP-5412

	The Erlang shell failed if the compiler was not in the code path. This problem
has been fixed, but in order to evaluate records the compiler is still needed.
Own Id: OTP-5435

	Corrected the example in the documentation for ets:match/2. Also clarified
that ets:update_counter/3 updates the counter atomically. (Thanks to Anders
Svensson.)
Own Id: OTP-5452 Aux Id: seq9770, seq9789

 Improvements and New Features

	The possibility to start the Erlang shell in parallel with the rest of the
system was reintroduced for backwards compatibility in STDLIB 1.13.1. The flag
to be used for this is now called async_shell_start and has been documented.
New shells started from the JCL menu are not synchronized with init anymore.
This makes it possible to start a new shell (e.g. for debugging purposes) even
if the initial shell has not come up.
Own Id: OTP-5406 Aux Id: OTP-5218

	The compiler will now produce warnings when using the deprecated functions in
the snmp module.
Own Id: OTP-5425

	The function c:zi/0 has been removed. Use c:i/0 instead.
Own Id: OTP-5432

	Corrected two minor bugs found by the Dialyzer: Calling a parameterized module
from a restricted shell (i.e. if shell:start_restricted/1 has been used)
would crash the shell evaluator. A debug printout in gen_fsm had a clause
that would never match; causing less information to be printed.
And a somewhat more serious one also found by Dialyzer: rpc:yield/1 would
crash unless the call started by rpc:async_call/4 had already finished;
rpc:nb_yield(Key,infinity) would also crash.
Cleaned up and removed redundant code found by Dialyzer in
erlang:dmonitor_p/2.
Own Id: OTP-5462

 STDLIB 1.13.4

 Fixed Bugs and Malfunctions

	Bugs in the Erlang shell have been fixed.
Own Id: OTP-5327

	Some dead code reported by Dialyzer was eliminated.
A bug in dbg when tracing to wrap trace files has been corrected. It failed
to delete any already existing wrap trace files with the same names when
starting a new wrap trace.
Own Id: OTP-5329

	The linter could output invalid warnings about bit patterns in record
initializations. This problem has been fixed.
Own Id: OTP-5338

	ordsets:is_set(NoList), where NoList is any term except a list, would
crash. For consistency with sets:is_set/1 and gb_sets:is_set/1, it now
returns false.
Own Id: OTP-5341

	A BIF erlang:raise/3 has been added. See the manual for details. It is
intended for internal system programming only, advanced error handling.
Own Id: OTP-5376 Aux Id: OTP-5257

 Improvements and New Features

	The deprecated attribute is now checked by the linter. See xref for a
description of the deprecated attribute.
Own Id: OTP-5276

	The restricted shell will now indicate if the return value from a user
predicate is on an incorrect form.
Own Id: OTP-5335

 STDLIB 1.13.3

 Fixed Bugs and Malfunctions

	Bugs concerning unused and shadowed variables have been fixed in the linter.
Own Id: OTP-5091

	A bug in the evaluator that caused the shell to choke on bit syntax
expressions has been fixed.
Own Id: OTP-5237

	io:format/2 et.al no longer crashes for some combinations of precision and
value for format character "g". Previously it crashed if the precision P was 4
or lower and the absolute value of the float to print was lower than 10^4 but
10^(P-1) or higher. Now it will not crash depending on the value of the float.
Own Id: OTP-5263

	Bugs in the handling of the bit syntax have been fixed in the Erlang shell.
Own Id: OTP-5269

	gb_sets:del_element/2 was changed to do the same as gb_sets:delete_any/2
which was the original intention, not as gb_sets:delete/2. Code that relies
on gb_sets:del_element/2 causing an error if the element does not exist must
be changed to call gb_sets:delete/2 instead.
The documentation was also updated to explicitly document functions that were
only referred to as 'aliases' of a documented function. Also, a list of all
functions common to the gb_sets, sets, and ordsets was added.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5277

	Debug messages have been removed from the QLC module.
Own Id: OTP-5283

 Improvements and New Features

	The size of continuations returned from dets:match/1,3,
dets:match_object/1,3, and dets:select/1,3 has been reduced. This affects
the amount of data Mnesia sends between nodes while evaluating QLC queries.
Own Id: OTP-5232

 STDLIB 1.13.2

 Improvements and New Features

	The -rsh switch for starting a remote shell (introduced with OTP-5210)
clashed with an already existing switch used by slave. Therefore the switch
for the remote shell is now instead named -remsh.
Own Id: OTP-5248 Aux Id: OTP-5210

 STDLIB 1.13.1

 Fixed Bugs and Malfunctions

	The Pman 'trace shell' functionality was broken as has now been fixed.
Furthermore, Pman could not correctly find the pid of the active shell if more
than one shell process was running on the node. This has also been corrected.
Own Id: OTP-5191

	When the undocumented feature "parameterized modules" was used, the ?MODULE
macro did not work correctly.
Own Id: OTP-5224

 Improvements and New Features

	You can now start Erlang with the -rsh flag which gives you a remote initial
shell instead of a local one. Example:
 erl -sname this_node -rsh other_node@other_host
Own Id: OTP-5210

	The man page for the lists module has been updated with description of the
new zip, unzip, and partition/2 functions.
Own Id: OTP-5213

	The top level group leader used to be listed as job #1 in the job list in JCL
mode. Since there is no shell associated with this process that can be
connected to, it will no longer be listed.
Own Id: OTP-5214

	The possibility to start the Erlang shell in parallel with the rest of the
system has been reintroduced for backwards compatibility. Note that this old
behaviour is error prone and should not be used unless for some reason
necessary.
Own Id: OTP-5218 Aux Id: seq9534

	The shell commands rr/1,2,3 now accepts wildcards when reading record
definitions from BEAM files.
Own Id: OTP-5226

Introduction

 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense
that the minimal system based on Erlang/OTP consists of STDLIB and Kernel.
STDLIB contains the following functional areas:
	Erlang shell
	Command interface
	Query interface
	Interface to standard Erlang I/O servers
	Interface to the Erlang built-in term storage BIFs
	Regular expression matching functions for strings and binaries
	Finite state machine
	Event handling
	Functions for the server of a client-server relation
	Function to control applications in a distributed manner
	Start and control of slave nodes
	Operations on finite sets and relations represented as sets
	Library for handling binary data
	Disk-based term storage
	List processing
	Maps processing

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

The Erlang I/O Protocol

The I/O protocol in Erlang enables bi-directional communication between clients
and servers.
	The I/O server is a process that handles the requests and performs the
requested task on, for example, an I/O device.
	The client is any Erlang process wishing to read or write data from/to the I/O
device.

The common I/O protocol has been present in OTP since the beginning, but has
been undocumented and has also evolved over the years. In an addendum to Robert
Virding's rationale, the original I/O protocol is described. This section
describes the current I/O protocol.
The original I/O protocol was simple and flexible. Demands for memory efficiency
and execution time efficiency have triggered extensions to the protocol over the
years, making the protocol larger and somewhat less easy to implement than the
original. It can certainly be argued that the current protocol is too complex,
but this section describes how it looks today, not how it should have looked.
The basic ideas from the original protocol still hold. The I/O server and client
communicate with one single, rather simplistic protocol and no server state is
ever present in the client. Any I/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the
I/O server communicates with.

 Protocol Basics

As described in Robert's paper, I/O servers and clients communicate using
io_request/io_reply tuples as follows:
{io_request, From, ReplyAs, Request}
{io_reply, ReplyAs, Reply}
The client sends an io_request tuple to the I/O server and the server
eventually sends a corresponding io_reply tuple.
	From is the pid/0 of the client, the process which the I/O server sends
the I/O reply to.

	ReplyAs can be any datum and is returned in the corresponding io_reply.
The io module monitors the I/O server and uses the monitor reference as
the ReplyAs datum. A more complicated client can have many outstanding I/O
requests to the same I/O server and can use different references (or something
else) to differentiate among the incoming I/O replies. Element ReplyAs is to
be considered opaque by the I/O server.
Notice that the pid/0 of the I/O server is not explicitly present in tuple
io_reply. The reply can be sent from any process, not necessarily the actual
I/O server.

	Request and Reply are described below.

When an I/O server receives an io_request tuple, it acts upon the Request
part and eventually sends an io_reply tuple with the corresponding Reply
part.

 Output Requests

To output characters on an I/O device, the following Requests exist:
{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}
	Encoding is unicode or latin1, meaning that the characters are (in case
of binaries) encoded as UTF-8 or ISO Latin-1 (pure bytes). A well-behaved I/O
server is also to return an error indication if list elements contain
integers > 255 when Encoding is set to latin1.
Notice that this does not in any way tell how characters are to be put on the
I/O device or handled by the I/O server. Different I/O servers can handle the
characters however they want, this only tells the I/O server which format the
data is expected to have. In the Module/Function/Args case, Encoding
tells which format the designated function produces.
Notice also that byte-oriented data is simplest sent using the ISO Latin-1
encoding.

	Characters are the data to be put on the I/O device. If Encoding is
latin1, this is an iolist/0. If Encoding is unicode, this is an
Erlang standard mixed Unicode list (one integer in a list per character,
characters in binaries represented as UTF-8).

	Module, Function, and Args denote a function that is called to produce
the data (like io_lib:format/2).
Args is a list of arguments to the function. The function is to produce data
in the specified Encoding. The I/O server is to call the function as
apply(Mod, Func, Args) and put the returned data on the I/O
device as if it was sent in a {put_chars, Encoding, Characters} request. If
the function returns anything else than a binary or list, or throws an
exception, an error is to be sent back to the client.

The I/O server replies to the client with an io_reply tuple, where element
Reply is one of:
ok
{error, Error}
	Error describes the error to the client, which can do whatever it wants with
it. The io module typically returns it "as is".

 Input Requests

To read characters from an I/O device, the following Requests exist:
{get_until, Encoding, Prompt, Module, Function, ExtraArgs}
	Encoding denotes how data is to be sent back to the client and what data is
sent to the function denoted by Module/Function/ExtraArgs. If the
function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no
conversion can be done, and it is up to the client-supplied function to return
data in a proper way.
If Encoding is latin1, lists of integers 0..255 or binaries containing
plain bytes are sent back to the client when possible. If Encoding is
unicode, lists with integers in the whole Unicode range or binaries encoded
in UTF-8 are sent to the client. The user-supplied function always sees lists
of integers, never binaries, but the list can contain numbers > 255 if
Encoding is unicode.

	Prompt is a list of characters (not mixed, no binaries) or an atom to be
output as a prompt for input on the I/O device. Prompt is often ignored by
the I/O server; if set to '', it is always to be ignored (and results in
nothing being written to the I/O device).

	Module, Function, and ExtraArgs denote a function and arguments to
determine when enough data is written. The function is to take two more
arguments, the last state, and a list of characters. The function is to return
one of:
{done, Result, RestChars}
{more, Continuation}
Result can be any Erlang term, but if it is a list/0, the I/O server can
convert it to a binary/0 of appropriate format before returning it to the
client, if the I/O server is set in binary mode (see below).
The function is called with the data the I/O server finds on its I/O device,
returning one of:
	{done, Result, RestChars} when enough data is read. In this case Result
is sent to the client and RestChars is kept in the I/O server as a buffer
for later input.
	{more, Continuation}, which indicates that more characters are needed to
complete the request.

Continuation is sent as the state in later calls to the function when more
characters are available. When no more characters are available, the function
must return {done, eof, Rest}. The initial state is the empty list. The data
when an end of file is reached on the IO device is the atom eof.
An emulation of the get_line request can be (inefficiently) implemented
using the following functions:
-module(demo).
-export([until_newline/3, get_line/1]).

until_newline(_ThisFar,eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
 {L,[]} ->
 {more,ThisFar++L};
 {L2,[MyStopCharacter|Rest]} ->
 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

get_line(IoServer) ->
 IoServer ! {io_request,
 self(),
 IoServer,
 {get_until, unicode, '', ?MODULE, until_newline, [$\n]}},
 receive
 {io_reply, IoServer, Data} ->
 Data
 end.
Notice that the last element in the Request tuple ([$\n]) is appended to
the argument list when the function is called. The function is to be called
like apply(Module, Function, [State, Data | ExtraArgs]) by
the I/O server.

A fixed number of characters is requested using the following Request:
{get_chars, Encoding, Prompt, N}
	Encoding and Prompt as for get_until.
	N is the number of characters to be read from the I/O device.

A single line (as in former example) is requested with the following Request:
{get_line, Encoding, Prompt}
	Encoding and Prompt as for get_until.

Clearly, get_chars and get_line could be implemented with the get_until
request (and indeed they were originally), but demands for efficiency have made
these additions necessary.
The I/O server replies to the client with an io_reply tuple, where element
Reply is one of:
Data
eof
{error, Error}
	Data is the characters read, in list or binary form (depending on the I/O
server mode, see the next section).
	eof is returned when input end is reached and no more data is available to
the client process.
	Error describes the error to the client, which can do whatever it wants with
it. The io module typically returns it as is.

 I/O Server Modes

Demands for efficiency when reading data from an I/O server has not only lead to
the addition of the get_line and get_chars requests, but has also added the
concept of I/O server options. No options are mandatory to implement, but all
I/O servers in the Erlang standard libraries honor the binary option, which
allows element Data of the io_reply tuple to be a binary instead of a list
when possible. If the data is sent as a binary, Unicode data is sent in the
standard Erlang Unicode format, that is, UTF-8 (notice that the function of the
get_until request still gets list data regardless of the I/O server mode).
Notice that the get_until request allows for a function with the data
specified as always being a list. Also, the return value data from such a
function can be of any type (as is indeed the case when an
io:fread/2,3 request is sent to an I/O server). The client
must be prepared for data received as answers to those requests to be in various
forms. However, the I/O server is to convert the results to binaries whenever
possible (that is, when the function supplied to get_until returns a list).
This is done in the example in section
An Annotated and Working Example I/O Server.
An I/O server in binary mode affects the data sent to the client, so that it
must be able to handle binary data. For convenience, the modes of an I/O server
can be set and retrieved using the following I/O requests:
{setopts, Opts}
	Opts is a list of options in the format recognized by the proplists
module (and by the I/O server).

As an example, the I/O server for the interactive shell (in group.erl)
understands the following options:
{binary, boolean()} (or binary/list)
{echo, boolean()}
{expand_fun, fun()}
{encoding, unicode/latin1} (or unicode/latin1)
Options binary and encoding are common for all I/O servers in OTP, while
echo and expand are valid only for this I/O server. Option unicode
notifies how characters are put on the physical I/O device, that is, if the
terminal itself is Unicode-aware. It does not affect how characters are sent in
the I/O protocol, where each request contains encoding information for the
provided or returned data.
The I/O server is to send one of the following as Reply:
ok
{error, Error}
An error (preferably enotsup) is to be expected if the option is not supported
by the I/O server (like if an echo option is sent in a setopts request to a
plain file).
To retrieve options, the following request is used:
getopts
This request asks for a complete list of all options supported by the I/O server
as well as their current values.
The I/O server replies:
OptList
{error, Error}
	OptList is a list of tuples {Option, Value}, where Option always is an
atom.

 Multiple I/O Requests

The Request element can in itself contain many Requests by using the
following format:
{requests, Requests}
	Requests is a list of valid io_request tuples for the protocol. They must
be executed in the order that they appear in the list. The execution is to
continue until one of the requests results in an error or the list is
consumed. The result of the last request is sent back to the client.

The I/O server can, for a list of requests, send any of the following valid
results in the reply, depending on the requests in the list:
ok
{ok, Data}
{ok, Options}
{error, Error}

 Optional I/O Request

The following I/O request is optional to implement and a client is to be
prepared for an error return:
{get_geometry, Geometry}
	Geometry is the atom rows or the atom columns.

The I/O server is to send one of the following as Reply:
N
{error, Error}
	N is the number of character rows or columns that the I/O device has, if
applicable to the I/O device handled by the I/O server, otherwise
{error, enotsup} is a good answer.

 Unimplemented Request Types

If an I/O server encounters a request that it does not recognize (that is, the
io_request tuple has the expected format, but the Request is unknown), the
I/O server is to send a valid reply with the error tuple:
{error, request}
This makes it possible to extend the protocol with optional requests and for the
clients to be somewhat backward compatible.

 An Annotated and Working Example I/O Server

An I/O server is any process capable of handling the I/O protocol. There is no
generic I/O server behavior, but could well be. The framework is simple, a
process handling incoming requests, usually both I/O-requests and other I/O
device-specific requests (positioning, closing, and so on).
The example I/O server stores characters in an ETS table, making up a fairly
crude RAM file.
The module begins with the usual directives, a function to start the I/O server
and a main loop handling the requests:
-module(ets_io_server).

-export([start_link/0, init/0, loop/1, until_newline/3, until_enough/3]).

-define(CHARS_PER_REC, 10).

-record(state, {
	 table,
	 position, % absolute
	 mode % binary | list
	 }).

start_link() ->
 spawn_link(?MODULE,init,[]).

init() ->
 Table = ets:new(noname,[ordered_set]),
 ?MODULE:loop(#state{table = Table, position = 0, mode=list}).

loop(State) ->
 receive
	{io_request, From, ReplyAs, Request} ->
	 case request(Request,State) of
		{Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->
		 reply(From, ReplyAs, Reply),
		 ?MODULE:loop(NewState);
		{stop, Reply, _NewState} ->
		 reply(From, ReplyAs, Reply),
		 exit(Reply)
	 end;
	%% Private message
	{From, rewind} ->
	 From ! {self(), ok},
	 ?MODULE:loop(State#state{position = 0});
	_Unknown ->
	 ?MODULE:loop(State)
 end.
The main loop receives messages from the client (which can use the the io
module to send requests). For each request, the function request/2 is called
and a reply is eventually sent using function reply/3.
The "private" message {From, rewind} results in the current position in the
pseudo-file to be reset to 0 (the beginning of the "file"). This is a typical
example of I/O device-specific messages not being part of the I/O protocol. It
is usually a bad idea to embed such private messages in io_request tuples, as
that can confuse the reader.
First, we examine the reply function:
reply(From, ReplyAs, Reply) ->
 From ! {io_reply, ReplyAs, Reply}.
It sends the io_reply tuple back to the client, providing element ReplyAs
received in the request along with the result of the request, as described
earlier.
We need to handle some requests. First the requests for writing characters:
request({put_chars, Encoding, Chars}, State) ->
 put_chars(unicode:characters_to_list(Chars,Encoding),State);
request({put_chars, Encoding, Module, Function, Args}, State) ->
 try
	request({put_chars, Encoding, apply(Module, Function, Args)}, State)
 catch
	: ->
	 {error, {error,Function}, State}
 end;
The Encoding says how the characters in the request are represented. We want
to store the characters as lists in the ETS table, so we convert them to lists
using function unicode:characters_to_list/2. The conversion function
conveniently accepts the encoding types unicode and latin1, so we can use
Encoding directly.
When Module, Function, and Arguments are provided, we apply it and do the
same with the result as if the data was provided directly.
We handle the requests for retrieving data:
request({get_until, Encoding, _Prompt, M, F, As}, State) ->
 get_until(Encoding, M, F, As, State);
request({get_chars, Encoding, _Prompt, N}, State) ->
 %% To simplify the code, get_chars is implemented using get_until
 get_until(Encoding, ?MODULE, until_enough, [N], State);
request({get_line, Encoding, _Prompt}, State) ->
 %% To simplify the code, get_line is implemented using get_until
 get_until(Encoding, ?MODULE, until_newline, [$\n], State);
Here we have cheated a little by more or less only implementing get_until and
using internal helpers to implement get_chars and get_line. In production
code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functions put_chars/2 and
get_until/5, we examine the few remaining requests:
request({get_geometry,_}, State) ->
 {error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
 setopts(Opts, State);
request(getopts, State) ->
 getopts(State);
request({requests, Reqs}, State) ->
 multi_request(Reqs, {ok, ok, State});
Request get_geometry has no meaning for this I/O server, so the reply is
{error, enotsup}. The only option we handle is binary/list, which is done
in separate functions.
The multi-request tag (requests) is handled in a separate loop function
applying the requests in the list one after another, returning the last result.
{error, request} must be returned if the request is not recognized:
request(_Other, State) ->
 {error, {error, request}, State}.
Next we handle the different requests, first the fairly generic multi-request
type:
multi_request([R|Rs], {ok, _Res, State}) ->
 multi_request(Rs, request(R, State));
multi_request([_|_], Error) ->
 Error;
multi_request([], Result) ->
 Result.
We loop through the requests one at the time, stopping when we either encounter
an error or the list is exhausted. The last return value is sent back to the
client (it is first returned to the main loop and then sent back by function
io_reply).
Requests getopts and setopts are also simple to handle. We only change or
read the state record:
setopts(Opts0,State) ->
 Opts = proplists:unfold(
	 proplists:substitute_negations(
	 [{list,binary}],
	 Opts0)),
 case check_valid_opts(Opts) of
	true ->
	 case proplists:get_value(binary, Opts) of
		 true ->
			{ok,ok,State#state{mode=binary}};
		 false ->
			{ok,ok,State#state{mode=binary}};
		 _ ->
			{ok,ok,State}
		end;
	false ->
	 {error,{error,enotsup},State}
 end.
check_valid_opts([]) ->
 true;
check_valid_opts([{binary,Bool}|T]) when is_boolean(Bool) ->
 check_valid_opts(T);
check_valid_opts(_) ->
 false.

getopts(#state{mode=M} = S) ->
 {ok,[{binary, case M of
		 binary ->
			 true;
		 _ ->
			 false
		 end}],S}.
As a convention, all I/O servers handle both {setopts, [binary]},
{setopts, [list]}, and {setopts,[{binary, boolean()}]}, hence the trick with
proplists:substitute_negations/2 and proplists:unfold/1. If invalid options
are sent to us, we send {error, enotsup} back to the client.
Request getopts is to return a list of {Option, Value} tuples. This has the
twofold function of providing both the current values and the available options
of this I/O server. We have only one option, and hence return that.
So far this I/O server is fairly generic (except for request rewind handled in
the main loop and the creation of an ETS table). Most I/O servers contain code
similar to this one.
To make the example runnable, we start implementing the reading and writing of
the data to/from the ETS table. First function put_chars/3:
put_chars(Chars, #state{table = T, position = P} = State) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 [apply_update(T,U) || U <- split_data(Chars, R, C)],
 {ok, ok, State#state{position = (P + length(Chars))}}.
We already have the data as (Unicode) lists and therefore only split the list in
runs of a predefined size and put each run in the table at the current position
(and forward). Functions split_data/3 and apply_update/2 are implemented
below.
Now we want to read data from the table. Function get_until/5 reads data and
applies the function until it says that it is done. The result is sent back to
the client:
get_until(Encoding, Mod, Func, As,
	 #state{position = P, mode = M, table = T} = State) ->
 case get_loop(Mod,Func,As,T,P,[]) of
	{done,Data,_,NewP} when is_binary(Data); is_list(Data) ->
	 if
		M =:= binary ->
		 {ok,
		 unicode:characters_to_binary(Data, unicode, Encoding),
		 State#state{position = NewP}};
		true ->
		 case check(Encoding,
		 unicode:characters_to_list(Data, unicode))
 of
			{error, _} = E ->
			 {error, E, State};
			List ->
			 {ok, List,
			 State#state{position = NewP}}
		 end
	 end;
	{done,Data,_,NewP} ->
	 {ok, Data, State#state{position = NewP}};
	Error ->
	 {error, Error, State}
 end.

get_loop(M,F,A,T,P,C) ->
 {NewP,L} = get(P,T),
 case catch apply(M,F,[C,L|A]) of
	{done, List, Rest} ->
	 {done, List, [], NewP - length(Rest)};
	{more, NewC} ->
	 get_loop(M,F,A,T,NewP,NewC);
	_ ->
	 {error,F}
 end.
Here we also handle the mode (binary or list) that can be set by request
setopts. By default, all OTP I/O servers send data back to the client as
lists, but switching mode to binary can increase efficiency if the I/O server
handles it in an appropriate way. The implementation of get_until is difficult
to get efficient, as the supplied function is defined to take lists as
arguments, but get_chars and get_line can be optimized for binary mode.
However, this example does not optimize anything.
It is important though that the returned data is of the correct type depending
on the options set. We therefore convert the lists to binaries in the correct
encoding if possible before returning. The function supplied in the
get_until request tuple can, as its final result return anything, so only
functions returning lists can get them converted to binaries. If the request
contains encoding tag unicode, the lists can contain all Unicode code points
and the binaries are to be in UTF-8. If the encoding tag is latin1, the client
is only to get characters in the range 0..255. Function check/2 takes care
of not returning arbitrary Unicode code points in lists if the encoding was
specified as latin1. If the function does not return a list, the check cannot
be performed and the result is that of the supplied function untouched.
To manipulate the table we implement the following utility functions:
check(unicode, List) ->
 List;
check(latin1, List) ->
 try
	[throw(not_unicode) || X <- List,
				X > 255],
	List
 catch
	throw:_ ->
	 {error,{cannot_convert, unicode, latin1}}
 end.
The function check provides an error tuple if Unicode code points > 255 are to
be returned if the client requested latin1.
The two functions until_newline/3 and until_enough/3 are helpers used
together with function get_until/5 to implement get_chars and get_line
(inefficiently):
until_newline([],eof,_MyStopCharacter) ->
 {done,eof,[]};
until_newline(ThisFar,eof,_MyStopCharacter) ->
 {done,ThisFar,[]};
until_newline(ThisFar,CharList,MyStopCharacter) ->
 case
 lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
 of
	{L,[]} ->
 {more,ThisFar++L};
	{L2,[MyStopCharacter|Rest]} ->
	 {done,ThisFar++L2++[MyStopCharacter],Rest}
 end.

until_enough([],eof,_N) ->
 {done,eof,[]};
until_enough(ThisFar,eof,_N) ->
 {done,ThisFar,[]};
until_enough(ThisFar,CharList,N)
 when length(ThisFar) + length(CharList) >= N ->
 {Res,Rest} = my_split(N,ThisFar ++ CharList, []),
 {done,Res,Rest};
until_enough(ThisFar,CharList,_N) ->
 {more,ThisFar++CharList}.
As can be seen, the functions above are just the type of functions that are to
be provided in get_until requests.
To complete the I/O server, we only need to read and write the table in an
appropriate way:
get(P,Tab) ->
 R = P div ?CHARS_PER_REC,
 C = P rem ?CHARS_PER_REC,
 case ets:lookup(Tab,R) of
	[] ->
	 {P,eof};
	[{R,List}] ->
	 case my_split(C,List,[]) of
		{_,[]} ->
		 {P+length(List),eof};
		{_,Data} ->
		 {P+length(Data),Data}
	 end
 end.

my_split(0,Left,Acc) ->
 {lists:reverse(Acc),Left};
my_split(_,[],Acc) ->
 {lists:reverse(Acc),[]};
my_split(N,[H|T],Acc) ->
 my_split(N-1,T,[H|Acc]).

split_data([],_,_) ->
 [];
split_data(Chars, Row, Col) ->
 {This,Left} = my_split(?CHARS_PER_REC - Col, Chars, []),
 [{Row, Col, This} | split_data(Left, Row + 1, 0)].

apply_update(Table, {Row, Col, List}) ->
 case ets:lookup(Table,Row) of
	[] ->
	 ets:insert(Table,{Row, lists:duplicate(Col,0) ++ List});
	[{Row, OldData}] ->
	 {Part1,_} = my_split(Col,OldData,[]),
	 {_,Part2} = my_split(Col+length(List),OldData,[]),
	 ets:insert(Table,{Row, Part1 ++ List ++ Part2})
 end.
The table is read or written in chunks of ?CHARS_PER_REC, overwriting when
necessary. The implementation is clearly not efficient, it is just working.
This concludes the example. It is fully runnable and you can read or write to
the I/O server by using, for example, the io module or even the file
module. It is as simple as that to implement a fully fledged I/O server in
Erlang.

Using Unicode in Erlang

 Unicode Implementation

Implementing support for Unicode character sets is an ongoing process. The
Erlang Enhancement Proposal (EEP) 10 outlined the basics of Unicode support and
specified a default encoding in binaries that all Unicode-aware modules are to
handle in the future.
Here is an overview what has been done so far:
	The functionality described in EEP10 was implemented in Erlang/OTP R13A.

	Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete
and was by default disabled on platforms where no guarantee was given for the
filename encoding.

	With Erlang/OTP R16A came support for UTF-8 encoded source code, with
enhancements to many of the applications to support both Unicode encoded
filenames and support for UTF-8 encoded files in many circumstances. Most
notable is the support for UTF-8 in files read by file:consult/1, release
handler support for UTF-8, and more support for Unicode character sets in the
I/O system.

	In Erlang/OTP 17.0, the encoding default for Erlang source files was switched
to UTF-8.

	In Erlang/OTP 20.0, atoms and function can contain Unicode characters. Module
names, application names, and node names are still restricted to the ISO
Latin-1 range.
Support was added for normalizations forms in unicode and the string
module now handles utf8-encoded binaries.

This section outlines the current Unicode support and gives some recipes for
working with Unicode data.

 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that
understanding Unicode characters and encodings is not as easy as one would
expect. The complexity of the field and the implications of the standard require
thorough understanding of concepts rarely before thought of.
Also, the Erlang implementation requires understanding of concepts that were
never an issue for many (Erlang) programmers. To understand and use Unicode
characters requires that you study the subject thoroughly, even if you are an
experienced programmer.
As an example, contemplate the issue of converting between upper and lower case
letters. Reading the standard makes you realize that there is not a simple one
to one mapping in all scripts, for example:
	In German, the letter "ß" (sharp s) is in lower case, but the uppercase
equivalent is "SS".
	In Greek, the letter "Σ" has two different lowercase forms, "ς" in word-final
position and "σ" elsewhere.
	In Turkish, both dotted and dotless "i" exist in lower case and upper case
forms.
	Cyrillic "I" has usually no lowercase form.
	Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at a time, but
possibly the whole sentence, the natural language to translate to, the
differences in input and output string length, and so on. Erlang/OTP has
currently no Unicode uppercase/lowercase functionality with language
specific handling, but publicly available libraries address these issues.
Another example is the accented characters, where the same glyph has two
different representations. The Swedish letter "ö" is one example. The Unicode
standard has a code point for it, but you can also write it as "o" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter
is to have "¨" above). They have the same glyph, user perceived character. They
are for most purposes the same, but have different representations. For example,
MacOS X converts all filenames to use Combining Diaeresis, while most other
programs (including Erlang) try to hide that by doing the opposite when, for
example, listing directories. However it is done, it is usually important to
normalize such characters to avoid confusion.
The list of examples can be made long. One need a kind of knowledge that was not
needed when programs only considered one or two languages. The complexity of
human languages and scripts has certainly made this a challenge when
constructing a universal standard. Supporting Unicode properly in your program
will require effort.

 What Unicode Is

Unicode is a standard defining code points (numbers) for all known, living or
dead, scripts. In principle, every symbol used in any language has a Unicode
code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.
Support for Unicode is increasing throughout the world of computing, as the
benefits of one common character set are overwhelming when programs are used in
a global environment. Along with the base of the standard, the code points for
all the scripts, some encoding standards are available.
It is vital to understand the difference between encodings and Unicode
characters. Unicode characters are code points according to the Unicode
standard, while the encodings are ways to represent such code points. An
encoding is only a standard for representation. UTF-8 can, for example, be used
to represent a very limited part of the Unicode character set (for example
ISO-Latin-1) or the full Unicode range. It is only an encoding format.
As long as all character sets were limited to 256 characters, each character
could be stored in one single byte, so there was more or less only one practical
encoding for the characters. Encoding each character in one byte was so common
that the encoding was not even named. With the Unicode system there are much
more than 256 characters, so a common way is needed to represent these. The
common ways of representing the code points are the encodings. This means a
whole new concept to the programmer, the concept of character representation,
which was a non-issue earlier.
Different operating systems and tools support different encodings. For example,
Linux and MacOS X have chosen the UTF-8 encoding, which is backward compatible
with 7-bit ASCII and therefore affects programs written in plain English the
least. Windows supports a limited version of UTF-16, namely all the code planes
where the characters can be stored in one single 16-bit entity, which includes
most living languages.
The following are the most widely spread encodings:
	Bytewise representation - This is not a proper Unicode representation, but
the representation used for characters before the Unicode standard. It can
still be used to represent character code points in the Unicode standard with
numbers < 256, which exactly corresponds to the ISO Latin-1 character set. In
Erlang, this is commonly denoted latin1 encoding, which is slightly
misleading as ISO Latin-1 is a character code range, not an encoding.

	UTF-8 - Each character is stored in one to four bytes depending on code
point. The encoding is backward compatible with bytewise representation of
7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8.
The characters beyond code point 127 are stored in more bytes, letting the
most significant bit in the first character indicate a multi-byte character.
For details on the encoding, the RFC is publicly available.
Notice that UTF-8 is not compatible with bytewise representation for code
points from 128 through 255, so an ISO Latin-1 bytewise representation is
generally incompatible with UTF-8.

	UTF-16 - This encoding has many similarities to UTF-8, but the basic unit
is a 16-bit number. This means that all characters occupy at least two bytes,
and some high numbers four bytes. Some programs, libraries, and operating
systems claiming to use UTF-16 only allow for characters that can be stored in
one 16-bit entity, which is usually sufficient to handle living languages. As
the basic unit is more than one byte, byte-order issues occur, which is why
UTF-16 exists in both a big-endian and a little-endian variant.
In Erlang, the full UTF-16 range is supported when applicable, like in the
unicode module and in the bit syntax.

	UTF-32 - The most straightforward representation. Each character is stored
in one single 32-bit number. There is no need for escapes or any variable
number of entities for one character. All Unicode code points can be stored in
one single 32-bit entity. As with UTF-16, there are byte-order issues. UTF-32
can be both big-endian and little-endian.

	UCS-4 - Basically the same as UTF-32, but without some Unicode semantics,
defined by IEEE, and has little use as a separate encoding standard. For all
normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeable.

Certain number ranges are unused in the Unicode standard and certain ranges are
even deemed invalid. The most notable invalid range is 16#D800-16#DFFF, as the
UTF-16 encoding does not allow for encoding of these numbers. This is possibly
because the UTF-16 encoding standard, from the beginning, was expected to be
able to hold all Unicode characters in one 16-bit entity, but was then extended,
leaving a hole in the Unicode range to handle backward compatibility.
Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character
is not encouraged in other contexts. It is valid though, as the character
"ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify encodings and
byte order for programs where such parameters are not known in advance. BOMs are
more seldom used than expected, but can become more widely spread as they
provide the means for programs to make educated guesses about the Unicode format
of a certain file.

 Areas of Unicode Support

To support Unicode in Erlang, problems in various areas have been addressed.
This section describes each area briefly and more thoroughly later in this
User's Guide.
	Representation - To handle Unicode characters in Erlang, a common
representation in both lists and binaries is needed. EEP (10) and the
subsequent initial implementation in Erlang/OTP R13A settled a standard
representation of Unicode characters in Erlang.

	Manipulation - The Unicode characters need to be processed by the Erlang
program, which is why library functions must be able to handle them. In some
cases functionality has been added to already existing interfaces (as the
string module now can handle strings with any code points). In some cases
new functionality or options have been added (as in the io module, the
file handling, the unicode module, and the bit syntax). Today most modules
in Kernel and STDLIB, as well as the VM are Unicode-aware.

	File I/O - I/O is by far the most problematic area for Unicode. A file is
an entity where bytes are stored, and the lore of programming has been to
treat characters and bytes as interchangeable. With Unicode characters, you
must decide on an encoding when you want to store the data in a file. In
Erlang, you can open a text file with an encoding option, so that you can read
characters from it rather than bytes, but you can also open a file for
bytewise I/O.
The Erlang I/O-system has been designed (or at least used) in a way where you
expect any I/O server to handle any string data. That is, however, no longer
the case when working with Unicode characters. The Erlang programmer must now
know the capabilities of the device where the data ends up. Also, ports in
Erlang are byte-oriented, so an arbitrary string of (Unicode) characters
cannot be sent to a port without first converting it to an encoding of choice.

	Terminal I/O - Terminal I/O is slightly easier than file I/O. The output
is meant for human reading and is usually Erlang syntax (for example, in the
shell). There exists syntactic representation of any Unicode character without
displaying the glyph (instead written as \x{HHH}). Unicode data can
therefore usually be displayed even if the terminal as such does not support
the whole Unicode range.

	Filenames - Filenames can be stored as Unicode strings in different ways
depending on the underlying operating system and file system. This can be
handled fairly easy by a program. The problems arise when the file system is
inconsistent in its encodings. For example, Linux allows files to be named
with any sequence of bytes, leaving to each program to interpret those bytes.
On systems where these "transparent" filenames are used, Erlang must be
informed about the filename encoding by a startup flag. The default is
bytewise interpretation, which is usually wrong, but allows for interpretation
of all filenames.
The concept of "raw filenames" can be used to handle wrongly encoded filenames
if one enables Unicode filename translation (+fnu) on platforms where this
is not the default.

	Source code encoding - The Erlang source code has support for the UTF-8
encoding and bytewise encoding. The default in Erlang/OTP R16B was bytewise
(latin1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can
control the encoding by a comment like the following in the beginning of the
file:
%% -*- coding: utf-8 -*-
This of course requires your editor to support UTF-8 as well. The same comment
is also interpreted by functions like file:consult/1, the release handler,
and so on, so that you can have all text files in your source directories in
UTF-8 encoding.

	The language - Having the source code in UTF-8 also allows you to write
string literals, function names, and atoms containing Unicode characters with
code points > 255. Module names, application names, and node names are still
restricted to the ISO Latin-1 range. Binary literals, where you use type
/utf8, can also be expressed using Unicode characters > 255. Having module
names or application names using characters other than 7-bit ASCII can cause
trouble on operating systems with inconsistent file naming schemes, and can
hurt portability, so it is not recommended.
EEP 40 suggests that the language is also to allow for Unicode characters >
255 in variable names. Whether to implement that EEP is yet to be decided.

 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13
defined to be encoded in the ISO Latin-1 (ISO 8859-1) character set, which is,
code point by code point, a subrange of the Unicode character set.
The standard list encoding for strings was therefore easily extended to handle
the whole Unicode range. A Unicode string in Erlang is a list containing
integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.
Erlang strings in ISO Latin-1 are a subset of Unicode strings.
Only if a string contains code points < 256, can it be directly converted to a
binary by using, for example, erlang:iolist_to_binary/1 or can be sent
directly to a port. If the string contains Unicode characters > 255, an encoding
must be decided upon and the string is to be converted to a binary in the
preferred encoding using
unicode:characters_to_binary/1,2,3.
Strings are not generally lists of bytes, as they were before Erlang/OTP R13,
they are lists of characters. Characters are not generally bytes, they are
Unicode code points.
Binaries are more troublesome. For performance reasons, programs often store
textual data in binaries instead of lists, mainly because they are more compact
(one byte per character instead of two words per character, as is the case with
lists). Using erlang:list_to_binary/1, an ISO Latin-1 Erlang string can be
converted into a binary, effectively using bytewise encoding: one byte per
character. This was convenient for those limited Erlang strings, but cannot be
done for arbitrary Unicode lists.
As the UTF-8 encoding is widely spread and provides some backward compatibility
in the 7-bit ASCII range, it is selected as the standard encoding for Unicode
characters in binaries for Erlang.
The standard binary encoding is used whenever a library function in Erlang is to
handle Unicode data in binaries, but is of course not enforced when
communicating externally. Functions and bit syntax exist to encode and decode
both UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing
with binaries and Unicode in general only deal with the default encoding.
Character data can be combined from many sources, sometimes available in a mix
of strings and binaries. Erlang has for long had the concept of iodata or
iolists, where binaries and lists can be combined to represent a sequence of
bytes. In the same way, the Unicode-aware modules often allow for combinations
of binaries and lists, where the binaries have characters encoded in UTF-8 and
the lists contain such binaries or numbers representing Unicode code points:
unicode_binary() = binary() with characters encoded in UTF-8 coding standard

chardata() = charlist() | unicode_binary()

charlist() = maybe_improper_list(char() | unicode_binary() | charlist(),
 unicode_binary() | nil())
The module unicode even supports similar mixes with binaries containing
other encodings than UTF-8, but that is a special case to allow for conversions
to and from external data:
external_unicode_binary() = binary() with characters coded in a user-specified
 Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external_chardata() = external_charlist() | external_unicode_binary()

external_charlist() = maybe_improper_list(char() | external_unicode_binary() |
 external_charlist(), external_unicode_binary() | nil())

 Basic Language Support

 As from Erlang/OTP R16, Erlang source files can be
written in UTF-8 or bytewise (latin1) encoding. For information about how to
state the encoding of an Erlang source file, see the epp
module. As from Erlang/OTP R16, strings and comments can be written using
Unicode. As from Erlang/OTP 20, also atoms and functions can be written using
Unicode. Modules, applications, and nodes must still be named using characters
from the ISO Latin-1 character set. (These restrictions in the language are
independent of the encoding of the source file.)

 Bit Syntax

The bit syntax contains types for handling binary data in the three main
encodings. The types are named utf8, utf16, and utf32. The utf16 and
utf32 types can be in a big-endian or a little-endian variant:
<<Ch/utf8,_/binary>> = Bin1,
<<Ch/utf16-little,_/binary>> = Bin2,
Bin3 = <<$H/utf32-little, $e/utf32-little, $l/utf32-little, $l/utf32-little,
$o/utf32-little>>,
For convenience, literal strings can be encoded with a Unicode encoding in
binaries using the following (or similar) syntax:
Bin4 = <<"Hello"/utf16>>,

 String and Character Literals

For source code, there is an extension to syntax \OOO (backslash followed by
three octal numbers) and \xHH (backslash followed by x, followed by two
hexadecimal characters), namely \x{H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a
terminating right curly bracket). This allows for entering characters of any
code point literally in a string even when the encoding of the source file is
bytewise (latin1).
In the shell, if using a Unicode input device, or in source code stored in
UTF-8, $ can be followed directly by a Unicode character producing an integer.
In the following example, the code point of a Cyrillic с is output:
7> $с.
1089

 Heuristic String Detection

In certain output functions and in the output of return values in the shell,
Erlang tries to detect string data in lists and binaries heuristically.
Typically you will see heuristic detection in a situation like this:
1> [97,98,99].
"abc"
2> <<97,98,99>>.
<<"abc">>
3> <<195,165,195,164,195,182>>.
<<"åäö"/utf8>>
Here the shell detects lists containing printable characters or binaries
containing printable characters in bytewise or UTF-8 encoding. But what is a
printable character? One view is that anything the Unicode standard thinks is
printable, is also printable according to the heuristic detection. The result is
then that almost any list of integers are deemed a string, and all sorts of
characters are printed, maybe also characters that your terminal lacks in its
font set (resulting in some unappreciated generic output). Another way is to
keep it backward compatible so that only the ISO Latin-1 character set is used
to detect a string. A third way is to let the user decide exactly what Unicode
ranges that are to be viewed as characters.
As from Erlang/OTP R16B you can select the ISO Latin-1 range or the whole
Unicode range by supplying startup flag +pc latin1 or +pc unicode,
respectively. For backward compatibility, latin1 is default. This only
controls how heuristic string detection is done. More ranges are expected to be
added in the future, enabling tailoring of the heuristics to the language and
region relevant to the user.
The following examples show the two startup options:
$ erl +pc latin1
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
[1024]
2> [1070,1085,1080,1082,1086,1076].
[1070,1085,1080,1082,1086,1076]
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> [1024].
"Ѐ"
2> [1070,1085,1080,1082,1086,1076].
"Юникод"
3> [229,228,246].
"åäö"
4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"Юникод"/utf8>>
5> <<229/utf8,228/utf8,246/utf8>>.
<<"åäö"/utf8>>
In the examples, you can see that the default Erlang shell interprets only
characters from the ISO Latin1 range as printable and only detects lists or
binaries with those "printable" characters as containing string data. The valid
UTF-8 binary containing the Russian word "Юникод", is not printed as a string.
When started with all Unicode characters printable (+pc unicode), the shell
outputs anything containing printable Unicode data (in binaries, either UTF-8 or
bytewise encoded) as string data.
These heuristics are also used by io:format/2, io_lib:format/2, and friends
when modifier t is used with ~p or ~P:
$ erl +pc latin1
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}
ok
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io:format("~tp~n",[{<<"åäö">>, <<"åäö"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).
{<<"åäö">>,<<"åäö"/utf8>>,<<"Юникод"/utf8>>}
ok
Notice that this only affects heuristic interpretation of lists and binaries
on output. For example, the ~ts format sequence always outputs a valid list of
characters, regardless of the +pc setting, as the programmer has explicitly
requested string output.

 The Interactive Shell

The interactive Erlang shell can support Unicode input and output.
On Windows, proper operation requires that a suitable font is installed and
selected for the Erlang application to use. If no suitable font is available on
your system, try installing the DejaVu fonts, which
are freely available, and then select that font in the Erlang shell application.
On Unix-like operating systems, the terminal is to be able to handle UTF-8 on
input and output (this is done by, for example, modern versions of XTerm, KDE
Konsole, and the Gnome terminal) and your locale settings must be proper. As an
example, a LANG environment variable can be set as follows:
$ echo $LANG
en_US.UTF-8
Most systems handle variable LC_CTYPE before LANG, so if that is set, it
must be set to UTF-8:
$ echo $LC_CTYPE
en_US.UTF-8
The LANG or LC_CTYPE setting are to be consistent with what the terminal is
capable of. There is no portable way for Erlang to ask the terminal about its
UTF-8 capacity, we have to rely on the language and character type settings.
To investigate what Erlang thinks about the terminal, the call
io:getopts() can be used when the shell is started:
$ LC_CTYPE=en_US.ISO-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,latin1}
2> q().
ok
$ LC_CTYPE=en_US.UTF-8 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2>
When (finally?) everything is in order with the locale settings, fonts. and the
terminal emulator, you have probably found a way to input characters in the
script you desire. For testing, the simplest way is to add some keyboard
mappings for other languages, usually done with some applet in your desktop
environment.
In a KDE environment, select KDE Control Center (Personal Settings) >
Regional and Accessibility > Keyboard Layout.
On Windows XP, select Control Panel > Regional and Language Options, select
tab Language, and click button Details... in the square named Text Services
and Input Languages.
Your environment probably provides similar means of changing the keyboard
layout. Ensure that you have a way to switch back and forth between keyboards
easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.
Now you are set up for some Unicode input and output. The simplest thing to do
is to enter a string in the shell:
$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}
2> "Юникод".
"Юникод"
3> io:format("~ts~n", [v(2)]).
Юникод
ok
4>
While strings can be input as Unicode characters, the language elements are
still limited to the ISO Latin-1 character set. Only character constants and
strings are allowed to be beyond that range:
$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> $ξ.
958
2> Юникод.
* 1: illegal character
2>

 Escripts and non-interactive I/O

When Erlang is started without an interactive shell (-noshell, -noinput or
as an escript) the unicode support is identified using environment variables
just as for interactive shells.
Working with unicode in non-interactive sessions works just the same as for
interactive sessions.
In some situations you may need to be able to read and write raw bytes from
standard_io. If that is the case, then you want to set
the standard_io_encoding
configuration parameter to latin1 and use the file API to read and write
data (as explained in
Unicode Data in Files).
In the example below we first read the character ξ from
standard_io and then print the
charlist() represented by it.
#!/usr/bin/env escript
%%! -kernel standard_io_encoding latin1

main(_) ->
 {ok, Char} = file:read_line(standard_io),
 ok = file:write(standard_io, string:trim(Char)),
 ok = file:write(standard_io, io_lib:format(": ~w~n",[string:trim(Char)])),
 ok.
$ escript test.es
ξ
ξ: [206,190]
ξ would normally be represented as the integer 958, but since we are using
bytewise encoding (latin1), it is represented by 206 and 190, which is the
utf-8 bytes representing ξ. When we echo those bytes back to
standard_io, the terminal will see the bytes as utf-8
and show the correct value even though in Erlang we never knew that it was
indeed a unicode string.

 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are
many different ways to do this and Erlang by default treats the different
approaches differently:
	Mandatory Unicode file naming - Windows, Android and, for most cases,
MacOS X enforce Unicode support for filenames. All files created in the file
system have names that can consistently be interpreted. In MacOS X and
Android, all filenames are retrieved in UTF-8 encoding. In Windows, each
system call handling filenames has a special Unicode-aware variant, giving
much the same effect. There are no filenames on these systems that are not
Unicode filenames. So, the default behavior of the Erlang VM is to work in
"Unicode filename translation mode". This means that a filename can be
specified as a Unicode list, which is automatically translated to the proper
name encoding for the underlying operating system and file system.
Doing, for example, a file:list_dir/1 on one of these systems can return
Unicode lists with code points > 255, depending on the content of the file
system.

	Transparent file naming - Most Unix operating systems have adopted a
simpler approach, namely that Unicode file naming is not enforced, but by
convention. Those systems usually use UTF-8 encoding for Unicode filenames,
but do not enforce it. On such a system, a filename containing characters with
code points from 128 through 255 can be named as plain ISO Latin-1 or use
UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do
consistent translation of all filenames.
By default on such systems, Erlang starts in utf8 filename mode if the
terminal supports UTF-8, otherwise in latin1 mode.
In latin1 mode, filenames are bytewise encoded. This allows for list
representation of all filenames in the system. However, a a file named
"Östersund.txt", appears in file:list_dir/1 either as "Östersund.txt" (if
the filename was encoded in bytewise ISO Latin-1 by the program creating the
file) or more probably as [195,150,115,116,101,114,115,117,110,100], which
is a list containing UTF-8 bytes (not what you want). If you use Unicode
filename translation on such a system, non-UTF-8 filenames are ignored by
functions like file:list_dir/1. They can be retrieved with function
file:list_dir_all/1, but wrongly encoded filenames appear as "raw
filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM
operating in Unicode filename translation mode can work with files having names
in any language or character set (as long as it is supported by the underlying
operating system and file system). The Unicode character list is used to denote
filenames or directory names. If the file system content is listed, you also get
Unicode lists as return value. The support lies in the Kernel and STDLIB
modules, which is why most applications (that do not explicitly require the
filenames to be in the ISO Latin-1 range) benefit from the Unicode support
without change.
On operating systems with mandatory Unicode filenames, this means that you more
easily conform to the filenames of other (non-Erlang) applications. You can also
process filenames that, at least on Windows, were inaccessible (because of
having names that could not be represented in ISO Latin-1). Also, you avoid
creating incomprehensible filenames on MacOS X, as the vfs layer of the
operating system accepts all your filenames as UTF-8 does not rewrite them.
For most systems, turning on Unicode filename translation is no problem even if
it uses transparent file naming. Very few systems have mixed filename encodings.
A consistent UTF-8 named system works perfectly in Unicode filename mode. It was
still, however, considered experimental in Erlang/OTP R14B01 and is still not
the default on such systems.
Unicode filename translation is turned on with switch +fnu. On Linux, a VM
started without explicitly stating the filename translation mode defaults to
latin1 as the native filename encoding. On Windows, MacOS X and Android, the
default behavior is that of Unicode filename translation. Therefore
file:native_name_encoding/0 by default returns utf8 on those systems
(Windows does not use UTF-8 on the file system level, but this can safely be
ignored by the Erlang programmer). The default behavior can, as stated earlier,
be changed using option +fnu or +fnl to the VM, see the
erl program. If the VM is started in Unicode filename
translation mode, file:native_name_encoding/0 returns atom utf8. Switch
+fnu can be followed by w, i, or e to control how wrongly encoded
filenames are to be reported.
	w means that a warning is sent to the error_logger whenever a wrongly
encoded filename is "skipped" in directory listings. w is the default.
	i means that wrongly encoded filenames are silently ignored.
	e means that the API function returns an error whenever a wrongly encoded
filename (or directory name) is encountered.

Notice that file:read_link/1 always returns an error if the link points to an
invalid filename.
In Unicode filename mode, filenames given to BIF open_port/2
with option {spawn_executable,...} are also interpreted as Unicode. So is the
parameter list specified in option args available when using
spawn_executable. The UTF-8 translation of arguments can be avoided using
binaries, see section
Notes About Raw Filenames.
Notice that the file encoding options specified when opening a file has nothing
to do with the filename encoding convention. You can very well open files
containing data encoded in UTF-8, but having filenames in bytewise (latin1)
encoding or conversely.
Note
Erlang drivers and NIF-shared objects still cannot be named with names
containing code points > 127. This limitation will be removed in a future
release. However, Erlang modules can, but it is definitely not a good idea and
is still considered experimental.

 Notes About Raw Filenames

Note
Note that raw filenames not necessarily are encoded the same way as on the
OS level.

Raw filenames were introduced together with Unicode filename support in ERTS
5.8.2 (Erlang/OTP R14B01). The reason "raw filenames" were introduced in the
system was to be able to represent filenames, specified in different encodings
on the same system, consistently. It can seem practical to have the VM
automatically translate a filename that is not in UTF-8 to a list of Unicode
characters, but this would open up for both duplicate filenames and other
inconsistent behavior.
Consider a directory containing a file named "björn" in ISO Latin-1, while the
Erlang VM is operating in Unicode filename mode (and therefore expects UTF-8
file naming). The ISO Latin-1 name is not valid UTF-8 and one can be tempted to
think that automatic conversion in, for example, file:list_dir/1 is a good
idea. But what would happen if we later tried to open the file and have the name
as a Unicode list (magically converted from the ISO Latin-1 filename)? The VM
converts the filename to UTF-8, as this is the encoding expected. Effectively
this means trying to open the file named <<"björn"/utf8>>. This file does not
exist, and even if it existed it would not be the same file as the one that was
listed. We could even create two files named "björn", one named in UTF-8
encoding and one not. If file:list_dir/1 would automatically convert the ISO
Latin-1 filename to a list, we would get two identical filenames as the result.
To avoid this, we must differentiate between filenames that are properly encoded
according to the Unicode file naming convention (that is, UTF-8) and filenames
that are invalid under the encoding. By the common function file:list_dir/1,
the wrongly encoded filenames are ignored in Unicode filename translation mode,
but by function file:list_dir_all/1 the filenames with invalid encoding are
returned as "raw" filenames, that is, as binaries.
The file module accepts raw filenames as input.
open_port({spawn_executable, ...} ...) also accepts them. As mentioned
earlier, the arguments specified in the option list to
open_port({spawn_executable, ...} ...) undergo the same conversion as the
filenames, meaning that the executable is provided with arguments in UTF-8 as
well. This translation is avoided consistently with how the filenames are
treated, by giving the argument as a binary.
To force Unicode filename translation mode on systems where this is not the
default was considered experimental in Erlang/OTP R14B01. This was because the
initial implementation did not ignore wrongly encoded filenames, so that raw
filenames could spread unexpectedly throughout the system. As from Erlang/OTP
R16B, the wrongly encoded filenames are only retrieved by special functions
(such as file:list_dir_all/1). Since the impact on existing code is therefore
much lower it is now supported. Unicode filename translation is expected to be
default in future releases.
Even if you are operating without Unicode file naming translation automatically
done by the VM, you can access and create files with names in UTF-8 encoding by
using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding regardless of
the mode the Erlang VM is started in can in some circumstances be a good idea,
as the convention of using UTF-8 filenames is spreading.

 Notes About MacOS X

The vfs layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older
versions did this by refusing to create non-UTF-8 conforming filenames, while
newer versions replace offending bytes with the sequence "%HH", where HH is the
original character in hexadecimal notation. As Unicode translation is enabled by
default on MacOS X, the only way to come up against this is to either start the
VM with flag +fnl or to use a raw filename in bytewise (latin1) encoding. If
using a raw filename, with a bytewise encoding containing characters from 127
through 255, to create a file, the file cannot be opened using the same name as
the one used to create it. There is no remedy for this behavior, except keeping
the filenames in the correct encoding.
MacOS X reorganizes the filenames so that the representation of accents, and so
on, uses the "combining characters". For example, character ö is represented
as code points [111,776], where 111 is character o and 776 is the
special accent character "Combining Diaeresis". This way of normalizing Unicode
is otherwise very seldom used. Erlang normalizes those filenames in the opposite
way upon retrieval, so that filenames using combining accents are not passed up
to the Erlang application. In Erlang, filename "björn" is retrieved as
[98,106,246,114,110], not as [98,106,117,776,114,110], although the file
system can think differently. The normalization into combining accents is redone
when accessing files, so this can usually be ignored by the Erlang programmer.

 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way
as filenames. If Unicode filenames are enabled, environment variables as well as
parameters to the Erlang VM are expected to be in Unicode.
If Unicode filenames are enabled, the calls to os:getenv/0,1,
os:putenv/2, and os:unsetenv/1 handle Unicode strings. On Unix-like
platforms, the built-in functions translate environment variables in UTF-8
to/from Unicode strings, possibly with code points > 255. On Windows, the
Unicode versions of the environment system API are used, and code points > 255
are allowed.
On Unix-like operating systems, parameters are expected to be UTF-8 without
translation if Unicode filenames are enabled.

 Unicode-Aware Modules

Most of the modules in Erlang/OTP are Unicode-unaware in the sense that they
have no notion of Unicode and should not have. Typically they handle non-textual
or byte-oriented data (such as gen_tcp).
Modules handling textual data (such as io_lib and string are sometimes
subject to conversion or extension to be able to handle Unicode characters.
Fortunately, most textual data has been stored in lists and range checking has
been sparse, so modules like string work well for Unicode strings with little
need for conversion or extension.
Some modules are, however, changed to be explicitly Unicode-aware. These modules
include:
	unicode - The unicode module is clearly Unicode-aware. It contains
functions for conversion between different Unicode formats and some utilities
for identifying byte order marks. Few programs handling Unicode data survive
without this module.

	io - The io module has been extended along with the actual I/O
protocol to handle Unicode data. This means that many functions require
binaries to be in UTF-8, and there are modifiers to format control sequences
to allow for output of Unicode strings.

	file, group, user - I/O-servers throughout the system can handle
Unicode data and have options for converting data upon output or input to/from
the device. As shown earlier, the shell module has support for Unicode
terminals and the file module allows for translation to and from various
Unicode formats on disk.
Reading and writing of files with Unicode data is, however, not best done with
the file module, as its interface is byte-oriented. A file opened with a
Unicode encoding (like UTF-8) is best read or written using the io module.

	re - The re module allows for matching Unicode strings as a special
option. As the library is centered on matching in binaries, the Unicode
support is UTF-8-centered.

	wx - The graphical library wx has extensive support for Unicode
text.

The string module works perfectly for Unicode strings and ISO Latin-1
strings, except the language-dependent functions string:uppercase/1 and
string:lowercase/1. These two functions can never function correctly for
Unicode characters in their current form, as there are language and locale
issues to consider when converting text between cases. Converting case in an
international environment is a large subject not yet addressed in OTP.

 Unicode Data in Files

Although Erlang can handle Unicode data in many forms does not automatically
mean that the content of any file can be Unicode text. The external entities,
such as ports and I/O servers, are not generally Unicode capable.
Ports are always byte-oriented, so before sending data that you are not sure is
bytewise-encoded to a port, ensure to encode it in a proper Unicode encoding.
Sometimes this means that only part of the data must be encoded as, for example,
UTF-8. Some parts can be binary data (like a length indicator) or something else
that must not undergo character encoding, so no automatic translation is
present.
I/O servers behave a little differently. The I/O servers connected to terminals
(or stdout) can usually cope with Unicode data regardless of the encoding
option. This is convenient when one expects a modern environment but do not want
to crash when writing to an archaic terminal or pipe.
A file can have an encoding option that makes it generally usable by the io
module (for example {encoding,utf8}), but is by default opened as a
byte-oriented file. The file module is byte-oriented, so only ISO Latin-1
characters can be written using that module. Use the io module if Unicode data
is to be output to a file with other encoding than latin1 (bytewise
encoding). It is slightly confusing that a file opened with, for example,
file:open(Name,[read,{encoding,utf8}]) cannot be properly read using
file:read(File,N), but using the io module to retrieve the Unicode data from
it. The reason is that file:read and file:write (and friends) are purely
byte-oriented, and should be, as that is the way to access files other than text
files, byte by byte. As with ports, you can write encoded data into a file by
"manually" converting the data to the encoding of choice (using the unicode
module or the bit syntax) and then output it on a bytewise (latin1) encoded
file.
Recommendations:
	Use the file module for files opened for bytewise access
({encoding,latin1}).
	Use the io module when accessing files with any other encoding (for
example {encoding,utf8}).

Functions reading Erlang syntax from files recognize the coding: comment and
can therefore handle Unicode data on input. When writing Erlang terms to a file,
you are advised to insert such comments when applicable:
$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> file:write_file("test.term",<<"%% coding: utf-8\n[{\"Юникод\",4711}].\n"/utf8>>).
ok
2> file:consult("test.term").
{ok,[[{"Юникод",4711}]]}

 Summary of Options

The Unicode support is controlled by both command-line switches, some standard
environment variables, and the OTP version you are using. Most options affect
mainly how Unicode data is displayed, not the functionality of the APIs in the
standard libraries. This means that Erlang programs usually do not need to
concern themselves with these options, they are more for the development
environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.
Here follows a summary of the settings affecting Unicode:
	The LANG and LC_CTYPE environment variables - The language setting in
the operating system mainly affects the shell. The terminal (that is, the
group leader) operates with {encoding, unicode} only if the environment
tells it that UTF-8 is allowed. This setting is to correspond to the terminal
you are using.
The environment can also affect filename interpretation, if Erlang is started
with flag +fna (which is default from Erlang/OTP 17.0).
You can check the setting of this by calling io:getopts(),
which gives you an option list containing {encoding,unicode} or
{encoding,latin1}.

	The +pc {unicode|latin1} flag to erl(1) -
This flag affects what is interpreted as string data when doing heuristic
string detection in the shell and in io/
io_lib:format with the "~tp" and ~tP formatting
instructions, as described earlier.
You can check this option by calling io:printable_range/0, which returns
unicode or latin1. To be compatible with future (expected) extensions to
the settings, rather use io_lib:printable_list/1 to check if a list is
printable according to the setting. That function takes into account new
possible settings returned from io:printable_range/0.

	The +fn{l|u|a} [{w|i|e}] flag to
erl(1) - This flag affects how the filenames are to
be interpreted. On operating systems with transparent file naming, this must
be specified to allow for file naming in Unicode characters (and for correct
interpretation of filenames containing characters > 255).
	+fnl means bytewise interpretation of filenames, which was the usual way
to represent ISO Latin-1 filenames before UTF-8 file naming got widespread.
	+fnu means that filenames are encoded in UTF-8, which is nowadays the
common scheme (although not enforced).
	+fna means that you automatically select between +fnl and +fnu, based
on environment variables LANG and LC_CTYPE. This is optimistic
heuristics indeed, nothing enforces a user to have a terminal with the same
encoding as the file system, but this is usually the case. This is the
default on all Unix-like operating systems, except MacOS X.

The filename translation mode can be read with function
file:native_name_encoding/0, which returns latin1 (bytewise encoding) or
utf8.

	epp:default_encoding/0 - This function returns the default encoding for
Erlang source files (if no encoding comment is present) in the currently
running release. In Erlang/OTP R16B, latin1 (bytewise encoding) was
returned. As from Erlang/OTP 17.0, utf8 is returned.
The encoding of each file can be specified using comments as described in the
epp module.

	io:setopts/1,2 and
standard_io_encoding -
When Erlang is started the encoding for standard_io
is by default set to what the
locale settings indicate. You can
override the default by setting the kernel configuration parameter
standard_io_encoding to the
desired encoding.
You can set the encoding of a file or other I/O server with function
io:setopts/2. This can also be set when opening a file.
Setting the terminal (or other standard_io server)
unconditionally to option {encoding,utf8} implies that UTF-8 encoded
characters are written to the device, regardless of how Erlang was started or
the user's environment.
Note
If you use io:setopts/2 to change the encoding of
standard_io the I/O server may already have read
some data using the default encoding. To avoid this you should set the
encoding using
standard_io_encoding.

Opening files with option encoding is convenient when writing or reading
text files in a known encoding.
You can retrieve the encoding setting for an I/O server with function
io:getopts().

 Recipes

When starting with Unicode, one often stumbles over some common issues. This
section describes some methods of dealing with Unicode data.

 Byte Order Marks

A common method of identifying encoding in text files is to put a Byte Order
Mark (BOM) first in the file. The BOM is the code point 16#FEFF encoded in the
same way as the remaining file. If such a file is to be read, the first few
bytes (depending on encoding) are not part of the text. This code outlines how
to open a file that is believed to have a BOM, and sets the files encoding and
position for further sequential reading (preferably using the io module).
Notice that error handling is omitted from the code:
open_bom_file_for_reading(File) ->
 {ok,F} = file:open(File,[read,binary]),
 {ok,Bin} = file:read(F,4),
 {Type,Bytes} = unicode:bom_to_encoding(Bin),
 file:position(F,Bytes),
 io:setopts(F,[{encoding,Type}]),
 {ok,F}.
Function unicode:bom_to_encoding/1 identifies the encoding from a binary of at
least four bytes. It returns, along with a term suitable for setting the
encoding of the file, the byte length of the BOM, so that the file position can
be set accordingly. Notice that function file:position/2 always works on
byte-offsets, so that the byte length of the BOM is needed.
To open a file for writing and place the BOM first is even simpler:
open_bom_file_for_writing(File,Encoding) ->
 {ok,F} = file:open(File,[write,binary]),
 ok = file:write(File,unicode:encoding_to_bom(Encoding)),
 io:setopts(F,[{encoding,Encoding}]),
 {ok,F}.
The file is in both these cases then best processed using the io module, as
the functions in that module can handle code points beyond the ISO Latin-1
range.

 Formatted I/O

When reading and writing to Unicode-aware entities, like a file opened for
Unicode translation, you probably want to format text strings using the
functions in the io module or the io_lib module. For backward
compatibility reasons, these functions do not accept any list as a string, but
require a special translation modifier when working with Unicode texts. The
modifier is t. When applied to control character s in a formatting string,
it accepts all Unicode code points and expects binaries to be in UTF-8:
1> io:format("~ts~n",[<<"åäö"/utf8>>]).
åäö
ok
2> io:format("~s~n",[<<"åäö"/utf8>>]).
Ã¥Ã¤Ã¶
ok
Clearly, the second io:format/2 gives undesired output, as the UTF-8 binary is
not in latin1. For backward compatibility, the non-prefixed control character
s expects bytewise-encoded ISO Latin-1 characters in binaries and lists
containing only code points < 256.
As long as the data is always lists, modifier t can be used for any string,
but when binary data is involved, care must be taken to make the correct choice
of formatting characters. A bytewise-encoded binary is also interpreted as a
string, and printed even when using ~ts, but it can be mistaken for a valid
UTF-8 string. Avoid therefore using the ~ts control if the binary contains
bytewise-encoded characters and not UTF-8.
Function io_lib:format/2 behaves similarly. It is defined to return a deep
list of characters and the output can easily be converted to binary data for
outputting on any device by a simple erlang:list_to_binary/1. When the
translation modifier is used, the list can, however, contain characters that
cannot be stored in one byte. The call to erlang:list_to_binary/1 then fails.
However, if the I/O server you want to communicate with is Unicode-aware, the
returned list can still be used directly:
$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ^G)
1> io_lib:format("~ts~n", ["Γιούνικοντ"]).
["Γιούνικοντ","\n"]
2> io:put_chars(io_lib:format("~ts~n", ["Γιούνικοντ"])).
Γιούνικοντ
ok
The Unicode string is returned as a Unicode list, which is recognized as such,
as the Erlang shell uses the Unicode encoding (and is started with all Unicode
characters considered printable). The Unicode list is valid input to function
io:put_chars/2, so data can be output on any Unicode-capable device. If the
device is a terminal, characters are output in format \x{H...} if encoding
is latin1. Otherwise in UTF-8 (for the non-interactive terminal: "oldshell" or
"noshell") or whatever is suitable to show the character properly (for an
interactive terminal: the regular shell).
So, you can always send Unicode data to the
standard_io device. Files, however, accept only
Unicode code points beyond ISO Latin-1 if encoding is set to something else
than latin1.

 Heuristic Identification of UTF-8

While it is strongly encouraged that the encoding of characters in binary data
is known before processing, that is not always possible. On a typical Linux
system, there is a mix of UTF-8 and ISO Latin-1 text files, and there are seldom
any BOMs in the files to identify them.
UTF-8 is designed so that ISO Latin-1 characters with numbers beyond the 7-bit
ASCII range are seldom considered valid when decoded as UTF-8. Therefore one can
usually use heuristics to determine if a file is in UTF-8 or if it is encoded in
ISO Latin-1 (one byte per character). The unicode module can be used to
determine if data can be interpreted as UTF-8:
heuristic_encoding_bin(Bin) when is_binary(Bin) ->
 case unicode:characters_to_binary(Bin,utf8,utf8) of
	Bin ->
	 utf8;
	_ ->
	 latin1
 end.
If you do not have a complete binary of the file content, you can instead chunk
through the file and check part by part. The return-tuple
{incomplete,Decoded,Rest} from function
unicode:characters_to_binary/1,2,3 comes
in handy. The incomplete rest from one chunk of data read from the file is
prepended to the next chunk and we therefore avoid the problem of character
boundaries when reading chunks of bytes in UTF-8 encoding:
heuristic_encoding_file(FileName) ->
 {ok,F} = file:open(FileName,[read,binary]),
 loop_through_file(F,<<>>,file:read(F,1024)).

loop_through_file(_,<<>>,eof) ->
 utf8;
loop_through_file(_,_,eof) ->
 latin1;
loop_through_file(F,Acc,{ok,Bin}) when is_binary(Bin) ->
 case unicode:characters_to_binary([Acc,Bin]) of
	{error,_,_} ->
	 latin1;
	{incomplete,_,Rest} ->
	 loop_through_file(F,Rest,file:read(F,1024));
	Res when is_binary(Res) ->
	 loop_through_file(F,<<>>,file:read(F,1024))
 end.
Another option is to try to read the whole file in UTF-8 encoding and see if it
fails. Here we need to read the file using function io:get_chars/3, as we have
to read characters with a code point > 255:
heuristic_encoding_file2(FileName) ->
 {ok,F} = file:open(FileName,[read,binary,{encoding,utf8}]),
 loop_through_file2(F,io:get_chars(F,'',1024)).

loop_through_file2(_,eof) ->
 utf8;
loop_through_file2(_,{error,_Err}) ->
 latin1;
loop_through_file2(F,Bin) when is_binary(Bin) ->
 loop_through_file2(F,io:get_chars(F,'',1024)).

 Lists of UTF-8 Bytes

For various reasons, you can sometimes have a list of UTF-8 bytes. This is not a
regular string of Unicode characters, as each list element does not contain one
character. Instead you get the "raw" UTF-8 encoding that you have in binaries.
This is easily converted to a proper Unicode string by first converting byte per
byte into a binary, and then converting the binary of UTF-8 encoded characters
back to a Unicode string:
utf8_list_to_string(StrangeList) ->
 unicode:characters_to_list(list_to_binary(StrangeList)).

 Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding",
where strange characters are encoded in your binaries or files. In other words,
you can get a UTF-8 encoded binary that for the second time is encoded as UTF-8.
A common situation is where you read a file, byte by byte, but the content is
already UTF-8. If you then convert the bytes to UTF-8, using, for example, the
unicode module, or by writing to a file opened with option
{encoding,utf8}, you have each byte in the input file encoded as UTF-8, not
each character of the original text (one character can have been encoded in many
bytes). There is no real remedy for this other than to be sure of which data is
encoded in which format, and never convert UTF-8 data (possibly read byte by
byte from a file) into UTF-8 again.
By far the most common situation where this occurs, is when you get lists of
UTF-8 instead of proper Unicode strings, and then convert them to UTF-8 in a
binary or on a file:
wrong_thing_to_do() ->
 {ok,Bin} = file:read_file("an_utf8_encoded_file.txt"),
 MyList = binary_to_list(Bin), %% Wrong! It is an utf8 binary!
 {ok,C} = file:open("catastrophe.txt",[write,{encoding,utf8}]),
 io:put_chars(C,MyList), %% Expects a Unicode string, but get UTF-8
 %% bytes in a list!
 file:close(C). %% The file catastrophe.txt contains more or less unreadable
 %% garbage!
Ensure you know what a binary contains before converting it to a string. If no
other option exists, try heuristics:
if_you_can_not_know() ->
 {ok,Bin} = file:read_file("maybe_utf8_encoded_file.txt"),
 MyList = case unicode:characters_to_list(Bin) of
 L when is_list(L) ->
 L;
 _ ->
 binary_to_list(Bin) %% The file was bytewise encoded
 end,
 %% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
 {ok,G} = file:open("greatness.txt",[write,{encoding,utf8}]),
 io:put_chars(G,MyList), %% Expects a Unicode string, which is what it gets!
 file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

Uniform Resource Identifiers

 Basics

At the time of writing this document, in October 2020, there are two major
standards concerning Universal Resource Identifiers and Universal Resource
Locators:
	RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax
	WHAT WG URL - Living standard

The former is a classical standard with a proper formal syntax, using the so
called Augmented Backus-Naur Form (ABNF)
for describing the grammar, while the latter is a living document describing the
current pratice, that is, how a majority of Web browsers work with URIs. WHAT WG
URL is Web focused and it has no formal grammar but a plain english description
of the algorithms that should be followed.
What is the difference between them, if any? They provide an overlapping
definition for resource identifiers and they are not compatible. The
uri_string module implements
RFC 3986 and the term URI will be used
throughout this document. A URI is an identifier, a string of characters that
identifies a particular resource.
For a more complete problem statement regarding the URIs check the
URL Problem Statement and Directions.

 What is a URI?

Let's start with what it is not. It is not the text that you type in the address
bar in your Web browser. Web browsers do all possible heuristics to convert the
input into a valid URI that could be sent over the network.
A URI is an identifier consisting of a sequence of characters matching the
syntax rule named URI in RFC 3986.
It is crucial to clarify that a character is a symbol that is displayed on a
terminal or written to paper and should not be confused with its internal
representation.
A URI more specifically, is a sequence of characters from a subset of the US
ASCII character set. The generic URI syntax consists of a hierarchical sequence
of components referred to as the scheme, authority, path, query, and fragment.
There is a formal description for each of these components in
ABNF notation in
RFC 3986:
 URI = scheme ":" hier-part ["?" query] ["#" fragment]
 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty
 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
 authority = [userinfo "@"] host [":" port]
 userinfo = *(unreserved / pct-encoded / sub-delims / ":")

 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

 The uri_string module

As producing and consuming standard URIs can get quite complex, Erlang/OTP
provides a module, uri_string, to handle all the most difficult operations
such as parsing, recomposing, normalizing and resolving URIs against a base URI.
The API functions in uri_string work on two basic data types
uri_string() and
uri_map().
uri_string() represents a standard URI, while
uri_map() is a wider datatype, that can represent
URI components using Unicode characters.
uri_map() is a convenient choice for enabling
operations such as producing standard compliant URIs out of components that have
special or Unicode characters. It is easier
to explain this by an example.
Let's say that we would like to create the following URI and send it over the
network: http://cities/örebro?foo bar. This is not a valid URI as it contains
characters that are not allowed in a URI such as "ö" and the space. We can
verify this by parsing the URI:
 1> uri_string:parse("http://cities/örebro?foo bar").
 {error,invalid_uri,":"}
The URI parser tries all possible combinations to interpret the input and fails
at the last attempt when it encounters the colon character ":". Note, that the
inital fault occurs when the parser attempts to interpret the character "ö"
and after a failure back-tracks to the point where it has another possible
parsing alternative.
The proper way to solve this problem is to use uri_string:recompose/1 with a
uri_map() as input:
 2> uri_string:recompose(#{scheme => "http", host => "cities", path => "/örebro",
 query => "foo bar"}).
 "http://cities/%C3%B6rebro?foo%20bar"
The result is a valid URI where all the special characters are encoded as
defined by the standard. Applying uri_string:parse/1 and
uri_string:percent_decode/1 on the URI returns the original input:
 3> uri_string:percent_decode(uri_string:parse("http://cities/%C3%B6rebro?foo%20bar")).
 #{host => "cities",path => "/örebro",query => "foo bar",
 scheme => "http"}
This symmetric property is heavily used in our property test suite.

 Percent-encoding

As you have seen in the previous chapter, a standard URI can only contain a
strict subset of the US ASCII character set, moreover the allowed set of
characters is not the same in the different URI components. Percent-encoding is
a mechanism to represent a data octet in a component when that octet's
corresponding character is outside of the allowed set or is being used as a
delimiter. This is what you see when "ö" is encoded as %C3%B6 and space as
%20. Most of the API functions are expecting UTF-8 encoding when handling
percent-encoded triplets. The UTF-8 encoding of the
Unicode character "ö" is two octets:
OxC3 0xB6. The character space is in the first 128 characters of
Unicode and it is encoded using a single
octet 0x20.
Note
Unicode is backward compatible with ASCII,
the encoding of the first 128 characters is the same binary value as in ASCII.

 It is a major source of confusion exactly which
characters will be percent-encoded. In order to make it easier to answer this
question the library provides a utility function,
uri_string:allowed_characters/0, that
lists the allowed set of characters in each major URI component, and also in the
most important standard character sets.
 1> uri_string:allowed_characters().
 [{scheme,
 "+-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"},
 {userinfo,
 "!$%&'()*+,-.0123456789:;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {host,
 "!$&'()*+,-.0123456789:;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {ipv4,".0123456789"},
 {ipv6,".0123456789:ABCDEFabcdef"},
 {regname,
 "!$%&'()*+,-.0123456789;=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {path,
 "!$%&'()*+,-./0123456789:;=@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {query,
 "!$%&'()*+,-./0123456789:;=?@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {fragment,
 "!$%&'()*+,-./0123456789:;=?@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"},
 {reserved,"!#$&'()*+,/:;=?@[]"},
 {unreserved,
 "-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"}]
If a URI component has a character that is not allowed, it will be
percent-encoded when the URI is produced:
 2> uri_string:recompose(#{scheme => "https", host => "local#host", path => ""}).
 "https://local%23host"
Consuming a URI containing percent-encoded triplets can take many steps. The
following example shows how to handle an input URI that is not normalized and
contains multiple percent-encoded triplets. First, the input
uri_string() is to be parsed into a
uri_map(). The parsing only splits the URI into
its components without doing any decoding:
 3> uri_string:parse("http://%6C%6Fcal%23host/%F6re%26bro%20").
 #{host => "%6C%6Fcal%23host",path => "/%F6re%26bro%20",
 scheme => "http"}}
The input is a valid URI but how can you decode those percent-encoded octets?
You can try to normalize the input with uri_string:normalize/1. The normalize
operation decodes those percent-encoded triplets that correspond to a character
in the unreserved set. Normalization is a safe, idempotent operation that
converts a URI into its canonical form:
 4> uri_string:normalize("http://%6C%6Fcal%23host/%F6re%26bro%20").
 "http://local%23host/%F6re%26bro%20"
 5> uri_string:normalize("http://%6C%6Fcal%23host/%F6re%26bro%20", [return_map]).
 #{host => "local%23host",path => "/%F6re%26bro%20",
 scheme => "http"}
There are still a few percent-encoded triplets left in the output. At this
point, when the URI is already parsed, it is safe to apply application specific
decoding on the remaining character triplets. Erlang/OTP provides a function,
uri_string:percent_decode/1 for raw percent decoding that you can use on the
host and path components, or on the whole map:
 6> uri_string:percent_decode("local%23host").
 "local#host"
 7> uri_string:percent_decode("/%F6re%26bro%20").
 {error,invalid_utf8,<<"/öre&bro ">>}
 8> uri_string:percent_decode(#{host => "local%23host",path => "/%F6re%26bro%20",
 scheme => "http"}).
 {error,{invalid,{path,{invalid_utf8,<<"/öre&bro ">>}}}}
The host was successfully decoded but the path contains at least one character
with non-UTF-8 encoding. In order to be able to decode this, you have to make
assumptions about the encoding used in these triplets. The most obvious choice
is latin-1, so you can try uri_string:transcode/2, to transcode the path to
UTF-8 and run the percent-decode operation on the transcoded string:
 9> uri_string:transcode("/%F6re%26bro%20", [{in_encoding, latin1}]).
 "/%C3%B6re%26bro%20"
 10> uri_string:percent_decode("/%C3%B6re%26bro%20").
 "/öre&bro "
It is important to emphasize that it is not safe to apply
uri_string:percent_decode/1 directly on an input URI:
 11> uri_string:percent_decode("http://%6C%6Fcal%23host/%C3%B6re%26bro%20").
 "http://local#host/öre&bro "
 12> uri_string:parse("http://local#host/öre&bro ").
 {error,invalid_uri,":"}
Note
Percent-encoding is implemented in uri_string:recompose/1 and it happens
when converting a uri_map() into a
uri_string(). Applying any percent-encoding
directly on an input URI would not be safe just as in the case of
uri_string:percent_decode/1, the output could be an invalid URI. Quoting
functions allow users to perform raw percent encoding and decoding on
application data which cannot be handled automatically by
uri_string:recompose/1. For example in scenario when user would need to use
'/' or sub-delimeter as data rather than delimeter in a path component.

 Normalization

Normalization is the operation of converting the input URI into a canonical
form and keeping the reference to the same underlying resource. The most common
application of normalization is determining whether two URIs are equivalent
without accessing their referenced resources.
Normalization has 6 distinct steps. First the input URI is parsed into an
intermediate form that can handle Unicode
characters. This datatype is the uri_map(), that
can hold the components of the URI in map elements of type
unicode:chardata/0. After having the intermediate form, a sequence of
normalization algorithms are applied to the individual URI components:
	Case normalization - Converts the scheme and host components to lower
case as they are not case sensitive.

	Percent-encoding normalization - Decodes percent-encoded triplets that
correspond to characters in the unreserved set.

	Scheme-based normalization - Applying rules for the schemes http, https,
ftp, ssh, sftp and tftp.

	Path segment normalization - Converts the path into a canonical form.

After these steps, the intermediate data structure, an
uri_map(), is fully normalized. The last step is
applying uri_string:recompose/1 that converts the intermediate structure into
a valid canonical URI string.
Notice the order, the
uri_string:normalize(URIMap, [return_map]) that we
used many times in this user guide is a shortcut in the normalization process
returning the intermediate datastructure, and allowing us to inspect and apply
further decoding on the remaining percent-encoded triplets.
 13> uri_string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b").
 "http://localhost/%C3%B6rebro/b"
 14> uri_string:normalize("hTTp://LocalHost:80/%c3%B6rebro/a/../b", [return_map]).
 #{host => "localhost",path => "/%C3%B6rebro/b",
 scheme => "http"}

 Special considerations

The current URI implementation provides support for producing and consuming
standard URIs. The API is not meant to be directly exposed in a Web browser's
address bar where users can basically enter free text. Application designers
shall implement proper heuristics to map the input into a parsable URI.

assert.hrl

Assert macros.

 Description

The include file assert.hrl provides macros for inserting assertions in your
program code.
Include the following directive in the module from which the function is called:
-include_lib("stdlib/include/assert.hrl").
When an assertion succeeds, the assert macro yields the atom ok. When an
assertion fails, an exception of type error is generated. The associated error
term has the form {Macro, Info}. Macro is the macro name, for example,
assertEqual. Info is a list of tagged values, such as
[{module, M}, {line, L}, ...], which gives more information about the location
and cause of the exception. All entries in the Info list are optional; do not
rely programmatically on any of them being present.
Each assert macro has a corresponding version with an extra argument, for adding
comments to assertions. These can for example be printed as part of error
reports, to clarify the meaning of the check that failed. For example,
?assertEqual(0, fib(0), "Fibonacci is defined for zero"). The comment text can
be any character data (string, UTF8-binary, or deep list of such data), and will
be included in the error term as {comment, Text}.
If the macro NOASSERT is defined when assert.hrl is read by the compiler,
the macros are defined as equivalent to the atom ok. The test will not be
performed and there is no cost at runtime.
For example, using erlc to compile your modules, the following disables all
assertions:
erlc -DNOASSERT=true *.erl
(The value of NOASSERT does not matter, only the fact that it is defined.)
A few other macros also have effect on the enabling or disabling of assertions:
	If NODEBUG is defined, it implies NOASSERT (unless DEBUG is also
defined, which overrides NODEBUG).
	If ASSERT is defined, it overrides NOASSERT, that is, the assertions
remain enabled.

If you prefer, you can thus use only DEBUG/NODEBUG as the main flags to
control the behavior of the assertions (which is useful if you have other
compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NOASSERT to control only the assert macros.

 Macros

	assert(BoolExpr)

	assert(BoolExpr, Comment) - Tests that BoolExpr completes normally
returning true.

	assertNot(BoolExpr)

	assertNot(BoolExpr, Comment) - Tests that BoolExpr completes normally
returning false.

	assertMatch(GuardedPattern, Expr)

	assertMatch(GuardedPattern, Expr, Comment) - Tests that Expr completes
normally yielding a value that matches GuardedPattern, for example:
?assertMatch({bork, _}, f())
Notice that a guard when ... can be included:
?assertMatch({bork, X} when X > 0, f())

	assertNotMatch(GuardedPattern, Expr)

	assertNotMatch(GuardedPattern, Expr, Comment) - Tests that Expr
completes normally yielding a value that does not match GuardedPattern.
As in assertMatch, GuardedPattern can have a when part.

	assertEqual(ExpectedValue, Expr)

	assertEqual(ExpectedValue, Expr, Comment) - Tests that Expr completes
normally yielding a value that is exactly equal to ExpectedValue.

	assertNotEqual(ExpectedValue, Expr)

	assertNotEqual(ExpectedValue, Expr, Comment) - Tests that Expr
completes normally yielding a value that is not exactly equal to
ExpectedValue.

	assertException(Class, Term, Expr)

	assertException(Class, Term, Expr, Comment) - Tests that Expr
completes abnormally with an exception of type Class and with the associated
Term. The assertion fails if Expr raises a different exception or if it
completes normally returning any value.
Notice that both Class and Term can be guarded patterns, as in
assertMatch.

	assertNotException(Class, Term, Expr)

	assertNotException(Class, Term, Expr, Comment) - Tests that Expr does
not evaluate abnormally with an exception of type Class and with the
associated Term. The assertion succeeds if Expr raises a different
exception or if it completes normally returning any value.
As in assertException, both Class and Term can be guarded patterns.

	assertError(Term, Expr)

	assertError(Term, Expr, Comment) - Equivalent to
assertException(error, Term, Expr)

	assertExit(Term, Expr)

	assertExit(Term, Expr, Comment) - Equivalent to
assertException(exit, Term, Expr)

	assertThrow(Term, Expr)

	assertThrow(Term, Expr, Comment) - Equivalent to
assertException(throw, Term, Expr)

 See Also

compile, erlc(3)

erl_tar

Unix 'tar' utility for reading and writing tar archives.
This module archives and extract files to and from a tar file. This module
supports reading most common tar formats, namely v7, STAR, USTAR, and PAX, as
well as some of GNU tar's extensions to the USTAR format (sparse files most
notably). It produces tar archives in USTAR format, unless the files being
archived require PAX format due to restrictions in USTAR (such as unicode
metadata, filename length, and more). As such, erl_tar supports tar archives
produced by most all modern tar utilities, and produces tarballs which should be
similarly portable.
By convention, the name of a tar file is to end in ".tar". To abide to the
convention, add ".tar" to the name.
Tar files can be created in one operation using function create/2 or
create/3.
Alternatively, for more control, use functions open/2, add/3,4,
and close/1.
To extract all files from a tar file, use function extract/1. To extract only
some files or to be able to specify some more options, use function extract/2.
To return a list of the files in a tar file, use function table/1 or
table/2. To print a list of files to the Erlang shell, use function t/1 or
tt/1.
To convert an error term returned from one of the functions above to a readable
message, use function format_error/1.

 Unicode Support

If file:native_name_encoding/0 returns utf8, path names are encoded in UTF-8
when creating tar files, and path names are assumed to be encoded in UTF-8 when
extracting tar files.
If file:native_name_encoding/0 returns latin1, no translation of path names
is done.
Unicode metadata stored in PAX headers is preserved

 Other Storage Media

The ftp module normally accesses the tar file on disk using the file
module. When other needs arise, you can define your own low-level Erlang
functions to perform the writing and reading on the storage media; use function
init/3.
An example of this is the SFTP support in ssh_sftp:open_tar/3. This function
opens a tar file on a remote machine using an SFTP channel.

 Limitations

	If you must remain compatible with the USTAR tar format, you must ensure file
paths being stored are less than 255 bytes in total, with a maximum filename
component length of 100 bytes. USTAR uses a header field (prefix) in addition
to the name field, and splits file paths longer than 100 bytes into two parts.
This split is done on a directory boundary, and is done in such a way to make
the best use of the space available in those two fields, but in practice this
will often mean that you have less than 255 bytes for a path. erl_tar will
automatically upgrade the format to PAX to handle longer filenames, so this is
only an issue if you need to extract the archive with an older implementation
of erl_tar or tar which does not support PAX. In this case, the PAX
headers will be extracted as regular files, and you will need to apply them
manually.
	Like the above, if you must remain USTAR compatible, you must also ensure than
paths for symbolic/hard links are no more than 100 bytes, otherwise PAX
headers will be used.

 Summary

 Types

 add_opt()

 create_opt()

 extract_opt()

 file_op()

 filelist()

 gid()

 mode()

 name_in_archive()

 open_type()

 tar_descriptor()

 tar_entry()

 tar_time()

 typeflag()

 uid()

 user_data()

 Functions

 add(TarDescriptor, Name, Options)

 Equivalent to add/4.

 add(TarDescriptor, Filename, NameInArchive, Options)

 Adds a file to a tar file that has been opened for writing by
open/1.

 close(TarDescriptor)

 Closes a tar file opened by open/2.

 create(Name, FileList)

 Creates a tar file and archives the files whose names are specified in
FileList into it. The files can either be read from disk or be specified as
binaries.

 create(Name, FileList, Options)

 Creates a tar file and archives the files whose names are specified in
FileList into it. The files can either be read from disk or be specified as
binaries.

 extract(Open)

 Extracts all files from a tar archive.

 extract/2

 Extracts files from a tar archive.

 format_error/1

 Converts an error reason term to a human-readable error message string.

 init/3

 The Fun is the definition of what to do when the different storage operations
functions are to be called from the higher tar handling functions (such as
add/3, add/4, and close/1).

 open/2

 Creates a tar file for writing (any existing file with the same name is
truncated).

 t(Name)

 Prints the names of all files in the tar file Name to the Erlang shell
(similar to "tar t").

 table(Open)

 Equivalent to table(Open, []).

 table(Name, Opts)

 Retrieves the names of all files in the tar file Name.

 tt(Name)

 Prints names and information about all files in the tar file Name to the
Erlang shell (similar to "tar tv").

 Types

 Link to this type

 add_opt()

 View Source

 (not exported)

 -type add_opt() ::
 dereference | verbose |
 {chunks, pos_integer()} |
 {atime, non_neg_integer()} |
 {mtime, non_neg_integer()} |
 {ctime, non_neg_integer()} |
 {uid, non_neg_integer()} |
 {gid, non_neg_integer()}.

 Link to this type

 create_opt()

 View Source

 (not exported)

 -type create_opt() :: compressed | cooked | dereference | verbose.

 Link to this type

 extract_opt()

 View Source

 (not exported)

 -type extract_opt() ::
 {cwd, string()} |
 {files, [name_in_archive()]} |
 compressed | cooked | memory | keep_old_files | verbose.

 Link to this type

 file_op()

 View Source

 (not exported)

 -type file_op() ::
 fun((write | close | read2 | position,
 {user_data(), iodata()} |
 user_data() |
 {user_data(), non_neg_integer()} |
 {user_data(), non_neg_integer()}) ->
 ok | eof | {ok, string() | binary()} | {ok, non_neg_integer()} | {error, term()}).

 Link to this type

 filelist()

 View Source

 (not exported)

 -type filelist() :: [file:filename() | {name_in_archive(), file:filename_all()}].

 Link to this type

 gid()

 View Source

 (not exported)

 -type gid() :: non_neg_integer().

 Link to this type

 mode()

 View Source

 (not exported)

 -type mode() :: non_neg_integer().

 Link to this type

 name_in_archive()

 View Source

 (not exported)

 -type name_in_archive() :: string().

 Link to this type

 open_type()

 View Source

 (not exported)

 -type open_type() :: file:filename_all() | {binary, binary()} | {file, file:io_device()}.

 Link to this opaque

 tar_descriptor()

 View Source

 -opaque tar_descriptor()

 Link to this type

 tar_entry()

 View Source

 (not exported)

 -type tar_entry() ::
 {Name :: name_in_archive(),
 Type :: typeflag(),
 Size :: non_neg_integer(),
 MTime :: tar_time(),
 Mode :: mode(),
 Uid :: uid(),
 Gid :: gid()}.

 Link to this type

 tar_time()

 View Source

 (not exported)

 -type tar_time() :: non_neg_integer().

 Link to this type

 typeflag()

 View Source

 (not exported)

 -type typeflag() :: regular | link | symlink | char | block | directory | fifo | reserved | unknown.

 Link to this type

 uid()

 View Source

 (not exported)

 -type uid() :: non_neg_integer().

 Link to this type

 user_data()

 View Source

 (not exported)

 -type user_data() :: term().

 Functions

 Link to this function

 add(TarDescriptor, Name, Options)

 View Source

 -spec add(TarDescriptor, Name, Options) -> ok | {error, term()}
 when
 TarDescriptor :: tar_descriptor(),
 Name :: name_in_archive() | {name_in_archive(), file:filename_all()},
 Options :: [add_opt()].

Equivalent to add/4.
If Name is name_in_archive/0, then add(TarDescriptor, Name, Name, Options) is called.
If Name is a two tuple then add(TarDescriptor, NameInArchive, Name, Options) is called.

 Link to this function

 add(TarDescriptor, Filename, NameInArchive, Options)

 View Source

 -spec add(TarDescriptor, Filename, NameInArchive, Options) -> ok | {error, term()}
 when
 TarDescriptor :: tar_descriptor(),
 Filename :: file:filename_all(),
 NameInArchive :: name_in_archive(),
 Options :: [add_opt()].

Adds a file to a tar file that has been opened for writing by
open/1.
NameInArchive is the name under which the file becomes stored in the tar file.
The file gets this name when it is extracted from the tar file.
Options:
	dereference - By default, symbolic links are stored as symbolic links in
the tar file. To override the default and store the file that the symbolic
link points to into the tar file, use option dereference.

	verbose - Prints an informational message about the added file.

	{chunks,ChunkSize} - Reads data in parts from the file. This is intended
for memory-limited machines that, for example, builds a tar file on a remote
machine over SFTP, see ssh_sftp:open_tar/3.

	{atime,non_neg_integer()} - Sets the last time, as
POSIX time, when the file was read.
See also file:read_file_info/1.

	{mtime,non_neg_integer()} - Sets the last time, as
POSIX time, when the file was
written. See also file:read_file_info/1.

	{ctime,non_neg_integer()} - Sets the time, as
POSIX time, when the file was
created. See also file:read_file_info/1.

	{uid,non_neg_integer()} - Sets the file owner. file:read_file_info/1.

	{gid,non_neg_integer()} - Sets the group that the file owner belongs to.
file:read_file_info/1.

 Link to this function

 close(TarDescriptor)

 View Source

 -spec close(TarDescriptor :: tar_descriptor()) -> ok | {error, term()}.

Closes a tar file opened by open/2.

 Link to this function

 create(Name, FileList)

 View Source

 -spec create(file:filename_all(), filelist()) -> ok | {error, {string(), term()}}.

Creates a tar file and archives the files whose names are specified in
FileList into it. The files can either be read from disk or be specified as
binaries.

 Link to this function

 create(Name, FileList, Options)

 View Source

 -spec create(file:filename_all(), filelist(), [create_opt()]) ->
 ok | {error, term()} | {error, {string(), term()}}.

Creates a tar file and archives the files whose names are specified in
FileList into it. The files can either be read from disk or be specified as
binaries.
The options in OptionList modify the defaults as follows:
	compressed - The entire tar file is compressed, as if it has been run
through the gzip program. To abide to the convention that a compressed tar
file is to end in ".tar.gz" or ".tgz", add the appropriate extension.

	cooked - By default, function open/2 opens the tar file in
raw mode, which is faster but does not allow a remote (Erlang) file server
to be used. Adding cooked to the mode list overrides the default and opens
the tar file without option raw.

	dereference - By default, symbolic links are stored as symbolic links in
the tar file. To override the default and store the file that the symbolic
link points to into the tar file, use option dereference.

	verbose - Prints an informational message about each added file.

 Link to this function

 extract(Open)

 View Source

 -spec extract(Open :: open_type()) -> ok | {error, term()}.

Extracts all files from a tar archive.
If argument Name is specified as {binary,Binary}, the contents of the binary
is assumed to be a tar archive.
If argument Name is specified as {file,Fd}, Fd is assumed to be a file
descriptor returned from function file:open/2.
Otherwise, Name is to be a filename.
Note
Leading slashes in tar member names will be removed before writing the file.
That is, absolute paths will be turned into relative paths. There will be an
info message written to the error logger when paths are changed in this way.

Warning
The compressed and cooked flags are invalid when passing a file descriptor
with {file,Fd}. The file is assumed to have been opened with the appropriate
flags.

 Link to this function

 extract/2

 View Source

 -spec extract(Open :: open_type(), [extract_opt()]) ->
 {ok, [{string(), binary()}]} | {error, term()} | ok.

Extracts files from a tar archive.
If argument Name is specified as {binary,Binary}, the contents of the binary
is assumed to be a tar archive.
If argument Name is specified as {file,Fd}, Fd is assumed to be a file
descriptor returned from function file:open/2.
Otherwise, Name is to be a filename.
The following options modify the defaults for the extraction as follows:
	{cwd,Cwd} - Files with relative filenames are by default extracted to
the current working directory. With this option, files are instead extracted
into directory Cwd.

	{files,FileList} - By default, all files are extracted from the tar
file. With this option, only those files are extracted whose names are
included in FileList.

	compressed - With this option, the file is uncompressed while
extracting. If the tar file is not compressed, this option is ignored.

	cooked - By default, function open/2 function opens the
tar file in raw mode, which is faster but does not allow a remote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default
and opens the tar file without option raw.

	memory - Instead of extracting to a directory, this option gives the
result as a list of tuples {Filename, Binary}, where Binary is a binary
containing the extracted data of the file named Filename in the tar file.

	keep_old_files - By default, all existing files with the same name as
files in the tar file are overwritten. With this option, existing files are
not overwriten.

	verbose - Prints an informational message for each extracted file.

Warning
The compressed and cooked flags are invalid when passing a file descriptor
with {file,Fd}. The file is assumed to have been opened with the appropriate
flags.

 Link to this function

 format_error/1

 View Source

 -spec format_error(term()) -> string().

Converts an error reason term to a human-readable error message string.

 Link to this function

 init/3

 View Source

 (since OTP 17.4)

 -spec init(UserData :: user_data(), write | read, file_op()) -> {ok, tar_descriptor()} | {error, badarg}.

The Fun is the definition of what to do when the different storage operations
functions are to be called from the higher tar handling functions (such as
add/3, add/4, and close/1).
The Fun is called when the tar function wants to do a low-level operation,
like writing a block to a file. The Fun is called as
Fun(Op, {UserData,Parameters...}), where Op is the operation name,
UserData is the term passed as the first argument to init/1 and
Parameters... are the data added by the tar function to be passed down to the
storage handling function.
Parameter UserData is typically the result of opening a low-level structure
like a file descriptor or an SFTP channel id. The different Fun clauses
operate on that very term.
The following are the fun clauses parameter lists:
	(write, {UserData,DataToWrite}) - Writes term DataToWrite using
UserData.

	(close, UserData) - Closes the access.

	(read2, {UserData,Size}) - Reads using UserData but only Size bytes.
Notice that there is only an arity-2 read function, not an arity-1 function.

	(position,{UserData,Position}) - Sets the position of UserData as
defined for files in file:position/2

Example:
The following is a complete Fun parameter for reading and writing on files
using the file module:
ExampleFun =
 fun(write, {Fd,Data}) -> file:write(Fd, Data);
 (position, {Fd,Pos}) -> file:position(Fd, Pos);
 (read2, {Fd,Size}) -> file:read(Fd, Size);
 (close, Fd) -> file:close(Fd)
 end
Here Fd was specified to function init/3 as:
{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl_tar:init(Fd, [write], ExampleFun),
TarDesc is then used:
erl_tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),
...,
erl_tar:close(TarDesc)
When the erl_tar core wants to, for example, write a piece of Data, it would
call ExampleFun(write, {UserData,Data}).
Note
This example with the file module operations is not necessary to use
directly, as that is what function open/2 in principle does.

Warning
The TarDescriptor term is not a file descriptor. You are advised not to rely
on the specific contents of this term, as it can change in future Erlang/OTP
releases when more features are added to this module.

 Link to this function

 open/2

 View Source

 -spec open(Open :: open_type(), [write | compressed | cooked]) ->
 {ok, tar_descriptor()} | {error, term()}.

Creates a tar file for writing (any existing file with the same name is
truncated).
By convention, the name of a tar file is to end in ".tar". To abide to the
convention, add ".tar" to the name.
Except for the write atom, the following atoms can be added to OpenModeList:
	compressed - The entire tar file is compressed, as if it has been run
through the gzip program. To abide to the convention that a compressed tar
file is to end in ".tar.gz" or ".tgz", add the appropriate extension.

	cooked - By default, the tar file is opened in raw mode, which is
faster but does not allow a remote (Erlang) file server to be used. Adding
cooked to the mode list overrides the default and opens the tar file without
option raw.

To add one file at the time into an opened tar file, use function
add/3,4. When you are finished adding files, use function close/1
to close the tar file.
Warning
The compressed and cooked flags are invalid when passing a file descriptor
with {file,Fd}. The file must already be opened with the appropriate flags.

Warning
The TarDescriptor term is not a file descriptor. You are advised not to rely
on the specific contents of this term, as it can change in future Erlang/OTP
releases when more features are added to this module.

 Link to this function

 t(Name)

 View Source

 -spec t(file:filename()) -> ok | {error, term()}.

Prints the names of all files in the tar file Name to the Erlang shell
(similar to "tar t").

 Link to this function

 table(Open)

 View Source

 -spec table(Open :: open_type()) -> {ok, [name_in_archive()]} | {error, term()}.

Equivalent to table(Open, []).

 Link to this function

 table(Name, Opts)

 View Source

 -spec table(Open :: open_type(), [compressed | verbose | cooked]) ->
 {ok, [name_in_archive() | tar_entry()]} | {error, term()}.

Retrieves the names of all files in the tar file Name.

 Link to this function

 tt(Name)

 View Source

 -spec tt(open_type()) -> ok | {error, term()}.

Prints names and information about all files in the tar file Name to the
Erlang shell (similar to "tar tv").

rand

Pseudo random number generation.
This module provides a pseudo random number generator. The module contains a
number of algorithms. The uniform distribution algorithms are based on the
Xoroshiro and Xorshift algorithms by Sebastiano
Vigna. The normal distribution algorithm uses the
Ziggurat Method by Marsaglia and Tsang on
top of the uniform distribution algorithm.
For most algorithms, jump functions are provided for generating non-overlapping
sequences for parallel computations. The jump functions perform calculations
equivalent to perform a large number of repeated calls for calculating new
states, but execute in a time roughly equivalent to one regular iteration per
generator bit.
At the end of this module documentation there are also some
niche algorithms to be used without this
module's normal plug-in framework API that may
be useful for special purposes like short generation time when quality is not
essential, for seeding other generators, and such.
 The following algorithms are provided:
	exsss(Since OTP 22.0)
Xorshift116**, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls
This is the Xorshift116 generator combined with the StarStar scrambler from
the 2018 paper by David Blackman and Sebastiano Vigna:
Scrambled Linear Pseudorandom Number Generators
The generator does not need 58-bit rotates so it is faster than the
Xoroshiro116 generator, and when combined with the StarStar scrambler it does
not have any weak low bits like exrop (Xoroshiro116+).
Alas, this combination is about 10% slower than exrop, but is despite that
the default algorithm thanks to its
statistical qualities.

	exro928ss(Since OTP 22.0)
Xoroshiro928**, 58 bits precision and a period of 2^928-1
Jump function: equivalent to 2^512 calls
This is a 58 bit version of Xoroshiro1024*, from the 2018 paper by David
Blackman and Sebastiano Vigna:
Scrambled Linear Pseudorandom Number Generators that
on a 64 bit Erlang system executes only about 40% slower than the [default
exsss algorithm*](rand)but with much longer period
and better statistical properties, but on the flip side a larger state.
Many thanks to Sebastiano Vigna for his help with the 58 bit adaption.

	exrop(Since OTP 20.0)
Xoroshiro116+, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls

	exs1024s(Since OTP 20.0)
Xorshift1024*, 64 bits precision and a period of 2^1024-1
Jump function: equivalent to 2^512 calls

	exsp(Since OTP 20.0)
Xorshift116+, 58 bits precision and period of 2^116-1
Jump function: equivalent to 2^64 calls
This is a corrected version of the previous
default algorithm, that now has been
superseded by Xoroshiro116+ (exrop). Since there is no native 58 bit rotate
instruction this algorithm executes a little (say < 15%) faster than exrop.
See the algorithms' homepage.

 The current default algorithm is
exsss (Xorshift116**). If a specific algorithm is
required, ensure to always use seed/1 to initialize the state.
Which algorithm that is the default may change between Erlang/OTP releases, and
is selected to be one with high speed, small state and "good enough" statistical
properties.
Undocumented (old) algorithms are deprecated but still implemented so old code
relying on them will produce the same pseudo random sequences as before.
Note
There were a number of problems in the implementation of the now undocumented
algorithms, which is why they are deprecated. The new algorithms are a bit
slower but do not have these problems:
Uniform integer ranges had a skew in the probability distribution that was not
noticable for small ranges but for large ranges less than the generator's
precision the probability to produce a low number could be twice the
probability for a high.
Uniform integer ranges larger than or equal to the generator's precision used
a floating point fallback that only calculated with 52 bits which is smaller
than the requested range and therefore were not all numbers in the requested
range even possible to produce.
Uniform floats had a non-uniform density so small values i.e less than 0.5 had
got smaller intervals decreasing as the generated value approached 0.0
although still uniformly distributed for sufficiently large subranges. The new
algorithms produces uniformly distributed floats on the form N * 2.0^(-53)
hence equally spaced.

Every time a random number is requested, a state is used to calculate it and a
new state is produced. The state can either be implicit or be an explicit
argument and return value.
The functions with implicit state use the process dictionary variable
rand_seed to remember the current state.
If a process calls uniform/0, uniform/1 or uniform_real/0 without setting
a seed first, seed/1 is called automatically with the
default algorithm and creates a non-constant
seed.
The functions with explicit state never use the process dictionary.
Examples:
Simple use; creates and seeds the
default algorithm with a non-constant seed if
not already done:
R0 = rand:uniform(),
R1 = rand:uniform(),
Use a specified algorithm:
_ = rand:seed(exs928ss),
R2 = rand:uniform(),
Use a specified algorithm with a constant seed:
_ = rand:seed(exs928ss, {123, 123534, 345345}),
R3 = rand:uniform(),
Use the functional API with a non-constant seed:
S0 = rand:seed_s(exsss),
{R4, S1} = rand:uniform_s(S0),
Textbook basic form Box-Muller standard normal deviate
R5 = rand:uniform_real(),
R6 = rand:uniform(),
SND0 = math:sqrt(-2 * math:log(R5)) * math:cos(math:pi() * R6)
Create a standard normal deviate:
{SND1, S2} = rand:normal_s(S1),
Create a normal deviate with mean -3 and variance 0.5:
{ND0, S3} = rand:normal_s(-3, 0.5, S2),
Note
The builtin random number generator algorithms are not cryptographically
strong. If a cryptographically strong random number generator is needed, use
something like crypto:rand_seed/0.

For all these generators except exro928ss and exsss the lowest bit(s) has
got a slightly less random behaviour than all other bits. 1 bit for exrop (and
exsp), and 3 bits for exs1024s. See for example the explanation in the
Xoroshiro128+ generator
source code:
Beside passing BigCrush, this generator passes the PractRand test suite
up to (and included) 16TB, with the exception of binary rank tests,
which fail due to the lowest bit being an LFSR; all other bits pass all
tests. We suggest to use a sign test to extract a random Boolean value.

If this is a problem; to generate a boolean with these algorithms use something
like this:
(rand:uniform(256) > 128) % -> boolean()
((rand:uniform(256) - 1) bsr 7) % -> 0 | 1
For a general range, with N = 1 for exrop, and N = 3 for exs1024s:
(((rand:uniform(Range bsl N) - 1) bsr N) + 1)
The floating point generating functions in this module waste the lowest bits
when converting from an integer so they avoid this snag.

 Summary

 Types

 alg()

 alg_handler()

 alg_state()

 builtin_alg()

 dummy_state()

 Algorithm specific internal state

 export_state()

 Algorithm-dependent state that can be printed or saved to file.

 exro928_state()

 Algorithm specific internal state

 exrop_state()

 Algorithm specific internal state

 exs64_state()

 Algorithm specific internal state

 exs1024_state()

 Algorithm specific internal state

 exsplus_state()

 Algorithm specific internal state

 mwc59_state()

 1 .. ((16#1ffb072 * 2^29 - 1) - 1)

 seed()

 A seed value for the generator.

 splitmix64_state()

 Algorithm specific state

 state()

 Algorithm-dependent state.

 uint58()

 0 .. (2^58 - 1)

 uint64()

 0 .. (2^64 - 1)

 Plug-in framework API

 bytes(N)

 Returns, for a specified integer N >= 0, a binary/0 with that number of
random bytes.

 bytes_s(N, State)

 Returns, for a specified integer N >= 0 and a state, a binary/0 with that
number of random bytes, and a new state.

 export_seed()

 Returns the random number state in an external format. To be used with seed/1.

 export_seed_s(State)

 Returns the random number generator state in an external format. To be used with
seed/1.

 jump()

 Returns the state after performing jump calculation to the state in the process
dictionary.

 jump/1

 Returns the state after performing jump calculation to the given state.

 normal()

 Returns a standard normal deviate float (that is, the mean is 0 and the standard
deviation is 1) and updates the state in the process dictionary.

 normal(Mean, Variance)

 Returns a normal N(Mean, Variance) deviate float and updates the state in the
process dictionary.

 normal_s(State)

 Returns, for a specified state, a standard normal deviate float (that is, the
mean is 0 and the standard deviation is 1) and a new state.

 normal_s(Mean, Variance, State0)

 Returns, for a specified state, a normal N(Mean, Variance) deviate float and a
new state.

 seed(Alg)

 Seeds random number generation with the specifed algorithm and time-dependent
data if AlgOrStateOrExpState is an algorithm. Alg = default is an alias for
the default algorithm.

 seed(Alg, Seed)

 Seeds random number generation with the specified algorithm and integers in the
process dictionary and returns the state. Alg = default is an alias for the
default algorithm.

 seed_s/1

 Seeds random number generation with the specifed algorithm and time-dependent
data if AlgOrStateOrExpState is an algorithm. Alg = default is an alias for
the default algorithm.

 seed_s/2

 Seeds random number generation with the specified algorithm and integers and
returns the state. Alg = default is an alias for the
default algorithm.

 uniform()

 Returns a random float uniformly distributed in the value range 0.0 =< X < 1.0
and updates the state in the process dictionary.

 uniform(N)

 Returns, for a specified integer N >= 1, a random integer uniformly
distributed in the value range 1 =< X =< N and updates the state in the
process dictionary.

 uniform_real()

 Returns a random float uniformly distributed in the value range
DBL_MIN =< X < 1.0 and updates the state in the process dictionary.

 uniform_real_s(State)

 Returns, for a specified state, a random float uniformly distributed in the
value range DBL_MIN =< X < 1.0 and updates the state in the process
dictionary.

 uniform_s(State)

 Returns, for a specified state, random float uniformly distributed in the value
range 0.0 =< X < 1.0 and a new state.

 uniform_s(N, State)

 Returns, for a specified integer N >= 1 and a state, a random integer
uniformly distributed in the value range 1 =< X =< N and a new state.

 Niche algorithms API

 exsp_jump(AlgState)

 Returns a new generator state equivalent of the state after iterating over
exsp_next/1 2^64 times.

 exsp_next(AlgState)

 Returns a random 58-bit integer X and a new generator state NewAlgState,
according to the Xorshift116+ algorithm.

 mwc59(CX0)

 Returns a new generator state CX1, according to a Multiply With Carry
generator, which is an efficient implementation of a Multiplicative Congruential
Generator with a power of 2 multiplier and a prime modulus.

 mwc59_float(CX)

 Returns the generator value V from a generator state CX, as a float/0.
The generator state is scrambled as with
mwc59_value/1 before converted to a float/0.

 mwc59_seed()

 Equivalent to mwc59_seed/1.

 mwc59_seed(S)

 Returns a generator state CX. S is hashed to create the generator state, to
avoid that similar seeds create similar sequences.

 mwc59_value32(CX)

 Returns a 32-bit value V from a generator state CX. The generator state is
scrambled using an 8-bit xorshift which masks the statistical imperfecions of
the base generator mwc59 enough to produce numbers of decent
quality. Still some problems in 2- and 3-dimensional birthday spacing and
collision tests show through.

 mwc59_value(CX)

 Returns a 59-bit value V from a generator state CX. The generator state is
scrambled using an 4-bit followed by a 27-bit xorshift, which masks the
statistical imperfecions of the base generator mwc59 enough that
all 59 bits are of very good quality.

 splitmix64_next(AlgState)

 Returns a random 64-bit integer X and a new generator state NewAlgState,
according to the SplitMix64 algorithm.

 Types

 Link to this type

 alg()

 View Source

 (since OTP 18.0)

 -type alg() :: builtin_alg() | atom().

 Link to this type

 alg_handler()

 View Source

 (since OTP 18.0)

 -type alg_handler() ::
 #{type := alg(),
 bits => non_neg_integer(),
 weak_low_bits => non_neg_integer(),
 max => non_neg_integer(),
 next := fun((alg_state()) -> {non_neg_integer(), alg_state()}),
 uniform => fun((state()) -> {float(), state()}),
 uniform_n => fun((pos_integer(), state()) -> {pos_integer(), state()}),
 jump => fun((state()) -> state())}.

 Link to this type

 alg_state()

 View Source

 (since OTP 18.0)

 -type alg_state() ::
 exsplus_state() |
 exro928_state() |
 exrop_state() |
 exs1024_state() |
 exs64_state() |
 dummy_state() |
 term().

 Link to this type

 builtin_alg()

 View Source

 (since OTP 18.0)

 -type builtin_alg() :: exsss | exro928ss | exrop | exs1024s | exsp | exs64 | exsplus | exs1024 | dummy.

 Link to this type

 dummy_state()

 View Source

 (since OTP 18.0)

 -type dummy_state() :: uint58().

Algorithm specific internal state

 Link to this type

 export_state()

 View Source

 (since OTP 18.0)

 -type export_state() :: {alg(), alg_state()}.

Algorithm-dependent state that can be printed or saved to file.

 Link to this opaque

 exro928_state()

 View Source

 (since OTP 18.0)

 -opaque exro928_state()

Algorithm specific internal state

 Link to this opaque

 exrop_state()

 View Source

 (since OTP 18.0)

 -opaque exrop_state()

Algorithm specific internal state

 Link to this opaque

 exs64_state()

 View Source

 (since OTP 18.0)

 -opaque exs64_state()

Algorithm specific internal state

 Link to this opaque

 exs1024_state()

 View Source

 (since OTP 18.0)

 -opaque exs1024_state()

Algorithm specific internal state

 Link to this opaque

 exsplus_state()

 View Source

 (since OTP 18.0)

 -opaque exsplus_state()

Algorithm specific internal state

 Link to this type

 mwc59_state()

 View Source

 (since OTP 18.0)

 -type mwc59_state() :: 1..133850370 bsl 32 - 1 - 1.

1 .. ((16#1ffb072 * 2^29 - 1) - 1)

 Link to this type

 seed()

 View Source

 (since OTP 18.0)

 -type seed() :: [integer()] | integer() | {integer(), integer(), integer()}.

A seed value for the generator.
A list of integers sets the generator's internal state directly, after
algorithm-dependent checks of the value and masking to the proper word size. The
number of integers must be equal to the number of state words in the generator.
An integer is used as the initial state for a SplitMix64 generator. The output
values of that is then used for setting the generator's internal state after
masking to the proper word size and if needed avoiding zero values.
A traditional 3-tuple of integers seed is passed through algorithm-dependent
hashing functions to create the generator's initial state.

 Link to this type

 splitmix64_state()

 View Source

 (since OTP 18.0)

 -type splitmix64_state() :: uint64().

Algorithm specific state

 Link to this type

 state()

 View Source

 (since OTP 18.0)

 -type state() :: {alg_handler(), alg_state()}.

Algorithm-dependent state.

 Link to this type

 uint58()

 View Source

 (since OTP 18.0)

 -type uint58() :: 0..1 bsl 58 - 1.

0 .. (2^58 - 1)

 Link to this type

 uint64()

 View Source

 (since OTP 18.0)

 -type uint64() :: 0..1 bsl 64 - 1.

0 .. (2^64 - 1)

 Plug-in framework API

 Link to this function

 bytes(N)

 View Source

 (since OTP 24.0)

 -spec bytes(N :: non_neg_integer()) -> Bytes :: binary().

Returns, for a specified integer N >= 0, a binary/0 with that number of
random bytes.
Generates as many random numbers as required using the selected
algorithm to compose the binary, and updates the state in the process dictionary
accordingly.

 Link to this function

 bytes_s(N, State)

 View Source

 (since OTP 24.0)

 -spec bytes_s(N :: non_neg_integer(), State :: state()) -> {Bytes :: binary(), NewState :: state()}.

Returns, for a specified integer N >= 0 and a state, a binary/0 with that
number of random bytes, and a new state.
Generates as many random numbers as
required using the selected algorithm to compose the binary, and the new state.

 Link to this function

 export_seed()

 View Source

 (since OTP 18.0)

 -spec export_seed() -> undefined | export_state().

Returns the random number state in an external format. To be used with seed/1.

 Link to this function

 export_seed_s(State)

 View Source

 (since OTP 18.0)

 -spec export_seed_s(State :: state()) -> export_state().

Returns the random number generator state in an external format. To be used with
seed/1.

 Link to this function

 jump()

 View Source

 (since OTP 20.0)

 -spec jump() -> NewState :: state().

Returns the state after performing jump calculation to the state in the process
dictionary.
This function generates a not_implemented error exception when the jump
function is not implemented for the algorithm specified in the state in the
process dictionary.

 Link to this function

 jump/1

 View Source

 (since OTP 20.0)

 -spec jump(state()) -> NewState :: state().

Returns the state after performing jump calculation to the given state.
This function generates a not_implemented error exception when the jump
function is not implemented for the algorithm specified in the state.

 Link to this function

 normal()

 View Source

 (since OTP 18.0)

 -spec normal() -> float().

Returns a standard normal deviate float (that is, the mean is 0 and the standard
deviation is 1) and updates the state in the process dictionary.

 Link to this function

 normal(Mean, Variance)

 View Source

 (since OTP 20.0)

 -spec normal(Mean :: number(), Variance :: number()) -> float().

Returns a normal N(Mean, Variance) deviate float and updates the state in the
process dictionary.

 Link to this function

 normal_s(State)

 View Source

 (since OTP 18.0)

 -spec normal_s(State :: state()) -> {float(), NewState :: state()}.

Returns, for a specified state, a standard normal deviate float (that is, the
mean is 0 and the standard deviation is 1) and a new state.

 Link to this function

 normal_s(Mean, Variance, State0)

 View Source

 (since OTP 20.0)

 -spec normal_s(Mean :: number(), Variance :: number(), state()) -> {float(), NewS :: state()}.

Returns, for a specified state, a normal N(Mean, Variance) deviate float and a
new state.

 Link to this function

 seed(Alg)

 View Source

 (since OTP 18.0,OTP 24.0)

 -spec seed(AlgOrStateOrExpState :: builtin_alg() | state() | export_state()) -> state();
 (Alg :: default) -> state().

Seeds random number generation with the specifed algorithm and time-dependent
data if AlgOrStateOrExpState is an algorithm. Alg = default is an alias for
the default algorithm.
Otherwise recreates the exported seed in the process dictionary, and returns the
state. See also export_seed/0.

 Link to this function

 seed(Alg, Seed)

 View Source

 (since OTP 18.0,OTP 24.0)

 -spec seed(Alg :: builtin_alg(), Seed :: seed()) -> state();
 (Alg :: default, Seed :: seed()) -> state().

Seeds random number generation with the specified algorithm and integers in the
process dictionary and returns the state. Alg = default is an alias for the
default algorithm.

 Link to this function

 seed_s/1

 View Source

 (since OTP 18.0,OTP 24.0)

 -spec seed_s(AlgOrStateOrExpState :: builtin_alg() | state() | export_state()) -> state();
 (Alg :: default) -> state().

Seeds random number generation with the specifed algorithm and time-dependent
data if AlgOrStateOrExpState is an algorithm. Alg = default is an alias for
the default algorithm.
Otherwise recreates the exported seed and returns the state. See also
export_seed/0.

 Link to this function

 seed_s/2

 View Source

 (since OTP 18.0,OTP 24.0)

 -spec seed_s(Alg :: builtin_alg(), Seed :: seed()) -> state();
 (Alg :: default, Seed :: seed()) -> state().

Seeds random number generation with the specified algorithm and integers and
returns the state. Alg = default is an alias for the
default algorithm.

 Link to this function

 uniform()

 View Source

 (since OTP 18.0)

 -spec uniform() -> X :: float().

Returns a random float uniformly distributed in the value range 0.0 =< X < 1.0
and updates the state in the process dictionary.
The generated numbers are on the form N * 2.0^(-53), that is; equally spaced in
the interval.
Warning
This function may return exactly 0.0 which can be fatal for certain
applications. If that is undesired you can use (1.0 - rand:uniform()) to get
the interval 0.0 < X =< 1.0, or instead use uniform_real/0.
If neither endpoint is desired you can test and re-try like this:
my_uniform() ->
 case rand:uniform() of
 0.0 -> my_uniform();
 X -> X
 end
end.

 Link to this function

 uniform(N)

 View Source

 (since OTP 18.0)

 -spec uniform(N :: pos_integer()) -> X :: pos_integer().

Returns, for a specified integer N >= 1, a random integer uniformly
distributed in the value range 1 =< X =< N and updates the state in the
process dictionary.

 Link to this function

 uniform_real()

 View Source

 (since OTP 21.0)

 -spec uniform_real() -> X :: float().

Returns a random float uniformly distributed in the value range
DBL_MIN =< X < 1.0 and updates the state in the process dictionary.
Conceptually, a random real number R is generated from the interval
0 =< R < 1 and then the closest rounded down normalized number in the IEEE 754
Double precision format is returned.
Note
The generated numbers from this function has got better granularity for small
numbers than the regular uniform/0 because all bits in the mantissa are
random. This property, in combination with the fact that exactly zero is never
returned is useful for algorithms doing for example 1.0 / X or
math:log(X).

See uniform_real_s/1 for more explanation.

 Link to this function

 uniform_real_s(State)

 View Source

 (since OTP 21.0)

 -spec uniform_real_s(State :: state()) -> {X :: float(), NewState :: state()}.

Returns, for a specified state, a random float uniformly distributed in the
value range DBL_MIN =< X < 1.0 and updates the state in the process
dictionary.
Conceptually, a random real number R is generated from the interval
0 =< R < 1 and then the closest rounded down normalized number in the IEEE 754
Double precision format is returned.
Note
The generated numbers from this function has got better granularity for small
numbers than the regular uniform_s/1 because all bits in the mantissa are
random. This property, in combination with the fact that exactly zero is never
returned is useful for algorithms doing for example 1.0 / X or
math:log(X).

The concept implicates that the probability to get exactly zero is extremely
low; so low that this function is in fact guaranteed to never return zero. The
smallest number that it might return is DBL_MIN, which is 2.0^(-1022).
The value range stated at the top of this function description is technically
correct, but 0.0 =< X < 1.0 is a better description of the generated numbers'
statistical distribution. Except that exactly 0.0 is never returned, which is
not possible to observe statistically.
For example; for all sub ranges N*2.0^(-53) =< X < (N+1)*2.0^(-53) where
0 =< integer(N) < 2.0^53 the probability is the same. Compare that with the
form of the numbers generated by uniform_s/1.
Having to generate extra random bits for small numbers costs a little
performance. This function is about 20% slower than the regular uniform_s/1

 Link to this function

 uniform_s(State)

 View Source

 (since OTP 18.0)

 -spec uniform_s(State :: state()) -> {X :: float(), NewState :: state()}.

Returns, for a specified state, random float uniformly distributed in the value
range 0.0 =< X < 1.0 and a new state.
The generated numbers are on the form N * 2.0^(-53), that is; equally spaced in
the interval.
Warning
This function may return exactly 0.0 which can be fatal for certain
applications. If that is undesired you can use (1.0 - rand:uniform(State))
to get the interval 0.0 < X =< 1.0, or instead use uniform_real_s/1.
If neither endpoint is desired you can test and re-try like this:
my_uniform(State) ->
 case rand:uniform(State) of
 {0.0, NewState} -> my_uniform(NewState);
 Result -> Result
 end
end.

 Link to this function

 uniform_s(N, State)

 View Source

 (since OTP 18.0)

 -spec uniform_s(N :: pos_integer(), State :: state()) -> {X :: pos_integer(), NewState :: state()}.

Returns, for a specified integer N >= 1 and a state, a random integer
uniformly distributed in the value range 1 =< X =< N and a new state.

 Niche algorithms API

 Link to this function

 exsp_jump(AlgState)

 View Source

 (since OTP 25.0)

 -spec exsp_jump(AlgState :: exsplus_state()) -> NewAlgState :: exsplus_state().

Returns a new generator state equivalent of the state after iterating over
exsp_next/1 2^64 times.
See the description of jump functions at the top of this module description.

 Link to this function

 exsp_next(AlgState)

 View Source

 (since OTP 25.0)

 -spec exsp_next(AlgState :: exsplus_state()) -> {X :: uint58(), NewAlgState :: exsplus_state()}.

Returns a random 58-bit integer X and a new generator state NewAlgState,
according to the Xorshift116+ algorithm.
This is an API function into the internal implementation of the
exsp algorithm that enables using it without the
overhead of the plug-in framework, which might be useful for time critial
applications. On a typical 64 bit Erlang VM this approach executes in just above
30% (1/3) of the time for the default algorithm through this module's normal
plug-in framework.
To seed this generator use {_, AlgState} = rand:seed_s(exsp) or
{_, AlgState} = rand:seed_s(exsp, Seed) with a specific Seed.
Note
This function offers no help in generating a number on a selected range, nor
in generating a floating point number. It is easy to accidentally mess up the
fairly good statistical properties of this generator when doing either. See
the recepies at the start of this
Niche algorithms API description. Note also
the caveat about weak low bits that this generator suffers from. The generator
is exported in this form primarily for performance.

 Link to this function

 mwc59(CX0)

 View Source

 (since OTP 25.0)

 -spec mwc59(CX0 :: mwc59_state()) -> CX1 :: mwc59_state().

Returns a new generator state CX1, according to a Multiply With Carry
generator, which is an efficient implementation of a Multiplicative Congruential
Generator with a power of 2 multiplier and a prime modulus.
This generator uses the multiplier 2^32 and the modulus 16#7fa6502 * 2^32 - 1,
which have been selected, in collaboration with Sebastiano Vigna, to avoid
bignum operations and still get good statistical quality. It can be written
as:
C = CX0 bsr 32
X = CX0 band ((1 bsl 32)-1))
CX1 = 16#7fa6502 * X + C
Because the generator uses a multiplier that is a power of 2 it gets statistical
flaws for collision tests and birthday spacings tests in 2 and 3 dimensions, and
even these caveats apply only to the MWC "digit", that is the low 32 bits (due
to the multiplier) of the generator state.
The quality of the output value improves much by using a scrambler instead of
just taking the low bits. Function mwc59_value32 is a
fast scrambler that returns a decent 32-bit number. The slightly slower
mwc59_value scrambler returns 59 bits of very good quality,
and mwc59_float returns a float/0 of very good quality.
The low bits of the base generator are surprisingly good, so the lowest 16 bits
actually pass fairly strict PRNG tests, despite the generator's weaknesses that
lie in the high bits of the 32-bit MWC "digit". It is recommended to use rem
on the the generator state, or bit mask extracting the lowest bits to produce
numbers in a range 16 bits or less. See the recepies at the start of this
Niche algorithms API description.
On a typical 64 bit Erlang VM this generator executes in below 8% (1/13) of the
time for the default algorithm in the
plug-in framework API of this module. With the
mwc59_value32 scrambler the total time becomes 16% (1/6),
and with mwc59_value it becomes 20% (1/5) of the time for
the default algorithm. With mwc59_float the total time is
60% of the time for the default algorithm generating a float/0.
Note
This generator is a niche generator for high speed applications. It has a much
shorter period than the default generator, which in itself is a quality
concern, although when used with the value scramblers it passes strict PRNG
tests. The generator is much faster than exsp_next/1 but with a bit lower
quality.

 Link to this function

 mwc59_float(CX)

 View Source

 (since OTP 25.0)

 -spec mwc59_float(CX :: mwc59_state()) -> V :: float().

Returns the generator value V from a generator state CX, as a float/0.
The generator state is scrambled as with
mwc59_value/1 before converted to a float/0.

 Link to this function

 mwc59_seed()

 View Source

 (since OTP 25.0)

 -spec mwc59_seed() -> CX :: mwc59_state().

Equivalent to mwc59_seed/1.

 Link to this function

 mwc59_seed(S)

 View Source

 (since OTP 25.0)

 -spec mwc59_seed(S :: 0..1 bsl 58 - 1) -> CX :: mwc59_state().

Returns a generator state CX. S is hashed to create the generator state, to
avoid that similar seeds create similar sequences.
Without S, the generator state is created as for
seed_s(atom()).

 Link to this function

 mwc59_value32(CX)

 View Source

 (since OTP 25.0)

 -spec mwc59_value32(CX :: mwc59_state()) -> V :: 0..1 bsl 32 - 1.

Returns a 32-bit value V from a generator state CX. The generator state is
scrambled using an 8-bit xorshift which masks the statistical imperfecions of
the base generator mwc59 enough to produce numbers of decent
quality. Still some problems in 2- and 3-dimensional birthday spacing and
collision tests show through.
When using this scrambler it is in general better to use the high bits of the
value than the low. The lowest 8 bits are of good quality and pass right through
from the base generator. They are combined with the next 8 in the xorshift
making the low 16 good quality, but in the range 16..31 bits there are weaker
bits that you do not want to have as the high bits of your generated values.
Therefore it is in general safer to shift out low bits. See the recepies at the
start of this Niche algorithms API description.
For a non power of 2 range less than about 16 bits (to not get too much bias and
to avoid bignums) truncated multiplication can be used, which is much faster
than using rem: (Range*V) bsr 32.

 Link to this function

 mwc59_value(CX)

 View Source

 (since OTP 25.0)

 -spec mwc59_value(CX :: mwc59_state()) -> V :: 0..1 bsl 59 - 1.

Returns a 59-bit value V from a generator state CX. The generator state is
scrambled using an 4-bit followed by a 27-bit xorshift, which masks the
statistical imperfecions of the base generator mwc59 enough that
all 59 bits are of very good quality.
Be careful to not accidentaly create a bignum when handling the value V.
It is in general general better to use the high bits from this scrambler than
the low. See the recepies at the start of this
Niche algorithms API description.
For a non power of 2 range less than about 29 bits (to not get too much bias and
to avoid bignums) truncated multiplication can be used, which is much faster
than using rem. Example for range 1'000'000'000; the range is 30 bits, we use
29 bits from the generator, adding up to 59 bits, which is not a bignum:
(1000000000 * (V bsr (59-29))) bsr 29.

 Link to this function

 splitmix64_next(AlgState)

 View Source

 (since OTP 25.0)

 -spec splitmix64_next(AlgState :: integer()) -> {X :: uint64(), NewAlgState :: splitmix64_state()}.

Returns a random 64-bit integer X and a new generator state NewAlgState,
according to the SplitMix64 algorithm.
This generator is used internally in the rand module for seeding other
generators since it is of a quite different breed which reduces the probability
for creating an accidentally bad seed.

random

Pseudo-random number generation.
This module provides a random number generator. The method is attributed to B.A.
Wichmann and I.D. Hill in 'An efficient and portable pseudo-random number
generator', Journal of Applied Statistics. AS183. 1982. Also Byte March 1987.
The algorithm is a modification of the version attributed to Richard A. O'Keefe
in the standard Prolog library.
Every time a random number is requested, a state is used to calculate it, and a
new state is produced. The state can either be implicit (kept in the process
dictionary) or be an explicit argument and return value. In this implementation,
the state (the type ran/0) consists of a tuple of three integers.
Note
This random number generator is not cryptographically strong. If a strong
cryptographic random number generator is needed, use one of functions in the
crypto module, for example, crypto:strong_rand_bytes/1.

Note
The improved rand module is to be used instead of this module.

 Note

Some of the functions use the process dictionary variable random_seed to
remember the current seed.
If a process calls uniform/0 or uniform/1 without setting a seed first,
seed/0 is called automatically.
The implementation changed in Erlang/OTP R15. Upgrading to R15 breaks
applications that expect a specific output for a specified seed. The output is
still deterministic number series, but different compared to releases older than
R15. Seed {0,0,0} does, for example, no longer produce a flawed series of only
zeros.

 Summary

 Types

 ran()

 The state.

 Functions

 seed0()

 deprecated

 Returns the default state.

 seed()

 deprecated

 Seeds random number generation with default (fixed) values in the process
dictionary and returns the old state.

 seed(SValue)

 deprecated

 seed({A1, A2, A3}) is equivalent to
seed(A1, A2, A3).

 seed(A1, A2, A3)

 deprecated

 Seeds random number generation with integer values in the process dictionary and
returns the old state.

 uniform()

 deprecated

 Returns a random float uniformly distributed between 0.0 and 1.0, updating
the state in the process dictionary.

 uniform(N)

 deprecated

 Returns, for a specified integer N >= 1, a random integer uniformly
distributed between 1 and N, updating the state in the process dictionary.

 uniform_s(State0)

 deprecated

 Returns, for a specified state, a random float uniformly distributed between
0.0 and 1.0, and a new state.

 uniform_s(N, State0)

 deprecated

 Returns, for a specified integer N >= 1 and a state, a random integer
uniformly distributed between 1 and N, and a new state.

 Types

 Link to this type

 ran()

 View Source

 (not exported)

 -type ran() :: {integer(), integer(), integer()}.

The state.

 Functions

 Link to this function

 seed0()

 View Source

 This function is deprecated. random:seed0/0 is deprecated; use the 'rand' module instead.

 -spec seed0() -> ran().

Returns the default state.

 Link to this function

 seed()

 View Source

 This function is deprecated. random:seed/0 is deprecated; use the 'rand' module instead.

 -spec seed() -> ran().

Seeds random number generation with default (fixed) values in the process
dictionary and returns the old state.

 Link to this function

 seed(SValue)

 View Source

 This function is deprecated. random:seed/1 is deprecated; use the 'rand' module instead.

 -spec seed(SValue) -> undefined | ran()
 when SValue :: {A1, A2, A3} | integer(), A1 :: integer(), A2 :: integer(), A3 :: integer().

seed({A1, A2, A3}) is equivalent to
seed(A1, A2, A3).

 Link to this function

 seed(A1, A2, A3)

 View Source

 This function is deprecated. random:seed/3 is deprecated; use the 'rand' module instead.

 -spec seed(A1, A2, A3) -> undefined | ran() when A1 :: integer(), A2 :: integer(), A3 :: integer().

Seeds random number generation with integer values in the process dictionary and
returns the old state.
The following is an easy way of obtaining a unique value to seed with:
random:seed(erlang:phash2([node()]),
 erlang:monotonic_time(),
 erlang:unique_integer())
For details, see erlang:phash2/1, erlang:node/0, erlang:monotonic_time/0,
and erlang:unique_integer/0.

 Link to this function

 uniform()

 View Source

 This function is deprecated. random:uniform/0 is deprecated; use the 'rand' module instead.

 -spec uniform() -> float().

Returns a random float uniformly distributed between 0.0 and 1.0, updating
the state in the process dictionary.

 Link to this function

 uniform(N)

 View Source

 This function is deprecated. random:uniform/1 is deprecated; use the 'rand' module instead.

 -spec uniform(N) -> pos_integer() when N :: pos_integer().

Returns, for a specified integer N >= 1, a random integer uniformly
distributed between 1 and N, updating the state in the process dictionary.

 Link to this function

 uniform_s(State0)

 View Source

 This function is deprecated. random:uniform_s/1 is deprecated; use the 'rand' module instead.

 -spec uniform_s(State0) -> {float(), State1} when State0 :: ran(), State1 :: ran().

Returns, for a specified state, a random float uniformly distributed between
0.0 and 1.0, and a new state.

 Link to this function

 uniform_s(N, State0)

 View Source

 This function is deprecated. random:uniform_s/2 is deprecated; use the 'rand' module instead.

 -spec uniform_s(N, State0) -> {integer(), State1}
 when N :: pos_integer(), State0 :: ran(), State1 :: ran().

Returns, for a specified integer N >= 1 and a state, a random integer
uniformly distributed between 1 and N, and a new state.

zip

Utility for reading and creating 'zip' archives.
This module archives and extracts files to and from a zip archive. The zip
format is specified by the "ZIP Appnote.txt" file, available on the PKWARE web
site www.pkware.com.
The zip module supports zip archive versions up to 6.1. However,
password-protection and Zip64 are not supported.
By convention, the name of a zip file is to end with .zip. To abide to the
convention, add .zip to the filename.
	To create zip archives, use function zip/2 or zip/3. They are
also available as create/2,3, to resemble the erl_tar module.
	To extract files from a zip archive, use function unzip/1 or unzip/2. They
are also available as extract/1,2, to resemble the erl_tar module.
	To fold a function over all files in a zip archive, use function foldl/3.
	To return a list of the files in a zip archive, use function list_dir/1 or
list_dir/2. They are also available as table/1,2, to resemble the
erl_tar module.
	To print a list of files to the Erlang shell, use function t/1 or tt/1.
	Sometimes it is desirable to open a zip archive, and to unzip files from it
file by file, without having to reopen the archive. This can be done by
functions zip_open/1,2, zip_get/1,2,
zip_list_dir/1, and zip_close/1.

 Limitations

	Zip64 archives are not supported.
	Password-protected and encrypted archives are not supported.
	Only the DEFLATE (zlib-compression) and the STORE (uncompressed data) zip
methods are supported.
	The archive size is limited to 2 GB (32 bits).
	Comments for individual files are not supported when creating zip archives.
The zip archive comment for the whole zip archive is supported.
	Changing a zip archive is not supported. To add or remove a file from an
archive, the whole archive must be recreated.

 Summary

 Types

 create_option()

 These options are described in create/3.

 extension()

 extension_spec()

 filename()

 The name of a zip file.

 handle()

 As returned by zip_open/2.

 zip_comment()

 The record zip_comment only contains the archive comment for a zip archive.

 zip_file()

 The record zip_file contains the following fields

 erl_tar compatibility functions

 create(Name, FileList)

 Equivalent to zip(Name, FileList).

 create(Name, FileList, Options)

 Equivalent to zip(Name, FileList, Options).

 extract(Archive)

 Equivalent to unzip(Archive).

 extract(Archive, Options)

 Equivalent to unzip(Archive, Options).

 table(Archive)

 Equivalent to list_dir(Archive, []).

 table(Archive, Options)

 Equivalent to list_dir(Archive, Options).

 Functions

 foldl(Fun, Acc0, Archive)

 Calls Fun(FileInArchive, GetInfo , GetBin, AccIn) on successive files in the
Archive, starting with AccIn == Acc0.

 list_dir(Archive)

 Equivalent to list_dir(Archive, []).

 list_dir(Archive, Options)

 Retrieves all filenames in the zip archive Archive.

 t(Archive)

 Prints all filenames in the zip archive Archive to the Erlang shell. (Similar
to tar t.)

 tt(Archive)

 Prints filenames and information about all files in the zip archive Archive to
the Erlang shell. (Similar to tar tv.)

 unzip(Archive)

 Equivalent to unzip(Archive, []).

 unzip(Archive, Options)

 Extracts all files from a zip archive.

 zip(Name, FileList)

 Equivalent to zip(Name, FileList, []).

 zip(Name, FileList, Options)

 Creates a zip archive containing the files specified in FileList.

 zip_close(ZipHandle)

 Closes a zip archive, previously opened with zip_open/1,2. All
resources are closed, and the handle is not to be used after closing.

 zip_get(ZipHandle)

 Equivalent to zip_get/2.

 zip_get(FileName, ZipHandle)

 Extracts one or all files from an open archive.

 zip_get_crc32(FileName, ZipHandle)

 Extracts one crc32 checksum from an open archive.

 zip_list_dir(ZipHandle)

 Returns the file list of an open zip archive. The first returned element is the
zip archive comment.

 zip_open(Archive)

 Equivalent to zip_open/2.

 zip_open(Archive, Options)

 Opens a zip archive, and reads and saves its directory. This means that later
reading files from the archive is faster than unzipping files one at a time with
unzip/1,2.

 Types

 Link to this type

 create_option()

 View Source

 -type create_option() ::
 memory | cooked | verbose |
 {comment, Comment :: string()} |
 {cwd, CWD :: file:filename()} |
 {compress, What :: extension_spec()} |
 {uncompress, What :: extension_spec()}.

These options are described in create/3.

 Link to this type

 extension()

 View Source

 (not exported)

 -type extension() :: string().

 Link to this type

 extension_spec()

 View Source

 (not exported)

 -type extension_spec() ::
 all |
 [Extension :: extension()] |
 {add, [Extension :: extension()]} |
 {del, [Extension :: extension()]}.

 Link to this type

 filename()

 View Source

 -type filename() :: file:filename().

The name of a zip file.

 Link to this opaque

 handle()

 View Source

 -opaque handle()

As returned by zip_open/2.

 Link to this type

 zip_comment()

 View Source

 (not exported)

 -type zip_comment() :: #zip_comment{comment :: string()}.

The record zip_comment only contains the archive comment for a zip archive.

 Link to this type

 zip_file()

 View Source

 (not exported)

 -type zip_file() ::
 #zip_file{name :: string(),
 info :: file:file_info(),
 comment :: string(),
 offset :: non_neg_integer(),
 comp_size :: non_neg_integer()}.

The record zip_file contains the following fields:
	name - The filename

	info - File information as in file:read_file_info/1 in Kernel

	comment - The comment for the file in the zip archive

	offset - The file offset in the zip archive (used internally)

	comp_size - The size of the compressed file (the size of the
uncompressed file is found in info)

 erl_tar compatibility functions

 Link to this function

 create(Name, FileList)

 View Source

 -spec create(Name, FileList) -> RetValue
 when
 Name :: file:name(),
 FileList :: [FileSpec],
 FileSpec ::
 file:name() |
 {file:name(), binary()} |
 {file:name(), binary(), file:file_info()},
 RetValue ::
 {ok, FileName :: filename()} |
 {ok, {FileName :: filename(), binary()}} |
 {error, Reason :: term()}.

Equivalent to zip(Name, FileList).

 Link to this function

 create(Name, FileList, Options)

 View Source

 -spec create(Name, FileList, Options) -> RetValue
 when
 Name :: file:name(),
 FileList :: [FileSpec],
 FileSpec ::
 file:name() |
 {file:name(), binary()} |
 {file:name(), binary(), file:file_info()},
 Options :: [Option],
 Option :: create_option(),
 RetValue ::
 {ok, FileName :: filename()} |
 {ok, {FileName :: filename(), binary()}} |
 {error, Reason :: term()}.

Equivalent to zip(Name, FileList, Options).

 Link to this function

 extract(Archive)

 View Source

 -spec extract(Archive) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue ::
 {ok, FileList} |
 {ok, FileBinList} |
 {error, Reason :: term()} |
 {error, {Name :: file:name(), Reason :: term()}},
 FileList :: [file:name()],
 FileBinList :: [{file:name(), binary()}].

Equivalent to unzip(Archive).

 Link to this function

 extract(Archive, Options)

 View Source

 -spec extract(Archive, Options) -> RetValue
 when
 Archive :: file:name() | binary(),
 Options :: [Option],
 Option ::
 {file_list, FileList} |
 keep_old_files | verbose | memory |
 {file_filter, FileFilter} |
 {cwd, CWD},
 FileList :: [file:name()],
 FileBinList :: [{file:name(), binary()}],
 FileFilter :: fun((ZipFile) -> boolean()),
 CWD :: file:filename(),
 ZipFile :: zip_file(),
 RetValue ::
 {ok, FileList} |
 {ok, FileBinList} |
 {error, Reason :: term()} |
 {error, {Name :: file:name(), Reason :: term()}}.

Equivalent to unzip(Archive, Options).

 Link to this function

 table(Archive)

 View Source

 -spec table(Archive) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue :: {ok, CommentAndFiles} | {error, Reason :: term()},
 CommentAndFiles :: [zip_comment() | zip_file()].

Equivalent to list_dir(Archive, []).

 Link to this function

 table(Archive, Options)

 View Source

 -spec table(Archive, Options) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue :: {ok, CommentAndFiles} | {error, Reason :: term()},
 CommentAndFiles :: [zip_comment() | zip_file()],
 Options :: [Option],
 Option :: cooked.

Equivalent to list_dir(Archive, Options).

 Functions

 Link to this function

 foldl(Fun, Acc0, Archive)

 View Source

 (since OTP R14B)

 -spec foldl(Fun, Acc0, Archive) -> {ok, Acc1} | {error, Reason}
 when
 Fun :: fun((FileInArchive, GetInfo, GetBin, AccIn) -> AccOut),
 FileInArchive :: file:name(),
 GetInfo :: fun(() -> file:file_info()),
 GetBin :: fun(() -> binary()),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 Archive :: file:name() | {file:name(), binary()},
 Reason :: term().

Calls Fun(FileInArchive, GetInfo , GetBin, AccIn) on successive files in the
Archive, starting with AccIn == Acc0.
FileInArchive is the name that the file has in the archive.
GetInfo is a fun that returns information about the file.
GetBin returns the file contents.
Both GetInfo and GetBin must be called within the Fun. Their behavior is
undefined if they are called outside the context of Fun.
The Fun must return a new accumulator, which is passed to the next call.
foldl/3 returns the final accumulator value. Acc0 is returned
if the archive is empty. It is not necessary to iterate over all files in the
archive. The iteration can be ended prematurely in a controlled manner by
throwing an exception.
Example:
> Name = "dummy.zip".
"dummy.zip"
> {ok, {Name, Bin}} = zip:create(Name, [{"foo", <<"FOO">>}, {"bar", <<"BAR">>}], [memory]).
{ok,{"dummy.zip",
 <<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
 0,0,3,0,0,...>>}}
> {ok, FileSpec} = zip:foldl(fun(N, I, B, Acc) -> [{N, B(), I()} | Acc] end, [], {Name, Bin}).
{ok,[{"bar",<<"BAR">>,
 {file_info,3,regular,read_write,
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 54,1,0,0,0,0,0}},
 {"foo",<<"FOO">>,
 {file_info,3,regular,read_write,
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 {{2010,3,1},{19,2,10}},
 54,1,0,0,0,0,0}}]}
> {ok, {Name, Bin}} = zip:create(Name, lists:reverse(FileSpec), [memory]).
{ok,{"dummy.zip",
 <<80,75,3,4,20,0,0,0,0,0,74,152,97,60,171,39,212,26,3,0,
 0,0,3,0,0,...>>}}
> catch zip:foldl(fun("foo", _, B, _) -> throw(B()); (_,_,_,Acc) -> Acc end, [], {Name, Bin}).
<<"FOO">>

 Link to this function

 list_dir(Archive)

 View Source

 -spec list_dir(Archive) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue :: {ok, CommentAndFiles} | {error, Reason :: term()},
 CommentAndFiles :: [zip_comment() | zip_file()].

Equivalent to list_dir(Archive, []).

 Link to this function

 list_dir(Archive, Options)

 View Source

 -spec list_dir(Archive, Options) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue :: {ok, CommentAndFiles} | {error, Reason :: term()},
 CommentAndFiles :: [zip_comment() | zip_file()],
 Options :: [Option],
 Option :: cooked.

Retrieves all filenames in the zip archive Archive.
The result value is the tuple {ok, List}, where List contains the zip
archive comment as the first element.
One option is available:
	cooked - By default, this function opens the zip file in raw mode,
which is faster but does not allow a remote (Erlang) file server to be used.
Adding cooked to the mode list overrides the default and opens the zip file
without option raw.

 Link to this function

 t(Archive)

 View Source

 -spec t(Archive) -> ok when Archive :: file:name() | binary() | ZipHandle, ZipHandle :: handle().

Prints all filenames in the zip archive Archive to the Erlang shell. (Similar
to tar t.)

 Link to this function

 tt(Archive)

 View Source

 -spec tt(Archive) -> ok when Archive :: file:name() | binary() | ZipHandle, ZipHandle :: handle().

Prints filenames and information about all files in the zip archive Archive to
the Erlang shell. (Similar to tar tv.)

 Link to this function

 unzip(Archive)

 View Source

 -spec unzip(Archive) -> RetValue
 when
 Archive :: file:name() | binary(),
 RetValue ::
 {ok, FileList} |
 {ok, FileBinList} |
 {error, Reason :: term()} |
 {error, {Name :: file:name(), Reason :: term()}},
 FileList :: [file:name()],
 FileBinList :: [{file:name(), binary()}].

Equivalent to unzip(Archive, []).

 Link to this function

 unzip(Archive, Options)

 View Source

 -spec unzip(Archive, Options) -> RetValue
 when
 Archive :: file:name() | binary(),
 Options :: [Option],
 Option ::
 {file_list, FileList} |
 cooked | keep_old_files | verbose | memory |
 {file_filter, FileFilter} |
 {cwd, CWD},
 FileList :: [file:name()],
 FileBinList :: [{file:name(), binary()}],
 FileFilter :: fun((ZipFile) -> boolean()),
 CWD :: file:filename(),
 ZipFile :: zip_file(),
 RetValue ::
 {ok, FileList} |
 {ok, FileBinList} |
 {error, Reason :: term()} |
 {error, {Name :: file:name(), Reason :: term()}}.

Extracts all files from a zip archive.
If argument Archive is specified as a binary/0, the contents of the binary is
assumed to be a zip archive, otherwise a filename.
Options:
	{file_list, FileList} - By default, all files are extracted from the zip
archive. With option {file_list, FileList}, function unzip/2
only extracts the files whose names are included in FileList. The full
paths, including the names of all subdirectories within the zip archive, must
be specified.

	cooked - By default, this function opens the zip file in raw mode,
which is faster but does not allow a remote (Erlang) file server to be used.
Adding cooked to the mode list overrides the default and opens the zip file
without option raw. The same applies for the files extracted.

	keep_old_files - By default, all files with the same name as files in
the zip archive are overwritten. With option keep_old_files set, function
unzip/2 does not overwrite existing files. Notice that even
with option memory specified, which means that no files are overwritten,
existing files are excluded from the result.

	verbose - Prints an informational message for each extracted file.

	memory - Instead of extracting to the current directory, the result is
given as a list of tuples {Filename, Binary}, where Binary is a binary
containing the extracted data of file Filename in the zip archive.

	{cwd, CWD} - Uses the specified directory as current directory. It is
prepended to filenames when extracting them from the zip archive. (Acting like
file:set_cwd/1 in Kernel, but without changing the global cwd property.)

 Link to this function

 zip(Name, FileList)

 View Source

 -spec zip(Name, FileList) -> RetValue
 when
 Name :: file:name(),
 FileList :: [FileSpec],
 FileSpec ::
 file:name() | {file:name(), binary()} | {file:name(), binary(), file:file_info()},
 RetValue ::
 {ok, FileName :: file:name()} |
 {ok, {FileName :: file:name(), binary()}} |
 {error, Reason :: term()}.

Equivalent to zip(Name, FileList, []).

 Link to this function

 zip(Name, FileList, Options)

 View Source

 -spec zip(Name, FileList, Options) -> RetValue
 when
 Name :: file:name(),
 FileList :: [FileSpec],
 FileSpec ::
 file:name() | {file:name(), binary()} | {file:name(), binary(), file:file_info()},
 Options :: [Option],
 Option :: create_option(),
 RetValue ::
 {ok, FileName :: file:name()} |
 {ok, {FileName :: file:name(), binary()}} |
 {error, Reason :: term()}.

Creates a zip archive containing the files specified in FileList.
FileList is a list of files, with paths relative to the current directory,
which are stored with this path in the archive. File system operations are
performed to read the file metadata and, when compression is enabled, to stream
the file contents without loading whole files into memory. Files can also be
specified as binaries to create an archive directly from data. In such cases, no
metadata or file system reads are performed.
Files are compressed using the DEFLATE compression, as described in the
"Appnote.txt" file. However, files are stored without compression if they are
already compressed. zip/2 and zip/3 check the file
extension to determine if the file is to be stored without compression. Files
with the following extensions are not compressed: .Z, .zip, .zoo, .arc,
.lzh, .arj.
It is possible to override the default behavior and control what types of files
that are to be compressed by using options {compress, What} and
{uncompress, What}. It is also possible to use many compress and
uncompress options.
To trigger file compression, its extension must match with the compress
condition and must not match the uncompress condition. For example, if
compress is set to ["gif", "jpg"] and uncompress is set to ["jpg"], only
files with extension "gif" are compressed.

Options:
	cooked - By default, this function opens the zip file in mode raw,
which is faster but does not allow a remote (Erlang) file server to be used.
Adding cooked to the mode list overrides the default and opens the zip file
without the raw option. The same applies for the files added.

	verbose - Prints an informational message about each added file.

	memory - The output is not to a file, but instead as a tuple
{FileName, binary()}. The binary is a full zip archive with header and can
be extracted with, for example, unzip/2.

	{comment, Comment} - Adds a comment to the zip archive.

	{cwd, CWD} - Uses the specified directory as current work directory
(cwd). This is prepended to filenames when adding them, although not in the
zip archive (acting like file:set_cwd/1 in Kernel, but without changing the
global cwd property.).

	{compress, What} - Controls what types of files to be compressed.
Defaults to all. The following values of What are allowed:
	all - All files are compressed (as long as they pass the uncompress
condition).

	[Extension] - Only files with exactly these extensions are compressed.

	{add,[Extension]} - Adds these extensions to the list of compress
extensions.

	{del,[Extension]} - Deletes these extensions from the list of compress
extensions.

	{uncompress, What} - Controls what types of files to be uncompressed.
Defaults to [".Z", ".zip", ".zoo", ".arc", ".lzh", ".arj"]. The following
values of What are allowed:
	all - No files are compressed.

	[Extension] - Files with these extensions are uncompressed.

	{add,[Extension]} - Adds these extensions to the list of uncompress
extensions.

	{del,[Extension]} - Deletes these extensions from the list of
uncompress extensions.

 Link to this function

 zip_close(ZipHandle)

 View Source

 -spec zip_close(ZipHandle) -> ok | {error, einval} when ZipHandle :: handle().

Closes a zip archive, previously opened with zip_open/1,2. All
resources are closed, and the handle is not to be used after closing.

 Link to this function

 zip_get(ZipHandle)

 View Source

 -spec zip_get(ZipHandle) -> {ok, [Result]} | {error, Reason}
 when
 ZipHandle :: handle(),
 Result :: file:name() | {file:name(), binary()},
 Reason :: term().

Equivalent to zip_get/2.

 Link to this function

 zip_get(FileName, ZipHandle)

 View Source

 -spec zip_get(FileName, ZipHandle) -> {ok, Result} | {error, Reason}
 when
 FileName :: file:name(),
 ZipHandle :: handle(),
 Result :: file:name() | {file:name(), binary()},
 Reason :: term().

Extracts one or all files from an open archive.
The files are unzipped to memory or to file, depending on the options specified
to function zip_open/1,2 when opening the archive.

 Link to this function

 zip_get_crc32(FileName, ZipHandle)

 View Source

 (since OTP 26.0)

 -spec zip_get_crc32(FileName, ZipHandle) -> {ok, CRC} | {error, Reason}
 when
 FileName :: file:name(),
 ZipHandle :: handle(),
 CRC :: non_neg_integer(),
 Reason :: term().

Extracts one crc32 checksum from an open archive.

 Link to this function

 zip_list_dir(ZipHandle)

 View Source

 -spec zip_list_dir(ZipHandle) -> {ok, Result} | {error, Reason}
 when
 Result :: [zip_comment() | zip_file()],
 ZipHandle :: handle(),
 Reason :: term().

Returns the file list of an open zip archive. The first returned element is the
zip archive comment.

 Link to this function

 zip_open(Archive)

 View Source

 -spec zip_open(Archive) -> {ok, ZipHandle} | {error, Reason}
 when Archive :: file:name() | binary(), ZipHandle :: handle(), Reason :: term().

Equivalent to zip_open/2.

 Link to this function

 zip_open(Archive, Options)

 View Source

 -spec zip_open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}
 when
 Archive :: file:name() | binary(),
 ZipHandle :: handle(),
 Options :: [Option],
 Option :: cooked | memory | {cwd, CWD :: file:filename()},
 Reason :: term().

Opens a zip archive, and reads and saves its directory. This means that later
reading files from the archive is faster than unzipping files one at a time with
unzip/1,2.
The archive must be closed with zip_close/1.
The ZipHandle is closed if the process that originally opened the archive
dies.

beam_lib

This module provides an interface to files created by the BEAM Compiler ("BEAM
files").
The format used, a variant of "EA IFF 1985" Standard for Interchange Format Files,
divides data into chunks.
Chunk data can be returned as binaries or as compound terms. Compound terms are
returned when chunks are referenced by names (atoms) rather than identifiers
(strings). The recognized names and the corresponding identifiers are as
follows:
	atoms ("Atom")
	attributes ("Attr")
	compile_info ("CInf")
	debug_info ("Dbgi")
	exports ("ExpT")
	imports ("ImpT")
	indexed_imports ("ImpT")
	labeled_exports ("ExpT")
	labeled_locals ("LocT")
	locals ("LocT")
	documentation ("Docs")

 Debug Information/Abstract Code

Option debug_info can be specified to the Compiler (see
compile) to have debug information, such as
Erlang Abstract Format, stored in the debug_info chunk.
Tools such as Debugger and Xref require the debug information to be included.
Warning
Source code can be reconstructed from the debug information. To prevent this,
use encrypted debug information (see below).

The debug information can also be removed from BEAM files using strip/1,
strip_files/1, and/or strip_release/1.

 Reconstruct Source Code

The following example shows how to reconstruct Erlang source code from the debug
information in a BEAM file Beam:
{ok,{_,[{abstract_code,{_,AC}}]}} = beam_lib:chunks(Beam,[abstract_code]).
io:fwrite("~s~n", [erl_prettypr:format(erl_syntax:form_list(AC))]).

 Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but still
be able to use tools such as Debugger or Xref.
To use encrypted debug information, a key must be provided to the compiler and
beam_lib. The key is specified as a string. It is recommended that the string
contains at least 32 characters and that both upper and lower case letters as
well as digits and special characters are used.
The default type (and currently the only type) of crypto algorithm is
des3_cbc, three rounds of DES. The key string is scrambled using
erlang:md5/1 to generate the keys used for des3_cbc.
Note
As far as we know by the time of writing, it is infeasible to break des3_cbc
encryption without any knowledge of the key. Therefore, as long as the key is
kept safe and is unguessable, the encrypted debug information should be safe
from intruders.

The key can be provided in the following two ways:
	Use Compiler option {debug_info_key,Key}, see
compile and function crypto_key_fun/1 to
register a fun that returns the key whenever beam_lib must decrypt the
debug information.

If no such fun is registered, beam_lib instead searches for an .erlang.crypt
file, see the next section.
	Store the key in a text file named .erlang.crypt.

In this case, Compiler option encrypt_debug_info can be used, see
compile.

 .erlang.crypt

beam_lib searches for .erlang.crypt in the current directory, then the
user's home directory and then
filename:basedir(user_config, "erlang"). If the
file is found and contains a key, beam_lib implicitly creates a crypto key fun
and registers it.
File .erlang.crypt is to contain a single list of tuples:
{debug_info, Mode, Module, Key}
Mode is the type of crypto algorithm; currently, the only allowed value is
des3_cbc. Module is either an atom, in which case Key is only used for the
module Module, or [], in which case Key is used for all modules. Key is
the non-empty key string.
Key in the first tuple where both Mode and Module match is used.
The following is an example of an .erlang.crypt file that returns the same key
for all modules:
[{debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].
The following is a slightly more complicated example of an .erlang.crypt
providing one key for module t and another key for all other modules:
[{debug_info, des3_cbc, t, "My KEY"},
 {debug_info, des3_cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#&_Gejr]G^"}].
Note
Do not use any of the keys in these examples. Use your own keys.

 Summary

 Types

 abst_code()

 It is not checked that the forms conform to the abstract format indicated by
AbstVersion. no_abstract_code means that chunk "Abst" is present, but
empty.

 attrib_entry()

 beam()

 Each of the functions described below accept either the filename (as a string)
or a binary containing the BEAM module.

 chnk_rsn()

 chunkdata()

 The list of attributes is sorted on Attribute (in attrib_entry/0) and each
attribute name occurs once in the list. The attribute values occur in the same
order as in the file. The lists of functions are also sorted.

 chunkid()

 "Attr" | "CInf" | "Dbgi" | "ExpT" | "ImpT" | "LocT" | "AtU8" | "Docs"

 chunkname()

 chunkref()

 cmp_rsn()

 compinfo_entry()

 crypto_fun()

 crypto_fun_arg()

 dataB()

 debug_info()

 The format stored in the debug_info chunk.

 docs()

 EEP-48 documentation format

 forms()

 index()

 info_rsn()

 label()

 labeled_entry()

 mode()

 Functions

 all_chunks(File)

 Reads chunk data for all chunks.

 build_module(Chunks)

 Builds a BEAM module (as a binary) from a list of chunks.

 chunks(Beam, ChunkRefs)

 Reads chunk data for selected chunks references. The order of the returned list
of chunk data is determined by the order of the list of chunks references.

 chunks(Beam, ChunkRefs, Options)

 Reads chunk data for selected chunks references. The order of the returned list
of chunk data is determined by the order of the list of chunks references.

 clear_crypto_key_fun()

 Unregisters the crypto key fun and terminates the process holding it, started by
crypto_key_fun/1.

 cmp(Beam1, Beam2)

 Compares the contents of two BEAM files.

 cmp_dirs(Dir1, Dir2)

 Compares the BEAM files in two directories.

 crypto_key_fun(CryptoKeyFun)

 Registers an unary fun that is called if beam_lib must read an debug_info
chunk that has been encrypted. The fun is held in a process that is started by
the function.

 diff_dirs(Dir1, Dir2)

 Compares the BEAM files in two directories as cmp_dirs/2, but the names of
files that exist in only one directory or are different are presented on
standard output.

 format_error(Reason)

 For a specified error returned by any function in this module, this function
returns a descriptive string of the error in English. For file errors, function
file:format_error(Posix) is to be called.

 info(Beam)

 Returns a list containing some information about a BEAM file as tuples
{Item, Info}

 md5(Beam)

 Calculates an MD5 redundancy check for the code of the module (compilation date
and other attributes are not included).

 strip(Beam1)

 Removes all chunks from a BEAM file except those used by the loader.

 strip(Beam1, AdditionalChunks)

 Removes all chunks from a BEAM file except those used by the loader or mentioned
in AdditionalChunks.

 strip_files(Files)

 Removes all chunks except those used by the loader from Files.

 strip_files(Files, AdditionalChunks)

 Removes all chunks except those used by the loader or mentioned in
AdditionalChunks from Files.

 strip_release(Dir)

 Removes all chunks except those used by the loader from the BEAM files of a
release.

 strip_release(Dir, AdditionalChunks)

 Removes all chunks except those used by the loader or mentioned in
AdditionalChunks.

 version(Beam)

 Returns the module version or versions. A version is defined by module attribute
-vsn(Vsn).

 Types

 Link to this type

 abst_code()

 View Source

 (not exported)

 -type abst_code() :: {AbstVersion :: atom(), forms()} | no_abstract_code.

It is not checked that the forms conform to the abstract format indicated by
AbstVersion. no_abstract_code means that chunk "Abst" is present, but
empty.
For modules compiled with OTP 20 onwards, the abst_code chunk is automatically
computed from the debug_info chunk.

 Link to this type

 attrib_entry()

 View Source

 -type attrib_entry() :: {Attribute :: atom(), [AttributeValue :: term()]}.

 Link to this type

 beam()

 View Source

 -type beam() :: file:filename() | binary().

Each of the functions described below accept either the filename (as a string)
or a binary containing the BEAM module.

 Link to this type

 chnk_rsn()

 View Source

 -type chnk_rsn() ::
 {unknown_chunk, file:filename(), atom()} |
 {key_missing_or_invalid, file:filename(), abstract_code | debug_info} |
 {missing_backend, file:filename(), module()} |
 info_rsn().

 Link to this type

 chunkdata()

 View Source

 (not exported)

 -type chunkdata() ::
 {chunkid(), dataB()} |
 {abstract_code, abst_code()} |
 {debug_info, debug_info()} |
 {attributes, [attrib_entry()]} |
 {compile_info, [compinfo_entry()]} |
 {exports, [{atom(), arity()}]} |
 {labeled_exports, [labeled_entry()]} |
 {imports, [mfa()]} |
 {indexed_imports, [{index(), module(), Function :: atom(), arity()}]} |
 {locals, [{atom(), arity()}]} |
 {labeled_locals, [labeled_entry()]} |
 {atoms, [{integer(), atom()}]} |
 {documentation, docs()}.

The list of attributes is sorted on Attribute (in attrib_entry/0) and each
attribute name occurs once in the list. The attribute values occur in the same
order as in the file. The lists of functions are also sorted.

 Link to this type

 chunkid()

 View Source

 -type chunkid() :: nonempty_string().

"Attr" | "CInf" | "Dbgi" | "ExpT" | "ImpT" | "LocT" | "AtU8" | "Docs"

 Link to this type

 chunkname()

 View Source

 (not exported)

 -type chunkname() ::
 abstract_code | debug_info | attributes | compile_info | exports | labeled_exports | imports |
 indexed_imports | locals | labeled_locals | atoms | documentation.

 Link to this type

 chunkref()

 View Source

 (not exported)

 -type chunkref() :: chunkname() | chunkid().

 Link to this type

 cmp_rsn()

 View Source

 (not exported)

 -type cmp_rsn() ::
 {modules_different, module(), module()} |
 {chunks_different, chunkid()} |
 different_chunks |
 info_rsn().

 Link to this type

 compinfo_entry()

 View Source

 -type compinfo_entry() :: {InfoKey :: atom(), term()}.

 Link to this type

 crypto_fun()

 View Source

 (not exported)

 -type crypto_fun() :: fun((crypto_fun_arg()) -> term()).

 Link to this type

 crypto_fun_arg()

 View Source

 (not exported)

 -type crypto_fun_arg() :: init | clear | {debug_info, mode(), module(), file:filename()}.

 Link to this type

 dataB()

 View Source

 (not exported)

 -type dataB() :: binary().

 Link to this type

 debug_info()

 View Source

 (not exported)

 -type debug_info() :: {DbgiVersion :: atom(), Backend :: module(), Data :: term()} | no_debug_info.

The format stored in the debug_info chunk.
To retrieve particular code representation from the backend,
Backend:debug_info(Format, Module, Data, Opts) must be invoked. Format is an
atom, such as erlang_v1 for the Erlang Abstract Format or core_v1 for Core
Erlang. Module is the module represented by the beam file and Data is the
value stored in the debug info chunk. Opts is any list of values supported by
the Backend. Backend:debug_info/4 must return {ok, Code} or
{error, Term}.
Developers must always invoke the debug_info/4 function and never rely on the
Data stored in the debug_info chunk, as it is opaque and may change at any
moment. no_debug_info means that chunk "Dbgi" is present, but empty.

 Link to this type

 docs()

 View Source

 (not exported)

 -type docs() ::
 #docs_v1{anno :: term(),
 beam_language :: term(),
 format :: term(),
 module_doc :: term(),
 metadata :: term(),
 docs :: term()}.

EEP-48 documentation format

 Link to this type

 forms()

 View Source

 (not exported)

 -type forms() :: [erl_parse:abstract_form() | erl_parse:form_info()].

 Link to this type

 index()

 View Source

 (not exported)

 -type index() :: non_neg_integer().

 Link to this type

 info_rsn()

 View Source

 (not exported)

 -type info_rsn() ::
 {chunk_too_big,
 file:filename(),
 chunkid(),
 ChunkSize :: non_neg_integer(),
 FileSize :: non_neg_integer()} |
 {invalid_beam_file, file:filename(), Position :: non_neg_integer()} |
 {invalid_chunk, file:filename(), chunkid()} |
 {missing_chunk, file:filename(), chunkid()} |
 {not_a_beam_file, file:filename()} |
 {file_error, file:filename(), file:posix()}.

 Link to this type

 label()

 View Source

 -type label() :: integer().

 Link to this type

 labeled_entry()

 View Source

 -type labeled_entry() :: {Function :: atom(), arity(), label()}.

 Link to this type

 mode()

 View Source

 (not exported)

 -type mode() :: des3_cbc.

 Functions

 Link to this function

 all_chunks(File)

 View Source

 (since OTP 18.2)

 -spec all_chunks(beam()) -> {ok, module(), [{chunkid(), dataB()}]} | {error, beam_lib, info_rsn()}.

Reads chunk data for all chunks.

 Link to this function

 build_module(Chunks)

 View Source

 (since OTP 18.2)

 -spec build_module(Chunks) -> {ok, Binary} when Chunks :: [{chunkid(), dataB()}], Binary :: binary().

Builds a BEAM module (as a binary) from a list of chunks.

 Link to this function

 chunks(Beam, ChunkRefs)

 View Source

 -spec chunks(Beam, ChunkRefs) -> {ok, {module(), [chunkdata()]}} | {error, beam_lib, chnk_rsn()}
 when Beam :: beam(), ChunkRefs :: [chunkref()].

Reads chunk data for selected chunks references. The order of the returned list
of chunk data is determined by the order of the list of chunks references.

 Link to this function

 chunks(Beam, ChunkRefs, Options)

 View Source

 -spec chunks(Beam, ChunkRefs, Options) ->
 {ok, {module(), [ChunkResult]}} | {error, beam_lib, chnk_rsn()}
 when
 Beam :: beam(),
 ChunkRefs :: [chunkref()],
 Options :: [allow_missing_chunks],
 ChunkResult :: chunkdata() | {ChunkRef :: chunkref(), missing_chunk}.

Reads chunk data for selected chunks references. The order of the returned list
of chunk data is determined by the order of the list of chunks references.
By default, if any requested chunk is missing in Beam, an error tuple is
returned. However, if option allow_missing_chunks is specified, a result is
returned even if chunks are missing. In the result list, any missing chunks are
represented as {ChunkRef,missing_chunk}. Notice however that if chunk "Atom"
is missing, that is considered a fatal error and the return value is an error
tuple.

 Link to this function

 clear_crypto_key_fun()

 View Source

 -spec clear_crypto_key_fun() -> undefined | {ok, Result} when Result :: undefined | term().

Unregisters the crypto key fun and terminates the process holding it, started by
crypto_key_fun/1.
Returns either {ok, undefined} if no crypto key fun is registered, or
{ok, Term}, where Term is the return value from CryptoKeyFun(clear), see
crypto_key_fun/1.

 Link to this function

 cmp(Beam1, Beam2)

 View Source

 -spec cmp(Beam1, Beam2) -> ok | {error, beam_lib, cmp_rsn()} when Beam1 :: beam(), Beam2 :: beam().

Compares the contents of two BEAM files.
If the module names are the same, and all chunks except for chunk "CInf"
(the chunk containing the compilation information that is returned by
Module:module_info(compile)) have the same contents in both files, ok is
returned. Otherwise an error message is returned.

 Link to this function

 cmp_dirs(Dir1, Dir2)

 View Source

 -spec cmp_dirs(Dir1, Dir2) -> {Only1, Only2, Different} | {error, beam_lib, Reason}
 when
 Dir1 :: atom() | file:filename(),
 Dir2 :: atom() | file:filename(),
 Only1 :: [file:filename()],
 Only2 :: [file:filename()],
 Different :: [{Filename1 :: file:filename(), Filename2 :: file:filename()}],
 Reason :: {not_a_directory, term()} | info_rsn().

Compares the BEAM files in two directories.
Only files with extension ".beam" are compared. BEAM files that exist only in
directory Dir1 (Dir2) are returned in Only1 (Only2). BEAM files that
exist in both directories but are considered different by cmp/2 are
 returned as pairs {Filename1, Filename2}, where Filename1 (Filename2)
exists in directory Dir1 (Dir2).

 Link to this function

 crypto_key_fun(CryptoKeyFun)

 View Source

 -spec crypto_key_fun(CryptoKeyFun) -> ok | {error, Reason}
 when CryptoKeyFun :: crypto_fun(), Reason :: badfun | exists | term().

Registers an unary fun that is called if beam_lib must read an debug_info
chunk that has been encrypted. The fun is held in a process that is started by
the function.
If a fun is already registered when attempting to register a fun,
{error, exists} is returned.
The fun must handle the following arguments:
CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}
Called when the fun is registered, in the process that holds the fun. Here the
crypto key fun can do any necessary initializations. If {ok, NewCryptoKeyFun}
is returned, NewCryptoKeyFun is registered instead of CryptoKeyFun. If
{error, Term} is returned, the registration is aborted and
crypto_key_fun/1 also returns {error, Term}.
CryptoKeyFun({debug_info, Mode, Module, Filename}) -> Key
Called when the key is needed for module Module in the file named Filename.
Mode is the type of crypto algorithm; currently, the only possible value is
des3_cbc. The call is to fail (raise an exception) if no key is available.
CryptoKeyFun(clear) -> term()
Called before the fun is unregistered. Here any cleaning up can be done. The
return value is not important, but is passed back to the caller of
clear_crypto_key_fun/0 as part of its return value.

 Link to this function

 diff_dirs(Dir1, Dir2)

 View Source

 -spec diff_dirs(Dir1, Dir2) -> ok | {error, beam_lib, Reason}
 when
 Dir1 :: atom() | file:filename(),
 Dir2 :: atom() | file:filename(),
 Reason :: {not_a_directory, term()} | info_rsn().

Compares the BEAM files in two directories as cmp_dirs/2, but the names of
files that exist in only one directory or are different are presented on
standard output.

 Link to this function

 format_error(Reason)

 View Source

 -spec format_error(Reason) -> io_lib:chars() when Reason :: term().

For a specified error returned by any function in this module, this function
returns a descriptive string of the error in English. For file errors, function
file:format_error(Posix) is to be called.

 Link to this function

 info(Beam)

 View Source

 -spec info(Beam) -> [InfoPair] | {error, beam_lib, info_rsn()}
 when
 Beam :: beam(),
 InfoPair ::
 {file, Filename :: file:filename()} |
 {binary, Binary :: binary()} |
 {module, Module :: module()} |
 {chunks,
 [{ChunkId :: chunkid(), Pos :: non_neg_integer(), Size :: non_neg_integer()}]}.

Returns a list containing some information about a BEAM file as tuples
{Item, Info}:
	{file, Filename} | {binary, Binary} - The name (string) of the BEAM
file, or the binary from which the information was extracted.

	{module, Module} - The name (atom) of the module.

	{chunks, [{ChunkId, Pos, Size}]} - For each chunk, the identifier
(string) and the position and size of the chunk data, in bytes.

 Link to this function

 md5(Beam)

 View Source

 -spec md5(Beam) -> {ok, {module(), MD5}} | {error, beam_lib, chnk_rsn()}
 when Beam :: beam(), MD5 :: binary().

Calculates an MD5 redundancy check for the code of the module (compilation date
and other attributes are not included).

 Link to this function

 strip(Beam1)

 View Source

 -spec strip(Beam1) -> {ok, {module(), Beam2}} | {error, beam_lib, info_rsn()}
 when Beam1 :: beam(), Beam2 :: beam().

Removes all chunks from a BEAM file except those used by the loader.
In particular, the debug information (chunk debug_info and abstract_code) is
removed.

 Link to this function

 strip(Beam1, AdditionalChunks)

 View Source

 (since OTP 22.0)

 -spec strip(Beam1, AdditionalChunks) -> {ok, {module(), Beam2}} | {error, beam_lib, info_rsn()}
 when Beam1 :: beam(), AdditionalChunks :: [chunkid()], Beam2 :: beam().

Removes all chunks from a BEAM file except those used by the loader or mentioned
in AdditionalChunks.
In particular, the debug information (chunk debug_info and abstract_code) is removed.

 Link to this function

 strip_files(Files)

 View Source

 -spec strip_files(Files) -> {ok, [{module(), Beam}]} | {error, beam_lib, info_rsn()}
 when Files :: [beam()], Beam :: beam().

Removes all chunks except those used by the loader from Files.
In particular, the debug information (chunk debug_info and abstract_code) is
removed. The returned list contains one element for each specified filename, in
the same order as in Files.

 Link to this function

 strip_files(Files, AdditionalChunks)

 View Source

 (since OTP 22.0)

 -spec strip_files(Files, AdditionalChunks) -> {ok, [{module(), Beam}]} | {error, beam_lib, info_rsn()}
 when Files :: [beam()], AdditionalChunks :: [chunkid()], Beam :: beam().

Removes all chunks except those used by the loader or mentioned in
AdditionalChunks from Files.
In particular, the debug information (chunk debug_info and abstract_code) is
removed. The returned list contains one element for each specified filename,
in the same order as in Files.

 Link to this function

 strip_release(Dir)

 View Source

 -spec strip_release(Dir) -> {ok, [{module(), file:filename()}]} | {error, beam_lib, Reason}
 when
 Dir :: atom() | file:filename(),
 Reason :: {not_a_directory, term()} | info_rsn().

Removes all chunks except those used by the loader from the BEAM files of a
release.
Dir is to be the installation root directory. For example, the current OTP
release can be stripped with the call beam_lib:strip_release(code:root_dir()).

 Link to this function

 strip_release(Dir, AdditionalChunks)

 View Source

 (since OTP 22.0)

 -spec strip_release(Dir, AdditionalChunks) ->
 {ok, [{module(), file:filename()}]} | {error, beam_lib, Reason}
 when
 Dir :: atom() | file:filename(),
 AdditionalChunks :: [chunkid()],
 Reason :: {not_a_directory, term()} | info_rsn().

Removes all chunks except those used by the loader or mentioned in
AdditionalChunks.
Dir is to be the installation root directory. For example, the current OTP
release can be stripped with the call beam_lib:strip_release(code:root_dir(),[documentation]).

 Link to this function

 version(Beam)

 View Source

 -spec version(Beam) -> {ok, {module(), [Version :: term()]}} | {error, beam_lib, chnk_rsn()}
 when Beam :: beam().

Returns the module version or versions. A version is defined by module attribute
-vsn(Vsn).
If this attribute is not specified, the version defaults to the
checksum of the module. Notice that if version Vsn is not a list, it is made
into one, that is {ok,{Module,[Vsn]}} is returned. If there are many -vsn
module attributes, the result is the concatenated list of versions.
Examples:
1> beam_lib:version(a). % -vsn(1).
{ok,{a,[1]}}
2> beam_lib:version(b). % -vsn([1]).
{ok,{b,[1]}}
3> beam_lib:version(c). % -vsn([1]). -vsn(2).
{ok,{c,[1,2]}}
4> beam_lib:version(d). % no -vsn attribute
{ok,{d,[275613208176997377698094100858909383631]}}

epp

An Erlang code preprocessor.
The Erlang code preprocessor includes functions that are used by the compile
module to preprocess macros and include files before the parsing takes place.
The Erlang source file encoding is selected by a comment in one
of the first two lines of the source file. The first string matching the regular
expression coding\s*[:=]\s*([-a-zA-Z0-9])+ selects the encoding. If the
matching string is not a valid encoding, it is ignored. The valid encodings are
Latin-1 and UTF-8, where the case of the characters can be chosen freely.
Examples:
%% coding: utf-8
%% For this file we have chosen encoding = Latin-1
%% -*- coding: latin-1 -*-

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O
modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

erl_parse

 Summary

 Types

 epp_handle()

 Handle to the epp server.

 macros()

 source_encoding()

 warning_info()

 Functions

 close(Epp)

 Closes the preprocessing of a file.

 default_encoding()

 Returns the default encoding of Erlang source files.

 encoding_to_string(Encoding)

 Returns a string representation of an encoding. The string is recognized by
read_encoding/1,2,
read_encoding_from_binary/1,2, and
set_encoding/1,2 as a valid encoding.

 format_error(ErrorDescriptor)

 Takes an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when processing an
ErrorInfo structure (see section Error Information).

 open(Options)

 Opens a file for preprocessing.

 open(FileName, IncludePath)

 Equivalent to epp:open([{name, FileName}, {includes, IncludePath}]).

 open(FileName, IncludePath, PredefMacros)

 Equivalent to
epp:open([{name, FileName}, {includes, IncludePath}, {macros, PredefMacros}]).

 parse_erl_form(Epp)

 Returns the next Erlang form from the opened Erlang source file. Tuple
{eof, Location} is returned at the end of the file. The first form corresponds
to an implicit attribute -file(File,1)., where File is the file name.

 parse_file(FileName, Options)

 Preprocesses and parses an Erlang source file. Notice that tuple
{eof, Location} returned at the end of the file is included as a "form".

 parse_file(FileName, IncludePath, PredefMacros)

 Equivalent to
epp:parse_file(FileName, [{includes, IncludePath}, {macros, PredefMacros}]).

 read_encoding(FileName)

 Equivalent to read_encoding/2.

 read_encoding(FileName, Options)

 Read the encoding from a file. Returns the read encoding, or
none if no valid encoding is found.

 read_encoding_from_binary(Binary)

 Equivalent to read_encoding_from_binary/2.

 read_encoding_from_binary(Binary, Options)

 Read the encoding from a binary. Returns the read encoding,
or none if no valid encoding is found.

 scan_erl_form(Epp)

 Returns the raw tokens of the next Erlang form from the opened Erlang source
file. A tuple {eof, Line} is returned at the end of the file. The first form
corresponds to an implicit attribute -file(File,1)., where File is the file
name.

 scan_file(FileName, Options)

 Preprocesses an Erlang source file returning a list of the lists of raw tokens
of each form. Notice that the tuple {eof, Line} returned at the end of the
file is included as a "form", and any failures to scan a form are included in
the list as tuples {error, ErrorInfo}.

 set_encoding(File)

 Reads the encoding from an I/O device and sets the encoding
of the device accordingly. The position of the I/O device referenced by File
is not affected. If no valid encoding can be read from the I/O device, the
encoding of the I/O device is set to the default encoding.

 set_encoding(File, Default)

 Reads the encoding from an I/O device and sets the encoding
of the device accordingly. The position of the I/O device referenced by File
is not affected. If no valid encoding can be read from the I/O device, the
encoding of the I/O device is set to the encoding specified
by Default.

 Types

 Link to this type

 epp_handle()

 View Source

 (not exported)

 -type epp_handle() :: pid().

Handle to the epp server.

 Link to this type

 macros()

 View Source

 (not exported)

 -type macros() :: [atom() | {atom(), term()} | {atom(), term(), redefine}].

 Link to this type

 source_encoding()

 View Source

 -type source_encoding() :: latin1 | utf8.

 Link to this type

 warning_info()

 View Source

 (not exported)

 -type warning_info() :: {erl_anno:location(), module(), term()}.

 Functions

 Link to this function

 close(Epp)

 View Source

 -spec close(Epp) -> ok when Epp :: epp_handle().

Closes the preprocessing of a file.

 Link to this function

 default_encoding()

 View Source

 (since OTP R16B)

 -spec default_encoding() -> source_encoding().

Returns the default encoding of Erlang source files.

 Link to this function

 encoding_to_string(Encoding)

 View Source

 (since OTP R16B)

 -spec encoding_to_string(Encoding) -> string() when Encoding :: source_encoding().

Returns a string representation of an encoding. The string is recognized by
read_encoding/1,2,
read_encoding_from_binary/1,2, and
set_encoding/1,2 as a valid encoding.

 Link to this function

 format_error(ErrorDescriptor)

 View Source

 (since OTP R14B03)

 -spec format_error(ErrorDescriptor) -> io_lib:chars() when ErrorDescriptor :: term().

Takes an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when processing an
ErrorInfo structure (see section Error Information).

 Link to this function

 open(Options)

 View Source

 (since OTP 17.0)

 -spec open(Options) -> {ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}
 when
 Options ::
 [{default_encoding, DefEncoding :: source_encoding()} |
 {includes, IncludePath :: [DirectoryName :: file:name()]} |
 {source_name, SourceName :: file:name()} |
 {deterministic, Enabled :: boolean()} |
 {macros, PredefMacros :: macros()} |
 {name, FileName :: file:name()} |
 {location, StartLocation :: erl_anno:location()} |
 {fd, FileDescriptor :: file:io_device()} |
 extra |
 {compiler_internal, [term()]}],
 Epp :: epp_handle(),
 Extra :: [{encoding, source_encoding() | none}],
 ErrorDescriptor :: term().

Opens a file for preprocessing.
If you want to change the file name of the implicit -file() attributes inserted
during preprocessing, you can do with {source_name, SourceName}. If unset it
will default to the name of the opened file.
Setting {deterministic, Enabled} will additionally reduce the file name of the
implicit -file() attributes inserted during preprocessing to only the basename
of the path.
If extra is specified in Options, the return value is {ok, Epp, Extra}
instead of {ok, Epp}.
The option location is forwarded to the Erlang token scanner, see
erl_scan:tokens/3,4.
The {compiler_internal,term()} option is forwarded to the Erlang token
scanner, see {compiler_internal,term()}.

 Link to this function

 open(FileName, IncludePath)

 View Source

 -spec open(FileName, IncludePath) -> {ok, Epp} | {error, ErrorDescriptor}
 when
 FileName :: file:name(),
 IncludePath :: [DirectoryName :: file:name()],
 Epp :: epp_handle(),
 ErrorDescriptor :: term().

Equivalent to epp:open([{name, FileName}, {includes, IncludePath}]).

 Link to this function

 open(FileName, IncludePath, PredefMacros)

 View Source

 -spec open(FileName, IncludePath, PredefMacros) -> {ok, Epp} | {error, ErrorDescriptor}
 when
 FileName :: file:name(),
 IncludePath :: [DirectoryName :: file:name()],
 PredefMacros :: macros(),
 Epp :: epp_handle(),
 ErrorDescriptor :: term().

Equivalent to
epp:open([{name, FileName}, {includes, IncludePath}, {macros, PredefMacros}]).

 Link to this function

 parse_erl_form(Epp)

 View Source

 -spec parse_erl_form(Epp) ->
 {ok, AbsForm} | {error, ErrorInfo} | {warning, WarningInfo} | {eof, Location}
 when
 Epp :: epp_handle(),
 AbsForm :: erl_parse:abstract_form(),
 Location :: erl_anno:location(),
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 WarningInfo :: warning_info().

Returns the next Erlang form from the opened Erlang source file. Tuple
{eof, Location} is returned at the end of the file. The first form corresponds
to an implicit attribute -file(File,1)., where File is the file name.

 Link to this function

 parse_file(FileName, Options)

 View Source

 (since OTP 17.0)

 -spec parse_file(FileName, Options) -> {ok, [Form]} | {ok, [Form], Extra} | {error, OpenError}
 when
 FileName :: file:name(),
 Options ::
 [{includes, IncludePath :: [DirectoryName :: file:name()]} |
 {source_name, SourceName :: file:name()} |
 {macros, PredefMacros :: macros()} |
 {default_encoding, DefEncoding :: source_encoding()} |
 {location, StartLocation :: erl_anno:location()} |
 {reserved_word_fun, Fun :: fun((atom()) -> boolean())} |
 {features, [Feature :: atom()]} |
 extra |
 {compiler_internal, [term()]}],
 Form :: erl_parse:abstract_form() | {error, ErrorInfo} | {eof, Location},
 Location :: erl_anno:location(),
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 Extra :: [{encoding, source_encoding() | none}],
 OpenError :: file:posix() | badarg | system_limit.

Preprocesses and parses an Erlang source file. Notice that tuple
{eof, Location} returned at the end of the file is included as a "form".
If you want to change the file name of the implicit -file() attributes inserted
during preprocessing, you can do with {source_name, SourceName}. If unset it
will default to the name of the opened file.
If extra is specified in Options, the return value is {ok, [Form], Extra}
instead of {ok, [Form]}.
The option location is forwarded to the Erlang token scanner, see
erl_scan:tokens/3,4.
The {compiler_internal,term()} option is forwarded to the Erlang token
scanner, see {compiler_internal,term()}.

 Link to this function

 parse_file(FileName, IncludePath, PredefMacros)

 View Source

 -spec parse_file(FileName, IncludePath, PredefMacros) -> {ok, [Form]} | {error, OpenError}
 when
 FileName :: file:name(),
 IncludePath :: [DirectoryName :: file:name()],
 Form :: erl_parse:abstract_form() | {error, ErrorInfo} | {eof, Location},
 PredefMacros :: macros(),
 Location :: erl_anno:location(),
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 OpenError :: file:posix() | badarg | system_limit.

Equivalent to
epp:parse_file(FileName, [{includes, IncludePath}, {macros, PredefMacros}]).

 Link to this function

 read_encoding(FileName)

 View Source

 (since OTP R16B)

 -spec read_encoding(FileName) -> source_encoding() | none when FileName :: file:name().

Equivalent to read_encoding/2.

 Link to this function

 read_encoding(FileName, Options)

 View Source

 (since OTP R16B)

 -spec read_encoding(FileName, Options) -> source_encoding() | none
 when
 FileName :: file:name(),
 Options :: [Option],
 Option :: {in_comment_only, boolean()}.

Read the encoding from a file. Returns the read encoding, or
none if no valid encoding is found.
Option in_comment_only is true by default, which is correct for Erlang
source files. If set to false, the encoding string does not necessarily have
to occur in a comment.

 Link to this function

 read_encoding_from_binary(Binary)

 View Source

 (since OTP R16B)

 -spec read_encoding_from_binary(Binary) -> source_encoding() | none when Binary :: binary().

Equivalent to read_encoding_from_binary/2.

 Link to this function

 read_encoding_from_binary(Binary, Options)

 View Source

 (since OTP R16B)

 -spec read_encoding_from_binary(Binary, Options) -> source_encoding() | none
 when
 Binary :: binary(),
 Options :: [Option],
 Option :: {in_comment_only, boolean()}.

Read the encoding from a binary. Returns the read encoding,
or none if no valid encoding is found.
Option in_comment_only is true by default, which is correct for Erlang
source files. If set to false, the encoding string does not necessarily have
to occur in a comment.

 Link to this function

 scan_erl_form(Epp)

 View Source

 (since OTP R13B03)

 -spec scan_erl_form(Epp) -> {ok, Tokens} | {error, ErrorInfo} | {warning, WarningInfo} | {eof, Line}
 when
 Epp :: epp_handle(),
 Tokens :: erl_scan:tokens(),
 Line :: erl_anno:line(),
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 WarningInfo :: warning_info().

Returns the raw tokens of the next Erlang form from the opened Erlang source
file. A tuple {eof, Line} is returned at the end of the file. The first form
corresponds to an implicit attribute -file(File,1)., where File is the file
name.

 Link to this function

 scan_file(FileName, Options)

 View Source

 (since OTP 24.0)

 -spec scan_file(FileName, Options) -> {ok, [Form], Extra} | {error, OpenError}
 when
 FileName :: file:name(),
 Options ::
 [{includes, IncludePath :: [DirectoryName :: file:name()]} |
 {source_name, SourceName :: file:name()} |
 {macros, PredefMacros :: macros()} |
 {default_encoding, DefEncoding :: source_encoding()}],
 Form :: erl_scan:tokens() | {error, ErrorInfo} | {eof, Loc},
 Loc :: erl_anno:location(),
 ErrorInfo :: erl_scan:error_info(),
 Extra :: [{encoding, source_encoding() | none}],
 OpenError :: file:posix() | badarg | system_limit.

Preprocesses an Erlang source file returning a list of the lists of raw tokens
of each form. Notice that the tuple {eof, Line} returned at the end of the
file is included as a "form", and any failures to scan a form are included in
the list as tuples {error, ErrorInfo}.

 Link to this function

 set_encoding(File)

 View Source

 (since OTP R16B)

 -spec set_encoding(File) -> source_encoding() | none when File :: io:device().

Reads the encoding from an I/O device and sets the encoding
of the device accordingly. The position of the I/O device referenced by File
is not affected. If no valid encoding can be read from the I/O device, the
encoding of the I/O device is set to the default encoding.
Returns the read encoding, or none if no valid encoding is found.

 Link to this function

 set_encoding(File, Default)

 View Source

 (since OTP 17.0)

 -spec set_encoding(File, Default) -> source_encoding() | none
 when Default :: source_encoding(), File :: io:device().

Reads the encoding from an I/O device and sets the encoding
of the device accordingly. The position of the I/O device referenced by File
is not affected. If no valid encoding can be read from the I/O device, the
encoding of the I/O device is set to the encoding specified
by Default.
Returns the read encoding, or none if no valid encoding is found.

erl_anno

Abstract datatype for the annotations of the Erlang Compiler.
This module provides an abstract type that is used by the Erlang Compiler and
its helper modules for holding data such as column, line number, and text. The
data type is a collection of annotations as described in the
following.
The Erlang Token Scanner returns tokens with a subset of the following
annotations, depending on the options:
	column - The column where the token begins.

	location - The line and column where the token begins, or just the line
if the column is unknown.

	text - The token's text.

From this, the following annotation is derived:
	line - The line where the token begins.

This module also supports the following annotations, which are used by various
modules:
	file - A filename.

	generated - A Boolean indicating if the abstract code is
compiler-generated. The Erlang Compiler does not emit warnings for such code.

	record - A Boolean indicating if the origin of the abstract code is a
record. Used by Dialyzer to assign types to tuple elements.

The functions column(),
end_location(), line(),
location(), and text() in the
erl_scan module can be used for inspecting annotations in tokens.
The functions anno_from_term(),
anno_to_term(),
fold_anno(),
map_anno(),
mapfold_anno(), and
new_anno(), in the erl_parse module can be used
for manipulating annotations in abstract code.

 See Also

erl_parse, erl_scan

 Summary

 Types

 anno()

 A collection of annotations.

 anno_term()

 The term representing a collection of annotations. It is either a location/0
or a list of key-value pairs.

 column()

 filename()

 generated()

 line()

 location()

 record()

 text()

 Functions

 column(Anno)

 Returns the column of the annotations Anno.

 end_location(Anno)

 Returns the end location of the text of the annotations Anno. If there is no
text, undefined is returned.

 file(Anno)

 Returns the filename of the annotations Anno. If there is no filename,
undefined is returned.

 from_term(Term)

 Returns annotations with representation Term.

 generated(Anno)

 Returns true if annotations Anno is marked as generated. The default is to
return false.

 is_anno(Term)

 Returns true if Term is a collection of annotations, otherwise false.

 line(Anno)

 Returns the line of the annotations Anno.

 location(Anno)

 Returns the location of the annotations Anno.

 new(Location)

 Creates a new collection of annotations given a location.

 set_file(File, Anno)

 Modifies the filename of the annotations Anno.

 set_generated(Generated, Anno)

 Modifies the generated marker of the annotations Anno.

 set_line(Line, Anno)

 Modifies the line of the annotations Anno.

 set_location(Location, Anno)

 Modifies the location of the annotations Anno.

 set_record(Record, Anno)

 Modifies the record marker of the annotations Anno.

 set_text(Text, Anno)

 Modifies the text of the annotations Anno.

 text(Anno)

 Returns the text of the annotations Anno. If there is no text, undefined is
returned.

 to_term(Anno)

 Returns the term representing the annotations Anno.

 Types

 Link to this opaque

 anno()

 View Source

 (since OTP 18.0)

 -opaque anno()

A collection of annotations.

 Link to this type

 anno_term()

 View Source

 (since OTP 18.0)

 -type anno_term() :: term().

The term representing a collection of annotations. It is either a location/0
or a list of key-value pairs.

 Link to this type

 column()

 View Source

 (since OTP 18.0)

 -type column() :: pos_integer().

 Link to this type

 filename()

 View Source

 (not exported)

 (since OTP 18.0)

 -type filename() :: file:filename_all().

 Link to this type

 generated()

 View Source

 (not exported)

 (since OTP 18.0)

 -type generated() :: boolean().

 Link to this type

 line()

 View Source

 (since OTP 18.0)

 -type line() :: non_neg_integer().

 Link to this type

 location()

 View Source

 (since OTP 18.0)

 -type location() :: line() | {line(), column()}.

 Link to this type

 record()

 View Source

 (not exported)

 (since OTP 18.0)

 -type record() :: boolean().

 Link to this type

 text()

 View Source

 (since OTP 18.0)

 -type text() :: string().

 Functions

 Link to this function

 column(Anno)

 View Source

 (since OTP 18.0)

 -spec column(Anno) -> column() | undefined when Anno :: anno().

Returns the column of the annotations Anno.

 Link to this function

 end_location(Anno)

 View Source

 (since OTP 18.0)

 -spec end_location(Anno) -> location() | undefined when Anno :: anno().

Returns the end location of the text of the annotations Anno. If there is no
text, undefined is returned.

 Link to this function

 file(Anno)

 View Source

 (since OTP 18.0)

 -spec file(Anno) -> filename() | undefined when Anno :: anno().

Returns the filename of the annotations Anno. If there is no filename,
undefined is returned.

 Link to this function

 from_term(Term)

 View Source

 (since OTP 18.0)

 -spec from_term(Term) -> Anno when Term :: anno_term(), Anno :: anno().

Returns annotations with representation Term.
See also to_term().

 Link to this function

 generated(Anno)

 View Source

 (since OTP 18.0)

 -spec generated(Anno) -> generated() when Anno :: anno().

Returns true if annotations Anno is marked as generated. The default is to
return false.

 Link to this function

 is_anno(Term)

 View Source

 (since OTP 18.0)

 -spec is_anno(Term) -> boolean() when Term :: any().

Returns true if Term is a collection of annotations, otherwise false.

 Link to this function

 line(Anno)

 View Source

 (since OTP 18.0)

 -spec line(Anno) -> line() when Anno :: anno().

Returns the line of the annotations Anno.

 Link to this function

 location(Anno)

 View Source

 (since OTP 18.0)

 -spec location(Anno) -> location() when Anno :: anno().

Returns the location of the annotations Anno.

 Link to this function

 new(Location)

 View Source

 (since OTP 18.0)

 -spec new(Location) -> anno() when Location :: location().

Creates a new collection of annotations given a location.

 Link to this function

 set_file(File, Anno)

 View Source

 (since OTP 18.0)

 -spec set_file(File, Anno) -> Anno when File :: filename(), Anno :: anno().

Modifies the filename of the annotations Anno.

 Link to this function

 set_generated(Generated, Anno)

 View Source

 (since OTP 18.0)

 -spec set_generated(Generated, Anno) -> Anno when Generated :: generated(), Anno :: anno().

Modifies the generated marker of the annotations Anno.

 Link to this function

 set_line(Line, Anno)

 View Source

 (since OTP 18.0)

 -spec set_line(Line, Anno) -> Anno when Line :: line(), Anno :: anno().

Modifies the line of the annotations Anno.

 Link to this function

 set_location(Location, Anno)

 View Source

 (since OTP 18.0)

 -spec set_location(Location, Anno) -> Anno when Location :: location(), Anno :: anno().

Modifies the location of the annotations Anno.

 Link to this function

 set_record(Record, Anno)

 View Source

 (since OTP 18.0)

 -spec set_record(Record, Anno) -> Anno when Record :: record(), Anno :: anno().

Modifies the record marker of the annotations Anno.

 Link to this function

 set_text(Text, Anno)

 View Source

 (since OTP 18.0)

 -spec set_text(Text, Anno) -> Anno when Text :: text(), Anno :: anno().

Modifies the text of the annotations Anno.

 Link to this function

 text(Anno)

 View Source

 (since OTP 18.0)

 -spec text(Anno) -> text() | undefined when Anno :: anno().

Returns the text of the annotations Anno. If there is no text, undefined is
returned.

 Link to this function

 to_term(Anno)

 View Source

 (since OTP 18.0)

 -spec to_term(Anno) -> anno_term() when Anno :: anno().

Returns the term representing the annotations Anno.
See also from_term().

erl_eval

The Erlang meta interpreter.
This module provides an interpreter for Erlang expressions. The expressions are
in the abstract syntax as returned by erl_parse, the Erlang parser, or
io.

 Local Function Handler

During evaluation of a function, no calls can be made to local functions. An
undefined function error would be generated. However, the optional argument
LocalFunctionHandler can be used to define a function that is called when
there is a call to a local function. The argument can have the following
formats:
	{value,Func} - This defines a local function handler that is called
with:
Func(Name, Arguments)
Name is the name of the local function (an atom) and Arguments is a list
of the evaluated arguments. The function handler returns the value of the
local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler calls exit/1 with a
suitable exit value.

	{eval,Func} - This defines a local function handler that is called with:
Func(Name, Arguments, Bindings)
Name is the name of the local function (an atom), Arguments is a list of
the unevaluated arguments, and Bindings are the current variable bindings.
The function handler returns:
{value,Value,NewBindings}
Value is the value of the local function and NewBindings are the updated
variable bindings. In this case, the function handler must itself evaluate all
the function arguments and manage the bindings. To signal an error, the
function handler calls exit/1 with a suitable exit value.

	none - There is no local function handler.

 Non-Local Function Handler

The optional argument NonLocalFunctionHandler can be used to define a function
that is called in the following cases:
	A functional object (fun) is called.
	A built-in function is called.
	A function is called using the M:F syntax, where M and F are atoms or
expressions.
	An operator Op/A is called (this is handled as a call to function
erlang:Op/A).

Exceptions are calls to erlang:apply/2,3; neither of the function handlers are
called for such calls. The argument can have the following formats:
	{value,Func} - This defines a non-local function handler. The function
may be called with two arguments:
Func(FuncSpec, Arguments)
or three arguments:
Func(Anno, FuncSpec, Arguments)
Anno is the erl_anno:anno() of the node, FuncSpec
is the name of the function on the form {Module,Function} or a fun, and
Arguments is a list of the evaluated arguments. The function handler
returns the value of the function. To signal an error, the function handler
calls exit/1 with a suitable exit value.

	none - There is no non-local function handler.

Note
For calls such as erlang:apply(Fun, Args) or
erlang:apply(Module, Function, Args), the call of the non-local function
handler corresponding to the call to erlang:apply/2,3 itself
(Func({erlang, apply}, [Fun, Args]) or
Func({erlang, apply}, [Module, Function, Args])) never takes place.
The non-local function handler is however called with the evaluated
arguments of the call to erlang:apply/2,3: Func(Fun, Args) or
Func({Module, Function}, Args) (assuming that {Module, Function} is not
{erlang, apply}).
Calls to functions defined by evaluating fun expressions "fun ... end" are
also hidden from non-local function handlers.

The non-local function handler argument is probably not used as frequently as
the local function handler argument. A possible use is to call
exit/1 on calls to functions that for some reason are not allowed
to be called.

 Summary

 Types

 binding_struct()

 A binding structure. It is either a map or an orddict. erl_eval will
always return the same type as the one given.

 bindings()

 expression()

 expression_list()

 expressions()

 As returned by erl_parse:parse_exprs/1 or io:parse_erl_exprs/2.

 func_spec()

 lfun_eval_handler()

 lfun_value_handler()

 local_function_handler()

 Further described in section
Local Function Handler in this module

 name()

 nlfun_handler()

 non_local_function_handler()

 Further described in section
Non-Local Function Handler in this
module.

 value()

 Functions

 add_binding(Name, Value, BindingStruct)

 Adds binding Name=Value to BindingStruct. Returns an updated binding
structure.

 binding(Name, BindingStruct)

 Returns the binding of Name in BindingStruct.

 bindings(BindingStruct)

 Returns the list of bindings contained in the binding structure.

 del_binding(Name, BindingStruct)

 Removes the binding of Name in BindingStruct. Returns an updated binding
structure.

 expr(Expression, Bindings)

 Equivalent to expr(Expression, Bindings, none).

 expr(Expression, Bindings, LocalFunctionHandler)

 Equivalent to expr(Expression, Bindings, LocalFunctionHandler, none).

 expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 Equivalent to expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler, none).

 expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler, ReturnFormat)

 Evaluates Expression with the set of bindings Bindings. Expression is an
expression in abstract syntax.

 expr_list(ExpressionList, Bindings)

 Equivalent to expr_list(ExpressionList, Bindings, none).

 expr_list(ExpressionList, Bindings, LocalFunctionHandler)

 Equivalent to expr_list(ExpressionList, Bindings, LocalFunctionHandler, none).

 expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 Evaluates a list of expressions in parallel, using the same initial bindings for
each expression. Attempts are made to merge the bindings returned from each
evaluation.

 exprs(Expressions, Bindings)

 Equivalent to exprs(Expressions, Bindings, none).

 exprs(Expressions, Bindings, LocalFunctionHandler)

 Equivalent to exprs(Expressions, Bindings, LocalFunctionHandler, none).

 exprs(Expressions, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 Evaluates Expressions with the set of bindings Bindings, where Expressions
is a sequence of expressions (in abstract syntax) of a type that can be returned
by io:parse_erl_exprs/2.

 new_bindings()

 Returns an empty binding structure.

 Types

 Link to this type

 binding_struct()

 View Source

 -type binding_struct() :: orddict:orddict() | map().

A binding structure. It is either a map or an orddict. erl_eval will
always return the same type as the one given.

 Link to this type

 bindings()

 View Source

 (not exported)

 -type bindings() :: [{name(), value()}].

 Link to this type

 expression()

 View Source

 (not exported)

 -type expression() :: erl_parse:abstract_expr().

 Link to this type

 expression_list()

 View Source

 (not exported)

 -type expression_list() :: [expression()].

 Link to this type

 expressions()

 View Source

 (not exported)

 -type expressions() :: [erl_parse:abstract_expr()].

As returned by erl_parse:parse_exprs/1 or io:parse_erl_exprs/2.

 Link to this type

 func_spec()

 View Source

 (not exported)

 -type func_spec() :: {Module :: module(), Function :: atom()} | function().

 Link to this type

 lfun_eval_handler()

 View Source

 (not exported)

 -type lfun_eval_handler() ::
 fun((Name :: atom(), Arguments :: expression_list(), Bindings :: binding_struct()) ->
 {value, Value :: value(), NewBindings :: binding_struct()}).

 Link to this type

 lfun_value_handler()

 View Source

 (not exported)

 -type lfun_value_handler() :: fun((Name :: atom(), Arguments :: [term()]) -> Value :: value()).

 Link to this type

 local_function_handler()

 View Source

 (not exported)

 -type local_function_handler() :: {value, lfun_value_handler()} | {eval, lfun_eval_handler()} | none.

Further described in section
Local Function Handler in this module

 Link to this type

 name()

 View Source

 (not exported)

 -type name() :: term().

 Link to this type

 nlfun_handler()

 View Source

 (not exported)

 -type nlfun_handler() ::
 fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term()) |
 fun((Anno :: erl_anno:anno(), FuncSpec :: func_spec(), Arguments :: [term()]) -> term()).

 Link to this type

 non_local_function_handler()

 View Source

 (not exported)

 -type non_local_function_handler() :: {value, nlfun_handler()} | none.

Further described in section
Non-Local Function Handler in this
module.

 Link to this type

 value()

 View Source

 (not exported)

 -type value() :: term().

 Functions

 Link to this function

 add_binding(Name, Value, BindingStruct)

 View Source

 -spec add_binding(Name, Value, BindingStruct) -> binding_struct()
 when Name :: name(), Value :: value(), BindingStruct :: binding_struct().

Adds binding Name=Value to BindingStruct. Returns an updated binding
structure.

 Link to this function

 binding(Name, BindingStruct)

 View Source

 -spec binding(Name, BindingStruct) -> {value, value()} | unbound
 when Name :: name(), BindingStruct :: binding_struct().

Returns the binding of Name in BindingStruct.

 Link to this function

 bindings(BindingStruct)

 View Source

 -spec bindings(BindingStruct :: binding_struct()) -> bindings().

Returns the list of bindings contained in the binding structure.

 Link to this function

 del_binding(Name, BindingStruct)

 View Source

 -spec del_binding(Name, BindingStruct) -> binding_struct()
 when Name :: name(), BindingStruct :: binding_struct().

Removes the binding of Name in BindingStruct. Returns an updated binding
structure.

 Link to this function

 expr(Expression, Bindings)

 View Source

 -spec expr(Expression, Bindings) -> {value, Value, NewBindings}
 when
 Expression :: expression(),
 Bindings :: binding_struct(),
 Value :: value(),
 NewBindings :: binding_struct().

Equivalent to expr(Expression, Bindings, none).

 Link to this function

 expr(Expression, Bindings, LocalFunctionHandler)

 View Source

 -spec expr(Expression, Bindings, LocalFunctionHandler) -> {value, Value, NewBindings}
 when
 Expression :: expression(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 Value :: value(),
 NewBindings :: binding_struct().

Equivalent to expr(Expression, Bindings, LocalFunctionHandler, none).

 Link to this function

 expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 View Source

 -spec expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler) ->
 {value, Value, NewBindings}
 when
 Expression :: expression(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 NonLocalFunctionHandler :: non_local_function_handler(),
 Value :: value(),
 NewBindings :: binding_struct().

Equivalent to expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler, none).

 Link to this function

 expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler, ReturnFormat)

 View Source

 -spec expr(Expression, Bindings, LocalFunctionHandler, NonLocalFunctionHandler, ReturnFormat) ->
 {value, Value, NewBindings} | Value
 when
 Expression :: expression(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 NonLocalFunctionHandler :: non_local_function_handler(),
 ReturnFormat :: none | value,
 Value :: value(),
 NewBindings :: binding_struct().

Evaluates Expression with the set of bindings Bindings. Expression is an
expression in abstract syntax.
For an explanation of when and how to use arguments LocalFunctionHandler and
NonLocalFunctionHandler, see sections
Local Function Handler and
Non-Local Function Handler in this
module.
Returns {value, Value, NewBindings} by default. If ReturnFormat is value,
only Value is returned.

 Link to this function

 expr_list(ExpressionList, Bindings)

 View Source

 -spec expr_list(ExpressionList, Bindings) -> {ValueList, NewBindings}
 when
 ExpressionList :: expression_list(),
 Bindings :: binding_struct(),
 ValueList :: [value()],
 NewBindings :: binding_struct().

Equivalent to expr_list(ExpressionList, Bindings, none).

 Link to this function

 expr_list(ExpressionList, Bindings, LocalFunctionHandler)

 View Source

 -spec expr_list(ExpressionList, Bindings, LocalFunctionHandler) -> {ValueList, NewBindings}
 when
 ExpressionList :: expression_list(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 ValueList :: [value()],
 NewBindings :: binding_struct().

Equivalent to expr_list(ExpressionList, Bindings, LocalFunctionHandler, none).

 Link to this function

 expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 View Source

 -spec expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonLocalFunctionHandler) ->
 {ValueList, NewBindings}
 when
 ExpressionList :: expression_list(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 NonLocalFunctionHandler :: non_local_function_handler(),
 ValueList :: [value()],
 NewBindings :: binding_struct().

Evaluates a list of expressions in parallel, using the same initial bindings for
each expression. Attempts are made to merge the bindings returned from each
evaluation.
This function is useful in LocalFunctionHandler, see section
Local Function Handler in this module.
Returns {ValueList, NewBindings}.

 Link to this function

 exprs(Expressions, Bindings)

 View Source

 -spec exprs(Expressions, Bindings) -> {value, Value, NewBindings}
 when
 Expressions :: expressions(),
 Bindings :: binding_struct(),
 Value :: value(),
 NewBindings :: binding_struct().

Equivalent to exprs(Expressions, Bindings, none).

 Link to this function

 exprs(Expressions, Bindings, LocalFunctionHandler)

 View Source

 -spec exprs(Expressions, Bindings, LocalFunctionHandler) -> {value, Value, NewBindings}
 when
 Expressions :: expressions(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 Value :: value(),
 NewBindings :: binding_struct().

Equivalent to exprs(Expressions, Bindings, LocalFunctionHandler, none).

 Link to this function

 exprs(Expressions, Bindings, LocalFunctionHandler, NonLocalFunctionHandler)

 View Source

 -spec exprs(Expressions, Bindings, LocalFunctionHandler, NonLocalFunctionHandler) ->
 {value, Value, NewBindings}
 when
 Expressions :: expressions(),
 Bindings :: binding_struct(),
 LocalFunctionHandler :: local_function_handler(),
 NonLocalFunctionHandler :: non_local_function_handler(),
 Value :: value(),
 NewBindings :: binding_struct().

Evaluates Expressions with the set of bindings Bindings, where Expressions
is a sequence of expressions (in abstract syntax) of a type that can be returned
by io:parse_erl_exprs/2.
For an explanation of when and how to use arguments
LocalFunctionHandler and NonLocalFunctionHandler, see sections
Local Function Handler and
Non-Local Function Handler in this
module.
Returns {value, Value, NewBindings}

 Link to this function

 new_bindings()

 View Source

 -spec new_bindings() -> binding_struct().

Returns an empty binding structure.

erl_expand_records

This module expands records in a module.

 See Also

Section The Abstract Format in ERTS User's Guide.

 Summary

 Functions

 module(AbsForms, CompileOptions)

 Expands all records in a module to use explicit tuple operations and adds
explicit module names to calls to BIFs and imported functions. The returned
module has no references to records, attributes, or code.

 Functions

 Link to this function

 module(AbsForms, CompileOptions)

 View Source

 -spec module(AbsForms, CompileOptions) -> AbsForms2
 when
 AbsForms :: [erl_parse:abstract_form()],
 AbsForms2 :: [erl_parse:abstract_form()],
 CompileOptions :: [compile:option()].

Expands all records in a module to use explicit tuple operations and adds
explicit module names to calls to BIFs and imported functions. The returned
module has no references to records, attributes, or code.

erl_features

This module contains functions for supporting features that can be
enabled/disabled in Erlang.
It should be considered as mostly for internal use, although there are some
functions that might be useful when writing tools.

 Summary

 Types

 feature()

 release()

 status()

 type()

 Functions

 all()

 Return a list of all known features. This list will include features that have
been removed (status rejected) and features that are no longer configurable
(status permanent).

 configurable()

 Return a list of all configurable features, that is, features with status
experimental or approved. These are the features that can be enabled or
disabled.

 enabled()

 Return a list of the features that are currently enabled. Note that the set of
enabled is set during startup and can then not be changed.

 info(Feature)

 Return a map containing information about the given feature.

 used/1

 Return the list of features enabled when compiling the module. The module need
not be loaded, but is found if it exists in the loadpath. If not all features
used by the module are enabled in the runtime, loading the module is not
allowed.

 Types

 Link to this type

 feature()

 View Source

 (not exported)

 (since OTP 25.0)

 -type feature() :: atom().

 Link to this type

 release()

 View Source

 (not exported)

 (since OTP 25.0)

 -type release() :: non_neg_integer().

 Link to this type

 status()

 View Source

 (not exported)

 (since OTP 25.0)

 -type status() :: experimental | approved | permanent | rejected.

 Link to this type

 type()

 View Source

 (not exported)

 (since OTP 25.0)

 -type type() :: extension | backwards_incompatible_change.

 Functions

 Link to this function

 all()

 View Source

 (since OTP 25.0)

 -spec all() -> [feature()].

Return a list of all known features. This list will include features that have
been removed (status rejected) and features that are no longer configurable
(status permanent).

 Link to this function

 configurable()

 View Source

 (since OTP 25.1)

 -spec configurable() -> [feature()].

Return a list of all configurable features, that is, features with status
experimental or approved. These are the features that can be enabled or
disabled.

 Link to this function

 enabled()

 View Source

 (since OTP 25.0)

 -spec enabled() -> [feature()].

Return a list of the features that are currently enabled. Note that the set of
enabled is set during startup and can then not be changed.

 Link to this function

 info(Feature)

 View Source

 (since OTP 25.0)

 -spec info(feature()) -> FeatureInfoMap | no_return()
 when
 Description :: string(),
 FeatureInfoMap ::
 #{description := Description,
 short := Description,
 type := type(),
 keywords := [atom()],
 status := status(),
 experimental => release(),
 approved => release(),
 permanent => release(),
 rejected => release()}.

Return a map containing information about the given feature.

 Link to this function

 used/1

 View Source

 (since OTP 25.0)

 -spec used(module() | file:filename()) -> [feature()].

Return the list of features enabled when compiling the module. The module need
not be loaded, but is found if it exists in the loadpath. If not all features
used by the module are enabled in the runtime, loading the module is not
allowed.

erl_id_trans

This module performs an identity parse transformation of Erlang code.
It is included as an example for users who wants to write their own
parse transformers. If option {parse_transform,Module} is passed
to the compiler, a user-written function parse_transform/2
is called by the compiler before the code is checked for errors.
Before the function parse_transform/2 is called, the Erlang
Compiler checks if the parse transformation can handle abstract code
with column numbers: If the function parse_transform_info/0
is implemented and returns a map where the key error_location is
associated with the value line, the compiler removes
column numbers from the abstract code before calling the parse
transform. Otherwise, the compiler passes the abstract code on
without modification.

 Parse Transformations

Parse transformations are used if a programmer wants to use
Erlang syntax, but with different semantics. The original Erlang
code is then transformed into other Erlang code.
Note
Programmers are strongly advised not to engage in parse
transformations. No support is offered for problems encountered.

 See Also

erl_parse and compile.

 Summary

 Functions

 parse_transform(Forms, Options)

 Performs an identity transformation on Erlang forms, as an example.

 parse_transform_info()

 Returns information about the parse transform itself.

 Functions

 Link to this function

 parse_transform(Forms, Options)

 View Source

 -spec parse_transform(Forms, Options) -> NewForms
 when
 Forms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 NewForms :: Forms,
 Options :: [compile:option()].

Performs an identity transformation on Erlang forms, as an example.

 Link to this function

 parse_transform_info()

 View Source

 -spec parse_transform_info() -> #{error_location => column | line}.

Returns information about the parse transform itself.

erl_internal

Internal Erlang definitions.
This module defines Erlang BIFs, guard tests, and operators. This module is only
of interest to programmers who manipulate Erlang code.

 Summary

 Functions

 add_predefined_functions(Forms)

 Adds to Forms the code for the standard pre-defined functions (such as
module_info/0) that are to be included in every module.

 arith_op(OpName, Arity)

 Returns true if OpName/Arity is an arithmetic operator, otherwise false.

 bif(Name, Arity)

 Returns true if Name/Arity is an Erlang BIF that is automatically recognized
by the compiler, otherwise false.

 bool_op(OpName, Arity)

 Returns true if OpName/Arity is a Boolean operator, otherwise false.

 comp_op(OpName, Arity)

 Returns true if OpName/Arity is a comparison operator, otherwise false.

 guard_bif(Name, Arity)

 Returns true if Name/Arity is an Erlang BIF that is allowed in guards,
otherwise false.

 list_op(OpName, Arity)

 Returns true if OpName/Arity is a list operator, otherwise false.

 op_type(OpName, Arity)

 Returns the Type of operator that OpName/Arity belongs to, or generates a
function_clause error if it is not an operator.

 send_op(OpName, Arity)

 Returns true if OpName/Arity is a send operator, otherwise false.

 type_test(Name, Arity)

 Returns true if Name/Arity is a valid Erlang type test, otherwise false.

 Functions

 Link to this function

 add_predefined_functions(Forms)

 View Source

 (since OTP 20.0)

 -spec add_predefined_functions(Forms) -> UpdatedForms
 when
 Forms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 UpdatedForms ::
 [erl_parse:abstract_form() | erl_parse:form_info()].

Adds to Forms the code for the standard pre-defined functions (such as
module_info/0) that are to be included in every module.

 Link to this function

 arith_op(OpName, Arity)

 View Source

 -spec arith_op(OpName, Arity) -> boolean() when OpName :: atom(), Arity :: arity().

Returns true if OpName/Arity is an arithmetic operator, otherwise false.

 Link to this function

 bif(Name, Arity)

 View Source

 -spec bif(Name, Arity) -> boolean() when Name :: atom(), Arity :: arity().

Returns true if Name/Arity is an Erlang BIF that is automatically recognized
by the compiler, otherwise false.

 Link to this function

 bool_op(OpName, Arity)

 View Source

 -spec bool_op(OpName, Arity) -> boolean() when OpName :: atom(), Arity :: arity().

Returns true if OpName/Arity is a Boolean operator, otherwise false.

 Link to this function

 comp_op(OpName, Arity)

 View Source

 -spec comp_op(OpName, Arity) -> boolean() when OpName :: atom(), Arity :: arity().

Returns true if OpName/Arity is a comparison operator, otherwise false.

 Link to this function

 guard_bif(Name, Arity)

 View Source

 -spec guard_bif(Name, Arity) -> boolean() when Name :: atom(), Arity :: arity().

Returns true if Name/Arity is an Erlang BIF that is allowed in guards,
otherwise false.

 Link to this function

 list_op(OpName, Arity)

 View Source

 -spec list_op(OpName, Arity) -> boolean() when OpName :: atom(), Arity :: arity().

Returns true if OpName/Arity is a list operator, otherwise false.

 Link to this function

 op_type(OpName, Arity)

 View Source

 -spec op_type(OpName, Arity) -> Type
 when OpName :: atom(), Arity :: arity(), Type :: arith | bool | comp | list | send.

Returns the Type of operator that OpName/Arity belongs to, or generates a
function_clause error if it is not an operator.

 Link to this function

 send_op(OpName, Arity)

 View Source

 -spec send_op(OpName, Arity) -> boolean() when OpName :: atom(), Arity :: arity().

Returns true if OpName/Arity is a send operator, otherwise false.

 Link to this function

 type_test(Name, Arity)

 View Source

 -spec type_test(Name, Arity) -> boolean() when Name :: atom(), Arity :: arity().

Returns true if Name/Arity is a valid Erlang type test, otherwise false.

erl_lint

The Erlang code linter.
This module is used to check Erlang code for illegal syntax and other bugs. It
also warns against coding practices that are not recommended.
The errors detected include:
	Redefined and undefined functions
	Unbound and unsafe variables
	Illegal record use

The warnings detected include:
	Unused functions and imports
	Unused variables
	Variables imported into matches
	Variables exported from if/case/receive
	Variables shadowed in funs and list comprehensions

Some of the warnings are optional, and can be turned on by specifying the
appropriate option, described below.
The functions in this module are invoked automatically by the Erlang compiler.
There is no reason to invoke these functions separately unless you have written
your own Erlang compiler.

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O
modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

epp, erl_parse

 Summary

 Types

 error_description()

 error_info()

 fa()

 fun_used_vars()

 Functions

 format_error(ErrorDescriptor)

 Takes an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when processing an
ErrorInfo structure (see section Error Information).

 is_guard_test(Expr)

 Tests if Expr is a legal guard test. Expr is an Erlang term representing the
abstract form for the expression.
erl_parse:parse_exprs(Tokens) can be used to
generate a list of Expr.

 module(AbsForms)

 Equivalent to module/3.

 module(AbsForms, FileName)

 Equivalent to module/3.

 module(AbsForms, FileName, CompileOptions)

 Checks all the forms in a module for errors. It returns

 Types

 Link to this type

 error_description()

 View Source

 -type error_description() :: term().

 Link to this type

 error_info()

 View Source

 -type error_info() :: {erl_anno:location() | none, module(), error_description()}.

 Link to this type

 fa()

 View Source

 (not exported)

 -type fa() :: {atom(), arity()}.

 Link to this type

 fun_used_vars()

 View Source

 -type fun_used_vars() :: #{erl_parse:abstract_expr() => {[atom()], fun_used_vars()}}.

 Functions

 Link to this function

 format_error(ErrorDescriptor)

 View Source

 -spec format_error(ErrorDescriptor) -> io_lib:chars() when ErrorDescriptor :: error_description().

Takes an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when processing an
ErrorInfo structure (see section Error Information).

 Link to this function

 is_guard_test(Expr)

 View Source

 -spec is_guard_test(Expr) -> boolean() when Expr :: erl_parse:abstract_expr().

Tests if Expr is a legal guard test. Expr is an Erlang term representing the
abstract form for the expression.
erl_parse:parse_exprs(Tokens) can be used to
generate a list of Expr.

 Link to this function

 module(AbsForms)

 View Source

 -spec module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}
 when
 AbsForms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 Warnings :: [{SourceFile, [ErrorInfo]}],
 Errors :: [{SourceFile, [ErrorInfo]}],
 SourceFile :: file:filename(),
 ErrorInfo :: error_info().

Equivalent to module/3.

 Link to this function

 module(AbsForms, FileName)

 View Source

 -spec module(AbsForms, FileName) -> {ok, Warnings} | {error, Errors, Warnings}
 when
 AbsForms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 FileName :: atom() | string(),
 Warnings :: [{SourceFile, [ErrorInfo]}],
 Errors :: [{SourceFile, [ErrorInfo]}],
 SourceFile :: file:filename(),
 ErrorInfo :: error_info().

Equivalent to module/3.

 Link to this function

 module(AbsForms, FileName, CompileOptions)

 View Source

 -spec module(AbsForms, FileName, CompileOptions) -> {ok, Warnings} | {error, Errors, Warnings}
 when
 AbsForms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 FileName :: atom() | string(),
 CompileOptions :: [compile:option()],
 Warnings :: [{SourceFile, [ErrorInfo]}],
 Errors :: [{SourceFile, [ErrorInfo]}],
 SourceFile :: file:filename(),
 ErrorInfo :: error_info().

Checks all the forms in a module for errors. It returns:
	{ok,Warnings} - There are no errors in the module.

	{error,Errors,Warnings} - There are errors in the module.

As this module is of interest only to the maintainers of the compiler, and to
avoid the same description in two places, the elements of Options that control
the warnings are only described in the compile
module.
AbsForms of a module, which comes from a file that is read through epp, the
Erlang preprocessor, can come from many files. This means that any references to
errors must include the filename, see the epp module or parser (see the
erl_parse module). The returned errors and warnings have the following
format:
[{SourceFile,[ErrorInfo]}]
The errors and warnings are listed in the order in which they are encountered in
the forms. The errors from one file can therefore be split into different
entries in the list of errors.

erl_parse

This module is the basic Erlang parser that converts tokens into the abstract
form of either forms (that is, top-level constructs), expressions, or terms.
The Abstract Format is described in the ERTS User's Guide. Notice that a token
list must end with the dot token to be acceptable to the parse functions
(see the erl_scan) module.

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O modules.
The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 See Also

erl_anno, erl_scan, io, section The Abstract Format
in the ERTS User's Guide.

 Summary

 Types

 abstract_clause()

 Abstract form of an Erlang clause.

 abstract_expr()

 Abstract form of an Erlang expression.

 abstract_form()

 Abstract form of an Erlang form.

 abstract_type()

 Abstract form of an Erlang type.

 af_anno()

 af_annotated_type()

 af_args()

 af_assoc(T)

 af_assoc_exact(T)

 af_assoc_type()

 af_atom()

 af_behavior()

 af_behaviour()

 af_bin(T)

 af_binary_comprehension()

 af_binary_op(T)

 af_binelement(T)

 Abstract representation of an element of a bitstring.

 af_binelement_size()

 af_bitstring_type()

 af_block()

 af_body()

 af_case()

 af_catch()

 af_character()

 af_clause()

 af_clause_seq()

 af_compile()

 af_cons(T)

 af_constrained_function_type()

 af_constraint()

 af_empty_list_type()

 af_export()

 af_export_type()

 af_fa_list()

 af_field()

 af_field_decl()

 Abstract representation of a record field.

 af_field_name()

 af_file()

 af_filter()

 af_float()

 af_fun()

 af_fun_type()

 af_function_constraint()

 af_function_decl()

 af_function_spec()

 af_function_type()

 af_function_type_list()

 af_generator()

 Abstract representation of a generator or a bitstring generator.

 af_guard()

 af_guard_call()

 af_guard_seq()

 af_guard_test()

 af_if()

 af_import()

 af_integer()

 af_integer_range_type()

 af_list_comprehension()

 af_lit_atom(A)

 af_literal()

 af_local_call()

 af_local_fun()

 af_local_function()

 af_map_comprehension()

 af_map_creation(T)

 af_map_pattern()

 af_map_type()

 af_map_update(T)

 af_match(T)

 af_maybe()

 af_maybe_else()

 af_maybe_match()

 af_module()

 af_named_fun()

 af_nil()

 af_pattern()

 af_predefined_type()

 af_qualifier()

 af_qualifier_seq()

 af_receive()

 af_record_creation(T)

 af_record_decl()

 af_record_field(T)

 af_record_field_access(T)

 af_record_field_type()

 af_record_index()

 af_record_type()

 af_record_update(T)

 af_remote_call()

 af_remote_fun()

 af_remote_function()

 Abstract representation of a remote function call.

 af_remote_guard_call()

 af_remote_type()

 af_singleton_integer_type()

 af_string()

 af_ta_list()

 af_template()

 af_try()

 af_tuple(T)

 af_tuple_type()

 af_type_decl()

 af_type_union()

 af_type_variable()

 af_typed_field()

 af_unary_op(T)

 af_user_defined_type()

 af_variable()

 af_wild_attribute()

 anno()

 behaviour()

 binary_op()

 encoding_func()

 endianness()

 erl_parse_tree()

 error_description()

 error_info()

 form_info()

 Tuples {error, error_info()} and {warning, error_info()}, denoting
syntactically incorrect forms and warnings, and {eof, line()}, denoting an
end-of-stream encountered before a complete form had been parsed.

 fun_name()

 function_name()

 record_name()

 signedness()

 spec_attr()

 token()

 type()

 type_attr()

 type_name()

 type_specifier()

 type_specifier_list()

 unary_op()

 unit()

 Functions

 abstract(Data)

 Converts the Erlang data structure Data into an abstract form of type
AbsTerm. This function is the inverse of normalise/1.

 abstract(Data, Options)

 Converts the Erlang data structure Data into an abstract form of type
AbsTerm.

 anno_from_term(Term)

 Assumes that Term is a term with the same structure as a erl_parse tree, but
with terms, say T, where a erl_parse tree has collections of annotations.

 anno_to_term(Abstr)

 Returns a term where each collection of annotations Anno of the nodes of the
erl_parse tree Abstr is replaced by the term returned by
erl_anno:to_term(Anno). The erl_parse tree is
traversed in a depth-first, left-to-right fashion.

 fold_anno(Fun, Acc0, Abstr)

 Updates an accumulator by applying Fun on each collection of annotations of
the erl_parse tree Abstr.

 format_error(Message)

 Uses an ErrorDescriptor and returns a string that describes the error.

 map_anno(Fun, Abstr)

 Modifies the erl_parse tree Abstr by applying Fun on each collection of
annotations of the nodes of the erl_parse tree. The erl_parse tree is
traversed in a depth-first, left-to-right fashion.

 mapfold_anno(Fun, Acc0, Abstr)

 Modifies the erl_parse tree Abstr by applying Fun on each collection of
annotations of the nodes of the erl_parse tree, while at the same time
updating an accumulator.

 new_anno(Term)

 Assumes that Term is a term with the same structure as a erl_parse tree, but
with locations where a erl_parse tree has
collections of annotations.

 normalise(AbsTerm)

 Converts the abstract form AbsTerm of a term into a conventional Erlang data
structure (that is, the term itself). This function is the inverse of
abstract/1.

 parse_exprs(Tokens)

 Parses Tokens as if it was a list of expressions.

 parse_form(Tokens)

 Parses Tokens as if it was a form.

 parse_term(Tokens)

 Parses Tokens as if it was a term.

 tokens(AbsTerm)

 Equivalent to tokens(AbsTerm, []).

 tokens(AbsTerm, MoreTokens)

 Generates a list of tokens representing the abstract form AbsTerm of an
expression. Optionally, MoreTokens is appended.

 Types

 Link to this type

 abstract_clause()

 View Source

 -type abstract_clause() :: af_clause().

Abstract form of an Erlang clause.

 Link to this type

 abstract_expr()

 View Source

 -type abstract_expr() ::
 af_literal() |
 af_match(abstract_expr()) |
 af_maybe_match() |
 af_variable() |
 af_tuple(abstract_expr()) |
 af_nil() |
 af_cons(abstract_expr()) |
 af_bin(abstract_expr()) |
 af_binary_op(abstract_expr()) |
 af_unary_op(abstract_expr()) |
 af_record_creation(abstract_expr()) |
 af_record_update(abstract_expr()) |
 af_record_index() |
 af_record_field_access(abstract_expr()) |
 af_map_creation(abstract_expr()) |
 af_map_update(abstract_expr()) |
 af_catch() |
 af_local_call() |
 af_remote_call() |
 af_list_comprehension() |
 af_map_comprehension() |
 af_binary_comprehension() |
 af_block() |
 af_if() |
 af_case() |
 af_try() |
 af_receive() |
 af_local_fun() |
 af_remote_fun() |
 af_fun() |
 af_named_fun() |
 af_maybe() |
 af_maybe_else().

Abstract form of an Erlang expression.

 Link to this type

 abstract_form()

 View Source

 -type abstract_form() ::
 af_module() |
 af_behavior() |
 af_behaviour() |
 af_export() |
 af_import() |
 af_export_type() |
 af_compile() |
 af_file() |
 af_record_decl() |
 af_type_decl() |
 af_function_spec() |
 af_wild_attribute() |
 af_function_decl().

Abstract form of an Erlang form.

 Link to this type

 abstract_type()

 View Source

 -type abstract_type() ::
 af_annotated_type() |
 af_atom() |
 af_bitstring_type() |
 af_empty_list_type() |
 af_fun_type() |
 af_integer_range_type() |
 af_map_type() |
 af_predefined_type() |
 af_record_type() |
 af_remote_type() |
 af_singleton_integer_type() |
 af_tuple_type() |
 af_type_union() |
 af_type_variable() |
 af_user_defined_type().

Abstract form of an Erlang type.

 Link to this type

 af_anno()

 View Source

 (not exported)

 -type af_anno() :: af_variable().

 Link to this type

 af_annotated_type()

 View Source

 (not exported)

 -type af_annotated_type() :: {ann_type, anno(), [af_anno() | abstract_type()]}.

 Link to this type

 af_args()

 View Source

 (not exported)

 -type af_args() :: [abstract_expr()].

 Link to this type

 af_assoc(T)

 View Source

 (not exported)

 -type af_assoc(T) :: {map_field_assoc, anno(), T, T} | af_assoc_exact(T).

 Link to this type

 af_assoc_exact(T)

 View Source

 (not exported)

 -type af_assoc_exact(T) :: {map_field_exact, anno(), T, T}.

 Link to this type

 af_assoc_type()

 View Source

 (not exported)

 -type af_assoc_type() ::
 {type, anno(), map_field_assoc, [abstract_type()]} |
 {type, anno(), map_field_exact, [abstract_type()]}.

 Link to this type

 af_atom()

 View Source

 (not exported)

 -type af_atom() :: af_lit_atom(atom()).

 Link to this type

 af_behavior()

 View Source

 (not exported)

 -type af_behavior() :: {attribute, anno(), behavior, behaviour()}.

 Link to this type

 af_behaviour()

 View Source

 (not exported)

 -type af_behaviour() :: {attribute, anno(), behaviour, behaviour()}.

 Link to this type

 af_bin(T)

 View Source

 (not exported)

 -type af_bin(T) :: {bin, anno(), [af_binelement(T)]}.

 Link to this type

 af_binary_comprehension()

 View Source

 (not exported)

 -type af_binary_comprehension() :: {bc, anno(), af_template(), af_qualifier_seq()}.

 Link to this type

 af_binary_op(T)

 View Source

 (not exported)

 -type af_binary_op(T) :: {op, anno(), binary_op(), T, T}.

 Link to this type

 af_binelement(T)

 View Source

 -type af_binelement(T) :: {bin_element, anno(), T, af_binelement_size(), type_specifier_list()}.

Abstract representation of an element of a bitstring.

 Link to this type

 af_binelement_size()

 View Source

 (not exported)

 -type af_binelement_size() :: default | abstract_expr().

 Link to this type

 af_bitstring_type()

 View Source

 (not exported)

 -type af_bitstring_type() :: {type, anno(), binary, [af_singleton_integer_type()]}.

 Link to this type

 af_block()

 View Source

 (not exported)

 -type af_block() :: {block, anno(), af_body()}.

 Link to this type

 af_body()

 View Source

 (not exported)

 -type af_body() :: [abstract_expr(), ...].

 Link to this type

 af_case()

 View Source

 (not exported)

 -type af_case() :: {'case', anno(), abstract_expr(), af_clause_seq()}.

 Link to this type

 af_catch()

 View Source

 (not exported)

 -type af_catch() :: {'catch', anno(), abstract_expr()}.

 Link to this type

 af_character()

 View Source

 (not exported)

 -type af_character() :: {char, anno(), char()}.

 Link to this type

 af_clause()

 View Source

 (not exported)

 -type af_clause() :: {clause, anno(), [af_pattern()], af_guard_seq(), af_body()}.

 Link to this type

 af_clause_seq()

 View Source

 (not exported)

 -type af_clause_seq() :: [af_clause(), ...].

 Link to this type

 af_compile()

 View Source

 (not exported)

 -type af_compile() :: {attribute, anno(), compile, any()}.

 Link to this type

 af_cons(T)

 View Source

 (not exported)

 -type af_cons(T) :: {cons, anno(), T, T}.

 Link to this type

 af_constrained_function_type()

 View Source

 (not exported)

 -type af_constrained_function_type() ::
 {type, anno(), bounded_fun, [af_function_type() | af_function_constraint()]}.

 Link to this type

 af_constraint()

 View Source

 (not exported)

 -type af_constraint() ::
 {type, anno(), constraint, [af_lit_atom(is_subtype) | [af_type_variable() | abstract_type()]]}.

 Link to this type

 af_empty_list_type()

 View Source

 (not exported)

 -type af_empty_list_type() :: {type, anno(), nil, []}.

 Link to this type

 af_export()

 View Source

 (not exported)

 -type af_export() :: {attribute, anno(), export, af_fa_list()}.

 Link to this type

 af_export_type()

 View Source

 (not exported)

 -type af_export_type() :: {attribute, anno(), export_type, af_ta_list()}.

 Link to this type

 af_fa_list()

 View Source

 (not exported)

 -type af_fa_list() :: [{function_name(), arity()}].

 Link to this type

 af_field()

 View Source

 (not exported)

 -type af_field() ::
 {record_field, anno(), af_field_name()} |
 {record_field, anno(), af_field_name(), abstract_expr()}.

 Link to this type

 af_field_decl()

 View Source

 -type af_field_decl() :: af_typed_field() | af_field().

Abstract representation of a record field.

 Link to this type

 af_field_name()

 View Source

 (not exported)

 -type af_field_name() :: af_atom().

 Link to this type

 af_file()

 View Source

 (not exported)

 -type af_file() :: {attribute, anno(), file, {string(), anno()}}.

 Link to this type

 af_filter()

 View Source

 (not exported)

 -type af_filter() :: abstract_expr().

 Link to this type

 af_float()

 View Source

 (not exported)

 -type af_float() :: {float, anno(), float()}.

 Link to this type

 af_fun()

 View Source

 (not exported)

 -type af_fun() :: {'fun', anno(), {clauses, af_clause_seq()}}.

 Link to this type

 af_fun_type()

 View Source

 (not exported)

 -type af_fun_type() ::
 {type, anno(), 'fun', []} |
 {type, anno(), 'fun', [{type, anno(), any} | abstract_type()]} |
 af_function_type().

 Link to this type

 af_function_constraint()

 View Source

 (not exported)

 -type af_function_constraint() :: [af_constraint(), ...].

 Link to this type

 af_function_decl()

 View Source

 (not exported)

 -type af_function_decl() :: {function, anno(), function_name(), arity(), af_clause_seq()}.

 Link to this type

 af_function_spec()

 View Source

 (not exported)

 -type af_function_spec() ::
 {attribute, anno(), spec_attr(), {{function_name(), arity()}, af_function_type_list()}} |
 {attribute, anno(), spec, {{module(), function_name(), arity()}, af_function_type_list()}}.

 Link to this type

 af_function_type()

 View Source

 (not exported)

 -type af_function_type() ::
 {type, anno(), 'fun', [{type, anno(), product, [abstract_type()]} | abstract_type()]}.

 Link to this type

 af_function_type_list()

 View Source

 (not exported)

 -type af_function_type_list() :: [af_constrained_function_type() | af_function_type(), ...].

 Link to this type

 af_generator()

 View Source

 -type af_generator() ::
 {generate, anno(), af_pattern(), abstract_expr()} |
 {m_generate, anno(), af_assoc_exact(af_pattern()), abstract_expr()} |
 {b_generate, anno(), af_pattern(), abstract_expr()}.

Abstract representation of a generator or a bitstring generator.

 Link to this type

 af_guard()

 View Source

 (not exported)

 -type af_guard() :: [af_guard_test(), ...].

 Link to this type

 af_guard_call()

 View Source

 (not exported)

 -type af_guard_call() :: {call, anno(), af_atom(), [af_guard_test()]}.

 Link to this type

 af_guard_seq()

 View Source

 (not exported)

 -type af_guard_seq() :: [af_guard()].

 Link to this type

 af_guard_test()

 View Source

 (not exported)

 -type af_guard_test() ::
 af_literal() |
 af_variable() |
 af_tuple(af_guard_test()) |
 af_nil() |
 af_cons(af_guard_test()) |
 af_bin(af_guard_test()) |
 af_binary_op(af_guard_test()) |
 af_unary_op(af_guard_test()) |
 af_record_creation(af_guard_test()) |
 af_record_index() |
 af_record_field_access(af_guard_test()) |
 af_map_creation(af_guard_test()) |
 af_map_update(af_guard_test()) |
 af_guard_call() |
 af_remote_guard_call().

 Link to this type

 af_if()

 View Source

 (not exported)

 -type af_if() :: {'if', anno(), af_clause_seq()}.

 Link to this type

 af_import()

 View Source

 (not exported)

 -type af_import() :: {attribute, anno(), import, {module(), af_fa_list()}}.

 Link to this type

 af_integer()

 View Source

 (not exported)

 -type af_integer() :: {integer, anno(), non_neg_integer()}.

 Link to this type

 af_integer_range_type()

 View Source

 (not exported)

 -type af_integer_range_type() :: {type, anno(), range, [af_singleton_integer_type()]}.

 Link to this type

 af_list_comprehension()

 View Source

 (not exported)

 -type af_list_comprehension() :: {lc, anno(), af_template(), af_qualifier_seq()}.

 Link to this type

 af_lit_atom(A)

 View Source

 (not exported)

 -type af_lit_atom(A) :: {atom, anno(), A}.

 Link to this type

 af_literal()

 View Source

 (not exported)

 -type af_literal() :: af_atom() | af_character() | af_float() | af_integer() | af_string().

 Link to this type

 af_local_call()

 View Source

 (not exported)

 -type af_local_call() :: {call, anno(), af_local_function(), af_args()}.

 Link to this type

 af_local_fun()

 View Source

 (not exported)

 -type af_local_fun() :: {'fun', anno(), {function, function_name(), arity()}}.

 Link to this type

 af_local_function()

 View Source

 (not exported)

 -type af_local_function() :: abstract_expr().

 Link to this type

 af_map_comprehension()

 View Source

 (not exported)

 -type af_map_comprehension() :: {mc, anno(), af_assoc(abstract_expr()), af_qualifier_seq()}.

 Link to this type

 af_map_creation(T)

 View Source

 (not exported)

 -type af_map_creation(T) :: {map, anno(), [af_assoc(T)]}.

 Link to this type

 af_map_pattern()

 View Source

 (not exported)

 -type af_map_pattern() :: {map, anno(), [af_assoc_exact(af_pattern())]}.

 Link to this type

 af_map_type()

 View Source

 (not exported)

 -type af_map_type() :: {type, anno(), map, any} | {type, anno(), map, [af_assoc_type()]}.

 Link to this type

 af_map_update(T)

 View Source

 (not exported)

 -type af_map_update(T) :: {map, anno(), T, [af_assoc(T)]}.

 Link to this type

 af_match(T)

 View Source

 (not exported)

 -type af_match(T) :: {match, anno(), af_pattern(), T}.

 Link to this type

 af_maybe()

 View Source

 (not exported)

 -type af_maybe() :: {'maybe', anno(), af_body()}.

 Link to this type

 af_maybe_else()

 View Source

 (not exported)

 -type af_maybe_else() :: {'maybe', anno(), af_body(), {'else', anno(), af_clause_seq()}}.

 Link to this type

 af_maybe_match()

 View Source

 (not exported)

 -type af_maybe_match() :: {maybe_match, anno(), af_pattern(), abstract_expr()}.

 Link to this type

 af_module()

 View Source

 (not exported)

 -type af_module() :: {attribute, anno(), module, module()}.

 Link to this type

 af_named_fun()

 View Source

 (not exported)

 -type af_named_fun() :: {named_fun, anno(), fun_name(), af_clause_seq()}.

 Link to this type

 af_nil()

 View Source

 (not exported)

 -type af_nil() :: {nil, anno()}.

 Link to this type

 af_pattern()

 View Source

 (not exported)

 -type af_pattern() ::
 af_literal() |
 af_match(af_pattern()) |
 af_variable() |
 af_tuple(af_pattern()) |
 af_nil() |
 af_cons(af_pattern()) |
 af_bin(af_pattern()) |
 af_binary_op(af_pattern()) |
 af_unary_op(af_pattern()) |
 af_record_creation(af_pattern()) |
 af_record_index() |
 af_map_pattern().

 Link to this type

 af_predefined_type()

 View Source

 (not exported)

 -type af_predefined_type() :: {type, anno(), type_name(), [abstract_type()]}.

 Link to this type

 af_qualifier()

 View Source

 (not exported)

 -type af_qualifier() :: af_generator() | af_filter().

 Link to this type

 af_qualifier_seq()

 View Source

 (not exported)

 -type af_qualifier_seq() :: [af_qualifier(), ...].

 Link to this type

 af_receive()

 View Source

 (not exported)

 -type af_receive() ::
 {'receive', anno(), af_clause_seq()} |
 {'receive', anno(), af_clause_seq(), abstract_expr(), af_body()}.

 Link to this type

 af_record_creation(T)

 View Source

 (not exported)

 -type af_record_creation(T) :: {record, anno(), record_name(), [af_record_field(T)]}.

 Link to this type

 af_record_decl()

 View Source

 (not exported)

 -type af_record_decl() :: {attribute, anno(), record, {record_name(), [af_field_decl()]}}.

 Link to this type

 af_record_field(T)

 View Source

 (not exported)

 -type af_record_field(T) :: {record_field, anno(), af_field_name(), T}.

 Link to this type

 af_record_field_access(T)

 View Source

 (not exported)

 -type af_record_field_access(T) :: {record_field, anno(), T, record_name(), af_field_name()}.

 Link to this type

 af_record_field_type()

 View Source

 (not exported)

 -type af_record_field_type() :: {type, anno(), field_type, [(Name :: af_atom()) | abstract_type()]}.

 Link to this type

 af_record_index()

 View Source

 (not exported)

 -type af_record_index() :: {record_index, anno(), record_name(), af_field_name()}.

 Link to this type

 af_record_type()

 View Source

 (not exported)

 -type af_record_type() :: {type, anno(), record, [(Name :: af_atom()) | af_record_field_type()]}.

 Link to this type

 af_record_update(T)

 View Source

 (not exported)

 -type af_record_update(T) :: {record, anno(), abstract_expr(), record_name(), [af_record_field(T)]}.

 Link to this type

 af_remote_call()

 View Source

 (not exported)

 -type af_remote_call() :: {call, anno(), af_remote_function(), af_args()}.

 Link to this type

 af_remote_fun()

 View Source

 (not exported)

 -type af_remote_fun() ::
 {'fun', anno(), {function, module(), function_name(), arity()}} |
 {'fun',
 anno(),
 {function,
 af_atom() | af_variable(),
 af_atom() | af_variable(),
 af_integer() | af_variable()}}.

 Link to this type

 af_remote_function()

 View Source

 -type af_remote_function() :: {remote, anno(), abstract_expr(), abstract_expr()}.

Abstract representation of a remote function call.

 Link to this type

 af_remote_guard_call()

 View Source

 (not exported)

 -type af_remote_guard_call() ::
 {call, anno(), {remote, anno(), af_lit_atom(erlang), af_atom()}, [af_guard_test()]}.

 Link to this type

 af_remote_type()

 View Source

 (not exported)

 -type af_remote_type() ::
 {remote_type, anno(), [(Module :: af_atom()) | (TypeName :: af_atom()) | [abstract_type()]]}.

 Link to this type

 af_singleton_integer_type()

 View Source

 (not exported)

 -type af_singleton_integer_type() ::
 af_integer() |
 af_character() |
 af_unary_op(af_singleton_integer_type()) |
 af_binary_op(af_singleton_integer_type()).

 Link to this type

 af_string()

 View Source

 (not exported)

 -type af_string() :: {string, anno(), string()}.

 Link to this type

 af_ta_list()

 View Source

 (not exported)

 -type af_ta_list() :: [{type_name(), arity()}].

 Link to this type

 af_template()

 View Source

 (not exported)

 -type af_template() :: abstract_expr().

 Link to this type

 af_try()

 View Source

 (not exported)

 -type af_try() :: {'try', anno(), af_body(), af_clause_seq() | [], af_clause_seq() | [], af_body() | []}.

 Link to this type

 af_tuple(T)

 View Source

 (not exported)

 -type af_tuple(T) :: {tuple, anno(), [T]}.

 Link to this type

 af_tuple_type()

 View Source

 (not exported)

 -type af_tuple_type() :: {type, anno(), tuple, any} | {type, anno(), tuple, [abstract_type()]}.

 Link to this type

 af_type_decl()

 View Source

 (not exported)

 -type af_type_decl() ::
 {attribute, anno(), type_attr(), {type_name(), abstract_type(), [af_variable()]}}.

 Link to this type

 af_type_union()

 View Source

 (not exported)

 -type af_type_union() :: {type, anno(), union, [abstract_type(), ...]}.

 Link to this type

 af_type_variable()

 View Source

 (not exported)

 -type af_type_variable() :: {var, anno(), atom()}.

 Link to this type

 af_typed_field()

 View Source

 (not exported)

 -type af_typed_field() :: {typed_record_field, af_field(), abstract_type()}.

 Link to this type

 af_unary_op(T)

 View Source

 (not exported)

 -type af_unary_op(T) :: {op, anno(), unary_op(), T}.

 Link to this type

 af_user_defined_type()

 View Source

 (not exported)

 -type af_user_defined_type() :: {user_type, anno(), type_name(), [abstract_type()]}.

 Link to this type

 af_variable()

 View Source

 (not exported)

 -type af_variable() :: {var, anno(), atom()}.

 Link to this type

 af_wild_attribute()

 View Source

 (not exported)

 -type af_wild_attribute() :: {attribute, anno(), atom(), any()}.

 Link to this type

 anno()

 View Source

 (not exported)

 -type anno() :: erl_anno:anno().

 Link to this type

 behaviour()

 View Source

 (not exported)

 -type behaviour() :: atom().

 Link to this type

 binary_op()

 View Source

 (not exported)

 -type binary_op() ::
 '/' | '*' | 'div' | 'rem' | 'band' | 'and' | '+' | '-' | 'bor' | 'bxor' | 'bsl' | 'bsr' |
 'or' | 'xor' | '++' | '--' | '==' | '/=' | '=

 erl_pp - stdlib v5.2.1

erl_pp

The Erlang pretty printer.
The functions in this module are used to generate aesthetically attractive
representations of abstract forms, which are suitable for printing. All
functions return (possibly deep) lists of characters and generate an error if
the form is wrong.
All functions can have an optional argument, which specifies a hook that is
called if an attempt is made to print an unknown form.
Note that if the functions in this module are used to convert abstract code back
to Erlang source code, the enclosing function should first be processed by
legalize_vars/1 in order to ensure that the output is semantically equivalent
to the abstract code.

 Known Limitations

It is not possible to have hook functions for unknown forms at other places than
expressions.

 See Also

erl_eval, erl_parse, io

 Summary

 Types

 hook_function()

 Optional argument HookFunction, shown in the functions
described in this module, defines a function that is called when an unknown form
occurs where there is to be a valid expression. If HookFunction is equal to
none, there is no hook function.

 option()

 The option quote_singleton_atom_types is used to add quotes to all singleton
atom types.

 options()

 Functions

 attribute(Attribute)

 Equivalent to attribute(Attribute, none).

 attribute(Attribute, Options)

 Same as form/1,2, but only for attribute Attribute.

 expr(Expression)

 Equivalent to expr(Expression, none).

 expr(Expression, Options)

 Equivalent to expr(Expression, 0, Options).

 expr(Expression, Indent, Options)

 Equivalent to expr(Expression, Indent, 0, Options).

 expr(Expression, Indent, Precedence, Options)

 Prints one expression.

 exprs(Expressions)

 Equivalent to exprs(Expressions, none).

 exprs(Expressions, Options)

 Equivalent to exprs(Expressions, 0, Options).

 exprs(Expressions, Indent, Options)

 Same as form/1,2, but only for the sequence of expressions in
Expressions.

 form(Form)

 Equivalent to form(Form, none).

 form(Form, Options)

 Pretty prints a Form, which is an abstract form of a type that is returned by
erl_parse:parse_form/1.

 function(Function)

 Equivalent to function(Function, none).

 function(Function, Options)

 Same as form/1,2, but only for function Function.

 guard(Guard)

 Equivalent to guard(Guard, none).

 guard(Guard, Options)

 Same as form/1,2, but only for the guard test Guard.

 legalize_vars(Function)

 The Erlang compiler will, when expanding records to tuples, introduce new
variables in the abstract representation. As the expansion is done on the
abstract representation, the compiler can safely name the new variables with
names that are not syntactically valid in Erlang source code (the name starts
with a lowercase letter), thus ensuring the uniqueness of the new names.

 Types

 Link to this type

 hook_function()

 View Source

 (not exported)

 -type hook_function() ::
 none |
 fun((Expr :: erl_parse:abstract_expr(),
 CurrentIndentation :: integer(),
 CurrentPrecedence :: non_neg_integer(),
 Options :: options()) ->
 io_lib:chars()).

Optional argument HookFunction, shown in the functions
described in this module, defines a function that is called when an unknown form
occurs where there is to be a valid expression. If HookFunction is equal to
none, there is no hook function.
The called hook function is to return a (possibly deep) list of characters.
Function expr/4 is useful in a hook.
If CurrentIndentation is negative, there are no line breaks and only a space
is used as a separator.

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 {hook, hook_function()} |
 {encoding, latin1 | unicode | utf8} |
 {quote_singleton_atom_types, boolean()} |
 {linewidth, pos_integer()} |
 {indent, pos_integer()}.

The option quote_singleton_atom_types is used to add quotes to all singleton
atom types.
The option linewidth controls the maximum line width for formatted lines
(defaults to 72 characters).
The option indent controls the indention for formatted lines (defaults to 4
spaces).

 Link to this type

 options()

 View Source

 (not exported)

 -type options() :: hook_function() | [option()].

 Functions

 Link to this function

 attribute(Attribute)

 View Source

 -spec attribute(Attribute) -> io_lib:chars() when Attribute :: erl_parse:abstract_form().

Equivalent to attribute(Attribute, none).

 Link to this function

 attribute(Attribute, Options)

 View Source

 -spec attribute(Attribute, Options) -> io_lib:chars()
 when Attribute :: erl_parse:abstract_form(), Options :: options().

Same as form/1,2, but only for attribute Attribute.

 Link to this function

 expr(Expression)

 View Source

 -spec expr(Expression) -> io_lib:chars() when Expression :: erl_parse:abstract_expr().

Equivalent to expr(Expression, none).

 Link to this function

 expr(Expression, Options)

 View Source

 -spec expr(Expression, Options) -> io_lib:chars()
 when Expression :: erl_parse:abstract_expr(), Options :: options().

Equivalent to expr(Expression, 0, Options).

 Link to this function

 expr(Expression, Indent, Options)

 View Source

 -spec expr(Expression, Indent, Options) -> io_lib:chars()
 when Expression :: erl_parse:abstract_expr(), Indent :: integer(), Options :: options().

Equivalent to expr(Expression, Indent, 0, Options).

 Link to this function

 expr(Expression, Indent, Precedence, Options)

 View Source

 -spec expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
 when
 Expression :: erl_parse:abstract_expr(),
 Indent :: integer(),
 Precedence :: non_neg_integer(),
 Options :: options().

Prints one expression.
It is useful for implementing hooks (see section
Known Limitations).

 Link to this function

 exprs(Expressions)

 View Source

 -spec exprs(Expressions) -> io_lib:chars() when Expressions :: [erl_parse:abstract_expr()].

Equivalent to exprs(Expressions, none).

 Link to this function

 exprs(Expressions, Options)

 View Source

 -spec exprs(Expressions, Options) -> io_lib:chars()
 when Expressions :: [erl_parse:abstract_expr()], Options :: options().

Equivalent to exprs(Expressions, 0, Options).

 Link to this function

 exprs(Expressions, Indent, Options)

 View Source

 -spec exprs(Expressions, Indent, Options) -> io_lib:chars()
 when
 Expressions :: [erl_parse:abstract_expr()], Indent :: integer(), Options :: options().

Same as form/1,2, but only for the sequence of expressions in
Expressions.

 Link to this function

 form(Form)

 View Source

 -spec form(Form) -> io_lib:chars() when Form :: erl_parse:abstract_form() | erl_parse:form_info().

Equivalent to form(Form, none).

 Link to this function

 form(Form, Options)

 View Source

 -spec form(Form, Options) -> io_lib:chars()
 when Form :: erl_parse:abstract_form() | erl_parse:form_info(), Options :: options().

Pretty prints a Form, which is an abstract form of a type that is returned by
erl_parse:parse_form/1.

 Link to this function

 function(Function)

 View Source

 -spec function(Function) -> io_lib:chars() when Function :: erl_parse:abstract_form().

Equivalent to function(Function, none).

 Link to this function

 function(Function, Options)

 View Source

 -spec function(Function, Options) -> io_lib:chars()
 when Function :: erl_parse:abstract_form(), Options :: options().

Same as form/1,2, but only for function Function.

 Link to this function

 guard(Guard)

 View Source

 -spec guard(Guard) -> io_lib:chars() when Guard :: [erl_parse:abstract_expr()].

Equivalent to guard(Guard, none).

 Link to this function

 guard(Guard, Options)

 View Source

 -spec guard(Guard, Options) -> io_lib:chars()
 when Guard :: [erl_parse:abstract_expr()], Options :: options().

Same as form/1,2, but only for the guard test Guard.

 Link to this function

 legalize_vars(Function)

 View Source

 (since OTP 25.0)

 -spec legalize_vars(Function) -> erl_parse:abstract_form() when Function :: erl_parse:abstract_form().

The Erlang compiler will, when expanding records to tuples, introduce new
variables in the abstract representation. As the expansion is done on the
abstract representation, the compiler can safely name the new variables with
names that are not syntactically valid in Erlang source code (the name starts
with a lowercase letter), thus ensuring the uniqueness of the new names.
The above strategy leads to problems if a user wants to convert the abstract
representation, using the functions of this module back to Erlang source code.
Typically, pattern variables are output as atoms thus changing the sematics of
the program. To solve this problem legalize_vars/1, when
run on the abstract representation of a function, will return an equivalent
function where all variables will have syntactically valid names.

 erl_scan - stdlib v5.2.1

erl_scan

The Erlang token scanner.
This module contains functions for tokenizing (scanning) characters into Erlang
tokens.

 Error Information

ErrorInfo is the standard ErrorInfo structure that is returned from all I/O
modules. The format is as follows:
{ErrorLocation, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 Notes

The continuation of the first call to the re-entrant input functions must be
[]. For a complete description of how the re-entrant input scheme works, see
Armstrong, Virding and Williams: 'Concurrent Programming in Erlang', Chapter 13.

 See Also

erl_anno, erl_parse, io

 Summary

 Types

 category()

 char_spec()

 error_description()

 error_info()

 option()

 options()

 resword_fun()

 return_cont()

 symbol()

 text_fun()

 token()

 tokens()

 tokens_result()

 Functions

 category(Token)

 Returns the category of Token.

 column(Token)

 Returns the column of Token's collection of annotations.

 end_location(Token)

 Returns the end location of the text of Token's collection of annotations. If
there is no text, undefined is returned.

 format_error(ErrorDescriptor)

 Uses an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when an ErrorInfo
structure is processed (see section
Error Information).

 line(Token)

 Returns the line of Token's collection of annotations.

 location(Token)

 Returns the location of Token's collection of annotations.

 reserved_word(Atom)

 Returns true if Atom is an Erlang reserved word, otherwise false.

 string(String)

 Equivalent to string(String, 1).

 string(String, StartLocation)

 Equivalent to string(String, StartLocation, []).

 string(String, StartLocation, Options)

 Takes the list of characters String and tries to scan (tokenize) them.

 symbol(Token)

 Returns the symbol of Token.

 text(Token)

 Returns the text of Token's collection of annotations. If there is no text,
undefined is returned.

 tokens(Continuation, CharSpec, StartLocation)

 Equivalent to tokens(Continuation, CharSpec, StartLocation, []).

 tokens(Continuation, CharSpec, StartLocation, Options)

 This is the re-entrant scanner, which scans characters until either a dot ('.'
followed by a white space) or eof is reached.

 Types

 Link to this type

 category()

 View Source

 (not exported)

 -type category() :: atom().

 Link to this type

 char_spec()

 View Source

 (not exported)

 -type char_spec() :: string() | eof.

 Link to this type

 error_description()

 View Source

 (not exported)

 -type error_description() :: term().

 Link to this type

 error_info()

 View Source

 -type error_info() :: {erl_anno:location(), module(), error_description()}.

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 return | return_white_spaces | return_comments | text |
 {reserved_word_fun, resword_fun()} |
 {text_fun, text_fun()} |
 {compiler_internal, [term()]}.

 Link to this type

 options()

 View Source

 -type options() :: option() | [option()].

 Link to this type

 resword_fun()

 View Source

 (not exported)

 -type resword_fun() :: fun((atom()) -> boolean()).

 Link to this opaque

 return_cont()

 View Source

 -opaque return_cont()

 Link to this type

 symbol()

 View Source

 (not exported)

 -type symbol() :: atom() | float() | integer() | string().

 Link to this type

 text_fun()

 View Source

 (not exported)

 -type text_fun() :: fun((atom(), string()) -> boolean()).

 Link to this type

 token()

 View Source

 -type token() :: {category(), Anno :: erl_anno:anno(), symbol()} | {category(), Anno :: erl_anno:anno()}.

 Link to this type

 tokens()

 View Source

 -type tokens() :: [token()].

 Link to this type

 tokens_result()

 View Source

 -type tokens_result() ::
 {ok, Tokens :: tokens(), EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 {error, ErrorInfo :: error_info(), EndLocation :: erl_anno:location()}.

 Functions

 Link to this function

 category(Token)

 View Source

 (since OTP 18.0)

 -spec category(Token) -> category() when Token :: token().

Returns the category of Token.

 Link to this function

 column(Token)

 View Source

 (since OTP 18.0)

 -spec column(Token) -> erl_anno:column() | undefined when Token :: token().

Returns the column of Token's collection of annotations.

 Link to this function

 end_location(Token)

 View Source

 (since OTP 18.0)

 -spec end_location(Token) -> erl_anno:location() | undefined when Token :: token().

Returns the end location of the text of Token's collection of annotations. If
there is no text, undefined is returned.

 Link to this function

 format_error(ErrorDescriptor)

 View Source

 -spec format_error(ErrorDescriptor) -> string() when ErrorDescriptor :: error_description().

Uses an ErrorDescriptor and returns a string that describes the error or
warning. This function is usually called implicitly when an ErrorInfo
structure is processed (see section
Error Information).

 Link to this function

 line(Token)

 View Source

 (since OTP 18.0)

 -spec line(Token) -> erl_anno:line() when Token :: token().

Returns the line of Token's collection of annotations.

 Link to this function

 location(Token)

 View Source

 (since OTP 18.0)

 -spec location(Token) -> erl_anno:location() when Token :: token().

Returns the location of Token's collection of annotations.

 Link to this function

 reserved_word(Atom)

 View Source

 -spec reserved_word(Atom :: atom()) -> boolean().

Returns true if Atom is an Erlang reserved word, otherwise false.

 Link to this function

 string(String)

 View Source

 -spec string(String) -> Return
 when
 String :: string(),
 Return ::
 {ok, Tokens :: tokens(), EndLocation} |
 {error, ErrorInfo :: error_info(), ErrorLocation},
 EndLocation :: erl_anno:location(),
 ErrorLocation :: erl_anno:location().

Equivalent to string(String, 1).

 Link to this function

 string(String, StartLocation)

 View Source

 -spec string(String, StartLocation) -> Return
 when
 String :: string(),
 Return ::
 {ok, Tokens :: tokens(), EndLocation} |
 {error, ErrorInfo :: error_info(), ErrorLocation},
 StartLocation :: erl_anno:location(),
 EndLocation :: erl_anno:location(),
 ErrorLocation :: erl_anno:location().

Equivalent to string(String, StartLocation, []).

 Link to this function

 string(String, StartLocation, Options)

 View Source

 -spec string(String, StartLocation, Options) -> Return
 when
 String :: string(),
 Options :: options(),
 Return ::
 {ok, Tokens :: tokens(), EndLocation} |
 {error, ErrorInfo :: error_info(), ErrorLocation},
 StartLocation :: erl_anno:location(),
 EndLocation :: erl_anno:location(),
 ErrorLocation :: erl_anno:location().

Takes the list of characters String and tries to scan (tokenize) them.
Returns one of the following:
	{ok, Tokens, EndLocation} - Tokens are the Erlang tokens from
String. EndLocation is the first location after the last token.

	{error, ErrorInfo, ErrorLocation} - An error occurred. ErrorLocation
is the first location after the erroneous token.

StartLocation indicates the initial location when scanning starts. If
StartLocation is a line, Anno, EndLocation, and ErrorLocation are lines.
If StartLocation is a pair of a line and a column, Anno takes the form of an
opaque compound data type, and EndLocation and ErrorLocation are pairs of a
line and a column. The token annotations contain information about the column
and the line where the token begins, as well as the text of the token (if option
text is specified), all of which can be accessed by calling column/1,
line/1, location/1, and text/1.
A token is a tuple containing information about syntactic category, the token
annotations, and the terminal symbol. For punctuation characters (such as ;
and |) and reserved words, the category and the symbol coincide, and the token
is represented by a two-tuple. Three-tuples have one of the following forms:
	{atom, Anno, atom()}
	{char, Anno, char()}
	{comment, Anno, string()}
	{float, Anno, float()}
	{integer, Anno, integer()}
	{var, Anno, atom()}
	{white_space, Anno, string()}

Valid options:
	{reserved_word_fun, reserved_word_fun()} - A callback function that is
called when the scanner has found an unquoted atom. If the function returns
true, the unquoted atom itself becomes the category of the token. If the
function returns false, atom becomes the category of the unquoted atom.

	return_comments - Return comment tokens.

	return_white_spaces - Return white space tokens. By convention, a
newline character, if present, is always the first character of the text
(there cannot be more than one newline in a white space token).

	return - Short for [return_comments, return_white_spaces].

	text - Include the token text in the token annotation. The
text is the part of the input corresponding to the token. See also
text_fun.

	{text_fun, text_fun()} - A callback function used to
determine whether the full text for the token shall be included in the token
annotation. Arguments of the function are the category of the token and the
full token string. This is only used when text is not
present. If neither are present the text will not be saved in the token
annotation.

	{compiler_internal, term()} - Pass
compiler-internal options to the scanner. The set of internal options
understood by the scanner should be considered experimental and can thus be
changed at any time without prior warning.
The following options are currently understood:
	ssa_checks - Tokenizes source code annotations used for encoding tests
on the BEAM SSA code produced by the compiler.

 Link to this function

 symbol(Token)

 View Source

 (since OTP 18.0)

 -spec symbol(Token) -> symbol() when Token :: token().

Returns the symbol of Token.

 Link to this function

 text(Token)

 View Source

 (since OTP 18.0)

 -spec text(Token) -> erl_anno:text() | undefined when Token :: token().

Returns the text of Token's collection of annotations. If there is no text,
undefined is returned.

 Link to this function

 tokens(Continuation, CharSpec, StartLocation)

 View Source

 -spec tokens(Continuation, CharSpec, StartLocation) -> Return
 when
 Continuation :: return_cont() | [],
 CharSpec :: char_spec(),
 StartLocation :: erl_anno:location(),
 Return ::
 {done, Result :: tokens_result(), LeftOverChars :: char_spec()} |
 {more, Continuation1 :: return_cont()}.

Equivalent to tokens(Continuation, CharSpec, StartLocation, []).

 Link to this function

 tokens(Continuation, CharSpec, StartLocation, Options)

 View Source

 -spec tokens(Continuation, CharSpec, StartLocation, Options) -> Return
 when
 Continuation :: return_cont() | [],
 CharSpec :: char_spec(),
 StartLocation :: erl_anno:location(),
 Options :: options(),
 Return ::
 {done, Result :: tokens_result(), LeftOverChars :: char_spec()} |
 {more, Continuation1 :: return_cont()}.

This is the re-entrant scanner, which scans characters until either a dot ('.'
followed by a white space) or eof is reached.
It returns:
	{done, Result, LeftOverChars} - Indicates that there is sufficient input
data to get a result. Result is:
	{ok, Tokens, EndLocation} - The scanning was successful. Tokens is
the list of tokens including dot.

	{eof, EndLocation} - End of file was encountered before any more
tokens.

	{error, ErrorInfo, EndLocation} - An error occurred. LeftOverChars
is the remaining characters of the input data, starting from EndLocation.

	{more, Continuation1} - More data is required for building a term.
Continuation1 must be passed in a new call to tokens/3,4 when more data is
available.

The CharSpec eof signals end of file. LeftOverChars then takes the value
eof as well.
For a description of the options, see string/3.

 ms_transform - stdlib v5.2.1

ms_transform

A parse transformation that translates fun syntax into match specifications.
This module provides the parse transformation that makes calls to ets and
dbg:fun2ms/1 translate into literal match specifications. It also provides the
back end for the same functions when called from the Erlang shell.
The translation from funs to match specifications is accessed through the two
"pseudo functions" ets:fun2ms/1 and dbg:fun2ms/1.
As everyone trying to use ets:select/2 or dbg seems to
end up reading this manual page, this description is an introduction to the
concept of match specifications.
Read the whole manual page if it is the first time you are using the
transformations.
Match specifications are used more or less as filters. They resemble usual
Erlang matching in a list comprehension or in a fun used with lists:foldl/3,
and so on. However, the syntax of pure match specifications is awkward, as they
are made up purely by Erlang terms, and the language has no syntax to make the
match specifications more readable.
As the execution and structure of the match specifications are like that of a
fun, it is more straightforward to write it using the familiar fun syntax and to
have that translated into a match specification automatically. A real fun is
clearly more powerful than the match specifications allow, but bearing the match
specifications in mind, and what they can do, it is still more convenient to
write it all as a fun. This module contains the code that translates the fun
syntax into match specification terms.

 Example 1

Using ets:select/2 and a match specification, one can filter out rows of a
table and construct a list of tuples containing relevant parts of the data in
these rows. One can use ets:foldl/3 instead, but the ets:select/2 call is
far more efficient. Without the translation provided by ms_transform, one must
struggle with writing match specifications terms to accommodate this.
Consider a simple table of employees:
-record(emp, {empno, %Employee number as a string, the key
 surname, %Surname of the employee
 givenname, %Given name of employee
 dept, %Department, one of {dev,sales,prod,adm}
 empyear}). %Year the employee was employed
We create the table using:
ets:new(emp_tab, [{keypos,#emp.empno},named_table,ordered_set]).
We fill the table with randomly chosen data:
[{emp,"011103","Black","Alfred",sales,2000},
 {emp,"041231","Doe","John",prod,2001},
 {emp,"052341","Smith","John",dev,1997},
 {emp,"076324","Smith","Ella",sales,1995},
 {emp,"122334","Weston","Anna",prod,2002},
 {emp,"535216","Chalker","Samuel",adm,1998},
 {emp,"789789","Harrysson","Joe",adm,1996},
 {emp,"963721","Scott","Juliana",dev,2003},
 {emp,"989891","Brown","Gabriel",prod,1999}]
Assuming that we want the employee numbers of everyone in the sales department,
there are several ways.
ets:match/2 can be used:
1> ets:match(emp_tab, {'_', '$1', '_', '_', sales, '_'}).
[["011103"],["076324"]]
ets:match/2 uses a simpler type of match specification, but it is still
unreadable, and one has little control over the returned result. It is always a
list of lists.
ets:foldl/3 or ets:foldr/3 can be used to avoid the nested lists:
ets:foldr(fun(#emp{empno = E, dept = sales},Acc) -> [E | Acc];
 (_,Acc) -> Acc
 end,
 [],
 emp_tab).
The result is ["011103","076324"]. The fun is straightforward, so the only
problem is that all the data from the table must be transferred from the table
to the calling process for filtering. That is inefficient compared to the
ets:match/2 call where the filtering can be done "inside" the emulator and
only the result is transferred to the process.
Consider a "pure" ets:select/2 call that does what ets:foldr does:
ets:select(emp_tab, [{#emp{empno = '$1', dept = sales, _='_'},[],['$1']}]).
Although the record syntax is used, it is still hard to read and even harder to
write. The first element of the tuple,
#emp{empno = '$1', dept = sales, _='_'}, tells what to match. Elements not
matching this are not returned, as in the ets:match/2 example. The second
element, the empty list, is a list of guard expressions, which we do not need.
The third element is the list of expressions constructing the return value (in
ETS this is almost always a list containing one single term). In our case '$1'
is bound to the employee number in the head (first element of the tuple), and
hence the employee number is returned. The result is ["011103","076324"], as
in the ets:foldr/3 example, but the result is retrieved much more efficiently
in terms of execution speed and memory consumption.
Using ets:fun2ms/1, we can combine the ease of use of the ets:foldr/3 and
the efficiency of the pure ets:select/2 example:
-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, dept = sales}) ->
 E
 end)).
This example requires no special knowledge of match specifications to
understand. The head of the fun matches what you want to filter out and the body
returns what you want returned. As long as the fun can be kept within the limits
of the match specifications, there is no need to transfer all table data to the
process for filtering as in the ets:foldr/3 example. It is easier to read than
the ets:foldr/3 example, as the select call in itself discards anything that
does not match, while the fun of the ets:foldr/3 call needs to handle both the
elements matching and the ones not matching.
In the ets:fun2ms/1 example above, it is needed to include ms_transform.hrl
in the source code, as this is what triggers the parse transformation of the
ets:fun2ms/1 call to a valid match specification. This also implies that the
transformation is done at compile time (except when called from the shell) and
therefore takes no resources in runtime. That is, although you use the more
intuitive fun syntax, it gets as efficient in runtime as writing match
specifications by hand.

 Example 2

Assume that we want to get all the employee numbers of employees hired before
year 2000. Using ets:match/2 is not an alternative here, as relational
operators cannot be expressed there. Once again, ets:foldr/3 can do it
(slowly, but correct):
ets:foldr(fun(#emp{empno = E, empyear = Y},Acc) when Y < 2000 -> [E | Acc];
 (_,Acc) -> Acc
 end,
 [],
 emp_tab).
The result is ["052341","076324","535216","789789","989891"], as expected. The
equivalent expression using a handwritten match specification would look like
this:
ets:select(emp_tab, [{#emp{empno = '$1', empyear = '$2', _='_'},
 [{'<', '$2', 2000}],
 ['$1']}]).
This gives the same result. [{'<', '$2', 2000}] is in the guard part and
therefore discards anything that does not have an empyear (bound to '$2' in
the head) less than 2000, as the guard in the foldr/3 example.
We write it using ets:fun2ms/1:
-include_lib("stdlib/include/ms_transform.hrl").

ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, empyear = Y}) when Y < 2000 ->
 E
 end)).

 Example 3

Assume that we want the whole object matching instead of only one element. One
alternative is to assign a variable to every part of the record and build it up
once again in the body of the fun, but the following is easier:
ets:select(emp_tab, ets:fun2ms(
 fun(Obj = #emp{empno = E, empyear = Y})
 when Y < 2000 ->
 Obj
 end)).
As in ordinary Erlang matching, you can bind a variable to the whole matched
object using a "match inside the match", that is, a =. Unfortunately in funs
translated to match specifications, it is allowed only at the "top-level", that
is, matching the whole object arriving to be matched into a separate variable.
If you are used to writing match specifications by hand, we mention that
variable A is simply translated into '$_'. Alternatively, pseudo function
object/0 also returns the whole matched object, see section
Warnings and Restrictions.

 Example 4

This example concerns the body of the fun. Assume that all employee numbers
beginning with zero (0) must be changed to begin with one (1) instead, and
that we want to create the list [{<Old empno>,<New empno>}]:
ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = [$0 | Rest] }) ->
 {[$0|Rest],[$1|Rest]}
 end)).
This query hits the feature of partially bound keys in table type ordered_set,
so that not the whole table needs to be searched, only the part containing keys
beginning with 0 is looked into.

 Example 5

The fun can have many clauses. Assume that we want to do the following:
	If an employee started before 1997, return the tuple
{inventory, <employee number>}.
	If an employee started 1997 or later, but before 2001, return
{rookie, <employee number>}.
	For all other employees, return {newbie, <employee number>}, except for
those named Smith as they would be affronted by anything other than the tag
guru and that is also what is returned for their numbers:
{guru, <employee number>}.

This is accomplished as follows:
ets:select(emp_tab, ets:fun2ms(
 fun(#emp{empno = E, surname = "Smith" }) ->
 {guru,E};
 (#emp{empno = E, empyear = Y}) when Y < 1997 ->
 {inventory, E};
 (#emp{empno = E, empyear = Y}) when Y > 2001 ->
 {newbie, E};
 (#emp{empno = E, empyear = Y}) -> % 1997 -- 2001
 {rookie, E}
 end)).
The result is as follows:
[{rookie,"011103"},
 {rookie,"041231"},
 {guru,"052341"},
 {guru,"076324"},
 {newbie,"122334"},
 {rookie,"535216"},
 {inventory,"789789"},
 {newbie,"963721"},
 {rookie,"989891"}]

 Useful BIFs

What more can you do? A simple answer is: see the documentation of
match specifications in ERTS User's Guide. However,
the following is a brief overview of the most useful "built-in functions" that
you can use when the fun is to be translated into a match specification by
ets:fun2ms/1. It is not possible to call other functions than those allowed in
match specifications. No "usual" Erlang code can be executed by the fun that is
translated by ets:fun2ms/1. The fun is limited exactly to the power of the
match specifications, which is unfortunate, but the price one must pay for the
execution speed of ets:select/2 compared to ets:foldl/foldr.
The head of the fun is a head matching (or mismatching) one parameter, one
object of the table we select from. The object is always a single variable (can
be _) or a tuple, as ETS, Dets, and Mnesia tables include that. The match
specification returned by ets:fun2ms/1 can be used with dets:select/2 and
mnesia:select/2, and with ets:select/2. The use of = in the head is
allowed (and encouraged) at the top-level.
The guard section can contain any guard expression of Erlang. The following is a
list of BIFs and expressions:
	Type tests: is_atom, is_float, is_integer, is_list, is_number,
is_pid, is_port, is_reference, is_tuple, is_binary, is_function,
is_record
	Boolean operators: not, and, or, andalso, orelse
	Relational operators: >, >=, <, =<, =:=, ==, =/=, /=
	Arithmetic: +, -, *, div, rem
	Bitwise operators: band, bor, bxor, bnot, bsl, bsr
	The guard BIFs: abs, element, hd, length, node, round, size,
byte_size, tl, trunc, binary_part, self

Contrary to the fact with "handwritten" match specifications, the is_record
guard works as in ordinary Erlang code.
Semicolons (;) in guards are allowed, the result is (as expected) one "match
specification clause" for each semicolon-separated part of the guard. The
semantics is identical to the Erlang semantics.
The body of the fun is used to construct the resulting value. When selecting
from tables, one usually construct a suiting term here, using ordinary Erlang
term construction, like tuple parentheses, list brackets, and variables matched
out in the head, possibly with the occasional constant. Whatever expressions are
allowed in guards are also allowed here, but no special functions exist except
object and bindings (see further down), which returns the whole matched
object and all known variable bindings, respectively.
The dbg variants of match specifications have an imperative approach to the
match specification body, the ETS dialect has not. The fun body for
ets:fun2ms/1 returns the result without side effects. As matching (=) in the
body of the match specifications is not allowed (for performance reasons) the
only thing left, more or less, is term construction.

 Example with dbg

This section describes the slightly different match specifications translated by
dbg:fun2ms/1.
The same reasons for using the parse transformation apply to dbg, maybe even
more, as filtering using Erlang code is not a good idea when tracing (except
afterwards, if you trace to file). The concept is similar to that of
ets:fun2ms/1 except that you usually use it directly from the shell (which can
also be done with ets:fun2ms/1).
The following is an example module to trace on:
-module(toy).

-export([start/1, store/2, retrieve/1]).

start(Args) ->
 toy_table = ets:new(toy_table, Args).

store(Key, Value) ->
 ets:insert(toy_table, {Key,Value}).

retrieve(Key) ->
 [{Key, Value}] = ets:lookup(toy_table, Key),
 Value.
During model testing, the first test results in {badmatch,16} in
{toy,start,1}, why?
We suspect the ets:new/2 call, as we match hard on the return value, but want
only the particular new/2 call with toy_table as first parameter. So we
start a default tracer on the node:
1> dbg:tracer().
{ok,<0.88.0>}
We turn on call tracing for all processes, we want to make a pretty restrictive
trace pattern, so there is no need to call trace only a few processes (usually
it is not):
2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}
We specify the filter, we want to view calls that resemble
ets:new(toy_table, <something>):
3> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
As can be seen, the fun used with dbg:fun2ms/1 takes a single list as
parameter instead of a single tuple. The list matches a list of the parameters
to the traced function. A single variable can also be used. The body of the fun
expresses, in a more imperative way, actions to be taken if the fun head (and
the guards) matches. true is returned here, only because the body of a fun
cannot be empty. The return value is discarded.
The following trace output is received during test:
(<0.86.0>) call ets:new(toy_table, [ordered_set])
Assume that we have not found the problem yet, and want to see what ets:new/2
returns. We use a slightly different trace pattern:
4> dbg:tp(ets,new,dbg:fun2ms(fun([toy_table,_]) -> return_trace() end)).
The following trace output is received during test:
(<0.86.0>) call ets:new(toy_table,[ordered_set])
(<0.86.0>) returned from ets:new/2 -> 24
The call to return_trace results in a trace message when the function returns.
It applies only to the specific function call triggering the match specification
(and matching the head/guards of the match specification). This is by far the
most common call in the body of a dbg match specification.
The test now fails with {badmatch,24} because the atom toy_table does not
match the number returned for an unnamed table. So, the problem is found, the
table is to be named, and the arguments supplied by the test program do not
include named_table. We rewrite the start function:
start(Args) ->
 toy_table = ets:new(toy_table, [named_table|Args]).
With the same tracing turned on, the following trace output is received:
(<0.86.0>) call ets:new(toy_table,[named_table,ordered_set])
(<0.86.0>) returned from ets:new/2 -> toy_table
Assume that the module now passes all testing and goes into the system. After a
while, it is found that table toy_table grows while the system is running and
that there are many elements with atoms as keys. We expected only integer keys
and so does the rest of the system, but clearly not the entire system. We turn
on call tracing and try to see calls to the module with an atom as the key:
1> dbg:tracer().
{ok,<0.88.0>}
2> dbg:p(all,call).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tpl(toy,store,dbg:fun2ms(fun([A,_]) when is_atom(A) -> true end)).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
We use dbg:tpl/3 to ensure to catch local calls (assume that the module has
grown since the smaller version and we are unsure if this inserting of atoms is
not done locally). When in doubt, always use local call tracing.
Assume that nothing happens when tracing in this way. The function is never
called with these parameters. We conclude that someone else (some other module)
is doing it and realize that we must trace on ets:insert/2 and want to see the
calling function. The calling function can be retrieved using the match
specification function caller. To get it into the trace message, the match
specification function message must be used. The filter call looks like this
(looking for calls to ets:insert/2):
4> dbg:tpl(ets,insert,dbg:fun2ms(fun([toy_table,{A,_}]) when is_atom(A) ->
 message(caller())
 end)).
{ok,[{matched,nonode@nohost,1},{saved,2}]}
The caller is now displayed in the "additional message" part of the trace
output, and the following is displayed after a while:
(<0.86.0>) call ets:insert(toy_table,{garbage,can}) ({evil_mod,evil_fun,2})
You have realized that function evil_fun of the evil_mod module, with arity
2, is causing all this trouble.
This example illustrates the most used calls in match specifications for dbg.
The other, more esoteric, calls are listed and explained in
Match specifications in Erlang in ERTS User's Guide,
as they are beyond the scope of this description.

 Warnings and Restrictions

The following warnings and restrictions apply to the funs used in with
ets:fun2ms/1 and dbg:fun2ms/1.
Warning
To use the pseudo functions triggering the translation, ensure to include the
header file ms_transform.hrl in the source code. Failure to do so possibly
results in runtime errors rather than compile time, as the expression can be
valid as a plain Erlang program without translation.

Warning
The fun must be literally constructed inside the parameter list to the pseudo
functions. The fun cannot be bound to a variable first and then passed to
ets:fun2ms/1 or dbg:fun2ms/1. For example, ets:fun2ms(fun(A) -> A end)
works, but not F = fun(A) -> A end, ets:fun2ms(F). The latter results in a
compile-time error if the header is included, otherwise a runtime error.

Many restrictions apply to the fun that is translated into a match
specification. To put it simple: you cannot use anything in the fun that you
cannot use in a match specification. This means that, among others, the
following restrictions apply to the fun itself:
	Functions written in Erlang cannot be called, neither can local functions,
global functions, or real funs.

	Everything that is written as a function call is translated into a match
specification call to a built-in function, so that the call
is_list(X) is translated to {'is_list', '$1'} ('$1' is
only an example, the numbering can vary). If one tries to call a function that
is not a match specification built-in, it causes an error.

	Variables occurring in the head of the fun are replaced by match specification
variables in the order of occurrence, so that fragment fun({A,B,C}) is
replaced by {'$1', '$2', '$3'}, and so on. Every occurrence of such a
variable in the match specification is replaced by a match specification
variable in the same way, so that the fun
fun({A,B}) when is_atom(A) -> B end is translated into
[{{'$1','$2'},[{is_atom,'$1'}],['$2']}].

	Variables that are not included in the head are imported from the environment
and made into match specification const expressions. Example from the shell:
1> X = 25.
25
2> ets:fun2ms(fun({A,B}) when A > X -> B end).
[{{'$1','$2'},[{'>','$1',{const,25}}],['$2']}]

	Matching with = cannot be used in the body. It can only be used on the
top-level in the head of the fun. Example from the shell again:
1> ets:fun2ms(fun({A,[B|C]} = D) when A > B -> D end).
[{{'$1',['$2'|'$3']},[{'>','$1','$2'}],['$_']}]
2> ets:fun2ms(fun({A,[B|C]=D}) when A > B -> D end).
Error: fun with head matching ('=' in head) cannot be translated into
match_spec
{error,transform_error}
3> ets:fun2ms(fun({A,[B|C]}) when A > B -> D = [B|C], D end).
Error: fun with body matching ('=' in body) is illegal as match_spec
{error,transform_error}
All variables are bound in the head of a match specification, so the
translator cannot allow multiple bindings. The special case when matching is
done on the top-level makes the variable bind to '$_' in the resulting match
specification. It is to allow a more natural access to the whole matched
object. Pseudo function object() can be used instead, see below.
The following expressions are translated equally:
ets:fun2ms(fun({a,_} = A) -> A end).
ets:fun2ms(fun({a,_}) -> object() end).

	The special match specification variables '$_' and '$*' can be accessed
through the pseudo functions object() (for '$_') and bindings() (for
'$*'). As an example, one can translate the following ets:match_object/2
call to a ets:select/2 call:
ets:match_object(Table, {'$1',test,'$2'}).
This is the same as:
ets:select(Table, ets:fun2ms(fun({A,test,B}) -> object() end)).
In this simple case, the former expression is probably preferable in terms of
readability.
The ets:select/2 call conceptually looks like this in the resulting code:
ets:select(Table, [{{'$1',test,'$2'},[],['$_']}]).
Matching on the top-level of the fun head can be a more natural way to access
'$_', see above.

	Term constructions/literals are translated as much as is needed to get them
into valid match specification. This way tuples are made into match
specification tuple constructions (a one element tuple containing the tuple)
and constant expressions are used when importing variables from the
environment. Records are also translated into plain tuple constructions, calls
to element, and so on. The guard test is_record/2 is
translated into match specification code using the three parameter version
that is built into match specification, so that
is_record(A,t) is translated into {is_record,'$1',t,5} if
the record size of record type t is 5.

	Language constructions such as case, if, and catch that are not present
in match specifications are not allowed.

	If header file ms_transform.hrl is not included, the fun is not translated,
which can result in a runtime error (depending on whether the fun is valid
in a pure Erlang context).
Ensure that the header is included when using ets and dbg:fun2ms/1 in
compiled code.

	If pseudo function triggering the translation is ets:fun2ms/1, the head of
the fun must contain a single variable or a single tuple. If the pseudo
function is dbg:fun2ms/1, the head of the fun must contain a single variable
or a single list.

The translation from funs to match specifications is done at compile time, so
runtime performance is not affected by using these pseudo functions.
For more information about match specifications, see the
Match specifications in Erlang in ERTS User's Guide.

 Summary

 Functions

 format_error(Error)

 Takes an error code returned by one of the other functions in the module and
creates a textual description of the error.

 parse_transform(Forms, Options)

 Implements the transformation at compile time. This function is called by the
compiler to do the source code transformation if and when header file
ms_transform.hrl is included in the source code.

 transform_from_shell(Dialect, Clauses, BoundEnvironment)

 Implements the transformation when the fun2ms/1 functions are called from the
shell. In this case, the abstract form is for one single fun (parsed by the
Erlang shell). All imported variables are to be in the key-value list passed as
BoundEnvironment. The result is a term, normalized, that is, not in abstract
format.

 Functions

 Link to this function

 format_error(Error)

 View Source

 -spec format_error(Error) -> Chars when Error :: {error, module(), term()}, Chars :: io_lib:chars().

Takes an error code returned by one of the other functions in the module and
creates a textual description of the error.

 Link to this function

 parse_transform(Forms, Options)

 View Source

 -spec parse_transform(Forms, Options) -> Forms2 | Errors | Warnings
 when
 Forms :: [erl_parse:abstract_form() | erl_parse:form_info()],
 Forms2 :: [erl_parse:abstract_form() | erl_parse:form_info()],
 Options :: term(),
 Errors :: {error, ErrInfo :: [tuple()], WarnInfo :: []},
 Warnings :: {warning, Forms2, WarnInfo :: [tuple()]}.

Implements the transformation at compile time. This function is called by the
compiler to do the source code transformation if and when header file
ms_transform.hrl is included in the source code.
For information about how to use this parse transformation, see ets and
dbg:fun2ms/1.
For a description of match specifications, see section
Match Specification in Erlang in ERTS User's Guide.

 Link to this function

 transform_from_shell(Dialect, Clauses, BoundEnvironment)

 View Source

 -spec transform_from_shell(Dialect, Clauses, BoundEnvironment) -> term()
 when
 Dialect :: ets | dbg,
 Clauses :: [erl_parse:abstract_clause()],
 BoundEnvironment :: erl_eval:binding_struct().

Implements the transformation when the fun2ms/1 functions are called from the
shell. In this case, the abstract form is for one single fun (parsed by the
Erlang shell). All imported variables are to be in the key-value list passed as
BoundEnvironment. The result is a term, normalized, that is, not in abstract
format.

 array - stdlib v5.2.1

array

Functional, extendible arrays.
Arrays can have fixed size, or can grow automatically as needed. A default value
is used for entries that have not been explicitly set.
Arrays uses zero-based indexing. This is a deliberate design choice and
differs from other Erlang data structures, for example, tuples.
Unless specified by the user when the array is created, the default value is the
atom undefined. There is no difference between an unset entry and an entry
that has been explicitly set to the same value as the default one (compare
reset/2). If you need to differentiate between unset and set entries, ensure
that the default value cannot be confused with the values of set entries.
The array never shrinks automatically. If an index I has been used to set an
entry successfully, all indices in the range [0,I] stay accessible unless the
array size is explicitly changed by calling resize/2.
Examples:
Create a fixed-size array with entries 0-9 set to undefined:
A0 = array:new(10).
10 = array:size(A0).
Create an extendible array and set entry 17 to true, causing the array to grow
automatically:
A1 = array:set(17, true, array:new()).
18 = array:size(A1).
Read back a stored value:
true = array:get(17, A1).
Accessing an unset entry returns default value:
undefined = array:get(3, A1)
Accessing an entry beyond the last set entry also returns the default value, if
the array does not have fixed size:
undefined = array:get(18, A1).
"Sparse" functions ignore default-valued entries:
A2 = array:set(4, false, A1).
[{4, false}, {17, true}] = array:sparse_to_orddict(A2).
An extendible array can be made fixed-size later:
A3 = array:fix(A2).
A fixed-size array does not grow automatically and does not allow accesses
beyond the last set entry:
{'EXIT',{badarg,_}} = (catch array:set(18, true, A3)).
{'EXIT',{badarg,_}} = (catch array:get(18, A3)).

 Summary

 Types

 array()

 array(Type)

 A functional, extendible array. The representation is not documented and is
subject to change without notice. Notice that arrays cannot be directly compared
for equality.

 array_indx()

 array_opt()

 array_opts()

 indx_pair(Type)

 indx_pairs(Type)

 Functions

 default(Array)

 Gets the value used for uninitialized entries.

 fix(Array)

 Fixes the array size. This prevents it from growing automatically upon
insertion.

 foldl(Function, InitialAcc, Array)

 Folds the array elements using the specified function and initial accumulator
value. The elements are visited in order from the lowest index to the highest.

 foldr(Function, InitialAcc, Array)

 Folds the array elements right-to-left using the specified function and initial
accumulator value. The elements are visited in order from the highest index to
the lowest.

 from_list(List)

 Equivalent to from_list(List, undefined).

 from_list(List, Default)

 Converts a list to an extendible array. Default is used as the value for
uninitialized entries of the array.

 from_orddict(Orddict)

 Equivalent to from_orddict(Orddict, undefined).

 from_orddict(Orddict, Default)

 Converts an ordered list of pairs {Index, Value} to a corresponding extendible
array. Default is used as the value for uninitialized entries of the array.

 get(I, Array)

 Gets the value of entry I.

 is_array(X)

 Returns true if X is an array, otherwise false.

 is_fix(Array)

 Checks if the array has fixed size. Returns true if the array is fixed,
otherwise false.

 map(Function, Array)

 Maps the specified function onto each array element. The elements are visited in
order from the lowest index to the highest.

 new()

 Creates a new, extendible array with initial size zero.

 new(Options)

 Creates a new array according to the specified options. By default, the array is
extendible and has initial size zero. Array indices start at 0.

 new(Size, Options)

 Creates a new array according to the specified size and options.

 relax(Array)

 Makes the array resizable. (Reverses the effects of fix/1.)

 reset(I, Array)

 Resets entry I to the default value for the array. If the value of entry I
is the default value, the array is returned unchanged.

 resize(Array)

 Changes the array size to that reported by sparse_size/1. If the specified
array has fixed size, also the resulting array has fixed size.

 resize(Size, Array)

 Change the array size.

 set(I, Value, Array)

 Sets entry I of the array to Value.

 size(Array)

 Gets the number of entries in the array. Entries are numbered from 0 to
size(Array)-1. Hence, this is also the index of the first entry that is
guaranteed to not have been previously set.

 sparse_foldl(Function, InitialAcc, Array)

 Folds the array elements using the specified function and initial accumulator
value, skipping default-valued entries. The elements are visited in order from
the lowest index to the highest.

 sparse_foldr(Function, InitialAcc, Array)

 Folds the array elements right-to-left using the specified function and initial
accumulator value, skipping default-valued entries. The elements are visited in
order from the highest index to the lowest.

 sparse_map(Function, Array)

 Maps the specified function onto each array element, skipping default-valued
entries. The elements are visited in order from the lowest index to the highest.

 sparse_size(Array)

 Gets the number of entries in the array up until the last non-default-valued
entry. That is, returns I+1 if I is the last non-default-valued entry in the
array, or zero if no such entry exists.

 sparse_to_list(Array)

 Converts the array to a list, skipping default-valued entries.

 sparse_to_orddict(Array)

 Converts the array to an ordered list of pairs {Index, Value}, skipping
default-valued entries.

 to_list(Array)

 Converts the array to a list.

 to_orddict(Array)

 Converts the array to an ordered list of pairs {Index, Value}.

 Types

 Link to this type

 array()

 View Source

 -type array() :: array(term()).

 Link to this opaque

 array(Type)

 View Source

 -opaque array(Type)

A functional, extendible array. The representation is not documented and is
subject to change without notice. Notice that arrays cannot be directly compared
for equality.

 Link to this type

 array_indx()

 View Source

 (not exported)

 -type array_indx() :: non_neg_integer().

 Link to this type

 array_opt()

 View Source

 (not exported)

 -type array_opt() ::
 {fixed, boolean()} |
 fixed |
 {default, Type :: term()} |
 {size, N :: non_neg_integer()} |
 (N :: non_neg_integer()).

 Link to this type

 array_opts()

 View Source

 (not exported)

 -type array_opts() :: array_opt() | [array_opt()].

 Link to this type

 indx_pair(Type)

 View Source

 (not exported)

 -type indx_pair(Type) :: {Index :: array_indx(), Type}.

 Link to this type

 indx_pairs(Type)

 View Source

 (not exported)

 -type indx_pairs(Type) :: [indx_pair(Type)].

 Functions

 Link to this function

 default(Array)

 View Source

 -spec default(Array :: array(Type)) -> Value :: Type.

Gets the value used for uninitialized entries.
See also new/2.

 Link to this function

 fix(Array)

 View Source

 -spec fix(Array :: array(Type)) -> array(Type).

Fixes the array size. This prevents it from growing automatically upon
insertion.
See also set/3 and relax/1.

 Link to this function

 foldl(Function, InitialAcc, Array)

 View Source

 -spec foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
 when Function :: fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B).

Folds the array elements using the specified function and initial accumulator
value. The elements are visited in order from the lowest index to the highest.
If Function is not a function, the call fails with reason badarg.
See also foldr/3, map/2, sparse_foldl/3.

 Link to this function

 foldr(Function, InitialAcc, Array)

 View Source

 -spec foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
 when Function :: fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B).

Folds the array elements right-to-left using the specified function and initial
accumulator value. The elements are visited in order from the highest index to
the lowest.
If Function is not a function, the call fails with reason badarg.
See also foldl/3, map/2.

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List :: [Value :: Type]) -> array(Type).

Equivalent to from_list(List, undefined).

 Link to this function

 from_list(List, Default)

 View Source

 -spec from_list(List :: [Value :: Type], Default :: term()) -> array(Type).

Converts a list to an extendible array. Default is used as the value for
uninitialized entries of the array.
If List is not a proper list, the call fails with reason badarg.
See also new/2, to_list/1.

 Link to this function

 from_orddict(Orddict)

 View Source

 -spec from_orddict(Orddict :: indx_pairs(Value :: Type)) -> array(Type).

Equivalent to from_orddict(Orddict, undefined).

 Link to this function

 from_orddict(Orddict, Default)

 View Source

 -spec from_orddict(Orddict :: indx_pairs(Value :: Type), Default :: Type) -> array(Type).

Converts an ordered list of pairs {Index, Value} to a corresponding extendible
array. Default is used as the value for uninitialized entries of the array.
If Orddict is not a proper, ordered list of pairs whose first elements are
non-negative integers, the call fails with reason badarg.
See also new/2, to_orddict/1.

 Link to this function

 get(I, Array)

 View Source

 -spec get(I :: array_indx(), Array :: array(Type)) -> Value :: Type.

Gets the value of entry I.
If I is not a non-negative integer, or if the array has fixed size and I is
larger than the maximum index, the call fails with reason badarg.
If the array does not have fixed size, the default value for any index I
greater than size(Array)-1 is returned.
See also set/3.

 Link to this function

 is_array(X)

 View Source

 -spec is_array(X :: term()) -> boolean().

Returns true if X is an array, otherwise false.
Notice that the check is only shallow, as there is no guarantee that X is a
well-formed array representation even if this function returns true.

 Link to this function

 is_fix(Array)

 View Source

 -spec is_fix(Array :: array()) -> boolean().

Checks if the array has fixed size. Returns true if the array is fixed,
otherwise false.
See also fix/1.

 Link to this function

 map(Function, Array)

 View Source

 -spec map(Function, Array :: array(Type1)) -> array(Type2)
 when Function :: fun((Index :: array_indx(), Type1) -> Type2).

Maps the specified function onto each array element. The elements are visited in
order from the lowest index to the highest.
If Function is not a function, the call fails with reason badarg.
See also foldl/3, foldr/3, sparse_map/2.

 Link to this function

 new()

 View Source

 -spec new() -> array().

Creates a new, extendible array with initial size zero.
See also new/1, new/2.

 Link to this function

 new(Options)

 View Source

 -spec new(Options :: array_opts()) -> array().

Creates a new array according to the specified options. By default, the array is
extendible and has initial size zero. Array indices start at 0.
Options is a single term or a list of terms, selected from the following:
	N::integer() >= 0 or {size, N::integer() >= 0} - Specifies the initial
array size; this also implies {fixed, true}. If N is not a non-negative
integer, the call fails with reason badarg.

	fixed or {fixed, true} - Creates a fixed-size array. See also fix/1.

	{fixed, false} - Creates an extendible (non-fixed-size) array.

	{default, Value} - Sets the default value for the array to Value.

Options are processed in the order they occur in the list, that is, later
options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be
changed once the array has been created.
Examples:
array:new(100)
creates a fixed-size array of size 100.
array:new({default,0})
creates an empty, extendible array whose default value is 0.
array:new([{size,10},{fixed,false},{default,-1}])
creates an extendible array with initial size 10 whose default value is -1.
See also fix/1, from_list/2, get/2, new/0, new/2, set/3.

 Link to this function

 new(Size, Options)

 View Source

 -spec new(Size :: non_neg_integer(), Options :: array_opts()) -> array().

Creates a new array according to the specified size and options.
If Size is not a non-negative integer, the call fails with reason badarg.
By default, the array has fixed size. Notice that any size specifications in
Options override parameter Size.
If Options is a list, this is equivalent to
new([{size, Size} | Options]), otherwise it is equivalent to
new([{size, Size} | [Options]]). However, using this function
directly is more efficient.
Example:
array:new(100, {default,0})
creates a fixed-size array of size 100, whose default value is 0.
See also new/1.

 Link to this function

 relax(Array)

 View Source

 -spec relax(Array :: array(Type)) -> array(Type).

Makes the array resizable. (Reverses the effects of fix/1.)
See also fix/1.

 Link to this function

 reset(I, Array)

 View Source

 -spec reset(I :: array_indx(), Array :: array(Type)) -> array(Type).

Resets entry I to the default value for the array. If the value of entry I
is the default value, the array is returned unchanged.
Reset never changes the array size. Shrinking can be done explicitly by calling
resize/2.
If I is not a non-negative integer, or if the array has fixed size and I is
larger than the maximum index, the call fails with reason badarg; compare
set/3
See also new/2, set/3.

 Link to this function

 resize(Array)

 View Source

 -spec resize(Array :: array(Type)) -> array(Type).

Changes the array size to that reported by sparse_size/1. If the specified
array has fixed size, also the resulting array has fixed size.
See also resize/2, sparse_size/1.

 Link to this function

 resize(Size, Array)

 View Source

 -spec resize(Size :: non_neg_integer(), Array :: array(Type)) -> array(Type).

Change the array size.
If Size is not a non-negative integer, the call fails with reason badarg. If
the specified array has fixed size, also the resulting array has fixed size.

 Link to this function

 set(I, Value, Array)

 View Source

 -spec set(I :: array_indx(), Value :: Type, Array :: array(Type)) -> array(Type).

Sets entry I of the array to Value.
If I is not a non-negative integer, or if the array has fixed size and I is
larger than the maximum index, the call fails with reason badarg.
If the array does not have fixed size, and I is greater than size(Array)-1,
the array grows to size I+1.
See also get/2, reset/2.

 Link to this function

 size(Array)

 View Source

 -spec size(Array :: array()) -> non_neg_integer().

Gets the number of entries in the array. Entries are numbered from 0 to
size(Array)-1. Hence, this is also the index of the first entry that is
guaranteed to not have been previously set.
See also set/3, sparse_size/1.

 Link to this function

 sparse_foldl(Function, InitialAcc, Array)

 View Source

 -spec sparse_foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
 when Function :: fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B).

Folds the array elements using the specified function and initial accumulator
value, skipping default-valued entries. The elements are visited in order from
the lowest index to the highest.
If Function is not a function, the call fails with reason badarg.
See also foldl/3, sparse_foldr/3.

 Link to this function

 sparse_foldr(Function, InitialAcc, Array)

 View Source

 -spec sparse_foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
 when Function :: fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B).

Folds the array elements right-to-left using the specified function and initial
accumulator value, skipping default-valued entries. The elements are visited in
order from the highest index to the lowest.
If Function is not a function, the call fails with reason badarg.
See also foldr/3, sparse_foldl/3.

 Link to this function

 sparse_map(Function, Array)

 View Source

 -spec sparse_map(Function, Array :: array(Type1)) -> array(Type2)
 when Function :: fun((Index :: array_indx(), Type1) -> Type2).

Maps the specified function onto each array element, skipping default-valued
entries. The elements are visited in order from the lowest index to the highest.
If Function is not a function, the call fails with reason badarg.
See also map/2.

 Link to this function

 sparse_size(Array)

 View Source

 -spec sparse_size(Array :: array()) -> non_neg_integer().

Gets the number of entries in the array up until the last non-default-valued
entry. That is, returns I+1 if I is the last non-default-valued entry in the
array, or zero if no such entry exists.
See also resize/1, size/1.

 Link to this function

 sparse_to_list(Array)

 View Source

 -spec sparse_to_list(Array :: array(Type)) -> [Value :: Type].

Converts the array to a list, skipping default-valued entries.
See also to_list/1.

 Link to this function

 sparse_to_orddict(Array)

 View Source

 -spec sparse_to_orddict(Array :: array(Type)) -> indx_pairs(Value :: Type).

Converts the array to an ordered list of pairs {Index, Value}, skipping
default-valued entries.
See also to_orddict/1.

 Link to this function

 to_list(Array)

 View Source

 -spec to_list(Array :: array(Type)) -> [Value :: Type].

Converts the array to a list.
See also from_list/2, sparse_to_list/1.

 Link to this function

 to_orddict(Array)

 View Source

 -spec to_orddict(Array :: array(Type)) -> indx_pairs(Value :: Type).

Converts the array to an ordered list of pairs {Index, Value}.
See also from_orddict/2, sparse_to_orddict/1.

 dets - stdlib v5.2.1

dets

A disk-based term storage.
This module provides a term storage on file. The stored terms, in this module
called objects, are tuples such that one element is defined to be the key. A
Dets table is a collection of objects with the key at the same position stored
on a file.
This module is used by the Mnesia application, and is provided "as is" for users
who are interested in efficient storage of Erlang terms on disk only. Many
applications only need to store some terms in a file. Mnesia adds transactions,
queries, and distribution. The size of Dets files cannot exceed 2 GB. If larger
tables are needed, table fragmentation in Mnesia can be used.
Three types of Dets tables exist:
	set. A table of this type has at most one object with a given key. If an
object with a key already present in the table is inserted, the existing
object is overwritten by the new object.
	bag. A table of this type has zero or more different objects with a given
key.
	duplicate_bag. A table of this type has zero or more possibly matching
objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished
they must be properly closed. If a table is not properly closed, Dets
automatically repairs the table. This can take a substantial time if the table
is large. A Dets table is closed when the process which opened the table
terminates. If many Erlang processes (users) open the same Dets table, they
share the table. The table is properly closed when all users have either
terminated or closed the table. Dets tables are not properly closed if the
Erlang runtime system terminates abnormally.
Note
A ^C command abnormally terminates an Erlang runtime system in a Unix
environment with a break-handler.

As all operations performed by Dets are disk operations, it is important to
realize that a single look-up operation involves a series of disk seek and read
operations. The Dets functions are therefore much slower than the corresponding
ets functions, although Dets exports a similar interface.
Dets organizes data as a linear hash list and the hash list grows gracefully as
more data is inserted into the table. Space management on the file is performed
by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented,
quite some memory can be used up. The only way to defragment a table is to close
it and then open it again with option repair set to force.
Notice that type ordered_set in Ets is not yet provided by Dets, neither is
the limited support for concurrent updates that makes a sequence of first and
next calls safe to use on fixed ETS tables. Both these features may be
provided by Dets in a future release of Erlang/OTP. Until then, the Mnesia
application (or some user-implemented method for locking) must be used to
implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.
All Dets functions return {error, Reason} if an error occurs (first/1 and
next/2 are exceptions, they exit the process with the error tuple). If badly
formed arguments are specified, all functions exit the process with a badarg
message.

 See Also

ets, mnesia, qlc

 Summary

 Types

 access()

 auto_save()

 bindings_cont()

 Opaque continuation used by match/1 and match/3.

 cont()

 Opaque continuation used by bchunk/2.

 keypos()

 match_spec()

 Match specifications, see section
Match Specification in Erlang in ERTS User's Guide and
the ms_transform module.

 no_slots()

 object()

 object_cont()

 Opaque continuation used by match_object/1 and match_object/3.

 pattern()

 For a description of patterns, see ets:match/2.

 select_cont()

 Opaque continuation used by select/1 and select/3.

 tab_name()

 type()

 Functions

 all()

 Returns a list of the names of all open tables on this node.

 bchunk(Name, Continuation)

 Returns a list of objects stored in a table. The exact representation of the
returned objects is not public.

 close(Name)

 Closes a table. Only processes that have opened a table are allowed to close it.

 delete(Name, Key)

 Deletes all objects with key Key from table Name.

 delete_all_objects(Name)

 Deletes all objects from a table in almost constant time. However, if the table
if fixed, delete_all_objects(T) is equivalent to
match_delete(T, '_').

 delete_object(Name, Object)

 Deletes all instances of a specified object from a table. If a table is of type
bag or duplicate_bag, this function can be used to delete only some of the
objects with a specified key.

 first(Name)

 Returns the first key stored in table Name according to the internal order of
the table, or '$end_of_table' if the table is empty.

 foldl(Function, Acc0, Name)

 Equivalent to foldr/3.

 foldr(Function, Acc0, Name)

 Calls Function on successive elements of table Name together with an extra
argument AccIn. The table elements are traversed in unspecified order.
Function must return a new accumulator that is passed to the next call. Acc0
is returned if the table is empty.

 from_ets(Name, EtsTab)

 Deletes all objects of table Name and then inserts all the objects of the ETS
table EtsTab. The objects are inserted in unspecified order. As
ets:safe_fixtable/2 is called, the ETS table must be public or owned by the
calling process.

 info(Name)

 Returns information about table Name as a list of tuples

 info(Name, Item)

 Returns the information associated with Item for table Name. In addition to
the {Item, Value} pairs defined for info/1, the following items are allowed

 init_table(Name, InitFun)

 Equivalent to init_table(Name, InitFun, []).

 init_table(Name, InitFun, Options)

 Replaces the existing objects of table Name with objects created by calling
the input function InitFun.

 insert(Name, Objects)

 Inserts one or more objects into the table Name. If there already exists an
object with a key matching the key of some of the given objects and the table
type is set, the old object will be replaced.

 insert_new(Name, Objects)

 Inserts one or more objects into table Name. If there already exists some
object with a key matching the key of any of the specified objects, the table is
not updated and false is returned. Otherwise the objects are inserted and
true returned.

 is_compatible_bchunk_format(Name, BchunkFormat)

 Returns true if it would be possible to initialize table Name, using
init_table/3 with option {format, bchunk}, with objects read with bchunk/2
from some table T, such that calling info(T, bchunk_format)
returns BchunkFormat.

 is_dets_file(Filename)

 Returns true if file Filename is a Dets table, otherwise false.

 lookup(Name, Key)

 Returns a list of all objects with key Key stored in table Name, for
example

 match(Continuation)

 Matches some objects stored in a table and returns a non-empty list of the
bindings matching a specified pattern in some unspecified order. The table, the
pattern, and the number of objects that are matched are all defined by
Continuation, which has been returned by a previous call to
match/1 or match/3.

 match(Name, Pattern)

 Returns for each object of table Name that matches Pattern a list of
bindings in some unspecified order. For a description of patterns, see
ets:match/2. If the keypos'th element of Pattern is unbound, all table
objects are matched. If the keypos'th element is bound, only the objects with
the correct key are matched.

 match(Name, Pattern, N)

 Matches some or all objects of table Name and returns a non-empty list of the
bindings that match Pattern in some unspecified order. For a description of
patterns, see ets:match/2.

 match_delete(Name, Pattern)

 Deletes all objects that match Pattern from table Name. For a description of
patterns, see ets:match/2.

 match_object(Continuation)

 Returns a non-empty list of some objects stored in a table that match a given
pattern in some unspecified order. The table, the pattern, and the number of
objects that are matched are all defined by Continuation, which has been
returned by a previous call to match_object/1 or
match_object/3.

 match_object(Name, Pattern)

 Returns a list of all objects of table Name that match Pattern in some
unspecified order. For a description of patterns, see ets:match/2.

 match_object(Name, Pattern, N)

 Matches some or all objects stored in table Name and returns a non-empty list
of the objects that match Pattern in some unspecified order. For a description
of patterns, see ets:match/2.

 member(Name, Key)

 Works like lookup/2, but does not return the objects. Returns true if one or
more table elements has key Key, otherwise false.

 next(Name, Key1)

 Returns either the key following Key1 in table Name according to the
internal order of the table, or '$end_of_table' if there is no next key.

 open_file(Filename)

 Opens an existing table. If the table is not properly closed, it is repaired.
The returned reference is to be used as the table name. This function is most
useful for debugging purposes.

 open_file(Name, Args)

 Opens a table. An empty Dets table is created if no file exists.

 pid2name(Pid)

 Returns the table name given the pid of a process that handles requests to a
table, or undefined if there is no such table.

 repair_continuation(Continuation, MatchSpec)

 This function can be used to restore an opaque continuation returned by
select/3 or select/1 if the continuation has passed through external term
format (been sent between nodes or stored on disk).

 safe_fixtable(Name, Fix)

 If Fix is true, table Name is fixed (once more) by the calling process,
otherwise the table is released. The table is also released when a fixing
process terminates.

 select(Continuation)

 Applies a match specification to some objects stored in a table and returns a
non-empty list of the results. The table, the match specification, and the
number of objects that are matched are all defined by Continuation, which is
returned by a previous call to select/1 or select/3.

 select(Name, MatchSpec)

 Returns the results of applying match specification MatchSpec to all or some
objects stored in table Name. The order of the objects is not specified. For a
description of match specifications, see the
ERTS User's Guide.

 select(Name, MatchSpec, N)

 Returns the results of applying match specification MatchSpec to some or all
objects stored in table Name. The order of the objects is not specified. For a
description of match specifications, see the
ERTS User's Guide.

 select_delete(Name, MatchSpec)

 Deletes each object from table Name such that applying match specification
MatchSpec to the object returns value true. For a description of match
specifications, see the ERTS User's Guide. Returns the
number of deleted objects.

 slot(Name, I)

 The objects of a table are distributed among slots, starting with slot 0 and
ending with slot n. Returns the list of objects associated with slot I. If
I > n, '$end_of_table' is returned.

 sync(Name)

 Ensures that all updates made to table Name are written to disk. This also
applies to tables that have been opened with flag ram_file set to true. In
this case, the contents of the RAM file are flushed to disk.

 table(Name)

 Equivalent to table(Name, []).

 table(Name, Options)

 Returns a Query List Comprehension (QLC) query handle. The qlc module
provides a query language aimed mainly for Mnesia, but ETS tables, Dets tables,
and lists are also recognized by qlc as sources of data. Calling
dets:table/1,2 is the means to make Dets table Name usable to
qlc.

 to_ets(Name, EtsTab)

 Inserts the objects of the Dets table Name into the ETS table EtsTab. The
order in which the objects are inserted is not specified. The existing objects
of the ETS table are kept unless overwritten.

 traverse(Name, Fun)

 Applies Fun to each object stored in table Name in some unspecified order.
Different actions are taken depending on the return value of Fun. The
following Fun return values are allowed

 update_counter(Name, Key, Increment)

 Updates the object with key Key stored in table Name of type set by adding
Incr to the element at the Pos:th position. The new counter value is
returned. If no position is specified, the element directly following the key is
updated.

 Types

 Link to this type

 access()

 View Source

 (not exported)

 -type access() :: read | read_write.

 Link to this type

 auto_save()

 View Source

 (not exported)

 -type auto_save() :: infinity | non_neg_integer().

 Link to this opaque

 bindings_cont()

 View Source

 -opaque bindings_cont()

Opaque continuation used by match/1 and match/3.

 Link to this opaque

 cont()

 View Source

 -opaque cont()

Opaque continuation used by bchunk/2.

 Link to this type

 keypos()

 View Source

 (not exported)

 -type keypos() :: pos_integer().

 Link to this type

 match_spec()

 View Source

 (not exported)

 -type match_spec() :: ets:match_spec().

Match specifications, see section
Match Specification in Erlang in ERTS User's Guide and
the ms_transform module.

 Link to this type

 no_slots()

 View Source

 (not exported)

 -type no_slots() :: default | non_neg_integer().

 Link to this type

 object()

 View Source

 (not exported)

 -type object() :: tuple().

 Link to this opaque

 object_cont()

 View Source

 -opaque object_cont()

Opaque continuation used by match_object/1 and match_object/3.

 Link to this type

 pattern()

 View Source

 (not exported)

 -type pattern() :: atom() | tuple().

For a description of patterns, see ets:match/2.

 Link to this opaque

 select_cont()

 View Source

 -opaque select_cont()

Opaque continuation used by select/1 and select/3.

 Link to this type

 tab_name()

 View Source

 -type tab_name() :: term().

 Link to this type

 type()

 View Source

 (not exported)

 -type type() :: bag | duplicate_bag | set.

 Functions

 Link to this function

 all()

 View Source

 -spec all() -> [tab_name()].

Returns a list of the names of all open tables on this node.

 Link to this function

 bchunk(Name, Continuation)

 View Source

 -spec bchunk(Name, Continuation) -> {Continuation2, Data} | '$end_of_table' | {error, Reason}
 when
 Name :: tab_name(),
 Continuation :: start | cont(),
 Continuation2 :: cont(),
 Data :: binary() | tuple(),
 Reason :: term().

Returns a list of objects stored in a table. The exact representation of the
returned objects is not public.
The lists of data can be used for initializing a table by specifying value
bchunk to option format of function init_table/3. The Mnesia application
uses this function for copying open tables.
Unless the table is protected using safe_fixtable/2,
calls to bchunk/2 do possibly not work as expected if concurrent
updates are made to the table.
The first time bchunk/2 is called, an initial continuation, the
atom start, must be provided.
bchunk/2 returns a tuple {Continuation2, Data}, where Data
is a list of objects. Continuation2 is another continuation that is to be
passed on to a subsequent call to bchunk/2. With a series of
calls to bchunk/2, all table objects can be extracted.
bchunk/2 returns '$end_of_table' when all objects are
returned, or {error, Reason} if an error occurs.

 Link to this function

 close(Name)

 View Source

 -spec close(Name) -> ok | {error, Reason} when Name :: tab_name(), Reason :: term().

Closes a table. Only processes that have opened a table are allowed to close it.
All open tables must be closed before the system is stopped. If an attempt is
made to open a table that is not properly closed, Dets automatically tries to
repair it.

 Link to this function

 delete(Name, Key)

 View Source

 -spec delete(Name, Key) -> ok | {error, Reason} when Name :: tab_name(), Key :: term(), Reason :: term().

Deletes all objects with key Key from table Name.

 Link to this function

 delete_all_objects(Name)

 View Source

 -spec delete_all_objects(Name) -> ok | {error, Reason} when Name :: tab_name(), Reason :: term().

Deletes all objects from a table in almost constant time. However, if the table
if fixed, delete_all_objects(T) is equivalent to
match_delete(T, '_').

 Link to this function

 delete_object(Name, Object)

 View Source

 -spec delete_object(Name, Object) -> ok | {error, Reason}
 when Name :: tab_name(), Object :: object(), Reason :: term().

Deletes all instances of a specified object from a table. If a table is of type
bag or duplicate_bag, this function can be used to delete only some of the
objects with a specified key.

 Link to this function

 first(Name)

 View Source

 -spec first(Name) -> Key | '$end_of_table' when Name :: tab_name(), Key :: term().

Returns the first key stored in table Name according to the internal order of
the table, or '$end_of_table' if the table is empty.
Unless the table is protected using safe_fixtable/2,
subsequent calls to next/2 do possibly not work as expected if concurrent
updates are made to the table.
If an error occurs, the process is exited with an error tuple {error, Reason}.
The error tuple is not returned, as it cannot be distinguished from a key.
There are two reasons why first/1 and next/2 are
not to be used: they are not efficient, and they prevent the use of key
'$end_of_table', as this atom is used to indicate the end of the table. If
possible, use functions match,
match_object, and select for traversing
tables.

 Link to this function

 foldl(Function, Acc0, Name)

 View Source

 -spec foldl(Function, Acc0, Name) -> Acc | {error, Reason}
 when
 Name :: tab_name(),
 Function :: fun((Object :: object(), AccIn) -> AccOut),
 Acc0 :: term(),
 Acc :: term(),
 AccIn :: term(),
 AccOut :: term(),
 Reason :: term().

Equivalent to foldr/3.

 Link to this function

 foldr(Function, Acc0, Name)

 View Source

 -spec foldr(Function, Acc0, Name) -> Acc | {error, Reason}
 when
 Name :: tab_name(),
 Function :: fun((Object :: object(), AccIn) -> AccOut),
 Acc0 :: term(),
 Acc :: term(),
 AccIn :: term(),
 AccOut :: term(),
 Reason :: term().

Calls Function on successive elements of table Name together with an extra
argument AccIn. The table elements are traversed in unspecified order.
Function must return a new accumulator that is passed to the next call. Acc0
is returned if the table is empty.

 Link to this function

 from_ets(Name, EtsTab)

 View Source

 -spec from_ets(Name, EtsTab) -> ok | {error, Reason}
 when Name :: tab_name(), EtsTab :: ets:table(), Reason :: term().

Deletes all objects of table Name and then inserts all the objects of the ETS
table EtsTab. The objects are inserted in unspecified order. As
ets:safe_fixtable/2 is called, the ETS table must be public or owned by the
calling process.

 Link to this function

 info(Name)

 View Source

 -spec info(Name) -> InfoList | undefined
 when
 Name :: tab_name(),
 InfoList :: [InfoTuple],
 InfoTuple ::
 {file_size, non_neg_integer()} |
 {filename, file:name()} |
 {keypos, keypos()} |
 {size, non_neg_integer()} |
 {type, type()}.

Returns information about table Name as a list of tuples:
	{file_size, integer() >= 0}} - The file size, in bytes.
	{filename, ``t:file:name/0``} - The name of the file where objects are
stored.
	{keypos, ``t:keypos/0``} - The key position.
	{size, integer() >= 0} - The number of objects stored in the table.
	{type, ``t:type/0``} - The table type.

 Link to this function

 info(Name, Item)

 View Source

 -spec info(Name, Item) -> Value | undefined
 when
 Name :: tab_name(),
 Item ::
 access | auto_save | bchunk_format | hash | file_size | filename | keypos |
 memory | no_keys | no_objects | no_slots | owner | ram_file | safe_fixed |
 safe_fixed_monotonic_time | size | type,
 Value :: term().

Returns the information associated with Item for table Name. In addition to
the {Item, Value} pairs defined for info/1, the following items are allowed:
	{access, ``t:access/0``} - The access mode.

	{auto_save, ``t:auto_save/0``} - The autosave interval.

	{bchunk_format, binary()} - An opaque binary describing the format of the
objects returned by bchunk/2. The binary can be used as
argument to
is_compatible_bchunk_format/2.

	{hash, Hash} - Describes which BIF is used to calculate the hash values of
the objects stored in the Dets table. Possible values of Hash:
	phash - Implies that the erlang:phash/2 BIF is used.
	phash2 - Implies that the erlang:phash2/1 BIF is used.

	{memory, integer() >= 0} - The file size, in bytes. The same value is
associated with item file_size.

	{no_keys, integer >= 0()} - The number of different keys stored in the
table.

	{no_objects, integer >= 0()} - The number of objects stored in the table.

	{no_slots, {Min, Used, Max}} - The number of slots of the table. Min is
the minimum number of slots, Used is the number of currently used slots, and
Max is the maximum number of slots.

	{owner, pid()} - The pid of the process that handles requests to the Dets
table.

	{ram_file, boolean()} - Whether the table is kept in RAM.

	{safe_fixed_monotonic_time, SafeFixed} - If the table is fixed, SafeFixed
is a tuple {FixedAtTime, [{Pid,RefCount}]}. FixedAtTime is the time when
the table was first fixed, and Pid is the pid of the process that fixes the
table RefCount times. There can be any number of processes in the list. If
the table is not fixed, SafeFixed is the atom false.
FixedAtTime corresponds to the result returned by erlang:monotonic_time/0
at the time of fixation. The use of safe_fixed_monotonic_time is
time warp safe.

	{safe_fixed, SafeFixed} - The same as
{safe_fixed_monotonic_time, SafeFixed} except the format and value of
FixedAtTime.
FixedAtTime corresponds to the result returned by erlang:timestamp/0 at
the time of fixation. Notice that when the system uses single or multi
time warp modes, this can
produce strange results. This is because the use of safe_fixed is not
time warp safe. Time warp
safe code must use safe_fixed_monotonic_time instead.

 Link to this function

 init_table(Name, InitFun)

 View Source

 -spec init_table(Name, InitFun) -> ok | {error, Reason}
 when
 Name :: tab_name(),
 InitFun :: fun((Arg) -> Res),
 Arg :: read | close,
 Res :: end_of_input | {[object()], InitFun} | {Data, InitFun} | term(),
 Reason :: term(),
 Data :: binary() | tuple().

Equivalent to init_table(Name, InitFun, []).

 Link to this function

 init_table(Name, InitFun, Options)

 View Source

 -spec init_table(Name, InitFun, Options) -> ok | {error, Reason}
 when
 Name :: tab_name(),
 InitFun :: fun((Arg) -> Res),
 Arg :: read | close,
 Res :: end_of_input | {[object()], InitFun} | {Data, InitFun} | term(),
 Options :: Option | [Option],
 Option :: {min_no_slots, no_slots()} | {format, term | bchunk},
 Reason :: term(),
 Data :: binary() | tuple().

Replaces the existing objects of table Name with objects created by calling
the input function InitFun.
The reason for using this function rather than calling insert/2
is that of efficiency. Notice that the input functions are called by the process
that handles requests to the Dets table, not by the calling process.
When called with argument read, function InitFun is assumed to return
end_of_input when there is no more input, or {Objects, Fun}, where Objects
is a list of objects and Fun is a new input function. Any other value Value
is returned as an error {error, {init_fun, Value}}. Each input function is
called exactly once, and if an error occurs, the last function is called with
argument close, the reply of which is ignored.
If the table type is set and more than one object exists with a given key, one
of the objects is chosen. This is not necessarily the last object with the given
key in the sequence of objects returned by the input functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for
duplicated objects stored in tables of type bag.
It is important that the table has a sufficient number of slots for the objects.
If not, the hash list starts to grow when init_table/2
returns, which significantly slows down access to the table for a period of
time. The minimum number of slots is set by the open_file/2
option min_no_slots and returned by the info/2 item no_slots.
See also option min_no_slots below.
Argument Options is a list of {Key, Val} tuples, where the following values
are allowed:
	{min_no_slots, no_slots()} - Specifies the estimated number of different
keys to be stored in the table. The open_file/2 option with
the same name is ignored, unless the table is created, in which case
performance can be enhanced by supplying an estimate when initializing the
table.
	{format, Format} - Specifies the format of the objects returned by function
InitFun. If Format is term (the default), InitFun is assumed to return
a list of tuples. If Format is bchunk, InitFun is assumed to return
Data as returned by bchunk/2. This option overrides option min_no_slots.

 Link to this function

 insert(Name, Objects)

 View Source

 -spec insert(Name, Objects) -> ok | {error, Reason}
 when Name :: tab_name(), Objects :: object() | [object()], Reason :: term().

Inserts one or more objects into the table Name. If there already exists an
object with a key matching the key of some of the given objects and the table
type is set, the old object will be replaced.

 Link to this function

 insert_new(Name, Objects)

 View Source

 -spec insert_new(Name, Objects) -> boolean() | {error, Reason}
 when Name :: tab_name(), Objects :: object() | [object()], Reason :: term().

Inserts one or more objects into table Name. If there already exists some
object with a key matching the key of any of the specified objects, the table is
not updated and false is returned. Otherwise the objects are inserted and
true returned.

 Link to this function

 is_compatible_bchunk_format(Name, BchunkFormat)

 View Source

 -spec is_compatible_bchunk_format(Name, BchunkFormat) -> boolean()
 when Name :: tab_name(), BchunkFormat :: binary().

Returns true if it would be possible to initialize table Name, using
init_table/3 with option {format, bchunk}, with objects read with bchunk/2
from some table T, such that calling info(T, bchunk_format)
returns BchunkFormat.

 Link to this function

 is_dets_file(Filename)

 View Source

 -spec is_dets_file(Filename) -> boolean() | {error, Reason}
 when Filename :: file:name(), Reason :: term().

Returns true if file Filename is a Dets table, otherwise false.

 Link to this function

 lookup(Name, Key)

 View Source

 -spec lookup(Name, Key) -> Objects | {error, Reason}
 when Name :: tab_name(), Key :: term(), Objects :: [object()], Reason :: term().

Returns a list of all objects with key Key stored in table Name, for
example:
2> dets:open_file(abc, [{type, bag}]).
{ok,abc}
3> dets:insert(abc, {1,2,3}).
ok
4> dets:insert(abc, {1,3,4}).
ok
5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]
If the table type is set, the function returns either the empty list or a list
with one object, as there cannot be more than one object with a given key. If
the table type is bag or duplicate_bag, the function returns a list of
arbitrary length.
Notice that the order of objects returned is unspecified. In particular, the
order in which objects were inserted is not reflected.

 Link to this function

 match(Continuation)

 View Source

 -spec match(Continuation) -> {[Match], Continuation2} | '$end_of_table' | {error, Reason}
 when
 Continuation :: bindings_cont(),
 Continuation2 :: bindings_cont(),
 Match :: [term()],
 Reason :: term().

Matches some objects stored in a table and returns a non-empty list of the
bindings matching a specified pattern in some unspecified order. The table, the
pattern, and the number of objects that are matched are all defined by
Continuation, which has been returned by a previous call to
match/1 or match/3.
When all table objects are matched, '$end_of_table' is returned.

 Link to this function

 match(Name, Pattern)

 View Source

 -spec match(Name, Pattern) -> [Match] | {error, Reason}
 when Name :: tab_name(), Pattern :: pattern(), Match :: [term()], Reason :: term().

Returns for each object of table Name that matches Pattern a list of
bindings in some unspecified order. For a description of patterns, see
ets:match/2. If the keypos'th element of Pattern is unbound, all table
objects are matched. If the keypos'th element is bound, only the objects with
the correct key are matched.

 Link to this function

 match(Name, Pattern, N)

 View Source

 -spec match(Name, Pattern, N) -> {[Match], Continuation} | '$end_of_table' | {error, Reason}
 when
 Name :: tab_name(),
 Pattern :: pattern(),
 N :: default | non_neg_integer(),
 Continuation :: bindings_cont(),
 Match :: [term()],
 Reason :: term().

Matches some or all objects of table Name and returns a non-empty list of the
bindings that match Pattern in some unspecified order. For a description of
patterns, see ets:match/2.
A tuple of the bindings and a continuation is returned, unless the table is
empty, in which case '$end_of_table' is returned. The continuation is to be
used when matching further objects by calling match/1.
If the keypos'th element of Pattern is bound, all table objects are matched.
If the keypos'th element is unbound, all table objects are matched, N objects
at a time, until at least one object matches or the end of the table is reached.
The default, indicated by giving N the value default, is to let the number
of objects vary depending on the sizes of the objects. All objects with the same
key are always matched at the same time, which implies that more than N objects
can sometimes be matched.
The table is always to be protected using safe_fixtable/2 before calling
match/3, otherwise errors can occur when calling
match/1.

 Link to this function

 match_delete(Name, Pattern)

 View Source

 -spec match_delete(Name, Pattern) -> ok | {error, Reason}
 when Name :: tab_name(), Pattern :: pattern(), Reason :: term().

Deletes all objects that match Pattern from table Name. For a description of
patterns, see ets:match/2.
If the keypos'th element of Pattern is bound, only the objects with the
correct key are matched.

 Link to this function

 match_object(Continuation)

 View Source

 -spec match_object(Continuation) -> {Objects, Continuation2} | '$end_of_table' | {error, Reason}
 when
 Continuation :: object_cont(),
 Continuation2 :: object_cont(),
 Objects :: [object()],
 Reason :: term().

Returns a non-empty list of some objects stored in a table that match a given
pattern in some unspecified order. The table, the pattern, and the number of
objects that are matched are all defined by Continuation, which has been
returned by a previous call to match_object/1 or
match_object/3.
When all table objects are matched, '$end_of_table' is returned.

 Link to this function

 match_object(Name, Pattern)

 View Source

 -spec match_object(Name, Pattern) -> Objects | {error, Reason}
 when
 Name :: tab_name(),
 Pattern :: pattern(),
 Objects :: [object()],
 Reason :: term().

Returns a list of all objects of table Name that match Pattern in some
unspecified order. For a description of patterns, see ets:match/2.
If the keypos'th element of Pattern is unbound, all table objects are matched.
If the keypos'th element of Pattern is bound, only the objects with the
correct key are matched.
Using the match_object functions for traversing all table objects is more
efficient than calling first/1 and next/2 or
slot/2.

 Link to this function

 match_object(Name, Pattern, N)

 View Source

 -spec match_object(Name, Pattern, N) -> {Objects, Continuation} | '$end_of_table' | {error, Reason}
 when
 Name :: tab_name(),
 Pattern :: pattern(),
 N :: default | non_neg_integer(),
 Continuation :: object_cont(),
 Objects :: [object()],
 Reason :: term().

Matches some or all objects stored in table Name and returns a non-empty list
of the objects that match Pattern in some unspecified order. For a description
of patterns, see ets:match/2.
A list of objects and a continuation is returned, unless the table is empty, in
which case '$end_of_table' is returned. The continuation is to be used when
matching further objects by calling match_object/1.
If the keypos'th element of Pattern is bound, all table objects are matched.
If the keypos'th element is unbound, all table objects are matched, N objects
at a time, until at least one object matches or the end of the table is reached.
The default, indicated by giving N the value default, is to let the number
of objects vary depending on the sizes of the objects. All matching objects with
the same key are always returned in the same reply, which implies that more than
N objects can sometimes be returned.
The table is always to be protected using safe_fixtable/2 before calling
match_object/3, otherwise errors can occur when calling
match_object/1.

 Link to this function

 member(Name, Key)

 View Source

 -spec member(Name, Key) -> boolean() | {error, Reason}
 when Name :: tab_name(), Key :: term(), Reason :: term().

Works like lookup/2, but does not return the objects. Returns true if one or
more table elements has key Key, otherwise false.

 Link to this function

 next(Name, Key1)

 View Source

 -spec next(Name, Key1) -> Key2 | '$end_of_table' when Name :: tab_name(), Key1 :: term(), Key2 :: term().

Returns either the key following Key1 in table Name according to the
internal order of the table, or '$end_of_table' if there is no next key.
If an error occurs, the process is exited with an error tuple {error, Reason}.
To find the first key in the table, use first/1.

 Link to this function

 open_file(Filename)

 View Source

 -spec open_file(Filename) -> {ok, Reference} | {error, Reason}
 when Filename :: file:name(), Reference :: reference(), Reason :: term().

Opens an existing table. If the table is not properly closed, it is repaired.
The returned reference is to be used as the table name. This function is most
useful for debugging purposes.

 Link to this function

 open_file(Name, Args)

 View Source

 -spec open_file(Name, Args) -> {ok, Name} | {error, Reason}
 when
 Name :: tab_name(),
 Args :: [OpenArg],
 OpenArg ::
 {access, access()} |
 {auto_save, auto_save()} |
 {estimated_no_objects, non_neg_integer()} |
 {file, file:name()} |
 {max_no_slots, no_slots()} |
 {min_no_slots, no_slots()} |
 {keypos, keypos()} |
 {ram_file, boolean()} |
 {repair, boolean() | force} |
 {type, type()},
 Reason :: term().

Opens a table. An empty Dets table is created if no file exists.
The atom Name is the table name. The table name must be provided in all
subsequent operations on the table. The name can be used by other processes as
well, and many processes can share one table.
If two processes open the same table by giving the same name and arguments, the
table has two users. If one user closes the table, it remains open until the
second user closes it.
Argument Args is a list of {Key, Val} tuples, where the following values are
allowed:
	{access, ``t:access/0``} - Existing tables can be opened in read-only mode.
A table that is opened in read-only mode is not subjected to the automatic
file reparation algorithm if it is later opened after a crash. Defaults to
read_write.

	{auto_save, ``t:auto_save/0``} - The autosave interval. If the interval is
an integer Time, the table is flushed to disk whenever it is not accessed
for Time milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval is the atom
infinity, autosave is disabled. Defaults to 180000 (3 minutes).

	{estimated_no_objects, ``t:no_slots/0``} - Equivalent to option
min_no_slots.

	{file, ``t:file:name/0``} - The name of the file to be opened. Defaults to
the table name.

	{max_no_slots, ``t:no_slots/0``} - The maximum number of slots to be used.
Defaults to 32 M, which is the maximal value. Notice that a higher value can
increase the table fragmentation, and a smaller value can decrease the
fragmentation, at the expense of execution time.

	{min_no_slots, ``t:no_slots/0``} - Application performance can be enhanced
with this flag by specifying, when the table is created, the estimated number
of different keys to be stored in the table. Defaults to 256, which is the
minimum value.

	{keypos, ``t:keypos/0``} - The position of the element of each object to be
used as key. Defaults to 1. The ability to explicitly state the key position
is most convenient when we want to store Erlang records in which the first
position of the record is the name of the record type.

	{ram_file, boolean()} - Whether the table is to be kept in RAM. Keeping the
table in RAM can sound like an anomaly, but can enhance the performance of
applications that open a table, insert a set of objects, and then close the
table. When the table is closed, its contents are written to the disk file.
Defaults to false.

	{repair, Value} - Value can be either a boolean/0 or the atom
force. The flag specifies if the Dets server is to invoke the automatic file
reparation algorithm. Defaults to true. If false is specified, no attempt
is made to repair the file, and {error, {needs_repair, FileName}} is
returned if the table must be repaired.
Value force means that a reparation is made even if the table is properly
closed. This is a seldom needed option.
Option repair is ignored if the table is already open.

	{type, ``t:type/0``} - The table type. Defaults to set.

 Link to this function

 pid2name(Pid)

 View Source

 -spec pid2name(Pid) -> {ok, Name} | undefined when Pid :: pid(), Name :: tab_name().

Returns the table name given the pid of a process that handles requests to a
table, or undefined if there is no such table.
This function is meant to be used for debugging only.

 Link to this function

 repair_continuation(Continuation, MatchSpec)

 View Source

 -spec repair_continuation(Continuation, MatchSpec) -> Continuation2
 when
 Continuation :: select_cont(),
 Continuation2 :: select_cont(),
 MatchSpec :: match_spec().

This function can be used to restore an opaque continuation returned by
select/3 or select/1 if the continuation has passed through external term
format (been sent between nodes or stored on disk).
The reason for this function is that continuation terms contain compiled match
specifications and therefore are invalidated if converted to external term
format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent
select/1 calls even though it has been stored on disk or on
another node.
For more information and examples, see the ets module.
Note
This function is rarely needed in application code. It is used by application
Mnesia to provide distributed select/3 and
select/1 sequences. A normal application would either use
Mnesia or keep the continuation from being converted to external format.
The reason for not having an external representation of compiled match
specifications is performance. It can be subject to change in future releases,
while this interface remains for backward compatibility.

 Link to this function

 safe_fixtable(Name, Fix)

 View Source

 -spec safe_fixtable(Name, Fix) -> ok when Name :: tab_name(), Fix :: boolean().

If Fix is true, table Name is fixed (once more) by the calling process,
otherwise the table is released. The table is also released when a fixing
process terminates.
If many processes fix a table, the table remains fixed until all processes have
released it or terminated. A reference counter is kept on a per process basis,
and N consecutive fixes require N releases to release the table.
It is not guaranteed that calls to first/1, next/2,
or select and match functions work as expected even if the table is fixed; the
limited support for concurrency provided by the ets module is not yet
provided by Dets. Fixing a table currently only disables resizing of the hash
list of the table.
If objects have been added while the table was fixed, the hash list starts to
grow when the table is released, which significantly slows down access to the
table for a period of time.

 Link to this function

 select(Continuation)

 View Source

 -spec select(Continuation) -> {Selection, Continuation2} | '$end_of_table' | {error, Reason}
 when
 Continuation :: select_cont(),
 Continuation2 :: select_cont(),
 Selection :: [term()],
 Reason :: term().

Applies a match specification to some objects stored in a table and returns a
non-empty list of the results. The table, the match specification, and the
number of objects that are matched are all defined by Continuation, which is
returned by a previous call to select/1 or select/3.
When all objects of the table have been matched, '$end_of_table' is returned.

 Link to this function

 select(Name, MatchSpec)

 View Source

 -spec select(Name, MatchSpec) -> Selection | {error, Reason}
 when
 Name :: tab_name(),
 MatchSpec :: match_spec(),
 Selection :: [term()],
 Reason :: term().

Returns the results of applying match specification MatchSpec to all or some
objects stored in table Name. The order of the objects is not specified. For a
description of match specifications, see the
ERTS User's Guide.
If the keypos'th element of MatchSpec is unbound, the match specification is
applied to all objects of the table. If the keypos'th element is bound, the
match specification is applied to the objects with the correct key(s) only.
Using the select functions for traversing all objects of a table is more
efficient than calling first/1 and next/2 or
slot/2.

 Link to this function

 select(Name, MatchSpec, N)

 View Source

 -spec select(Name, MatchSpec, N) -> {Selection, Continuation} | '$end_of_table' | {error, Reason}
 when
 Name :: tab_name(),
 MatchSpec :: match_spec(),
 N :: default | non_neg_integer(),
 Continuation :: select_cont(),
 Selection :: [term()],
 Reason :: term().

Returns the results of applying match specification MatchSpec to some or all
objects stored in table Name. The order of the objects is not specified. For a
description of match specifications, see the
ERTS User's Guide.
A tuple of the results of applying the match specification and a continuation is
returned, unless the table is empty, in which case '$end_of_table' is
returned. The continuation is to be used when matching more objects by calling
select/1.
If the keypos'th element of MatchSpec is bound, the match specification is
applied to all objects of the table with the correct key(s). If the keypos'th
element of MatchSpec is unbound, the match specification is applied to all
objects of the table, N objects at a time, until at least one object matches
or the end of the table is reached. The default, indicated by giving N the
value default, is to let the number of objects vary depending on the sizes of
the objects. All objects with the same key are always handled at the same time,
which implies that the match specification can be applied to more than N
objects.
The table is always to be protected using safe_fixtable/2 before calling
select/3, otherwise errors can occur when calling
select/1.

 Link to this function

 select_delete(Name, MatchSpec)

 View Source

 -spec select_delete(Name, MatchSpec) -> N | {error, Reason}
 when
 Name :: tab_name(),
 MatchSpec :: match_spec(),
 N :: non_neg_integer(),
 Reason :: term().

Deletes each object from table Name such that applying match specification
MatchSpec to the object returns value true. For a description of match
specifications, see the ERTS User's Guide. Returns the
number of deleted objects.
If the keypos'th element of MatchSpec is bound, the match specification is
applied to the objects with the correct key(s) only.

 Link to this function

 slot(Name, I)

 View Source

 -spec slot(Name, I) -> '$end_of_table' | Objects | {error, Reason}
 when Name :: tab_name(), I :: non_neg_integer(), Objects :: [object()], Reason :: term().

The objects of a table are distributed among slots, starting with slot 0 and
ending with slot n. Returns the list of objects associated with slot I. If
I > n, '$end_of_table' is returned.

 Link to this function

 sync(Name)

 View Source

 -spec sync(Name) -> ok | {error, Reason} when Name :: tab_name(), Reason :: term().

Ensures that all updates made to table Name are written to disk. This also
applies to tables that have been opened with flag ram_file set to true. In
this case, the contents of the RAM file are flushed to disk.
Notice that the space management data structures kept in RAM, the buddy system,
is also written to the disk. This can take some time if the table is fragmented.

 Link to this function

 table(Name)

 View Source

 -spec table(Name) -> QueryHandle when Name :: tab_name(), QueryHandle :: qlc:query_handle().

Equivalent to table(Name, []).

 Link to this function

 table(Name, Options)

 View Source

 -spec table(Name, Options) -> QueryHandle
 when
 Name :: tab_name(),
 Options :: Option | [Option],
 Option :: {n_objects, Limit} | {traverse, TraverseMethod},
 Limit :: default | pos_integer(),
 TraverseMethod :: first_next | select | {select, match_spec()},
 QueryHandle :: qlc:query_handle().

Returns a Query List Comprehension (QLC) query handle. The qlc module
provides a query language aimed mainly for Mnesia, but ETS tables, Dets tables,
and lists are also recognized by qlc as sources of data. Calling
dets:table/1,2 is the means to make Dets table Name usable to
qlc.
When there are only simple restrictions on the key position, qlc uses
dets:lookup/2 to look up the keys. When that is not possible,
the whole table is traversed. Option traverse determines how this is done:
	first_next - The table is traversed one key at a time by calling
dets:first/1 and dets:next/2.

	select - The table is traversed by calling dets:select/3
and dets:select/1. Option n_objects determines the number of
objects returned (the third argument of select/3). The match
specification (the second argument of select/3) is assembled
by qlc:
	Simple filters are translated into equivalent match specifications.
	More complicated filters must be applied to all objects returned by
select/3 given a match specification that matches all
objects.

	{select, ``t:match_spec/0``} - As for select, the table is traversed by
calling dets:select/3 and dets:select/1. The difference is that the match
specification is specified explicitly. This is how to state match
specifications that cannot easily be expressed within the syntax provided by
qlc.

The following example uses an explicit match specification to traverse the
table:
1> dets:open_file(t, []),
ok = dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).
An example with implicit match specification:
2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X < 5)]).
The latter example is equivalent to the former, which can be verified using
function qlc:info/1:
3> qlc:info(QH1) =:= qlc:info(QH2).
true
qlc:info/1 returns information about a query handle. In this case identical
information is returned for the two query handles.

 Link to this function

 to_ets(Name, EtsTab)

 View Source

 -spec to_ets(Name, EtsTab) -> EtsTab | {error, Reason}
 when Name :: tab_name(), EtsTab :: ets:table(), Reason :: term().

Inserts the objects of the Dets table Name into the ETS table EtsTab. The
order in which the objects are inserted is not specified. The existing objects
of the ETS table are kept unless overwritten.

 Link to this function

 traverse(Name, Fun)

 View Source

 -spec traverse(Name, Fun) -> Return | {error, Reason}
 when
 Name :: tab_name(),
 Fun :: fun((Object) -> FunReturn),
 Object :: object(),
 FunReturn :: continue | {continue, Val} | {done, Value} | OtherValue,
 Return :: [term()] | OtherValue,
 Val :: term(),
 Value :: term(),
 OtherValue :: term(),
 Reason :: term().

Applies Fun to each object stored in table Name in some unspecified order.
Different actions are taken depending on the return value of Fun. The
following Fun return values are allowed:
	continue - Continue to perform the traversal. For example, the following
function can be used to print the contents of a table:
fun(X) -> io:format("~p~n", [X]), continue end.

	{continue, Val} - Continue the traversal and accumulate Val. The
following function is supplied to collect all objects of a table in a list:
fun(X) -> {continue, X} end.

	{done, Value} - Terminate the traversal and return [Value | Acc].

Any other value OtherValue returned by Fun terminates the traversal and is
returned immediately.

 Link to this function

 update_counter(Name, Key, Increment)

 View Source

 -spec update_counter(Name, Key, Increment) -> Result
 when
 Name :: tab_name(),
 Key :: term(),
 Increment :: {Pos, Incr} | Incr,
 Pos :: integer(),
 Incr :: integer(),
 Result :: integer().

Updates the object with key Key stored in table Name of type set by adding
Incr to the element at the Pos:th position. The new counter value is
returned. If no position is specified, the element directly following the key is
updated.
This functions provides a way of updating a counter, without having to look up
an object, update the object by incrementing an element, and insert the
resulting object into the table again.

 dict - stdlib v5.2.1

dict

A Key-value dictionary.
The representation of a dictionary is not defined.
This module provides the same interface as the orddict module. One
difference is that while this module considers two keys as different if they do
not match (=:=), orddict considers two keys as different if and only if they
do not compare equal (==).

 Notes

Functions append and append_list are included so that keyed values can be
stored in a list accumulator, for example:
> D0 = dict:new(),
 D1 = dict:store(files, [], D0),
 D2 = dict:append(files, f1, D1),
 D3 = dict:append(files, f2, D2),
 D4 = dict:append(files, f3, D3),
 dict:fetch(files, D4).
[f1,f2,f3]
This saves the trouble of first fetching a keyed value, appending a new value to
the list of stored values, and storing the result.
Function fetch is to be used if the key is known to be in the dictionary,
otherwise function find.

 See Also

gb_trees, orddict

 Summary

 Types

 dict()

 dict(Key, Value)

 Dictionary as returned by new/0.

 Functions

 append(Key, Value, Dict1)

 Appends a new Value to the current list of values associated with Key.

 append_list(Key, ValList, Dict1)

 Appends a list of values ValList to the current list of values associated with
Key. An exception is generated if the initial value associated with Key is
not a list of values.

 erase(Key, Dict1)

 Erases all items with a given key from a dictionary.

 fetch(Key, Dict)

 Returns the value associated with Key in dictionary Dict. This function
assumes that Key is present in dictionary Dict, and an exception is
generated if Key is not in the dictionary.

 fetch_keys(Dict)

 Returns a list of all keys in dictionary Dict.

 filter(Pred, Dict1)

 Dict2 is a dictionary of all keys and values in Dict1 for which
Pred(Key, Value) is true.

 find(Key, Dict)

 Searches for a key in dictionary Dict. Returns {ok, Value}, where Value is
the value associated with Key, or error if the key is not present in the
dictionary.

 fold(Fun, Acc0, Dict)

 Calls Fun on successive keys and values of dictionary Dict together with an
extra argument Acc (short for accumulator). Fun must return a new
accumulator that is passed to the next call. Acc0 is returned if the
dictionary is empty. The evaluation order is undefined.

 from_list(List)

 Converts the Key-Value list List to dictionary Dict.

 is_empty(Dict)

 Returns true if dictionary Dict has no elements, otherwise false.

 is_key(Key, Dict)

 Tests if Key is contained in dictionary Dict.

 map(Fun, Dict1)

 Calls Fun on successive keys and values of dictionary Dict1 to return a new
value for each key. The evaluation order is undefined.

 merge(Fun, Dict1, Dict2)

 Merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All
the Key-Value pairs from both dictionaries are included in the new
dictionary. If a key occurs in both dictionaries, Fun is called with the key
and both values to return a new value. merge can be defined as follows, but is
faster

 new()

 Creates a new dictionary.

 size(Dict)

 Returns the number of elements in dictionary Dict.

 store(Key, Value, Dict1)

 Stores a Key-Value pair in dictionary Dict2. If Key already exists in
Dict1, the associated value is replaced by Value.

 take(Key, Dict)

 This function returns value from dictionary and a new dictionary without this
value. Returns error if the key is not present in the dictionary.

 to_list(Dict)

 Converts dictionary Dict to a list representation.

 update(Key, Fun, Dict1)

 Updates a value in a dictionary by calling Fun on the value to get a new
value. An exception is generated if Key is not present in the dictionary.

 update(Key, Fun, Initial, Dict1)

 Updates a value in a dictionary by calling Fun on the value to get a new
value. If Key is not present in the dictionary, Initial is stored as the
first value. For example, append/3 can be defined as

 update_counter(Key, Increment, Dict1)

 Adds Increment to the value associated with Key and stores this value. If
Key is not present in the dictionary, Increment is stored as the first
value.

 Types

 Link to this type

 dict()

 View Source

 -type dict() :: dict(_, _).

 Link to this opaque

 dict(Key, Value)

 View Source

 -opaque dict(Key, Value)

Dictionary as returned by new/0.

 Functions

 Link to this function

 append(Key, Value, Dict1)

 View Source

 -spec append(Key, Value, Dict1) -> Dict2 when Dict1 :: dict(Key, Value), Dict2 :: dict(Key, Value).

Appends a new Value to the current list of values associated with Key.
See also section Notes.

 Link to this function

 append_list(Key, ValList, Dict1)

 View Source

 -spec append_list(Key, ValList, Dict1) -> Dict2
 when Dict1 :: dict(Key, Value), Dict2 :: dict(Key, Value), ValList :: [Value].

Appends a list of values ValList to the current list of values associated with
Key. An exception is generated if the initial value associated with Key is
not a list of values.
See also section Notes.

 Link to this function

 erase(Key, Dict1)

 View Source

 -spec erase(Key, Dict1) -> Dict2 when Dict1 :: dict(Key, Value), Dict2 :: dict(Key, Value).

Erases all items with a given key from a dictionary.

 Link to this function

 fetch(Key, Dict)

 View Source

 -spec fetch(Key, Dict) -> Value when Dict :: dict(Key, Value).

Returns the value associated with Key in dictionary Dict. This function
assumes that Key is present in dictionary Dict, and an exception is
generated if Key is not in the dictionary.
See also section Notes.

 Link to this function

 fetch_keys(Dict)

 View Source

 -spec fetch_keys(Dict) -> Keys when Dict :: dict(Key, Value :: term()), Keys :: [Key].

Returns a list of all keys in dictionary Dict.

 Link to this function

 filter(Pred, Dict1)

 View Source

 -spec filter(Pred, Dict1) -> Dict2
 when
 Pred :: fun((Key, Value) -> boolean()),
 Dict1 :: dict(Key, Value),
 Dict2 :: dict(Key, Value).

Dict2 is a dictionary of all keys and values in Dict1 for which
Pred(Key, Value) is true.

 Link to this function

 find(Key, Dict)

 View Source

 -spec find(Key, Dict) -> {ok, Value} | error when Dict :: dict(Key, Value).

Searches for a key in dictionary Dict. Returns {ok, Value}, where Value is
the value associated with Key, or error if the key is not present in the
dictionary.
See also section Notes.

 Link to this function

 fold(Fun, Acc0, Dict)

 View Source

 -spec fold(Fun, Acc0, Dict) -> Acc1
 when
 Fun :: fun((Key, Value, AccIn) -> AccOut),
 Dict :: dict(Key, Value),
 Acc0 :: Acc,
 Acc1 :: Acc,
 AccIn :: Acc,
 AccOut :: Acc.

Calls Fun on successive keys and values of dictionary Dict together with an
extra argument Acc (short for accumulator). Fun must return a new
accumulator that is passed to the next call. Acc0 is returned if the
dictionary is empty. The evaluation order is undefined.

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List) -> Dict when Dict :: dict(Key, Value), List :: [{Key, Value}].

Converts the Key-Value list List to dictionary Dict.

 Link to this function

 is_empty(Dict)

 View Source

 (since OTP 17.0)

 -spec is_empty(Dict) -> boolean() when Dict :: dict().

Returns true if dictionary Dict has no elements, otherwise false.

 Link to this function

 is_key(Key, Dict)

 View Source

 -spec is_key(Key, Dict) -> boolean() when Dict :: dict(Key, Value :: term()).

Tests if Key is contained in dictionary Dict.

 Link to this function

 map(Fun, Dict1)

 View Source

 -spec map(Fun, Dict1) -> Dict2
 when
 Fun :: fun((Key, Value1) -> Value2),
 Dict1 :: dict(Key, Value1),
 Dict2 :: dict(Key, Value2).

Calls Fun on successive keys and values of dictionary Dict1 to return a new
value for each key. The evaluation order is undefined.

 Link to this function

 merge(Fun, Dict1, Dict2)

 View Source

 -spec merge(Fun, Dict1, Dict2) -> Dict3
 when
 Fun :: fun((Key, Value1, Value2) -> Value),
 Dict1 :: dict(Key, Value1),
 Dict2 :: dict(Key, Value2),
 Dict3 :: dict(Key, Value).

Merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All
the Key-Value pairs from both dictionaries are included in the new
dictionary. If a key occurs in both dictionaries, Fun is called with the key
and both values to return a new value. merge can be defined as follows, but is
faster:
merge(Fun, D1, D2) ->
 fold(fun (K, V1, D) ->
 update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
 end, D2, D1).

 Link to this function

 new()

 View Source

 -spec new() -> dict().

Creates a new dictionary.

 Link to this function

 size(Dict)

 View Source

 -spec size(Dict) -> non_neg_integer() when Dict :: dict().

Returns the number of elements in dictionary Dict.

 Link to this function

 store(Key, Value, Dict1)

 View Source

 -spec store(Key, Value, Dict1) -> Dict2 when Dict1 :: dict(Key, Value), Dict2 :: dict(Key, Value).

Stores a Key-Value pair in dictionary Dict2. If Key already exists in
Dict1, the associated value is replaced by Value.

 Link to this function

 take(Key, Dict)

 View Source

 (since OTP 20.0)

 -spec take(Key, Dict) -> {Value, Dict1} | error
 when Dict :: dict(Key, Value), Dict1 :: dict(Key, Value), Key :: term(), Value :: term().

This function returns value from dictionary and a new dictionary without this
value. Returns error if the key is not present in the dictionary.

 Link to this function

 to_list(Dict)

 View Source

 -spec to_list(Dict) -> List when Dict :: dict(Key, Value), List :: [{Key, Value}].

Converts dictionary Dict to a list representation.

 Link to this function

 update(Key, Fun, Dict1)

 View Source

 -spec update(Key, Fun, Dict1) -> Dict2
 when
 Dict1 :: dict(Key, Value),
 Dict2 :: dict(Key, Value),
 Fun :: fun((Value1 :: Value) -> Value2 :: Value).

Updates a value in a dictionary by calling Fun on the value to get a new
value. An exception is generated if Key is not present in the dictionary.

 Link to this function

 update(Key, Fun, Initial, Dict1)

 View Source

 -spec update(Key, Fun, Initial, Dict1) -> Dict2
 when
 Dict1 :: dict(Key, Value),
 Dict2 :: dict(Key, Value),
 Fun :: fun((Value1 :: Value) -> Value2 :: Value),
 Initial :: Value.

Updates a value in a dictionary by calling Fun on the value to get a new
value. If Key is not present in the dictionary, Initial is stored as the
first value. For example, append/3 can be defined as:
append(Key, Val, D) ->
 update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

 Link to this function

 update_counter(Key, Increment, Dict1)

 View Source

 -spec update_counter(Key, Increment, Dict1) -> Dict2
 when Dict1 :: dict(Key, Value), Dict2 :: dict(Key, Value), Increment :: number().

Adds Increment to the value associated with Key and stores this value. If
Key is not present in the dictionary, Increment is stored as the first
value.
This can be defined as follows, but is faster:
update_counter(Key, Incr, D) ->
 update(Key, fun (Old) -> Old + Incr end, Incr, D).

 digraph - stdlib v5.2.1

digraph

This module provides a version of labeled directed graphs ("digraphs").
The digraphs managed by this module are stored in ETS tables. That
implies the following:
	Only the process that created the digraph is allowed to update it.
	Digraphs will not be garbage collected. The ETS tables used for a digraph will
only be deleted when delete/1 is called or the process that created the
digraph terminates.
	A digraph is a mutable data structure.

What makes the graphs provided here non-proper directed graphs is that multiple
edges between vertices are allowed. However, the customary definition of
directed graphs is used here.
	A directed graph (or just "digraph") is a pair (V, E) of a
finite set V of vertices and a finite set E of directed
edges (or just "edges"). The set of edges E is a subset of V × V
(the Cartesian product of V with itself).
In this module, V is allowed to be empty. The so obtained unique digraph is
called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

	Digraphs can be annotated with more information. Such information can be
attached to the vertices and to the edges of the digraph. An annotated digraph
is called a labeled digraph, and the information attached to a vertex or an
edge is called a label. Labels are Erlang terms.

	An edge e = (v, w) is said to emanate from vertex v and to be
incident on vertex w.

	The out-degree of a vertex is the number of edges emanating
from that vertex.

	The in-degree of a vertex is the number of edges incident on
that vertex.

	If an edge is emanating from v and incident on w, then w is said to be an
out-neighbor of v, and v is said to be an in-neighbor of w.

	A path P from v[1] to v[k] in a digraph (V, E) is a non-empty
sequence v[1], v[2], ..., v[k] of vertices in V such that there is an edge
(v[i],v[i+1]) in E for 1 <= i < k.

	The length of path P is k-1.

	Path P is simple if all vertices are distinct, except that
the first and the last vertices can be the same.

	Path P is a cycle if the length of P is not zero and v[1] =
v[k].

	A loop is a cycle of length one.

	A simple cycle is a path that is both a cycle and simple.

	An acyclic digraph is a digraph without cycles.

 See Also

digraph_utils, ets

 Summary

 Types

 add_edge_err_rsn()

 The error reason for when an edge could not be added to a graph.

 d_cyclicity()

 d_protection()

 d_type()

 edge()

 Serves as the identifier or "name" of an edge. This is distinct from an edge
"label" which attaches ancillary information to the edge rather than identifying
the edge itself.

 graph()

 A digraph as returned by new/0,1.

 label()

 vertex()

 Functions

 add_edge(G, V1, V2)

 Equivalent to add_edge(G, V1, V2, []).

 add_edge(G, V1, V2, Label)

 Equivalent to add_edge(G, E, V1, V2, Label), where E is a created edge.

 add_edge(G, E, V1, V2, Label)

 Creates (or modifies) an edge with the identifier
E of digraph G, using Label as the (new) label of the
edge. The edge is emanating from V1 and
incident on V2. Returns E.

 add_vertex(G)

 Creates a vertex using the empty list as label, and returns the created vertex.

 add_vertex(G, V)

 Equivalent to add_vertex(G, V, []).

 add_vertex(G, V, Label)

 Creates (or modifies) vertex V of digraph G, using Label as the (new)
label of the vertex. Returns the new vertex V.

 del_edge(G, E)

 Deletes edge E from digraph G.

 del_edges(G, Edges)

 Deletes the edges in list Edges from digraph G.

 del_path(G, V1, V2)

 Deletes edges from digraph G until there are no paths from
vertex V1 to vertex V2.

 del_vertex(G, V)

 Deletes vertex V from digraph G. Any edges emanating
from V or incident on V are also deleted.

 del_vertices(G, Vertices)

 Deletes the vertices in list Vertices from digraph G.

 delete(G)

 Deletes digraph G. This call is important as digraphs are implemented with
ETS. There is no garbage collection of ETS tables. However, the digraph is
deleted if the process that created the digraph terminates.

 edge(G, E)

 Returns {E, V1, V2, Label}, where Label is the label of
edge E emanating from V1 and
incident on V2 of digraph G. If no edge E of
digraph G exists, false is returned.

 edges(G)

 Returns a list of all edges of digraph G, in some unspecified order.

 edges(G, V)

 Returns a list of all edges emanating from or
incident on V of digraph G, in some unspecified
order.

 get_cycle(G, V)

 If a simple cycle of length two or more exists
through vertex V, the cycle is returned as a list [V, ..., V] of vertices.
If a loop through V exists, the loop is returned as a list
[V]. If no cycles through V exist, false is returned.

 get_path(G, V1, V2)

 Tries to find a simple path from vertex V1 to
vertex V2 of digraph G. Returns the path as a list [V1, ..., V2] of
vertices, or false if no simple path from V1 to V2 of length one or more
exists.

 get_short_cycle(G, V)

 Tries to find an as short as possible simple cycle
through vertex V of digraph G. Returns the cycle as a list [V, ..., V] of
vertices, or false if no simple cycle through V exists. Notice that a
loop through V is returned as list [V, V].

 get_short_path(G, V1, V2)

 Tries to find an as short as possible simple path
from vertex V1 to vertex V2 of digraph G. Returns the path as a list
[V1, ..., V2] of vertices, or false if no simple path from V1 to V2 of
length one or more exists.

 in_degree(G, V)

 Returns the in-degree of vertex V of digraph G.

 in_edges(G, V)

 Returns a list of all edges incident on V of digraph
G, in some unspecified order.

 in_neighbours(G, V)

 Returns a list of all in-neighbors of V of digraph
G, in some unspecified order.

 info(G)

 Returns a list of {Tag, Value} pairs describing digraph G. The following
pairs are returned

 new()

 Equivalent to new([]).

 new(Type)

 Returns an empty digraph with properties according
to the options in Type

 no_edges(G)

 Returns the number of edges of digraph G.

 no_vertices(G)

 Returns the number of vertices of digraph G.

 out_degree(G, V)

 Returns the out-degree of vertex V of digraph G.

 out_edges(G, V)

 Returns a list of all edges emanating from V of digraph
G, in some unspecified order.

 out_neighbours(G, V)

 Returns a list of all out-neighbors of V of
digraph G, in some unspecified order.

 vertex(G, V)

 Returns {V, Label}, where Label is the label of the
vertex V of digraph G, or false if no vertex V of digraph G exists.

 vertices(G)

 Returns a list of all vertices of digraph G, in some unspecified order.

 Types

 Link to this type

 add_edge_err_rsn()

 View Source

 (not exported)

 -type add_edge_err_rsn() :: {bad_edge, Path :: [vertex()]} | {bad_vertex, V :: vertex()}.

The error reason for when an edge could not be added to a graph.
If the edge would create a cycle in an
acyclic digraph, {error, {bad_edge, Path}} is
returned. If G already has an edge with value E connecting a different pair
of vertices, {error, {bad_edge, [V1, V2]}} is returned. If either of V1 or
V2 is not a vertex of digraph G, {error, {bad_vertex,V}} is returned,
V = V1 or V = V2.

 Link to this type

 d_cyclicity()

 View Source

 (not exported)

 -type d_cyclicity() :: acyclic | cyclic.

 Link to this type

 d_protection()

 View Source

 (not exported)

 -type d_protection() :: private | protected.

 Link to this type

 d_type()

 View Source

 -type d_type() :: d_cyclicity() | d_protection().

 Link to this type

 edge()

 View Source

 -type edge() :: term().

Serves as the identifier or "name" of an edge. This is distinct from an edge
"label" which attaches ancillary information to the edge rather than identifying
the edge itself.

 Link to this opaque

 graph()

 View Source

 -opaque graph()

A digraph as returned by new/0,1.

 Link to this type

 label()

 View Source

 -type label() :: term().

 Link to this type

 vertex()

 View Source

 -type vertex() :: term().

 Functions

 Link to this function

 add_edge(G, V1, V2)

 View Source

 -spec add_edge(G, V1, V2) -> edge() | {error, add_edge_err_rsn()}
 when G :: graph(), V1 :: vertex(), V2 :: vertex().

Equivalent to add_edge(G, V1, V2, []).

 Link to this function

 add_edge(G, V1, V2, Label)

 View Source

 -spec add_edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
 when G :: graph(), V1 :: vertex(), V2 :: vertex(), Label :: label().

Equivalent to add_edge(G, E, V1, V2, Label), where E is a created edge.
The created edge is represented by term ['$e' | N], where N is an integer >= 0.
See add_edge_err_rsn/0 for details on possible errors.

 Link to this function

 add_edge(G, E, V1, V2, Label)

 View Source

 -spec add_edge(G, E, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
 when G :: graph(), E :: edge(), V1 :: vertex(), V2 :: vertex(), Label :: label().

Creates (or modifies) an edge with the identifier
E of digraph G, using Label as the (new) label of the
edge. The edge is emanating from V1 and
incident on V2. Returns E.
See add_edge_err_rsn/0 for details on possible errors.

 Link to this function

 add_vertex(G)

 View Source

 -spec add_vertex(G) -> vertex() when G :: graph().

Creates a vertex using the empty list as label, and returns the created vertex.
The created vertex is represented by term ['$v' | N], where N is an integer >= 0.

 Link to this function

 add_vertex(G, V)

 View Source

 -spec add_vertex(G, V) -> vertex() when G :: graph(), V :: vertex().

Equivalent to add_vertex(G, V, []).

 Link to this function

 add_vertex(G, V, Label)

 View Source

 -spec add_vertex(G, V, Label) -> vertex() when G :: graph(), V :: vertex(), Label :: label().

Creates (or modifies) vertex V of digraph G, using Label as the (new)
label of the vertex. Returns the new vertex V.

 Link to this function

 del_edge(G, E)

 View Source

 -spec del_edge(G, E) -> true when G :: graph(), E :: edge().

Deletes edge E from digraph G.

 Link to this function

 del_edges(G, Edges)

 View Source

 -spec del_edges(G, Edges) -> true when G :: graph(), Edges :: [edge()].

Deletes the edges in list Edges from digraph G.

 Link to this function

 del_path(G, V1, V2)

 View Source

 -spec del_path(G, V1, V2) -> true when G :: graph(), V1 :: vertex(), V2 :: vertex().

Deletes edges from digraph G until there are no paths from
vertex V1 to vertex V2.
A sketch of the procedure employed:
	Find an arbitrary simple path
v[1], v[2], ..., v[k] from V1 to V2 in G.
	Remove all edges of G emanating from v[i] and
incident to v[i+1] for 1 <= i < k (including multiple
edges).
	Repeat until there is no path between V1 and V2.

 Link to this function

 del_vertex(G, V)

 View Source

 -spec del_vertex(G, V) -> true when G :: graph(), V :: vertex().

Deletes vertex V from digraph G. Any edges emanating
from V or incident on V are also deleted.

 Link to this function

 del_vertices(G, Vertices)

 View Source

 -spec del_vertices(G, Vertices) -> true when G :: graph(), Vertices :: [vertex()].

Deletes the vertices in list Vertices from digraph G.

 Link to this function

 delete(G)

 View Source

 -spec delete(G) -> true when G :: graph().

Deletes digraph G. This call is important as digraphs are implemented with
ETS. There is no garbage collection of ETS tables. However, the digraph is
deleted if the process that created the digraph terminates.

 Link to this function

 edge(G, E)

 View Source

 -spec edge(G, E) -> {E, V1, V2, Label} | false
 when G :: graph(), E :: edge(), V1 :: vertex(), V2 :: vertex(), Label :: label().

Returns {E, V1, V2, Label}, where Label is the label of
edge E emanating from V1 and
incident on V2 of digraph G. If no edge E of
digraph G exists, false is returned.

 Link to this function

 edges(G)

 View Source

 -spec edges(G) -> Edges when G :: graph(), Edges :: [edge()].

Returns a list of all edges of digraph G, in some unspecified order.

 Link to this function

 edges(G, V)

 View Source

 -spec edges(G, V) -> Edges when G :: graph(), V :: vertex(), Edges :: [edge()].

Returns a list of all edges emanating from or
incident on V of digraph G, in some unspecified
order.

 Link to this function

 get_cycle(G, V)

 View Source

 -spec get_cycle(G, V) -> Vertices | false when G :: graph(), V :: vertex(), Vertices :: [vertex(), ...].

If a simple cycle of length two or more exists
through vertex V, the cycle is returned as a list [V, ..., V] of vertices.
If a loop through V exists, the loop is returned as a list
[V]. If no cycles through V exist, false is returned.
get_path/3 is used for finding a simple cycle through V.

 Link to this function

 get_path(G, V1, V2)

 View Source

 -spec get_path(G, V1, V2) -> Vertices | false
 when G :: graph(), V1 :: vertex(), V2 :: vertex(), Vertices :: [vertex(), ...].

Tries to find a simple path from vertex V1 to
vertex V2 of digraph G. Returns the path as a list [V1, ..., V2] of
vertices, or false if no simple path from V1 to V2 of length one or more
exists.
Digraph G is traversed in a depth-first manner, and the first found path is
returned.

 Link to this function

 get_short_cycle(G, V)

 View Source

 -spec get_short_cycle(G, V) -> Vertices | false
 when G :: graph(), V :: vertex(), Vertices :: [vertex(), ...].

Tries to find an as short as possible simple cycle
through vertex V of digraph G. Returns the cycle as a list [V, ..., V] of
vertices, or false if no simple cycle through V exists. Notice that a
loop through V is returned as list [V, V].
get_short_path/3 is used for finding a simple cycle through V.

 Link to this function

 get_short_path(G, V1, V2)

 View Source

 -spec get_short_path(G, V1, V2) -> Vertices | false
 when G :: graph(), V1 :: vertex(), V2 :: vertex(), Vertices :: [vertex(), ...].

Tries to find an as short as possible simple path
from vertex V1 to vertex V2 of digraph G. Returns the path as a list
[V1, ..., V2] of vertices, or false if no simple path from V1 to V2 of
length one or more exists.
Digraph G is traversed in a breadth-first manner, and the first found path is
returned.

 Link to this function

 in_degree(G, V)

 View Source

 -spec in_degree(G, V) -> non_neg_integer() when G :: graph(), V :: vertex().

Returns the in-degree of vertex V of digraph G.

 Link to this function

 in_edges(G, V)

 View Source

 -spec in_edges(G, V) -> Edges when G :: graph(), V :: vertex(), Edges :: [edge()].

Returns a list of all edges incident on V of digraph
G, in some unspecified order.

 Link to this function

 in_neighbours(G, V)

 View Source

 -spec in_neighbours(G, V) -> Vertex when G :: graph(), V :: vertex(), Vertex :: [vertex()].

Returns a list of all in-neighbors of V of digraph
G, in some unspecified order.

 Link to this function

 info(G)

 View Source

 -spec info(G) -> InfoList
 when
 G :: graph(),
 InfoList ::
 [{cyclicity, Cyclicity :: d_cyclicity()} |
 {memory, NoWords :: non_neg_integer()} |
 {protection, Protection :: d_protection()}].

Returns a list of {Tag, Value} pairs describing digraph G. The following
pairs are returned:
	{cyclicity, Cyclicity}, where Cyclicity is cyclic or acyclic,
according to the options given to new.
	{memory, NoWords}, where NoWords is the number of words allocated to the
ETS tables.
	{protection, Protection}, where Protection is protected or private,
according to the options given to new.

 Link to this function

 new()

 View Source

 -spec new() -> graph().

Equivalent to new([]).

 Link to this function

 new(Type)

 View Source

 -spec new(Type) -> graph() when Type :: [d_type()].

Returns an empty digraph with properties according
to the options in Type:
	cyclic - Allows cycles in the digraph (default).

	acyclic - The digraph is to be kept
acyclic.

	protected - Other processes can read the digraph (default).

	private - The digraph can be read and modified by the creating process
only.

If an unrecognized type option T is specified or Type is not a proper list,
a badarg exception is raised.

 Link to this function

 no_edges(G)

 View Source

 -spec no_edges(G) -> non_neg_integer() when G :: graph().

Returns the number of edges of digraph G.

 Link to this function

 no_vertices(G)

 View Source

 -spec no_vertices(G) -> non_neg_integer() when G :: graph().

Returns the number of vertices of digraph G.

 Link to this function

 out_degree(G, V)

 View Source

 -spec out_degree(G, V) -> non_neg_integer() when G :: graph(), V :: vertex().

Returns the out-degree of vertex V of digraph G.

 Link to this function

 out_edges(G, V)

 View Source

 -spec out_edges(G, V) -> Edges when G :: graph(), V :: vertex(), Edges :: [edge()].

Returns a list of all edges emanating from V of digraph
G, in some unspecified order.

 Link to this function

 out_neighbours(G, V)

 View Source

 -spec out_neighbours(G, V) -> Vertices when G :: graph(), V :: vertex(), Vertices :: [vertex()].

Returns a list of all out-neighbors of V of
digraph G, in some unspecified order.

 Link to this function

 vertex(G, V)

 View Source

 -spec vertex(G, V) -> {V, Label} | false when G :: graph(), V :: vertex(), Label :: label().

Returns {V, Label}, where Label is the label of the
vertex V of digraph G, or false if no vertex V of digraph G exists.

 Link to this function

 vertices(G)

 View Source

 -spec vertices(G) -> Vertices when G :: graph(), Vertices :: [vertex()].

Returns a list of all vertices of digraph G, in some unspecified order.

 digraph_utils - stdlib v5.2.1

digraph_utils

This module provides algorithms based on depth-first traversal of directed
graphs.
For basic functions on directed graphs, see the digraph module.
	A directed graph (or just "digraph") is a pair (V, E) of a
finite set V of vertices and a finite set E of directed
edges (or just "edges"). The set of edges E is a subset of V × V
(the Cartesian product of V with itself).
	Digraphs can be annotated with more information. Such information can be
attached to the vertices and to the edges of the digraph. An annotated digraph
is called a labeled digraph, and the information attached to a vertex or an
edge is called a label.
	An edge e = (v, w) is said to emanate from vertex v and to be
incident on vertex w.
	If an edge is emanating from v and incident on w, then w is said to be an
out-neighbor of v, and v is said to be an in-neighbor of w.
	A path P from v[1] to v[k] in a digraph (V, E) is a non-empty
sequence v[1], v[2], ..., v[k] of vertices in V such that there is an edge
(v[i],v[i+1]) in E for 1 <= i < k.
	The length of path P is k-1.
	Path P is a cycle if the length of P is not zero and v[1] =
v[k].
	A loop is a cycle of length one.
	An acyclic digraph is a digraph without cycles.
	A depth-first traversal of a directed digraph can
be viewed as a process that visits all vertices of the digraph. Initially, all
vertices are marked as unvisited. The traversal starts with an arbitrarily
chosen vertex, which is marked as visited, and follows an edge to an unmarked
vertex, marking that vertex. The search then proceeds from that vertex in the
same fashion, until there is no edge leading to an unvisited vertex. At that
point the process backtracks, and the traversal continues as long as there are
unexamined edges. If unvisited vertices remain when all edges from the first
vertex have been examined, some so far unvisited vertex is chosen, and the
process is repeated.
	A partial ordering of a set S is a transitive,
antisymmetric, and reflexive relation between the objects of S.
	The problem of topological sorting is to find a total ordering
of S that is a superset of the partial ordering. A digraph G = (V, E) is
equivalent to a relation E on V (we neglect that the version of directed
graphs provided by the digraph module allows multiple edges between
vertices). If the digraph has no cycles of length two or more, the reflexive
and transitive closure of E is a partial ordering.
	A subgraph G' of G is a digraph whose vertices and edges form
subsets of the vertices and edges of G.
	G' is maximal with respect to a property P if all other subgraphs that
include the vertices of G' do not have property P.
	A strongly connected component is a maximal subgraph
such that there is a path between each pair of vertices.
	A connected component is a maximal subgraph such that there
is a path between each pair of vertices, considering all edges undirected.
	An arborescence is an acyclic digraph with a vertex V, the
root, such that there is a unique path from V to every other
vertex of G.
	A tree is an acyclic non-empty digraph such that there is a unique
path between every pair of vertices, considering all edges undirected.

 See Also

digraph

 Summary

 Functions

 arborescence_root(Digraph)

 Returns {yes, Root} if Root is the root of the
arborescence Digraph, otherwise no.

 components(Digraph)

 Returns a list of connected components. Each
component is represented by its vertices. The order of the vertices and the
order of the components are arbitrary. Each vertex of digraph Digraph occurs
in exactly one component.

 condensation(Digraph)

 Creates a digraph where the vertices are the
strongly connected components of
Digraph as returned by strong_components/1. If X and Y are two different
strongly connected components, and vertices x and y exist in X and Y,
respectively, such that there is an edge emanating
from x and incident on y, then an edge emanating
from X and incident on Y is created.

 cyclic_strong_components(Digraph)

 Returns a list of
strongly connected components. Each
strongly component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Only vertices that are included in
some cycle in Digraph are returned, otherwise the
returned list is equal to that returned by strong_components/1.

 is_acyclic(Digraph)

 Returns true if and only if digraph Digraph is
acyclic.

 is_arborescence(Digraph)

 Returns true if and only if digraph Digraph is an
arborescence.

 is_tree(Digraph)

 Returns true if and only if digraph Digraph is a
tree.

 loop_vertices(Digraph)

 Returns a list of all vertices of Digraph that are included in some
loop.

 postorder(Digraph)

 Returns all vertices of digraph Digraph. The order is given by a
depth-first traversal of the digraph,
collecting visited vertices in postorder. More precisely, the vertices visited
while searching from an arbitrarily chosen vertex are collected in postorder,
and all those collected vertices are placed before the subsequently visited
vertices.

 preorder(Digraph)

 Returns all vertices of digraph Digraph. The order is given by a
depth-first traversal of the digraph,
collecting visited vertices in preorder.

 reachable(Vertices, Digraph)

 Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path in Digraph from some vertex of
Vertices to the vertex. In particular, as paths can have length zero, the
vertices of Vertices are included in the returned list.

 reachable_neighbours(Vertices, Digraph)

 Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path in Digraph of length one or
more from some vertex of Vertices to the vertex. As a consequence, only those
vertices of Vertices that are included in some
cycle are returned.

 reaching(Vertices, Digraph)

 Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path from the vertex to some vertex
of Vertices. In particular, as paths can have length zero, the vertices of
Vertices are included in the returned list.

 reaching_neighbours(Vertices, Digraph)

 Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path of length one or more from the
vertex to some vertex of Vertices. Therefore only those vertices of Vertices
that are included in some cycle are returned.

 strong_components(Digraph)

 Returns a list of
strongly connected components. Each
strongly component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Digraph
occurs in exactly one strong component.

 subgraph(Digraph, Vertices)

 Equivalent to subgraph/3.

 subgraph(Digraph, Vertices, Options)

 Creates a maximal subgraph of Digraph having as
vertices those vertices of Digraph that are mentioned in Vertices.

 topsort(Digraph)

 Returns a topological ordering of the vertices of
digraph Digraph if such an ordering exists, otherwise false. For each vertex
in the returned list, no out-neighbors occur
earlier in the list.

 Functions

 Link to this function

 arborescence_root(Digraph)

 View Source

 -spec arborescence_root(Digraph) -> no | {yes, Root}
 when Digraph :: digraph:graph(), Root :: digraph:vertex().

Returns {yes, Root} if Root is the root of the
arborescence Digraph, otherwise no.

 Link to this function

 components(Digraph)

 View Source

 -spec components(Digraph) -> [Component]
 when Digraph :: digraph:graph(), Component :: [digraph:vertex()].

Returns a list of connected components. Each
component is represented by its vertices. The order of the vertices and the
order of the components are arbitrary. Each vertex of digraph Digraph occurs
in exactly one component.

 Link to this function

 condensation(Digraph)

 View Source

 -spec condensation(Digraph) -> CondensedDigraph
 when Digraph :: digraph:graph(), CondensedDigraph :: digraph:graph().

Creates a digraph where the vertices are the
strongly connected components of
Digraph as returned by strong_components/1. If X and Y are two different
strongly connected components, and vertices x and y exist in X and Y,
respectively, such that there is an edge emanating
from x and incident on y, then an edge emanating
from X and incident on Y is created.
The created digraph has the same type as Digraph. All vertices and edges have
the default label [].
Each cycle is included in some strongly connected
component, which implies that a
topological ordering of the created digraph always
exists.

 Link to this function

 cyclic_strong_components(Digraph)

 View Source

 -spec cyclic_strong_components(Digraph) -> [StrongComponent]
 when Digraph :: digraph:graph(), StrongComponent :: [digraph:vertex()].

Returns a list of
strongly connected components. Each
strongly component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Only vertices that are included in
some cycle in Digraph are returned, otherwise the
returned list is equal to that returned by strong_components/1.

 Link to this function

 is_acyclic(Digraph)

 View Source

 -spec is_acyclic(Digraph) -> boolean() when Digraph :: digraph:graph().

Returns true if and only if digraph Digraph is
acyclic.

 Link to this function

 is_arborescence(Digraph)

 View Source

 -spec is_arborescence(Digraph) -> boolean() when Digraph :: digraph:graph().

Returns true if and only if digraph Digraph is an
arborescence.

 Link to this function

 is_tree(Digraph)

 View Source

 -spec is_tree(Digraph) -> boolean() when Digraph :: digraph:graph().

Returns true if and only if digraph Digraph is a
tree.

 Link to this function

 loop_vertices(Digraph)

 View Source

 -spec loop_vertices(Digraph) -> Vertices when Digraph :: digraph:graph(), Vertices :: [digraph:vertex()].

Returns a list of all vertices of Digraph that are included in some
loop.

 Link to this function

 postorder(Digraph)

 View Source

 -spec postorder(Digraph) -> Vertices when Digraph :: digraph:graph(), Vertices :: [digraph:vertex()].

Returns all vertices of digraph Digraph. The order is given by a
depth-first traversal of the digraph,
collecting visited vertices in postorder. More precisely, the vertices visited
while searching from an arbitrarily chosen vertex are collected in postorder,
and all those collected vertices are placed before the subsequently visited
vertices.

 Link to this function

 preorder(Digraph)

 View Source

 -spec preorder(Digraph) -> Vertices when Digraph :: digraph:graph(), Vertices :: [digraph:vertex()].

Returns all vertices of digraph Digraph. The order is given by a
depth-first traversal of the digraph,
collecting visited vertices in preorder.

 Link to this function

 reachable(Vertices, Digraph)

 View Source

 -spec reachable(Vertices, Digraph) -> Reachable
 when
 Digraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 Reachable :: [digraph:vertex()].

Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path in Digraph from some vertex of
Vertices to the vertex. In particular, as paths can have length zero, the
vertices of Vertices are included in the returned list.

 Link to this function

 reachable_neighbours(Vertices, Digraph)

 View Source

 -spec reachable_neighbours(Vertices, Digraph) -> Reachable
 when
 Digraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 Reachable :: [digraph:vertex()].

Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path in Digraph of length one or
more from some vertex of Vertices to the vertex. As a consequence, only those
vertices of Vertices that are included in some
cycle are returned.

 Link to this function

 reaching(Vertices, Digraph)

 View Source

 -spec reaching(Vertices, Digraph) -> Reaching
 when
 Digraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 Reaching :: [digraph:vertex()].

Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path from the vertex to some vertex
of Vertices. In particular, as paths can have length zero, the vertices of
Vertices are included in the returned list.

 Link to this function

 reaching_neighbours(Vertices, Digraph)

 View Source

 -spec reaching_neighbours(Vertices, Digraph) -> Reaching
 when
 Digraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 Reaching :: [digraph:vertex()].

Returns an unsorted list of digraph vertices such that for each vertex in the
list, there is a path of length one or more from the
vertex to some vertex of Vertices. Therefore only those vertices of Vertices
that are included in some cycle are returned.

 Link to this function

 strong_components(Digraph)

 View Source

 -spec strong_components(Digraph) -> [StrongComponent]
 when Digraph :: digraph:graph(), StrongComponent :: [digraph:vertex()].

Returns a list of
strongly connected components. Each
strongly component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Digraph
occurs in exactly one strong component.

 Link to this function

 subgraph(Digraph, Vertices)

 View Source

 -spec subgraph(Digraph, Vertices) -> SubGraph
 when
 Digraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 SubGraph :: digraph:graph().

Equivalent to subgraph/3.

 Link to this function

 subgraph(Digraph, Vertices, Options)

 View Source

 -spec subgraph(Digraph, Vertices, Options) -> SubGraph
 when
 Digraph :: digraph:graph(),
 SubGraph :: digraph:graph(),
 Vertices :: [digraph:vertex()],
 Options :: [{type, SubgraphType} | {keep_labels, boolean()}],
 SubgraphType :: inherit | [digraph:d_type()].

Creates a maximal subgraph of Digraph having as
vertices those vertices of Digraph that are mentioned in Vertices.
If the value of option type is inherit, which is the default, the type of
Digraph is used for the subgraph as well. Otherwise the option value of type
is used as argument to digraph:new/1.
If the value of option keep_labels is true, which is the default, the
labels of vertices and edges of Digraph are used
for the subgraph as well. If the value is false, default label [] is used
for the vertices and edges of the subgroup.
subgraph(Digraph, Vertices) is equivalent to
subgraph(Digraph, Vertices, []).
If any of the arguments are invalid, a badarg exception is raised.

 Link to this function

 topsort(Digraph)

 View Source

 -spec topsort(Digraph) -> Vertices | false
 when Digraph :: digraph:graph(), Vertices :: [digraph:vertex()].

Returns a topological ordering of the vertices of
digraph Digraph if such an ordering exists, otherwise false. For each vertex
in the returned list, no out-neighbors occur
earlier in the list.

 ets - stdlib v5.2.1

ets

Built-in term storage.
This module is an interface to the Erlang built-in term storage BIFs. These
provide the ability to store very large quantities of data in an Erlang runtime
system, and to have constant access time to the data. (In the case of
ordered_set, see below, access time is proportional to the logarithm of the
number of stored objects.)
Data is organized as a set of dynamic tables, which can store tuples. Each table
is created by a process. When the process terminates, the table is automatically
destroyed. Every table has access rights set at creation.
Tables are divided into four different types, set, ordered_set, bag, and
duplicate_bag. A set or ordered_set table can only have one object
associated with each key. A bag or duplicate_bag table can have many objects
associated with each key.
Insert and lookup times in tables of type set are constant, regardless of the
table size. For table types bag and duplicate_bag time is proportional to
the number of objects with the same key. Even seemingly unrelated keys may
inflict linear search to be skipped past while looking for the key of interest
(due to hash collision).
Warning
For tables of type bag and duplicate_bag, avoid inserting an extensive
amount of objects with the same key. It will hurt insert and lookup
performance as well as real time characteristics of the runtime environment
(hash bucket linear search do not yield).

The ordered_set table type uses a binary search tree. Insert and lookup times
are proportional to the logarithm of the number of objects in the table.

Note
The number of tables stored at one Erlang node used to be limited. This is
no longer the case (except by memory usage). The previous default limit was
about 1400 tables and could be increased by setting the environment variable
ERL_MAX_ETS_TABLES or the command line option
+e before starting the Erlang runtime system.
This hard limit has been removed, but it is currently useful to set the
ERL_MAX_ETS_TABLES anyway. It should be set to an approximate of the maximum
amount of tables used since an internal table for named tables is sized using
this value. If large amounts of named tables are used and ERL_MAX_ETS_TABLES
hasn't been increased, the performance of named table lookup will degrade.

Notice that there is no automatic garbage collection for tables. Even if there
are no references to a table from any process, it is not automatically destroyed
unless the owner process terminates. To destroy a table explicitly, use function
delete/1. The default owner is the process that created the table. To transfer
table ownership at process termination, use option heir or
call give_away/3.
Some implementation details:
	In the current implementation, every object insert and look-up operation
results in a copy of the object.
	'$end_of_table' is not to be used as a key, as this atom is used to mark the
end of the table when using functions first/1 and next/2.

Notice the subtle difference between matching and comparing equal, which is
demonstrated by table types set and ordered_set:
	Two Erlang terms match if they are of the same type and have the same value,
so that 1 matches 1, but not 1.0 (as 1.0 is a float/0 and not an
integer/0).
	Two Erlang terms compare equal if they either are of the same type and
value, or if both are numeric types and extend to the same value, so that 1
compares equal to both 1 and 1.0.
	The ordered_set works on the Erlang term order and no defined order exists
between an integer/0 and a float/0 that extends to the same value.
Hence the key 1 and the key 1.0 are regarded as equal in an ordered_set
table.

 Failures

Functions in this module fail by raising an error exception with error reason:
	badarg - If any argument has the wrong format.

	badarg - If the table identifier is invalid.

	badarg - If the operation is denied because of table access rights
(protected or private).

	system_limit - Modification of a value causes it to not be representable
internally in the VM. For example, incrementation of a counter past the
largest integer representable.

	system_limit - If a match specification passed as argument has excessive
nesting which causes scheduler stack exhaustion for the scheduler that the
calling process is executing on.
Scheduler stack size can be
configured when starting the runtime system.

 Concurrency

This module provides some limited support for concurrent access. All updates to
single objects are guaranteed to be both atomic and isolated. This means
that an updating operation to a single object either succeeds or fails
completely without any effect (atomicity) and that no intermediate results of
the update can be seen by other processes (isolation). Some functions that
update many objects state that they even guarantee atomicity and isolation for
the entire operation. In database terms the isolation level can be seen as
"serializable", as if all isolated operations are carried out serially, one
after the other in a strict order.

 Table traversal

There are different ways to traverse through the objects of a table.
	Single-step traversal one key at at time, using first/1, next/2,
last/1 and prev/2.
	Single-step traversal one key at at time, but using first_lookup/1,
next_lookup/2, last_lookup/1 and prev_lookup/2. This is more efficient
when you also need to lookup the objects for the keys.
	Search with simple match patterns, using match/1/2/3,
match_delete/2 and match_object/1/2/3.
	Search with more powerful match specifications, using
select/1/2/3, select_count/2, select_delete/2,
select_replace/2 and select_reverse/1/2/3.
	Table conversions, using tab2file/2/3 and tab2list/1.

No table traversal will guarantee a consistent snapshot of the entire table if
the table is also updated by concurrent processes during the traversal. The
result of each concurrently updated object may be seen (or not) depending on if
it has happened when the traversal visits that part of the table. The only way
to guarantee a full consistent table snapshot (if you really need that) is to
disallow concurrent updates during the entire traversal.
Moreover, traversals not done in a safe way, on tables where keys are inserted
or deleted during the traversal, may yield the following undesired effects:
	Any key may be missed.
	Any key may be found more than once.
	The traversal may fail with badarg exception if keys are deleted.

A table traversal is safe if either
	the table is of type ordered_set.
	the entire table traversal is done within one ETS function call.
	function safe_fixtable/2 is used to keep the table fixated during the entire
traversal.

Note
Even though the access of a single object is always guaranteed to be
atomic and isolated, each traversal through a table to
find the next key is not done with such guarantees. This is often not a
problem, but may cause rare subtle "unexpected" effects if a concurrent
process inserts objects during a traversal. For example, consider one process
doing
ets:new(t, [ordered_set, named_table]),
ets:insert(t, {1}),
ets:insert(t, {2}),
ets:insert(t, {3}),
A concurrent call to ets:first(t), done by another process, may then in rare
cases return 2 even though 2 has never existed in the table ordered as the
first key. In the same way, a concurrent call to ets:next(t, 1) may return
3 even though 3 never existed in the table ordered directly after 1.
Effects like this are improbable but possible. The probability will further be
reduced (if not vanish) if table option
write_concurrency is not enabled. This
can also only be a potential concern for ordered_set where the traversal
order is defined.

Traversals using match and select functions may not need to scan the entire
table depending on how the key is specified. A match pattern with a fully bound
key (without any match variables) will optimize the operation to a single key
lookup without any table traversal at all. For ordered_set a partially bound
key will limit the traversal to only scan a subset of the table based on term
order. A partially bound key is either a list or a tuple with a prefix that is
fully bound. Example:
1> T = ets:new(t,[ordered_set]), ets:insert(T, {"555-1234", "John Smith"}).
true
2> %% Efficient search of all with area code 555
2> ets:match(T,{[$5,$5,$5,$- |'$1'],'$2'}).
[["1234","John Smith"]]

 Match Specifications

Some of the functions use a match specification, match_spec. For a brief
explanation, see select/2. For a detailed description, see section
Match Specifications in Erlang in ERTS User's Guide.
A match specifications with excessive nesting will cause a
system_limit error exception to be raised.

 Summary

 Types

 comp_match_spec()

 compiled_match_spec()

 A compiled match specification.

 continuation()

 Opaque continuation used by select/1,3,
select_reverse/1,3, match/1,3, and
match_object/1,3.

 match_pattern()

 match_spec()

 A match specification, see Match Specifications.

 tab()

 table()

 table_access()

 table_type()

 tid()

 A table identifier, as returned by new/2.

 Functions

 all()

 Returns a list of all tables at the node. Named tables are specified by their
names, unnamed tables are specified by their table identifiers.

 delete(Table)

 Deletes the entire table Table.

 delete(Table, Key)

 Deletes all objects with key Key from table Table. This function succeeds
even if no objects with key Key exist.

 delete_all_objects(Table)

 Delete all objects in the ETS table Table. The operation is guaranteed to be
atomic and isolated.

 delete_object(Table, Object)

 Delete the exact object Object from the ETS table, leaving objects with the
same key but other differences (useful for type bag). In a duplicate_bag
table, all instances of the object are deleted.

 file2tab(Filename)

 Reads a file produced by tab2file/2 or tab2file/3 and creates the
corresponding table Table.

 file2tab(Filename, Options)

 Reads a file produced by tab2file/2 or tab2file/3 and creates the
corresponding table Table.

 first(Table)

 Returns the first key Key in table Table. For an ordered_set table, the
first key in Erlang term order is returned. For other table types, the first key
according to the internal order of the table is returned. If the table is empty,
'$end_of_table' is returned.

 first_lookup(Table)

 Similar to first/1 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing first/1 followed by a
lookup/2. If the table is empty, '$end_of_table' is returned.

 foldl(Function, Acc0, Table)

 Acc0 is returned if the table is empty. This function is similar to
lists:foldl/3. The table elements are traversed in an unspecified order,
except for ordered_set tables, where they are traversed first to last.

 foldr(Function, Acc0, Table)

 Acc0 is returned if the table is empty. This function is similar to
lists:foldr/3. The table elements are traversed in an unspecified order,
except for ordered_set tables, where they are traversed last to first.

 from_dets(Table, DetsTab)

 Fills an already created ETS table with the objects in the already opened Dets
table DetsTab. Existing objects in the ETS table are kept unless overwritten.

 fun2ms(LiteralFun)

 Pseudo function that by a parse_transform translates LiteralFun typed as
parameter in the function call to a match specification.
With "literal" is meant that the fun must textually be written as the parameter
of the function, it cannot be held in a variable that in turn is passed to the
function.

 give_away(Table, Pid, GiftData)

 Make process Pid the new owner of table Table. If successful, message
{'ETS-TRANSFER',Table,FromPid,GiftData} is sent to the new owner.

 i()

 Displays information about all ETS tables on a terminal.

 i(Table)

 Browses table Table on a terminal.

 info(Table)

 Returns information about table Table as a list of tuples. If Table has the
correct type for a table identifier, but does not refer to an existing ETS
table, undefined is returned. If Table is not of the correct type, a
badarg exception is raised.

 info(Table, Item)

 Returns the information associated with Item for table Table, or returns
undefined if Table does not refer an existing ETS table. If Table is not
of the correct type, or if Item is not one of the allowed values, a badarg
exception is raised.

 init_table(Table, InitFun)

 Replaces the existing objects of table Table with objects created by calling
the input function InitFun, see below. This function is provided for
compatibility with the dets module, it is not more efficient than filling a
table by using insert/2.

 insert(Table, ObjectOrObjects)

 Inserts the object or all of the objects in list ObjectOrObjects into table
Table.

 insert_new(Table, ObjectOrObjects)

 Same as insert/2 except that instead of overwriting objects with the same key
(for set or ordered_set) or adding more objects with keys already existing
in the table (for bag and duplicate_bag), false is returned.

 is_compiled_ms(Term)

 Checks if a term represent a valid compiled
match specification. A compiled match specification is
only valid on the Erlang node where it was compiled by calling
match_spec_compile/1.

 last(Table)

 Returns the last key Key according to Erlang term order in table Table of
type ordered_set. For other table types, the function is synonymous to
first/1. If the table is empty, '$end_of_table' is returned.

 last_lookup(Table)

 Similar to last/1 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing last/1 followed by a
lookup/2. If the table is empty, '$end_of_table' is returned.

 lookup(Table, Key)

 Returns a list of all objects with key Key in table Table.

 lookup_element(Table, Key, Pos)

 For a table Table of type set or ordered_set, the function returns the
Pos:th element of the object with key Key.

 lookup_element(Table, Key, Pos, Default)

 For a table Table of type set or ordered_set, the function returns the
Pos:th element of the object with key Key.

 match(Continuation)

 Continues a match started with match/3. The next chunk of the size specified
in the initial match/3 call is returned together with a new
Continuation, which can be used in subsequent calls to this function.

 match(Table, Pattern)

 Matches the objects in table Table against pattern Pattern.

 match(Table, Pattern, Limit)

 Works like match/2, but returns only a limited (Limit) number of matching
objects. Term Continuation can then be used in subsequent calls to match/1
to get the next chunk of matching objects. This is a space-efficient way to work
on objects in a table, which is faster than traversing the table object by
object using first/1 and next/2.

 match_delete(Table, Pattern)

 Deletes all objects that match pattern Pattern from table Table. For a
description of patterns, see match/2.

 match_object(Continuation)

 Continues a match started with match_object/3. The next chunk of the size
specified in the initial match_object/3 call is returned
together with a new Continuation, which can be used in subsequent calls to
this function.

 match_object(Table, Pattern)

 Matches the objects in table Table against pattern Pattern. For a
description of patterns, see match/2. The function returns a list of all
objects that match the pattern.

 match_object(Table, Pattern, Limit)

 Works like match_object/2, but only returns a limited (Limit) number of
matching objects. Term Continuation can then be used in subsequent calls to
match_object/1 to get the next chunk of matching objects. This is a
space-efficient way to work on objects in a table, which is faster than
traversing the table object by object using first/1 and next/2.

 match_spec_compile(MatchSpec)

 Transforms a match specification into an internal
representation that can be used in subsequent calls to match_spec_run/2. The
internal representation is opaque. To check the validity of a compiled match
specification, use is_compiled_ms/1.

 match_spec_run(List, CompiledMatchSpec)

 Executes the matching specified in a compiled
match specification on a list of terms. Term
CompiledMatchSpec is to be the result of a call to match_spec_compile/1 and
is hence the internal representation of the match specification one wants to
use.

 member(Table, Key)

 Works like lookup/2, but does not return the objects. Returns true if one or
more elements in the table has key Key, otherwise false.

 new(Name, Options)

 Creates a new table and returns a table identifier that can be used in
subsequent operations. The table identifier can be sent to other processes so
that a table can be shared between different processes within a node.

 next(Table, Key1)

 Returns the next key Key2, following key Key1 in table Table. For table
type ordered_set, the next key in Erlang term order is returned. For other
table types, the next key according to the internal order of the table is
returned. If no next key exists, '$end_of_table' is returned.

 next_lookup(Table, Key1)

 Similar to next/2 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing next/2 followed by a
lookup/2. If no next key exists, '$end_of_table' is returned.

 prev(Table, Key1)

 Returns the previous key Key2, preceding key Key1 according to Erlang term
order in table Table of type ordered_set. For other table types, the
function is synonymous to next/2. If no previous key exists, '$end_of_table'
is returned.

 prev_lookup(Table, Key1)

 Similar to prev/2 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing prev/2 followed by a
lookup/2. If no previous key exists, '$end_of_table' is returned.

 rename(Table, Name)

 Renames the named table Table to the new name Name. Afterwards, the old name
cannot be used to access the table. Renaming an unnamed table has no effect.

 repair_continuation(Continuation, MatchSpec)

 Restores an opaque continuation returned by select/3 or select/1 if the
continuation has passed through external term format (been sent between nodes or
stored on disk).

 safe_fixtable(Table, Fix)

 Fixes a table of type set, bag, or duplicate_bag for
safe traversal using first/1 & next/2, match/3 &
match/1, match_object/3 & match_object/1, or select/3 & select/1.

 select(Continuation)

 Continues a match started with select/3. The next chunk of the size specified
in the initial select/3 call is returned together with a new
Continuation, which can be used in subsequent calls to this function.

 select(Table, MatchSpec)

 Matches the objects in table Table using a
match specification. This is a more general call than
match/2 and match_object/2 calls. In its simplest form, the match
specification is as follows

 select(Table, MatchSpec, Limit)

 Works like select/2, but only returns a limited (Limit) number of matching
objects. Term Continuation can then be used in subsequent calls to select/1
to get the next chunk of matching objects. This is a space-efficient way to work
on objects in a table, which is still faster than traversing the table object by
object using first/1 and next/2.

 select_count(Table, MatchSpec)

 Matches the objects in table Table using a
match specification. If the match specification returns
true for an object, that object considered a match and is counted. For any
other result from the match specification the object is not considered a match
and is therefore not counted.

 select_delete(Table, MatchSpec)

 Matches the objects in table Table using a
match specification. If the match specification returns
true for an object, that object is removed from the table. For any other
result from the match specification the object is retained. This is a more
general call than the match_delete/2 call.

 select_replace(Table, MatchSpec)

 Matches the objects in the table Table using a
match specification. For each matched object, the existing
object is replaced with the match specification result.

 select_reverse(Continuation)

 Continues a match started with select_reverse/3. For tables of type
ordered_set, the traversal of the table continues to objects with keys earlier
in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of
select/1.

 select_reverse(Table, MatchSpec)

 Works like select/2, but returns the list in reverse order for table type
ordered_set. For all other table types, the return value is identical to that
of select/2.

 select_reverse(Table, MatchSpec, Limit)

 Works like select/3, but for table type ordered_set traversing is done
starting at the last object in Erlang term order and moves to the first. For all
other table types, the return value is identical to that of
select/3.

 setopts(Table, Opts)

 Sets table options. The only allowed option to be set after the table has been
created is heir. The calling process must be the table owner.

 slot(Table, I)

 This function is mostly for debugging purposes, normally first/next or
last/prev are to be used instead.

 tab2file(Table, Filename)

 Dumps table Table to file Filename.

 tab2file(Table, Filename, Options)

 Dumps table Table to file Filename.

 tab2list(Table)

 Returns a list of all objects in table Table.

 tabfile_info(Filename)

 Returns information about the table dumped to file by tab2file/2 or
tab2file/3.

 table(Table)

 Equivalent to table/2.

 table(Table, Options)

 Returns a Query List Comprehension (QLC) query handle. The qlc module
provides a query language aimed mainly at Mnesia, but ETS tables, Dets tables,
and lists are also recognized by QLC as sources of data. Calling table/1,2 is
the means to make the ETS table Table usable to QLC.

 take(Table, Key)

 Returns and removes a list of all objects with key Key in table Table.

 test_ms(Tuple, MatchSpec)

 This function is a utility to test a match specification
used in calls to select/2. The function both tests MatchSpec for "syntactic"
correctness and runs the match specification against object Tuple.

 to_dets(Table, DetsTab)

 Fills an already created/opened Dets table with the objects in the already
opened ETS table named Table. The Dets table is emptied before the objects are
inserted.

 update_counter/3

 Equivalent to update_counter/4.

 update_counter/4

 This function provides an efficient way to update one or more counters, without
the trouble of having to look up an object, update the object by incrementing an
element, and insert the resulting object into the table again. The operation is
guaranteed to be atomic and isolated.

 update_element(Table, Key, ElementSpec)

 Equivalent to update_element/4.

 update_element(Table, Key, ElementSpec, Default)

 This function provides an efficient way to update one or more elements within an
object, without the trouble of having to look up, update, and write back the
entire object.

 whereis(TableName)

 This function returns the tid/0 of the named table identified by
TableName, or undefined if no such table exists. The tid/0 can be used
in place of the table name in all operations, which is slightly faster since the
name does not have to be resolved on each call.

 Types

 Link to this type

 comp_match_spec()

 View Source

 -type comp_match_spec() :: compiled_match_spec().

 Link to this opaque

 compiled_match_spec()

 View Source

 -opaque compiled_match_spec()

A compiled match specification.

 Link to this type

 continuation()

 View Source

 (not exported)

 -type continuation() ::
 '$end_of_table' |
 {table(), integer(), integer(), compiled_match_spec(), list(), integer()} |
 {table(), _, _, integer(), compiled_match_spec(), list(), integer(), integer()}.

Opaque continuation used by select/1,3,
select_reverse/1,3, match/1,3, and
match_object/1,3.

 Link to this type

 match_pattern()

 View Source

 -type match_pattern() :: atom() | tuple().

 Link to this type

 match_spec()

 View Source

 -type match_spec() :: [{match_pattern(), [_], [_]}].

A match specification, see Match Specifications.

 Link to this type

 tab()

 View Source

 -type tab() :: table().

 Link to this type

 table()

 View Source

 -type table() :: atom() | tid().

 Link to this type

 table_access()

 View Source

 -type table_access() :: public | protected | private.

 Link to this type

 table_type()

 View Source

 -type table_type() :: set | ordered_set | bag | duplicate_bag.

 Link to this opaque

 tid()

 View Source

 -opaque tid()

A table identifier, as returned by new/2.

 Functions

 Link to this function

 all()

 View Source

 -spec all() -> [Table] when Table :: table().

Returns a list of all tables at the node. Named tables are specified by their
names, unnamed tables are specified by their table identifiers.
There is no guarantee of consistency in the returned list. Tables created or
deleted by other processes "during" the ets:all() call either are or are not
included in the list. Only tables created/deleted before ets:all() is called
are guaranteed to be included/excluded.

 Link to this function

 delete(Table)

 View Source

 -spec delete(Table) -> true when Table :: table().

Deletes the entire table Table.

 Link to this function

 delete(Table, Key)

 View Source

 -spec delete(Table, Key) -> true when Table :: table(), Key :: term().

Deletes all objects with key Key from table Table. This function succeeds
even if no objects with key Key exist.

 Link to this function

 delete_all_objects(Table)

 View Source

 -spec delete_all_objects(Table) -> true when Table :: table().

Delete all objects in the ETS table Table. The operation is guaranteed to be
atomic and isolated.

 Link to this function

 delete_object(Table, Object)

 View Source

 -spec delete_object(Table, Object) -> true when Table :: table(), Object :: tuple().

Delete the exact object Object from the ETS table, leaving objects with the
same key but other differences (useful for type bag). In a duplicate_bag
table, all instances of the object are deleted.

 Link to this function

 file2tab(Filename)

 View Source

 -spec file2tab(Filename) -> {ok, Table} | {error, Reason}
 when Filename :: file:name(), Table :: table(), Reason :: term().

Reads a file produced by tab2file/2 or tab2file/3 and creates the
corresponding table Table.
Equivalent to file2tab(Filename, []).

 Link to this function

 file2tab(Filename, Options)

 View Source

 -spec file2tab(Filename, Options) -> {ok, Table} | {error, Reason}
 when
 Filename :: file:name(),
 Table :: table(),
 Options :: [Option],
 Option :: {verify, boolean()},
 Reason :: term().

Reads a file produced by tab2file/2 or tab2file/3 and creates the
corresponding table Table.
The only supported option is {verify,boolean()}. If verification is turned on
(by specifying {verify,true}), the function uses whatever information is
present in the file to assert that the information is not damaged. How this is
done depends on which extended_info was written using tab2file/3.
If no extended_info is present in the file and {verify,true} is specified,
the number of objects written is compared to the size of the original table when
the dump was started. This can make verification fail if the table was public
and objects were added or removed while the table was dumped to file. To avoid
this problem, either do not verify files dumped while updated simultaneously or
use option {extended_info, [object_count]} to tab2file/3, which extends the
information in the file with the number of objects written.
If verification is turned on and the file was written with option
{extended_info, [md5sum]}, reading the file is slower and consumes radically
more CPU time than otherwise.
{verify,false} is the default.

 Link to this function

 first(Table)

 View Source

 -spec first(Table) -> Key | '$end_of_table' when Table :: table(), Key :: term().

Returns the first key Key in table Table. For an ordered_set table, the
first key in Erlang term order is returned. For other table types, the first key
according to the internal order of the table is returned. If the table is empty,
'$end_of_table' is returned.
To find subsequent keys in the table, use next/2.

 Link to this function

 first_lookup(Table)

 View Source

 (since OTP @OTP-18923@)

 -spec first_lookup(Table) -> {Key, [Object]} | '$end_of_table'
 when Table :: table(), Key :: term(), Object :: tuple().

Similar to first/1 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing first/1 followed by a
lookup/2. If the table is empty, '$end_of_table' is returned.
To find subsequent objects in the table, use next_lookup/2.

 Link to this function

 foldl(Function, Acc0, Table)

 View Source

 -spec foldl(Function, Acc0, Table) -> Acc1
 when
 Function :: fun((Element :: term(), AccIn) -> AccOut),
 Table :: table(),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term().

Acc0 is returned if the table is empty. This function is similar to
lists:foldl/3. The table elements are traversed in an unspecified order,
except for ordered_set tables, where they are traversed first to last.
If Function inserts objects into the table, or another process inserts objects
into the table, those objects can (depending on key ordering) be included in
the traversal.

 Link to this function

 foldr(Function, Acc0, Table)

 View Source

 -spec foldr(Function, Acc0, Table) -> Acc1
 when
 Function :: fun((Element :: term(), AccIn) -> AccOut),
 Table :: table(),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term().

Acc0 is returned if the table is empty. This function is similar to
lists:foldr/3. The table elements are traversed in an unspecified order,
except for ordered_set tables, where they are traversed last to first.
If Function inserts objects into the table, or another process inserts objects
into the table, those objects can (depending on key ordering) be included in
the traversal.

 Link to this function

 from_dets(Table, DetsTab)

 View Source

 -spec from_dets(Table, DetsTab) -> true when Table :: table(), DetsTab :: dets:tab_name().

Fills an already created ETS table with the objects in the already opened Dets
table DetsTab. Existing objects in the ETS table are kept unless overwritten.
If any of the tables does not exist or the Dets table is not open, a badarg
exception is raised.

 Link to this function

 fun2ms(LiteralFun)

 View Source

 -spec fun2ms(LiteralFun) -> MatchSpec when LiteralFun :: function(), MatchSpec :: match_spec().

Pseudo function that by a parse_transform translates LiteralFun typed as
parameter in the function call to a match specification.
With "literal" is meant that the fun must textually be written as the parameter
of the function, it cannot be held in a variable that in turn is passed to the
function.
The parse transform is provided in the ms_transform module and the source
must include file ms_transform.hrl in STDLIB for this pseudo function to
work. Failing to include the hrl file in the source results in a runtime error,
not a compile time error. The include file is easiest included by adding line
-include_lib("stdlib/include/ms_transform.hrl"). to the source file.
The fun is very restricted, it can take only a single parameter (the object to
match): a sole variable or a tuple. It must use the is_ guard tests. Language
constructs that have no representation in a match specification (if, case,
receive, and so on) are not allowed.
The return value is the resulting match specification.
Example:
1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{'$1','$2'},[{'>','$2',3}],['$1']}]
Variables from the environment can be imported, so that the following works:
2> X=3.
3
3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1','$2'},[{'>','$2',{const,3}}],['$1']}]
The imported variables are replaced by match specification const expressions,
which is consistent with the static scoping for Erlang funs. However, local or
global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functions is of course allowed:
4> ets:fun2ms(fun({M,N}) when N > X, my_fun(M) -> M end).
Error: fun containing local Erlang function calls
('my_fun' called in guard) cannot be translated into match_spec
{error,transform_error}
5> ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).
[{{'$1','$2'},[{'>','$2',{const,3}},{is_atom,'$1'}],['$1']}]
As shown by the example, the function can be called from the shell also. The fun
must be literally in the call when used from the shell as well.
Warning
If the parse_transform is not applied to a module that calls this pseudo
function, the call fails in runtime (with a badarg). The ets module
exports a function with this name, but it is never to be called except when
using the function in the shell. If the parse_transform is properly applied
by including header file ms_transform.hrl, compiled code never calls the
function, but the function call is replaced by a literal match specification.

For more information, see ms_transform.

 Link to this function

 give_away(Table, Pid, GiftData)

 View Source

 -spec give_away(Table, Pid, GiftData) -> true when Table :: table(), Pid :: pid(), GiftData :: term().

Make process Pid the new owner of table Table. If successful, message
{'ETS-TRANSFER',Table,FromPid,GiftData} is sent to the new owner.
The process Pid must be alive, local, and not already the owner of the table.
The calling process must be the table owner.
Notice that this function does not affect option heir of the
table. A table owner can, for example, set heir to itself, give the table
away, and then get it back if the receiver terminates.

 Link to this function

 i()

 View Source

 -spec i() -> ok.

Displays information about all ETS tables on a terminal.

 Link to this function

 i(Table)

 View Source

 -spec i(Table) -> ok when Table :: table().

Browses table Table on a terminal.

 Link to this function

 info(Table)

 View Source

 -spec info(Table) -> InfoList | undefined
 when
 Table :: table(),
 InfoList :: [InfoTuple],
 InfoTuple ::
 {compressed, boolean()} |
 {decentralized_counters, boolean()} |
 {heir, pid() | none} |
 {id, tid()} |
 {keypos, pos_integer()} |
 {memory, non_neg_integer()} |
 {name, atom()} |
 {named_table, boolean()} |
 {node, node()} |
 {owner, pid()} |
 {protection, table_access()} |
 {size, non_neg_integer()} |
 {type, table_type()} |
 {write_concurrency, boolean()} |
 {read_concurrency, boolean()}.

Returns information about table Table as a list of tuples. If Table has the
correct type for a table identifier, but does not refer to an existing ETS
table, undefined is returned. If Table is not of the correct type, a
badarg exception is raised.
	{compressed, boolean()} - Indicates if the table is compressed.

	{decentralized_counters, boolean()} - Indicates whether the table uses
decentralized_counters.

	{heir, pid() | none} - The pid of the heir of the table, or none if no
heir is set.

	{id, tid()} - The table identifier.

	{keypos, integer() >= 1} - The key position.

	{memory, integer() >= 0} - The number of words allocated to the table.

	{name, atom()} - The table name.

	{named_table, boolean()} - Indicates if the table is named.

	{node, node()} - The node where the table is stored. This field is no
longer meaningful, as tables cannot be accessed from other nodes.

	{owner, pid()} - The pid of the owner of the table.

	{protection, access()} - The table access
rights.

	{size, integer() >= 0} - The number of objects inserted in the table.

	{type, type()} - The table type.

	{read_concurrency, boolean()} - Indicates whether the table uses
read_concurrency or not.

	{write_concurrency, WriteConcurrencyAlternative} - Indicates which
write_concurrency option the table uses.

Note
The execution time of this function is affected by the
decentralized_counters table option.
The execution time is much longer when the decentralized_counters option is
set to true than when the decentralized_counters option is set to false.

 Link to this function

 info(Table, Item)

 View Source

 -spec info(Table, Item) -> Value | undefined
 when
 Table :: table(),
 Item ::
 binary | compressed | decentralized_counters | fixed | heir | id | keypos |
 memory | name | named_table | node | owner | protection | safe_fixed |
 safe_fixed_monotonic_time | size | stats | type | write_concurrency |
 read_concurrency,
 Value :: term().

Returns the information associated with Item for table Table, or returns
undefined if Table does not refer an existing ETS table. If Table is not
of the correct type, or if Item is not one of the allowed values, a badarg
exception is raised.
In addition to the {Item,Value} pairs defined for info/1, the following
items are allowed:
	Item=binary, Value=BinInfo
BinInfo is a list containing miscellaneous information about binaries kept
by the table. This Item can be changed or removed without prior notice. In
the current implementation BinInfo is a list of tuples
{BinaryId,BinarySize,BinaryRefcCount}.

	Item=fixed, Value=boolean()
Indicates if the table is fixed by any process.

	
Item=safe_fixed|safe_fixed_monotonic_time, Value={FixationTime,Info}|false
If the table is fixed using safe_fixtable/2, the call returns a tuple where
FixationTime is the last time when the table changed from unfixed to fixed.
The format and value of FixationTime depends on Item:
	safe_fixed - FixationTime corresponds to the result returned by
erlang:timestamp/0 at the time of fixation. Notice that when the system
uses single or multi
time warp modes this can
produce strange results, as the use of safe_fixed is not
time warp safe. Time warp
safe code must use safe_fixed_monotonic_time instead.

	safe_fixed_monotonic_time - FixationTime corresponds to the result
returned by erlang:monotonic_time/0 at the time of fixation. The use of
safe_fixed_monotonic_time is
time warp safe.

Info is a possibly empty lists of tuples {Pid,RefCount}, one tuple for
every process the table is fixed by now. RefCount is the value of the
reference counter and it keeps track of how many times the table has been
fixed by the process.
Table fixations are not limited to safe_fixtable/2. Temporary fixations may
also be done by for example traversing functions like
select and match. Such table fixations are automatically released before
the corresponding functions returns, but they may be seen by a concurrent call
to ets:info(T,safe_fixed|safe_fixed_monotonic_time).
If the table is not fixed at all, the call returns false.

	Item=stats, Value=tuple()
Returns internal statistics about tables on an internal format used by OTP
test suites. Not for production use.

Note
The execution time of this function is affected by the
decentralized_counters table option
when the second argument of the function is size or memory. The execution
time is much longer when the decentralized_counters option is set to true
than when the decentralized_counters option is set to false.

 Link to this function

 init_table(Table, InitFun)

 View Source

 -spec init_table(Table, InitFun) -> true
 when
 Table :: table(),
 InitFun :: fun((Arg) -> Res),
 Arg :: read | close,
 Res :: end_of_input | {Objects :: [term()], InitFun} | term().

Replaces the existing objects of table Table with objects created by calling
the input function InitFun, see below. This function is provided for
compatibility with the dets module, it is not more efficient than filling a
table by using insert/2.
When called with argument read, the function InitFun is assumed to return
end_of_input when there is no more input, or {Objects, Fun}, where Objects
is a list of objects and Fun is a new input function. Any other value Value
is returned as an error {error, {init_fun, Value}}. Each input function is
called exactly once, and if an error occur, the last function is called with
argument close, the reply of which is ignored.
If the table type is set and more than one object exists with a given key, one
of the objects is chosen. This is not necessarily the last object with the given
key in the sequence of objects returned by the input functions. This holds also
for duplicated objects stored in tables of type bag.

 Link to this function

 insert(Table, ObjectOrObjects)

 View Source

 -spec insert(Table, ObjectOrObjects) -> true
 when Table :: table(), ObjectOrObjects :: tuple() | [tuple()].

Inserts the object or all of the objects in list ObjectOrObjects into table
Table.
	If the table type is set and the key of the inserted objects matches the
key of any object in the table, the old object is replaced.
	If the table type is ordered_set and the key of the inserted object
compares equal to the key of any object in the table, the old object is
replaced.
	If the table type is bag and the object matches any whole object in the
table, the object is not inserted.
	If the list contains more than one object with matching keys and the table
type is set, one is inserted, which one is not defined. The same holds for
table type ordered_set if the keys compare equal.

The entire operation is guaranteed to be
atomic and isolated, even when a list of objects is
inserted.

For bag and duplicate_bag, objects in the list with identical keys will be
inserted in list order (from head to tail). That is, a subsequent call to
lookup(T,Key) will return them in that inserted order.
Note
For bag the insertion order of indentical keys described above was
accidentally reverted in OTP 23.0 and later fixed in OTP 25.3. That is, from
OTP 23.0 up until OTP 25.3 the objects in a list are inserted in reverse order
(from tail to head).
For duplicate_bag the same faulty reverse insertion exist from OTP 23.0
until OTP 25.3. However, it is unpredictable and may or may not happen. A
longer list will increase the probabiliy of the insertion being done in
reverse.

 Link to this function

 insert_new(Table, ObjectOrObjects)

 View Source

 -spec insert_new(Table, ObjectOrObjects) -> boolean()
 when Table :: table(), ObjectOrObjects :: tuple() | [tuple()].

Same as insert/2 except that instead of overwriting objects with the same key
(for set or ordered_set) or adding more objects with keys already existing
in the table (for bag and duplicate_bag), false is returned.
If ObjectOrObjects is a list, the function checks every key before inserting
anything. Nothing is inserted unless all keys present in the list are absent
from the table. Like insert/2, the entire operation is
guaranteed to be atomic and isolated.

 Link to this function

 is_compiled_ms(Term)

 View Source

 -spec is_compiled_ms(Term) -> boolean() when Term :: term().

Checks if a term represent a valid compiled
match specification. A compiled match specification is
only valid on the Erlang node where it was compiled by calling
match_spec_compile/1.
Note
Before STDLIB 3.4 (OTP 20.0) compiled match specifications did not have an
external representation. If passed through
binary_to_term(term_to_binary(CMS)) or sent to another
node and back, the result was always an empty binary <<>>.
After STDLIB 3.4 (OTP 20.0) compiled match specifications have an external
representation as a node specific reference to the original compiled match
specification. If passed through
binary_to_term(term_to_binary(CMS)) or sent to another
node and back, the result may or may not be a valid compiled match
specification depending on if the original compiled match specification was
still alive.

 Link to this function

 last(Table)

 View Source

 -spec last(Table) -> Key | '$end_of_table' when Table :: table(), Key :: term().

Returns the last key Key according to Erlang term order in table Table of
type ordered_set. For other table types, the function is synonymous to
first/1. If the table is empty, '$end_of_table' is returned.
To find preceding keys in the table, use prev/2.

 Link to this function

 last_lookup(Table)

 View Source

 (since OTP @OTP-18923@)

 -spec last_lookup(Table) -> {Key, [Object]} | '$end_of_table'
 when Table :: table(), Key :: term(), Object :: tuple().

Similar to last/1 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing last/1 followed by a
lookup/2. If the table is empty, '$end_of_table' is returned.
To find preceding objects in the table, use prev_lookup/2.

 Link to this function

 lookup(Table, Key)

 View Source

 -spec lookup(Table, Key) -> [Object] when Table :: table(), Key :: term(), Object :: tuple().

Returns a list of all objects with key Key in table Table.
	For tables of type set, bag, or duplicate_bag, an object is returned
only if the specified key matches the key of the object in the table.
	For tables of type ordered_set, an object is returned if the specified key
compares equal to the key of an object in the table.

The difference is the same as between =:= and ==.
As an example, one can insert an object with integer/0 1 as a key in an
ordered_set and get the object returned as a result of doing a
lookup/2 with float/0 1.0 as the key to search for.
For tables of type set or ordered_set, the function returns either the empty
list or a list with one element, as there cannot be more than one object with
the same key. For tables of type bag or duplicate_bag, the function returns
a list of arbitrary length.
Notice that the sequential order of object insertions is preserved; the first
object inserted with the specified key is the first in the resulting list, and
so on. See also the note about
list insertion order.

 Link to this function

 lookup_element(Table, Key, Pos)

 View Source

 -spec lookup_element(Table, Key, Pos) -> Elem
 when
 Table :: table(),
 Key :: term(),
 Pos :: pos_integer(),
 Elem :: term() | [term()].

For a table Table of type set or ordered_set, the function returns the
Pos:th element of the object with key Key.
For tables of type bag or duplicate_bag, the functions returns a list with
the Pos:th element of every object with key Key.
If no object with key Key exists, the function exits with reason badarg.
If Pos is larger than the size of the tuple, the function exits with reason
badarg.
The difference between set, bag, and duplicate_bag on one hand, and
ordered_set on the other, regarding the fact that ordered_set view keys as
equal when they compare equal whereas the other table types regard them equal
only when they match, holds for lookup_element/3.

 Link to this function

 lookup_element(Table, Key, Pos, Default)

 View Source

 (since OTP 26.0)

 -spec lookup_element(Table, Key, Pos, Default) -> Elem
 when
 Table :: table(),
 Key :: term(),
 Pos :: pos_integer(),
 Default :: term(),
 Elem :: term() | [term()].

For a table Table of type set or ordered_set, the function returns the
Pos:th element of the object with key Key.
For tables of type bag or duplicate_bag, the functions returns a list with
the Pos:th element of every object with key Key.
If no object with key Key exists, the function returns Default.
If Pos is larger than the size of any tuple with a matching key, the function
exits with reason badarg.
The difference between set, bag, and duplicate_bag on one hand, and
ordered_set on the other, regarding the fact that ordered_set view keys as
equal when they compare equal whereas the other table types regard them equal
only when they match, holds for lookup_element/4.

 Link to this function

 match(Continuation)

 View Source

 -spec match(Continuation) -> {[Match], Continuation} | '$end_of_table'
 when Match :: [term()], Continuation :: continuation().

Continues a match started with match/3. The next chunk of the size specified
in the initial match/3 call is returned together with a new
Continuation, which can be used in subsequent calls to this function.
When there are no more objects in the table, '$end_of_table' is returned.

 Link to this function

 match(Table, Pattern)

 View Source

 -spec match(Table, Pattern) -> [Match]
 when Table :: table(), Pattern :: match_pattern(), Match :: [term()].

Matches the objects in table Table against pattern Pattern.
A pattern is a term that can contain:
	Bound parts (Erlang terms)
	'_' that matches any Erlang term
	Pattern variables '$N', where N=0,1,...

The function returns a list with one element for each matching object, where
each element is an ordered list of pattern variable bindings, for example:
6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}],[{brunte,horse,5}],[{ludde,dog,5}]]
7> ets:match(T, {'_',dog,'$1'}).
[[7],[5]]
8> ets:match(T, {'_',cow,'$1'}).
[]
If the key is specified in the pattern, the match is very efficient. If the key
is not specified, that is, if it is a variable or an underscore, the entire
table must be searched. The search time can be substantial if the table is very
large.
For tables of type ordered_set, the result is in the same order as in a
first/next traversal.

 Link to this function

 match(Table, Pattern, Limit)

 View Source

 -spec match(Table, Pattern, Limit) -> {[Match], Continuation} | '$end_of_table'
 when
 Table :: table(),
 Pattern :: match_pattern(),
 Limit :: pos_integer(),
 Match :: [term()],
 Continuation :: continuation().

Works like match/2, but returns only a limited (Limit) number of matching
objects. Term Continuation can then be used in subsequent calls to match/1
to get the next chunk of matching objects. This is a space-efficient way to work
on objects in a table, which is faster than traversing the table object by
object using first/1 and next/2.
If the table is empty, '$end_of_table' is returned.
Use safe_fixtable/2 to guarantee safe traversal for
subsequent calls to match/1.

 Link to this function

 match_delete(Table, Pattern)

 View Source

 -spec match_delete(Table, Pattern) -> true when Table :: table(), Pattern :: match_pattern().

Deletes all objects that match pattern Pattern from table Table. For a
description of patterns, see match/2.

 Link to this function

 match_object(Continuation)

 View Source

 -spec match_object(Continuation) -> {[Object], Continuation} | '$end_of_table'
 when Object :: tuple(), Continuation :: continuation().

Continues a match started with match_object/3. The next chunk of the size
specified in the initial match_object/3 call is returned
together with a new Continuation, which can be used in subsequent calls to
this function.
When there are no more objects in the table, '$end_of_table' is returned.

 Link to this function

 match_object(Table, Pattern)

 View Source

 -spec match_object(Table, Pattern) -> [Object]
 when Table :: table(), Pattern :: match_pattern(), Object :: tuple().

Matches the objects in table Table against pattern Pattern. For a
description of patterns, see match/2. The function returns a list of all
objects that match the pattern.
If the key is specified in the pattern, the match is very efficient. If the key
is not specified, that is, if it is a variable or an underscore, the entire
table must be searched. The search time can be substantial if the table is very
large.
For tables of type ordered_set, the result is in the same order as in a
first/next traversal.

 Link to this function

 match_object(Table, Pattern, Limit)

 View Source

 -spec match_object(Table, Pattern, Limit) -> {[Object], Continuation} | '$end_of_table'
 when
 Table :: table(),
 Pattern :: match_pattern(),
 Limit :: pos_integer(),
 Object :: tuple(),
 Continuation :: continuation().

Works like match_object/2, but only returns a limited (Limit) number of
matching objects. Term Continuation can then be used in subsequent calls to
match_object/1 to get the next chunk of matching objects. This is a
space-efficient way to work on objects in a table, which is faster than
traversing the table object by object using first/1 and next/2.
If the table is empty, '$end_of_table' is returned.
Use safe_fixtable/2 to guarantee safe traversal for
subsequent calls to match_object/1.

 Link to this function

 match_spec_compile(MatchSpec)

 View Source

 -spec match_spec_compile(MatchSpec) -> CompiledMatchSpec
 when MatchSpec :: match_spec(), CompiledMatchSpec :: compiled_match_spec().

Transforms a match specification into an internal
representation that can be used in subsequent calls to match_spec_run/2. The
internal representation is opaque. To check the validity of a compiled match
specification, use is_compiled_ms/1.
If term MatchSpec does not represent a valid match specification, a badarg
exception is raised.
Note
This function has limited use in normal code. It is used by the dets
module to perform the dets:select/1 operations.

 Link to this function

 match_spec_run(List, CompiledMatchSpec)

 View Source

 -spec match_spec_run(List, CompiledMatchSpec) -> list()
 when List :: [term()], CompiledMatchSpec :: compiled_match_spec().

Executes the matching specified in a compiled
match specification on a list of terms. Term
CompiledMatchSpec is to be the result of a call to match_spec_compile/1 and
is hence the internal representation of the match specification one wants to
use.
The matching is executed on each element in List and the function returns a
list containing all results. If an element in List does not match, nothing is
returned for that element. The length of the result list is therefore equal or
less than the length of parameter List.
Example:
The following two calls give the same result (but certainly not the same
execution time):
Table = ets:new...
MatchSpec = ...
% The following call...
ets:match_spec_run(ets:tab2list(Table),
 ets:match_spec_compile(MatchSpec)),
% ...gives the same result as the more common (and more efficient)
ets:select(Table, MatchSpec),
Note
This function has limited use in normal code. It is used by the dets
module to perform the dets:select/1 operations and by Mnesia during
transactions.

 Link to this function

 member(Table, Key)

 View Source

 -spec member(Table, Key) -> boolean() when Table :: table(), Key :: term().

Works like lookup/2, but does not return the objects. Returns true if one or
more elements in the table has key Key, otherwise false.

 Link to this function

 new(Name, Options)

 View Source

 -spec new(Name, Options) -> table()
 when
 Name :: atom(),
 Options :: [Option],
 Option ::
 Type | Access | named_table |
 {keypos, Pos} |
 {heir, Pid :: pid(), HeirData} |
 {heir, none} |
 Tweaks,
 Type :: table_type(),
 Access :: table_access(),
 WriteConcurrencyAlternative :: boolean() | auto,
 Tweaks ::
 {write_concurrency, WriteConcurrencyAlternative} |
 {read_concurrency, boolean()} |
 {decentralized_counters, boolean()} |
 compressed,
 Pos :: pos_integer(),
 HeirData :: term().

Creates a new table and returns a table identifier that can be used in
subsequent operations. The table identifier can be sent to other processes so
that a table can be shared between different processes within a node.
Parameter Options is a list of options that specifies table type, access
rights, key position, and whether the table is named. Default values are used
for omitted options. This means that not specifying any options ([]) is the
same as specifying
[set, protected, {keypos,1}, {heir,none}, {write_concurrency,false}, {read_concurrency,false}, {decentralized_counters,false}].
	set - The table is a set table: one key, one object, no order among
objects. This is the default table type.

	ordered_set - The table is a ordered_set table: one key, one object,
ordered in Erlang term order, which is the order implied by the < and >
operators. Tables of this type have a somewhat different behavior in some
situations than tables of other types. Most notably, the ordered_set tables
regard keys as equal when they compare equal, not only when they match. This
means that to an ordered_set table, integer/0 1 and float/0 1.0
are regarded as equal. This also means that the key used to lookup an element
does not necessarily match the key in the returned elements, if
float/0's and integer/0's are mixed in keys of a table.

	bag - The table is a bag table, which can have many objects, but only
one instance of each object, per key.

	duplicate_bag - The table is a duplicate_bag table, which can have
many objects, including multiple copies of the same object, per key.

	public - Any process can read or write to the table.

	protected - The owner process can read and write to the table. Other
processes can only read the table. This is the default setting for the access
rights.

	private - Only the owner process can read or write to the table.

	named_table - If this option is present, the table is registered under
its Name which can then be used instead of the table identifier in
subsequent operations.
The function will also return the Name instead of the table identifier. To
get the table identifier of a named table, use whereis/1.

	{keypos,Pos} - Specifies which element in the stored tuples to use as
key. By default, it is the first element, that is, Pos=1. However, this is
not always appropriate. In particular, we do not want the first element to be
the key if we want to store Erlang records in a table.
Notice that any tuple stored in the table must have at least Pos number of
elements.

	{heir,Pid,HeirData} | {heir,none} - Set a process as heir. The heir
inherits the table if the owner terminates. Message
{'ETS-TRANSFER',tid(),FromPid,HeirData} is sent to the heir when that
occurs. The heir must be a local process. Default heir is none, which
destroys the table when the owner terminates.

	{write_concurrency,WriteConcurrencyAlternative} - Performance tuning.
Defaults to false, in which case an operation that mutates (writes to) the
table obtains exclusive access, blocking any concurrent access of the same
table until finished. If set to true, the table is optimized for concurrent
write access. Different objects of the same table can be mutated (and read) by
concurrent processes. This is achieved to some degree at the expense of memory
consumption and the performance of sequential access and concurrent reading.
The auto alternative for the write_concurrency option is similar to the
true option but automatically adjusts the synchronization granularity during
runtime depending on how the table is used. This is the recommended
write_concurrency option when using Erlang/OTP 25 and above as it performs
well in most scenarios.
The write_concurrency option can be combined with the options
read_concurrency and
decentralized_counters. You
typically want to combine write_concurrency with read_concurrency when
large concurrent read bursts and large concurrent write bursts are common; for
more information, see option
read_concurrency. It is almost always a
good idea to combine the write_concurrency option with the
decentralized_counters option.
Notice that this option does not change any guarantees about
atomicity and isolation. Functions that makes such
promises over many objects (like insert/2) gain less (or nothing) from this
option.
The memory consumption inflicted by both write_concurrency and
read_concurrency is a constant overhead per table for set, bag and
duplicate_bag when the true alternative for the write_concurrency option
is not used. For all tables with the auto alternative and ordered_set
tables with true alternative the memory overhead depends on the amount of
actual detected concurrency during runtime. The memory overhead can be
especially large when both write_concurrency and read_concurrency are
combined.
Note
Prior to stdlib-3.7 (OTP-22.0) write_concurrency had no effect on
ordered_set.

Note
The auto alternative for the write_concurrency option is only available
in OTP-25.0 and above.

	{read_concurrency,boolean()}(Since OTP R14B)
Performance tuning. Defaults to false. When set to true, the table is
optimized for concurrent read operations. When this option is enabled read
operations become much cheaper; especially on systems with multiple physical
processors. However, switching between read and write operations becomes more
expensive.
You typically want to enable this option when concurrent read operations are
much more frequent than write operations, or when concurrent reads and writes
comes in large read and write bursts (that is, many reads not interrupted by
writes, and many writes not interrupted by reads).
You typically do not want to enable this option when the common access
pattern is a few read operations interleaved with a few write operations
repeatedly. In this case, you would get a performance degradation by enabling
this option.
Option read_concurrency can be combined with option
write_concurrency. You typically want to
combine these when large concurrent read bursts and large concurrent write
bursts are common.

	{decentralized_counters,boolean()}(Since OTP 23.0)
Performance tuning. Defaults to true for all tables with the
write_concurrency option set to auto. For tables of type ordered_set the
option also defaults to true when the write_concurrency option is set to
true. The option defaults to false for all other configurations. This
option has no effect if the write_concurrency option is set to false.
When this option is set to true, the table is optimized for frequent
concurrent calls to operations that modify the tables size and/or its memory
consumption (e.g., insert/2 and delete/2). The drawback is that calls to
info/1 and info/2 with size or memory as the second argument can get
much slower when the decentralized_counters option is turned on.
When this option is enabled the counters for the table size and memory
consumption are distributed over several cache lines and the scheduling
threads are mapped to one of those cache lines. The erl option
+dcg can be used to control the number of
cache lines that the counters are distributed over.

	compressed(Since OTP R14B01)
If this option is present, the table data is stored in a more compact format
to consume less memory. However, it will make table operations slower.
Especially operations that need to inspect entire objects, such as match and
select, get much slower. The key element is not compressed.

 Link to this function

 next(Table, Key1)

 View Source

 -spec next(Table, Key1) -> Key2 | '$end_of_table' when Table :: table(), Key1 :: term(), Key2 :: term().

Returns the next key Key2, following key Key1 in table Table. For table
type ordered_set, the next key in Erlang term order is returned. For other
table types, the next key according to the internal order of the table is
returned. If no next key exists, '$end_of_table' is returned.
To find the first key in the table, use first/1.
Unless a table of type set, bag, or duplicate_bag is fixated using
safe_fixtable/2, a call to next/2 will fail if Key1 no longer
exists in the table. For table type ordered_set, the function always returns
the next key after Key1 in term order, regardless whether Key1 ever existed
in the table.

 Link to this function

 next_lookup(Table, Key1)

 View Source

 (since OTP @OTP-18923@)

 -spec next_lookup(Table, Key1) -> {Key2, [Object]} | '$end_of_table'
 when Table :: table(), Key1 :: term(), Key2 :: term(), Object :: tuple().

Similar to next/2 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing next/2 followed by a
lookup/2. If no next key exists, '$end_of_table' is returned.
It can be interleaved with next/2 during traversal.

 Link to this function

 prev(Table, Key1)

 View Source

 -spec prev(Table, Key1) -> Key2 | '$end_of_table' when Table :: table(), Key1 :: term(), Key2 :: term().

Returns the previous key Key2, preceding key Key1 according to Erlang term
order in table Table of type ordered_set. For other table types, the
function is synonymous to next/2. If no previous key exists, '$end_of_table'
is returned.
To find the last key in an ordered_set table, use last/1.

 Link to this function

 prev_lookup(Table, Key1)

 View Source

 (since OTP @OTP-18923@)

 -spec prev_lookup(Table, Key1) -> {Key2, [Object]} | '$end_of_table'
 when Table :: table(), Key1 :: term(), Key2 :: term(), Object :: tuple().

Similar to prev/2 except that it returns the object(s) along with the key
stored in the table. This is equivalent to doing prev/2 followed by a
lookup/2. If no previous key exists, '$end_of_table' is returned.
It can be interleaved with prev/2 during traversal.

 Link to this function

 rename(Table, Name)

 View Source

 -spec rename(Table, Name) -> Name when Table :: table(), Name :: atom().

Renames the named table Table to the new name Name. Afterwards, the old name
cannot be used to access the table. Renaming an unnamed table has no effect.

 Link to this function

 repair_continuation(Continuation, MatchSpec)

 View Source

 -spec repair_continuation(Continuation, MatchSpec) -> Continuation
 when Continuation :: continuation(), MatchSpec :: match_spec().

Restores an opaque continuation returned by select/3 or select/1 if the
continuation has passed through external term format (been sent between nodes or
stored on disk).
The reason for this function is that continuation terms contain compiled match
specifications and may therefore be invalidated if converted to external term
format. Given that the original match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent
select/1 calls even though it has been stored on disk or on
another node.
Examples:
The following sequence of calls may fail:
T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A) when (N rem 10) =:= 0 -> A end),
{_,C} = ets:select(T, MS, 10),
MaybeBroken = binary_to_term(term_to_binary(C)),
ets:select(MaybeBroken).
The following sequence works, as the call to
repair_continuation/2 reestablishes the
MaybeBroken continuation.
T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A) when (N rem 10) =:= 0 -> A end),
{_,C} = ets:select(T,MS,10),
MaybeBroken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(MaybeBroken,MS)).
Note
This function is rarely needed in application code. It is used by Mnesia to
provide distributed select/3 and select/1
sequences. A normal application would either use Mnesia or keep the
continuation from being converted to external format.
The actual behavior of compiled match specifications when recreated from
external format has changed and may change in future releases, but this
interface remains for backward compatibility. See is_compiled_ms/1.

 Link to this function

 safe_fixtable(Table, Fix)

 View Source

 -spec safe_fixtable(Table, Fix) -> true when Table :: table(), Fix :: boolean().

Fixes a table of type set, bag, or duplicate_bag for
safe traversal using first/1 & next/2, match/3 &
match/1, match_object/3 & match_object/1, or select/3 & select/1.
A process fixes a table by calling
safe_fixtable(Table, true). The table remains fixed until
the process releases it by calling
safe_fixtable(Table, false), or until the process
terminates.
If many processes fix a table, the table remains fixed until all processes have
released it (or terminated). A reference counter is kept on a per process basis,
and N consecutive fixes requires N releases to release the table.
When a table is fixed, a sequence of first/1 and next/2 calls are guaranteed
to succeed even if keys are removed during the traversal. The keys for objects
inserted or deleted during a traversal may or may not be returned by
next/2 depending on the ordering of keys within the table and if
the key exists at the time next/2 is called.
Example:
clean_all_with_value(Table,X) ->
 safe_fixtable(Table,true),
 clean_all_with_value(Table,X,ets:first(Table)),
 safe_fixtable(Table,false).

clean_all_with_value(Table,X,'$end_of_table') ->
 true;
clean_all_with_value(Table,X,Key) ->
 case ets:lookup(Table,Key) of
 [{Key,X}] ->
 ets:delete(Table,Key);
 _ ->
 true
 end,
 clean_all_with_value(Table,X,ets:next(Table,Key)).
Notice that deleted objects are not freed from a fixed table until it has been
released. If a process fixes a table but never releases it, the memory used by
the deleted objects is never freed. The performance of operations on the table
also degrades significantly.
To retrieve information about which processes have fixed which tables, use
info(Table, safe_fixed_monotonic_time).
A system with many processes fixing tables can need a monitor that sends alarms
when tables have been fixed for too long.
Notice that safe_fixtable/2 is not necessary for table
type ordered_set and for traversals done by a single ETS function call, like
select/2.

 Link to this function

 select(Continuation)

 View Source

 -spec select(Continuation) -> {[Match], Continuation} | '$end_of_table'
 when Match :: term(), Continuation :: continuation().

Continues a match started with select/3. The next chunk of the size specified
in the initial select/3 call is returned together with a new
Continuation, which can be used in subsequent calls to this function.
When there are no more objects in the table, '$end_of_table' is returned.

 Link to this function

 select(Table, MatchSpec)

 View Source

 -spec select(Table, MatchSpec) -> [Match]
 when Table :: table(), MatchSpec :: match_spec(), Match :: term().

Matches the objects in table Table using a
match specification. This is a more general call than
match/2 and match_object/2 calls. In its simplest form, the match
specification is as follows:
MatchSpec = [MatchFunction]
MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"
Guard = {"Guardtest name", ...}
Result = "Term construct"
This means that the match specification is always a list of one or more tuples
(of arity 3). The first element of the tuple is to be a pattern as described in
match/2. The second element of the tuple is to be a list of 0 or more guard
tests (described below). The third element of the tuple is to be a list
containing a description of the value to return. In almost all normal cases, the
list contains exactly one term that fully describes the value to return for each
object.
The return value is constructed using the "match variables" bound in MatchHead
or using the special match variables '$_' (the whole matching object) and
'$$' (all match variables in a list), so that the following
match/2 expression:
ets:match(Table,{'$1','$2','$3'})
is exactly equivalent to:
ets:select(Table,[{{'$1','$2','$3'},[],['$$']}])
And that the following match_object/2 call:
ets:match_object(Table,{'$1','$2','$1'})
is exactly equivalent to
ets:select(Table,[{{'$1','$2','$1'},[],['$_']}])
Composite terms can be constructed in the Result part either by simply writing
a list, so that the following code:
ets:select(Table,[{{'$1','$2','$3'},[],['$$']}])
gives the same output as:
ets:select(Table,[{{'$1','$2','$3'},[],[['$1','$2','$3']]}])
That is, all the bound variables in the match head as a list. If tuples are to
be constructed, one has to write a tuple of arity 1 where the single element in
the tuple is the tuple one wants to construct (as an ordinary tuple can be
mistaken for a Guard).
Therefore the following call:
ets:select(Table,[{{'$1','$2','$1'},[],['$_']}])
gives the same output as:
ets:select(Table,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])
This syntax is equivalent to the syntax used in the trace patterns (see the
dbg) module in Runtime_Tools.
The Guards are constructed as tuples, where the first element is the test name
and the remaining elements are the test parameters. To check for a specific type
(say a list) of the element bound to the match variable '$1', one would write
the test as {is_list, '$1'}. If the test fails, the object in the table does
not match and the next MatchFunction (if any) is tried. Most guard tests
present in Erlang can be used, but only the new versions prefixed is_ are
allowed (is_float, is_atom, and so on).
The Guard section can also contain logic and arithmetic operations, which are
written with the same syntax as the guard tests (prefix notation), so that the
following guard test written in Erlang:
is_integer(X), is_integer(Y), X + Y < 4711
is expressed as follows (X replaced with '$1' and Y with '$2'):
[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]
For tables of type ordered_set, objects are visited in the same order as in a
first/next traversal. This means that the match specification is executed
against objects with keys in the first/next order and the corresponding
result list is in the order of that execution.

 Link to this function

 select(Table, MatchSpec, Limit)

 View Source

 -spec select(Table, MatchSpec, Limit) -> {[Match], Continuation} | '$end_of_table'
 when
 Table :: table(),
 MatchSpec :: match_spec(),
 Limit :: pos_integer(),
 Match :: term(),
 Continuation :: continuation().

Works like select/2, but only returns a limited (Limit) number of matching
objects. Term Continuation can then be used in subsequent calls to select/1
to get the next chunk of matching objects. This is a space-efficient way to work
on objects in a table, which is still faster than traversing the table object by
object using first/1 and next/2.
If the table is empty, '$end_of_table' is returned.
Use safe_fixtable/2 to guarantee safe traversal for
subsequent calls to select/1.

 Link to this function

 select_count(Table, MatchSpec)

 View Source

 -spec select_count(Table, MatchSpec) -> NumMatched
 when Table :: table(), MatchSpec :: match_spec(), NumMatched :: non_neg_integer().

Matches the objects in table Table using a
match specification. If the match specification returns
true for an object, that object considered a match and is counted. For any
other result from the match specification the object is not considered a match
and is therefore not counted.
This function can be described as a select_delete/2 function that does not
delete any elements, but only counts them.
The function returns the number of objects matched.

 Link to this function

 select_delete(Table, MatchSpec)

 View Source

 -spec select_delete(Table, MatchSpec) -> NumDeleted
 when Table :: table(), MatchSpec :: match_spec(), NumDeleted :: non_neg_integer().

Matches the objects in table Table using a
match specification. If the match specification returns
true for an object, that object is removed from the table. For any other
result from the match specification the object is retained. This is a more
general call than the match_delete/2 call.
The function returns the number of objects deleted from the table.
Note
The match specification has to return the atom true if the object is to be
deleted. No other return value gets the object deleted. So one cannot use the
same match specification for looking up elements as for deleting them.

 Link to this function

 select_replace(Table, MatchSpec)

 View Source

 (since OTP 20.0)

 -spec select_replace(Table, MatchSpec) -> NumReplaced
 when
 Table :: table(),
 MatchSpec :: match_spec(),
 NumReplaced :: non_neg_integer().

Matches the objects in the table Table using a
match specification. For each matched object, the existing
object is replaced with the match specification result.
The match-and-replace operation for each individual object is guaranteed to be
atomic and isolated. The select_replace table traversal
as a whole, like all other select functions, does not give such guarantees.
The match specification must be guaranteed to retain the key of any matched
object. If not, select_replace will fail with badarg without updating any
objects.
For the moment, due to performance and semantic constraints, tables of type
bag are not yet supported.
The function returns the total number of replaced objects.
Example
For all 2-tuples with a list in second position, add atom 'marker' first in
the list:
1> T = ets:new(x,[]), ets:insert(T, {key, [1, 2, 3]}).
true
2> MS = ets:fun2ms(fun({K, L}) when is_list(L) -> {K, [marker | L]} end).
[{{'$1','$2'},[{is_list,'$2'}],[{{'$1',[marker|'$2']}}]}]
3> ets:select_replace(T, MS).
1
4> ets:tab2list(T).
[{key,[marker,1,2,3]}]
A generic single object compare-and-swap operation:
[Old] = ets:lookup(T, Key),
New = update_object(Old),
Success = (1 =:= ets:select_replace(T, [{Old, [], [{const, New}]}])),

 Link to this function

 select_reverse(Continuation)

 View Source

 (since OTP R14B)

 -spec select_reverse(Continuation) -> {[Match], Continuation} | '$end_of_table'
 when Continuation :: continuation(), Match :: term().

Continues a match started with select_reverse/3. For tables of type
ordered_set, the traversal of the table continues to objects with keys earlier
in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of
select/1.
Example:
1> T = ets:new(x,[ordered_set]).
2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].
...
3> {R0,C0} = ets:select_reverse(T,[{'_',[],['$_']}],4).
...
4> R0.
[{10},{9},{8},{7}]
5> {R1,C1} = ets:select_reverse(C0).
...
6> R1.
[{6},{5},{4},{3}]
7> {R2,C2} = ets:select_reverse(C1).
...
8> R2.
[{2},{1}]
9> '$end_of_table' = ets:select_reverse(C2).
...

 Link to this function

 select_reverse(Table, MatchSpec)

 View Source

 (since OTP R14B)

 -spec select_reverse(Table, MatchSpec) -> [Match]
 when Table :: table(), MatchSpec :: match_spec(), Match :: term().

Works like select/2, but returns the list in reverse order for table type
ordered_set. For all other table types, the return value is identical to that
of select/2.

 Link to this function

 select_reverse(Table, MatchSpec, Limit)

 View Source

 (since OTP R14B)

 -spec select_reverse(Table, MatchSpec, Limit) -> {[Match], Continuation} | '$end_of_table'
 when
 Table :: table(),
 MatchSpec :: match_spec(),
 Limit :: pos_integer(),
 Match :: term(),
 Continuation :: continuation().

Works like select/3, but for table type ordered_set traversing is done
starting at the last object in Erlang term order and moves to the first. For all
other table types, the return value is identical to that of
select/3.
Notice that this is not equivalent to reversing the result list of a
select/3 call, as the result list is not only reversed, but also
contains the last Limit matching objects in the table, not the first.

 Link to this function

 setopts(Table, Opts)

 View Source

 -spec setopts(Table, Opts) -> true
 when
 Table :: table(),
 Opts :: Opt | [Opt],
 Opt :: {heir, pid(), HeirData} | {heir, none},
 HeirData :: term().

Sets table options. The only allowed option to be set after the table has been
created is heir. The calling process must be the table owner.

 Link to this function

 slot(Table, I)

 View Source

 -spec slot(Table, I) -> [Object] | '$end_of_table'
 when Table :: table(), I :: non_neg_integer(), Object :: tuple().

This function is mostly for debugging purposes, normally first/next or
last/prev are to be used instead.
Returns all objects in slot I of table Table. A table can be traversed by
repeatedly calling the function, starting with the first slot I=0 and ending
when '$end_of_table' is returned. If argument I is out of range, the
function fails with reason badarg.
Unless a table of type set, bag, or duplicate_bag is protected using
safe_fixtable/2, a traversal can fail if concurrent updates are made to the
table. For table type ordered_set, the function returns a list containing
object I in Erlang term order.

 Link to this function

 tab2file(Table, Filename)

 View Source

 -spec tab2file(Table, Filename) -> ok | {error, Reason}
 when Table :: table(), Filename :: file:name(), Reason :: term().

Dumps table Table to file Filename.
Equivalent to tab2file(Table, Filename,[])

 Link to this function

 tab2file(Table, Filename, Options)

 View Source

 -spec tab2file(Table, Filename, Options) -> ok | {error, Reason}
 when
 Table :: table(),
 Filename :: file:name(),
 Options :: [Option],
 Option :: {extended_info, [ExtInfo]} | {sync, boolean()},
 ExtInfo :: md5sum | object_count,
 Reason :: term().

Dumps table Table to file Filename.
When dumping the table, some information about the table is dumped to a header
at the beginning of the dump. This information contains data about the table
type, name, protection, size, version, and if it is a named table. It also
contains notes about what extended information is added to the file, which can
be a count of the objects in the file or a MD5 sum of the header and records in
the file.
The size field in the header might not correspond to the number of records in
the file if the table is public and records are added or removed from the table
during dumping. Public tables updated during dump, and that one wants to verify
when reading, needs at least one field of extended information for the read
verification process to be reliable later.
Option extended_info specifies what extra information is written to the table
dump:
	object_count - The number of objects written to the file is noted in the
file footer, so file truncation can be verified even if the file was updated
during dump.

	md5sum - The header and objects in the file are checksummed using the
built-in MD5 functions. The MD5 sum of all objects is written in the file
footer, so that verification while reading detects the slightest bitflip in
the file data. Using this costs a fair amount of CPU time.

Whenever option extended_info is used, it results in a file not readable by
versions of ETS before that in STDLIB 1.15.1
If option sync is set to true, it ensures that the content of the file is
written to the disk before tab2file returns. Defaults to {sync, false}.

 Link to this function

 tab2list(Table)

 View Source

 -spec tab2list(Table) -> [Object] when Table :: table(), Object :: tuple().

Returns a list of all objects in table Table.

 Link to this function

 tabfile_info(Filename)

 View Source

 -spec tabfile_info(Filename) -> {ok, TableInfo} | {error, Reason}
 when
 Filename :: file:name(),
 TableInfo :: [InfoItem],
 InfoItem ::
 {name, atom()} |
 {type, Type} |
 {protection, Protection} |
 {named_table, boolean()} |
 {keypos, non_neg_integer()} |
 {size, non_neg_integer()} |
 {extended_info, [ExtInfo]} |
 {version, {Major :: non_neg_integer(), Minor :: non_neg_integer()}},
 ExtInfo :: md5sum | object_count,
 Type :: bag | duplicate_bag | ordered_set | set,
 Protection :: private | protected | public,
 Reason :: term().

Returns information about the table dumped to file by tab2file/2 or
tab2file/3.
The following items are returned:
	name - The name of the dumped table. If the table was a named table, a
table with the same name cannot exist when the table is loaded from file with
file2tab/2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

	type - The ETS type of the dumped table (that is, set, bag,
duplicate_bag, or ordered_set). This type is used when loading the table
again.

	protection - The protection of the dumped table (that is, private,
protected, or public). A table loaded from the file gets the same
protection.

	named_table - true if the table was a named table when dumped to file,
otherwise false. Notice that when a named table is loaded from a file, there
cannot exist a table in the system with the same name.

	keypos - The keypos of the table dumped to file, which is used when
loading the table again.

	size - The number of objects in the table when the table dump to file
started. For a public table, this number does not need to correspond to the
number of objects saved to the file, as objects can have been added or deleted
by another process during table dump.

	extended_info - The extended information written in the file footer to
allow stronger verification during table loading from file, as specified to
tab2file/3. Notice that this function only tells which information is
present, not the values in the file footer. The value is a list containing one
or more of the atoms object_count and md5sum.

	version - A tuple {Major,Minor} containing the major and minor version
of the file format for ETS table dumps. This version field was added beginning
with STDLIB 1.5.1. Files dumped with older versions return {0,0} in this
field.

An error is returned if the file is inaccessible, badly damaged, or not produced
with tab2file/2 or tab2file/3.

 Link to this function

 table(Table)

 View Source

 -spec table(Table) -> QueryHandle when Table :: table(), QueryHandle :: qlc:query_handle().

Equivalent to table/2.

 Link to this function

 table(Table, Options)

 View Source

 -spec table(Table, Options) -> QueryHandle
 when
 Table :: table(),
 QueryHandle :: qlc:query_handle(),
 Options :: [Option] | Option,
 Option :: {n_objects, NObjects} | {traverse, TraverseMethod},
 NObjects :: default | pos_integer(),
 TraverseMethod ::
 first_next | last_prev | select | {select, MatchSpec :: match_spec()}.

Returns a Query List Comprehension (QLC) query handle. The qlc module
provides a query language aimed mainly at Mnesia, but ETS tables, Dets tables,
and lists are also recognized by QLC as sources of data. Calling table/1,2 is
the means to make the ETS table Table usable to QLC.
When there are only simple restrictions on the key position, QLC uses lookup/2
to look up the keys. When that is not possible, the whole table is traversed.
Option traverse determines how this is done:
	first_next - The table is traversed one key at a time by calling
first/1 and next/2.

	last_prev - The table is traversed one key at a time by calling last/1
and prev/2.

	select - The table is traversed by calling select/3 and select/1.
Option n_objects determines the number of objects returned (the third
argument of select/3); the default is to return 100 objects
at a time. The match specification (the second argument
of select/3) is assembled by QLC: simple filters are
translated into equivalent match specifications while more complicated filters
must be applied to all objects returned by select/3 given a
match specification that matches all objects.

	{select, MatchSpec} - As for select, the table is traversed by calling
select/3 and select/1. The difference is that the match specification is
explicitly specified. This is how to state match specifications that cannot
easily be expressed within the syntax provided by QLC.

Examples:
An explicit match specification is here used to traverse the table:
9> true = ets:insert(Table = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),
QH1 = ets:table(Table, [{traverse, {select, MS}}]).
An example with an implicit match specification:
10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Table), (X > 1) or (X < 5)]).
The latter example is equivalent to the former, which can be verified using
function qlc:info/1:
11> qlc:info(QH1) =:= qlc:info(QH2).
true
qlc:info/1 returns information about a query handle, and in this case
identical information is returned for the two query handles.

 Link to this function

 take(Table, Key)

 View Source

 (since OTP 18.0)

 -spec take(Table, Key) -> [Object] when Table :: table(), Key :: term(), Object :: tuple().

Returns and removes a list of all objects with key Key in table Table.
The specified Key is used to identify the object by either comparing equal
the key of an object in an ordered_set table, or matching in other types of
tables (for details on the difference, see lookup/2 and new/2).

 Link to this function

 test_ms(Tuple, MatchSpec)

 View Source

 -spec test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
 when
 Tuple :: tuple(),
 MatchSpec :: match_spec(),
 Result :: term(),
 Errors :: [{warning | error, string()}].

This function is a utility to test a match specification
used in calls to select/2. The function both tests MatchSpec for "syntactic"
correctness and runs the match specification against object Tuple.
If the match specification is syntactically correct, the function either returns
{ok,Result}, where Result is what would have been the result in a real
select/2 call, or false if the match specification does not
match object Tuple.
If the match specification contains errors, tuple {error, Errors} is returned,
where Errors is a list of natural language descriptions of what was wrong with
the match specification.
This is a useful debugging and test tool, especially when writing complicated
select/2 calls.
See also: erlang:match_spec_test/3.

 Link to this function

 to_dets(Table, DetsTab)

 View Source

 -spec to_dets(Table, DetsTab) -> DetsTab when Table :: table(), DetsTab :: dets:tab_name().

Fills an already created/opened Dets table with the objects in the already
opened ETS table named Table. The Dets table is emptied before the objects are
inserted.

 Link to this function

 update_counter/3

 View Source

 (since OTP 18.0)

 -spec update_counter(Table, Key, UpdateOp | [UpdateOp] | Incr) -> Result | [Result]
 when
 Table :: table(),
 Key :: term(),
 UpdateOp :: {Pos, Incr} | {Pos, Incr, Threshold, SetValue},
 Pos :: integer(),
 Incr :: integer(),
 Threshold :: integer(),
 SetValue :: integer(),
 Result :: integer().

Equivalent to update_counter/4.

 Link to this function

 update_counter/4

 View Source

 (since OTP 18.0)

 -spec update_counter(Table, Key, UpdateOp | Incr | [UpdateOp], Default) -> Result | [Result]
 when
 Table :: table(),
 Key :: term(),
 UpdateOp :: {Pos, Incr} | {Pos, Incr, Threshold, SetValue},
 Pos :: integer(),
 Incr :: integer(),
 Threshold :: integer(),
 SetValue :: integer(),
 Result :: integer(),
 Default :: tuple().

This function provides an efficient way to update one or more counters, without
the trouble of having to look up an object, update the object by incrementing an
element, and insert the resulting object into the table again. The operation is
guaranteed to be atomic and isolated.
This function destructively updates the object with key Key in table Table
by adding Incr to the element at position Pos. The new counter value is
returned. If no position is specified, the element directly following key
(<keypos>+1) is updated.
If a Threshold is specified, the counter is reset to value SetValue if the
following conditions occur:
	Incr is not negative (>= 0) and the result would be greater than (>)
Threshold.
	Incr is negative (< 0) and the result would be less than (<)
Threshold.

A list of UpdateOp can be supplied to do many update operations within the
object. The operations are carried out in the order specified in the list. If
the same counter position occurs more than once in the list, the corresponding
counter is thus updated many times, each time based on the previous result. The
return value is a list of the new counter values from each update operation in
the same order as in the operation list. If an empty list is specified, nothing
is updated and an empty list is returned. If the function fails, no updates are
done.
The specified Key is used to identify the object by either matching the key
of an object in a set table, or compare equal to the key of an object in an
ordered_set table (for details on the difference, see lookup/2 and new/2).
If a default object Default is specified, it is used as the object to be
updated if the key is missing from the table. The value in place of the key is
ignored and replaced by the proper key value. The return value is as if the
default object had not been used, that is, a single updated element or a list of
them.
The function fails with reason badarg in the following situations:
	The table type is not set or ordered_set.
	No object with the correct key exists and no default object was supplied.
	The object has the wrong arity.
	The default object arity is smaller than <keypos>.
	Any field from the default object that is updated is not an integer.
	The element to update is not an integer.
	The element to update is also the key.
	Any of Pos, Incr, Threshold, or SetValue is not an integer.

 Link to this function

 update_element(Table, Key, ElementSpec)

 View Source

 (since OTP @OTP-18870@)

 -spec update_element(Table, Key, ElementSpec) -> boolean()
 when
 Table :: table(),
 Key :: term(),
 ElementSpec :: {Pos, Value} | [{Pos, Value}],
 Pos :: pos_integer(),
 Value :: term().

Equivalent to update_element/4.

 Link to this function

 update_element(Table, Key, ElementSpec, Default)

 View Source

 (since OTP @OTP-18870@)

 -spec update_element(Table, Key, ElementSpec, Default) -> true
 when
 Table :: table(),
 Key :: term(),
 ElementSpec :: {Pos, Value} | [{Pos, Value}],
 Pos :: pos_integer(),
 Value :: term(),
 Default :: tuple().

This function provides an efficient way to update one or more elements within an
object, without the trouble of having to look up, update, and write back the
entire object.
This function destructively updates the object with key Key in table Table.
The element at position Pos is given the value Value.
A list of {Pos,Value} can be supplied to update many elements within the same
object. If the same position occurs more than once in the list, the last value
in the list is written. If the list is empty or the function fails, no updates
are done. The function is also atomic in the sense that other processes can
never see any intermediate results.
Returns true if an object with key Key is found, otherwise false.
The specified Key is used to identify the object by either matching the key
of an object in a set table, or compare equal to the key of an object in an
ordered_set table (for details on the difference, see lookup/2 and new/2).
If a default object Default is specified, it is used as the object to be
updated if the key is missing from the table. The value in place of the key is
ignored and replaced by the proper key value.
The function fails with reason badarg in the following situations:
	The table type is not set or ordered_set.
	Pos < 1.
	Pos > object arity.
	The default object arity is smaller than <keypos>.
	The element to update is also the key.

 Link to this function

 whereis(TableName)

 View Source

 (since OTP 21.0)

 -spec whereis(TableName) -> tid() | undefined when TableName :: atom().

This function returns the tid/0 of the named table identified by
TableName, or undefined if no such table exists. The tid/0 can be used
in place of the table name in all operations, which is slightly faster since the
name does not have to be resolved on each call.
If the table is deleted, the tid/0 will be invalid even if another named
table is created with the same name.

 gb_sets - stdlib v5.2.1

gb_sets

Sets represented by general balanced trees.
This module provides ordered sets using Prof. Arne Andersson's General Balanced
Trees. Ordered sets can be much more efficient than using ordered lists, for
larger sets, but depends on the application.
The data representing a set as used by this module is to be regarded as opaque
by other modules. In abstract terms, the representation is a composite type of
existing Erlang terms. See note on
data types. Any code assuming
knowledge of the format is running on thin ice.
This module considers two elements as different if and only if they do not
compare equal (==).

 Complexity Note

The complexity on set operations is bounded by either O(|S|) or O(|T|
log(|S|))*, where S is the largest given set, depending on which is fastest for
any particular function call. For operating on sets of almost equal size, this
implementation is about 3 times slower than using ordered-list sets directly.
For sets of very different sizes, however, this solution can be arbitrarily much
faster; in practical cases, often 10-100 times. This implementation is
particularly suited for accumulating elements a few at a time, building up a
large set (> 100-200 elements), and repeatedly testing for membership in the
current set.
As with normal tree structures, lookup (membership testing), insertion, and
deletion have logarithmic complexity.

 Compatibility

See the Compatibility Section in the sets module
for information about the compatibility of the different implementations of sets
in the Standard Library.

 See Also

gb_trees, ordsets, sets

 Summary

 Types

 iter()

 iter(Element)

 A general balanced set iterator.

 set()

 set(Element)

 A general balanced set.

 Functions

 add(Element, Set1)

 Equivalent to add_element(Element, Set1).

 add_element(Element, Set1)

 Returns a new set formed from Set1 with Element inserted. If Element is
already an element in Set1, nothing is changed.

 balance(Set1)

 Rebalances the tree representation of Set1.

 del_element(Element, Set1)

 Equivalent to delete_any(Element, Set1).

 delete(Element, Set1)

 Returns a new set formed from Set1 with Element removed. Assumes that
Element is present in Set1.

 delete_any(Element, Set1)

 Returns a new set formed from Set1 with Element removed. If Element is not
an element in Set1, nothing is changed.

 difference(Set1, Set2)

 Equivalent to subtract(Set1, Set2).

 empty()

 Returns a new empty set.

 filter(Pred, Set1)

 Filters elements in Set1 using predicate function Pred.

 filtermap(Fun, Set1)

 Filters and maps elements in Set1 using function Fun.

 fold(Function, Acc0, Set)

 Folds Function over every element in Set returning the final value of the
accumulator.

 from_list(List)

 Returns a set of the elements in List, where List can be unordered and
contain duplicates.

 from_ordset(List)

 Turns an ordered-set list List into a set. The list must not contain
duplicates.

 insert(Element, Set1)

 Returns a new set formed from Set1 with Element inserted. Assumes that
Element is not present in Set1.

 intersection(SetList)

 Returns the intersection of the non-empty list of sets.

 intersection(Set1, Set2)

 Returns the intersection of Set1 and Set2.

 is_disjoint(Set1, Set2)

 Returns true if Set1 and Set2 are disjoint (have no elements in common),
otherwise false.

 is_element(Element, Set)

 Equivalent to is_member(Element, Set).

 is_empty(Set)

 Returns true if Set is an empty set, otherwise false.

 is_equal(Set1, Set2)

 Returns true if Set1 and Set2 are equal, that is when every element of one
set is also a member of the respective other set, otherwise false.

 is_member(Element, Set)

 Returns true if Element is an member of Set, otherwise false.

 is_set(Term)

 Returns true if Term appears to be a set, otherwise false. This function
will return true for any term that coincides with the representation of a
gb_set, while not really being a gb_set, thus it might return false positive
results. See also note on data types.

 is_subset(Set1, Set2)

 Returns true when every element of Set1 is also a member of Set2,
otherwise false.

 iterator(Set)

 Returns an iterator that can be used for traversing the entries of Set; see
next/1.

 iterator(Set, Order)

 Returns an iterator that can be used for traversing the entries of Set in
either ordered or reversed direction; see next/1.

 iterator_from(Element, Set)

 Returns an iterator that can be used for traversing the entries of Set; see
next/1. The difference as compared to the iterator returned by iterator/1 is
that the iterator starts with the first element greater than or equal to
Element.

 iterator_from(Element, Set, Order)

 Returns an iterator that can be used for traversing the entries of Set; see
next/1. The difference as compared to the iterator returned by iterator/2 is
that the iterator starts with the first element next to or equal to Element.

 larger(Element1, Set)

 Returns {found, Element2}, where Element2 is the least element strictly
greater than Element1.

 largest(Set)

 Returns the largest element in Set. Assumes that Set is not empty.

 map(Fun, Set1)

 Maps elements in Set1 using mapping function Fun.

 new()

 Returns a new empty set.

 next(Iter1)

 Returns {Element, Iter2}, where Element is the smallest element referred to
by iterator Iter1, and Iter2 is the new iterator to be used for traversing
the remaining elements, or the atom none if no elements remain.

 singleton(Element)

 Returns a set containing only element Element.

 size(Set)

 Returns the number of elements in Set.

 smaller(Element1, Set)

 Returns {found, Element2}, where Element2 is the greatest element strictly
less than Element1.

 smallest(Set)

 Returns the smallest element in Set. Assumes that Set is not empty.

 subtract(Set1, Set2)

 Returns only the elements of Set1 that are not also elements of Set2.

 take_largest(Set1)

 Returns {Element, Set2}, where Element is the largest element in Set1, and
Set2 is this set with Element deleted. Assumes that Set1 is not empty.

 take_smallest(Set1)

 Returns {Element, Set2}, where Element is the smallest element in Set1,
and Set2 is this set with Element deleted. Assumes that Set1 is not empty.

 to_list(Set)

 Returns the elements of Set as a list.

 union(SetList)

 Returns the merged (union) set of the list of sets.

 union(Set1, Set2)

 Returns the merged (union) set of Set1 and Set2.

 Types

 Link to this type

 iter()

 View Source

 -type iter() :: iter(_).

 Link to this opaque

 iter(Element)

 View Source

 -opaque iter(Element)

A general balanced set iterator.

 Link to this type

 set()

 View Source

 -type set() :: set(_).

 Link to this opaque

 set(Element)

 View Source

 -opaque set(Element)

A general balanced set.

 Functions

 Link to this function

 add(Element, Set1)

 View Source

 -spec add(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Equivalent to add_element(Element, Set1).

 Link to this function

 add_element(Element, Set1)

 View Source

 -spec add_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element inserted. If Element is
already an element in Set1, nothing is changed.

 Link to this function

 balance(Set1)

 View Source

 -spec balance(Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Rebalances the tree representation of Set1.
Notice that this is rarely necessary, but can be motivated when a large number of
elements have been deleted from the tree without further insertions. Rebalancing
 can then be forced to minimise lookup times, as deletion does not rebalance the
tree.

 Link to this function

 del_element(Element, Set1)

 View Source

 -spec del_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Equivalent to delete_any(Element, Set1).

 Link to this function

 delete(Element, Set1)

 View Source

 -spec delete(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element removed. Assumes that
Element is present in Set1.

 Link to this function

 delete_any(Element, Set1)

 View Source

 -spec delete_any(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element removed. If Element is not
an element in Set1, nothing is changed.

 Link to this function

 difference(Set1, Set2)

 View Source

 -spec difference(Set1, Set2) -> Set3
 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Equivalent to subtract(Set1, Set2).

 Link to this function

 empty()

 View Source

 -spec empty() -> Set when Set :: set(none()).

Returns a new empty set.

 Link to this function

 filter(Pred, Set1)

 View Source

 -spec filter(Pred, Set1) -> Set2
 when Pred :: fun((Element) -> boolean()), Set1 :: set(Element), Set2 :: set(Element).

Filters elements in Set1 using predicate function Pred.

 Link to this function

 filtermap(Fun, Set1)

 View Source

 (since OTP @OTP-18622@)

 -spec filtermap(Fun, Set1) -> Set2
 when
 Fun :: fun((Element1) -> boolean() | {true, Element2}),
 Set1 :: set(Element1),
 Set2 :: set(Element1 | Element2).

Filters and maps elements in Set1 using function Fun.

 Link to this function

 fold(Function, Acc0, Set)

 View Source

 -spec fold(Function, Acc0, Set) -> Acc1
 when
 Function :: fun((Element, AccIn) -> AccOut),
 Acc0 :: Acc,
 Acc1 :: Acc,
 AccIn :: Acc,
 AccOut :: Acc,
 Set :: set(Element).

Folds Function over every element in Set returning the final value of the
accumulator.

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List) -> Set when List :: [Element], Set :: set(Element).

Returns a set of the elements in List, where List can be unordered and
contain duplicates.

 Link to this function

 from_ordset(List)

 View Source

 -spec from_ordset(List) -> Set when List :: [Element], Set :: set(Element).

Turns an ordered-set list List into a set. The list must not contain
duplicates.

 Link to this function

 insert(Element, Set1)

 View Source

 -spec insert(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element inserted. Assumes that
Element is not present in Set1.

 Link to this function

 intersection(SetList)

 View Source

 -spec intersection(SetList) -> Set when SetList :: [set(Element), ...], Set :: set(Element).

Returns the intersection of the non-empty list of sets.

 Link to this function

 intersection(Set1, Set2)

 View Source

 -spec intersection(Set1, Set2) -> Set3
 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the intersection of Set1 and Set2.

 Link to this function

 is_disjoint(Set1, Set2)

 View Source

 -spec is_disjoint(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true if Set1 and Set2 are disjoint (have no elements in common),
otherwise false.

 Link to this function

 is_element(Element, Set)

 View Source

 -spec is_element(Element, Set) -> boolean() when Set :: set(Element).

Equivalent to is_member(Element, Set).

 Link to this function

 is_empty(Set)

 View Source

 -spec is_empty(Set) -> boolean() when Set :: set().

Returns true if Set is an empty set, otherwise false.

 Link to this function

 is_equal(Set1, Set2)

 View Source

 (since OTP @OTP-18622@)

 -spec is_equal(Set1, Set2) -> boolean() when Set1 :: set(), Set2 :: set().

Returns true if Set1 and Set2 are equal, that is when every element of one
set is also a member of the respective other set, otherwise false.

 Link to this function

 is_member(Element, Set)

 View Source

 -spec is_member(Element, Set) -> boolean() when Set :: set(Element).

Returns true if Element is an member of Set, otherwise false.

 Link to this function

 is_set(Term)

 View Source

 -spec is_set(Term) -> boolean() when Term :: term().

Returns true if Term appears to be a set, otherwise false. This function
will return true for any term that coincides with the representation of a
gb_set, while not really being a gb_set, thus it might return false positive
results. See also note on data types.

 Link to this function

 is_subset(Set1, Set2)

 View Source

 -spec is_subset(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true when every element of Set1 is also a member of Set2,
otherwise false.

 Link to this function

 iterator(Set)

 View Source

 -spec iterator(Set) -> Iter when Set :: set(Element), Iter :: iter(Element).

Returns an iterator that can be used for traversing the entries of Set; see
next/1.
Equivalent to iterator(Set, ordered).

 Link to this function

 iterator(Set, Order)

 View Source

 (since OTP @OTP-18874@)

 -spec iterator(Set, Order) -> Iter
 when Set :: set(Element), Iter :: iter(Element), Order :: ordered | reversed.

Returns an iterator that can be used for traversing the entries of Set in
either ordered or reversed direction; see next/1.
The implementation of this is very efficient; traversing the whole set using
next/1 is only slightly slower than getting the list of all
 elements using to_list/1 and traversing that. The main advantage of the
iterator approach is that it does not require the complete list of all elements
to be built in memory at one time.

 Link to this function

 iterator_from(Element, Set)

 View Source

 (since OTP 18.0)

 -spec iterator_from(Element, Set) -> Iter when Set :: set(Element), Iter :: iter(Element).

Returns an iterator that can be used for traversing the entries of Set; see
next/1. The difference as compared to the iterator returned by iterator/1 is
that the iterator starts with the first element greater than or equal to
Element.
Equivalent to iterator_from(Element, Set, ordered).

 Link to this function

 iterator_from(Element, Set, Order)

 View Source

 (since OTP @OTP-18874@)

 -spec iterator_from(Element, Set, Order) -> Iter
 when Set :: set(Element), Iter :: iter(Element), Order :: ordered | reversed.

Returns an iterator that can be used for traversing the entries of Set; see
next/1. The difference as compared to the iterator returned by iterator/2 is
that the iterator starts with the first element next to or equal to Element.

 Link to this function

 larger(Element1, Set)

 View Source

 (since OTP @OTP-18874@)

 -spec larger(Element1, Set) -> none | {found, Element2}
 when Element1 :: Element, Element2 :: Element, Set :: set(Element).

Returns {found, Element2}, where Element2 is the least element strictly
greater than Element1.
Returns none if no such element exists.

 Link to this function

 largest(Set)

 View Source

 -spec largest(Set) -> Element when Set :: set(Element).

Returns the largest element in Set. Assumes that Set is not empty.

 Link to this function

 map(Fun, Set1)

 View Source

 (since OTP @OTP-18622@)

 -spec map(Fun, Set1) -> Set2
 when Fun :: fun((Element1) -> Element2), Set1 :: set(Element1), Set2 :: set(Element2).

Maps elements in Set1 using mapping function Fun.

 Link to this function

 new()

 View Source

 -spec new() -> Set when Set :: set(none()).

Returns a new empty set.

 Link to this function

 next(Iter1)

 View Source

 -spec next(Iter1) -> {Element, Iter2} | none when Iter1 :: iter(Element), Iter2 :: iter(Element).

Returns {Element, Iter2}, where Element is the smallest element referred to
by iterator Iter1, and Iter2 is the new iterator to be used for traversing
the remaining elements, or the atom none if no elements remain.

 Link to this function

 singleton(Element)

 View Source

 -spec singleton(Element) -> set(Element).

Returns a set containing only element Element.

 Link to this function

 size(Set)

 View Source

 -spec size(Set) -> non_neg_integer() when Set :: set().

Returns the number of elements in Set.

 Link to this function

 smaller(Element1, Set)

 View Source

 (since OTP @OTP-18874@)

 -spec smaller(Element1, Set) -> none | {found, Element2}
 when Element1 :: Element, Element2 :: Element, Set :: set(Element).

Returns {found, Element2}, where Element2 is the greatest element strictly
less than Element1.
Returns none if no such element exists.

 Link to this function

 smallest(Set)

 View Source

 -spec smallest(Set) -> Element when Set :: set(Element).

Returns the smallest element in Set. Assumes that Set is not empty.

 Link to this function

 subtract(Set1, Set2)

 View Source

 -spec subtract(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns only the elements of Set1 that are not also elements of Set2.

 Link to this function

 take_largest(Set1)

 View Source

 -spec take_largest(Set1) -> {Element, Set2} when Set1 :: set(Element), Set2 :: set(Element).

Returns {Element, Set2}, where Element is the largest element in Set1, and
Set2 is this set with Element deleted. Assumes that Set1 is not empty.

 Link to this function

 take_smallest(Set1)

 View Source

 -spec take_smallest(Set1) -> {Element, Set2} when Set1 :: set(Element), Set2 :: set(Element).

Returns {Element, Set2}, where Element is the smallest element in Set1,
and Set2 is this set with Element deleted. Assumes that Set1 is not empty.

 Link to this function

 to_list(Set)

 View Source

 -spec to_list(Set) -> List when Set :: set(Element), List :: [Element].

Returns the elements of Set as a list.

 Link to this function

 union(SetList)

 View Source

 -spec union(SetList) -> Set when SetList :: [set(Element), ...], Set :: set(Element).

Returns the merged (union) set of the list of sets.

 Link to this function

 union(Set1, Set2)

 View Source

 -spec union(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the merged (union) set of Set1 and Set2.

 gb_trees - stdlib v5.2.1

gb_trees

General balanced trees.
This module provides Prof. Arne Andersson's General Balanced Trees. These have
no storage overhead compared to unbalanced binary trees, and their performance
is better than AVL trees.
This module considers two keys as different if and only if they do not compare
equal (==).

 Data Structure

Trees and iterators are built using opaque data structures that should not be
pattern-matched from outside this module.
There is no attempt to balance trees after deletions. As deletions do not
increase the height of a tree, this should be OK.
The original balance condition h(T) <= ceil(c * log(|T|)) has been changed to
the similar (but not quite equivalent) condition 2 ^ h(T) <= |T| ^ c. This
should also be OK.

 See Also

dict, gb_sets

 Summary

 Types

 iter()

 iter(Key, Value)

 A general balanced tree iterator.

 tree()

 tree(Key, Value)

 A general balanced tree.

 Functions

 balance(Tree1)

 Rebalances Tree1.

 delete(Key, Tree1)

 Removes the node with key Key from Tree1 and returns the new tree. Assumes
that the key is present in the tree, crashes otherwise.

 delete_any(Key, Tree1)

 Removes the node with key Key from Tree1 if the key is present in the tree,
otherwise does nothing. Returns the new tree.

 empty()

 Returns a new empty tree.

 enter(Key, Value, Tree1)

 Inserts Key with value Value into Tree1 if the key is not present in the
tree, otherwise updates Key to value Value in Tree1. Returns the new tree.

 from_orddict(List)

 Turns an ordered list List of key-value tuples into a tree. The list must not
contain duplicate keys.

 get(Key, Tree)

 Retrieves the value stored with Key in Tree. Assumes that the key is present
in the tree, crashes otherwise.

 insert(Key, Value, Tree1)

 Inserts Key with value Value into Tree1 and returns the new tree. Assumes
that the key is not present in the tree, crashes otherwise.

 is_defined(Key, Tree)

 Returns true if Key is present in Tree, otherwise false.

 is_empty(Tree)

 Returns true if Tree is an empty tree, othwewise false.

 iterator(Tree)

 Returns an iterator that can be used for traversing the entries of Tree; see
next/1.

 iterator(Tree, Order)

 Returns an iterator that can be used for traversing the entries of Tree in
either ordered or reversed direction; see next/1.

 iterator_from(Key, Tree)

 Returns an iterator that can be used for traversing the entries of Tree; see
next/1. The difference as compared to the iterator returned by iterator/1 is
that the iterator starts with the first key greater than or equal to Key.

 iterator_from(Key, Tree, Order)

 Returns an iterator that can be used for traversing the entries of Tree in
either ordered or reversed direction; see next/1. The difference as
compared to the iterator returned by iterator/2 is that the iterator starts
with the first key next to or equal to Key.

 keys(Tree)

 Returns the keys in Tree as an ordered list.

 larger(Key1, Tree)

 Returns {Key2, Value}, where Key2 is the least key strictly greater than
Key1, Value is the value associated with this key.

 largest(Tree)

 Returns {Key, Value}, where Key is the largest key in Tree, and Value is
the value associated with this key. Assumes that the tree is not empty.

 lookup(Key, Tree)

 Looks up Key in Tree. Returns {value, Value}, or none if Key is not
present.

 map(Function, Tree1)

 Maps function F(K, V1) -> V2 to all key-value pairs of tree Tree1. Returns a
new tree Tree2 with the same set of keys as Tree1 and the new set of values
V2.

 next(Iter1)

 Returns {Key, Value, Iter2}, where Key is the next key referred to by
iterator Iter1, and Iter2 is the new iterator to be used for traversing the
remaining nodes, or the atom none if no nodes remain.

 size(Tree)

 Returns the number of nodes in Tree.

 smaller(Key1, Tree)

 Returns {Key2, Value}, where Key2 is the greatest key strictly less than
Key1, Value is the value associated with this key.

 smallest(Tree)

 Returns {Key, Value}, where Key is the smallest key in Tree, and Value
is the value associated with this key. Assumes that the tree is not empty.

 take(Key, Tree1)

 Returns a value Value from node with key Key and new Tree2 without the
node with this value. Assumes that the node with key is present in the tree,
crashes otherwise.

 take_any(Key, Tree1)

 Returns a value Value from node with key Key and new Tree2 without the
node with this value. Returns error if the node with the key is not present in
the tree.

 take_largest(Tree1)

 Returns {Key, Value, Tree2}, where Key is the largest key in Tree1,
Value is the value associated with this key, and Tree2 is this tree with the
corresponding node deleted. Assumes that the tree is not empty.

 take_smallest(Tree1)

 Returns {Key, Value, Tree2}, where Key is the smallest key in Tree1,
Value is the value associated with this key, and Tree2 is this tree with the
corresponding node deleted. Assumes that the tree is not empty.

 to_list(Tree)

 Converts a tree into an ordered list of key-value tuples.

 update(Key, Value, Tree1)

 Updates Key to value Value in Tree1 and returns the new tree. Assumes that
the key is present in the tree.

 values(Tree)

 Returns the values in Tree as an ordered list, sorted by their corresponding
keys. Duplicates are not removed.

 Types

 Link to this type

 iter()

 View Source

 -type iter() :: iter(_, _).

 Link to this opaque

 iter(Key, Value)

 View Source

 -opaque iter(Key, Value)

A general balanced tree iterator.

 Link to this type

 tree()

 View Source

 -type tree() :: tree(_, _).

 Link to this opaque

 tree(Key, Value)

 View Source

 -opaque tree(Key, Value)

A general balanced tree.

 Functions

 Link to this function

 balance(Tree1)

 View Source

 -spec balance(Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Rebalances Tree1.
Notice that this is rarely necessary, but can be motivated
when many nodes have been deleted from the tree without further insertions.
Rebalancing can then be forced to minimize lookup times, as deletion does not
rebalance the tree.

 Link to this function

 delete(Key, Tree1)

 View Source

 -spec delete(Key, Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Removes the node with key Key from Tree1 and returns the new tree. Assumes
that the key is present in the tree, crashes otherwise.

 Link to this function

 delete_any(Key, Tree1)

 View Source

 -spec delete_any(Key, Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Removes the node with key Key from Tree1 if the key is present in the tree,
otherwise does nothing. Returns the new tree.

 Link to this function

 empty()

 View Source

 -spec empty() -> tree(none(), none()).

Returns a new empty tree.

 Link to this function

 enter(Key, Value, Tree1)

 View Source

 -spec enter(Key, Value, Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Inserts Key with value Value into Tree1 if the key is not present in the
tree, otherwise updates Key to value Value in Tree1. Returns the new tree.

 Link to this function

 from_orddict(List)

 View Source

 -spec from_orddict(List) -> Tree when List :: [{Key, Value}], Tree :: tree(Key, Value).

Turns an ordered list List of key-value tuples into a tree. The list must not
contain duplicate keys.

 Link to this function

 get(Key, Tree)

 View Source

 -spec get(Key, Tree) -> Value when Tree :: tree(Key, Value).

Retrieves the value stored with Key in Tree. Assumes that the key is present
in the tree, crashes otherwise.

 Link to this function

 insert(Key, Value, Tree1)

 View Source

 -spec insert(Key, Value, Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Inserts Key with value Value into Tree1 and returns the new tree. Assumes
that the key is not present in the tree, crashes otherwise.

 Link to this function

 is_defined(Key, Tree)

 View Source

 -spec is_defined(Key, Tree) -> boolean() when Tree :: tree(Key, Value :: term()).

Returns true if Key is present in Tree, otherwise false.

 Link to this function

 is_empty(Tree)

 View Source

 -spec is_empty(Tree) -> boolean() when Tree :: tree().

Returns true if Tree is an empty tree, othwewise false.

 Link to this function

 iterator(Tree)

 View Source

 -spec iterator(Tree) -> Iter when Tree :: tree(Key, Value), Iter :: iter(Key, Value).

Returns an iterator that can be used for traversing the entries of Tree; see
next/1.
Equivalent to iterator(Tree, ordered).

 Link to this function

 iterator(Tree, Order)

 View Source

 (since OTP @OTP-18874@)

 -spec iterator(Tree, Order) -> Iter
 when Tree :: tree(Key, Value), Iter :: iter(Key, Value), Order :: ordered | reversed.

Returns an iterator that can be used for traversing the entries of Tree in
either ordered or reversed direction; see next/1.
The implementation of this is very efficient; traversing the whole tree using
next/1 is only slightly slower than getting the list of all
elements using to_list/1 and traversing that. The main advantage of the
iterator approach is that it does not require the complete list of all elements
to be built in memory at one time.

 Link to this function

 iterator_from(Key, Tree)

 View Source

 (since OTP 18.0)

 -spec iterator_from(Key, Tree) -> Iter when Tree :: tree(Key, Value), Iter :: iter(Key, Value).

Returns an iterator that can be used for traversing the entries of Tree; see
next/1. The difference as compared to the iterator returned by iterator/1 is
that the iterator starts with the first key greater than or equal to Key.
Equivalent to iterator_from(Key, Tree, ordered).

 Link to this function

 iterator_from(Key, Tree, Order)

 View Source

 (since OTP @OTP-18874@)

 -spec iterator_from(Key, Tree, Order) -> Iter
 when
 Tree :: tree(Key, Value),
 Iter :: iter(Key, Value),
 Order :: ordered | reversed.

Returns an iterator that can be used for traversing the entries of Tree in
either ordered or reversed direction; see next/1. The difference as
compared to the iterator returned by iterator/2 is that the iterator starts
with the first key next to or equal to Key.

 Link to this function

 keys(Tree)

 View Source

 -spec keys(Tree) -> [Key] when Tree :: tree(Key, Value :: term()).

Returns the keys in Tree as an ordered list.

 Link to this function

 larger(Key1, Tree)

 View Source

 (since OTP @OTP-18874@)

 -spec larger(Key1, Tree) -> none | {Key2, Value} when Key1 :: Key, Key2 :: Key, Tree :: tree(Key, Value).

Returns {Key2, Value}, where Key2 is the least key strictly greater than
Key1, Value is the value associated with this key.
Returns none if no such pair exists.

 Link to this function

 largest(Tree)

 View Source

 -spec largest(Tree) -> {Key, Value} when Tree :: tree(Key, Value).

Returns {Key, Value}, where Key is the largest key in Tree, and Value is
the value associated with this key. Assumes that the tree is not empty.

 Link to this function

 lookup(Key, Tree)

 View Source

 -spec lookup(Key, Tree) -> none | {value, Value} when Tree :: tree(Key, Value).

Looks up Key in Tree. Returns {value, Value}, or none if Key is not
present.

 Link to this function

 map(Function, Tree1)

 View Source

 -spec map(Function, Tree1) -> Tree2
 when
 Function :: fun((K :: Key, V1 :: Value1) -> V2 :: Value2),
 Tree1 :: tree(Key, Value1),
 Tree2 :: tree(Key, Value2).

Maps function F(K, V1) -> V2 to all key-value pairs of tree Tree1. Returns a
new tree Tree2 with the same set of keys as Tree1 and the new set of values
V2.

 Link to this function

 next(Iter1)

 View Source

 -spec next(Iter1) -> none | {Key, Value, Iter2}
 when Iter1 :: iter(Key, Value), Iter2 :: iter(Key, Value).

Returns {Key, Value, Iter2}, where Key is the next key referred to by
iterator Iter1, and Iter2 is the new iterator to be used for traversing the
remaining nodes, or the atom none if no nodes remain.

 Link to this function

 size(Tree)

 View Source

 -spec size(Tree) -> non_neg_integer() when Tree :: tree().

Returns the number of nodes in Tree.

 Link to this function

 smaller(Key1, Tree)

 View Source

 (since OTP @OTP-18874@)

 -spec smaller(Key1, Tree) -> none | {Key2, Value}
 when Key1 :: Key, Key2 :: Key, Tree :: tree(Key, Value).

Returns {Key2, Value}, where Key2 is the greatest key strictly less than
Key1, Value is the value associated with this key.
Returns none if no such pair exists.

 Link to this function

 smallest(Tree)

 View Source

 -spec smallest(Tree) -> {Key, Value} when Tree :: tree(Key, Value).

Returns {Key, Value}, where Key is the smallest key in Tree, and Value
is the value associated with this key. Assumes that the tree is not empty.

 Link to this function

 take(Key, Tree1)

 View Source

 (since OTP 20.0)

 -spec take(Key, Tree1) -> {Value, Tree2}
 when Tree1 :: tree(Key, _), Tree2 :: tree(Key, _), Key :: term(), Value :: term().

Returns a value Value from node with key Key and new Tree2 without the
node with this value. Assumes that the node with key is present in the tree,
crashes otherwise.

 Link to this function

 take_any(Key, Tree1)

 View Source

 (since OTP 20.0)

 -spec take_any(Key, Tree1) -> {Value, Tree2} | error
 when Tree1 :: tree(Key, _), Tree2 :: tree(Key, _), Key :: term(), Value :: term().

Returns a value Value from node with key Key and new Tree2 without the
node with this value. Returns error if the node with the key is not present in
the tree.

 Link to this function

 take_largest(Tree1)

 View Source

 -spec take_largest(Tree1) -> {Key, Value, Tree2}
 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Returns {Key, Value, Tree2}, where Key is the largest key in Tree1,
Value is the value associated with this key, and Tree2 is this tree with the
corresponding node deleted. Assumes that the tree is not empty.

 Link to this function

 take_smallest(Tree1)

 View Source

 -spec take_smallest(Tree1) -> {Key, Value, Tree2}
 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Returns {Key, Value, Tree2}, where Key is the smallest key in Tree1,
Value is the value associated with this key, and Tree2 is this tree with the
corresponding node deleted. Assumes that the tree is not empty.

 Link to this function

 to_list(Tree)

 View Source

 -spec to_list(Tree) -> [{Key, Value}] when Tree :: tree(Key, Value).

Converts a tree into an ordered list of key-value tuples.

 Link to this function

 update(Key, Value, Tree1)

 View Source

 -spec update(Key, Value, Tree1) -> Tree2 when Tree1 :: tree(Key, Value), Tree2 :: tree(Key, Value).

Updates Key to value Value in Tree1 and returns the new tree. Assumes that
the key is present in the tree.

 Link to this function

 values(Tree)

 View Source

 -spec values(Tree) -> [Value] when Tree :: tree(Key :: term(), Value).

Returns the values in Tree as an ordered list, sorted by their corresponding
keys. Duplicates are not removed.

 orddict - stdlib v5.2.1

orddict

Key-value dictionary as ordered list.
This module provides a Key-Value dictionary. An orddict is a
representation of a dictionary, where a list of pairs is used to store the keys
and values. The list is ordered after the keys in the
Erlang term order.
This module provides the same interface as the dict module but with a
defined representation. One difference is that while dict considers two keys
as different if they do not match (=:=), this module considers two keys as
different if and only if they do not compare equal (==).

 Notes

Functions append/3 and append_list/3 are
included so that keyed values can be stored in a list accumulator, for
example:
> D0 = orddict:new(),
 D1 = orddict:store(files, [], D0),
 D2 = orddict:append(files, f1, D1),
 D3 = orddict:append(files, f2, D2),
 D4 = orddict:append(files, f3, D3),
 orddict:fetch(files, D4).
[f1,f2,f3]
This saves the trouble of first fetching a keyed value, appending a new value to
the list of stored values, and storing the result.
Function fetch/2 is to be used if the key is known to be in the
dictionary, otherwise function find/2.

 See Also

dict, gb_trees

 Summary

 Types

 orddict()

 orddict(Key, Value)

 Dictionary as returned by new/0.

 Functions

 append(Key, Value, Orddict1)

 Appends a new Value to the current list of values associated with Key. An
exception is generated if the initial value associated with Key is not a list
of values.

 append_list(Key, ValList, Orddict1)

 Appends a list of values ValList to the current list of values associated with
Key. An exception is generated if the initial value associated with Key is
not a list of values.

 erase(Key, Orddict1)

 Erases all items with a specified key from a dictionary.

 fetch(Key, Orddict)

 Returns the value associated with Key in dictionary Orddict. This function
assumes that the Key is present in the dictionary. An exception is generated
if Key is not in the dictionary.

 fetch_keys(Orddict)

 Returns a list of all keys in a dictionary.

 filter(Pred, Orddict1)

 Orddict2 is a dictionary of all keys and values in Orddict1 for which
Pred(Key, Value) is true.

 find(Key, Orddict)

 Searches for a key in a dictionary. Returns {ok, Value}, where Value is the
value associated with Key, or error if the key is not present in the
dictionary.

 fold(Fun, Acc0, Orddict)

 Calls Fun on successive keys and values of Orddict together with an extra
argument Acc (short for accumulator). Fun must return a new accumulator that
is passed to the next call. Acc0 is returned if the list is empty.

 from_list(List)

 Converts the Key-Value list List to a dictionary.

 is_empty(Orddict)

 Returns true if Orddict has no elements, otherwise false.

 is_key(Key, Orddict)

 Tests if Key is contained in dictionary Orddict.

 map(Fun, Orddict1)

 Calls Fun on successive keys and values of Orddict1 to return a new value
for each key.

 merge(Fun, Orddict1, Orddict2)

 Merges two dictionaries, Orddict1 and Orddict2, to create a new dictionary.
All the Key-Value pairs from both dictionaries are included in the new
dictionary.

 new()

 Creates a new dictionary.

 size(Orddict)

 Returns the number of elements in an Orddict.

 store(Key, Value, Orddict1)

 Stores a Key-Value pair in a dictionary. If the Key already exists in
Orddict1, the associated value is replaced by Value.

 take(Key, Orddict)

 This function returns value from dictionary and new dictionary without this
value. Returns error if the key is not present in the dictionary.

 to_list(Orddict)

 Converts a dictionary to a list representation.

 update(Key, Fun, Orddict1)

 Updates a value in a dictionary by calling Fun on the value to get a new
value. An exception is generated if Key is not present in the dictionary.

 update(Key, Fun, Initial, Orddict1)

 Updates a value in a dictionary by calling Fun on the value to get a new
value. If Key is not present in the dictionary, Initial is stored as the
first value.

 update_counter(Key, Increment, Orddict1)

 Adds Increment to the value associated with Key and store this value. If
Key is not present in the dictionary, Increment is stored as the first
value.

 Types

 Link to this type

 orddict()

 View Source

 -type orddict() :: orddict(_, _).

 Link to this type

 orddict(Key, Value)

 View Source

 -type orddict(Key, Value) :: [{Key, Value}].

Dictionary as returned by new/0.

 Functions

 Link to this function

 append(Key, Value, Orddict1)

 View Source

 -spec append(Key, Value, Orddict1) -> Orddict2
 when Orddict1 :: orddict(Key, Value), Orddict2 :: orddict(Key, Value).

Appends a new Value to the current list of values associated with Key. An
exception is generated if the initial value associated with Key is not a list
of values.
See also section Notes.
Example 1:
1> OrdDict1 = orddict:from_list([{x, []}]).
[{x,[]}]
2> OrdDict2 = orddict:append(x, 1, OrdDict1).
[{x,[1]}]
3> OrdDict3 = orddict:append(x, 2, OrdDict2).
[{x,[1,2]}]
4> orddict:append(y, 3, OrdDict3).
[{x,[1,2]},{y,[3]}]
Example 2:
1> OrdDict1 = orddict:from_list([{a, no_list}]).
[{a,no_list}]
2> orddict:append(a, 1, OrdDict1).
** exception error: bad argument
 in operator ++/2
 called as no_list ++ [1]

 Link to this function

 append_list(Key, ValList, Orddict1)

 View Source

 -spec append_list(Key, ValList, Orddict1) -> Orddict2
 when
 ValList :: [Value],
 Orddict1 :: orddict(Key, Value),
 Orddict2 :: orddict(Key, Value).

Appends a list of values ValList to the current list of values associated with
Key. An exception is generated if the initial value associated with Key is
not a list of values.
See also section Notes.
Example:
1> OrdDict1 = orddict:from_list([{x, []}]).
[{x,[]}]
2> OrdDict2 = orddict:append_list(x, [1,2], OrdDict1).
[{x,[1,2]}]
3> OrdDict3 = orddict:append_list(y, [3,4], OrdDict2).
[{x,[1,2]},{y,[3,4]}]

 Link to this function

 erase(Key, Orddict1)

 View Source

 -spec erase(Key, Orddict1) -> Orddict2
 when Orddict1 :: orddict(Key, Value), Orddict2 :: orddict(Key, Value).

Erases all items with a specified key from a dictionary.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:erase(a, OrdDict1).
[{b,2}]

 Link to this function

 fetch(Key, Orddict)

 View Source

 -spec fetch(Key, Orddict) -> Value when Orddict :: orddict(Key, Value).

Returns the value associated with Key in dictionary Orddict. This function
assumes that the Key is present in the dictionary. An exception is generated
if Key is not in the dictionary.
See also section Notes.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:fetch(a, OrdDict1).
1
3> orddict:fetch(missing, OrdDict1).
** exception error: no function clause matching orddict:fetch(missing,[])

 Link to this function

 fetch_keys(Orddict)

 View Source

 -spec fetch_keys(Orddict) -> Keys when Orddict :: orddict(Key, Value :: term()), Keys :: [Key].

Returns a list of all keys in a dictionary.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:fetch_keys(OrdDict1).
[a,b]

 Link to this function

 filter(Pred, Orddict1)

 View Source

 -spec filter(Pred, Orddict1) -> Orddict2
 when
 Pred :: fun((Key, Value) -> boolean()),
 Orddict1 :: orddict(Key, Value),
 Orddict2 :: orddict(Key, Value).

Orddict2 is a dictionary of all keys and values in Orddict1 for which
Pred(Key, Value) is true.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:filter(fun (K, V) -> V > 1 end, OrdDict1).
[{b,2}]

 Link to this function

 find(Key, Orddict)

 View Source

 -spec find(Key, Orddict) -> {ok, Value} | error when Orddict :: orddict(Key, Value).

Searches for a key in a dictionary. Returns {ok, Value}, where Value is the
value associated with Key, or error if the key is not present in the
dictionary.
See also section Notes.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:find(a, OrdDict1).
{ok,1}
3> orddict:find(c, OrdDict1).
error

 Link to this function

 fold(Fun, Acc0, Orddict)

 View Source

 -spec fold(Fun, Acc0, Orddict) -> Acc1
 when
 Fun :: fun((Key, Value, AccIn) -> AccOut),
 Orddict :: orddict(Key, Value),
 Acc0 :: Acc,
 Acc1 :: Acc,
 AccIn :: Acc,
 AccOut :: Acc.

Calls Fun on successive keys and values of Orddict together with an extra
argument Acc (short for accumulator). Fun must return a new accumulator that
is passed to the next call. Acc0 is returned if the list is empty.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:fold(fun (K, V, Acc) -> [{K, V+100} | Acc] end, [], OrdDict1).
[{b,102},{a,101}]

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List) -> Orddict when List :: [{Key, Value}], Orddict :: orddict(Key, Value).

Converts the Key-Value list List to a dictionary.

 Link to this function

 is_empty(Orddict)

 View Source

 (since OTP 17.0)

 -spec is_empty(Orddict) -> boolean() when Orddict :: orddict().

Returns true if Orddict has no elements, otherwise false.

 Link to this function

 is_key(Key, Orddict)

 View Source

 -spec is_key(Key, Orddict) -> boolean() when Orddict :: orddict(Key, Value :: term()).

Tests if Key is contained in dictionary Orddict.

 Link to this function

 map(Fun, Orddict1)

 View Source

 -spec map(Fun, Orddict1) -> Orddict2
 when
 Fun :: fun((Key, Value1) -> Value2),
 Orddict1 :: orddict(Key, Value1),
 Orddict2 :: orddict(Key, Value2).

Calls Fun on successive keys and values of Orddict1 to return a new value
for each key.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:map(fun (_K, V) -> V + 100 end, OrdDict1).
[{a,101},{b,102}]

 Link to this function

 merge(Fun, Orddict1, Orddict2)

 View Source

 -spec merge(Fun, Orddict1, Orddict2) -> Orddict3
 when
 Fun :: fun((Key, Value1, Value2) -> Value),
 Orddict1 :: orddict(Key, Value1),
 Orddict2 :: orddict(Key, Value2),
 Orddict3 :: orddict(Key, Value).

Merges two dictionaries, Orddict1 and Orddict2, to create a new dictionary.
All the Key-Value pairs from both dictionaries are included in the new
dictionary.
If a key occurs in both dictionaries, Fun is called with the key
and both values to return a new value.
merge/3 can be defined as follows, but is faster:
merge(Fun, D1, D2) ->
 fold(fun (K, V1, D) ->
 update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
 end, D2, D1).
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> OrdDict2 = orddict:from_list([{b, 7}, {c, 8}]).
[{b,7},{c,8}]
3> orddict:merge(fun (K, V1, V2) -> V1 * V2 end, OrdDict1, OrdDict2).
[{a, 1},{b, 14},{c,8}]

 Link to this function

 new()

 View Source

 -spec new() -> orddict(none(), none()).

Creates a new dictionary.

 Link to this function

 size(Orddict)

 View Source

 -spec size(Orddict) -> non_neg_integer() when Orddict :: orddict().

Returns the number of elements in an Orddict.

 Link to this function

 store(Key, Value, Orddict1)

 View Source

 -spec store(Key, Value, Orddict1) -> Orddict2
 when Orddict1 :: orddict(Key, Value), Orddict2 :: orddict(Key, Value).

Stores a Key-Value pair in a dictionary. If the Key already exists in
Orddict1, the associated value is replaced by Value.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:store(a, 99, OrdDict1).
[{a,99},{b,2}]
3> orddict:store(c, 100, OrdDict1).
[{a,1},{b,2},{c,100}]

 Link to this function

 take(Key, Orddict)

 View Source

 (since OTP 20.0)

 -spec take(Key, Orddict) -> {Value, Orddict1} | error
 when
 Orddict :: orddict(Key, Value),
 Orddict1 :: orddict(Key, Value),
 Key :: term(),
 Value :: term().

This function returns value from dictionary and new dictionary without this
value. Returns error if the key is not present in the dictionary.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:take(a, OrdDict1).
{1, [{b,2}]}
3> orddict:take(missing, OrdDict1).
error

 Link to this function

 to_list(Orddict)

 View Source

 -spec to_list(Orddict) -> List when Orddict :: orddict(Key, Value), List :: [{Key, Value}].

Converts a dictionary to a list representation.

 Link to this function

 update(Key, Fun, Orddict1)

 View Source

 -spec update(Key, Fun, Orddict1) -> Orddict2
 when
 Fun :: fun((Value1 :: Value) -> Value2 :: Value),
 Orddict1 :: orddict(Key, Value),
 Orddict2 :: orddict(Key, Value).

Updates a value in a dictionary by calling Fun on the value to get a new
value. An exception is generated if Key is not present in the dictionary.
Example:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:update(a, fun (V) -> V1 + 100 end, OrdDict1).
[{a, 101}, {b, 102}]

 Link to this function

 update(Key, Fun, Initial, Orddict1)

 View Source

 -spec update(Key, Fun, Initial, Orddict1) -> Orddict2
 when
 Initial :: Value,
 Fun :: fun((Value1 :: Value) -> Value2 :: Value),
 Orddict1 :: orddict(Key, Value),
 Orddict2 :: orddict(Key, Value).

Updates a value in a dictionary by calling Fun on the value to get a new
value. If Key is not present in the dictionary, Initial is stored as the
first value.
For example, append/3 can be defined as follows:
append(Key, Val, D) ->
 update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).
Example 1:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:update(c, fun (V) -> V1 + 100 end, 99, OrdDict1).
[{a,1},{b,2},{c,99}]
Example 2:
1> OrdDict1 = orddict:from_list([{a, 1}, {b, 2}]).
[{a,1},{b,2}]
2> orddict:update(a, fun (V) -> V1 + 100 end, 99, OrdDict1).
[{a,101},{b,2}]

 Link to this function

 update_counter(Key, Increment, Orddict1)

 View Source

 -spec update_counter(Key, Increment, Orddict1) -> Orddict2
 when
 Orddict1 :: orddict(Key, Value),
 Orddict2 :: orddict(Key, Value),
 Increment :: number().

Adds Increment to the value associated with Key and store this value. If
Key is not present in the dictionary, Increment is stored as the first
value.
This can be defined as follows, but is faster:
update_counter(Key, Incr, D) ->
 update(Key, fun (Old) -> Old + Incr end, Incr, D).

 ordsets - stdlib v5.2.1

ordsets

Functions for manipulating sets as ordered lists.
Sets are collections of elements with no duplicate elements. An ordset is a
representation of a set, where an ordered list is used to store the elements of
the set. An ordered list is more efficient than an unordered list. Elements are
ordered according to the Erlang term order.
This module provides the same interface as the sets module but with a
defined representation. One difference is that while sets considers two
elements as different if they do not match (=:=), this module considers two
elements as different if and only if they do not compare equal (==).
See the Compatibility Section in the sets module
for more information about the compatibility of the different implementations of
sets in the Standard Library.

 See Also

gb_sets, sets

 Summary

 Types

 ordset(T)

 As returned by new/0.

 Functions

 add_element(Element, Ordset1)

 Returns a new ordered set formed from Ordset1 with Element inserted.

 del_element(Element, Ordset1)

 Returns Ordset1, but with Element removed.

 filter(Pred, Ordset1)

 Filters elements in Ordset1 with boolean function Pred.

 filtermap(Fun, Ordset1)

 Filters and maps elements in Ordset1 with function Fun.

 fold(Function, Acc0, Ordset)

 Folds Function over every element in Ordset and returns the final value of
the accumulator.

 from_list(List)

 Returns an ordered set of the elements in List.

 intersection(OrdsetList)

 Returns the intersection of the non-empty list of sets.

 intersection(Ordset1, Ordset2)

 Returns the intersection of Ordset1 and Ordset2.

 is_disjoint(Ordset1, Ordset2)

 Returns true if Ordset1 and Ordset2 are disjoint (have no elements in
common), otherwise false.

 is_element(Element, Ordset)

 Returns true if Element is an element of Ordset, otherwise false.

 is_empty(Ordset)

 Returns true if Ordset is an empty set, otherwise false.

 is_equal(Ordset1, Ordset2)

 Returns true if Ordset1 and Ordset2 are equal, that is when every element
of one set is also a member of the respective other set, otherwise false.

 is_set(Ordset)

 Returns true if Ordset is an ordered set of elements, otherwise false.
This function will return true for any ordered list, even when not constructed
by the functions in this module.

 is_subset(Ordset1, Ordset2)

 Returns true when every element of Ordset1 is also a member of Ordset2,
otherwise false.

 map(Fun, Ordset1)

 Maps elements in Ordset1 with mapping function Fun.

 new()

 Returns a new empty ordered set.

 size(Ordset)

 Returns the number of elements in Ordset.

 subtract(Ordset1, Ordset2)

 Returns only the elements of Ordset1 that are not also elements of Ordset2.

 to_list(Ordset)

 Returns the elements of Ordset as a list.

 union(OrdsetList)

 Returns the merged (union) set of the list of sets.

 union(Ordset1, Ordset2)

 Returns the merged (union) set of Ordset1 and Ordset2.

 Types

 Link to this type

 ordset(T)

 View Source

 -type ordset(T) :: [T].

As returned by new/0.

 Functions

 Link to this function

 add_element(Element, Ordset1)

 View Source

 -spec add_element(Element, Ordset1) -> Ordset2
 when Element :: E, Ordset1 :: ordset(T), Ordset2 :: ordset(T | E).

Returns a new ordered set formed from Ordset1 with Element inserted.

 Link to this function

 del_element(Element, Ordset1)

 View Source

 -spec del_element(Element, Ordset1) -> Ordset2
 when Element :: term(), Ordset1 :: ordset(T), Ordset2 :: ordset(T).

Returns Ordset1, but with Element removed.

 Link to this function

 filter(Pred, Ordset1)

 View Source

 -spec filter(Pred, Ordset1) -> Ordset2
 when
 Pred :: fun((Element :: T) -> boolean()), Ordset1 :: ordset(T), Ordset2 :: ordset(T).

Filters elements in Ordset1 with boolean function Pred.

 Link to this function

 filtermap(Fun, Ordset1)

 View Source

 (since OTP @OTP-18622@)

 -spec filtermap(Fun, Ordset1) -> Ordset2
 when
 Fun :: fun((Element1 :: T1) -> boolean | {true, Element2 :: T2}),
 Ordset1 :: ordset(T1),
 Ordset2 :: ordset(T1 | T2).

Filters and maps elements in Ordset1 with function Fun.

 Link to this function

 fold(Function, Acc0, Ordset)

 View Source

 -spec fold(Function, Acc0, Ordset) -> Acc1
 when
 Function :: fun((Element :: T, AccIn :: term()) -> AccOut :: term()),
 Ordset :: ordset(T),
 Acc0 :: term(),
 Acc1 :: term().

Folds Function over every element in Ordset and returns the final value of
the accumulator.

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List) -> Ordset when List :: [T], Ordset :: ordset(T).

Returns an ordered set of the elements in List.

 Link to this function

 intersection(OrdsetList)

 View Source

 -spec intersection(OrdsetList) -> Ordset when OrdsetList :: [ordset(_), ...], Ordset :: ordset(_).

Returns the intersection of the non-empty list of sets.

 Link to this function

 intersection(Ordset1, Ordset2)

 View Source

 -spec intersection(Ordset1, Ordset2) -> Ordset3
 when Ordset1 :: ordset(_), Ordset2 :: ordset(_), Ordset3 :: ordset(_).

Returns the intersection of Ordset1 and Ordset2.

 Link to this function

 is_disjoint(Ordset1, Ordset2)

 View Source

 -spec is_disjoint(Ordset1, Ordset2) -> boolean() when Ordset1 :: ordset(_), Ordset2 :: ordset(_).

Returns true if Ordset1 and Ordset2 are disjoint (have no elements in
common), otherwise false.

 Link to this function

 is_element(Element, Ordset)

 View Source

 -spec is_element(Element, Ordset) -> boolean() when Element :: term(), Ordset :: ordset(_).

Returns true if Element is an element of Ordset, otherwise false.

 Link to this function

 is_empty(Ordset)

 View Source

 (since OTP 21.0)

 -spec is_empty(Ordset) -> boolean() when Ordset :: ordset(_).

Returns true if Ordset is an empty set, otherwise false.

 Link to this function

 is_equal(Ordset1, Ordset2)

 View Source

 (since OTP @OTP-18622@)

 -spec is_equal(Ordset1, Ordset2) -> boolean() when Ordset1 :: ordset(_), Ordset2 :: ordset(_).

Returns true if Ordset1 and Ordset2 are equal, that is when every element
of one set is also a member of the respective other set, otherwise false.

 Link to this function

 is_set(Ordset)

 View Source

 -spec is_set(Ordset) -> boolean() when Ordset :: term().

Returns true if Ordset is an ordered set of elements, otherwise false.
This function will return true for any ordered list, even when not constructed
by the functions in this module.

 Link to this function

 is_subset(Ordset1, Ordset2)

 View Source

 -spec is_subset(Ordset1, Ordset2) -> boolean() when Ordset1 :: ordset(_), Ordset2 :: ordset(_).

Returns true when every element of Ordset1 is also a member of Ordset2,
otherwise false.

 Link to this function

 map(Fun, Ordset1)

 View Source

 (since OTP @OTP-18622@)

 -spec map(Fun, Ordset1) -> Ordset2
 when
 Fun :: fun((Element1 :: T1) -> Element2 :: T2),
 Ordset1 :: ordset(T1),
 Ordset2 :: ordset(T2).

Maps elements in Ordset1 with mapping function Fun.

 Link to this function

 new()

 View Source

 -spec new() -> [].

Returns a new empty ordered set.

 Link to this function

 size(Ordset)

 View Source

 -spec size(Ordset) -> non_neg_integer() when Ordset :: ordset(_).

Returns the number of elements in Ordset.

 Link to this function

 subtract(Ordset1, Ordset2)

 View Source

 -spec subtract(Ordset1, Ordset2) -> Ordset3
 when Ordset1 :: ordset(_), Ordset2 :: ordset(_), Ordset3 :: ordset(_).

Returns only the elements of Ordset1 that are not also elements of Ordset2.

 Link to this function

 to_list(Ordset)

 View Source

 -spec to_list(Ordset) -> List when Ordset :: ordset(T), List :: [T].

Returns the elements of Ordset as a list.

 Link to this function

 union(OrdsetList)

 View Source

 -spec union(OrdsetList) -> Ordset when OrdsetList :: [ordset(T)], Ordset :: ordset(T).

Returns the merged (union) set of the list of sets.

 Link to this function

 union(Ordset1, Ordset2)

 View Source

 -spec union(Ordset1, Ordset2) -> Ordset3
 when Ordset1 :: ordset(T1), Ordset2 :: ordset(T2), Ordset3 :: ordset(T1 | T2).

Returns the merged (union) set of Ordset1 and Ordset2.

 proplists - stdlib v5.2.1

proplists

Support functions for property lists.
Property lists are ordinary lists containing entries in the form of either
tuples, whose first elements are keys used for lookup and insertion, or atoms,
which work as shorthand for tuples {Atom, true}. (Other terms are allowed in
the lists, but are ignored by this module.) If there is more than one entry in a
list for a certain key, the first occurrence normally overrides any later
(irrespective of the arity of the tuples).
Property lists are useful for representing inherited properties, such as options
passed to a function where a user can specify options overriding the default
settings, object properties, annotations, and so on.
Two keys are considered equal if they match (=:=). That is, numbers are
compared literally rather than by value, so that, for example, 1 and 1.0 are
different keys.

 Summary

 Types

 property()

 A property item within a list

 proplist()

 A list of property/0, also knows as a proplist.

 Functions

 append_values(Key, ListIn)

 Similar to get_all_values/2, but each value is wrapped in a list unless it is
already itself a list. The resulting list of lists is concatenated. This is
often useful for "incremental" options.

 compact(ListIn)

 Minimizes the representation of all entries in the list. This is equivalent to
[property(P) || P <- ListIn].

 delete(Key, List)

 Deletes all entries associated with Key from List.

 expand(Expansions, ListIn)

 Expands particular properties to corresponding sets of properties (or other
terms).

 from_map(Map)

 Converts the map Map to a property list.

 get_all_values(Key, List)

 Similar to get_value/2, but returns the list of values for all entries
{Key, Value} in List. If no such entry exists, the result is the empty list.

 get_bool(Key, List)

 Returns the value of a boolean key/value option. If
lookup(Key, List) would yield {Key, true}, this function
returns true, otherwise false.

 get_keys(List)

 Returns an unordered list of the keys used in List, not containing duplicates.

 get_value(Key, List)

 Equivalent to get_value(Key, List, undefined).

 get_value(Key, List, Default)

 Returns the value of a simple key/value property in List. If
lookup(Key, List) would yield {Key, Value}, this function
returns the corresponding Value, otherwise Default.

 is_defined(Key, List)

 Returns true if List contains at least one entry associated with Key,
otherwise false.

 lookup(Key, List)

 Returns the first entry associated with Key in List, if one exists,
otherwise returns none. For an atom A in the list, the tuple {A, true} is
the entry associated with A.

 lookup_all(Key, List)

 Returns the list of all entries associated with Key in List. If no such
entry exists, the result is the empty list.

 normalize(ListIn, Stages)

 Passes ListIn through a sequence of substitution/expansion stages. For an
aliases operation, function substitute_aliases/2 is applied using the
specified list of aliases

 property(PropertyIn)

 Creates a normal form (minimal) representation of a property. If PropertyIn is
{Key, true}, where Key is an atom, Key is returned, otherwise the whole
term PropertyIn is returned.

 property(Key, Value)

 Creates a normal form (minimal) representation of a simple key/value property.
Returns Key if Value is true and Key is an atom, otherwise a tuple
{Key, Value} is returned.

 split(List, Keys)

 Partitions List into a list of sublists and a remainder.

 substitute_aliases(Aliases, ListIn)

 Substitutes keys of properties. For each entry in ListIn, if it is associated
with some key K1 such that {K1, K2} occurs in Aliases, the key of the
entry is changed to K2. If the same K1 occurs more than once in Aliases,
only the first occurrence is used.

 substitute_negations(Negations, ListIn)

 Substitutes keys of boolean-valued properties and simultaneously negates their
values.

 to_map(List)

 Converts the property list List to a map.

 to_map(List, Stages)

 Converts the property list List to a map after applying the normalizations
given in Stages.

 unfold(ListIn)

 Unfolds all occurrences of atoms in ListIn to tuples {Atom, true}.

 Types

 Link to this type

 property()

 View Source

 -type property() :: atom() | tuple().

A property item within a list

 Link to this type

 proplist()

 View Source

 -type proplist() :: [property()].

A list of property/0, also knows as a proplist.

 Functions

 Link to this function

 append_values(Key, ListIn)

 View Source

 -spec append_values(Key, ListIn) -> ListOut when Key :: term(), ListIn :: [term()], ListOut :: [term()].

Similar to get_all_values/2, but each value is wrapped in a list unless it is
already itself a list. The resulting list of lists is concatenated. This is
often useful for "incremental" options.
Example:
append_values(a, [{a, [1,2]}, {b, 0}, {a, 3}, {c, -1}, {a, [4]}])
returns:
[1,2,3,4]

 Link to this function

 compact(ListIn)

 View Source

 -spec compact(ListIn) -> ListOut when ListIn :: [property()], ListOut :: [property()].

Minimizes the representation of all entries in the list. This is equivalent to
[property(P) || P <- ListIn].
See also property/1, unfold/1.

 Link to this function

 delete(Key, List)

 View Source

 -spec delete(Key, List) -> List when Key :: term(), List :: [term()].

Deletes all entries associated with Key from List.

 Link to this function

 expand(Expansions, ListIn)

 View Source

 -spec expand(Expansions, ListIn) -> ListOut
 when
 Expansions :: [{Property :: property(), Expansion :: [term()]}],
 ListIn :: [term()],
 ListOut :: [term()].

Expands particular properties to corresponding sets of properties (or other
terms).
For each pair {Property, Expansion} in Expansions: if E is the
first entry in ListIn with the same key as Property, and E and Property
have equivalent normal forms, then E is replaced with the terms in
Expansion, and any following entries with the same key are deleted from
ListIn.
For example, the following expressions all return [fie, bar, baz, fum]:
expand([{foo, [bar, baz]}], [fie, foo, fum])
expand([{{foo, true}, [bar, baz]}], [fie, foo, fum])
expand([{{foo, false}, [bar, baz]}], [fie, {foo, false}, fum])
However, no expansion is done in the following call because {foo, false}
shadows foo:
expand([{{foo, true}, [bar, baz]}], [{foo, false}, fie, foo, fum])
Notice that if the original property term is to be preserved in the result when
expanded, it must be included in the expansion list. The inserted terms are not
expanded recursively. If Expansions contains more than one property with the
same key, only the first occurrence is used.
See also normalize/2.

 Link to this function

 from_map(Map)

 View Source

 (since OTP 24.0)

 -spec from_map(Map) -> List
 when Map :: #{Key => Value}, List :: [{Key, Value}], Key :: term(), Value :: term().

Converts the map Map to a property list.

 Link to this function

 get_all_values(Key, List)

 View Source

 -spec get_all_values(Key, List) -> [term()] when Key :: term(), List :: [term()].

Similar to get_value/2, but returns the list of values for all entries
{Key, Value} in List. If no such entry exists, the result is the empty list.

 Link to this function

 get_bool(Key, List)

 View Source

 -spec get_bool(Key, List) -> boolean() when Key :: term(), List :: [term()].

Returns the value of a boolean key/value option. If
lookup(Key, List) would yield {Key, true}, this function
returns true, otherwise false.
See also get_value/2, lookup/2.

 Link to this function

 get_keys(List)

 View Source

 -spec get_keys(List) -> [term()] when List :: [term()].

Returns an unordered list of the keys used in List, not containing duplicates.

 Link to this function

 get_value(Key, List)

 View Source

 -spec get_value(Key, List) -> term() when Key :: term(), List :: [term()].

Equivalent to get_value(Key, List, undefined).

 Link to this function

 get_value(Key, List, Default)

 View Source

 -spec get_value(Key, List, Default) -> term() when Key :: term(), List :: [term()], Default :: term().

Returns the value of a simple key/value property in List. If
lookup(Key, List) would yield {Key, Value}, this function
returns the corresponding Value, otherwise Default.
See also get_all_values/2, get_bool/2, get_value/2, lookup/2.

 Link to this function

 is_defined(Key, List)

 View Source

 -spec is_defined(Key, List) -> boolean() when Key :: term(), List :: [term()].

Returns true if List contains at least one entry associated with Key,
otherwise false.

 Link to this function

 lookup(Key, List)

 View Source

 -spec lookup(Key, List) -> none | tuple() when Key :: term(), List :: [term()].

Returns the first entry associated with Key in List, if one exists,
otherwise returns none. For an atom A in the list, the tuple {A, true} is
the entry associated with A.
See also get_bool/2, get_value/2, lookup_all/2.

 Link to this function

 lookup_all(Key, List)

 View Source

 -spec lookup_all(Key, List) -> [tuple()] when Key :: term(), List :: [term()].

Returns the list of all entries associated with Key in List. If no such
entry exists, the result is the empty list.
See also lookup/2.

 Link to this function

 normalize(ListIn, Stages)

 View Source

 -spec normalize(ListIn, Stages) -> ListOut
 when
 ListIn :: [term()],
 Stages :: [Operation],
 Operation :: {aliases, Aliases} | {negations, Negations} | {expand, Expansions},
 Aliases :: [{Key, Key}],
 Negations :: [{Key, Key}],
 Expansions :: [{Property :: property(), Expansion :: [term()]}],
 ListOut :: [term()].

Passes ListIn through a sequence of substitution/expansion stages. For an
aliases operation, function substitute_aliases/2 is applied using the
specified list of aliases:
	For a negations operation,
substitute_negations/2 is applied using the
specified negation list.
	For an expand operation, function expand/2 is applied using the specified
list of expansions.

The final result is automatically compacted (compare compact/1).
Typically you want to substitute negations first, then aliases, then perform one
or more expansions (sometimes you want to pre-expand particular entries before
doing the main expansion). You might want to substitute negations and/or aliases
repeatedly, to allow such forms in the right-hand side of aliases and expansion
lists.
See also substitute_negations/2.

 Link to this function

 property(PropertyIn)

 View Source

 -spec property(PropertyIn) -> PropertyOut when PropertyIn :: property(), PropertyOut :: property().

Creates a normal form (minimal) representation of a property. If PropertyIn is
{Key, true}, where Key is an atom, Key is returned, otherwise the whole
term PropertyIn is returned.
See also property/2.

 Link to this function

 property(Key, Value)

 View Source

 -spec property(Key, Value) -> Property
 when Key :: term(), Value :: term(), Property :: atom() | {term(), term()}.

Creates a normal form (minimal) representation of a simple key/value property.
Returns Key if Value is true and Key is an atom, otherwise a tuple
{Key, Value} is returned.
See also property/1.

 Link to this function

 split(List, Keys)

 View Source

 -spec split(List, Keys) -> {Lists, Rest}
 when List :: [term()], Keys :: [term()], Lists :: [[term()]], Rest :: [term()].

Partitions List into a list of sublists and a remainder.
Lists contains one sublist for each key in Keys, in the corresponding order.
The relative order of the elements in each sublist is preserved from the original List.
Rest contains the elements in List that are not associated with any of the
specified keys, also with their original relative order preserved.
Example:
split([{c, 2}, {e, 1}, a, {c, 3, 4}, d, {b, 5}, b], [a, b, c])
returns:
{[[a], [{b, 5}, b],[{c, 2}, {c, 3, 4}]], [{e, 1}, d]}

 Link to this function

 substitute_aliases(Aliases, ListIn)

 View Source

 -spec substitute_aliases(Aliases, ListIn) -> ListOut
 when
 Aliases :: [{Key, Key}],
 Key :: term(),
 ListIn :: [term()],
 ListOut :: [term()].

Substitutes keys of properties. For each entry in ListIn, if it is associated
with some key K1 such that {K1, K2} occurs in Aliases, the key of the
entry is changed to K2. If the same K1 occurs more than once in Aliases,
only the first occurrence is used.
For example,
substitute_aliases([{color, colour}], L) replaces
all tuples {color, ...} in L with {colour, ...}, and all atoms color
with colour.
See also normalize/2, substitute_negations/2.

 Link to this function

 substitute_negations(Negations, ListIn)

 View Source

 -spec substitute_negations(Negations, ListIn) -> ListOut
 when
 Negations :: [{Key1, Key2}],
 Key1 :: term(),
 Key2 :: term(),
 ListIn :: [term()],
 ListOut :: [term()].

Substitutes keys of boolean-valued properties and simultaneously negates their
values.
For each entry in ListIn, if it is associated with some key K1 such
that {K1, K2} occurs in Negations: if the entry was {K1, true}, it is
replaced with {K2, false}, otherwise with K2, thus changing the name of the
option and simultaneously negating the value specified by
get_bool(Key, ListIn). If the same K1 occurs more than once
in Negations, only the first occurrence is used.
For example,
substitute_negations([{no_foo, foo}], L) replaces
any atom no_foo or tuple {no_foo, true} in L with {foo, false}, and any
other tuple {no_foo, ...} with foo.
See also get_bool/2, normalize/2, substitute_aliases/2.

 Link to this function

 to_map(List)

 View Source

 (since OTP 24.0)

 -spec to_map(List) -> Map
 when
 List :: [Shorthand | {Key, Value} | term()],
 Map :: #{Shorthand => true, Key => Value},
 Shorthand :: atom(),
 Key :: term(),
 Value :: term().

Converts the property list List to a map.
Shorthand atom values in List will be expanded to an association of the form
Atom => true. Tuples of the form {Key, Value} in List will be converted to
an association of the form Key => Value. Anything else will be silently
ignored.
If the same key appears in List multiple times, the value of the one appearing
nearest to the head of List will be in the result map, that is the value that
would be returned by a call to get_value(Key, List).
Example:
to_map([a, {b, 1}, {c, 2}, {c, 3}])
returns:
#{a => true, b => 1, c => 2}

 Link to this function

 to_map(List, Stages)

 View Source

 (since OTP 24.0)

 -spec to_map(List, Stages) -> Map
 when
 List :: [term()],
 Stages :: [Operation],
 Operation :: {aliases, Aliases} | {negations, Negations} | {expand, Expansions},
 Aliases :: [{Key, Key}],
 Negations :: [{Key, Key}],
 Expansions :: [{Property :: property(), Expansion :: [term()]}],
 Map :: #{term() => term()}.

Converts the property list List to a map after applying the normalizations
given in Stages.
See also normalize/2, to_map/1.

 Link to this function

 unfold(ListIn)

 View Source

 -spec unfold(ListIn) -> ListOut when ListIn :: [term()], ListOut :: [term()].

Unfolds all occurrences of atoms in ListIn to tuples {Atom, true}.
See also compact/1.

 qlc - stdlib v5.2.1

qlc

This module provides a query interface to Mnesia, ETS,
Dets, and other data structures that provide an iterator style
traversal of objects.

 Overview

This module provides a query interface to QLC tables. Typical QLC tables are
Mnesia, ETS, and Dets tables. Support is also provided for user-defined tables,
see section Implementing a QLC Table. A query is expressed using Query List
Comprehensions (QLCs). The answers to a query are determined by data in QLC
tables that fulfill the constraints expressed by the QLCs of the query. QLCs are
similar to ordinary list comprehensions as described in
Erlang Reference Manual and
Programming Examples, except that variables
introduced in patterns cannot be used in list expressions. In the absence of
optimizations and options such as cache and unique (see section
Common Options, every QLC free of QLC tables evaluates
to the same list of answers as the identical ordinary list comprehension.
While ordinary list comprehensions evaluate to lists, calling q/1,2
returns a query handle. To obtain all the answers to a
query, eval/1,2 is to be called with the query handle as first
argument. Query handles are essentially functional objects (funs) created in the
module calling q/1,2. As the funs refer to the module code, be careful not to
keep query handles too long if the module code is to be replaced. Code
replacement is described in section
Compilation and Code Loading in the Erlang
Reference Manual. The list of answers can also be traversed in chunks by use of
a query cursor. Query cursors are created by calling
cursor/1,2 with a query handle as first argument. Query cursors
are essentially Erlang processes. One answer at a time is sent from the query
cursor process to the process that created the cursor.

 Syntax

Syntactically QLCs have the same parts as ordinary list comprehensions:
[Expression || Qualifier1, Qualifier2, ...]
Expression (the template) is any Erlang expression. Qualifiers are either
filters or generators. Filters are Erlang expressions returning
boolean/0. Generators have the form Pattern <- ListExpression, where
ListExpression is an expression evaluating to a query handle or a list. Query
handles are returned from append/1,2,
keysort/2,3, q/1,2, sort/1,2,
string_to_handle/1,2,3, and table/2.

 Evaluation

A query handle is evaluated in the following order:
	Inspection of options and the collection of information about tables. As a
result, qualifiers are modified during the optimization phase.
	All list expressions are evaluated. If a cursor has been created, evaluation
takes place in the cursor process. For list expressions that are QLCs, the
list expressions of the generators of the QLCs are evaluated as well. Be
careful if list expressions have side effects, as list expressions are
evaluated in unspecified order.
	The answers are found by evaluating the qualifiers from left to right,
backtracking when some filter returns false, or collecting the template when
all filters return true.

Filters that do not return boolean/0 but fail are handled differently
depending on their syntax: if the filter is a guard, it returns false,
otherwise the query evaluation fails. This behavior makes it possible for the
qlc module to do some optimizations without affecting the meaning of a query.
For example, when testing some position of a table and one or more constants for
equality, only the objects with equal values are candidates for further
evaluation. The other objects are guaranteed to make the filter return false,
but never fail. The (small) set of candidate objects can often be found by
looking up some key values of the table or by traversing the table using a match
specification. It is necessary to place the guard filters immediately after the
table generator, otherwise the candidate objects are not restricted to a small
set. The reason is that objects that could make the query evaluation fail must
not be excluded by looking up a key or running a match specification.

 Join

The qlc module supports fast join of two query handles. Fast join is possible
if some position P1 of one query handler and some position P2 of another
query handler are tested for equality. Two fast join methods are provided:
	Lookup join traverses all objects of one query handle and finds objects of
the other handle (a QLC table) such that the values at P1 and P2 match or
compare equal. The qlc module does not create any indexes but looks up
values using the key position and the indexed positions of the QLC table.
	Merge join sorts the objects of each query handle if necessary and filters
out objects where the values at P1 and P2 do not compare equal. If many
objects with the same value of P2 exist, a temporary file is used for the
equivalence classes.

The qlc module warns at compile time if a QLC combines query handles in such a
way that more than one join is possible. That is, no query planner is provided
that can select a good order between possible join operations. It is up to the
user to order the joins by introducing query handles.
The join is to be expressed as a guard filter. The filter must be placed
immediately after the two joined generators, possibly after guard filters that
use variables from no other generators but the two joined generators. The qlc
module inspects the operands of =:=/2, ==/2, is_record/2,
element/2, and logical operators (and/2, or/2, andalso/2,
orelse/2, xor/2) when determining which joins to consider.

 Common Options

The following options are accepted by cursor/2, eval/2, fold/4, and
info/2:
	{cache_all, Cache}, where Cache is equal to ets or list adds a
{cache, Cache} option to every list expression of the query except tables
and lists. Defaults to {cache_all, no}. Option cache_all is equivalent to
{cache_all, ets}.
	{max_list_size, MaxListSize}, where MaxListSize is the
size in bytes of terms on the external format. If the accumulated size of
collected objects exceeds MaxListSize, the objects are written onto a
temporary file. This option is used by option {cache, list} and by the merge
join method. Defaults to 512*1024 bytes.
	{tmpdir_usage, TmpFileUsage} determines the action taken when qlc is about
to create temporary files on the directory set by option tmpdir. If the
value is not_allowed, an error tuple is returned, otherwise temporary files
are created as needed. Default is allowed, which means that no further
action is taken. The values info_msg, warning_msg, and error_msg mean
that the function with the corresponding name in module error_logger is
called for printing some information (currently the stacktrace).
	{tmpdir, TempDirectory} sets the directory used by merge join for temporary
files and by option {cache, list}. The option also overrides option tmpdir
of keysort/3 and sort/2. Defaults to "", which means that the directory
returned by file:get_cwd() is used.
	{unique_all, true} adds a {unique, true} option to every list expression
of the query. Defaults to {unique_all, false}. Option unique_all is
equivalent to {unique_all, true}.

 Getting Started

As mentioned earlier, queries are expressed in the list comprehension syntax as
described in section Expressions in Erlang
Reference Manual. In the following, some familiarity with list comprehensions is
assumed. The examples in section
List Comprehensions in Programming Examples
can get you started. Notice that list comprehensions do not add any
computational power to the language; anything that can be done with list
comprehensions can also be done without them. But they add syntax for expressing
simple search problems, which is compact and clear once you get used to it.
Many list comprehension expressions can be evaluated by the qlc module.
Exceptions are expressions, such that variables introduced in patterns (or
filters) are used in some generator later in the list comprehension. As an
example, consider an implementation of lists:append(L):
[X ||Y <- L, X <- Y]. Y is introduced in the first generator and used in the
second. The ordinary list comprehension is normally to be preferred when there
is a choice as to which to use. One difference is that eval/1,2
collects answers in a list that is finally reversed, while list comprehensions
collect answers on the stack that is finally unwound.
What the qlc module primarily adds to list comprehensions is that data can be
read from QLC tables in small chunks. A QLC table is created by calling
qlc:table/2. Usually qlc:table/2 is not called directly from
the query but through an interface function of some data structure. Erlang/OTP
includes a few examples of such functions:
mnesia:table/1,2, ets:table/1,2, and
dets:table/1,2. For a given data structure, many functions
can create QLC tables, but common for these functions is that they return a
query handle created by qlc:table/2. Using the QLC tables
provided by Erlang/OTP is usually probably sufficient, but for the more advanced
user section Implementing a QLC Table
describes the implementation of a function calling qlc:table/2.
Besides qlc:table/2, other functions return query handles. They are used more
seldom than tables, but are sometimes useful. qlc:append/1,2
traverses objects from many tables or lists after each other. If, for example,
you want to traverse all answers to a query QH and then finish off by a term
{finished}, you can do that by calling qlc:append(QH, [{finished}]).
append/2 first returns all objects of QH, then {finished}.
If a tuple {finished} exists among the answers to QH, it is returned twice
from append/2.
As another example, consider concatenating the answers to two queries QH1 and
QH2 while removing all duplicates. This is accomplished by using option
unique:
qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})
The cost is substantial: every returned answer is stored in an ETS table. Before
returning an answer, it is looked up in the ETS table to check if it has already
been returned. Without the unique option, all answers to QH1 would be
returned followed by all answers to QH2. The unique option keeps the order
between the remaining answers.
If the order of the answers is not important, there is an alternative to the
unique option, namely to sort the answers uniquely:
qlc:sort(qlc:q([X || X <- qlc:append(QH1, QH2)], {unique, true})).
This query also removes duplicates but the answers are sorted. If there are many
answers, temporary files are used. Notice that to get the first unique answer,
all answers must be found and sorted. Both alternatives find duplicates by
comparing answers, that is, if A1 and A2 are answers found in that order,
then A2 is a removed if A1 == A2.
To return only a few answers, cursors can be used. The following code returns no
more than five answers using an ETS table for storing the unique answers:
C = qlc:cursor(qlc:q([X || X <- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.
QLCs are convenient for stating constraints on data from two or more tables. The
following example does a natural join on two query handles on position 2:
qlc:q([{X1,X2,X3,Y1} ||
 {X1,X2,X3} <- QH1,
 {Y1,Y2} <- QH2,
 X2 =:= Y2])
The qlc module evaluates this differently depending on the query handles QH1
and QH2. If, for example, X2 is matched against the key of a QLC table, the
lookup join method traverses the objects of QH2 while looking up key values in
the table. However, if not X2 or Y2 is matched against the key or an indexed
position of a QLC table, the merge join method ensures that QH1 and QH2 are
both sorted on position 2 and next do the join by traversing the objects one by
one.
Option join can be used to force the qlc module to use a certain join
method. For the rest of this section it is assumed that the excessively slow
join method called "nested loop" has been chosen:
qlc:q([{X1,X2,X3,Y1} ||
 {X1,X2,X3} <- QH1,
 {Y1,Y2} <- QH2,
 X2 =:= Y2],
 {join, nested_loop})
In this case the filter is applied to every possible pair of answers to QH1
and QH2, one at a time. If there are M answers to QH1 and N answers to
QH2, the filter is run M*N times.
If QH2 is a call to the function for gb_trees, as defined in section
Implementing a QLC Table, then
gb_table:table/1 , the iterator for the gb-tree is
initiated for each answer to QH1. The objects of the gb-tree are then returned
one by one. This is probably the most efficient way of traversing the table in
that case, as it takes minimal computational power to get the following object.
But if QH2 is not a table but a more complicated QLC, it can be more efficient
to use some RAM memory for collecting the answers in a cache, particularly if
there are only a few answers. It must then be assumed that evaluating QH2 has
no side effects so that the meaning of the query does not change if QH2 is
evaluated only once. One way of caching the answers is to evaluate QH2 first
of all and substitute the list of answers for QH2 in the query. Another way is
to use option cache. It is expressed like this:
QH2' = qlc:q([X || X <- QH2], {cache, ets})
or only
QH2' = qlc:q([X || X <- QH2], cache)
The effect of option cache is that when generator QH2' is run the first
time, every answer is stored in an ETS table. When the next answer of QH1 is
tried, answers to QH2' are copied from the ETS table, which is very fast. As
for option unique the cost is a possibly substantial amount of RAM memory.
Option {cache, list} offers the possibility to store the answers in a list on
the process heap. This has the potential of being faster than ETS tables, as
there is no need to copy answers from the table. However, it can often result in
slower evaluation because of more garbage collections of the process heap and
increased RAM memory consumption because of larger heaps. Another drawback with
cache lists is that if the list size exceeds a limit, a temporary file is used.
Reading the answers from a file is much slower than copying them from an ETS
table. But if the available RAM memory is scarce, setting the
limit to some low value is an alternative.
Option cache_all can be set to ets or list when evaluating a query. It
adds a cache or {cache, list} option to every list expression except QLC
tables and lists on all levels of the query. This can be used for testing if
caching would improve efficiency at all. If the answer is yes, further testing
is needed to pinpoint the generators that are to be cached.

 Implementing a QLC Table

As an example of how to use function table/2, the implementation of a QLC
table for the gb_trees module is given:

-module(gb_table).

-export([table/1]).

table(T) ->
 TF = fun() -> qlc_next(gb_trees:next(gb_trees:iterator(T))) end,
 InfoFun = fun(num_of_objects) -> gb_trees:size(T);
 (keypos) -> 1;
 (is_sorted_key) -> true;
 (is_unique_objects) -> true;
 (_) -> undefined
 end,
 LookupFun =
 fun(1, Ks) ->
 lists:flatmap(fun(K) ->
 case gb_trees:lookup(K, T) of
 {value, V} -> [{K,V}];
 none -> []
 end
 end, Ks)
 end,
 FormatFun =
 fun({all, NElements, ElementFun}) ->
 ValsS = io_lib:format("gb_trees:from_orddict(~w)",
 [gb_nodes(T, NElements, ElementFun)]),
 io_lib:format("gb_table:table(~s)", [ValsS]);
 ({lookup, 1, KeyValues, _NElements, ElementFun}) ->
 ValsS = io_lib:format("gb_trees:from_orddict(~w)",
 [gb_nodes(T, infinity, ElementFun)]),
 io_lib:format("lists:flatmap(fun(K) -> "
 "case gb_trees:lookup(K, ~s) of "
 "{value, V} -> [{K,V}];none -> [] end "
 "end, ~w)",
 [ValsS, [ElementFun(KV) || KV <- KeyValues]])
 end,
 qlc:table(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},
 {lookup_fun, LookupFun},{key_equality,'=='}]).

qlc_next({X, V, S}) ->
 [{X,V} | fun() -> qlc_next(gb_trees:next(S)) end];
qlc_next(none) ->
 [].

gb_nodes(T, infinity, ElementFun) ->
 gb_nodes(T, -1, ElementFun);
gb_nodes(T, NElements, ElementFun) ->
 gb_iter(gb_trees:iterator(T), NElements, ElementFun).

gb_iter(_I, 0, _EFun) ->
 '...';
gb_iter(I0, N, EFun) ->
 case gb_trees:next(I0) of
 {X, V, I} ->
 [EFun({X,V}) | gb_iter(I, N-1, EFun)];
 none ->
 []
 end.
TF is the traversal function. The qlc module requires that there is a way of
traversing all objects of the data structure. gb_trees has an iterator
function suitable for that purpose. Notice that for each object returned, a new
fun is created. As long as the list is not terminated by [], it is assumed
that the tail of the list is a nullary function and that calling the function
returns further objects (and functions).
The lookup function is optional. It is assumed that the lookup function always
finds values much faster than it would take to traverse the table. The first
argument is the position of the key. As qlc_next/1 returns the objects as
{Key, Value} pairs, the position is 1. Notice that the lookup function is to
return {Key, Value} pairs, as the traversal function does.
The format function is also optional. It is called by info/1,2 to
give feedback at runtime of how the query is to be evaluated. Try to give as
good feedback as possible without showing too much details. In the example, at
most seven objects of the table are shown. The format function handles two
cases: all means that all objects of the table are traversed;
{lookup, 1, KeyValues} means that the lookup function is used for looking up
key values.
Whether the whole table is traversed or only some keys looked up depends on how
the query is expressed. If the query has the form
qlc:q([T || P <- LE, F])
and P is a tuple, the qlc module analyzes P and F in compile time to
find positions of tuple P that are tested for equality to constants. If such a
position at runtime turns out to be the key position, the lookup function can be
used, otherwise all objects of the table must be traversed. The info function
InfoFun returns the key position. There can be indexed positions as well, also
returned by the info function. An index is an extra table that makes lookup on
some position fast. Mnesia maintains indexes upon request, and introduces so
called secondary keys. The qlc module prefers to look up objects using the key
before secondary keys regardless of the number of constants to look up.

 Key Equality

Erlang/OTP has two operators for testing term equality: ==/2 and =:=/2. The
difference is all about the integers that can be represented by floats. For
example, 2 == 2.0 evaluates to true while 2 =:= 2.0 evaluates to false.
Normally this is a minor issue, but the qlc module cannot ignore the
difference, which affects the user's choice of operators in QLCs.
If the qlc module at compile time can determine that some constant is free of
integers, it does not matter which one of ==/2 or =:=/2 is used:
1> E1 = ets:new(t, [set]), % uses =:=/2 for key equality
Q1 = qlc:q([K ||
{K} <- ets:table(E1),
K == 2.71 orelse K == a]),
io:format("~s~n", [qlc:info(Q1)]).
ets:match_spec_run(
 lists:flatmap(fun(V) ->
			 ets:lookup(#Ref<0.3098908599.2283929601.256025>,
				 V)
		 end,
		 [a, 2.71]),
 ets:match_spec_compile([{{'$1'}, [], ['$1']}]))
In the example, operator ==/2 has been handled exactly as =:=/2 would have
been handled. However, if it cannot be determined at compile time that some
constant is free of integers, and the table uses =:=/2 when comparing keys for
equality (see option key_equality), then the qlc
module does not try to look up the constant. The reason is that there is in the
general case no upper limit on the number of key values that can compare equal
to such a constant; every combination of integers and floats must be looked up:
2> E2 = ets:new(t, [set]),
true = ets:insert(E2, [{{2,2},a},{{2,2.0},b},{{2.0,2},c}]),
F2 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E2), K == I])
end,
Q2 = F2({2,2}),
io:format("~s~n", [qlc:info(Q2)]).
ets:table(#Ref<0.3098908599.2283929601.256125>,
 [{traverse,
 {select,
 [{{'$1', '$2'}, [{'==', '$1', {const, {2, 2}}}], ['$2']}]}}])
3> lists:sort(qlc:e(Q2)).
[a,b,c]
Looking up only {2,2} would not return b and c.
If the table uses ==/2 when comparing keys for equality, the qlc module
looks up the constant regardless of which operator is used in the QLC. However,
==/2 is to be preferred:
4> E3 = ets:new(t, [ordered_set]), % uses ==/2 for key equality
true = ets:insert(E3, [{{2,2.0},b}]),
F3 = fun(I) ->
qlc:q([V || {K,V} <- ets:table(E3), K == I])
end,
Q3 = F3({2,2}),
io:format("~s~n", [qlc:info(Q3)]).
ets:match_spec_run(ets:lookup(#Ref<0.3098908599.2283929601.256211>,
 {2, 2}),
 ets:match_spec_compile([{{'$1', '$2'}, [], ['$2']}]))
5> qlc:e(Q3).
[b]
Lookup join is handled analogously to lookup of constants in a table: if the
join operator is ==/2, and the table where constants are to be looked up uses
=:=/2 when testing keys for equality, then the qlc module does not consider
lookup join for that table.

 See Also

dets, erl_eval, erlang, error_logger, ets, file,
file_sorter, mnesia, shell,
Erlang Reference Manual,
Programming Examples

 Summary

 Types

 abstract_expr()

 Parse trees for Erlang expression, see section
The Abstract Format in the ERTS User's Guide.

 answer()

 answers()

 cache()

 key_pos()

 match_expression()

 Match specification, see section
Match Specifications in Erlang in the ERTS User's
Guide and ms_transform.

 max_list_size()

 no_files()

 An integer > 1.

 order()

 order_fun()

 query_cursor()

 A query cursor.

 query_handle()

 A query handle.

 query_handle_or_list()

 query_list_comprehension()

 A literal query list comprehension.

 sort_option()

 See file_sorter for a description of the options.

 sort_options()

 spawn_options()

 tmp_directory()

 tmp_file_usage()

 Functions

 append(QHL)

 Returns a query handle. When evaluating query handle QH, all answers to the
first query handle in QHL are returned, followed by all answers to the
remaining query handles in QHL.

 append(QH1, QH2)

 Returns a query handle. When evaluating query handle QH3, all answers to QH1
are returned, followed by all answers to QH2.

 cursor(QH)

 Equivalent to cursor(QH, []).

 cursor(QH, Options)

 Creates a query cursor and makes the calling process the owner of the cursor.

 delete_cursor(QueryCursor)

 Deletes a query cursor. Only the owner of the cursor can delete the cursor.

 e(QH)

 Equivalent to eval(QH, []).

 e(QH, Options)

 Equivalent to eval(QH, Options).

 eval(QH)

 Equivalent to eval(QH, []).

 eval(QH, Options)

 Evaluates a query handle in the calling process and collects all answers in a
list.

 fold(Function, Acc0, QH)

 Equivalent to fold(Function, Acc0, QH, []).

 fold(Function, Acc0, QH, Options)

 Calls Function on successive answers to the query handle together with an
extra argument AccIn.

 format_error(Error)

 Returns a descriptive string in English of an error tuple returned by some of
the functions of the qlc module or the parse transform. This function is
mainly used by the compiler invoking the parse transform.

 info(QH)

 Equivalent to info(QH, []).

 info(QH, Options)

 Returns information about a query handle. The information describes the
simplifications and optimizations that are the results of preparing the query
for evaluation. This function is probably mainly useful during debugging.

 keysort(KeyPos, QH1)

 Equivalent to keysort(KeyPos, QH1, []).

 keysort(KeyPos, QH1, SortOptions)

 Returns a query handle. When evaluating query handle QH2, the answers to query
handle QH1 are sorted by file_sorter:keysort/4 according to the options.

 next_answers(QueryCursor)

 Equivalent to next_answers(C, 10).

 next_answers(QueryCursor, NumberOfAnswers)

 Returns some or all of the remaining answers to a query cursor. Only the owner
of QueryCursor can retrieve answers.

 q(QLC)

 Equivalent to q(QLC, []).

 q(QLC, Options)

 Returns a query handle for a QLC. The QLC must be the first argument to this
function, otherwise it is evaluated as an ordinary list comprehension. It is
also necessary to add the following line to the source code

 sort(QH1)

 Equivalent to sort(QH, []).

 sort(QH1, SortOptions)

 Returns a query handle. When evaluating query handle QH2, the answers to query
handle QH1 are sorted by file_sorter:sort/3 according to the options.

 string_to_handle(QueryString)

 Equivalent to string_to_handle(QueryString, []).

 string_to_handle(QueryString, Options)

 Equivalent to string_to_handle(QueryString, Options, erl_eval:new_bindings()).

 string_to_handle(QueryString, Options, Bindings)

 A string version of q/1,2. When the query handle is evaluated, the
fun created by the parse transform is interpreted by erl_eval. The query
string is to be one single QLC terminated by a period.

 table(TraverseFun, Options)

 Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS,
Dets, and Mnesia tables, but many other data structures can be turned into QLC
tables. This is accomplished by letting function(s) in the module implementing
the data structure create a query handle by calling qlc:table/2.

 Types

 Link to this type

 abstract_expr()

 View Source

 (not exported)

 -type abstract_expr() :: erl_parse:abstract_expr().

Parse trees for Erlang expression, see section
The Abstract Format in the ERTS User's Guide.

 Link to this type

 answer()

 View Source

 (not exported)

 -type answer() :: term().

 Link to this type

 answers()

 View Source

 (not exported)

 -type answers() :: [answer()].

 Link to this type

 cache()

 View Source

 (not exported)

 -type cache() :: ets | list | no.

 Link to this type

 key_pos()

 View Source

 (not exported)

 -type key_pos() :: pos_integer() | [pos_integer()].

 Link to this type

 match_expression()

 View Source

 (not exported)

 -type match_expression() :: ets:match_spec().

Match specification, see section
Match Specifications in Erlang in the ERTS User's
Guide and ms_transform.

 Link to this type

 max_list_size()

 View Source

 (not exported)

 -type max_list_size() :: non_neg_integer().

 Link to this type

 no_files()

 View Source

 (not exported)

 -type no_files() :: pos_integer().

An integer > 1.

 Link to this type

 order()

 View Source

 (not exported)

 -type order() :: ascending | descending | order_fun().

 Link to this type

 order_fun()

 View Source

 (not exported)

 -type order_fun() :: fun((term(), term()) -> boolean()).

 Link to this opaque

 query_cursor()

 View Source

 -opaque query_cursor()

A query cursor.

 Link to this opaque

 query_handle()

 View Source

 -opaque query_handle()

A query handle.

 Link to this type

 query_handle_or_list()

 View Source

 (not exported)

 -type query_handle_or_list() :: query_handle() | list().

 Link to this type

 query_list_comprehension()

 View Source

 (not exported)

 -type query_list_comprehension() :: term().

A literal query list comprehension.

 Link to this type

 sort_option()

 View Source

 (not exported)

 -type sort_option() ::
 {compressed, boolean()} |
 {no_files, no_files()} |
 {order, order()} |
 {size, pos_integer()} |
 {tmpdir, tmp_directory()} |
 {unique, boolean()}.

See file_sorter for a description of the options.

 Link to this type

 sort_options()

 View Source

 (not exported)

 -type sort_options() :: [sort_option()] | sort_option().

 Link to this type

 spawn_options()

 View Source

 (not exported)

 -type spawn_options() :: default | [proc_lib:spawn_option()].

 Link to this type

 tmp_directory()

 View Source

 (not exported)

 -type tmp_directory() :: [] | file:name().

 Link to this type

 tmp_file_usage()

 View Source

 (not exported)

 -type tmp_file_usage() :: allowed | not_allowed | info_msg | warning_msg | error_msg.

 Functions

 Link to this function

 append(QHL)

 View Source

 -spec append(QHL) -> QH when QHL :: [query_handle_or_list()], QH :: query_handle().

Returns a query handle. When evaluating query handle QH, all answers to the
first query handle in QHL are returned, followed by all answers to the
remaining query handles in QHL.

 Link to this function

 append(QH1, QH2)

 View Source

 -spec append(QH1, QH2) -> QH3
 when QH1 :: query_handle_or_list(), QH2 :: query_handle_or_list(), QH3 :: query_handle().

Returns a query handle. When evaluating query handle QH3, all answers to QH1
are returned, followed by all answers to QH2.
append(QH1, QH2) is equivalent to
append([QH1, QH2]).

 Link to this function

 cursor(QH)

 View Source

 -spec cursor(QH) -> Cursor when QH :: query_handle_or_list(), Cursor :: query_cursor().

Equivalent to cursor(QH, []).

 Link to this function

 cursor(QH, Options)

 View Source

 -spec cursor(QH, Options) -> Cursor
 when
 QH :: query_handle_or_list(),
 Options :: [Option] | Option,
 Option ::
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {spawn_options, spawn_options()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all,
 Cursor :: query_cursor().

Creates a query cursor and makes the calling process the owner of the cursor.
The cursor is to be used as argument to next_answers/1,2
and (eventually) delete_cursor/1. Calls erlang:spawn_opt/2 to spawn and link
to a process that evaluates the query handle. The value of option
spawn_options is used as last argument when calling
spawn_opt/2. Defaults to [link].
Example:
1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
QC = qlc:cursor(QH),
qlc:next_answers(QC, 1).
[{a,1}]
2> qlc:next_answers(QC, 1).
[{a,2}]
3> qlc:next_answers(QC, all_remaining).
[{b,1},{b,2}]
4> qlc:delete_cursor(QC).
ok

 Link to this function

 delete_cursor(QueryCursor)

 View Source

 -spec delete_cursor(QueryCursor) -> ok when QueryCursor :: query_cursor().

Deletes a query cursor. Only the owner of the cursor can delete the cursor.

 Link to this function

 e(QH)

 View Source

 -spec e(QH) -> Answers | Error
 when
 QH :: query_handle_or_list(),
 Answers :: answers(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Equivalent to eval(QH, []).

 Link to this function

 e(QH, Options)

 View Source

 -spec e(QH, Options) -> Answers | Error
 when
 QH :: query_handle_or_list(),
 Options :: [Option] | Option,
 Option ::
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all,
 Answers :: answers(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Equivalent to eval(QH, Options).

 Link to this function

 eval(QH)

 View Source

 -spec eval(QH) -> Answers | Error
 when
 QH :: query_handle_or_list(),
 Answers :: answers(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Equivalent to eval(QH, []).

 Link to this function

 eval(QH, Options)

 View Source

 -spec eval(QH, Options) -> Answers | Error
 when
 QH :: query_handle_or_list(),
 Answers :: answers(),
 Options :: [Option] | Option,
 Option ::
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all,
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Evaluates a query handle in the calling process and collects all answers in a
list.
Example:
1> QH = qlc:q([{X,Y} || X <- [a,b], Y <- [1,2]]),
qlc:eval(QH).
[{a,1},{a,2},{b,1},{b,2}]

 Link to this function

 fold(Function, Acc0, QH)

 View Source

 -spec fold(Function, Acc0, QH) -> Acc1 | Error
 when
 QH :: query_handle_or_list(),
 Function :: fun((answer(), AccIn) -> AccOut),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Equivalent to fold(Function, Acc0, QH, []).

 Link to this function

 fold(Function, Acc0, QH, Options)

 View Source

 -spec fold(Function, Acc0, QH, Options) -> Acc1 | Error
 when
 QH :: query_handle_or_list(),
 Function :: fun((answer(), AccIn) -> AccOut),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 Options :: [Option] | Option,
 Option ::
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all,
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Calls Function on successive answers to the query handle together with an
extra argument AccIn.
The query handle and the function are evaluated in the
calling process. Function must return a new accumulator, which is passed to
the next call. Acc0 is returned if there are no answers to the query handle.
Example:
1> QH = [1,2,3,4,5,6],
qlc:fold(fun(X, Sum) -> X + Sum end, 0, QH).
21

 Link to this function

 format_error(Error)

 View Source

 -spec format_error(Error) -> Chars when Error :: {error, module(), term()}, Chars :: io_lib:chars().

Returns a descriptive string in English of an error tuple returned by some of
the functions of the qlc module or the parse transform. This function is
mainly used by the compiler invoking the parse transform.

 Link to this function

 info(QH)

 View Source

 -spec info(QH) -> Info when QH :: query_handle_or_list(), Info :: abstract_expr() | string().

Equivalent to info(QH, []).

 Link to this function

 info(QH, Options)

 View Source

 -spec info(QH, Options) -> Info
 when
 QH :: query_handle_or_list(),
 Options :: [Option] | Option,
 Option :: EvalOption | ReturnOption,
 EvalOption ::
 {cache_all, cache()} |
 cache_all |
 {max_list_size, max_list_size()} |
 {tmpdir_usage, tmp_file_usage()} |
 {tmpdir, tmp_directory()} |
 {unique_all, boolean()} |
 unique_all,
 ReturnOption ::
 {depth, Depth} | {flat, boolean()} | {format, Format} | {n_elements, NElements},
 Depth :: infinity | non_neg_integer(),
 Format :: abstract_code | string,
 NElements :: infinity | pos_integer(),
 Info :: abstract_expr() | string().

Returns information about a query handle. The information describes the
simplifications and optimizations that are the results of preparing the query
for evaluation. This function is probably mainly useful during debugging.
The information has the form of an Erlang expression where QLCs most likely
occur. Depending on the format functions of mentioned QLC tables, it is not
certain that the information is absolutely accurate.
Options:
	The default is to return a sequence of QLCs in a block, but if option
{flat, false} is specified, one single QLC is returned.
	The default is to return a string, but if option {format, abstract_code} is
specified, abstract code is returned instead. In the abstract code, port
identifiers, references, and pids are represented by strings.
	The default is to return all elements in lists, but if option
{n_elements, NElements} is specified, only a limited number of elements are
returned.
	The default is to show all parts of objects and match specifications, but if
option {depth, Depth} is specified, parts of terms below a certain depth are
replaced by '...'.

Examples:
In the following example two simple QLCs are inserted only to hold option
{unique, true}:
1> QH = qlc:q([{X,Y} || X <- [x,y], Y <- [a,b]]),
io:format("~s~n", [qlc:info(QH, unique_all)]).
begin
 V1 =
 qlc:q([
 SQV ||
 SQV <- [x, y]
],
 [{unique, true}]),
 V2 =
 qlc:q([
 SQV ||
 SQV <- [a, b]
],
 [{unique, true}]),
 qlc:q([
 {X,Y} ||
 X <- V1,
 Y <- V2
],
 [{unique, true}])
end
In the following example QLC V2 has been inserted to show the joined
generators and the join method chosen. A convention is used for lookup join: the
first generator (G2) is the one traversed, the second (G1) is the table
where constants are looked up.
1> E1 = ets:new(e1, []),
E2 = ets:new(e2, []),
true = ets:insert(E1, [{1,a},{2,b}]),
true = ets:insert(E2, [{a,1},{b,2}]),
Q = qlc:q([{X,Z,W} ||
{X, Z} <- ets:table(E1),
{W, Y} <- ets:table(E2),
X =:= Y]),
io:format("~s~n", [qlc:info(Q)]).
begin
 V1 =
 qlc:q([
 P0 ||
 P0 = {W, Y} <-
 ets:table(#Ref<0.3098908599.2283929601.256549>)
]),
 V2 =
 qlc:q([
 [G1 | G2] ||
 G2 <- V1,
 G1 <-
 ets:table(#Ref<0.3098908599.2283929601.256548>),
 element(2, G1) =:= element(1, G2)
],
 [{join, lookup}]),
 qlc:q([
 {X, Z, W} ||
 [{X, Z} | {W, Y}] <- V2
])
end

 Link to this function

 keysort(KeyPos, QH1)

 View Source

 -spec keysort(KeyPos, QH1) -> QH2
 when KeyPos :: key_pos(), QH1 :: query_handle_or_list(), QH2 :: query_handle().

Equivalent to keysort(KeyPos, QH1, []).

 Link to this function

 keysort(KeyPos, QH1, SortOptions)

 View Source

 -spec keysort(KeyPos, QH1, SortOptions) -> QH2
 when
 KeyPos :: key_pos(),
 SortOptions :: sort_options(),
 QH1 :: query_handle_or_list(),
 QH2 :: query_handle().

Returns a query handle. When evaluating query handle QH2, the answers to query
handle QH1 are sorted by file_sorter:keysort/4 according to the options.
The sorter uses temporary files only if QH1 does not evaluate to a list and
the size of the binary representation of the answers exceeds Size bytes, where
Size is the value of option size.

 Link to this function

 next_answers(QueryCursor)

 View Source

 -spec next_answers(QueryCursor) -> Answers | Error
 when
 QueryCursor :: query_cursor(),
 Answers :: answers(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Equivalent to next_answers(C, 10).

 Link to this function

 next_answers(QueryCursor, NumberOfAnswers)

 View Source

 -spec next_answers(QueryCursor, NumberOfAnswers) -> Answers | Error
 when
 QueryCursor :: query_cursor(),
 Answers :: answers(),
 NumberOfAnswers :: all_remaining | pos_integer(),
 Error :: {error, module(), Reason},
 Reason :: file_sorter:reason().

Returns some or all of the remaining answers to a query cursor. Only the owner
of QueryCursor can retrieve answers.
Argument NumberOfAnswers determines the maximum number of answers
returned. If less than the requested number of answers is
returned, subsequent calls to next_answers return [].

 Link to this function

 q(QLC)

 View Source

 -spec q(QLC) -> QH when QLC :: query_list_comprehension(), QH :: query_handle().

Equivalent to q(QLC, []).

 Link to this function

 q(QLC, Options)

 View Source

 -spec q(QLC, Options) -> QH
 when
 QH :: query_handle(),
 Options :: [Option] | Option,
 Option ::
 {max_lookup, MaxLookup} |
 {cache, cache()} |
 cache |
 {join, Join} |
 {lookup, Lookup} |
 {unique, boolean()} |
 unique,
 MaxLookup :: non_neg_integer() | infinity,
 Join :: any | lookup | merge | nested_loop,
 Lookup :: boolean() | any,
 QLC :: query_list_comprehension().

Returns a query handle for a QLC. The QLC must be the first argument to this
function, otherwise it is evaluated as an ordinary list comprehension. It is
also necessary to add the following line to the source code:
-include_lib("stdlib/include/qlc.hrl").
This causes a parse transform to substitute a fun for the QLC. The (compiled)
fun is called when the query handle is evaluated.
When calling qlc:q/1,2 from the Erlang shell, the parse transform is
automatically called. When this occurs, the fun substituted for the QLC is not
compiled but is evaluated by erl_eval. This is also true when expressions
are evaluated by file:eval/1,2 or in the debugger.
To be explicit, this does not work:
...
A = [X || {X} <- [{1},{2}]],
QH = qlc:q(A),
...
Variable A is bound to the evaluated value of the list comprehension
([1,2]). The compiler complains with an error message ("argument is not a
query list comprehension"); the shell process stops with a badarg reason.
Options:
	Option {cache, ets} can be used to cache the answers to a QLC. The answers
are stored in one ETS table for each cached QLC. When a cached QLC is
evaluated again, answers are fetched from the table without any further
computations. Therefore, when all answers to a cached QLC have been found, the
ETS tables used for caching answers to the qualifiers of the QLC can be
emptied. Option cache is equivalent to {cache, ets}.

	Option {cache, list} can be used to cache the answers to a QLC like
{cache, ets}. The difference is that the answers are kept in a list (on the
process heap). If the answers would occupy more than a certain amount of RAM
memory, a temporary file is used for storing the answers. Option
max_list_size sets the limit in bytes and the temporary file is put on the
directory set by option tmpdir.
Option cache has no effect if it is known that the QLC is to be evaluated at
most once. This is always true for the top-most QLC and also for the list
expression of the first generator in a list of qualifiers. Notice that in the
presence of side effects in filters or callback functions, the answers to QLCs
can be affected by option cache.

	Option {unique, true} can be used to remove duplicate answers to a QLC. The
unique answers are stored in one ETS table for each QLC. The table is emptied
every time it is known that there are no more answers to the QLC. Option
unique is equivalent to {unique, true}. If option unique is combined
with option {cache, ets}, two ETS tables are used, but the full answers are
stored in one table only. If option unique is combined with option
{cache, list}, the answers are sorted twice using keysort/3; once to
remove duplicates and once to restore the order.

Options cache and unique apply not only to the QLC itself but also to the
results of looking up constants, running match specifications, and joining
handles.
Example:
In the following example the cached results of the merge join are traversed for
each value of A. Notice that without option cache the join would have been
carried out three times, once for each value of A.
1> Q = qlc:q([{A,X,Z,W} ||
A <- [a,b,c],
{X,Z} <- [{a,1},{b,4},{c,6}],
{W,Y} <- [{2,a},{3,b},{4,c}],
X =:= Y],
{cache, list}),
io:format("~s~n", [qlc:info(Q)]).
begin
 V1 =
 qlc:q([
 P0 ||
 P0 = {X, Z} <-
 qlc:keysort(1, [{a, 1}, {b, 4}, {c, 6}], [])
]),
 V2 =
 qlc:q([
 P0 ||
 P0 = {W, Y} <-
 qlc:keysort(2, [{2, a}, {3, b}, {4, c}], [])
]),
 V3 =
 qlc:q([
 [G1 | G2] ||
 G1 <- V1,
 G2 <- V2,
 element(1, G1) == element(2, G2)
],
 [{join, merge}, {cache, list}]),
 qlc:q([
 {A, X, Z, W} ||
 A <- [a, b, c],
 [{X, Z} | {W, Y}] <- V3,
 X =:= Y
])
end
sort/1,2 and keysort/2,3 can also be used for
caching answers and for removing duplicates. When sorting answers are cached in
a list, possibly stored on a temporary file, and no ETS tables are used.
Sometimes (see table/2) traversal of tables can be done by looking up key
values, which is assumed to be fast. Under certain (rare) circumstances there
can be too many key values to look up. Option
{max_lookup, MaxLookup} can then be used to limit the number of lookups: if
more than MaxLookup lookups would be required, no lookups are done but the
table is traversed instead. Defaults to infinity, which means that there is no
limit on the number of keys to look up.
Example:
In the following example, using the gb_table module from section
Implementing a QLC Table, there are six keys
to look up: {1,a}, {1,b}, {1,c}, {2,a}, {2,b}, and {2,c}. The reason
is that the two elements of key {X, Y} are compared separately.
1> T = gb_trees:empty(),
QH = qlc:q([X || {{X,Y},_} <- gb_table:table(T),
((X == 1) or (X == 2)) andalso
((Y == a) or (Y == b) or (Y == c))]),
io:format("~s~n", [qlc:info(QH)]).
ets:match_spec_run(
 lists:flatmap(fun(K) ->
 case
 gb_trees:lookup(K,
 gb_trees:from_orddict([]))
 of
 {value, V} ->
 [{K, V}];
 none ->
 []
 end
 end,
 [{1, a},
 {1, b},
 {1, c},
 {2, a},
 {2, b},
 {2, c}]),
 ets:match_spec_compile([{{{'$1', '$2'}, '_'},
 [],
 ['$1']}]))
Options:
	Option {lookup, true} can be used to ensure that the qlc module looks up
constants in some QLC table. If there are more than one QLC table among the
list expressions of the generators, constants must be looked up in at least
one of the tables. The evaluation of the query fails if there are no constants
to look up. This option is useful when it would be unacceptable to traverse
all objects in some table. Setting option lookup to false ensures that no
constants are looked up ({max_lookup, 0} has the same effect). Defaults to
any, which means that constants are looked up whenever possible.

	Option {join, Join} can be used to ensure that a certain join method is
used:
	{join, lookup} invokes the lookup join method.
	{join, merge} invokes the merge join method.
	{join, nested_loop} invokes the method of matching every pair of objects
from two handles. This method is mostly very slow.

The evaluation of the query fails if the qlc module cannot carry out the
chosen join method. Defaults to any, which means that some fast join method
is used if possible.

 Link to this function

 sort(QH1)

 View Source

 -spec sort(QH1) -> QH2 when QH1 :: query_handle_or_list(), QH2 :: query_handle().

Equivalent to sort(QH, []).

 Link to this function

 sort(QH1, SortOptions)

 View Source

 -spec sort(QH1, SortOptions) -> QH2
 when SortOptions :: sort_options(), QH1 :: query_handle_or_list(), QH2 :: query_handle().

Returns a query handle. When evaluating query handle QH2, the answers to query
handle QH1 are sorted by file_sorter:sort/3 according to the options.
The sorter uses temporary files only if QH1 does not evaluate to a list and
the size of the binary representation of the answers exceeds Size bytes, where
Size is the value of option size.

 Link to this function

 string_to_handle(QueryString)

 View Source

 -spec string_to_handle(QueryString) -> QH | Error
 when
 QueryString :: string(),
 QH :: query_handle(),
 Error :: {error, module(), Reason},
 Reason :: erl_parse:error_info() | erl_scan:error_info().

Equivalent to string_to_handle(QueryString, []).

 Link to this function

 string_to_handle(QueryString, Options)

 View Source

 -spec string_to_handle(QueryString, Options) -> QH | Error
 when
 QueryString :: string(),
 Options :: [Option] | Option,
 Option ::
 {max_lookup, MaxLookup} |
 {cache, cache()} |
 cache |
 {join, Join} |
 {lookup, Lookup} |
 {unique, boolean()} |
 unique,
 MaxLookup :: non_neg_integer() | infinity,
 Join :: any | lookup | merge | nested_loop,
 Lookup :: boolean() | any,
 QH :: query_handle(),
 Error :: {error, module(), Reason},
 Reason :: erl_parse:error_info() | erl_scan:error_info().

Equivalent to string_to_handle(QueryString, Options, erl_eval:new_bindings()).

 Link to this function

 string_to_handle(QueryString, Options, Bindings)

 View Source

 -spec string_to_handle(QueryString, Options, Bindings) -> QH | Error
 when
 QueryString :: string(),
 Options :: [Option] | Option,
 Option ::
 {max_lookup, MaxLookup} |
 {cache, cache()} |
 cache |
 {join, Join} |
 {lookup, Lookup} |
 {unique, boolean()} |
 unique,
 MaxLookup :: non_neg_integer() | infinity,
 Join :: any | lookup | merge | nested_loop,
 Lookup :: boolean() | any,
 Bindings :: erl_eval:binding_struct(),
 QH :: query_handle(),
 Error :: {error, module(), Reason},
 Reason :: erl_parse:error_info() | erl_scan:error_info().

A string version of q/1,2. When the query handle is evaluated, the
fun created by the parse transform is interpreted by erl_eval. The query
string is to be one single QLC terminated by a period.
Example:
1> L = [1,2,3],
Bs = erl_eval:add_binding('L', L, erl_eval:new_bindings()),
QH = qlc:string_to_handle("[X+1 || X <- L].", [], Bs),
qlc:eval(QH).
[2,3,4]
This function is probably mainly useful when called from outside of Erlang, for
example from a driver written in C.
Note
Query handles created this way may have worse performance than when created
directly via q/1,2.

 Link to this function

 table(TraverseFun, Options)

 View Source

 -spec table(TraverseFun, Options) -> QH
 when
 TraverseFun :: TraverseFun0 | TraverseFun1,
 TraverseFun0 :: fun(() -> TraverseResult),
 TraverseFun1 :: fun((match_expression()) -> TraverseResult),
 TraverseResult :: Objects | term(),
 Objects :: [] | [term() | ObjectList],
 ObjectList :: TraverseFun0 | Objects,
 Options :: [Option] | Option,
 Option ::
 {format_fun, FormatFun} |
 {info_fun, InfoFun} |
 {lookup_fun, LookupFun} |
 {parent_fun, ParentFun} |
 {post_fun, PostFun} |
 {pre_fun, PreFun} |
 {key_equality, KeyComparison},
 FormatFun :: undefined | fun((SelectedObjects) -> FormatedTable),
 SelectedObjects ::
 all |
 {all, NElements, DepthFun} |
 {match_spec, match_expression()} |
 {lookup, Position, Keys} |
 {lookup, Position, Keys, NElements, DepthFun},
 NElements :: infinity | pos_integer(),
 DepthFun :: fun((term()) -> term()),
 FormatedTable :: {Mod, Fun, Args} | abstract_expr() | string(),
 InfoFun :: undefined | fun((InfoTag) -> InfoValue),
 InfoTag :: indices | is_unique_objects | keypos | num_of_objects,
 InfoValue :: undefined | term(),
 LookupFun :: undefined | fun((Position, Keys) -> LookupResult),
 LookupResult :: [term()] | term(),
 ParentFun :: undefined | fun(() -> ParentFunValue),
 PostFun :: undefined | fun(() -> term()),
 PreFun :: undefined | fun((PreArgs) -> term()),
 PreArgs :: [PreArg],
 PreArg :: {parent_value, ParentFunValue} | {stop_fun, StopFun},
 ParentFunValue :: undefined | term(),
 StopFun :: undefined | fun(() -> term()),
 KeyComparison :: '=:=' | '==',
 Position :: pos_integer(),
 Keys :: [term()],
 Mod :: atom(),
 Fun :: atom(),
 Args :: [term()],
 QH :: query_handle().

Returns a query handle for a QLC table. In Erlang/OTP there is support for ETS,
Dets, and Mnesia tables, but many other data structures can be turned into QLC
tables. This is accomplished by letting function(s) in the module implementing
the data structure create a query handle by calling qlc:table/2.
The different ways to traverse the table and properties of the table are handled
by callback functions provided as options to qlc:table/2.
	Callback function TraverseFun is used for traversing the table. It is to
return a list of objects terminated by either [] or a nullary fun to be used
for traversing the not yet traversed objects of the table. Any other return
value is immediately returned as value of the query evaluation. Unary
TraverseFuns are to accept a match specification as argument. The match
specification is created by the parse transform by analyzing the pattern of
the generator calling qlc:table/2 and filters using variables introduced in
the pattern. If the parse transform cannot find a match specification
equivalent to the pattern and filters, TraverseFun is called with a match
specification returning every object.
	Modules that can use match specifications for optimized traversal of tables
are to call qlc:table/2 with an unary TraverseFun. An example is
ets:table/2.
	Other modules can provide a nullary TraverseFun. An example is
gb_table:table/1 in section
Implementing a QLC Table.

	Unary callback function PreFun is called once before the table is read for
the first time. If the call fails, the query evaluation fails.
Argument PreArgs is a list of tagged values. There are two tags,
parent_value and stop_fun, used by Mnesia for managing transactions.
	The value of parent_value is the value returned by ParentFun, or
undefined if there is no ParentFun. ParentFun is called once just
before the call of PreFun in the context of the process calling
eval/1,2, fold/3,4, or
cursor/1,2.
	The value of stop_fun is a nullary fun that deletes the cursor if called
from the parent, or undefined if there is no cursor.

	Nullary callback function PostFun is called once after the table was last
read. The return value, which is caught, is ignored. If PreFun has been
called for a table, PostFun is guaranteed to be called for that table, even
if the evaluation of the query fails for some reason.
The pre (post) functions for different tables are evaluated in unspecified
order.
Other table access than reading, such as calling InfoFun, is assumed to be
OK at any time.

	 Binary callback function LookupFun is used for looking
up objects in the table. The first argument Position is the key position or
an indexed position and the second argument Keys is a sorted list of unique
values. The return value is to be a list of all objects (tuples), such that
the element at Position is a member of Keys. Any other return value is
immediately returned as value of the query evaluation. LookupFun is called
instead of traversing the table if the parse transform at compile time can
determine that the filters match and compare the element at Position in such
a way that only Keys need to be looked up to find all potential answers.
The key position is obtained by calling InfoFun(keypos) and the indexed
positions by calling InfoFun(indices). If the key position can be used for
lookup, it is always chosen, otherwise the indexed position requiring the
least number of lookups is chosen. If there is a tie between two indexed
positions, the one occurring first in the list returned by InfoFun is
chosen. Positions requiring more than max_lookup lookups
are ignored.

	Unary callback function InfoFun is to return information about the table.
undefined is to be returned if the value of some tag is unknown:
	indices - Returns a list of indexed positions, a list of positive
integers.

	is_unique_objects - Returns true if the objects returned by
TraverseFun are unique.

	keypos - Returns the position of the table key, a positive integer.

	is_sorted_key - Returns true if the objects returned by
TraverseFun are sorted on the key.

	num_of_objects - Returns the number of objects in the table, a
non-negative integer.

	Unary callback function FormatFun is used by info/1,2 for
displaying the call that created the query handle of the table. Defaults to
undefined, which means that info/1,2 displays a call to '$MOD':'$FUN'/0.
It is up to FormatFun to present the selected objects of the table in a
suitable way. However, if a character list is chosen for presentation, it must
be an Erlang expression that can be scanned and parsed (a trailing dot is
added by info/1,2 though).
FormatFun is called with an argument that describes the selected objects
based on optimizations done as a result of analyzing the filters of the QLC
where the call to qlc:table/2 occurs. The argument can have the following
values:
	{lookup, Position, Keys, NElements, DepthFun}. - LookupFun is used
for looking up objects in the table.

	{match_spec, MatchExpression} - No way of finding all possible answers
by looking up keys was found, but the filters could be transformed into a
match specification. All answers are found by calling
TraverseFun(MatchExpression).

	{all, NElements, DepthFun} - No optimization was found. A match
specification matching all objects is used if TraverseFun is unary.
NElements is the value of the info/1,2 option n_elements.
DepthFun is a function that can be used for limiting the size of terms;
calling DepthFun(Term) substitutes '...' for parts of Term below the
depth specified by the info/1,2 option depth.
If calling FormatFun with an argument including NElements and DepthFun
fails, FormatFun is called once again with an argument excluding
NElements and DepthFun ({lookup, Position, Keys} or all).

	 The value of option key_equality is to be '=:=' if
the table considers two keys equal if they match, and to be '==' if two keys
are equal if they compare equal. Defaults to '=:='.

For the various options recognized by table/1,2 in respective module, see
ets, dets, and
mnesia.

 queue - stdlib v5.2.1

queue

Abstract data type for FIFO queues.
This module provides (double-ended) FIFO queues in an efficient manner.
All functions fail with reason badarg if arguments are of wrong type, for
example, queue arguments are not queues, indexes are not integers, and list
arguments are not lists. Improper lists cause internal crashes. An index out of
range for a queue also causes a failure with reason badarg.
Some functions, where noted, fail with reason empty for an empty queue.
The data representing a queue as used by this module is to be regarded as opaque
by other modules. In abstract terms, the representation is a composite type of
existing Erlang terms. See note on
data types. Any code assuming
knowledge of the format is running on thin ice.
All operations have an amortized O(1) running time, except all/2, any/2,
delete/2, delete_r/2, delete_with/2, delete_with_r/2, filter/2,
filtermap/2, fold/3, join/2, len/1, member/2, split/2 that have
O(n). To minimize the size of a queue minimizing the amount of garbage built by
queue operations, the queues do not contain explicit length information, and
that is why len/1 is O(n). If better performance for this
particular operation is essential, it is easy for the caller to keep track of
the length.
Queues are double-ended. The mental picture of a queue is a line of people
(items) waiting for their turn. The queue front is the end with the item that
has waited the longest. The queue rear is the end an item enters when it starts
to wait. If instead using the mental picture of a list, the front is called head
and the rear is called tail.
Entering at the front and exiting at the rear are reverse operations on the
queue.
This module has three sets of interface functions: the "Original API", the
"Extended API", and the "Okasaki API".
The "Original API" and the "Extended API" both use the mental picture of a
waiting line of items. Both have reverse operations suffixed "_r".
The "Original API" item removal functions return compound terms with both the
removed item and the resulting queue. The "Extended API" contains alternative
functions that build less garbage and functions for just inspecting the queue
ends. Also the "Okasaki API" functions build less garbage.
The "Okasaki API" is inspired by "Purely Functional Data Structures" by Chris
Okasaki. It regards queues as lists. This API is by many regarded as strange and
avoidable. For example, many reverse operations have lexically reversed names,
some with more readable but perhaps less understandable aliases.

 Summary

 Types

 queue()

 queue(Item)

 As returned by new/0.

 Original API

 all(Pred, Q)

 Returns true if Pred(Item) returns true for all items Item in Q,
otherwise false.

 any(Pred, Q)

 Returns true if Pred(Item) returns true for at least one item Item in
Q, otherwise false.

 delete(Item, Q1)

 Returns a copy of Q1 where the first item matching Item is deleted, if there
is such an item.

 delete_r(Item, Q1)

 Returns a copy of Q1 where the last item matching Item is deleted, if there
is such an item.

 delete_with(Pred, Q1)

 Returns a copy of Q1 where the first item for which Pred returns true is
deleted, if there is such an item.

 delete_with_r(Pred, Q1)

 Returns a copy of Q1 where the last item for which Pred returns true is
deleted, if there is such an item.

 filter(Fun, Q1)

 Returns a queue Q2 that is the result of calling Fun(Item) on all items in
Q1.

 filtermap(Fun, Q1)

 Returns a queue Q2 that is the result of calling Fun(Item) on all items in
Q1.

 fold(Fun, Acc0, Q)

 Calls Fun(Item, AccIn) on successive items Item of Queue, starting with
AccIn == Acc0. The queue is traversed in queue order, that is, from front to
rear. Fun/2 must return a new accumulator, which is passed to the next call.
The function returns the final value of the accumulator. Acc0 is returned if
the queue is empty.

 from_list(L)

 Returns a queue containing the items in L in the same order; the head item of
the list becomes the front item of the queue.

 in(Item, Q1)

 Inserts Item at the rear of queue Q1. Returns the resulting queue Q2.

 in_r(Item, Q1)

 Inserts Item at the front of queue Q1. Returns the resulting queue Q2.

 is_empty(Q)

 Tests if Q is empty and returns true if so, otherwise false.

 is_queue(Term)

 Tests if Term is a queue and returns true if so, otherwise false. Note
that the test will return true for a term coinciding with the representation
of a queue, even when not constructed by thus module. See also note on
data types.

 join(Q1, Q2)

 Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 in
front of Q2.

 len(Q)

 Calculates and returns the length of queue Q.

 member(Item, Q)

 Returns true if Item matches some element in Q, otherwise false.

 new()

 Returns an empty queue.

 out(Q1)

 Removes the item at the front of queue Q1. Returns tuple
{{value, Item}, Q2}, where Item is the item removed and Q2 is the
resulting queue. If Q1 is empty, tuple {empty, Q1} is returned.

 out_r(Q1)

 Removes the item at the rear of queue Q1. Returns tuple {{value, Item}, Q2},
where Item is the item removed and Q2 is the new queue. If Q1 is empty,
tuple {empty, Q1} is returned.

 reverse(Q1)

 Returns a queue Q2 containing the items of Q1 in the reverse order.

 split(N, Q1)

 Splits Q1 in two. The N front items are put in Q2 and the rest in Q3.

 to_list(Q)

 Returns a list of the items in the queue in the same order; the front item of
the queue becomes the head of the list.

 Extended API

 drop(Q1)

 Returns a queue Q2 that is the result of removing the front item from Q1.

 drop_r(Q1)

 Returns a queue Q2 that is the result of removing the rear item from Q1.

 get(Q)

 Returns Item at the front of queue Q.

 get_r(Q)

 Returns Item at the rear of queue Q.

 peek(Q)

 Returns tuple {value, Item}, where Item is the front item of Q, or empty
if Q is empty.

 peek_r(Q)

 Returns tuple {value, Item}, where Item is the rear item of Q, or empty
if Q is empty.

 Okasaki API

 cons(Item, Q1)

 Inserts Item at the head of queue Q1. Returns the new queue Q2.

 daeh(Q)

 Returns the tail item of queue Q.

 head(Q)

 Returns Item from the head of queue Q.

 init(Q1)

 Returns a queue Q2 that is the result of removing the tail item from Q1.

 lait(Q1)

 deprecated

 Returns a queue Q2 that is the result of removing the tail item from Q1.

 last(Q)

 Returns the tail item of queue Q.

 liat(Q1)

 Returns a queue Q2 that is the result of removing the tail item from Q1.

 snoc(Q1, Item)

 Inserts Item as the tail item of queue Q1. Returns the new queue Q2.

 tail(Q1)

 Returns a queue Q2 that is the result of removing the head item from Q1.

 Types

 Link to this type

 queue()

 View Source

 -type queue() :: queue(_).

 Link to this opaque

 queue(Item)

 View Source

 -opaque queue(Item)

As returned by new/0.

 Original API

 Link to this function

 all(Pred, Q)

 View Source

 (since OTP 24.0)

 -spec all(Pred, Q :: queue(Item)) -> boolean() when Pred :: fun((Item) -> boolean()).

Returns true if Pred(Item) returns true for all items Item in Q,
otherwise false.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
2> queue:all(fun (E) -> E > 3 end, Queue).
false
3> queue:all(fun (E) -> E > 0 end, Queue).
true

 Link to this function

 any(Pred, Q)

 View Source

 (since OTP 24.0)

 -spec any(Pred, Q :: queue(Item)) -> boolean() when Pred :: fun((Item) -> boolean()).

Returns true if Pred(Item) returns true for at least one item Item in
Q, otherwise false.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
2> queue:any(fun (E) -> E > 10 end, Queue).
false
3> queue:any(fun (E) -> E > 3 end, Queue).
true

 Link to this function

 delete(Item, Q1)

 View Source

 (since OTP 24.0)

 -spec delete(Item, Q1) -> Q2 when Item :: T, Q1 :: queue(T), Q2 :: queue(T), T :: term().

Returns a copy of Q1 where the first item matching Item is deleted, if there
is such an item.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
2> Queue1 = queue:delete(3, Queue).
3> queue:member(3, Queue1).
false

 Link to this function

 delete_r(Item, Q1)

 View Source

 (since OTP 24.0)

 -spec delete_r(Item, Q1) -> Q2 when Item :: T, Q1 :: queue(T), Q2 :: queue(T), T :: term().

Returns a copy of Q1 where the last item matching Item is deleted, if there
is such an item.
Example:
1> Queue = queue:from_list([1,2,3,4,3,5]).
2> Queue1 = queue:delete_r(3, Queue).
3> queue:to_list(Queue1).
[1,2,3,4,5]

 Link to this function

 delete_with(Pred, Q1)

 View Source

 (since OTP 24.0)

 -spec delete_with(Pred, Q1) -> Q2
 when
 Pred :: fun((Item) -> boolean()),
 Q1 :: queue(Item),
 Q2 :: queue(Item),
 Item :: term().

Returns a copy of Q1 where the first item for which Pred returns true is
deleted, if there is such an item.
Example:
1> Queue = queue:from_list([100,1,2,3,4,5]).
2> Queue1 = queue:delete_with(fun (E) -> E > 0, Queue).
3> queue:to_list(Queue1).
[1,2,3,4,5]

 Link to this function

 delete_with_r(Pred, Q1)

 View Source

 (since OTP 24.0)

 -spec delete_with_r(Pred, Q1) -> Q2
 when
 Pred :: fun((Item) -> boolean()),
 Q1 :: queue(Item),
 Q2 :: queue(Item),
 Item :: term().

Returns a copy of Q1 where the last item for which Pred returns true is
deleted, if there is such an item.
Example:
1> Queue = queue:from_list([1,2,3,4,5,100]).
2> Queue1 = queue:delete_with(fun (E) -> E > 10, Queue).
3> queue:to_list(Queue1).
[1,2,3,4,5]

 Link to this function

 filter(Fun, Q1)

 View Source

 -spec filter(Fun, Q1 :: queue(Item)) -> Q2 :: queue(Item) when Fun :: fun((Item) -> boolean() | [Item]).

Returns a queue Q2 that is the result of calling Fun(Item) on all items in
Q1.
If Fun(Item) returns true, Item is copied to the result queue. If it
returns false, Item is not copied. If it returns a list, the list elements
are inserted instead of Item in the result queue.
Example 1:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue1 = queue:filter(fun (E) -> E > 2 end, Queue).
{[5],[3,4]}
3> queue:to_list(Queue1).
[3,4,5]
So, Fun(Item) returning [Item] is thereby semantically equivalent to
returning true, just as returning [] is semantically equivalent to returning
false. But returning a list builds more garbage than returning an atom.
Example 2:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue1 = queue:filter(fun (E) -> [E, E+1] end, Queue).
{[6,5,5,4,4,3],[1,2,2,3]}
3> queue:to_list(Queue1).
[1,2,2,3,3,4,4,5,5,6]

 Link to this function

 filtermap(Fun, Q1)

 View Source

 (since OTP 24.0)

 -spec filtermap(Fun, Q1) -> Q2
 when
 Fun :: fun((Item) -> boolean() | {true, Value}),
 Q1 :: queue(Item),
 Q2 :: queue(Item | Value),
 Item :: term(),
 Value :: term().

Returns a queue Q2 that is the result of calling Fun(Item) on all items in
Q1.
If Fun(Item) returns true, Item is copied to the result queue. If it
returns false, Item is not copied. If it returns {true, NewItem}, the
queue element at this position is replaced with NewItem in the result queue.
Example 1:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue1 = queue:filtermap(fun (E) -> E > 2 end, Queue).
{[5],[3,4]}
3> queue:to_list(Queue1).
[3,4,5]
4> Queue1 = queue:filtermap(fun (E) -> {true, E+100} end, Queue).
{"ihg","ef"}
5> queue:to_list(Queue1).
"efghi

 Link to this function

 fold(Fun, Acc0, Q)

 View Source

 (since OTP 24.0)

 -spec fold(Fun, Acc0, Q :: queue(Item)) -> Acc1
 when
 Fun :: fun((Item, AccIn) -> AccOut),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term().

Calls Fun(Item, AccIn) on successive items Item of Queue, starting with
AccIn == Acc0. The queue is traversed in queue order, that is, from front to
rear. Fun/2 must return a new accumulator, which is passed to the next call.
The function returns the final value of the accumulator. Acc0 is returned if
the queue is empty.
Example:
1> queue:fold(fun(X, Sum) -> X + Sum end, 0, queue:from_list([1,2,3,4,5])).
15
2> queue:fold(fun(X, Prod) -> X * Prod end, 1, queue:from_list([1,2,3,4,5])).
120

 Link to this function

 from_list(L)

 View Source

 -spec from_list(L :: [Item]) -> queue(Item).

Returns a queue containing the items in L in the same order; the head item of
the list becomes the front item of the queue.

 Link to this function

 in(Item, Q1)

 View Source

 -spec in(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item).

Inserts Item at the rear of queue Q1. Returns the resulting queue Q2.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue1 = queue:in(100, Queue).
{[100,5,4,3],[1,2]}
3> queue:to_list(Queue1).
[1,2,3,4,5,100]

 Link to this function

 in_r(Item, Q1)

 View Source

 -spec in_r(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item).

Inserts Item at the front of queue Q1. Returns the resulting queue Q2.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue1 = queue:in_r(100, Queue).
{[5,4,3],[100,1,2]}
3> queue:to_list(Queue1).
[100,1,2,3,4,5]

 Link to this function

 is_empty(Q)

 View Source

 -spec is_empty(Q :: queue()) -> boolean().

Tests if Q is empty and returns true if so, otherwise false.

 Link to this function

 is_queue(Term)

 View Source

 -spec is_queue(Term :: term()) -> boolean().

Tests if Term is a queue and returns true if so, otherwise false. Note
that the test will return true for a term coinciding with the representation
of a queue, even when not constructed by thus module. See also note on
data types.

 Link to this function

 join(Q1, Q2)

 View Source

 -spec join(Q1 :: queue(Item), Q2 :: queue(Item)) -> Q3 :: queue(Item).

Returns a queue Q3 that is the result of joining Q1 and Q2 with Q1 in
front of Q2.
Example:
1> Queue1 = queue:from_list([1,3]).
{[3],[1]}
2> Queue2 = queue:from_list([2,4]).
{[4],[2]}
3> queue:to_list(queue:join(Queue1, Queue2)).
[1,3,2,4]

 Link to this function

 len(Q)

 View Source

 -spec len(Q :: queue()) -> non_neg_integer().

Calculates and returns the length of queue Q.

 Link to this function

 member(Item, Q)

 View Source

 -spec member(Item, Q :: queue(Item)) -> boolean().

Returns true if Item matches some element in Q, otherwise false.

 Link to this function

 new()

 View Source

 -spec new() -> queue(none()).

Returns an empty queue.

 Link to this function

 out(Q1)

 View Source

 -spec out(Q1 :: queue(Item)) -> {{value, Item}, Q2 :: queue(Item)} | {empty, Q1 :: queue(Item)}.

Removes the item at the front of queue Q1. Returns tuple
{{value, Item}, Q2}, where Item is the item removed and Q2 is the
resulting queue. If Q1 is empty, tuple {empty, Q1} is returned.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> {{value, 1=Item}, Queue1} = queue:out(Queue).
{{value,1},{[5,4,3],[2]}}
3> queue:to_list(Queue1).
[2,3,4,5]

 Link to this function

 out_r(Q1)

 View Source

 -spec out_r(Q1 :: queue(Item)) -> {{value, Item}, Q2 :: queue(Item)} | {empty, Q1 :: queue(Item)}.

Removes the item at the rear of queue Q1. Returns tuple {{value, Item}, Q2},
where Item is the item removed and Q2 is the new queue. If Q1 is empty,
tuple {empty, Q1} is returned.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> {{value, 5=Item}, Queue1} = queue:out_r(Queue).
{{value,5},{[4,3],[1,2]}}
3> queue:to_list(Queue1).
[1,2,3,4]

 Link to this function

 reverse(Q1)

 View Source

 -spec reverse(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 containing the items of Q1 in the reverse order.

 Link to this function

 split(N, Q1)

 View Source

 -spec split(N :: non_neg_integer(), Q1 :: queue(Item)) -> {Q2 :: queue(Item), Q3 :: queue(Item)}.

Splits Q1 in two. The N front items are put in Q2 and the rest in Q3.

 Link to this function

 to_list(Q)

 View Source

 -spec to_list(Q :: queue(Item)) -> [Item].

Returns a list of the items in the queue in the same order; the front item of
the queue becomes the head of the list.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> List == queue:to_list(Queue).
true

 Extended API

 Link to this function

 drop(Q1)

 View Source

 -spec drop(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the front item from Q1.
Fails with reason empty if Q1 is empty.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue = queue:drop(Queue).
{[5,4,3],[2]}
3> queue:to_list(Queue1).
[2,3,4,5]

 Link to this function

 drop_r(Q1)

 View Source

 -spec drop_r(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the rear item from Q1.
Fails with reason empty if Q1 is empty.
Example:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> Queue = queue:drop_r(Queue).
{[4,3],[1,2]}
3> queue:to_list(Queue1).
[1,2,3,4]

 Link to this function

 get(Q)

 View Source

 -spec get(Q :: queue(Item)) -> Item.

Returns Item at the front of queue Q.
Fails with reason empty if Q is empty.
Example 1:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> 1 == queue:get(Queue).
true

 Link to this function

 get_r(Q)

 View Source

 -spec get_r(Q :: queue(Item)) -> Item.

Returns Item at the rear of queue Q.
Fails with reason empty if Q is empty.
Example 1:
1> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
2> 5 == queue:get_r(Queue).
true

 Link to this function

 peek(Q)

 View Source

 -spec peek(Q :: queue(Item)) -> empty | {value, Item}.

Returns tuple {value, Item}, where Item is the front item of Q, or empty
if Q is empty.
Example 1:
1> queue:peek(queue:new()).
empty
2> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
3> queue:peek(Queue).
{value, 1}

 Link to this function

 peek_r(Q)

 View Source

 -spec peek_r(Q :: queue(Item)) -> empty | {value, Item}.

Returns tuple {value, Item}, where Item is the rear item of Q, or empty
if Q is empty.
Example 1:
1> queue:peek_r(queue:new()).
empty
2> Queue = queue:from_list([1,2,3,4,5]).
{[5,4,3],[1,2]}
3> queue:peek_r(Queue).
{value, 5}

 Okasaki API

 Link to this function

 cons(Item, Q1)

 View Source

 -spec cons(Item, Q1 :: queue(Item)) -> Q2 :: queue(Item).

Inserts Item at the head of queue Q1. Returns the new queue Q2.
Example:
1> Queue = queue:cons(0, queue:from_list([1,2,3])).
{[3,2],[0,1]}
2> queue:to_list(Queue).
[0,1,2,3]

 Link to this function

 daeh(Q)

 View Source

 -spec daeh(Q :: queue(Item)) -> Item.

Returns the tail item of queue Q.
Fails with reason empty if Q is empty.
Example 1:
1> queue:daeh(queue:from_list([1,2,3])).
3

 Link to this function

 head(Q)

 View Source

 -spec head(Q :: queue(Item)) -> Item.

Returns Item from the head of queue Q.
Fails with reason empty if Q is empty.
Example 1:
1> queue:head(queue:from_list([1,2,3])).
1

 Link to this function

 init(Q1)

 View Source

 -spec init(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the tail item from Q1.
Fails with reason empty if Q1 is empty.
Example:
1> Queue = queue:init(queue:from_list([1,2,3])).
{[2],[1]}
2> queue:to_list(Queue).
[1,2]

 Link to this function

 lait(Q1)

 View Source

 This function is deprecated. queue:lait/1 is deprecated; use queue:liat/1 instead.

 -spec lait(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the tail item from Q1.
Fails with reason empty if Q1 is empty.
The name lait/1 is a misspelling - do not use it anymore.

 Link to this function

 last(Q)

 View Source

 -spec last(Q :: queue(Item)) -> Item.

Returns the tail item of queue Q.
Fails with reason empty if Q is empty.
Example:
1> queue:last(queue:from_list([1,2,3])).
3

 Link to this function

 liat(Q1)

 View Source

 -spec liat(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the tail item from Q1.
Fails with reason empty if Q1 is empty.
Example:
1> Queue = queue:liat(queue:from_list([1,2,3])).
{[2],[1]}
2> queue:to_list(Queue).
[1,2]

 Link to this function

 snoc(Q1, Item)

 View Source

 -spec snoc(Q1 :: queue(Item), Item) -> Q2 :: queue(Item).

Inserts Item as the tail item of queue Q1. Returns the new queue Q2.
Example:
1> Queue = queue:snoc(queue:from_list([1,2,3]), 4).
{[4,3,2],[1]}
2> queue:to_list(Queue).
[1,2,3,4]

 Link to this function

 tail(Q1)

 View Source

 -spec tail(Q1 :: queue(Item)) -> Q2 :: queue(Item).

Returns a queue Q2 that is the result of removing the head item from Q1.
Fails with reason empty if Q1 is empty.

 sets - stdlib v5.2.1

sets

Sets are collections of elements with no duplicate elements.
The data representing a set as used by this module is to be regarded as opaque
by other modules. In abstract terms, the representation is a composite type of
existing Erlang terms. See note on
data types. Any code assuming
knowledge of the format is running on thin ice.
This module provides the same interface as the ordsets module but with an
undefined representation. One difference is that while this module considers two
elements as different if they do not match (=:=), ordsets considers two
elements as different if and only if they do not compare equal (==).
Erlang/OTP 24.0 introduced a new internal representation for sets which is more
performant. Developers can use this new representation by passing the
{version, 2} flag to new/1 and from_list/2, such as
sets:new([{version, 2}]). This new representation will become the default in
future Erlang/OTP versions. Functions that work on two sets, such as union/2
and similar, will work with sets of different versions. In such cases, there is
no guarantee about the version of the returned set. Explicit conversion from the
old version to the new one can be done with
sets:from_list(sets:to_list(Old), [{version,2}]).

 Compatibility

The following functions in this module also exist and provide the same
functionality in the gb_sets and ordsets modules. That is, by only
changing the module name for each call, you can try out different set
representations.
	add_element/2
	del_element/2
	filter/2
	filtermap/2
	fold/3
	from_list/1
	intersection/1
	intersection/2
	is_element/2
	is_empty/1
	is_equal/2
	is_set/1
	is_subset/2
	map/2
	new/0
	size/1
	subtract/2
	to_list/1
	union/1
	union/2

Note
While the three set implementations offer the same functionality with
respect to the aforementioned functions, their overall behavior may differ.
As mentioned, this module considers elements as different if and only if they
do not match (=:=), while both ordsets and gb_sets consider elements
as different if and only if they do not compare equal (==).
Example:
1> sets:is_element(1.0, sets:from_list([1])).
false
2> ordsets:is_element(1.0, ordsets:from_list([1])).
true
2> gb_sets:is_element(1.0, gb_sets:from_list([1])).
true

 See Also

gb_sets, ordsets

 Summary

 Types

 set()

 set(Element)

 As returned by new/0.

 Functions

 add_element(Element, Set1)

 Returns a new set formed from Set1 with Element inserted.

 del_element(Element, Set1)

 Returns Set1, but with Element removed.

 filter(Pred, Set1)

 Filters elements in Set1 with boolean function Pred.

 filtermap(Fun, Set1)

 Filters and maps elements in Set1 with function Fun.

 fold(Function, Acc0, Set)

 Folds Function over every element in Set and returns the final value of the
accumulator. The evaluation order is undefined.

 from_list(List)

 Returns a set of the elements in List.

 from_list/2

 Returns a set of the elements in List at the given version.

 intersection(SetList)

 Returns the intersection of the non-empty list of sets.

 intersection(Set1, Set2)

 Returns the intersection of Set1 and Set2.

 is_disjoint(Set1, Set2)

 Returns true if Set1 and Set2 are disjoint (have no elements in common),
otherwise false.

 is_element(Element, Set)

 Returns true if Element is an element of Set, otherwise false.

 is_empty(Set)

 Returns true if Set is an empty set, otherwise false.

 is_equal(Set1, Set2)

 Returns true if Set1 and Set2 are equal, that is when every element of one
set is also a member of the respective other set, otherwise false.

 is_set(Set)

 Returns true if Set appears to be a set of elements, otherwise false.

 is_subset(Set1, Set2)

 Returns true when every element of Set1 is also a member of Set2,
otherwise false.

 map(Fun, Set1)

 Maps elements in Set1 with mapping function Fun.

 new()

 Returns a new empty set.

 new/1

 Returns a new empty set at the given version.

 size(Set)

 Returns the number of elements in Set.

 subtract(Set1, Set2)

 Returns only the elements of Set1 that are not also elements of Set2.

 to_list(Set)

 Returns the elements of Set as a list. The order of the returned elements is
undefined.

 union(SetList)

 Returns the merged (union) set of the list of sets.

 union(Set1, Set2)

 Returns the merged (union) set of Set1 and Set2.

 Types

 Link to this type

 set()

 View Source

 -type set() :: set(_).

 Link to this opaque

 set(Element)

 View Source

 -opaque set(Element)

As returned by new/0.

 Functions

 Link to this function

 add_element(Element, Set1)

 View Source

 -spec add_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element inserted.

 Link to this function

 del_element(Element, Set1)

 View Source

 -spec del_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns Set1, but with Element removed.

 Link to this function

 filter(Pred, Set1)

 View Source

 -spec filter(Pred, Set1) -> Set2
 when Pred :: fun((Element) -> boolean()), Set1 :: set(Element), Set2 :: set(Element).

Filters elements in Set1 with boolean function Pred.

 Link to this function

 filtermap(Fun, Set1)

 View Source

 (since OTP @OTP-18622@)

 -spec filtermap(Fun, Set1) -> Set2
 when
 Fun :: fun((Element1) -> boolean() | {true, Element2}),
 Set1 :: set(Element1),
 Set2 :: set(Element1 | Element2).

Filters and maps elements in Set1 with function Fun.

 Link to this function

 fold(Function, Acc0, Set)

 View Source

 -spec fold(Function, Acc0, Set) -> Acc1
 when
 Function :: fun((Element, AccIn) -> AccOut),
 Set :: set(Element),
 Acc0 :: Acc,
 Acc1 :: Acc,
 AccIn :: Acc,
 AccOut :: Acc.

Folds Function over every element in Set and returns the final value of the
accumulator. The evaluation order is undefined.

 Link to this function

 from_list(List)

 View Source

 -spec from_list(List) -> Set when List :: [Element], Set :: set(Element).

Returns a set of the elements in List.

 Link to this function

 from_list/2

 View Source

 (since OTP 24.0)

 -spec from_list(List, [{version, 1..2}]) -> Set when List :: [Element], Set :: set(Element).

Returns a set of the elements in List at the given version.

 Link to this function

 intersection(SetList)

 View Source

 -spec intersection(SetList) -> Set when SetList :: [set(Element), ...], Set :: set(Element).

Returns the intersection of the non-empty list of sets.

 Link to this function

 intersection(Set1, Set2)

 View Source

 -spec intersection(Set1, Set2) -> Set3
 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the intersection of Set1 and Set2.

 Link to this function

 is_disjoint(Set1, Set2)

 View Source

 -spec is_disjoint(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true if Set1 and Set2 are disjoint (have no elements in common),
otherwise false.

 Link to this function

 is_element(Element, Set)

 View Source

 -spec is_element(Element, Set) -> boolean() when Set :: set(Element).

Returns true if Element is an element of Set, otherwise false.

 Link to this function

 is_empty(Set)

 View Source

 (since OTP 21.0)

 -spec is_empty(Set) -> boolean() when Set :: set().

Returns true if Set is an empty set, otherwise false.

 Link to this function

 is_equal(Set1, Set2)

 View Source

 (since OTP @OTP-18622@)

 -spec is_equal(Set1, Set2) -> boolean() when Set1 :: set(), Set2 :: set().

Returns true if Set1 and Set2 are equal, that is when every element of one
set is also a member of the respective other set, otherwise false.

 Link to this function

 is_set(Set)

 View Source

 -spec is_set(Set) -> boolean() when Set :: term().

Returns true if Set appears to be a set of elements, otherwise false.
Note that the test is shallow and will return true for any term that coincides with
the possible representations of a set. See also note on data types.

 Link to this function

 is_subset(Set1, Set2)

 View Source

 -spec is_subset(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true when every element of Set1 is also a member of Set2,
otherwise false.

 Link to this function

 map(Fun, Set1)

 View Source

 (since OTP @OTP-18622@)

 -spec map(Fun, Set1) -> Set2
 when Fun :: fun((Element1) -> Element2), Set1 :: set(Element1), Set2 :: set(Element2).

Maps elements in Set1 with mapping function Fun.

 Link to this function

 new()

 View Source

 -spec new() -> set(none()).

Returns a new empty set.

 Link to this function

 new/1

 View Source

 (since OTP 24.0)

 -spec new([{version, 1..2}]) -> set(none()).

Returns a new empty set at the given version.

 Link to this function

 size(Set)

 View Source

 -spec size(Set) -> non_neg_integer() when Set :: set().

Returns the number of elements in Set.

 Link to this function

 subtract(Set1, Set2)

 View Source

 -spec subtract(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns only the elements of Set1 that are not also elements of Set2.

 Link to this function

 to_list(Set)

 View Source

 -spec to_list(Set) -> List when Set :: set(Element), List :: [Element].

Returns the elements of Set as a list. The order of the returned elements is
undefined.

 Link to this function

 union(SetList)

 View Source

 -spec union(SetList) -> Set when SetList :: [set(Element)], Set :: set(Element).

Returns the merged (union) set of the list of sets.

 Link to this function

 union(Set1, Set2)

 View Source

 -spec union(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the merged (union) set of Set1 and Set2.

 sofs - stdlib v5.2.1

sofs

Functions for manipulating sets of sets.
This module provides operations on finite sets and relations represented as
sets. Intuitively, a set is a collection of elements; every element belongs to
the set, and the set contains every element.
The data representing sofs as used by this module is to be regarded as opaque
by other modules. In abstract terms, the representation is a composite type of
existing Erlang terms. See note on
data types. Any code assuming
knowledge of the format is running on thin ice.
Given a set A and a sentence S(x), where x is a free variable, a new set B whose
elements are exactly those elements of A for which S(x) holds can be formed,
this is denoted B = {x in A : S(x)}. Sentences are expressed using the logical
operators "for some" (or "there exists"), "for all", "and", "or", "not". If the
existence of a set containing all the specified elements is known (as is always
the case in this module), this is denoted B = {x : S(x)}.
	The unordered set containing the elements a, b, and c is denoted
{a, b, c}. This notation is not to be confused with tuples.
The ordered pair of a and b, with first coordinate a and second coordinate
b, is denoted (a, b). An ordered pair is an ordered set of two elements. In
this module, ordered sets can contain one, two, or more elements, and
parentheses are used to enclose the elements.
Unordered sets and ordered sets are orthogonal, again in this module; there is
no unordered set equal to any ordered set.

	The empty set contains no elements.
Set A is equal to set B if they contain the same elements, which
is denoted A = B. Two ordered sets are equal if they contain the same number
of elements and have equal elements at each coordinate.
Set B is a subset of set A if A contains all elements that B
contains.
The union of two sets A and B is the smallest set that contains
all elements of A and all elements of B.
The intersection of two sets A and B is the set that
contains all elements of A that belong to B.
Two sets are disjoint if their intersection is the empty set.
The difference of two sets A and B is the set that contains
all elements of A that do not belong to B.
The symmetric difference of two sets is the set
that contains those element that belong to either of the two sets, but not
both.
The union of a collection of sets is the smallest set that
contains all the elements that belong to at least one set of the collection.
The intersection of a non-empty collection of sets is
the set that contains all elements that belong to every set of the collection.

	The Cartesian product of two sets X and Y, denoted
X × Y, is the set {a : a = (x, y) for some x in X and for some y in Y}.
A relation is a subset of X × Y. Let R be a relation. The fact
that (x, y) belongs to R is written as x R y. As relations are sets, the
definitions of the last item (subset, union, and so on) apply to relations as
well.
The domain of R is the set {x : x R y for some y in Y}.
The range of R is the set {y : x R y for some x in X}.
The converse of R is the set {a : a = (y, x) for some
(x, y) in R}.
If A is a subset of X, the image of A under R is the set {y :
x R y for some x in A}. If B is a subset of Y, the inverse image of B is the set {x : x R y for some y in B}.
If R is a relation from X to Y, and S is a relation from Y to Z, the relative
product of R and S is the relation T from X to Z
defined so that x T z if and only if there exists an element y in Y such that
x R y and y S z.
The restriction of R to A is the set S defined so that
x S y if and only if there exists an element x in A such that x R y.
If S is a restriction of R to A, then R is an extension of S
to X.
If X = Y, then R is called a relation in X.
The field of a relation R in X is the union of the domain of R
and the range of R.
If R is a relation in X, and if S is defined so that x S y if x R y and not
x = y, then S is the strict relation corresponding to
R. Conversely, if S is a relation in X, and if R is defined so that x R y if
x S y or x = y, then R is the weak relation corresponding
to S.
A relation R in X is reflexive if x R x for every element x of X, it is
symmetric if x R y implies that y R x, and it is transitive if x R y and
y R z imply that x R z.

	A function F is a relation, a subset of X × Y, such that the
domain of F is equal to X and such that for every x in X there is a unique
element y in Y with (x, y) in F. The latter condition can be formulated as
follows: if x F y and x F z, then y = z. In this module, it is not required
that the domain of F is equal to X for a relation to be considered a function.
Instead of writing (x, y) in F or x F y, we write F(x) = y when F is a
function, and say that F maps x onto y, or that the value of F at x is y.
As functions are relations, the definitions of the last item (domain, range,
and so on) apply to functions as well.
If the converse of a function F is a function F', then F' is called the
inverse of F.
The relative product of two functions F1 and F2 is called the composite of F1 and F2 if the range of F1 is a subset of the domain of F2.

	Sometimes, when the range of a function is more important than the function
itself, the function is called a family.
The domain of a family is called the index set, and the range is called the
indexed set.
If x is a family from I to X, then x[i] denotes the value of the function at
index i. The notation "a family in X" is used for such a family.
When the indexed set is a set of subsets of a set X, we call x a family of
subsets of X.
If x is a family of subsets of X, the union of the range of x is called the
union of the family x.
If x is non-empty (the index set is non-empty), the intersection of the
family x is the intersection of the range of x.
In this module, the only families that are considered are families of subsets
of some set X; in the following, the word "family" is used for such families
of subsets.

	A partition of a set X is a collection S of non-empty subsets
of X whose union is X and whose elements are pairwise disjoint.
A relation in a set is an equivalence relation if it is reflexive,
symmetric, and transitive.
If R is an equivalence relation in X, and x is an element of X, the
equivalence class of x with respect to R is the set
of all those elements y of X for which x R y holds. The equivalence classes
constitute a partitioning of X. Conversely, if C is a partition of X, the
relation that holds for any two elements of X if they belong to the same
equivalence class, is an equivalence relation induced by the partition C.
If R is an equivalence relation in X, the canonical map
is the function that maps every element of X onto its equivalence class.

	 Relations as defined above (as sets of ordered
pairs) are from now on referred to as binary relations.
We call a set of ordered sets (x[1], ..., x[n]) an (n-ary) relation, and say that the relation is a subset of the Cartesian product X[1] × ... × X[n], where x[i]
is an element of X[i], 1 <= i <= n.
The projection of an n-ary relation R onto coordinate i is
the set {x[i] : (x[1], ..., x[i], ..., x[n]) in R for some
x[j] in X[j], 1 <= j <= n and not i = j}. The projections of a binary
relation R onto the first and second coordinates are the domain and the range
of R, respectively.
The relative product of binary relations can be generalized to n-ary relations
as follows. Let TR be an ordered set (R[1], ..., R[n]) of binary relations
from X to Y[i] and S a binary relation from (Y[1] × ... × Y[n]) to Z. The
relative product of TR and S is the binary
relation T from X to Z defined so that x T z if and only if there exists an
element y[i] in Y[i] for each 1 <= i <= n such that x R[i] y[i] and
(y[1], ..., y[n]) S z. Now let TR be a an ordered set (R[1], ..., R[n]) of
binary relations from X[i] to Y[i] and S a subset of X[1] × ... × X[n].
The multiple relative product of TR and S is
defined to be the set {z : z = ((x[1], ..., x[n]), (y[1],...,y[n])) for
some (x[1], ..., x[n]) in S and for some (x[i], y[i]) in R[i],
1 <= i <= n}.
The natural join of an n-ary relation R and an m-ary
relation S on coordinate i and j is defined to be the set {z : z =
(x[1], ..., x[n], y[1], ..., y[j-1], y[j+1], ..., y[m]) for some
(x[1], ..., x[n]) in R and for some (y[1], ..., y[m]) in S such that
x[i] = y[j]}.

	 The sets recognized by this module are represented
by elements of the relation Sets, which is defined as the smallest set such
that:
	For every atom T, except '_', and for every term X, (T, X) belongs to Sets
(atomic sets).
	(['_'], []) belongs to Sets (the untyped empty set).
	For every tuple T = {T[1], ..., T[n]} and for every tuple X =
{X[1], ..., X[n]}, if (T[i], X[i]) belongs to Sets for every
1 <= i <= n, then (T, X) belongs to Sets (ordered sets).
	For every term T, if X is the empty list or a non-empty sorted list
[X[1], ..., X[n]] without duplicates such that (T, X[i]) belongs to Sets
for every 1 <= i <= n, then ([T], X) belongs to Sets (typed unordered
sets).

An external set is an element of the range of Sets.
A type is an element of the domain of Sets.
If S is an element (T, X) of Sets, then T is a valid type of
X, T is the type of S, and X is the external set of S. from_term/2 creates a
set from a type and an Erlang term turned into an external set.
The sets represented by Sets are the elements of the range of function Set
from Sets to Erlang terms and sets of Erlang terms:
	Set(T,Term) = Term, where T is an atom
	Set({T[1], ..., T[n]}, {X[1], ..., X[n]}) =
(Set(T[1], X[1]), ..., Set(T[n], X[n]))
	Set([T], [X[1], ..., X[n]]) = {Set(T, X[1]), ..., Set(T, X[n])}
	Set([T], []) = {}

When there is no risk of confusion, elements of Sets are identified with the
sets they represent. For example, if U is the result of calling union/2 with
S1 and S2 as arguments, then U is said to be the union of S1 and S2. A more
precise formulation is that Set(U) is the union of Set(S1) and Set(S2).

The types are used to implement the various conditions that sets must fulfill.
As an example, consider the relative product of two sets R and S, and recall
that the relative product of R and S is defined if R is a binary relation to Y
and S is a binary relation from Y. The function that implements the relative
product, relative_product/2, checks that the arguments represent binary
relations by matching [{A,B}] against the type of the first argument (Arg1
say), and [{C,D}] against the type of the second argument (Arg2 say). The
fact that [{A,B}] matches the type of Arg1 is to be interpreted as Arg1
representing a binary relation from X to Y, where X is defined as all sets
Set(x) for some element x in Sets the type of which is A, and similarly for Y.
In the same way Arg2 is interpreted as representing a binary relation from W to
Z. Finally it is checked that B matches C, which is sufficient to ensure that W
is equal to Y. The untyped empty set is handled separately: its type, ['_'],
matches the type of any unordered set.
A few functions of this module (drestriction/3, family_projection/2,
partition/2, partition_family/2, projection/2, restriction/3,
substitution/2) accept an Erlang function as a means to modify each element of
a given unordered set. Such a function, called SetFun in the
following, can be specified as a functional object (fun), a tuple
{external, Fun}, or an integer:
	If SetFun is specified as a fun, the fun is applied to each element of the
given set and the return value is assumed to be a set.
	If SetFun is specified as a tuple {external, Fun}, Fun is applied to the
external set of each element of the given set and the return value is assumed
to be an external set. Selecting the elements of an unordered set as external
sets and assembling a new unordered set from a list of external sets is in the
present implementation more efficient than modifying each element as a set.
However, this optimization can only be used when the elements of the unordered
set are atomic or ordered sets. It must also be the case that the type of the
elements matches some clause of Fun (the type of the created set is the result
of applying Fun to the type of the given set), and that Fun does nothing but
selecting, duplicating, or rearranging parts of the elements.
	Specifying a SetFun as an integer I is equivalent to specifying
{external, fun(X) -> element(I, X) end}, but is to be preferred, as it makes
it possible to handle this case even more efficiently.

Examples of SetFuns:
fun sofs:union/1
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({_,{_,C}}) -> C end}
{external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end}
2
The order in which a SetFun is applied to the elements of an unordered set is
not specified, and can change in future versions of this module.
The execution time of the functions of this module is dominated by the time it
takes to sort lists. When no sorting is needed, the execution time is in the
worst case proportional to the sum of the sizes of the input arguments and the
returned value. A few functions execute in constant time: from_external/2,
is_empty_set/1, is_set/1, is_sofs_set/1, to_external/1 type/1.
The functions of this module exit the process with a badarg, bad_function,
or type_mismatch message when given badly formed arguments or sets the types
of which are not compatible.
When comparing external sets, operator ==/2 is used.

 See Also

dict, digraph, orddict, ordsets, sets

 Summary

 Types

 a_function()

 A function.

 a_set()

 An unordered set.

 anyset()

 Any kind of set (also included are the atomic sets).

 binary_relation()

 A binary relation.

 external_set()

 An external set.

 family()

 A family (of subsets).

 ordset()

 An ordered set.

 relation()

 An n-ary relation.

 set_fun()

 A SetFun.

 set_of_sets()

 An unordered set of unordered sets.

 spec_fun()

 tuple_of(T)

 A tuple where the elements are of type T.

 type()

 A type.

 Functions

 a_function(Tuples)

 Equivalent to a_function(Tuples, [{atom, atom}]).

 a_function(Tuples, Type)

 Creates a function.

 canonical_relation(SetOfSets)

 Returns the binary relation containing the elements (E, Set) such that Set
belongs to SetOfSets and E belongs to Set.

 composite(Function1, Function2)

 Returns the composite of the functions Function1 and
Function2.

 constant_function(Set, AnySet)

 Creates the function that maps each element of set Set
onto AnySet.

 converse(BinRel1)

 Returns the converse of the binary relation BinRel1.

 difference(Set1, Set2)

 Returns the difference of the sets Set1 and Set2.

 digraph_to_family(Graph)

 Equivalent to digraph_to_family(Graph, [{atom, [atom]}]).

 digraph_to_family(Graph, Type)

 Creates a family from the directed graph Graph. Each vertex
a of Graph is represented by a pair (a, {b[1], ..., b[n]}), where the
b[i]:s are the out-neighbors of a. It is assumed that Type is
a valid type of the external set of the family.

 domain(BinRel)

 Returns the domain of the binary relation BinRel.

 drestriction(BinRel1, Set)

 Returns the difference between the binary relation BinRel1 and the
restriction of BinRel1 to Set.

 drestriction(SetFun, Set1, Set2)

 Returns a subset of Set1 containing those elements that do not give an element
in Set2 as the result of applying SetFun.

 empty_set()

 Returns the untyped empty set. empty_set/0 is
equivalent to from_term([], ['_']).

 extension(BinRel1, Set, AnySet)

 Returns the extension of BinRel1 such that for each
element E in Set that does not belong to the domain of
BinRel1, BinRel2 contains the pair (E, AnySet).

 family(Tuples)

 Equivalent to family(Tuples, [{atom, [atom]}]).

 family(Tuples, Type)

 Creates a family of subsets. family(F, T) is
equivalent to from_term(F, T) if the result is a family.

 family_difference(Family1, Family2)

 If Family1 and Family2 are families, then Family3 is
the family such that the index set is equal to the index set of Family1, and
Family3[i] is the difference between Family1[i] and Family2[i] if
Family2 maps i, otherwise Family1[i].

 family_domain(Family1)

 If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
domain of Family1[i].

 family_field(Family1)

 If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
field of Family1[i].

 family_intersection(Family1)

 If Family1 is a family and Family1[i] is a set of sets
for every i in the index set of Family1, then Family2 is the family with the
same index set as Family1 such that Family2[i] is the
intersection of Family1[i].

 family_intersection(Family1, Family2)

 If Family1 and Family2 are families, then Family3 is
the family such that the index set is the intersection of Family1:s and
Family2:s index sets, and Family3[i] is the intersection of Family1[i]
and Family2[i].

 family_projection(SetFun, Family1)

 If Family1 is a family, then Family2 is the family with
the same index set as Family1 such that Family2[i] is the result of calling
SetFun with Family1[i] as argument.

 family_range(Family1)

 If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
range of Family1[i].

 family_specification(Fun, Family1)

 If Family1 is a family, then Family2 is the
restriction of Family1 to those elements i of the
index set for which Fun applied to Family1[i] returns true. If Fun is a
tuple {external, Fun2}, then Fun2 is applied to the
external set of Family1[i], otherwise Fun is
applied to Family1[i].

 family_to_digraph(Family)

 Equivalent to family_to_digraph(Family, []).

 family_to_digraph(Family, GraphType)

 Creates a directed graph from family Family. For each pair
(a, {b[1], ..., b[n]}) of Family, vertex a and the edges (a, b[i]) for
1 <= i <= n are added to a newly created directed graph.

 family_to_relation(Family)

 If Family is a family, then BinRel is the binary relation
containing all pairs (i, x) such that i belongs to the index set of Family and
x belongs to Family[i].

 family_union(Family1)

 If Family1 is a family and Family1[i] is a set of sets
for each i in the index set of Family1, then Family2 is the family with the
same index set as Family1 such that Family2[i] is the
union of Family1[i].

 family_union(Family1, Family2)

 If Family1 and Family2 are families, then Family3 is
the family such that the index set is the union of Family1:s and Family2:s
index sets, and Family3[i] is the union of Family1[i] and Family2[i] if
both map i, otherwise Family1[i] or Family2[i].

 field(BinRel)

 Returns the field of the binary relation BinRel.

 from_external(ExternalSet, Type)

 Creates a set from the external set ExternalSet and
the type Type. It is assumed that Type is a
valid type of ExternalSet.

 from_sets/1

 Returns the unordered set containing the sets of
list ListOfSets.

 from_term(Term)

 Equivalent to from_term(Term, '_').

 from_term(Term, Type)

 Creates an element of Sets by
traversing term Term, sorting lists, removing duplicates, and deriving or
verifying a valid type for the so obtained external set.

 image(BinRel, Set1)

 Returns the image of set Set1 under the binary relation
BinRel.

 intersection(SetOfSets)

 Returns the intersection of the set of sets
SetOfSets.

 intersection(Set1, Set2)

 Returns the intersection of Set1 and Set2.

 intersection_of_family(Family)

 Returns the intersection of family Family.

 inverse(Function1)

 Returns the inverse of function Function1.

 inverse_image(BinRel, Set1)

 Returns the inverse image of Set1 under the binary
relation BinRel.

 is_a_function(BinRel)

 Returns true if the binary relation BinRel is a
function or the untyped empty set, otherwise false.

 is_disjoint(Set1, Set2)

 Returns true if Set1 and Set2 are disjoint, otherwise
false.

 is_empty_set(AnySet)

 Returns true if AnySet is an empty unordered set, otherwise false.

 is_equal(AnySet1, AnySet2)

 Returns true if AnySet1 and AnySet2 are equal, otherwise
false. The following example shows that ==/2 is used when comparing sets for
equality

 is_set(AnySet)

 Returns true if AnySet appears to be an
unordered set, and false if AnySet is an ordered
set or an atomic set or any other term.

 is_sofs_set(Term)

 Returns true if Term appears to be an
unordered set, an ordered set, or an atomic set,
otherwise false.

 is_subset(Set1, Set2)

 Returns true if Set1 is a subset of Set2, otherwise
false.

 is_type(Term)

 Returns true if term Term is a type.

 join(Relation1, I, Relation2, J)

 Returns the natural join of the relations Relation1
and Relation2 on coordinates I and J.

 multiple_relative_product(TupleOfBinRels, BinRel1)

 If TupleOfBinRels is a non-empty tuple {R[1], ..., R[n]} of binary
relations and BinRel1 is a binary relation, then BinRel2 is the
multiple relative product of the ordered
set (R[i], ..., R[n]) and BinRel1.

 no_elements(ASet)

 Returns the number of elements of the ordered or unordered set ASet.

 partition(SetOfSets)

 Returns the partition of the union of the set of sets
SetOfSets such that two elements are considered equal if they belong to the
same elements of SetOfSets.

 partition(SetFun, Set)

 Returns the partition of Set such that two elements are
considered equal if the results of applying SetFun are equal.

 partition(SetFun, Set1, Set2)

 Returns a pair of sets that, regarded as constituting a set, forms a
partition of Set1. If the result of applying SetFun to
an element of Set1 gives an element in Set2, the element belongs to Set3,
otherwise the element belongs to Set4.

 partition_family(SetFun, Set)

 Returns family Family where the indexed set is a
partition of Set such that two elements are considered
equal if the results of applying SetFun are the same value i. This i is the
index that Family maps onto the
equivalence class.

 product(TupleOfSets)

 Returns the Cartesian product of the
non-empty tuple of sets TupleOfSets. If (x[1], ..., x[n]) is an element of
the n-ary relation Relation, then x[i] is drawn from element i of
TupleOfSets.

 product(Set1, Set2)

 Returns the Cartesian product of Set1 and
Set2.

 projection(SetFun, Set1)

 Returns the set created by substituting each element of Set1 by the result of
applying SetFun to the element.

 range(BinRel)

 Returns the range of the binary relation BinRel.

 relation(Tuples)

 Equivalent to relation(Tuples, Type) where Type is the size
of the first tuple of Tuples is used if there is such a tuple.

 relation(Tuples, Type)

 Creates a relation. relation(R, T) is
equivalent to from_term(R, T), if T is a
type and the result is a relation.

 relation_to_family(BinRel)

 Returns family Family such that the index set is equal to
the domain of the binary relation BinRel, and Family[i]
is the image of the set of i under BinRel.

 relative_product1(BinRel1, BinRel2)

 Returns the relative product of the
converse of the binary relation BinRel1 and the binary
relation BinRel2.

 relative_product(ListOfBinRels)

 Equivalent to relative_product/2.

 relative_product/2

 If ListOfBinRels is a non-empty list [R[1], ..., R[n]] of binary relations
and BinRel1 is a binary relation, then BinRel2 is the
relative product of the ordered set
(R[i], ..., R[n]) and BinRel1.

 restriction(BinRel1, Set)

 Returns the restriction of the binary relation BinRel1
to Set.

 restriction(SetFun, Set1, Set2)

 Returns a subset of Set1 containing those elements that gives an element in
Set2 as the result of applying SetFun.

 set(Terms)

 Equivalent to set(Terms, [atom]).

 set(Terms, Type)

 Creates an unordered set. set(L, T) is
equivalent to from_term(L, T), if the result is an unordered
set.

 specification(Fun, Set1)

 Returns the set containing every element of Set1 for which Fun returns
true. If Fun is a tuple {external, Fun2}, Fun2 is applied to the
external set of each element, otherwise Fun is
applied to each element.

 strict_relation(BinRel1)

 Returns the strict relation corresponding to the
binary relation BinRel1.

 substitution(SetFun, Set1)

 Returns a function, the domain of which is Set1. The value of an element of
the domain is the result of applying SetFun to the element.

 symdiff(Set1, Set2)

 Returns the symmetric difference (or the
Boolean sum) of Set1 and Set2.

 symmetric_partition(Set1, Set2)

 Returns a triple of sets

 to_external(AnySet)

 Returns the external set of an atomic, ordered, or
unordered set.

 to_sets(ASet)

 Returns the elements of the ordered set ASet as a tuple of sets, and the
elements of the unordered set ASet as a sorted list of sets without
duplicates.

 type(AnySet)

 Returns the type of an atomic, ordered, or unordered set.

 union(SetOfSets)

 Returns the union of the set of sets SetOfSets.

 union(Set1, Set2)

 Returns the union of Set1 and Set2.

 union_of_family(Family)

 Returns the union of family Family.

 weak_relation(BinRel1)

 Returns a subset S of the weak relation W
corresponding to the binary relation BinRel1. Let F be the
field of BinRel1. The subset S is defined so that x S y if x
W y for some x in F and for some y in F.

 Types

 Link to this type

 a_function()

 View Source

 -type a_function() :: relation().

A function.

 Link to this opaque

 a_set()

 View Source

 -opaque a_set()

An unordered set.

 Link to this type

 anyset()

 View Source

 -type anyset() :: ordset() | a_set().

Any kind of set (also included are the atomic sets).

 Link to this type

 binary_relation()

 View Source

 -type binary_relation() :: relation().

A binary relation.

 Link to this type

 external_set()

 View Source

 -type external_set() :: term().

An external set.

 Link to this type

 family()

 View Source

 -type family() :: a_function().

A family (of subsets).

 Link to this opaque

 ordset()

 View Source

 -opaque ordset()

An ordered set.

 Link to this type

 relation()

 View Source

 -type relation() :: a_set().

An n-ary relation.

 Link to this type

 set_fun()

 View Source

 -type set_fun() ::
 pos_integer() |
 {external, fun((external_set()) -> external_set())} |
 fun((anyset()) -> anyset()).

A SetFun.

 Link to this type

 set_of_sets()

 View Source

 -type set_of_sets() :: a_set().

An unordered set of unordered sets.

 Link to this type

 spec_fun()

 View Source

 -type spec_fun() :: {external, fun((external_set()) -> boolean())} | fun((anyset()) -> boolean()).

 Link to this type

 tuple_of(T)

 View Source

 (not exported)

 -type tuple_of(_T) :: tuple().

A tuple where the elements are of type T.

 Link to this type

 type()

 View Source

 -type type() :: term().

A type.

 Functions

 Link to this function

 a_function(Tuples)

 View Source

 -spec a_function(Tuples) -> Function when Function :: a_function(), Tuples :: [tuple()].

Equivalent to a_function(Tuples, [{atom, atom}]).

 Link to this function

 a_function(Tuples, Type)

 View Source

 -spec a_function(Tuples, Type) -> Function
 when Function :: a_function(), Tuples :: [tuple()], Type :: type().

Creates a function.
a_function(F, T) is equivalent to
from_term(F, T) if the result is a function.

 Link to this function

 canonical_relation(SetOfSets)

 View Source

 -spec canonical_relation(SetOfSets) -> BinRel
 when BinRel :: binary_relation(), SetOfSets :: set_of_sets().

Returns the binary relation containing the elements (E, Set) such that Set
belongs to SetOfSets and E belongs to Set.
If SetOfSets is a partition of a set X and R is the
equivalence relation in X induced by SetOfSets, then the returned relation is the
canonical map from X onto the equivalence classes with
respect to R.
1> Ss = sofs:from_term([[a,b],[b,c]]),
CR = sofs:canonical_relation(Ss),
sofs:to_external(CR).
[{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]

 Link to this function

 composite(Function1, Function2)

 View Source

 -spec composite(Function1, Function2) -> Function3
 when Function1 :: a_function(), Function2 :: a_function(), Function3 :: a_function().

Returns the composite of the functions Function1 and
Function2.
1> F1 = sofs:a_function([{a,1},{b,2},{c,2}]),
F2 = sofs:a_function([{1,x},{2,y},{3,z}]),
F = sofs:composite(F1, F2),
sofs:to_external(F).
[{a,x},{b,y},{c,y}]

 Link to this function

 constant_function(Set, AnySet)

 View Source

 -spec constant_function(Set, AnySet) -> Function
 when AnySet :: anyset(), Function :: a_function(), Set :: a_set().

Creates the function that maps each element of set Set
onto AnySet.
1> S = sofs:set([a,b]),
E = sofs:from_term(1),
R = sofs:constant_function(S, E),
sofs:to_external(R).
[{a,1},{b,1}]

 Link to this function

 converse(BinRel1)

 View Source

 -spec converse(BinRel1) -> BinRel2 when BinRel1 :: binary_relation(), BinRel2 :: binary_relation().

Returns the converse of the binary relation BinRel1.
1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),
R2 = sofs:converse(R1),
sofs:to_external(R2).
[{a,1},{a,3},{b,2}]

 Link to this function

 difference(Set1, Set2)

 View Source

 -spec difference(Set1, Set2) -> Set3 when Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns the difference of the sets Set1 and Set2.

 Link to this function

 digraph_to_family(Graph)

 View Source

 -spec digraph_to_family(Graph) -> Family when Graph :: digraph:graph(), Family :: family().

Equivalent to digraph_to_family(Graph, [{atom, [atom]}]).

 Link to this function

 digraph_to_family(Graph, Type)

 View Source

 -spec digraph_to_family(Graph, Type) -> Family
 when Graph :: digraph:graph(), Family :: family(), Type :: type().

Creates a family from the directed graph Graph. Each vertex
a of Graph is represented by a pair (a, {b[1], ..., b[n]}), where the
b[i]:s are the out-neighbors of a. It is assumed that Type is
a valid type of the external set of the family.
If G is a directed graph, it holds that the vertices and edges of G are the same
as the vertices and edges of
family_to_digraph(digraph_to_family(G)).

 Link to this function

 domain(BinRel)

 View Source

 -spec domain(BinRel) -> Set when BinRel :: binary_relation(), Set :: a_set().

Returns the domain of the binary relation BinRel.
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:domain(R),
sofs:to_external(S).
[1,2]

 Link to this function

 drestriction(BinRel1, Set)

 View Source

 -spec drestriction(BinRel1, Set) -> BinRel2
 when BinRel1 :: binary_relation(), BinRel2 :: binary_relation(), Set :: a_set().

Returns the difference between the binary relation BinRel1 and the
restriction of BinRel1 to Set.
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to_external(R2).
[{1,a},{3,c}]
drestriction(R, S) is equivalent to
difference(R, restriction(R, S)).

 Link to this function

 drestriction(SetFun, Set1, Set2)

 View Source

 -spec drestriction(SetFun, Set1, Set2) -> Set3
 when SetFun :: set_fun(), Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns a subset of Set1 containing those elements that do not give an element
in Set2 as the result of applying SetFun.
1> SetFun = {external, fun({_A,B,C}) -> {B,C} end},
R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),
R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to_external(R3).
[{a,aa,1}]
drestriction(F, S1, S2) is equivalent to
difference(S1, restriction(F, S1, S2)).

 Link to this function

 empty_set()

 View Source

 -spec empty_set() -> Set when Set :: a_set().

Returns the untyped empty set. empty_set/0 is
equivalent to from_term([], ['_']).

 Link to this function

 extension(BinRel1, Set, AnySet)

 View Source

 -spec extension(BinRel1, Set, AnySet) -> BinRel2
 when
 AnySet :: anyset(),
 BinRel1 :: binary_relation(),
 BinRel2 :: binary_relation(),
 Set :: a_set().

Returns the extension of BinRel1 such that for each
element E in Set that does not belong to the domain of
BinRel1, BinRel2 contains the pair (E, AnySet).
1> S = sofs:set([b,c]),
A = sofs:empty_set(),
R = sofs:family([{a,[1,2]},{b,[3]}]),
X = sofs:extension(R, S, A),
sofs:to_external(X).
[{a,[1,2]},{b,[3]},{c,[]}]

 Link to this function

 family(Tuples)

 View Source

 -spec family(Tuples) -> Family when Family :: family(), Tuples :: [tuple()].

Equivalent to family(Tuples, [{atom, [atom]}]).

 Link to this function

 family(Tuples, Type)

 View Source

 -spec family(Tuples, Type) -> Family when Family :: family(), Tuples :: [tuple()], Type :: type().

Creates a family of subsets. family(F, T) is
equivalent to from_term(F, T) if the result is a family.

 Link to this function

 family_difference(Family1, Family2)

 View Source

 -spec family_difference(Family1, Family2) -> Family3
 when Family1 :: family(), Family2 :: family(), Family3 :: family().

If Family1 and Family2 are families, then Family3 is
the family such that the index set is equal to the index set of Family1, and
Family3[i] is the difference between Family1[i] and Family2[i] if
Family2 maps i, otherwise Family1[i].
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),
F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),
F3 = sofs:family_difference(F1, F2),
sofs:to_external(F3).
[{a,[1,2]},{b,[3]}]

 Link to this function

 family_domain(Family1)

 View Source

 -spec family_domain(Family1) -> Family2 when Family1 :: family(), Family2 :: family().

If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
domain of Family1[i].
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_domain(FR),
sofs:to_external(F).
[{a,[1,2,3]},{b,[]},{c,[4,5]}]

 Link to this function

 family_field(Family1)

 View Source

 -spec family_field(Family1) -> Family2 when Family1 :: family(), Family2 :: family().

If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
field of Family1[i].
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_field(FR),
sofs:to_external(F).
[{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]
family_field(Family1) is equivalent to
family_union(family_domain(Family1), family_range(Family1)).

 Link to this function

 family_intersection(Family1)

 View Source

 -spec family_intersection(Family1) -> Family2 when Family1 :: family(), Family2 :: family().

If Family1 is a family and Family1[i] is a set of sets
for every i in the index set of Family1, then Family2 is the family with the
same index set as Family1 such that Family2[i] is the
intersection of Family1[i].
If Family1[i] is an empty set for some i, the process exits with a badarg
message.
1> F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),
F2 = sofs:family_intersection(F1),
sofs:to_external(F2).
[{a,[2,3]},{b,[x,y]}]

 Link to this function

 family_intersection(Family1, Family2)

 View Source

 -spec family_intersection(Family1, Family2) -> Family3
 when Family1 :: family(), Family2 :: family(), Family3 :: family().

If Family1 and Family2 are families, then Family3 is
the family such that the index set is the intersection of Family1:s and
Family2:s index sets, and Family3[i] is the intersection of Family1[i]
and Family2[i].
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_intersection(F1, F2),
sofs:to_external(F3).
[{b,[4]},{c,[]}]

 Link to this function

 family_projection(SetFun, Family1)

 View Source

 -spec family_projection(SetFun, Family1) -> Family2
 when SetFun :: set_fun(), Family1 :: family(), Family2 :: family().

If Family1 is a family, then Family2 is the family with
the same index set as Family1 such that Family2[i] is the result of calling
SetFun with Family1[i] as argument.
1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),
F2 = sofs:family_projection(fun sofs:union/1, F1),
sofs:to_external(F2).
[{a,[1,2,3]},{b,[]}]

 Link to this function

 family_range(Family1)

 View Source

 -spec family_range(Family1) -> Family2 when Family1 :: family(), Family2 :: family().

If Family1 is a family and Family1[i] is a binary
relation for every i in the index set of Family1, then Family2 is the family
with the same index set as Family1 such that Family2[i] is the
range of Family1[i].
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),
F = sofs:family_range(FR),
sofs:to_external(F).
[{a,[a,b,c]},{b,[]},{c,[d,e]}]

 Link to this function

 family_specification(Fun, Family1)

 View Source

 -spec family_specification(Fun, Family1) -> Family2
 when Fun :: spec_fun(), Family1 :: family(), Family2 :: family().

If Family1 is a family, then Family2 is the
restriction of Family1 to those elements i of the
index set for which Fun applied to Family1[i] returns true. If Fun is a
tuple {external, Fun2}, then Fun2 is applied to the
external set of Family1[i], otherwise Fun is
applied to Family1[i].
1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),
SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,
F2 = sofs:family_specification(SpecFun, F1),
sofs:to_external(F2).
[{b,[1,2]}]

 Link to this function

 family_to_digraph(Family)

 View Source

 -spec family_to_digraph(Family) -> Graph when Graph :: digraph:graph(), Family :: family().

Equivalent to family_to_digraph(Family, []).

 Link to this function

 family_to_digraph(Family, GraphType)

 View Source

 -spec family_to_digraph(Family, GraphType) -> Graph
 when
 Graph :: digraph:graph(),
 Family :: family(),
 GraphType :: [digraph:d_type()].

Creates a directed graph from family Family. For each pair
(a, {b[1], ..., b[n]}) of Family, vertex a and the edges (a, b[i]) for
1 <= i <= n are added to a newly created directed graph.
GraphType is passed on to digraph:new/1.
It F is a family, it holds that F is a subset of
digraph_to_family(family_to_digraph(F), type(F)).
Equality holds if union_of_family(F) is a subset of
domain(F).
Creating a cycle in an acyclic graph exits the process with a cyclic message.

 Link to this function

 family_to_relation(Family)

 View Source

 -spec family_to_relation(Family) -> BinRel when Family :: family(), BinRel :: binary_relation().

If Family is a family, then BinRel is the binary relation
containing all pairs (i, x) such that i belongs to the index set of Family and
x belongs to Family[i].
1> F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),
R = sofs:family_to_relation(F),
sofs:to_external(R).
[{b,1},{c,2},{c,3}]

 Link to this function

 family_union(Family1)

 View Source

 -spec family_union(Family1) -> Family2 when Family1 :: family(), Family2 :: family().

If Family1 is a family and Family1[i] is a set of sets
for each i in the index set of Family1, then Family2 is the family with the
same index set as Family1 such that Family2[i] is the
union of Family1[i].
1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),
F2 = sofs:family_union(F1),
sofs:to_external(F2).
[{a,[1,2,3]},{b,[]}]
family_union(F) is equivalent to
family_projection(fun sofs:union/1, F).

 Link to this function

 family_union(Family1, Family2)

 View Source

 -spec family_union(Family1, Family2) -> Family3
 when Family1 :: family(), Family2 :: family(), Family3 :: family().

If Family1 and Family2 are families, then Family3 is
the family such that the index set is the union of Family1:s and Family2:s
index sets, and Family3[i] is the union of Family1[i] and Family2[i] if
both map i, otherwise Family1[i] or Family2[i].
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),
F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),
F3 = sofs:family_union(F1, F2),
sofs:to_external(F3).
[{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]

 Link to this function

 field(BinRel)

 View Source

 -spec field(BinRel) -> Set when BinRel :: binary_relation(), Set :: a_set().

Returns the field of the binary relation BinRel.
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:field(R),
sofs:to_external(S).
[1,2,a,b,c]
field(R) is equivalent to
union(domain(R), range(R)).

 Link to this function

 from_external(ExternalSet, Type)

 View Source

 -spec from_external(ExternalSet, Type) -> AnySet
 when ExternalSet :: external_set(), AnySet :: anyset(), Type :: type().

Creates a set from the external set ExternalSet and
the type Type. It is assumed that Type is a
valid type of ExternalSet.

 Link to this function

 from_sets/1

 View Source

 -spec from_sets(ListOfSets) -> Set when Set :: a_set(), ListOfSets :: [anyset()];
 (TupleOfSets) -> Ordset when Ordset :: ordset(), TupleOfSets :: tuple_of(anyset()).

Returns the unordered set containing the sets of
list ListOfSets.
1> S1 = sofs:relation([{a,1},{b,2}]),
S2 = sofs:relation([{x,3},{y,4}]),
S = sofs:from_sets([S1,S2]),
sofs:to_external(S).
[[{a,1},{b,2}],[{x,3},{y,4}]]
Returns the ordered set containing the sets of the
non-empty tuple TupleOfSets.

 Link to this function

 from_term(Term)

 View Source

 -spec from_term(Term) -> AnySet when AnySet :: anyset(), Term :: term().

Equivalent to from_term(Term, '_').

 Link to this function

 from_term(Term, Type)

 View Source

 -spec from_term(Term, Type) -> AnySet when AnySet :: anyset(), Term :: term(), Type :: type().

Creates an element of Sets by
traversing term Term, sorting lists, removing duplicates, and deriving or
verifying a valid type for the so obtained external set.
An explicitly specified type Type can be used to limit the
depth of the traversal; an atomic type stops the traversal, as shown by the
following example where "foo" and {"foo"} are left unmodified:
1> S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}],
 [{atom,[atom]}]),
 sofs:to_external(S).
[{{"foo"},[1]},{"foo",[2]}]
from_term can be used for creating atomic or ordered sets. The only purpose of
such a set is that of later building unordered sets, as all functions in this
module that do anything operate on unordered sets. Creating unordered sets
from a collection of ordered sets can be the way to go if the ordered sets are
big and one does not want to waste heap by rebuilding the elements of the
unordered set. The following example shows that a set can be built "layer by
layer":
1> A = sofs:from_term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from_sets({A,S}),
P2 = sofs:from_term({b,[6,5,4]}),
Ss = sofs:from_sets([P1,P2]),
sofs:to_external(Ss).
[{a,[1,2,3]},{b,[4,5,6]}]
Other functions that create sets are from_external/2 and from_sets/1.
Special cases of from_term/2 are
a_function/1,2, empty_set/0, family/1,2,
relation/1,2, and set/1,2.

 Link to this function

 image(BinRel, Set1)

 View Source

 -spec image(BinRel, Set1) -> Set2 when BinRel :: binary_relation(), Set1 :: a_set(), Set2 :: a_set().

Returns the image of set Set1 under the binary relation
BinRel.
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to_external(S2).
[a,b,c]

 Link to this function

 intersection(SetOfSets)

 View Source

 -spec intersection(SetOfSets) -> Set when Set :: a_set(), SetOfSets :: set_of_sets().

Returns the intersection of the set of sets
SetOfSets.
Intersecting an empty set of sets exits the process with a badarg message.

 Link to this function

 intersection(Set1, Set2)

 View Source

 -spec intersection(Set1, Set2) -> Set3 when Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns the intersection of Set1 and Set2.

 Link to this function

 intersection_of_family(Family)

 View Source

 -spec intersection_of_family(Family) -> Set when Family :: family(), Set :: a_set().

Returns the intersection of family Family.
Intersecting an empty family exits the process with a badarg message.
1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),
S = sofs:intersection_of_family(F),
sofs:to_external(S).
[2]

 Link to this function

 inverse(Function1)

 View Source

 -spec inverse(Function1) -> Function2 when Function1 :: a_function(), Function2 :: a_function().

Returns the inverse of function Function1.
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
R2 = sofs:inverse(R1),
sofs:to_external(R2).
[{a,1},{b,2},{c,3}]

 Link to this function

 inverse_image(BinRel, Set1)

 View Source

 -spec inverse_image(BinRel, Set1) -> Set2
 when BinRel :: binary_relation(), Set1 :: a_set(), Set2 :: a_set().

Returns the inverse image of Set1 under the binary
relation BinRel.
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse_image(R, S1),
sofs:to_external(S2).
[2,3]

 Link to this function

 is_a_function(BinRel)

 View Source

 -spec is_a_function(BinRel) -> Bool when Bool :: boolean(), BinRel :: binary_relation().

Returns true if the binary relation BinRel is a
function or the untyped empty set, otherwise false.

 Link to this function

 is_disjoint(Set1, Set2)

 View Source

 -spec is_disjoint(Set1, Set2) -> Bool when Bool :: boolean(), Set1 :: a_set(), Set2 :: a_set().

Returns true if Set1 and Set2 are disjoint, otherwise
false.

 Link to this function

 is_empty_set(AnySet)

 View Source

 -spec is_empty_set(AnySet) -> Bool when AnySet :: anyset(), Bool :: boolean().

Returns true if AnySet is an empty unordered set, otherwise false.

 Link to this function

 is_equal(AnySet1, AnySet2)

 View Source

 -spec is_equal(AnySet1, AnySet2) -> Bool
 when AnySet1 :: anyset(), AnySet2 :: anyset(), Bool :: boolean().

Returns true if AnySet1 and AnySet2 are equal, otherwise
false. The following example shows that ==/2 is used when comparing sets for
equality:
1> S1 = sofs:set([1.0]),
S2 = sofs:set([1]),
sofs:is_equal(S1, S2).
true

 Link to this function

 is_set(AnySet)

 View Source

 -spec is_set(AnySet) -> Bool when AnySet :: anyset(), Bool :: boolean().

Returns true if AnySet appears to be an
unordered set, and false if AnySet is an ordered
set or an atomic set or any other term.
Note that the test is shallow and this function will return true for any term
that coincides with the representation of an unordered set. See also note on
data types.

 Link to this function

 is_sofs_set(Term)

 View Source

 -spec is_sofs_set(Term) -> Bool when Bool :: boolean(), Term :: term().

Returns true if Term appears to be an
unordered set, an ordered set, or an atomic set,
otherwise false.
Note that this function will return true for any term that
coincides with the representation of a sofs set. See also note on
data types.

 Link to this function

 is_subset(Set1, Set2)

 View Source

 -spec is_subset(Set1, Set2) -> Bool when Bool :: boolean(), Set1 :: a_set(), Set2 :: a_set().

Returns true if Set1 is a subset of Set2, otherwise
false.

 Link to this function

 is_type(Term)

 View Source

 -spec is_type(Term) -> Bool when Bool :: boolean(), Term :: term().

Returns true if term Term is a type.

 Link to this function

 join(Relation1, I, Relation2, J)

 View Source

 -spec join(Relation1, I, Relation2, J) -> Relation3
 when
 Relation1 :: relation(),
 Relation2 :: relation(),
 Relation3 :: relation(),
 I :: pos_integer(),
 J :: pos_integer().

Returns the natural join of the relations Relation1
and Relation2 on coordinates I and J.
1> R1 = sofs:relation([{a,x,1},{b,y,2}]),
R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),
J = sofs:join(R1, 3, R2, 1),
sofs:to_external(J).
[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]

 Link to this function

 multiple_relative_product(TupleOfBinRels, BinRel1)

 View Source

 -spec multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2
 when
 TupleOfBinRels :: tuple_of(BinRel),
 BinRel :: binary_relation(),
 BinRel1 :: binary_relation(),
 BinRel2 :: binary_relation().

If TupleOfBinRels is a non-empty tuple {R[1], ..., R[n]} of binary
relations and BinRel1 is a binary relation, then BinRel2 is the
multiple relative product of the ordered
set (R[i], ..., R[n]) and BinRel1.
1> Ri = sofs:relation([{a,1},{b,2},{c,3}]),
R = sofs:relation([{a,b},{b,c},{c,a}]),
MP = sofs:multiple_relative_product({Ri, Ri}, R),
sofs:to_external(sofs:range(MP)).
[{1,2},{2,3},{3,1}]

 Link to this function

 no_elements(ASet)

 View Source

 -spec no_elements(ASet) -> NoElements when ASet :: a_set() | ordset(), NoElements :: non_neg_integer().

Returns the number of elements of the ordered or unordered set ASet.

 Link to this function

 partition(SetOfSets)

 View Source

 -spec partition(SetOfSets) -> Partition when SetOfSets :: set_of_sets(), Partition :: a_set().

Returns the partition of the union of the set of sets
SetOfSets such that two elements are considered equal if they belong to the
same elements of SetOfSets.
1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to_external(P).
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]

 Link to this function

 partition(SetFun, Set)

 View Source

 -spec partition(SetFun, Set) -> Partition when SetFun :: set_fun(), Partition :: a_set(), Set :: a_set().

Returns the partition of Set such that two elements are
considered equal if the results of applying SetFun are equal.
1> Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),
SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,
P = sofs:partition(SetFun, Ss),
sofs:to_external(P).
[[[a],[b]],[[c,d],[e,f]]]

 Link to this function

 partition(SetFun, Set1, Set2)

 View Source

 -spec partition(SetFun, Set1, Set2) -> {Set3, Set4}
 when
 SetFun :: set_fun(),
 Set1 :: a_set(),
 Set2 :: a_set(),
 Set3 :: a_set(),
 Set4 :: a_set().

Returns a pair of sets that, regarded as constituting a set, forms a
partition of Set1. If the result of applying SetFun to
an element of Set1 gives an element in Set2, the element belongs to Set3,
otherwise the element belongs to Set4.
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([2,4,6]),
{R2,R3} = sofs:partition(1, R1, S),
{sofs:to_external(R2),sofs:to_external(R3)}.
{[{2,b}],[{1,a},{3,c}]}
partition(F, S1, S2) is equivalent to
{restriction(F, S1, S2), drestriction(F, S1, S2)}.

 Link to this function

 partition_family(SetFun, Set)

 View Source

 -spec partition_family(SetFun, Set) -> Family
 when Family :: family(), SetFun :: set_fun(), Set :: a_set().

Returns family Family where the indexed set is a
partition of Set such that two elements are considered
equal if the results of applying SetFun are the same value i. This i is the
index that Family maps onto the
equivalence class.
1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),
SetFun = {external, fun({A,_,C,_}) -> {A,C} end},
F = sofs:partition_family(SetFun, S),
sofs:to_external(F).
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]

 Link to this function

 product(TupleOfSets)

 View Source

 -spec product(TupleOfSets) -> Relation when Relation :: relation(), TupleOfSets :: tuple_of(a_set()).

Returns the Cartesian product of the
non-empty tuple of sets TupleOfSets. If (x[1], ..., x[n]) is an element of
the n-ary relation Relation, then x[i] is drawn from element i of
TupleOfSets.
1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
P3 = sofs:product({S1,S2,S3}),
sofs:to_external(P3).
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]

 Link to this function

 product(Set1, Set2)

 View Source

 -spec product(Set1, Set2) -> BinRel when BinRel :: binary_relation(), Set1 :: a_set(), Set2 :: a_set().

Returns the Cartesian product of Set1 and
Set2.
1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to_external(R).
[{1,a},{1,b},{2,a},{2,b}]
product(S1, S2) is equivalent to
product({S1, S2}).

 Link to this function

 projection(SetFun, Set1)

 View Source

 -spec projection(SetFun, Set1) -> Set2 when SetFun :: set_fun(), Set1 :: a_set(), Set2 :: a_set().

Returns the set created by substituting each element of Set1 by the result of
applying SetFun to the element.
If SetFun is a number i >= 1 and Set1 is a relation, then the returned set
is the projection of Set1 onto coordinate i.
1> S1 = sofs:from_term([{1,a},{2,b},{3,a}]),
S2 = sofs:projection(2, S1),
sofs:to_external(S2).
[a,b]

 Link to this function

 range(BinRel)

 View Source

 -spec range(BinRel) -> Set when BinRel :: binary_relation(), Set :: a_set().

Returns the range of the binary relation BinRel.
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),
S = sofs:range(R),
sofs:to_external(S).
[a,b,c]

 Link to this function

 relation(Tuples)

 View Source

 -spec relation(Tuples) -> Relation when Relation :: relation(), Tuples :: [tuple()].

Equivalent to relation(Tuples, Type) where Type is the size
of the first tuple of Tuples is used if there is such a tuple.
If tuples is [], then Type is 2.

 Link to this function

 relation(Tuples, Type)

 View Source

 -spec relation(Tuples, Type) -> Relation
 when N :: integer(), Type :: N | type(), Relation :: relation(), Tuples :: [tuple()].

Creates a relation. relation(R, T) is
equivalent to from_term(R, T), if T is a
type and the result is a relation.
If Type is an integer N, then [{atom, ..., atom}]), where the tuple size is N,
is used as type of the relation.

 Link to this function

 relation_to_family(BinRel)

 View Source

 -spec relation_to_family(BinRel) -> Family when Family :: family(), BinRel :: binary_relation().

Returns family Family such that the index set is equal to
the domain of the binary relation BinRel, and Family[i]
is the image of the set of i under BinRel.
1> R = sofs:relation([{b,1},{c,2},{c,3}]),
F = sofs:relation_to_family(R),
sofs:to_external(F).
[{b,[1]},{c,[2,3]}]

 Link to this function

 relative_product1(BinRel1, BinRel2)

 View Source

 -spec relative_product1(BinRel1, BinRel2) -> BinRel3
 when
 BinRel1 :: binary_relation(),
 BinRel2 :: binary_relation(),
 BinRel3 :: binary_relation().

Returns the relative product of the
converse of the binary relation BinRel1 and the binary
relation BinRel2.
1> R1 = sofs:relation([{1,a},{1,aa},{2,b}]),
R2 = sofs:relation([{1,u},{2,v},{3,c}]),
R3 = sofs:relative_product1(R1, R2),
sofs:to_external(R3).
[{a,u},{aa,u},{b,v}]
relative_product1(R1, R2) is equivalent to
relative_product(converse(R1), R2).

 Link to this function

 relative_product(ListOfBinRels)

 View Source

 -spec relative_product(ListOfBinRels) -> BinRel2
 when
 ListOfBinRels :: [BinRel, ...],
 BinRel :: binary_relation(),
 BinRel2 :: binary_relation().

Equivalent to relative_product/2.

 Link to this function

 relative_product/2

 View Source

 -spec relative_product(ListOfBinRels, BinRel1) -> BinRel2
 when
 ListOfBinRels :: [BinRel, ...],
 BinRel :: binary_relation(),
 BinRel1 :: binary_relation(),
 BinRel2 :: binary_relation();
 (BinRel1, BinRel2) -> BinRel3
 when
 BinRel1 :: binary_relation(),
 BinRel2 :: binary_relation(),
 BinRel3 :: binary_relation().

If ListOfBinRels is a non-empty list [R[1], ..., R[n]] of binary relations
and BinRel1 is a binary relation, then BinRel2 is the
relative product of the ordered set
(R[i], ..., R[n]) and BinRel1.
If BinRel1 is omitted, the relation of equality between the elements of the
Cartesian product of the ranges of R[i],
range R[1] × ... × range R[n], is used instead (intuitively, nothing is
"lost").
1> TR = sofs:relation([{1,a},{1,aa},{2,b}]),
R1 = sofs:relation([{1,u},{2,v},{3,c}]),
R2 = sofs:relative_product([TR, R1]),
sofs:to_external(R2).
[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]
Notice that relative_product([R1], R2) is different
from relative_product(R1, R2); the list of one element
is not identified with the element itself.
Returns the relative product of the binary
relations BinRel1 and BinRel2.

 Link to this function

 restriction(BinRel1, Set)

 View Source

 -spec restriction(BinRel1, Set) -> BinRel2
 when BinRel1 :: binary_relation(), BinRel2 :: binary_relation(), Set :: a_set().

Returns the restriction of the binary relation BinRel1
to Set.
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),
S = sofs:set([1,2,4]),
R2 = sofs:restriction(R1, S),
sofs:to_external(R2).
[{1,a},{2,b}]

 Link to this function

 restriction(SetFun, Set1, Set2)

 View Source

 -spec restriction(SetFun, Set1, Set2) -> Set3
 when SetFun :: set_fun(), Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns a subset of Set1 containing those elements that gives an element in
Set2 as the result of applying SetFun.
1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),
S2 = sofs:set([b,c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to_external(S3).
[{2,b},{3,c}]

 Link to this function

 set(Terms)

 View Source

 -spec set(Terms) -> Set when Set :: a_set(), Terms :: [term()].

Equivalent to set(Terms, [atom]).

 Link to this function

 set(Terms, Type)

 View Source

 -spec set(Terms, Type) -> Set when Set :: a_set(), Terms :: [term()], Type :: type().

Creates an unordered set. set(L, T) is
equivalent to from_term(L, T), if the result is an unordered
set.

 Link to this function

 specification(Fun, Set1)

 View Source

 -spec specification(Fun, Set1) -> Set2 when Fun :: spec_fun(), Set1 :: a_set(), Set2 :: a_set().

Returns the set containing every element of Set1 for which Fun returns
true. If Fun is a tuple {external, Fun2}, Fun2 is applied to the
external set of each element, otherwise Fun is
applied to each element.
1> R1 = sofs:relation([{a,1},{b,2}]),
R2 = sofs:relation([{x,1},{x,2},{y,3}]),
S1 = sofs:from_sets([R1,R2]),
S2 = sofs:specification(fun sofs:is_a_function/1, S1),
sofs:to_external(S2).
[[{a,1},{b,2}]]

 Link to this function

 strict_relation(BinRel1)

 View Source

 -spec strict_relation(BinRel1) -> BinRel2
 when BinRel1 :: binary_relation(), BinRel2 :: binary_relation().

Returns the strict relation corresponding to the
binary relation BinRel1.
1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),
R2 = sofs:strict_relation(R1),
sofs:to_external(R2).
[{1,2},{2,1}]

 Link to this function

 substitution(SetFun, Set1)

 View Source

 -spec substitution(SetFun, Set1) -> Set2 when SetFun :: set_fun(), Set1 :: a_set(), Set2 :: a_set().

Returns a function, the domain of which is Set1. The value of an element of
the domain is the result of applying SetFun to the element.
1> L = [{a,1},{b,2}].
[{a,1},{b,2}]
2> sofs:to_external(sofs:projection(1,sofs:relation(L))).
[a,b]
3> sofs:to_external(sofs:substitution(1,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
4> SetFun = {external, fun({A,_}=E) -> {E,A} end},
sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).
[{{a,1},a},{{b,2},b}]
The relation of equality between the elements of {a,b,c}:
1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to_external(I).
[{a,a},{b,b},{c,c}]
Let SetOfSets be a set of sets and BinRel a binary relation. The function
that maps each element Set of SetOfSets onto the image of
Set under BinRel is returned by the following function:
images(SetOfSets, BinRel) ->
 Fun = fun(Set) -> sofs:image(BinRel, Set) end,
 sofs:substitution(Fun, SetOfSets).
External unordered sets are represented as sorted lists. So, creating the image
of a set under a relation R can traverse all elements of R (to that comes the
sorting of results, the image). In image/2, BinRel is traversed once for
each element of SetOfSets, which can take too long. The following efficient
function can be used instead under the assumption that the image of each element
of SetOfSets under BinRel is non-empty:
images2(SetOfSets, BinRel) ->
 CR = sofs:canonical_relation(SetOfSets),
 R = sofs:relative_product1(CR, BinRel),
 sofs:relation_to_family(R).

 Link to this function

 symdiff(Set1, Set2)

 View Source

 -spec symdiff(Set1, Set2) -> Set3 when Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns the symmetric difference (or the
Boolean sum) of Set1 and Set2.
1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to_external(P).
[1,4]

 Link to this function

 symmetric_partition(Set1, Set2)

 View Source

 -spec symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}
 when
 Set1 :: a_set(),
 Set2 :: a_set(),
 Set3 :: a_set(),
 Set4 :: a_set(),
 Set5 :: a_set().

Returns a triple of sets:
	Set3 contains the elements of Set1 that do not belong to Set2.
	Set4 contains the elements of Set1 that belong to Set2.
	Set5 contains the elements of Set2 that do not belong to Set1.

 Link to this function

 to_external(AnySet)

 View Source

 -spec to_external(AnySet) -> ExternalSet when ExternalSet :: external_set(), AnySet :: anyset().

Returns the external set of an atomic, ordered, or
unordered set.

 Link to this function

 to_sets(ASet)

 View Source

 -spec to_sets(ASet) -> Sets
 when
 ASet :: a_set() | ordset(), Sets :: tuple_of(AnySet) | [AnySet], AnySet :: anyset().

Returns the elements of the ordered set ASet as a tuple of sets, and the
elements of the unordered set ASet as a sorted list of sets without
duplicates.

 Link to this function

 type(AnySet)

 View Source

 -spec type(AnySet) -> Type when AnySet :: anyset(), Type :: type().

Returns the type of an atomic, ordered, or unordered set.

 Link to this function

 union(SetOfSets)

 View Source

 -spec union(SetOfSets) -> Set when Set :: a_set(), SetOfSets :: set_of_sets().

Returns the union of the set of sets SetOfSets.

 Link to this function

 union(Set1, Set2)

 View Source

 -spec union(Set1, Set2) -> Set3 when Set1 :: a_set(), Set2 :: a_set(), Set3 :: a_set().

Returns the union of Set1 and Set2.

 Link to this function

 union_of_family(Family)

 View Source

 -spec union_of_family(Family) -> Set when Family :: family(), Set :: a_set().

Returns the union of family Family.
1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),
S = sofs:union_of_family(F),
sofs:to_external(S).
[0,1,2,3,4]

 Link to this function

 weak_relation(BinRel1)

 View Source

 -spec weak_relation(BinRel1) -> BinRel2 when BinRel1 :: binary_relation(), BinRel2 :: binary_relation().

Returns a subset S of the weak relation W
corresponding to the binary relation BinRel1. Let F be the
field of BinRel1. The subset S is defined so that x S y if x
W y for some x in F and for some y in F.
1> R1 = sofs:relation([{1,1},{1,2},{3,1}]),
R2 = sofs:weak_relation(R1),
sofs:to_external(R2).
[{1,1},{1,2},{2,2},{3,1},{3,3}]

 binary - stdlib v5.2.1

binary

Library for handling binary data.
This module contains functions for manipulating byte-oriented binaries. Although
the majority of functions could be provided using bit-syntax, the functions in
this library are highly optimized and are expected to either execute faster or
consume less memory, or both, than a counterpart written in pure Erlang.
The module is provided according to Erlang Enhancement Proposal (EEP) 31.
Note
The library handles byte-oriented data. For bitstrings that are not binaries
(does not contain whole octets of bits) a badarg exception is thrown from
any of the functions in this module.

 Summary

 Types

 cp()

 Opaque data type representing a compiled search pattern.

 part()

 A representation of a part (or range) in a binary. Start is a zero-based
offset into a binary/0 and Length is the length of that part.

 Functions

 at(Subject, Pos)

 Returns the byte at position Pos (zero-based) in binary Subject as an
integer.

 bin_to_list(Subject)

 Converts Subject to a list of byte/0s, each representing the value of one byte.

 bin_to_list(Subject, PosLen)

 Equivalent to bin_to_list(Subject, Pos, Len).

 bin_to_list(Subject, Pos, Len)

 Converts Subject to a list of byte/0s, each representing the value of one
byte. PosLen or alternatively Pos and Len denote which part of the
Subject binary to convert. By default, the entire Subject binary is
converted.

 compile_pattern(Pattern)

 Builds an internal structure representing a compilation of a search pattern,
later to be used in functions match/3, matches/3, split/3, or replace/4.

 copy(Subject)

 Equivalent to copy(Subject, 1).

 copy(Subject, N)

 Creates a binary with the content of Subject duplicated N times.

 decode_hex(Bin)

 Decodes a hex encoded binary into a binary.

 decode_unsigned(Subject)

 Equivalent to decode_unsigned(Subject, big).

 decode_unsigned(Subject, Endianness)

 Converts the binary digit representation, in big endian or little endian, of a
positive integer in Subject to an Erlang integer/0.

 encode_hex(Bin)

 Equivalent to encode_hex(Bin, uppercase).

 encode_hex(Bin, Case)

 Encodes a binary into a hex encoded binary using the specified case for the
hexadecimal digits "a" to "f".

 encode_unsigned(Unsigned)

 Equivalent to encode_unsigned(Unsigned, big).

 encode_unsigned(Unsigned, Endianness)

 Converts a positive integer to the smallest possible representation in a binary
digit representation, either big endian or little endian.

 first(Subject)

 Returns the first byte of binary Subject as an integer. If the size of
Subject is zero, a badarg exception is raised.

 last(Subject)

 Returns the last byte of binary Subject as an integer. If the size of
Subject is zero, a badarg exception is raised.

 list_to_bin(ByteList)

 Works exactly as erlang:list_to_binary/1, added for completeness.

 longest_common_prefix(Binaries)

 Returns the length of the longest common prefix of the binaries in list
Binaries.

 longest_common_suffix(Binaries)

 Returns the length of the longest common suffix of the binaries in list
Binaries.

 match(Subject, Pattern)

 Equivalent to match(Subject, Pattern, []).

 match(Subject, Pattern, Options)

 Searches for the first occurrence of Pattern in Subject and returns the
position and length.

 matches(Subject, Pattern)

 Equivalent to matches(Subject, Pattern, []).

 matches(Subject, Pattern, Options)

 As match/2, but Subject is searched until exhausted and a list of all
non-overlapping parts matching Pattern is returned (in order).

 part(Subject, PosLen)

 Equivalent to part(Subject, Pos, Len).

 part(Subject, Pos, Len)

 Extracts the part of binary Subject described by PosLen.

 referenced_byte_size(Binary)

 Get the size of the underlying binary referenced by Binary.

 replace(Subject, Pattern, Replacement)

 Equivalent to replace(Subject, Pattern, Replacement, []).

 replace(Subject, Pattern, Replacement, Options)

 Constructs a new binary by replacing the parts in Subject matching Pattern
with Replacement if given as a literal binary/0 or with the result of
applying Replacement to a matching subpart if given as a fun.

 split(Subject, Pattern)

 Equivalent to split(Subject, Pattern, []).

 split(Subject, Pattern, Options)

 Splits Subject into a list of binaries based on Pattern.

 Types

 Link to this opaque

 cp()

 View Source

 (since OTP R14B)

 -opaque cp()

Opaque data type representing a compiled search pattern.
Guaranteed to be a tuple/0 to allow programs to distinguish it from
non-precompiled search patterns.

 Link to this type

 part()

 View Source

 (since OTP R14B)

 -type part() :: {Start :: non_neg_integer(), Length :: integer()}.

A representation of a part (or range) in a binary. Start is a zero-based
offset into a binary/0 and Length is the length of that part.
As input to functions in this module, a reverse part specification is allowed, constructed
with a negative Length, so that the part of the binary begins at Start +
Length and is -Length long. This is useful for referencing the last N
bytes of a binary as {size(Binary), -N}. The functions in this module always
return part/0s with positive Length.

 Functions

 Link to this function

 at(Subject, Pos)

 View Source

 (since OTP R14B)

 -spec at(Subject, Pos) -> byte() when Subject :: binary(), Pos :: non_neg_integer().

Returns the byte at position Pos (zero-based) in binary Subject as an
integer.
If Pos >= byte_size(Subject), a badarg exception
is raised.

 Link to this function

 bin_to_list(Subject)

 View Source

 (since OTP R14B)

 -spec bin_to_list(Subject) -> [byte()] when Subject :: binary().

Converts Subject to a list of byte/0s, each representing the value of one byte.
Example:
1> binary:bin_to_list(<<"erlang">>).
"erlang"
%% or [101,114,108,97,110,103] in list notation.

 Link to this function

 bin_to_list(Subject, PosLen)

 View Source

 (since OTP R14B)

 -spec bin_to_list(Subject, PosLen) -> [byte()] when Subject :: binary(), PosLen :: part().

Equivalent to bin_to_list(Subject, Pos, Len).

 Link to this function

 bin_to_list(Subject, Pos, Len)

 View Source

 (since OTP R14B)

 -spec bin_to_list(Subject, Pos, Len) -> [byte()]
 when Subject :: binary(), Pos :: non_neg_integer(), Len :: integer().

Converts Subject to a list of byte/0s, each representing the value of one
byte. PosLen or alternatively Pos and Len denote which part of the
Subject binary to convert. By default, the entire Subject binary is
converted.
Example:
1> binary:bin_to_list(<<"erlang">>, {1,3}).
"rla"
%% or [114,108,97] in list notation.
If PosLen or alternatively Pos and Len in any way reference outside the
binary, a badarg exception is raised.

 Link to this function

 compile_pattern(Pattern)

 View Source

 (since OTP R14B)

 -spec compile_pattern(Pattern) -> cp()
 when
 Pattern :: PatternBinary | [PatternBinary, ...],
 PatternBinary :: nonempty_binary().

Builds an internal structure representing a compilation of a search pattern,
later to be used in functions match/3, matches/3, split/3, or replace/4.
The cp/0 returned is guaranteed to be a tuple/0 to allow programs to
distinguish it from non-precompiled search patterns.
When a list of binaries is specified, it denotes a set of alternative binaries
to search for. For example, if [<<"functional">>,<<"programming">>] is
specified as Pattern, this means either <<"functional">> or
<<"programming">>". The pattern is a set of alternatives; when only a single
binary is specified, the set has only one element. The order of alternatives in
a pattern is not significant.
The list of binaries used for search alternatives must be flat, proper and
non-empty.
If Pattern is not a binary or a flat proper non-empty list of binaries with
length > 0, a badarg exception is raised.

 Link to this function

 copy(Subject)

 View Source

 (since OTP R14B)

 -spec copy(Subject) -> binary() when Subject :: binary().

Equivalent to copy(Subject, 1).

 Link to this function

 copy(Subject, N)

 View Source

 (since OTP R14B)

 -spec copy(Subject, N) -> binary() when Subject :: binary(), N :: non_neg_integer().

Creates a binary with the content of Subject duplicated N times.
This function always creates a new binary, even if N = 1. By using copy/1 on
a binary referencing a larger binary, one can free up the larger binary for
garbage collection.
Note
By deliberately copying a single binary to avoid referencing a larger binary,
one can, instead of freeing up the larger binary for later garbage collection,
create much more binary data than needed. Sharing binary data is usually good.
Only in special cases, when small parts reference large binaries and the large
binaries are no longer used in any process, deliberate copying can be a good
idea.

 Link to this function

 decode_hex(Bin)

 View Source

 (since OTP 24.0)

 -spec decode_hex(Bin) -> Bin2 when Bin ::

 lists - stdlib v5.2.1

lists

List processing functions.
This module contains functions for list processing.
Unless otherwise stated, all functions assume that position numbering starts
at 1. That is, the first element of a list is at position 1.
Two terms T1 and T2 compare equal if T1 == T2 evaluates to true. They
match if T1 =:= T2 evaluates to true.
Whenever an ordering function F is expected as
argument, it is assumed that the following properties hold of F for all x, y,
and z:
	If x F y and y F x, then x = y (F is antisymmetric).
	If x F y and y F z, then x F z (F is transitive).
	x F y or y F x (F is total).

An example of a typical ordering function is less than or equal to: =</2.

 Summary

 Functions

 all(Pred, List)

 Returns true if Pred(Elem) returns true for all elements Elem in List,
otherwise false. The Pred function must return a boolean.

 any(Pred, List)

 Returns true if Pred(Elem) returns true for at least one element Elem in
List. The Pred function must return a boolean.

 append(ListOfLists)

 Returns a list in which all the sublists of ListOfLists have been appended.

 append(List1, List2)

 Returns a new list List3, which is made from the elements of List1 followed
by the elements of List2.

 concat(Things)

 Concatenates the text representation of the elements of Things. The elements
of Things can be atoms, integers, floats, or strings.

 delete(Elem, List1)

 Returns a copy of List1 where the first element matching Elem is deleted, if
there is such an element.

 droplast(List)

 Drops the last element of a List. The list is to be non-empty, otherwise the
function crashes with a function_clause.

 dropwhile(Pred, List1)

 Drops elements Elem from List1 while Pred(Elem) returns true and returns
the remaining list. The Pred function must return a boolean.

 duplicate(N, Elem)

 Returns a list containing N copies of term Elem.

 enumerate(List1)

 Equivalent to enumerate(1, 1, List1).

 enumerate(Index, List1)

 Equivalent to enumerate(Index, 1, List1).

 enumerate(Index, Step, List1)

 Returns List1 with each element H replaced by a tuple of form {I, H} where
I is the position of H in List1. The enumeration starts with Index and
increases by Step in each step.

 filter(Pred, List1)

 List2 is a list of all elements Elem in List1 for which Pred(Elem)
returns true. The Pred function must return a boolean.

 filtermap(Fun, List1)

 Calls Fun(Elem) on successive elements Elem of List1 in order to update or
remove elements from List1.

 flatlength(DeepList)

 Equivalent to length(flatten(DeepList)), but more efficient.

 flatmap(Fun, List1)

 Takes a function from As to lists of Bs, and a list of As (List1) and
produces a list of Bs by applying the function to every element in List1 and
appending the resulting lists.

 flatten(DeepList)

 Returns a flattened version of DeepList.

 flatten(DeepList, Tail)

 Returns a flattened version of DeepList with tail Tail appended.

 foldl(Fun, Acc0, List)

 Calls Fun(Elem, AccIn) on successive elements A of List, starting with
AccIn == Acc0. Fun/2 must return a new accumulator, which is passed to the
next call. The function returns the final value of the accumulator. Acc0 is
returned if the list is empty.

 foldr(Fun, Acc0, List)

 Like foldl/3, but the list is traversed from right to left.

 foreach(Fun, List)

 Calls Fun(Elem) for each element Elem in List. This function is used for
its side effects and the evaluation order is defined to be the same as the order
of the elements in the list.

 join(Sep, List1)

 Inserts Sep between each element in List1. Has no effect on the empty list
and on a singleton list. For example

 keydelete(Key, N, TupleList1)

 Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth
element compares equal to Key is deleted, if there is such a tuple.

 keyfind(Key, N, TupleList)

 Searches the list of tuples TupleList for a tuple whose Nth element compares
equal to Key. Returns Tuple if such a tuple is found, otherwise false.

 keymap(Fun, N, TupleList1)

 Returns a list of tuples where, for each tuple in TupleList1, the Nth
element Term1 of the tuple has been replaced with the result of calling
Fun(Term1).

 keymember(Key, N, TupleList)

 Returns true if there is a tuple in TupleList whose Nth element compares
equal to Key, otherwise false.

 keymerge(N, TupleList1, TupleList2)

 Returns the sorted list formed by merging TupleList1 and TupleList2.

 keyreplace(Key, N, TupleList1, NewTuple)

 Returns a copy of TupleList1 where the first occurrence of a T tuple whose
Nth element compares equal to Key is replaced with NewTuple, if there is
such a tuple T.

 keysearch(Key, N, TupleList)

 Searches the list of tuples TupleList for a tuple whose Nth element compares
equal to Key. Returns {value, Tuple} if such a tuple is found, otherwise
false.

 keysort(N, TupleList1)

 Returns a list containing the sorted elements of list TupleList1. Sorting is
performed on the Nth element of the tuples. The sort is stable.

 keystore(Key, N, TupleList1, NewTuple)

 Returns a copy of TupleList1 where the first occurrence of a tuple T whose
Nth element compares equal to Key is replaced with NewTuple, if there is
such a tuple T. If there is no such tuple T, a copy of TupleList1 where
[NewTuple] has been appended to the end is returned.

 keytake(Key, N, TupleList1)

 Searches the list of tuples TupleList1 for a tuple whose Nth element
compares equal to Key. Returns {value, Tuple, TupleList2} if such a tuple is
found, otherwise false. TupleList2 is a copy of TupleList1 where the first
occurrence of Tuple has been removed.

 last(List)

 Returns the last element in List.

 map(Fun, List1)

 Takes a function from As to Bs, and a list of As and produces a list of
Bs by applying the function to every element in the list. This function is
used to obtain the return values. The evaluation order depends on the
implementation.

 mapfoldl(Fun, Acc0, List1)

 Combines the operations of map/2 and foldl/3 into one pass.

 mapfoldr(Fun, Acc0, List1)

 Combines the operations of map/2 and foldr/3 into one pass.

 max(List)

 Returns the first element of List that compares greater than or equal to all
other elements of List.

 member(Elem, List)

 Returns true if Elem matches some element of List, otherwise false.

 merge3(List1, List2, List3)

 Returns the sorted list formed by merging List1, List2, and List3. All of
List1, List2, and List3 must be sorted before evaluating this function.

 merge(ListOfLists)

 Returns the sorted list formed by merging all the sublists of ListOfLists. All
sublists must be sorted before evaluating this function.

 merge(List1, List2)

 Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted before evaluating this function.

 merge(Fun, List1, List2)

 Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted according to the
ordering function Fun before evaluating this
function.

 min(List)

 Returns the first element of List that compares less than or equal to all
other elements of List.

 nth(N, List)

 Returns the Nth element of List.

 nthtail(N, List)

 Returns the Nth tail of List, that is, the sublist of List starting at
N+1 and continuing up to the end of the list.

 partition(Pred, List)

 Partitions List into two lists, where the first list contains all elements for
which Pred(Elem) returns true, and the second list contains all elements for
which Pred(Elem) returns false.

 prefix(List1, List2)

 Returns true if List1 is a prefix of List2, otherwise false.

 reverse(List1)

 Returns a list with the elements in List1 in reverse order.

 reverse(List1, Tail)

 Returns a list with the elements in List1 in reverse order, with tail Tail
appended.

 search(Pred, List)

 If there is a Value in List such that Pred(Value) returns true, returns
{value, Value} for the first such Value, otherwise returns false. The
Pred function must return a boolean.

 seq(From, To)

 Equivalent to seq(From, To, 1).

 seq(From, To, Incr)

 Returns a sequence of integers that starts with From and contains the
successive results of adding Incr to the previous element, until To is
reached or passed (in the latter case, To is not an element of the sequence).
Incr defaults to 1.

 sort(List1)

 Returns a list containing the sorted elements of List1.

 sort(Fun, List1)

 Returns a list containing the sorted elements of List1, according to the
ordering function Fun. Fun(A, B) is to return
true if A compares less than or equal to B in the ordering, otherwise
false.

 split(N, List1)

 Splits List1 into List2 and List3. List2 contains the first N elements
and List3 the remaining elements (the Nth tail).

 splitwith(Pred, List)

 Partitions List into two lists according to Pred.
splitwith/2 behaves as if it is defined as follows

 sublist(List1, Len)

 Returns the sublist of List1 starting at position 1 and with (maximum) Len
elements. It is not an error for Len to exceed the length of the list, in that
case the whole list is returned.

 sublist(List1, Start, Len)

 Returns the sublist of List1 starting at Start and with (maximum) Len
elements. It is not an error for Start+Len to exceed the length of the list.

 subtract(List1, List2)

 Returns a new list List3 that is a copy of List1, subjected to the following
procedure: for each element in List2, its first occurrence in List1 is
deleted.

 suffix(List1, List2)

 Returns true if List1 is a suffix of List2, otherwise false.

 sum(List)

 Returns the sum of the elements in List.

 takewhile(Pred, List1)

 Takes elements Elem from List1 while Pred(Elem) returns true, that is,
the function returns the longest prefix of the list for which all elements
satisfy the predicate. The Pred function must return a boolean.

 ukeymerge(N, TupleList1, TupleList2)

 Returns the sorted list formed by merging TupleList1 and TupleList2. The
merge is performed on the Nth element of each tuple. Both TupleList1 and
TupleList2 must be key-sorted without duplicates before evaluating this
function.

 ukeysort(N, TupleList1)

 Returns a list containing the sorted elements of list TupleList1 where all
except the first tuple of the tuples comparing equal have been deleted. Sorting
is performed on the Nth element of the tuples.

 umerge3(List1, List2, List3)

 Returns the sorted list formed by merging List1, List2, and List3. All of
List1, List2, and List3 must be sorted and contain no duplicates before
evaluating this function.

 umerge(ListOfLists)

 Returns the sorted list formed by merging all the sublists of ListOfLists. All
sublists must be sorted and contain no duplicates before evaluating this
function.

 umerge(List1, List2)

 Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted and contain no duplicates before evaluating this
function.

 umerge(Fun, List1, List2)

 Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted according to the
ordering function Fun and contain no duplicates
before evaluating this function.

 uniq(List1)

 Returns a list containing the elements of List1 with duplicated elements
removed (preserving the order of the elements). The first occurrence of each
element is kept.

 uniq(Fun, List1)

 Returns a list containing the elements of List1 without the elements for which
Fun returned duplicate values (preserving the order of the elements). The
first occurrence of each element is kept.

 unzip3(List1)

 "Unzips" a list of three-tuples into three lists, where the first list contains
the first element of each tuple, the second list contains the second element of
each tuple, and the third list contains the third element of each tuple.

 unzip(List1)

 "Unzips" a list of two-tuples into two lists, where the first list contains the
first element of each tuple, and the second list contains the second element of
each tuple.

 usort(List1)

 Returns a list containing the sorted elements of List1 where all except the
first element of the elements comparing equal have been deleted.

 usort(Fun, List1)

 Returns a list containing the sorted elements of List1 where all except the
first element of the elements comparing equal according to the
ordering function Fun have been deleted.
Fun(A, B) is to return true if A compares less than or equal to B in the
ordering, otherwise false.

 zip3(List1, List2, List3)

 Equivalent to zip3(List1, List2, List3, fail).

 zip3(List1, List2, List3, How)

 "Zips" three lists into one list of three-tuples, where the first element of
each tuple is taken from the first list, the second element is taken from the
corresponding element in the second list, and the third element is taken from
the corresponding element in the third list.

 zip(List1, List2)

 Equivalent to zip(List1, List2, fail).

 zip(List1, List2, How)

 "Zips" two lists into one list of two-tuples, where the first element of each
tuple is taken from the first list and the second element is taken from the
corresponding element in the second list.

 zipwith3(Combine, List1, List2, List3)

 Equivalent to zipwith3(Combine, List1, List2, List3, fail).

 zipwith3(Combine, List1, List2, List3, How)

 Combines the elements of three lists into one list. For each triple X, Y, Z of
list elements from the three lists, the element in the result list is
Combine(X, Y, Z).

 zipwith(Combine, List1, List2)

 Equivalent to zipwith(Combine, List1, List2, fail).

 zipwith(Combine, List1, List2, How)

 Combines the elements of two lists into one list. For each pair X, Y of list
elements from the two lists, the element in the result list is Combine(X, Y).

 Functions

 Link to this function

 all(Pred, List)

 View Source

 -spec all(Pred, List) -> boolean() when Pred :: fun((Elem :: T) -> boolean()), List :: [T], T :: term().

Returns true if Pred(Elem) returns true for all elements Elem in List,
otherwise false. The Pred function must return a boolean.

 Link to this function

 any(Pred, List)

 View Source

 -spec any(Pred, List) -> boolean() when Pred :: fun((Elem :: T) -> boolean()), List :: [T], T :: term().

Returns true if Pred(Elem) returns true for at least one element Elem in
List. The Pred function must return a boolean.

 Link to this function

 append(ListOfLists)

 View Source

 -spec append(ListOfLists) -> List1 when ListOfLists :: [List], List :: [T], List1 :: [T], T :: term().

Returns a list in which all the sublists of ListOfLists have been appended.
Example:
> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1,2,3,a,b,4,5,6]

 Link to this function

 append(List1, List2)

 View Source

 -spec append(List1, List2) -> List3 when List1 :: [T], List2 :: [T], List3 :: [T], T :: term().

Returns a new list List3, which is made from the elements of List1 followed
by the elements of List2.
Example:
> lists:append("abc", "def").
"abcdef"
lists:append(A, B) is equivalent to A ++ B.

 Link to this function

 concat(Things)

 View Source

 -spec concat(Things) -> string()
 when Things :: [Thing], Thing :: atom() | integer() | float() | string().

Concatenates the text representation of the elements of Things. The elements
of Things can be atoms, integers, floats, or strings.
Example:
> lists:concat([doc, '/', file, '.', 3]).
"doc/file.3"

 Link to this function

 delete(Elem, List1)

 View Source

 -spec delete(Elem, List1) -> List2 when Elem :: T, List1 :: [T], List2 :: [T], T :: term().

Returns a copy of List1 where the first element matching Elem is deleted, if
there is such an element.

 Link to this function

 droplast(List)

 View Source

 (since OTP 17.0)

 -spec droplast(List) -> InitList when List :: [T, ...], InitList :: [T], T :: term().

Drops the last element of a List. The list is to be non-empty, otherwise the
function crashes with a function_clause.

 Link to this function

 dropwhile(Pred, List1)

 View Source

 -spec dropwhile(Pred, List1) -> List2
 when Pred :: fun((Elem :: T) -> boolean()), List1 :: [T], List2 :: [T], T :: term().

Drops elements Elem from List1 while Pred(Elem) returns true and returns
the remaining list. The Pred function must return a boolean.

 Link to this function

 duplicate(N, Elem)

 View Source

 -spec duplicate(N, Elem) -> List when N :: non_neg_integer(), Elem :: T, List :: [T], T :: term().

Returns a list containing N copies of term Elem.
Example:
> lists:duplicate(5, xx).
[xx,xx,xx,xx,xx]

 Link to this function

 enumerate(List1)

 View Source

 (since OTP 25.0,OTP 26.0)

 -spec enumerate(List1) -> List2
 when List1 :: [T], List2 :: [{Index, T}], Index :: integer(), T :: term().

Equivalent to enumerate(1, 1, List1).

 Link to this function

 enumerate(Index, List1)

 View Source

 (since OTP 25.0,OTP 26.0)

 -spec enumerate(Index, List1) -> List2
 when List1 :: [T], List2 :: [{Index, T}], Index :: integer(), T :: term().

Equivalent to enumerate(Index, 1, List1).

 Link to this function

 enumerate(Index, Step, List1)

 View Source

 (since OTP 25.0,OTP 26.0)

 -spec enumerate(Index, Step, List1) -> List2
 when
 List1 :: [T],
 List2 :: [{Index, T}],
 Index :: integer(),
 Step :: integer(),
 T :: term().

Returns List1 with each element H replaced by a tuple of form {I, H} where
I is the position of H in List1. The enumeration starts with Index and
increases by Step in each step.
That is, enumerate/3 behaves as if it had been defined as
follows:
enumerate(I, S, List) ->
 {List1, _ } = lists:mapfoldl(fun(T, Acc) -> {{Acc, T}, Acc+S} end, I, List),
 List1.
The default values for Index and Step are both 1.
Examples:
> lists:enumerate([a,b,c]).
[{1,a},{2,b},{3,c}]
> lists:enumerate(10, [a,b,c]).
[{10,a},{11,b},{12,c}]
> lists:enumerate(0, -2, [a,b,c]).
[{0,a},{-2,b},{-4,c}]

 Link to this function

 filter(Pred, List1)

 View Source

 -spec filter(Pred, List1) -> List2
 when Pred :: fun((Elem :: T) -> boolean()), List1 :: [T], List2 :: [T], T :: term().

List2 is a list of all elements Elem in List1 for which Pred(Elem)
returns true. The Pred function must return a boolean.

 Link to this function

 filtermap(Fun, List1)

 View Source

 (since OTP R16B01)

 -spec filtermap(Fun, List1) -> List2
 when
 Fun :: fun((Elem) -> boolean() | {true, Value}),
 List1 :: [Elem],
 List2 :: [Elem | Value],
 Elem :: term(),
 Value :: term().

Calls Fun(Elem) on successive elements Elem of List1 in order to update or
remove elements from List1.
Fun/1 must return either a Boolean or a tuple {true, Value}. The function
returns the list of elements for which Fun returns a new value, where a value
of true is synonymous with {true, Elem}.
That is, filtermap behaves as if it had been defined as follows:
filtermap(Fun, List1) ->
 lists:foldr(fun(Elem, Acc) ->
 case Fun(Elem) of
 false -> Acc;
 true -> [Elem|Acc];
 {true,Value} -> [Value|Acc]
 end
 end, [], List1).
Example:
> lists:filtermap(fun(X) -> case X rem 2 of 0 -> {true, X div 2}; _ -> false end end, [1,2,3,4,5]).
[1,2]

 Link to this function

 flatlength(DeepList)

 View Source

 -spec flatlength(DeepList) -> non_neg_integer() when DeepList :: [term() | DeepList].

Equivalent to length(flatten(DeepList)), but more efficient.

 Link to this function

 flatmap(Fun, List1)

 View Source

 -spec flatmap(Fun, List1) -> List2
 when Fun :: fun((A) -> [B]), List1 :: [A], List2 :: [B], A :: term(), B :: term().

Takes a function from As to lists of Bs, and a list of As (List1) and
produces a list of Bs by applying the function to every element in List1 and
appending the resulting lists.
That is, flatmap behaves as if it had been defined as follows:
flatmap(Fun, List1) ->
 append(map(Fun, List1)).
Example:
> lists:flatmap(fun(X)->[X,X] end, [a,b,c]).
[a,a,b,b,c,c]

 Link to this function

 flatten(DeepList)

 View Source

 -spec flatten(DeepList) -> List when DeepList :: [term() | DeepList], List :: [term()].

Returns a flattened version of DeepList.

 Link to this function

 flatten(DeepList, Tail)

 View Source

 -spec flatten(DeepList, Tail) -> List
 when DeepList :: [term() | DeepList], Tail :: [term()], List :: [term()].

Returns a flattened version of DeepList with tail Tail appended.

 Link to this function

 foldl(Fun, Acc0, List)

 View Source

 -spec foldl(Fun, Acc0, List) -> Acc1
 when
 Fun :: fun((Elem :: T, AccIn) -> AccOut),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 List :: [T],
 T :: term().

Calls Fun(Elem, AccIn) on successive elements A of List, starting with
AccIn == Acc0. Fun/2 must return a new accumulator, which is passed to the
next call. The function returns the final value of the accumulator. Acc0 is
returned if the list is empty.
Example:
> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

 Link to this function

 foldr(Fun, Acc0, List)

 View Source

 -spec foldr(Fun, Acc0, List) -> Acc1
 when
 Fun :: fun((Elem :: T, AccIn) -> AccOut),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 List :: [T],
 T :: term().

Like foldl/3, but the list is traversed from right to left.
Example:
> P = fun(A, AccIn) -> io:format("~p ", [A]), AccIn end.
#Fun<erl_eval.12.2225172>
> lists:foldl(P, void, [1,2,3]).
1 2 3 void
> lists:foldr(P, void, [1,2,3]).
3 2 1 void
foldl/3 is tail recursive and is usually preferred to
foldr/3.

 Link to this function

 foreach(Fun, List)

 View Source

 -spec foreach(Fun, List) -> ok when Fun :: fun((Elem :: T) -> term()), List :: [T], T :: term().

Calls Fun(Elem) for each element Elem in List. This function is used for
its side effects and the evaluation order is defined to be the same as the order
of the elements in the list.

 Link to this function

 join(Sep, List1)

 View Source

 (since OTP 19.0)

 -spec join(Sep, List1) -> List2 when Sep :: T, List1 :: [T], List2 :: [T], T :: term().

Inserts Sep between each element in List1. Has no effect on the empty list
and on a singleton list. For example:
> lists:join(x, [a,b,c]).
[a,x,b,x,c]
> lists:join(x, [a]).
[a]
> lists:join(x, []).
[]

 Link to this function

 keydelete(Key, N, TupleList1)

 View Source

 -spec keydelete(Key, N, TupleList1) -> TupleList2
 when
 Key :: term(),
 N :: pos_integer(),
 TupleList1 :: [Tuple],
 TupleList2 :: [Tuple],
 Tuple :: tuple().

Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth
element compares equal to Key is deleted, if there is such a tuple.

 Link to this function

 keyfind(Key, N, TupleList)

 View Source

 -spec keyfind(Key, N, TupleList) -> Tuple | false
 when Key :: term(), N :: pos_integer(), TupleList :: [Tuple], Tuple :: tuple().

Searches the list of tuples TupleList for a tuple whose Nth element compares
equal to Key. Returns Tuple if such a tuple is found, otherwise false.

 Link to this function

 keymap(Fun, N, TupleList1)

 View Source

 -spec keymap(Fun, N, TupleList1) -> TupleList2
 when
 Fun :: fun((Term1 :: term()) -> Term2 :: term()),
 N :: pos_integer(),
 TupleList1 :: [Tuple],
 TupleList2 :: [Tuple],
 Tuple :: tuple().

Returns a list of tuples where, for each tuple in TupleList1, the Nth
element Term1 of the tuple has been replaced with the result of calling
Fun(Term1).
Examples:
> Fun = fun(Atom) -> atom_to_list(Atom) end.
#Fun<erl_eval.6.10732646>
2> lists:keymap(Fun, 2, [{name,jane,22},{name,lizzie,20},{name,lydia,15}]).
[{name,"jane",22},{name,"lizzie",20},{name,"lydia",15}]

 Link to this function

 keymember(Key, N, TupleList)

 View Source

 -spec keymember(Key, N, TupleList) -> boolean()
 when Key :: term(), N :: pos_integer(), TupleList :: [Tuple], Tuple :: tuple().

Returns true if there is a tuple in TupleList whose Nth element compares
equal to Key, otherwise false.

 Link to this function

 keymerge(N, TupleList1, TupleList2)

 View Source

 -spec keymerge(N, TupleList1, TupleList2) -> TupleList3
 when
 N :: pos_integer(),
 TupleList1 :: [T1],
 TupleList2 :: [T2],
 TupleList3 :: [T1 | T2],
 T1 :: Tuple,
 T2 :: Tuple,
 Tuple :: tuple().

Returns the sorted list formed by merging TupleList1 and TupleList2.
The merge is performed on the Nth element of each tuple. Both TupleList1 and
TupleList2 must be key-sorted before evaluating this function. When two tuples
compare equal, the tuple from TupleList1 is picked before the tuple from
TupleList2.

 Link to this function

 keyreplace(Key, N, TupleList1, NewTuple)

 View Source

 -spec keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
 when
 Key :: term(),
 N :: pos_integer(),
 TupleList1 :: [Tuple],
 TupleList2 :: [Tuple],
 NewTuple :: Tuple,
 Tuple :: tuple().

Returns a copy of TupleList1 where the first occurrence of a T tuple whose
Nth element compares equal to Key is replaced with NewTuple, if there is
such a tuple T.

 Link to this function

 keysearch(Key, N, TupleList)

 View Source

 -spec keysearch(Key, N, TupleList) -> {value, Tuple} | false
 when Key :: term(), N :: pos_integer(), TupleList :: [Tuple], Tuple :: tuple().

Searches the list of tuples TupleList for a tuple whose Nth element compares
equal to Key. Returns {value, Tuple} if such a tuple is found, otherwise
false.
Note
This function is retained for backward compatibility. Function keyfind/3 is
usually more convenient.

 Link to this function

 keysort(N, TupleList1)

 View Source

 -spec keysort(N, TupleList1) -> TupleList2
 when N :: pos_integer(), TupleList1 :: [Tuple], TupleList2 :: [Tuple], Tuple :: tuple().

Returns a list containing the sorted elements of list TupleList1. Sorting is
performed on the Nth element of the tuples. The sort is stable.

 Link to this function

 keystore(Key, N, TupleList1, NewTuple)

 View Source

 -spec keystore(Key, N, TupleList1, NewTuple) -> TupleList2
 when
 Key :: term(),
 N :: pos_integer(),
 TupleList1 :: [Tuple],
 TupleList2 :: [Tuple, ...],
 NewTuple :: Tuple,
 Tuple :: tuple().

Returns a copy of TupleList1 where the first occurrence of a tuple T whose
Nth element compares equal to Key is replaced with NewTuple, if there is
such a tuple T. If there is no such tuple T, a copy of TupleList1 where
[NewTuple] has been appended to the end is returned.

 Link to this function

 keytake(Key, N, TupleList1)

 View Source

 -spec keytake(Key, N, TupleList1) -> {value, Tuple, TupleList2} | false
 when
 Key :: term(),
 N :: pos_integer(),
 TupleList1 :: [tuple()],
 TupleList2 :: [tuple()],
 Tuple :: tuple().

Searches the list of tuples TupleList1 for a tuple whose Nth element
compares equal to Key. Returns {value, Tuple, TupleList2} if such a tuple is
found, otherwise false. TupleList2 is a copy of TupleList1 where the first
occurrence of Tuple has been removed.

 Link to this function

 last(List)

 View Source

 -spec last(List) -> Last when List :: [T, ...], Last :: T, T :: term().

Returns the last element in List.

 Link to this function

 map(Fun, List1)

 View Source

 -spec map(Fun, List1) -> List2
 when Fun :: fun((A) -> B), List1 :: [A], List2 :: [B], A :: term(), B :: term().

Takes a function from As to Bs, and a list of As and produces a list of
Bs by applying the function to every element in the list. This function is
used to obtain the return values. The evaluation order depends on the
implementation.

 Link to this function

 mapfoldl(Fun, Acc0, List1)

 View Source

 -spec mapfoldl(Fun, Acc0, List1) -> {List2, Acc1}
 when
 Fun :: fun((A, AccIn) -> {B, AccOut}),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 List1 :: [A],
 List2 :: [B],
 A :: term(),
 B :: term().

Combines the operations of map/2 and foldl/3 into one pass.
Example:
Summing the elements in a list and double them at the same time:
> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).
{[2,4,6,8,10],15}

 Link to this function

 mapfoldr(Fun, Acc0, List1)

 View Source

 -spec mapfoldr(Fun, Acc0, List1) -> {List2, Acc1}
 when
 Fun :: fun((A, AccIn) -> {B, AccOut}),
 Acc0 :: term(),
 Acc1 :: term(),
 AccIn :: term(),
 AccOut :: term(),
 List1 :: [A],
 List2 :: [B],
 A :: term(),
 B :: term().

Combines the operations of map/2 and foldr/3 into one pass.

 Link to this function

 max(List)

 View Source

 -spec max(List) -> Max when List :: [T, ...], Max :: T, T :: term().

Returns the first element of List that compares greater than or equal to all
other elements of List.

 Link to this function

 member(Elem, List)

 View Source

 -spec member(Elem, List) -> boolean() when Elem :: T, List :: [T], T :: term().

Returns true if Elem matches some element of List, otherwise false.

 Link to this function

 merge3(List1, List2, List3)

 View Source

 -spec merge3(List1, List2, List3) -> List4
 when
 List1 :: [X],
 List2 :: [Y],
 List3 :: [Z],
 List4 :: [X | Y | Z],
 X :: term(),
 Y :: term(),
 Z :: term().

Returns the sorted list formed by merging List1, List2, and List3. All of
List1, List2, and List3 must be sorted before evaluating this function.
When two elements compare equal, the element from List1, if there is such an
element, is picked before the other element, otherwise the element from List2
is picked before the element from List3.

 Link to this function

 merge(ListOfLists)

 View Source

 -spec merge(ListOfLists) -> List1 when ListOfLists :: [List], List :: [T], List1 :: [T], T :: term().

Returns the sorted list formed by merging all the sublists of ListOfLists. All
sublists must be sorted before evaluating this function.
When two elements compare equal, the element from the sublist with the lowest
position in ListOfLists is picked before the other element.

 Link to this function

 merge(List1, List2)

 View Source

 -spec merge(List1, List2) -> List3
 when List1 :: [X], List2 :: [Y], List3 :: [X | Y], X :: term(), Y :: term().

Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted before evaluating this function.
When two elements compare equal, the element from List1 is picked before the
element from List2.

 Link to this function

 merge(Fun, List1, List2)

 View Source

 -spec merge(Fun, List1, List2) -> List3
 when
 Fun :: fun((A, B) -> boolean()),
 List1 :: [A],
 List2 :: [B],
 List3 :: [A | B],
 A :: term(),
 B :: term().

Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted according to the
ordering function Fun before evaluating this
function.
Fun(A, B) is to return true if A compares less than or equal to
B in the ordering, otherwise false. When two elements compare equal, the
element from List1 is picked before the element from List2.

 Link to this function

 min(List)

 View Source

 -spec min(List) -> Min when List :: [T, ...], Min :: T, T :: term().

Returns the first element of List that compares less than or equal to all
other elements of List.

 Link to this function

 nth(N, List)

 View Source

 -spec nth(N, List) -> Elem when N :: pos_integer(), List :: [T, ...], Elem :: T, T :: term().

Returns the Nth element of List.
Example:
> lists:nth(3, [a, b, c, d, e]).
c

 Link to this function

 nthtail(N, List)

 View Source

 -spec nthtail(N, List) -> Tail when N :: non_neg_integer(), List :: [T, ...], Tail :: [T], T :: term().

Returns the Nth tail of List, that is, the sublist of List starting at
N+1 and continuing up to the end of the list.
Example
> lists:nthtail(3, [a, b, c, d, e]).
[d,e]
> tl(tl(tl([a, b, c, d, e]))).
[d,e]
> lists:nthtail(0, [a, b, c, d, e]).
[a,b,c,d,e]
> lists:nthtail(5, [a, b, c, d, e]).
[]

 Link to this function

 partition(Pred, List)

 View Source

 -spec partition(Pred, List) -> {Satisfying, NotSatisfying}
 when
 Pred :: fun((Elem :: T) -> boolean()),
 List :: [T],
 Satisfying :: [T],
 NotSatisfying :: [T],
 T :: term().

Partitions List into two lists, where the first list contains all elements for
which Pred(Elem) returns true, and the second list contains all elements for
which Pred(Elem) returns false.
Examples:
> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1,3,5,7],[2,4,6]}
> lists:partition(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b,c,d,e],[1,2,3,4]}
For a different way to partition a list, see splitwith/2.

 Link to this function

 prefix(List1, List2)

 View Source

 -spec prefix(List1, List2) -> boolean() when List1 :: [T], List2 :: [T], T :: term().

Returns true if List1 is a prefix of List2, otherwise false.

 Link to this function

 reverse(List1)

 View Source

 -spec reverse(List1) -> List2 when List1 :: [T], List2 :: [T], T :: term().

Returns a list with the elements in List1 in reverse order.

 Link to this function

 reverse(List1, Tail)

 View Source

 -spec reverse(List1, Tail) -> List2 when List1 :: [T], Tail :: term(), List2 :: [T], T :: term().

Returns a list with the elements in List1 in reverse order, with tail Tail
appended.
Example:
> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4,3,2,1,a,b,c]

 Link to this function

 search(Pred, List)

 View Source

 (since OTP 21.0)

 -spec search(Pred, List) -> {value, Value} | false
 when Pred :: fun((T) -> boolean()), List :: [T], Value :: T.

If there is a Value in List such that Pred(Value) returns true, returns
{value, Value} for the first such Value, otherwise returns false. The
Pred function must return a boolean.

 Link to this function

 seq(From, To)

 View Source

 -spec seq(From, To) -> Seq when From :: integer(), To :: integer(), Seq :: [integer()].

Equivalent to seq(From, To, 1).

 Link to this function

 seq(From, To, Incr)

 View Source

 -spec seq(From, To, Incr) -> Seq
 when From :: integer(), To :: integer(), Incr :: integer(), Seq :: [integer()].

Returns a sequence of integers that starts with From and contains the
successive results of adding Incr to the previous element, until To is
reached or passed (in the latter case, To is not an element of the sequence).
Incr defaults to 1.
Failures:
	If To < From - Incr and Incr > 0.
	If To > From - Incr and Incr < 0.
	If Incr =:= 0 and From =/= To.

The following equalities hold for all sequences:
length(lists:seq(From, To)) =:= To - From + 1
length(lists:seq(From, To, Incr)) =:= (To - From + Incr) div Incr
Examples:
> lists:seq(1, 10).
[1,2,3,4,5,6,7,8,9,10]
> lists:seq(1, 20, 3).
[1,4,7,10,13,16,19]
> lists:seq(1, 0, 1).
[]
> lists:seq(10, 6, 4).
[]
> lists:seq(1, 1, 0).
[1]

 Link to this function

 sort(List1)

 View Source

 -spec sort(List1) -> List2 when List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the sorted elements of List1.

 Link to this function

 sort(Fun, List1)

 View Source

 -spec sort(Fun, List1) -> List2
 when Fun :: fun((A :: T, B :: T) -> boolean()), List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the sorted elements of List1, according to the
ordering function Fun. Fun(A, B) is to return
true if A compares less than or equal to B in the ordering, otherwise
false.

 Link to this function

 split(N, List1)

 View Source

 -spec split(N, List1) -> {List2, List3}
 when N :: non_neg_integer(), List1 :: [T], List2 :: [T], List3 :: [T], T :: term().

Splits List1 into List2 and List3. List2 contains the first N elements
and List3 the remaining elements (the Nth tail).

 Link to this function

 splitwith(Pred, List)

 View Source

 -spec splitwith(Pred, List) -> {List1, List2}
 when
 Pred :: fun((T) -> boolean()),
 List :: [T],
 List1 :: [T],
 List2 :: [T],
 T :: term().

Partitions List into two lists according to Pred.
splitwith/2 behaves as if it is defined as follows:
splitwith(Pred, List) ->
 {takewhile(Pred, List), dropwhile(Pred, List)}.
Examples:
> lists:splitwith(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6,7]).
{[1],[2,3,4,5,6,7]}
> lists:splitwith(fun(A) -> is_atom(A) end, [a,b,1,c,d,2,3,4,e]).
{[a,b],[1,c,d,2,3,4,e]}
The Pred function must return a boolean. For a different way to partition a
list, see partition/2.

 Link to this function

 sublist(List1, Len)

 View Source

 -spec sublist(List1, Len) -> List2
 when List1 :: [T], List2 :: [T], Len :: non_neg_integer(), T :: term().

Returns the sublist of List1 starting at position 1 and with (maximum) Len
elements. It is not an error for Len to exceed the length of the list, in that
case the whole list is returned.

 Link to this function

 sublist(List1, Start, Len)

 View Source

 -spec sublist(List1, Start, Len) -> List2
 when
 List1 :: [T],
 List2 :: [T],
 Start :: pos_integer(),
 Len :: non_neg_integer(),
 T :: term().

Returns the sublist of List1 starting at Start and with (maximum) Len
elements. It is not an error for Start+Len to exceed the length of the list.
Examples:
> lists:sublist([1,2,3,4], 2, 2).
[2,3]
> lists:sublist([1,2,3,4], 2, 5).
[2,3,4]
> lists:sublist([1,2,3,4], 5, 2).
[]

 Link to this function

 subtract(List1, List2)

 View Source

 -spec subtract(List1, List2) -> List3 when List1 :: [T], List2 :: [T], List3 :: [T], T :: term().

Returns a new list List3 that is a copy of List1, subjected to the following
procedure: for each element in List2, its first occurrence in List1 is
deleted.
Example:
> lists:subtract("123212", "212").
"312".
lists:subtract(A, B) is equivalent to A -- B.

 Link to this function

 suffix(List1, List2)

 View Source

 -spec suffix(List1, List2) -> boolean() when List1 :: [T], List2 :: [T], T :: term().

Returns true if List1 is a suffix of List2, otherwise false.

 Link to this function

 sum(List)

 View Source

 -spec sum(List) -> number() when List :: [number()].

Returns the sum of the elements in List.

 Link to this function

 takewhile(Pred, List1)

 View Source

 -spec takewhile(Pred, List1) -> List2
 when Pred :: fun((Elem :: T) -> boolean()), List1 :: [T], List2 :: [T], T :: term().

Takes elements Elem from List1 while Pred(Elem) returns true, that is,
the function returns the longest prefix of the list for which all elements
satisfy the predicate. The Pred function must return a boolean.

 Link to this function

 ukeymerge(N, TupleList1, TupleList2)

 View Source

 -spec ukeymerge(N, TupleList1, TupleList2) -> TupleList3
 when
 N :: pos_integer(),
 TupleList1 :: [T1],
 TupleList2 :: [T2],
 TupleList3 :: [T1 | T2],
 T1 :: Tuple,
 T2 :: Tuple,
 Tuple :: tuple().

Returns the sorted list formed by merging TupleList1 and TupleList2. The
merge is performed on the Nth element of each tuple. Both TupleList1 and
TupleList2 must be key-sorted without duplicates before evaluating this
function.
When two tuples compare equal, the tuple from TupleList1 is picked
and the one from TupleList2 is deleted.

 Link to this function

 ukeysort(N, TupleList1)

 View Source

 -spec ukeysort(N, TupleList1) -> TupleList2
 when
 N :: pos_integer(), TupleList1 :: [Tuple], TupleList2 :: [Tuple], Tuple :: tuple().

Returns a list containing the sorted elements of list TupleList1 where all
except the first tuple of the tuples comparing equal have been deleted. Sorting
is performed on the Nth element of the tuples.

 Link to this function

 umerge3(List1, List2, List3)

 View Source

 -spec umerge3(List1, List2, List3) -> List4
 when
 List1 :: [X],
 List2 :: [Y],
 List3 :: [Z],
 List4 :: [X | Y | Z],
 X :: term(),
 Y :: term(),
 Z :: term().

Returns the sorted list formed by merging List1, List2, and List3. All of
List1, List2, and List3 must be sorted and contain no duplicates before
evaluating this function.
When two elements compare equal, the element from
List1 is picked if there is such an element, otherwise the element from
List2 is picked, and the other is deleted.

 Link to this function

 umerge(ListOfLists)

 View Source

 -spec umerge(ListOfLists) -> List1 when ListOfLists :: [List], List :: [T], List1 :: [T], T :: term().

Returns the sorted list formed by merging all the sublists of ListOfLists. All
sublists must be sorted and contain no duplicates before evaluating this
function.
When two elements compare equal, the element from the sublist with the
lowest position in ListOfLists is picked and the other is deleted.

 Link to this function

 umerge(List1, List2)

 View Source

 -spec umerge(List1, List2) -> List3
 when List1 :: [X], List2 :: [Y], List3 :: [X | Y], X :: term(), Y :: term().

Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted and contain no duplicates before evaluating this
function.
When two elements compare equal, the element from List1 is picked
and the one from List2 is deleted.

 Link to this function

 umerge(Fun, List1, List2)

 View Source

 -spec umerge(Fun, List1, List2) -> List3
 when
 Fun :: fun((A, B) -> boolean()),
 List1 :: [A],
 List2 :: [B],
 List3 :: [A | B],
 A :: term(),
 B :: term().

Returns the sorted list formed by merging List1 and List2. Both List1 and
List2 must be sorted according to the
ordering function Fun and contain no duplicates
before evaluating this function.
Fun(A, B) is to return true if A compares
less than or equal to B in the ordering, otherwise false. When two elements
compare equal, the element from List1 is picked and the one from List2 is
deleted.

 Link to this function

 uniq(List1)

 View Source

 (since OTP 25.0)

 -spec uniq(List1) -> List2 when List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the elements of List1 with duplicated elements
removed (preserving the order of the elements). The first occurrence of each
element is kept.
Examples:
> lists:uniq([3,3,1,2,1,2,3]).
[3,1,2]
> lists:uniq([a, a, 1, b, 2, a, 3]).
[a, 1, b, 2, 3]

 Link to this function

 uniq(Fun, List1)

 View Source

 (since OTP 25.0)

 -spec uniq(Fun, List1) -> List2 when Fun :: fun((T) -> any()), List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the elements of List1 without the elements for which
Fun returned duplicate values (preserving the order of the elements). The
first occurrence of each element is kept.
Examples:
> lists:uniq(fun({X, _}) -> X end, [{b, 2}, {a, 1}, {c, 3}, {a, 2}]).
[{b, 2}, {a, 1}, {c, 3}]

 Link to this function

 unzip3(List1)

 View Source

 -spec unzip3(List1) -> {List2, List3, List4}
 when
 List1 :: [{A, B, C}],
 List2 :: [A],
 List3 :: [B],
 List4 :: [C],
 A :: term(),
 B :: term(),
 C :: term().

"Unzips" a list of three-tuples into three lists, where the first list contains
the first element of each tuple, the second list contains the second element of
each tuple, and the third list contains the third element of each tuple.

 Link to this function

 unzip(List1)

 View Source

 -spec unzip(List1) -> {List2, List3}
 when List1 :: [{A, B}], List2 :: [A], List3 :: [B], A :: term(), B :: term().

"Unzips" a list of two-tuples into two lists, where the first list contains the
first element of each tuple, and the second list contains the second element of
each tuple.

 Link to this function

 usort(List1)

 View Source

 -spec usort(List1) -> List2 when List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the sorted elements of List1 where all except the
first element of the elements comparing equal have been deleted.

 Link to this function

 usort(Fun, List1)

 View Source

 -spec usort(Fun, List1) -> List2
 when Fun :: fun((T, T) -> boolean()), List1 :: [T], List2 :: [T], T :: term().

Returns a list containing the sorted elements of List1 where all except the
first element of the elements comparing equal according to the
ordering function Fun have been deleted.
Fun(A, B) is to return true if A compares less than or equal to B in the
ordering, otherwise false.

 Link to this function

 zip3(List1, List2, List3)

 View Source

 (since OTP 26.0)

 -spec zip3(List1, List2, List3) -> List4
 when
 List1 :: [A],
 List2 :: [B],
 List3 :: [C],
 List4 :: [{A, B, C}],
 A :: term(),
 B :: term(),
 C :: term().

Equivalent to zip3(List1, List2, List3, fail).

 Link to this function

 zip3(List1, List2, List3, How)

 View Source

 (since OTP 26.0)

 -spec zip3(List1, List2, List3, How) -> List4
 when
 List1 :: [A],
 List2 :: [B],
 List3 :: [C],
 List4 :: [{A | DefaultA, B | DefaultB, C | DefaultC}],
 A :: term(),
 B :: term(),
 C :: term(),
 How :: fail | trim | {pad, {DefaultA, DefaultB, DefaultC}},
 DefaultA :: term(),
 DefaultB :: term(),
 DefaultC :: term().

"Zips" three lists into one list of three-tuples, where the first element of
each tuple is taken from the first list, the second element is taken from the
corresponding element in the second list, and the third element is taken from
the corresponding element in the third list.
For a description of the How parameter, see zip/3.

 Link to this function

 zip(List1, List2)

 View Source

 (since OTP 26.0)

 -spec zip(List1, List2) -> List3
 when List1 :: [A], List2 :: [B], List3 :: [{A, B}], A :: term(), B :: term().

Equivalent to zip(List1, List2, fail).

 Link to this function

 zip(List1, List2, How)

 View Source

 (since OTP 26.0)

 -spec zip(List1, List2, How) -> List3
 when
 List1 :: [A],
 List2 :: [B],
 List3 :: [{A | DefaultA, B | DefaultB}],
 A :: term(),
 B :: term(),
 How :: fail | trim | {pad, {DefaultA, DefaultB}},
 DefaultA :: term(),
 DefaultB :: term().

"Zips" two lists into one list of two-tuples, where the first element of each
tuple is taken from the first list and the second element is taken from the
corresponding element in the second list.
The How parameter specifies the behavior if the given lists are of different
lengths.
	fail - The call will fail if the given lists are not of equal length.
This is the default.

	trim - Surplus elements from the longer list will be ignored.
Examples:
> lists:zip([a, b], [1, 2, 3], trim).
[{a,1},{b,2}]
> lists:zip([a, b, c], [1, 2], trim).
[{a,1},{b,2}]

	{pad, Defaults} - The shorter list will be padded to the length of the
longer list, using the respective elements from the given Defaults tuple.
Examples:
> lists:zip([a, b], [1, 2, 3], {pad, {x, 0}}).
[{a,1},{b,2},{x,3}]
> lists:zip([a, b, c], [1, 2], {pad, {x, 0}}).
[{a,1},{b,2},{c,0}]

 Link to this function

 zipwith3(Combine, List1, List2, List3)

 View Source

 (since OTP 26.0)

 -spec zipwith3(Combine, List1, List2, List3) -> List4
 when
 Combine :: fun((X, Y, Z) -> T),
 List1 :: [X],
 List2 :: [Y],
 List3 :: [Z],
 List4 :: [T],
 X :: term(),
 Y :: term(),
 Z :: term(),
 T :: term().

Equivalent to zipwith3(Combine, List1, List2, List3, fail).

 Link to this function

 zipwith3(Combine, List1, List2, List3, How)

 View Source

 (since OTP 26.0)

 -spec zipwith3(Combine, List1, List2, List3, How) -> List4
 when
 Combine :: fun((X | DefaultX, Y | DefaultY, Z | DefaultZ) -> T),
 List1 :: [X],
 List2 :: [Y],
 List3 :: [Z],
 List4 :: [T],
 X :: term(),
 Y :: term(),
 Z :: term(),
 How :: fail | trim | {pad, {DefaultX, DefaultY, DefaultZ}},
 DefaultX :: term(),
 DefaultY :: term(),
 DefaultZ :: term(),
 T :: term().

Combines the elements of three lists into one list. For each triple X, Y, Z of
list elements from the three lists, the element in the result list is
Combine(X, Y, Z).
For a description of the How parameter, see zip/3.
zipwith3(fun(X, Y, Z) -> {X,Y,Z} end, List1, List2, List3) is
equivalent to zip3(List1, List2, List3).
Examples:
> lists:zipwith3(fun(X, Y, Z) -> X+Y+Z end, [1,2,3], [4,5,6], [7,8,9]).
[12,15,18]
> lists:zipwith3(fun(X, Y, Z) -> [X,Y,Z] end, [a,b,c], [x,y,z], [1,2,3]).
[[a,x,1],[b,y,2],[c,z,3]]

 Link to this function

 zipwith(Combine, List1, List2)

 View Source

 (since OTP 26.0)

 -spec zipwith(Combine, List1, List2) -> List3
 when
 Combine :: fun((X, Y) -> T),
 List1 :: [X],
 List2 :: [Y],
 List3 :: [T],
 X :: term(),
 Y :: term(),
 T :: term().

Equivalent to zipwith(Combine, List1, List2, fail).

 Link to this function

 zipwith(Combine, List1, List2, How)

 View Source

 (since OTP 26.0)

 -spec zipwith(Combine, List1, List2, How) -> List3
 when
 Combine :: fun((X | DefaultX, Y | DefaultY) -> T),
 List1 :: [X],
 List2 :: [Y],
 List3 :: [T],
 X :: term(),
 Y :: term(),
 How :: fail | trim | {pad, {DefaultX, DefaultY}},
 DefaultX :: term(),
 DefaultY :: term(),
 T :: term().

Combines the elements of two lists into one list. For each pair X, Y of list
elements from the two lists, the element in the result list is Combine(X, Y).
For a description of the How parameter, see zip/3.
zipwith(fun(X, Y) -> {X,Y} end, List1, List2) is equivalent to
zip(List1, List2).
Example:
> lists:zipwith(fun(X, Y) -> X+Y end, [1,2,3], [4,5,6]).
[5,7,9]

 maps - stdlib v5.2.1

maps

Maps processing functions.
This module contains functions for maps processing. The Efficiency Guide
contains a chapter that describes
how to use maps efficiently.

 Summary

 Types

 iterator()

 iterator(Map, Order)

 An iterator representing the associations in a map with keys of type Key and
values of type Value.

 iterator_order()

 iterator_order(Key)

 Key-based iterator order option that can be one of undefined (default for
maps:iterator/1), ordered (sorted in map-key order),
reversed, or a custom sorting function.

 Functions

 filter(Pred, MapOrIter)

 Returns a map Map for which predicate Pred holds true in MapOrIter.

 filtermap(Fun, MapOrIter)

 Returns a map Map that is the result of calling Fun(Key, Value1) for every
Key to value Value1 association in MapOrIter in any order.

 find(Key, Map)

 Returns a tuple {ok, Value}, where Value is the value associated with Key,
or error if no value is associated with Key in Map.

 fold(Fun, Init, MapOrIter)

 Calls F(Key, Value, AccIn) for every Key to value Value association in
MapOrIter in any order. Function fun F/3 must return a new accumulator,
which is passed to the next successive call. This function returns the final
value of the accumulator. The initial accumulator value Init is returned if
the map is empty.

 foreach(Fun, MapOrIter)

 Calls fun F(Key, Value) for every Key to value Value association in
MapOrIter in any order.

 from_keys(Keys, Value)

 Takes a list of keys and a value and builds a map where all keys point to the
same value. The key can be in any order, and keys and value can be of any term.

 from_list(List)

 Takes a list of key-value tuples elements and builds a map. The associations can
be in any order, and both keys and values in the association can be of any term.

 get(Key, Map)

 Returns value Value associated with Key if Map contains Key.

 get(Key, Map, Default)

 Returns value Value associated with Key if Map contains Key. If no value
is associated with Key, Default is returned.

 groups_from_list(KeyFun, List)

 Partitions the given List into a map of groups.

 groups_from_list(KeyFun, ValueFun, List)

 Partitions the given List into a map of groups.

 intersect(Map1, Map2)

 Intersects two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is superseded by the value in Map2.

 intersect_with(Combiner, Map1, Map2)

 Intersects two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is combined with the value in Map2 by the Combiner fun.

 is_key(Key, Map)

 Returns true if map Map contains Key and returns false if it does not
contain the Key.

 iterator(Map)

 Returns a map iterator Iterator that can be used by maps:next/1
to traverse the key-value associations in a map. When iterating over a map, the
memory usage is guaranteed to be bounded no matter the size of the map.

 iterator(Map, Order)

 Returns a map iterator Iterator that can be used by maps:next/1
to traverse the key-value associations in a map sorted by key using the given
Order.

 keys(Map)

 Returns a complete list of keys, in any order, which resides within Map.

 map(Fun, MapOrIter)

 Produces a new map Map by calling function fun F(Key, Value1) for every
Key to value Value1 association in MapOrIter in any order. Function
fun Fun/2 must return value Value2 to be associated with key Key for the
new map Map.

 merge(Map1, Map2)

 Merges two maps into a single map Map3. If two keys exist in both maps, the
value in Map1 is superseded by the value in Map2.

 merge_with(Combiner, Map1, Map2)

 Merges two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is combined with the value in Map2 by the Combiner fun.

 new()

 Returns a new empty map.

 next(Iterator)

 Returns the next key-value association in Iterator and a new iterator for the
remaining associations in the iterator.

 put(Key, Value, Map1)

 Associates Key with value Value and inserts the association into map Map2.
If key Key already exists in map Map1, the old associated value is replaced
by value Value. The function returns a new map Map2 containing the new
association and the old associations in Map1.

 remove(Key, Map1)

 Removes the Key, if it exists, and its associated value from Map1 and
returns a new map Map2 without key Key.

 size(Map)

 Returns the number of key-value associations in Map. This operation occurs in
constant time.

 take(Key, Map1)

 The function removes the Key, if it exists, and its associated value from
Map1 and returns a tuple with the removed Value and the new map Map2
without key Key. If the key does not exist error is returned.

 to_list(MapOrIterator)

 Returns a list of pairs representing the key-value associations of
MapOrIterator, where the pairs [{K1,V1}, ..., {Kn,Vn}] are returned in
arbitrary order.

 update(Key, Value, Map1)

 If Key exists in Map1, the old associated value is replaced by value
Value. The function returns a new map Map2 containing the new associated
value.

 update_with(Key, Fun, Map1)

 Update a value in a Map1 associated with Key by calling Fun on the old
value to get a new value. An exception {badkey,Key} is generated if Key is
not present in the map.

 update_with(Key, Fun, Init, Map1)

 Update a value in a Map1 associated with Key by calling Fun on the old
value to get a new value. If Key is not present in Map1 then Init will be
associated with Key.

 values(Map)

 Returns a complete list of values, in arbitrary order, contained in map Map.

 with(Ks, Map1)

 Returns a new map Map2 with the keys K1 through Kn and their associated
values from map Map1. Any key in Ks that does not exist in Map1 is
ignored.

 without(Ks, Map1)

 Returns a new map Map2 without keys K1 through Kn and their associated
values from map Map1. Any key in Ks that does not exist in Map1 is ignored

 Types

 Link to this type

 iterator()

 View Source

 (since OTP 17.0)

 -type iterator() :: iterator(term(), term()).

 Link to this opaque

 iterator(Map, Order)

 View Source

 (since OTP 17.0)

 -opaque iterator(Key, Value)

An iterator representing the associations in a map with keys of type Key and
values of type Value.
Created using maps:iterator/1 or
maps:iterator/2.
Consumed by:
	maps:next/1
	maps:filter/2
	maps:filtermap/2
	maps:fold/3
	maps:foreach/2
	maps:map/2
	maps:to_list/1

 Link to this type

 iterator_order()

 View Source

 (since OTP 17.0)

 -type iterator_order() :: iterator_order(term()).

 Link to this type

 iterator_order(Key)

 View Source

 (since OTP 17.0)

 -type iterator_order(Key) :: undefined | ordered | reversed | fun((A :: Key, B :: Key) -> boolean()).

Key-based iterator order option that can be one of undefined (default for
maps:iterator/1), ordered (sorted in map-key order),
reversed, or a custom sorting function.
Used by maps:iterator/2.
The Expressions section contains
descriptions of how terms are ordered.

 Functions

 Link to this function

 filter(Pred, MapOrIter)

 View Source

 (since OTP 18.0)

 -spec filter(Pred, MapOrIter) -> Map
 when
 Pred :: fun((Key, Value) -> boolean()),
 MapOrIter :: #{Key => Value} | iterator(Key, Value),
 Map :: #{Key => Value}.

Returns a map Map for which predicate Pred holds true in MapOrIter.
The call fails with a {badmap,Map} exception if MapOrIter is not a map or
valid iterator, or with badarg if Pred is not a function of arity 2.
Example:
> M = #{a => 2, b => 3, c=> 4, "a" => 1, "b" => 2, "c" => 4},
 Pred = fun(K,V) -> is_atom(K) andalso (V rem 2) =:= 0 end,
 maps:filter(Pred,M).
#{a => 2,c => 4}

 Link to this function

 filtermap(Fun, MapOrIter)

 View Source

 (since OTP 24.0)

 -spec filtermap(Fun, MapOrIter) -> Map
 when
 Fun :: fun((Key, Value1) -> boolean() | {true, Value2}),
 MapOrIter :: #{Key => Value1} | iterator(Key, Value1),
 Map :: #{Key => Value1 | Value2}.

Returns a map Map that is the result of calling Fun(Key, Value1) for every
Key to value Value1 association in MapOrIter in any order.
If Fun(Key, Value1) returns true, the association is copied to the result
map. If it returns false, the association is not copied. If it returns
{true, NewValue}, the value for Key is replaced with NewValue in the
result map.
The call fails with a {badmap,Map} exception if MapOrIter is not a map or
valid iterator, or with badarg if Fun is not a function of arity 2.
Example:
> Fun = fun(K,V) when is_atom(K) -> {true, V*2}; (_,V) -> (V rem 2) =:= 0 end,
 Map = #{k1 => 1, "k2" => 2, "k3" => 3},
 maps:filtermap(Fun,Map).
#{k1 => 2,"k2" => 2}

 Link to this function

 find(Key, Map)

 View Source

 (since OTP 17.0)

 -spec find(Key, Map) -> {ok, Value} | error when Map :: #{Key => Value, _ => _}.

Returns a tuple {ok, Value}, where Value is the value associated with Key,
or error if no value is associated with Key in Map.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> Map = #{"hi" => 42},
 Key = "hi",
 maps:find(Key,Map).
{ok,42}

 Link to this function

 fold(Fun, Init, MapOrIter)

 View Source

 (since OTP 17.0)

 -spec fold(Fun, Init, MapOrIter) -> Acc
 when
 Fun :: fun((Key, Value, AccIn) -> AccOut),
 Init :: term(),
 Acc :: AccOut,
 AccIn :: Init | AccOut,
 MapOrIter :: #{Key => Value} | iterator(Key, Value).

Calls F(Key, Value, AccIn) for every Key to value Value association in
MapOrIter in any order. Function fun F/3 must return a new accumulator,
which is passed to the next successive call. This function returns the final
value of the accumulator. The initial accumulator value Init is returned if
the map is empty.
The call fails with a {badmap,Map} exception if MapOrIter is not a map or
valid iterator, or with badarg if Fun is not a function of arity 3.
Example:
> Fun = fun(K,V,AccIn) when is_list(K) -> AccIn + V end,
 Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
 maps:fold(Fun,0,Map).
6

 Link to this function

 foreach(Fun, MapOrIter)

 View Source

 (since OTP 24.0)

 -spec foreach(Fun, MapOrIter) -> ok
 when
 Fun :: fun((Key, Value) -> term()),
 MapOrIter :: #{Key => Value} | iterator(Key, Value).

Calls fun F(Key, Value) for every Key to value Value association in
MapOrIter in any order.
The call fails with a {badmap,Map} exception if MapOrIter is not a map or
valid iterator, or with badarg if Fun is not a function of arity 2.

 Link to this function

 from_keys(Keys, Value)

 View Source

 (since OTP 24.0)

 -spec from_keys(Keys, Value) -> Map when Keys :: list(), Value :: term(), Map :: map().

Takes a list of keys and a value and builds a map where all keys point to the
same value. The key can be in any order, and keys and value can be of any term.
Example:
> Keys = ["a", "b", "c"], maps:from_keys(Keys, ok).
#{"a" => ok,"b" => ok,"c" => ok}

 Link to this function

 from_list(List)

 View Source

 (since OTP 17.0)

 -spec from_list(List) -> Map when List :: [{Key, Value}], Key :: term(), Value :: term(), Map :: map().

Takes a list of key-value tuples elements and builds a map. The associations can
be in any order, and both keys and values in the association can be of any term.
If the same key appears more than once, the latter (right-most) value is used
and the previous values are ignored.
Example:
> List = [{"a",ignored},{1337,"value two"},{42,value_three},{"a",1}],
 maps:from_list(List).
#{42 => value_three,1337 => "value two","a" => 1}

 Link to this function

 get(Key, Map)

 View Source

 (since OTP 17.0)

 -spec get(Key, Map) -> Value when Key :: term(), Map :: map(), Value :: term().

Returns value Value associated with Key if Map contains Key.
The call fails with a {badmap,Map} exception if Map is not a map, or with a
{badkey,Key} exception if no value is associated with Key.
Example:
> Key = 1337,
 Map = #{42 => value_two,1337 => "value one","a" => 1},
 maps:get(Key,Map).
"value one"

 Link to this function

 get(Key, Map, Default)

 View Source

 (since OTP 17.1)

 -spec get(Key, Map, Default) -> Value | Default when Map :: #{Key => Value, _ => _}.

Returns value Value associated with Key if Map contains Key. If no value
is associated with Key, Default is returned.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> Map = #{ key1 => val1, key2 => val2 }.
#{key1 => val1,key2 => val2}
> maps:get(key1, Map, "Default value").
val1
> maps:get(key3, Map, "Default value").
"Default value"

 Link to this function

 groups_from_list(KeyFun, List)

 View Source

 (since OTP 25.0)

 -spec groups_from_list(KeyFun, List) -> GroupsMap
 when
 KeyFun :: fun((Elem) -> Key),
 GroupsMap :: #{Key => Group},
 Key :: term(),
 List :: [Elem],
 Group :: [Elem],
 Elem :: term().

Partitions the given List into a map of groups.
The result is a map where each key is given by KeyFun and each value is a list
of elements from the given List for which KeyFun returned the same key.
The order of elements within each group list is preserved from the original
list.
Examples:
> EvenOdd = fun(X) -> case X rem 2 of 0 -> even; 1 -> odd end end,
maps:groups_from_list(EvenOdd, [1, 2, 3]).
#{even => [2], odd => [1, 3]}
> maps:groups_from_list(fun erlang:length/1, ["ant", "buffalo", "cat", "dingo"]).
#{3 => ["ant", "cat"], 5 => ["dingo"], 7 => ["buffalo"]}

 Link to this function

 groups_from_list(KeyFun, ValueFun, List)

 View Source

 (since OTP 25.0)

 -spec groups_from_list(KeyFun, ValueFun, List) -> GroupsMap
 when
 KeyFun :: fun((Elem) -> Key),
 ValueFun :: fun((Elem) -> Value),
 GroupsMap :: #{Key := Group},
 Key :: term(),
 Value :: term(),
 List :: [Elem],
 Group :: [Value],
 Elem :: term().

Partitions the given List into a map of groups.
The result is a map where each key is given by KeyFun and each value is a list
of elements from the given List, mapped via ValueFun, for which KeyFun
returned the same key.
The order of elements within each group list is preserved from the original
list.
Examples:
> EvenOdd = fun(X) -> case X rem 2 of 0 -> even; 1 -> odd end end,
> Square = fun(X) -> X * X end,
> maps:groups_from_list(EvenOdd, Square, [1, 2, 3]).
#{even => [4], odd => [1, 9]}
> maps:groups_from_list(
 fun erlang:length/1,
 fun lists:reverse/1,
 ["ant", "buffalo", "cat", "dingo"]).
#{3 => ["tna", "tac"],5 => ["ognid"],7 => ["olaffub"]}

 Link to this function

 intersect(Map1, Map2)

 View Source

 (since OTP 24.0)

 -spec intersect(Map1, Map2) -> Map3
 when Map1 :: #{Key => term()}, Map2 :: #{term() => Value2}, Map3 :: #{Key => Value2}.

Intersects two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is superseded by the value in Map2.
The call fails with a {badmap,Map} exception if Map1 or Map2 is not a map.
Example:
> Map1 = #{a => "value_one", b => "value_two"},
 Map2 = #{a => 1, c => 2},
 maps:intersect(Map1,Map2).
#{a => 1}

 Link to this function

 intersect_with(Combiner, Map1, Map2)

 View Source

 (since OTP 24.0)

 -spec intersect_with(Combiner, Map1, Map2) -> Map3
 when
 Map1 :: #{Key => Value1},
 Map2 :: #{term() => Value2},
 Combiner :: fun((Key, Value1, Value2) -> CombineResult),
 Map3 :: #{Key => CombineResult}.

Intersects two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is combined with the value in Map2 by the Combiner fun.
When Combiner is applied the key that exists in both maps is the first parameter,
the value from Map1 is the second parameter, and the value from Map2 is the
third parameter.
The call fails with a {badmap,Map} exception if Map1 or Map2 is not a map.
The call fails with a badarg exception if Combiner is not a fun that takes
three arguments.
Example:
> Map1 = #{a => "value_one", b => "value_two"},
 Map2 = #{a => 1, c => 2},
 maps:intersect_with(fun(_Key, Value1, Value2) -> {Value1, Value2} end, Map1, Map2).
#{a => {"value_one",1}}

 Link to this function

 is_key(Key, Map)

 View Source

 (since OTP 17.0)

 -spec is_key(Key, Map) -> boolean() when Key :: term(), Map :: map().

Returns true if map Map contains Key and returns false if it does not
contain the Key.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> Map = #{"42" => value}.
#{"42" => value}
> maps:is_key("42",Map).
true
> maps:is_key(value,Map).
false

 Link to this function

 iterator(Map)

 View Source

 (since OTP 21.0)

 -spec iterator(Map) -> Iterator when Map :: #{Key => Value}, Iterator :: iterator(Key, Value).

Returns a map iterator Iterator that can be used by maps:next/1
to traverse the key-value associations in a map. When iterating over a map, the
memory usage is guaranteed to be bounded no matter the size of the map.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> M = #{ a => 1, b => 2 }.
#{a => 1,b => 2}
> I = maps:iterator(M), ok.
ok
> {K1, V1, I2} = maps:next(I), {K1, V1}.
{a,1}
> {K2, V2, I3} = maps:next(I2),{K2, V2}.
{b,2}
> maps:next(I3).
none

 Link to this function

 iterator(Map, Order)

 View Source

 (since OTP 26.0)

 -spec iterator(Map, Order) -> Iterator
 when
 Map :: #{Key => Value},
 Order :: iterator_order(Key),
 Iterator :: iterator(Key, Value).

Returns a map iterator Iterator that can be used by maps:next/1
to traverse the key-value associations in a map sorted by key using the given
Order.
The call fails with a {badmap,Map} exception if Map is not a map or if
Order is invalid.
Example (when Order is ordered):
> M = #{ a => 1, b => 2 }.
#{a => 1,b => 2}
> OrdI = maps:iterator(M, ordered), ok.
ok
> {K1, V1, OrdI2} = maps:next(OrdI), {K1, V1}.
{a,1}
> {K2, V2, OrdI3} = maps:next(OrdI2),{K2, V2}.
{b,2}
> maps:next(OrdI3).
none
Example (when Order is reversed):
> M = #{ a => 1, b => 2 }.
#{a => 1,b => 2}
> RevI = maps:iterator(M, reversed), ok.
ok
> {K2, V2, RevI2} = maps:next(RevI), {K2, V2}.
{b,2}
> {K1, V1, RevI3} = maps:next(RevI2),{K1, V1}.
{a,1}
> maps:next(RevI3).
none
Example (when Order is an arithmetic sorting function):
> M = #{ -1 => a, -1.0 => b, 0 => c, 0.0 => d }.
#{-1 => a,0 => c,-1.0 => b,0.0 => d}
> ArithOrdI = maps:iterator(M, fun(A, B) -> A =< B end), ok.
ok
> maps:to_list(ArithOrdI).
[{-1,a},{-1.0,b},{0,c},{0.0,d}]
> ArithRevI = maps:iterator(M, fun(A, B) -> B < A end), ok.
ok
> maps:to_list(ArithRevI).
[{0.0,d},{0,c},{-1.0,b},{-1,a}]

 Link to this function

 keys(Map)

 View Source

 (since OTP 17.0)

 -spec keys(Map) -> Keys when Map :: #{Key => _}, Keys :: [Key].

Returns a complete list of keys, in any order, which resides within Map.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:keys(Map).
[42,1337,"a"]

 Link to this function

 map(Fun, MapOrIter)

 View Source

 (since OTP 17.0)

 -spec map(Fun, MapOrIter) -> Map
 when
 Fun :: fun((Key, Value1) -> Value2),
 MapOrIter :: #{Key => Value1} | iterator(Key, Value1),
 Map :: #{Key => Value2}.

Produces a new map Map by calling function fun F(Key, Value1) for every
Key to value Value1 association in MapOrIter in any order. Function
fun Fun/2 must return value Value2 to be associated with key Key for the
new map Map.
The call fails with a {badmap,Map} exception if MapOrIter is not a map or
valid iterator, or with badarg if Fun is not a function of arity 2.
Example:
> Fun = fun(K,V1) when is_list(K) -> V1*2 end,
 Map = #{"k1" => 1, "k2" => 2, "k3" => 3},
 maps:map(Fun,Map).
#{"k1" => 2,"k2" => 4,"k3" => 6}

 Link to this function

 merge(Map1, Map2)

 View Source

 (since OTP 17.0)

 -spec merge(Map1, Map2) -> Map3 when Map1 :: map(), Map2 :: map(), Map3 :: map().

Merges two maps into a single map Map3. If two keys exist in both maps, the
value in Map1 is superseded by the value in Map2.
The call fails with a {badmap,Map} exception if Map1 or Map2 is not a map.
Example:
> Map1 = #{a => "value_one", b => "value_two"},
 Map2 = #{a => 1, c => 2},
 maps:merge(Map1,Map2).
#{a => 1,b => "value_two",c => 2}

 Link to this function

 merge_with(Combiner, Map1, Map2)

 View Source

 (since OTP 24.0)

 -spec merge_with(Combiner, Map1, Map2) -> Map3
 when
 Map1 :: #{Key1 => Value1},
 Map2 :: #{Key2 => Value2},
 Combiner :: fun((Key1, Value1, Value2) -> CombineResult),
 Map3 :: #{Key1 => CombineResult, Key1 => Value1, Key2 => Value2}.

Merges two maps into a single map Map3. If a key exists in both maps, the
value in Map1 is combined with the value in Map2 by the Combiner fun.
When Combiner is applied the key that exists in both maps is the first parameter,
the value from Map1 is the second parameter, and the value from Map2 is the
third parameter.
The call fails with a {badmap,Map} exception if Map1 or Map2 is not a map.
The call fails with a badarg exception if Combiner is not a fun that takes
three arguments.
Example:
> Map1 = #{a => "value_one", b => "value_two"},
 Map2 = #{a => 1, c => 2},
 maps:merge_with(fun(_Key, Value1, Value2) -> {Value1, Value2} end, Map1, Map2).
#{a => {"value_one",1},b => "value_two",c => 2}

 Link to this function

 new()

 View Source

 (since OTP 17.0)

 -spec new() -> Map when Map :: #{}.

Returns a new empty map.
Example:
> maps:new().
#{}

 Link to this function

 next(Iterator)

 View Source

 (since OTP 21.0)

 -spec next(Iterator) -> {Key, Value, NextIterator} | none
 when Iterator :: iterator(Key, Value), NextIterator :: iterator(Key, Value).

Returns the next key-value association in Iterator and a new iterator for the
remaining associations in the iterator.
If there are no more associations in the iterator, none is returned.
Example:
> Map = #{a => 1, b => 2, c => 3}.
#{a => 1,b => 2,c => 3}
> I = maps:iterator(Map), ok.
ok
> {K1, V1, I1} = maps:next(I), {K1, V1}.
{a,1}
> {K2, V2, I2} = maps:next(I1), {K2, V2}.
{b,2}
> {K3, V3, I3} = maps:next(I2), {K3, V3}.
{c,3}
> maps:next(I3).
none

 Link to this function

 put(Key, Value, Map1)

 View Source

 (since OTP 17.0)

 -spec put(Key, Value, Map1) -> Map2 when Key :: term(), Value :: term(), Map1 :: map(), Map2 :: map().

Associates Key with value Value and inserts the association into map Map2.
If key Key already exists in map Map1, the old associated value is replaced
by value Value. The function returns a new map Map2 containing the new
association and the old associations in Map1.
The call fails with a {badmap,Map} exception if Map1 is not a map.
Example:
> Map = #{"a" => 1}.
#{"a" => 1}
> maps:put("a", 42, Map).
#{"a" => 42}
> maps:put("b", 1337, Map).
#{"a" => 1,"b" => 1337}

 Link to this function

 remove(Key, Map1)

 View Source

 (since OTP 17.0)

 -spec remove(Key, Map1) -> Map2 when Key :: term(), Map1 :: map(), Map2 :: map().

Removes the Key, if it exists, and its associated value from Map1 and
returns a new map Map2 without key Key.
The call fails with a {badmap,Map} exception if Map1 is not a map.
Example:
> Map = #{"a" => 1}.
#{"a" => 1}
> maps:remove("a",Map).
#{}
> maps:remove("b",Map).
#{"a" => 1}

 Link to this function

 size(Map)

 View Source

 (since OTP 17.0)

 -spec size(Map) -> non_neg_integer() when Map :: map().

Returns the number of key-value associations in Map. This operation occurs in
constant time.
Example:
> Map = #{42 => value_two,1337 => "value one","a" => 1},
 maps:size(Map).
3

 Link to this function

 take(Key, Map1)

 View Source

 (since OTP 19.0)

 -spec take(Key, Map1) -> {Value, Map2} | error when Map1 :: #{Key => Value, _ => _}, Map2 :: #{_ => _}.

The function removes the Key, if it exists, and its associated value from
Map1 and returns a tuple with the removed Value and the new map Map2
without key Key. If the key does not exist error is returned.
The call will fail with a {badmap,Map} exception if Map1 is not a map.
Example:
> Map = #{"a" => "hello", "b" => "world"}.
#{"a" => "hello", "b" => "world"}
> maps:take("a",Map).
{"hello",#{"b" => "world"}}
> maps:take("does not exist",Map).
error

 Link to this function

 to_list(MapOrIterator)

 View Source

 (since OTP 17.0)

 -spec to_list(MapOrIterator) -> [{Key, Value}]
 when MapOrIterator :: #{Key => Value} | iterator(Key, Value).

Returns a list of pairs representing the key-value associations of
MapOrIterator, where the pairs [{K1,V1}, ..., {Kn,Vn}] are returned in
arbitrary order.
The call fails with a {badmap,Map} exception if MapOrIterator is not a map
or an iterator obtained by a call to iterator/1 or iterator/2.
Example:
> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:to_list(Map).
[{42,value_three},{1337,"value two"},{"a",1}]
Example (using iterator/2):
> Map = #{ z => 1, y => 2, x => 3 }.
#{x => 3,y => 2,z => 1}
> maps:to_list(maps:iterator(Map, ordered)).
[{x,3},{y,2},{z,1}]

 Link to this function

 update(Key, Value, Map1)

 View Source

 (since OTP 17.0)

 -spec update(Key, Value, Map1) -> Map2 when Map1 :: #{Key := _, _ => _}, Map2 :: #{Key := Value, _ => _}.

If Key exists in Map1, the old associated value is replaced by value
Value. The function returns a new map Map2 containing the new associated
value.
The call fails with a {badmap,Map} exception if Map1 is not a map, or with a
{badkey,Key} exception if no value is associated with Key.
Example:
> Map = #{"a" => 1}.
#{"a" => 1}
> maps:update("a", 42, Map).
#{"a" => 42}

 Link to this function

 update_with(Key, Fun, Map1)

 View Source

 (since OTP 19.0)

 -spec update_with(Key, Fun, Map1) -> Map2
 when
 Map1 :: #{Key := Value1, _ => _},
 Map2 :: #{Key := Value2, _ => _},
 Fun :: fun((Value1) -> Value2).

Update a value in a Map1 associated with Key by calling Fun on the old
value to get a new value. An exception {badkey,Key} is generated if Key is
not present in the map.
Example:
> Map = #{"counter" => 1},
 Fun = fun(V) -> V + 1 end,
 maps:update_with("counter",Fun,Map).
#{"counter" => 2}

 Link to this function

 update_with(Key, Fun, Init, Map1)

 View Source

 (since OTP 19.0)

 -spec update_with(Key, Fun, Init, Map1) -> Map2
 when
 Map1 :: #{Key => Value1, _ => _},
 Map2 :: #{Key := Value2 | Init, _ => _},
 Fun :: fun((Value1) -> Value2).

Update a value in a Map1 associated with Key by calling Fun on the old
value to get a new value. If Key is not present in Map1 then Init will be
associated with Key.
Example:
> Map = #{"counter" => 1},
 Fun = fun(V) -> V + 1 end,
 maps:update_with("new counter",Fun,42,Map).
#{"counter" => 1,"new counter" => 42}

 Link to this function

 values(Map)

 View Source

 (since OTP 17.0)

 -spec values(Map) -> Values when Map :: #{_ => Value}, Values :: [Value].

Returns a complete list of values, in arbitrary order, contained in map Map.
The call fails with a {badmap,Map} exception if Map is not a map.
Example:
> Map = #{42 => value_three,1337 => "value two","a" => 1},
 maps:values(Map).
[value_three,"value two",1]

 Link to this function

 with(Ks, Map1)

 View Source

 (since OTP 17.3)

 -spec with(Ks, Map1) -> Map2 when Ks :: [K], Map1 :: #{K => V, _ => _}, Map2 :: #{K => V}.

Returns a new map Map2 with the keys K1 through Kn and their associated
values from map Map1. Any key in Ks that does not exist in Map1 is
ignored.
Example:
> Map = #{42 => value_three,1337 => "value two","a" => 1},
 Ks = ["a",42,"other key"],
 maps:with(Ks,Map).
#{42 => value_three,"a" => 1}

 Link to this function

 without(Ks, Map1)

 View Source

 (since OTP 17.0)

 -spec without(Ks, Map1) -> Map2 when Ks :: [K], Map1 :: map(), Map2 :: map(), K :: term().

Returns a new map Map2 without keys K1 through Kn and their associated
values from map Map1. Any key in Ks that does not exist in Map1 is ignored
Example:
> Map = #{42 => value_three,1337 => "value two","a" => 1},
 Ks = ["a",42,"other key"],
 maps:without(Ks,Map).
#{1337 => "value two"}

 math - stdlib v5.2.1

math

Mathematical functions.
This module provides an interface to a number of mathematical functions.
For details about what each function does, see the the C library documentation
on your system. On Unix systems the easiest way it to run man sin. On
Windows you should check the Math and floating-point support
documentation.

 Limitations

As these are the C library, the same limitations apply.

 Summary

 Functions

 acos(X)

 Inverse cosine of X, return value is in radians.

 acosh(X)

 Inverse hyperbolic cosine of X.

 asin(X)

 Inverse sine of X, return value is in radians.

 asinh(X)

 Inverse hyperbolic sine of X.

 atan2(Y, X)

 Inverse 2-argument tangent of X, return value is in radians.

 atan(X)

 Inverse tangent of X, return value is in radians.

 atanh(X)

 Inverse hyperbolic tangent of X.

 ceil(X)

 The ceiling of X.

 cos(X)

 The cosine of X in radians.

 cosh(X)

 The hyperbolic cosine of X.

 erf(X)

 Returns the error function (or Gauss error function) of X.

 erfc(X)

 erfc(X) returns 1.0 - erf(X), computed by methods
that avoid cancellation for large X.

 exp(X)

 Raise e by X, that is eˣ.

 floor(X)

 The floor of X.

 fmod(X, Y)

 Returns X modulus Y.

 log2(X)

 The base-2 logarithm of X.

 log10(X)

 The base-10 logarithm of X.

 log(X)

 The natural (base-e) logarithm of X.

 pi()

 Ratio of the circumference of a circle to its diameter.

 pow(X, N)

 Raise X by N, that is xⁿ.

 sin(X)

 Sine of X in radians.

 sinh(X)

 Hyperbolic sine of X.

 sqrt(X)

 Square root of X.

 tan(X)

 Tangent of X in radians.

 tanh(X)

 Hyperbolic tangent of X.

 tau()

 Ratio of the circumference of a circle to its radius.

 Functions

 Link to this function

 acos(X)

 View Source

 -spec acos(X) -> float() when X :: number().

Inverse cosine of X, return value is in radians.

 Link to this function

 acosh(X)

 View Source

 -spec acosh(X) -> float() when X :: number().

Inverse hyperbolic cosine of X.

 Link to this function

 asin(X)

 View Source

 -spec asin(X) -> float() when X :: number().

Inverse sine of X, return value is in radians.

 Link to this function

 asinh(X)

 View Source

 -spec asinh(X) -> float() when X :: number().

Inverse hyperbolic sine of X.

 Link to this function

 atan2(Y, X)

 View Source

 -spec atan2(Y, X) -> float() when Y :: number(), X :: number().

Inverse 2-argument tangent of X, return value is in radians.

 Link to this function

 atan(X)

 View Source

 -spec atan(X) -> float() when X :: number().

Inverse tangent of X, return value is in radians.

 Link to this function

 atanh(X)

 View Source

 -spec atanh(X) -> float() when X :: number().

Inverse hyperbolic tangent of X.

 Link to this function

 ceil(X)

 View Source

 (since OTP 20.0)

 -spec ceil(X) -> float() when X :: number().

The ceiling of X.

 Link to this function

 cos(X)

 View Source

 -spec cos(X) -> float() when X :: number().

The cosine of X in radians.

 Link to this function

 cosh(X)

 View Source

 -spec cosh(X) -> float() when X :: number().

The hyperbolic cosine of X.

 Link to this function

 erf(X)

 View Source

 -spec erf(X) -> float() when X :: number().

Returns the error function (or Gauss error function) of X.
Where:
erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

 Link to this function

 erfc(X)

 View Source

 -spec erfc(X) -> float() when X :: number().

erfc(X) returns 1.0 - erf(X), computed by methods
that avoid cancellation for large X.

 Link to this function

 exp(X)

 View Source

 -spec exp(X) -> float() when X :: number().

Raise e by X, that is eˣ.
Where e is the base of the natural logarithm.

 Link to this function

 floor(X)

 View Source

 (since OTP 20.0)

 -spec floor(X) -> float() when X :: number().

The floor of X.

 Link to this function

 fmod(X, Y)

 View Source

 (since OTP 20.0)

 -spec fmod(X, Y) -> float() when X :: number(), Y :: number().

Returns X modulus Y.

 Link to this function

 log2(X)

 View Source

 (since OTP 18.0)

 -spec log2(X) -> float() when X :: number().

The base-2 logarithm of X.

 Link to this function

 log10(X)

 View Source

 -spec log10(X) -> float() when X :: number().

The base-10 logarithm of X.

 Link to this function

 log(X)

 View Source

 -spec log(X) -> float() when X :: number().

The natural (base-e) logarithm of X.

 Link to this function

 pi()

 View Source

 -spec pi() -> float().

Ratio of the circumference of a circle to its diameter.
Floating point approximation of mathematical constant pi.

 Link to this function

 pow(X, N)

 View Source

 -spec pow(X, N) -> float() when X :: number(), N :: number().

Raise X by N, that is xⁿ.

 Link to this function

 sin(X)

 View Source

 -spec sin(X) -> float() when X :: number().

Sine of X in radians.

 Link to this function

 sinh(X)

 View Source

 -spec sinh(X) -> float() when X :: number().

Hyperbolic sine of X.

 Link to this function

 sqrt(X)

 View Source

 -spec sqrt(X) -> float() when X :: number().

Square root of X.

 Link to this function

 tan(X)

 View Source

 -spec tan(X) -> float() when X :: number().

Tangent of X in radians.

 Link to this function

 tanh(X)

 View Source

 -spec tanh(X) -> float() when X :: number().

Hyperbolic tangent of X.

 Link to this function

 tau()

 View Source

 (since OTP 26.0)

 -spec tau() -> float().

Ratio of the circumference of a circle to its radius.
This constant is equivalent to a full turn when described in radians.
The same as 2 * pi().

 calendar - stdlib v5.2.1

calendar

Local and universal time, day of the week, date and time conversions.
This module provides computation of local and universal time, day of the week,
and many time conversion functions.
Time is local when it is adjusted in accordance with the current time zone and
daylight saving. Time is universal when it reflects the time at longitude zero,
without any adjustment for daylight saving. Universal Coordinated Time (UTC)
time is also called Greenwich Mean Time (GMT).
The time functions local_time/0 and universal_time/0 in this module both
return date and time. This is because separate functions for date and time can
result in a date/time combination that is displaced by 24 hours. This occurs if
one of the functions is called before midnight, and the other after midnight.
This problem also applies to the Erlang BIFs date/0 and time/0, and their
use is strongly discouraged if a reliable date/time stamp is required.
All dates conform to the Gregorian calendar. This calendar was introduced by
Pope Gregory XIII in 1582 and was used in all Catholic countries from this year.
Protestant parts of Germany and the Netherlands adopted it in 1698, England
followed in 1752, and Russia in 1918 (the October revolution of 1917 took place
in November according to the Gregorian calendar).
The Gregorian calendar in this module is extended back to year 0. For a given
date, the gregorian days is the number of days up to and including the date
specified. Similarly, the gregorian seconds for a specified date and time is
the number of seconds up to and including the specified date and time.
For computing differences between epochs in time, use the functions counting
gregorian days or seconds. If epochs are specified as local time, they must be
converted to universal time to get the correct value of the elapsed time between
epochs. Use of function time_difference/2 is
discouraged.
Different definitions exist for the week of the year. This module contains a
week of the year implementation conforming to the ISO 8601 standard. As the week
number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number.
Functions iso_week_number/0 and iso_week_number/1
return a tuple of the year and the week number.

 Leap Years

The notion that every fourth year is a leap year is not completely true. By the
Gregorian rule, a year Y is a leap year if one of the following rules is valid:
	Y is divisible by 4, but not by 100.
	Y is divisible by 400.

Hence, 1996 is a leap year, 1900 is not, but 2000 is.

 Date and Time Source

Local time is obtained from the Erlang BIF localtime/0. Universal time is
computed from the BIF universaltime/0.
The following apply:
	There are 86400 seconds in a day.
	There are 365 days in an ordinary year.
	There are 366 days in a leap year.
	There are 1461 days in a 4 year period.
	There are 36524 days in a 100 year period.
	There are 146097 days in a 400 year period.
	There are 719528 days between Jan 1, 0 and Jan 1, 1970.

 Summary

 Types

 date()

 A date using the Gregorian calendar.

 datetime1970()

 datetime()

 day()

 daynum()

 hour()

 ldom()

 The last day of the month.

 minute()

 month()

 offset()

 rfc3339_string()

 rfc3339_time_unit()

 The time unit used by the rfc3339 conversion functions.

 second()

 secs_per_day()

 time()

 weeknum()

 year1970()

 year()

 The year using the Gregorian calendar.

 yearweeknum()

 Functions

 date_to_gregorian_days(Date)

 Computes the number of gregorian days starting with year 0 and ending at the
specified date.

 date_to_gregorian_days(Year, Month, Day)

 Equivalent to date_to_gregorian_days({Year, Month, Day}).

 datetime_to_gregorian_seconds(DateTime)

 Computes the number of gregorian seconds starting with year 0 and ending at the
specified date and time.

 day_of_the_week(Date)

 Computes the day of the week from the specified Year, Month, and Day.
Returns the day of the week as 1: Monday, 2: Tuesday, and so on.

 day_of_the_week(Year, Month, Day)

 Equivalent to day_of_the_week({Year, Month, Day}).

 gregorian_days_to_date(Days)

 Computes the date from the specified number of gregorian days.

 gregorian_seconds_to_datetime(Seconds)

 Computes the date and time from the specified number of gregorian seconds.

 is_leap_year(Year)

 Checks if the specified year is a leap year.

 iso_week_number()

 Returns tuple {Year, WeekNum} representing the ISO week number for the actual
date. To determine the actual date, use function local_time/0.

 iso_week_number(Date)

 Returns tuple {Year, WeekNum} representing the ISO week number for the
specified date.

 last_day_of_the_month(Year, Month)

 Computes the number of days in a month.

 local_time()

 Returns the local time reported by the underlying operating system.

 local_time_to_universal_time(DateTime1)

 deprecated

 Converts from local time to Universal Coordinated Time (UTC). DateTime1 must
refer to a local date after Jan 1, 1970.

 local_time_to_universal_time_dst(DateTime1)

 Converts from local time to Universal Coordinated Time (UTC). DateTime1 must
refer to a local date after Jan 1, 1970.

 now_to_datetime(Now)

 Returns Universal Coordinated Time (UTC) converted from the return value from
erlang:timestamp/0.

 now_to_local_time(Now)

 Returns local date and time converted from the return value from
erlang:timestamp/0.

 now_to_universal_time(Now)

 Returns Universal Coordinated Time (UTC) converted from the return value from
erlang:timestamp/0.

 rfc3339_to_system_time(DateTimeString)

 Equivalent to rfc3339_to_system_time(DateTimeString, []).

 rfc3339_to_system_time(DateTimeString, Options)

 Converts an RFC 3339 timestamp into system time. The data format of RFC 3339
timestamps is described by RFC 3339.
Starting from OTP 25.1, the minutes part of the time zone is optional.

 seconds_to_daystime(Seconds)

 Converts a specified number of seconds into days, hours, minutes, and seconds.
Time is always non-negative, but Days is negative if argument Seconds is.

 seconds_to_time(Seconds)

 Computes the time from the specified number of seconds. Seconds must be less
than the number of seconds per day (86400).

 system_time_to_local_time(Time, TimeUnit)

 Converts a specified system time into local date and time.

 system_time_to_rfc3339(Time)

 Equivalent to system_time_to_rfc3339(Time, []).

 system_time_to_rfc3339(Time, Options)

 Converts a system time into an RFC 3339 timestamp.

 system_time_to_universal_time(Time, TimeUnit)

 Converts a specified system time into universal date and time.

 time_difference(T1, T2)

 Returns the difference between two {Date, Time} tuples. T2 is to refer to an
epoch later than T1.

 time_to_seconds(Time)

 Returns the number of seconds since midnight up to the specified time.

 universal_time()

 Returns the Universal Coordinated Time (UTC) reported by the underlying
operating system. Returns local time if universal time is unavailable.

 universal_time_to_local_time(DateTime)

 Converts from Universal Coordinated Time (UTC) to local time. DateTime must
refer to a date after Jan 1, 1970.

 valid_date(Date)

 This function checks if a date is a valid.

 valid_date(Year, Month, Day)

 Equivalent to valid_date({Year, Month, Day}).

 Types

 Link to this type

 date()

 View Source

 -type date() :: {year(), month(), day()}.

A date using the Gregorian calendar.
All APIs expect this to be a valid date. If the source of the date
is unknown, then verify that is it valid by calling valid_date/1
before using it.

 Link to this type

 datetime1970()

 View Source

 -type datetime1970() :: {{year1970(), month(), day()}, time()}.

 Link to this type

 datetime()

 View Source

 -type datetime() :: {date(), time()}.

 Link to this type

 day()

 View Source

 (not exported)

 -type day() :: 1..31.

 Link to this type

 daynum()

 View Source

 (not exported)

 -type daynum() :: 1..7.

 Link to this type

 hour()

 View Source

 (not exported)

 -type hour() :: 0..23.

 Link to this type

 ldom()

 View Source

 (not exported)

 -type ldom() :: 28 | 29 | 30 | 31.

The last day of the month.

 Link to this type

 minute()

 View Source

 (not exported)

 -type minute() :: 0..59.

 Link to this type

 month()

 View Source

 (not exported)

 -type month() :: 1..12.

 Link to this type

 offset()

 View Source

 (not exported)

 -type offset() :: [byte()] | (Time :: integer()).

 Link to this type

 rfc3339_string()

 View Source

 (not exported)

 -type rfc3339_string() :: [byte(), ...].

 Link to this type

 rfc3339_time_unit()

 View Source

 (not exported)

 -type rfc3339_time_unit() :: microsecond | millisecond | nanosecond | second | native.

The time unit used by the rfc3339 conversion functions.
Note
The native time unit was added to rfc3339_time_unit/0 in OTP 25.0.

 Link to this type

 second()

 View Source

 (not exported)

 -type second() :: 0..59.

 Link to this type

 secs_per_day()

 View Source

 (not exported)

 -type secs_per_day() :: 0..86399.

 Link to this type

 time()

 View Source

 -type time() :: {hour(), minute(), second()}.

 Link to this type

 weeknum()

 View Source

 (not exported)

 -type weeknum() :: 1..53.

 Link to this type

 year1970()

 View Source

 (not exported)

 -type year1970() :: 1970..10000.

 Link to this type

 year()

 View Source

 (not exported)

 -type year() :: non_neg_integer().

The year using the Gregorian calendar.
Year cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid
range depends on the underlying operating system.

 Link to this type

 yearweeknum()

 View Source

 (not exported)

 -type yearweeknum() :: {year(), weeknum()}.

 Functions

 Link to this function

 date_to_gregorian_days(Date)

 View Source

 -spec date_to_gregorian_days(Date) -> Days when Date :: date(), Days :: non_neg_integer().

Computes the number of gregorian days starting with year 0 and ending at the
specified date.

 Link to this function

 date_to_gregorian_days(Year, Month, Day)

 View Source

 -spec date_to_gregorian_days(Year, Month, Day) -> Days
 when
 Year :: year(),
 Month :: month(),
 Day :: day(),
 Days :: non_neg_integer().

Equivalent to date_to_gregorian_days({Year, Month, Day}).

 Link to this function

 datetime_to_gregorian_seconds(DateTime)

 View Source

 -spec datetime_to_gregorian_seconds(DateTime) -> Seconds
 when DateTime :: datetime(), Seconds :: non_neg_integer().

Computes the number of gregorian seconds starting with year 0 and ending at the
specified date and time.

 Link to this function

 day_of_the_week(Date)

 View Source

 -spec day_of_the_week(Date) -> daynum() when Date :: date().

Computes the day of the week from the specified Year, Month, and Day.
Returns the day of the week as 1: Monday, 2: Tuesday, and so on.

 Link to this function

 day_of_the_week(Year, Month, Day)

 View Source

 -spec day_of_the_week(Year, Month, Day) -> daynum() when Year :: year(), Month :: month(), Day :: day().

Equivalent to day_of_the_week({Year, Month, Day}).

 Link to this function

 gregorian_days_to_date(Days)

 View Source

 -spec gregorian_days_to_date(Days) -> date() when Days :: non_neg_integer().

Computes the date from the specified number of gregorian days.

 Link to this function

 gregorian_seconds_to_datetime(Seconds)

 View Source

 -spec gregorian_seconds_to_datetime(Seconds) -> datetime() when Seconds :: non_neg_integer().

Computes the date and time from the specified number of gregorian seconds.

 Link to this function

 is_leap_year(Year)

 View Source

 -spec is_leap_year(Year) -> boolean() when Year :: year().

Checks if the specified year is a leap year.

 Link to this function

 iso_week_number()

 View Source

 (since OTP R14B02)

 -spec iso_week_number() -> yearweeknum().

Returns tuple {Year, WeekNum} representing the ISO week number for the actual
date. To determine the actual date, use function local_time/0.

 Link to this function

 iso_week_number(Date)

 View Source

 (since OTP R14B02)

 -spec iso_week_number(Date) -> yearweeknum() when Date :: date().

Returns tuple {Year, WeekNum} representing the ISO week number for the
specified date.

 Link to this function

 last_day_of_the_month(Year, Month)

 View Source

 -spec last_day_of_the_month(Year, Month) -> LastDay
 when Year :: year(), Month :: month(), LastDay :: ldom().

Computes the number of days in a month.

 Link to this function

 local_time()

 View Source

 -spec local_time() -> datetime().

Returns the local time reported by the underlying operating system.

 Link to this function

 local_time_to_universal_time(DateTime1)

 View Source

 This function is deprecated. calendar:local_time_to_universal_time/1 is deprecated; use calendar:local_time_to_universal_time_dst/1 instead.

 -spec local_time_to_universal_time(DateTime1) -> DateTime2
 when DateTime1 :: datetime1970(), DateTime2 :: datetime1970().

Converts from local time to Universal Coordinated Time (UTC). DateTime1 must
refer to a local date after Jan 1, 1970.
Warning
This function is deprecated. Use local_time_to_universal_time_dst/1 instead,
as it gives a more correct and complete result. Especially for the period that
does not exist, as it is skipped during the switch to daylight saving time,
this function still returns a result.

 Link to this function

 local_time_to_universal_time_dst(DateTime1)

 View Source

 -spec local_time_to_universal_time_dst(DateTime1) -> [DateTime]
 when DateTime1 :: datetime1970(), DateTime :: datetime1970().

Converts from local time to Universal Coordinated Time (UTC). DateTime1 must
refer to a local date after Jan 1, 1970.
The return value is a list of 0, 1, or 2 possible UTC times:
	[] - For a local {Date1, Time1} during the period that is skipped when
switching to daylight saving time, there is no corresponding UTC, as the
local time is illegal (it has never occured).

	[DstDateTimeUTC, DateTimeUTC] - For a local {Date1, Time1} during the
period that is repeated when switching from daylight saving time, two
corresponding UTCs exist; one for the first instance of the period when
daylight saving time is still active, and one for the second instance.

	[DateTimeUTC] - For all other local times only one corresponding UTC
exists.

 Link to this function

 now_to_datetime(Now)

 View Source

 -spec now_to_datetime(Now) -> datetime1970() when Now :: erlang:timestamp().

Returns Universal Coordinated Time (UTC) converted from the return value from
erlang:timestamp/0.

 Link to this function

 now_to_local_time(Now)

 View Source

 -spec now_to_local_time(Now) -> datetime1970() when Now :: erlang:timestamp().

Returns local date and time converted from the return value from
erlang:timestamp/0.

 Link to this function

 now_to_universal_time(Now)

 View Source

 -spec now_to_universal_time(Now) -> datetime1970() when Now :: erlang:timestamp().

Returns Universal Coordinated Time (UTC) converted from the return value from
erlang:timestamp/0.

 Link to this function

 rfc3339_to_system_time(DateTimeString)

 View Source

 (since OTP 21.0)

 -spec rfc3339_to_system_time(DateTimeString) -> integer() when DateTimeString :: rfc3339_string().

Equivalent to rfc3339_to_system_time(DateTimeString, []).

 Link to this function

 rfc3339_to_system_time(DateTimeString, Options)

 View Source

 (since OTP 21.0)

 -spec rfc3339_to_system_time(DateTimeString, Options) -> integer()
 when
 DateTimeString :: rfc3339_string(),
 Options :: [Option],
 Option :: {unit, rfc3339_time_unit()}.

Converts an RFC 3339 timestamp into system time. The data format of RFC 3339
timestamps is described by RFC 3339.
Starting from OTP 25.1, the minutes part of the time zone is optional.
Valid option:
	{unit, Unit} - The time unit of the return value. The default is
second.

1> calendar:rfc3339_to_system_time("2018-02-01T16:17:58+01:00").
1517498278
2> calendar:rfc3339_to_system_time("2018-02-01 15:18:02.088Z",
 [{unit, nanosecond}]).
1517498282088000000

 Link to this function

 seconds_to_daystime(Seconds)

 View Source

 -spec seconds_to_daystime(Seconds) -> {Days, Time}
 when Seconds :: integer(), Days :: integer(), Time :: time().

Converts a specified number of seconds into days, hours, minutes, and seconds.
Time is always non-negative, but Days is negative if argument Seconds is.

 Link to this function

 seconds_to_time(Seconds)

 View Source

 -spec seconds_to_time(Seconds) -> time() when Seconds :: secs_per_day().

Computes the time from the specified number of seconds. Seconds must be less
than the number of seconds per day (86400).

 Link to this function

 system_time_to_local_time(Time, TimeUnit)

 View Source

 (since OTP 21.0)

 -spec system_time_to_local_time(Time, TimeUnit) -> datetime()
 when Time :: integer(), TimeUnit :: erlang:time_unit().

Converts a specified system time into local date and time.

 Link to this function

 system_time_to_rfc3339(Time)

 View Source

 (since OTP 21.0)

 -spec system_time_to_rfc3339(Time) -> DateTimeString
 when Time :: integer(), DateTimeString :: rfc3339_string().

Equivalent to system_time_to_rfc3339(Time, []).

 Link to this function

 system_time_to_rfc3339(Time, Options)

 View Source

 (since OTP 21.0)

 -spec system_time_to_rfc3339(Time, Options) -> DateTimeString
 when
 Time :: integer(),
 Options :: [Option],
 Option ::
 {offset, offset()} |
 {time_designator, byte()} |
 {unit, rfc3339_time_unit()},
 DateTimeString :: rfc3339_string().

Converts a system time into an RFC 3339 timestamp.
The data format of RFC 3339 timestamps is described by RFC 3339.
The data format of offsets is also described by RFC 3339.
Valid options:
	{offset, Offset} - The offset, either a string or an integer, to be
included in the formatted string. An empty string, which is the default, is
interpreted as local time. A non-empty string is included as is. The time unit
of the integer is the same as the one of Time.

	{time_designator, Character} - The character used as time designator,
that is, the date and time separator. The default is $T.

	{unit, Unit} - The time unit of Time. The default is second. If some
other unit is given (millisecond, microsecond, nanosecond, or native),
the formatted string includes a fraction of a second. The number of fractional
second digits is three, six, or nine depending on what time unit is chosen.
For native three fractional digits are included. Notice that trailing zeros
are not removed from the fraction.

1> calendar:system_time_to_rfc3339(erlang:system_time(second)).
"2018-04-23T14:56:28+02:00"
2> calendar:system_time_to_rfc3339(erlang:system_time(second),
 [{offset, "-02:00"}]).
"2018-04-23T10:56:52-02:00"
3> calendar:system_time_to_rfc3339(erlang:system_time(second),
 [{offset, -7200}]).
"2018-04-23T10:57:05-02:00"
4> calendar:system_time_to_rfc3339(erlang:system_time(millisecond),
 [{unit, millisecond}, {time_designator, $\s}, {offset, "Z"}]).
"2018-04-23 12:57:20.482Z"

 Link to this function

 system_time_to_universal_time(Time, TimeUnit)

 View Source

 (since OTP 21.0)

 -spec system_time_to_universal_time(Time, TimeUnit) -> datetime()
 when Time :: integer(), TimeUnit :: erlang:time_unit().

Converts a specified system time into universal date and time.

 Link to this function

 time_difference(T1, T2)

 View Source

 -spec time_difference(T1, T2) -> {Days, Time}
 when T1 :: datetime(), T2 :: datetime(), Days :: integer(), Time :: time().

Returns the difference between two {Date, Time} tuples. T2 is to refer to an
epoch later than T1.
Warning
This function is obsolete. Use the conversion functions for gregorian days and
seconds instead.

 Link to this function

 time_to_seconds(Time)

 View Source

 -spec time_to_seconds(Time) -> secs_per_day() when Time :: time().

Returns the number of seconds since midnight up to the specified time.

 Link to this function

 universal_time()

 View Source

 -spec universal_time() -> datetime().

Returns the Universal Coordinated Time (UTC) reported by the underlying
operating system. Returns local time if universal time is unavailable.

 Link to this function

 universal_time_to_local_time(DateTime)

 View Source

 -spec universal_time_to_local_time(DateTime) -> datetime() when DateTime :: datetime1970().

Converts from Universal Coordinated Time (UTC) to local time. DateTime must
refer to a date after Jan 1, 1970.

 Link to this function

 valid_date(Date)

 View Source

 -spec valid_date(Date) -> boolean() when Date :: date().

This function checks if a date is a valid.

 Link to this function

 valid_date(Year, Month, Day)

 View Source

 -spec valid_date(Year, Month, Day) -> boolean()
 when Year :: integer(), Month :: integer(), Day :: integer().

Equivalent to valid_date({Year, Month, Day}).

 timer - stdlib v5.2.1

timer

Timer functions.
This module provides useful functions related to time. Unless otherwise stated,
time is always measured in milliseconds. All timer functions return
immediately, regardless of work done by another process.
Successful evaluations of the timer functions give return values containing a
timer reference, denoted TRef. By using cancel/1, the returned reference can
be used to cancel any requested action. A TRef is an Erlang term, which
contents must not be changed.
The time-outs are not exact, but are at least as long as requested.
Creating timers using erlang:send_after/3 and erlang:start_timer/3 is more
efficient than using the timers provided by this module. However, the timer
module has been improved in OTP 25, making it more efficient and less
susceptible to being overloaded. See
the Timer Module section in the Efficiency Guide.

 Examples

Example 1
The following example shows how to print "Hello World!" in 5 seconds:
1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
Example 2
The following example shows a process performing a certain action, and if this
action is not completed within a certain limit, the process is killed:
Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
...
%% We change our mind...
timer:cancel(R),
...

 Notes

A timer can always be removed by calling cancel/1.
An interval timer, that is, a timer created by evaluating any of the functions
apply_interval/2, apply_interval/3, apply_interval/4,
apply_repeatedly/2, apply_repeatedly/3, apply_repeatedly/4,
send_interval/2, and send_interval/3 is linked to the process to which the
timer performs its task.
A one-shot timer, that is, a timer created by evaluating any of the functions
apply_after/2, apply_after/3, apply_after/4, send_after/2,
send_after/3, exit_after/2, exit_after/3, kill_after/1, and
kill_after/2 is not linked to any process. Hence, such a timer is removed only
when it reaches its time-out, or if it is explicitly removed by a call to
cancel/1.
The functions given to apply_after/2, apply_after/3, apply_interval/2,
apply_interval/3, apply_repeatedly/2, and apply_repeatedly/3, or denoted
by Module, Function and Arguments given to apply_after/4,
apply_interval/4, and apply_repeatedly/4 are executed in a freshly-spawned
process, and therefore calls to self/0 in those functions will return the Pid
of this process, which is different from the process that called
timer:apply_*.
Example
In the following example, the intention is to set a timer to execute a function
after 1 second, which performs a fictional task, and then wants to inform the
process which set the timer about its completion, by sending it a done
message.
Using self/0 inside the timed function, the code below does not work as
intended. The task gets done, but the done message gets sent to the wrong
process and is lost.
1> timer:apply_after(1000, fun() -> do_something(), self() ! done end).
{ok,TRef}
2> receive done -> done after 5000 -> timeout end.
%% ... 5s pass...
timeout
The code below calls self/0 in the process which sets the timer and assigns it
to a variable, which is then used in the function to send the done message to,
and so works as intended.
1> Target = self()
<0.82.0>
2> timer:apply_after(1000, fun() -> do_something(), Target ! done end).
{ok,TRef}
3> receive done -> done after 5000 -> timeout end.
%% ... 1s passes...
done
Another option is to pass the message target as a parameter to the function.
1> timer:apply_after(1000, fun(Target) -> do_something(), Target ! done end, [self()]).
{ok,TRef}
2> receive done -> done after 5000 -> timeout end.
%% ... 1s passes...
done

 Summary

 Types

 time()

 Time in milliseconds.

 tref()

 A timer reference.

 Functions

 apply_after(Time, Function)

 Evaluates spawn(erlang, apply, [Function, []]) after Time
milliseconds.

 apply_after(Time, Function, Arguments)

 Evaluates spawn(erlang, apply, [Function, Arguments]) after
Time milliseconds.

 apply_after(Time, Module, Function, Arguments)

 Evaluates spawn(Module, Function, Arguments) after Time
milliseconds.

 apply_interval(Time, Function)

 Evaluates spawn(erlang, apply, [Function, []]) repeatedly at
intervals of Time, irrespective of whether a previously spawned process has
finished or not.

 apply_interval(Time, Function, Arguments)

 Evaluates spawn(erlang, apply, [Function, Arguments]) repeatedly
at intervals of Time, irrespective of whether a previously spawned process has
finished or not.

 apply_interval(Time, Module, Function, Arguments)

 Evaluates spawn(Module, Function, Arguments) repeatedly at
intervals of Time, irrespective of whether a previously spawned process has
finished or not.

 apply_repeatedly(Time, Function)

 Evaluates spawn(erlang, apply, [Function, []]) repeatedly at
intervals of Time, waiting for the spawned process to finish before starting
the next.

 apply_repeatedly(Time, Function, Arguments)

 Evaluates spawn(erlang, apply, [Function, Arguments]) repeatedly
at intervals of Time, waiting for the spawned process to finish before
starting the next.

 apply_repeatedly(Time, Module, Function, Arguments)

 Evaluates spawn(Module, Function, Arguments) repeatedly at
intervals of Time, waiting for the spawned process to finish before starting
the next.

 cancel(TRef)

 Cancels a previously requested time-out. TRef is a unique timer reference
returned by the related timer function.

 exit_after(Time, Reason1)

 Equivalent to exit_after(Time, self(), Reason).

 exit_after(Time, Target, Reason1)

 Sends an exit signal with reason Reason1 to Target, which can be a local
process identifier or an atom of a registered name.

 hms(Hours, Minutes, Seconds)

 Returns the number of milliseconds in Hours + Minutes + Seconds.

 hours(Hours)

 Returns the number of milliseconds in Hours.

 kill_after(Time)

 Equivalent to exit_after(Time, self(), kill).

 kill_after(Time, Target)

 Equivalent to exit_after(Time, Target, kill).

 minutes(Minutes)

 Returns the number of milliseconds in Minutes.

 now_diff(T2, T1)

 Calculates the time difference Tdiff = T2 - T1 in microseconds, where T1
and T2 are time-stamp tuples on the same format as returned from
erlang:timestamp/0 or os:timestamp/0.

 seconds(Seconds)

 Returns the number of milliseconds in Seconds.

 send_after(Time, Message)

 Equivalent to send_after(Time, self(), Message).

 send_after(Time, Destination, Message)

 Evaluates Destination ! Message after Time milliseconds.

 send_interval(Time, Message)

 Equivalent to send_interval(Time, self(), Message).

 send_interval(Time, Destination, Message)

 Evaluates Destination ! Message repeatedly after Time milliseconds.

 sleep(Time)

 Suspends the process calling this function for Time milliseconds and then
returns ok, or suspends the process forever if Time is the atom infinity.
Naturally, this function does not return immediately.

 start()

 Starts the timer server.

 tc(Fun)

 Equivalent to tc(Fun, microsecond).

 tc(Fun, ArgumentsOrTimeUnit)

 Measures the execution time of Fun.

 tc(ModuleOrFun, FunctionOrArguments, ArgumentsOrTimeUnit)

 Measures the execution time of Fun or apply(Module, Function, Arguments).

 tc(Module, Function, Arguments, TimeUnit)

 Evaluates apply(Module, Function, Arguments) and measures the elapsed
real time as reported by erlang:monotonic_time/0.

 Types

 Link to this type

 time()

 View Source

 (not exported)

 -type time() :: non_neg_integer().

Time in milliseconds.

 Link to this opaque

 tref()

 View Source

 -opaque tref()

A timer reference.

 Functions

 Link to this function

 apply_after(Time, Function)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_after(Time, Function) -> {ok, TRef} | {error, Reason}
 when Time :: time(), Function :: fun(() -> _), TRef :: tref(), Reason :: term().

Evaluates spawn(erlang, apply, [Function, []]) after Time
milliseconds.

 Link to this function

 apply_after(Time, Function, Arguments)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_after(Time, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Function :: fun((...) -> _),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(erlang, apply, [Function, Arguments]) after
Time milliseconds.

 Link to this function

 apply_after(Time, Module, Function, Arguments)

 View Source

 -spec apply_after(Time, Module, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Module :: module(),
 Function :: atom(),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(Module, Function, Arguments) after Time
milliseconds.

 Link to this function

 apply_interval(Time, Function)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_interval(Time, Function) -> {ok, TRef} | {error, Reason}
 when Time :: time(), Function :: fun(() -> _), TRef :: tref(), Reason :: term().

Evaluates spawn(erlang, apply, [Function, []]) repeatedly at
intervals of Time, irrespective of whether a previously spawned process has
finished or not.

 Link to this function

 apply_interval(Time, Function, Arguments)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_interval(Time, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Function :: fun((...) -> _),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(erlang, apply, [Function, Arguments]) repeatedly
at intervals of Time, irrespective of whether a previously spawned process has
finished or not.

 Link to this function

 apply_interval(Time, Module, Function, Arguments)

 View Source

 -spec apply_interval(Time, Module, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Module :: module(),
 Function :: atom(),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(Module, Function, Arguments) repeatedly at
intervals of Time, irrespective of whether a previously spawned process has
finished or not.
Warning
If the execution time of the spawned process is, on average, greater than the
given Time, multiple such processes will run at the same time. With long
execution times, short intervals, and many interval timers running, this may
even lead to exceeding the number of allowed processes. As an extreme example,
consider
[timer:apply_interval(1, timer, sleep, [1000]) || _ <- lists:seq(1, 1000)],
that is, 1,000 interval timers executing a process that takes 1s to complete,
started in intervals of 1ms, which would result in 1,000,000 processes running
at the same time, far more than a node started with default settings allows
(see the
System Limits section in the Effiency Guide).

 Link to this function

 apply_repeatedly(Time, Function)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_repeatedly(Time, Function) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(), Function :: fun(() -> _), TRef :: tref(), Reason :: term().

Evaluates spawn(erlang, apply, [Function, []]) repeatedly at
intervals of Time, waiting for the spawned process to finish before starting
the next.

 Link to this function

 apply_repeatedly(Time, Function, Arguments)

 View Source

 (since OTP @OTP-18808@)

 -spec apply_repeatedly(Time, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Function :: fun((...) -> _),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(erlang, apply, [Function, Arguments]) repeatedly
at intervals of Time, waiting for the spawned process to finish before
starting the next.

 Link to this function

 apply_repeatedly(Time, Module, Function, Arguments)

 View Source

 (since OTP 26.0)

 -spec apply_repeatedly(Time, Module, Function, Arguments) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Module :: module(),
 Function :: atom(),
 Arguments :: [term()],
 TRef :: tref(),
 Reason :: term().

Evaluates spawn(Module, Function, Arguments) repeatedly at
intervals of Time, waiting for the spawned process to finish before starting
the next.
If the execution time of the spawned process is greater than the given Time,
the next process is spawned immediately after the one currently running has
finished. Assuming that execution times of the spawned processes performing the
applies on average are smaller than Time, the amount of applies made over a
large amount of time will be the same even if some individual execution times
are larger than Time. The system will try to catch up as soon as possible. For
example, if one apply takes 2.5*Time, the following two applies will be made
immediately one after the other in sequence.

 Link to this function

 cancel(TRef)

 View Source

 -spec cancel(TRef) -> {ok, cancel} | {error, Reason} when TRef :: tref(), Reason :: term().

Cancels a previously requested time-out. TRef is a unique timer reference
returned by the related timer function.
Returns {ok, cancel}, or {error, Reason} when TRef is not a timer
reference.

 Link to this function

 exit_after(Time, Reason1)

 View Source

 -spec exit_after(Time, Reason1) -> {ok, TRef} | {error, Reason2}
 when Time :: time(), TRef :: tref(), Reason1 :: term(), Reason2 :: term().

Equivalent to exit_after(Time, self(), Reason).

 Link to this function

 exit_after(Time, Target, Reason1)

 View Source

 -spec exit_after(Time, Target, Reason1) -> {ok, TRef} | {error, Reason2}
 when
 Time :: time(),
 Target :: pid() | (RegName :: atom()),
 TRef :: tref(),
 Reason1 :: term(),
 Reason2 :: term().

Sends an exit signal with reason Reason1 to Target, which can be a local
process identifier or an atom of a registered name.

 Link to this function

 hms(Hours, Minutes, Seconds)

 View Source

 -spec hms(Hours, Minutes, Seconds) -> MilliSeconds
 when
 Hours :: non_neg_integer(),
 Minutes :: non_neg_integer(),
 Seconds :: non_neg_integer(),
 MilliSeconds :: non_neg_integer().

Returns the number of milliseconds in Hours + Minutes + Seconds.

 Link to this function

 hours(Hours)

 View Source

 -spec hours(Hours) -> MilliSeconds when Hours :: non_neg_integer(), MilliSeconds :: non_neg_integer().

Returns the number of milliseconds in Hours.

 Link to this function

 kill_after(Time)

 View Source

 -spec kill_after(Time) -> {ok, TRef} | {error, Reason2}
 when Time :: time(), TRef :: tref(), Reason2 :: term().

Equivalent to exit_after(Time, self(), kill).

 Link to this function

 kill_after(Time, Target)

 View Source

 -spec kill_after(Time, Target) -> {ok, TRef} | {error, Reason2}
 when
 Time :: time(),
 Target :: pid() | (RegName :: atom()),
 TRef :: tref(),
 Reason2 :: term().

Equivalent to exit_after(Time, Target, kill).

 Link to this function

 minutes(Minutes)

 View Source

 -spec minutes(Minutes) -> MilliSeconds
 when Minutes :: non_neg_integer(), MilliSeconds :: non_neg_integer().

Returns the number of milliseconds in Minutes.

 Link to this function

 now_diff(T2, T1)

 View Source

 -spec now_diff(T2, T1) -> Tdiff
 when T1 :: erlang:timestamp(), T2 :: erlang:timestamp(), Tdiff :: integer().

Calculates the time difference Tdiff = T2 - T1 in microseconds, where T1
and T2 are time-stamp tuples on the same format as returned from
erlang:timestamp/0 or os:timestamp/0.

 Link to this function

 seconds(Seconds)

 View Source

 -spec seconds(Seconds) -> MilliSeconds
 when Seconds :: non_neg_integer(), MilliSeconds :: non_neg_integer().

Returns the number of milliseconds in Seconds.

 Link to this function

 send_after(Time, Message)

 View Source

 -spec send_after(Time, Message) -> {ok, TRef} | {error, Reason}
 when Time :: time(), Message :: term(), TRef :: tref(), Reason :: term().

Equivalent to send_after(Time, self(), Message).

 Link to this function

 send_after(Time, Destination, Message)

 View Source

 -spec send_after(Time, Destination, Message) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Destination :: pid() | (RegName :: atom()) | {RegName :: atom(), Node :: node()},
 Message :: term(),
 TRef :: tref(),
 Reason :: term().

Evaluates Destination ! Message after Time milliseconds.
Destination can be a remote or local process identifier, an atom of a
registered name or a tuple {RegName, Node} for a registered name at another node.
See also the Timer Module section in the Efficiency Guide.

 Link to this function

 send_interval(Time, Message)

 View Source

 -spec send_interval(Time, Message) -> {ok, TRef} | {error, Reason}
 when Time :: time(), Message :: term(), TRef :: tref(), Reason :: term().

Equivalent to send_interval(Time, self(), Message).

 Link to this function

 send_interval(Time, Destination, Message)

 View Source

 -spec send_interval(Time, Destination, Message) -> {ok, TRef} | {error, Reason}
 when
 Time :: time(),
 Destination ::
 pid() | (RegName :: atom()) | {RegName :: atom(), Node :: node()},
 Message :: term(),
 TRef :: tref(),
 Reason :: term().

Evaluates Destination ! Message repeatedly after Time milliseconds.
Destination can be a remote or local process identifier, an atom of a registered
name or a tuple {RegName, Node} for a registered name at another node.

 Link to this function

 sleep(Time)

 View Source

 -spec sleep(Time) -> ok when Time :: timeout().

Suspends the process calling this function for Time milliseconds and then
returns ok, or suspends the process forever if Time is the atom infinity.
Naturally, this function does not return immediately.
Note
Before OTP 25, timer:sleep/1 did not accept integer timeout values greater
than 16#ffffffff, that is, 2^32-1. Since OTP 25, arbitrarily high integer
values are accepted.

 Link to this function

 start()

 View Source

 -spec start() -> ok.

Starts the timer server.
Normally, the server does not need to be started explicitly. It is started dynamically
if it is needed. This is useful during development, but in a target system the server
is to be started explicitly. Use configuration parameters for Kernel
for this.

 Link to this function

 tc(Fun)

 View Source

 (since OTP R14B03)

 -spec tc(Fun) -> {Time, Value} when Fun :: function(), Time :: integer(), Value :: term().

Equivalent to tc(Fun, microsecond).

 Link to this function

 tc(Fun, ArgumentsOrTimeUnit)

 View Source

 (since OTP R14B)

 -spec tc(Fun, Arguments) -> {Time, Value}
 when Fun :: function(), Arguments :: [term()], Time :: integer(), Value :: term();
 (Fun, TimeUnit) -> {Time, Value}
 when Fun :: function(), TimeUnit :: erlang:time_unit(), Time :: integer(), Value :: term().

Measures the execution time of Fun.
Equivalent to tc(Fun, Arguments, microsecond) if called as tc(Fun, Arguments).
Measures the execution time of Fun in TimeUnit if called as tc(Fun, TimeUnit). Added in OTP 26.0.

 Link to this function

 tc(ModuleOrFun, FunctionOrArguments, ArgumentsOrTimeUnit)

 View Source

 (since OTP R14B)

 -spec tc(Module, Function, Arguments) -> {Time, Value}
 when
 Module :: module(),
 Function :: atom(),
 Arguments :: [term()],
 Time :: integer(),
 Value :: term();
 (Fun, Arguments, TimeUnit) -> {Time, Value}
 when
 Fun :: function(),
 Arguments :: [term()],
 TimeUnit :: erlang:time_unit(),
 Time :: integer(),
 Value :: term().

Measures the execution time of Fun or apply(Module, Function, Arguments).
Equivalent to tc(Module, Function, Arguments, microsecond) if called as tc(Module, Function, Arguments).
Equivalent to tc(erlang, apply, [Fun, Arguments], TimeUnit) if called as tc(Fun, Arguments, TimeUnit). Added in OTP 26.0

 Link to this function

 tc(Module, Function, Arguments, TimeUnit)

 View Source

 (since OTP 26.0)

 -spec tc(Module, Function, Arguments, TimeUnit) -> {Time, Value}
 when
 Module :: module(),
 Function :: atom(),
 Arguments :: [term()],
 TimeUnit :: erlang:time_unit(),
 Time :: integer(),
 Value :: term().

Evaluates apply(Module, Function, Arguments) and measures the elapsed
real time as reported by erlang:monotonic_time/0.
Returns {Time, Value}, where Time is the elapsed real time in the
specified TimeUnit, and Value is what is returned from the apply.

 argparse - stdlib v5.2.1

argparse

Command line arguments parser.
This module implements command line parser. Parser operates with commands and
arguments represented as a tree. Commands are branches, and arguments are
leaves of the tree. Parser always starts with the root command, named after
progname (the name of the program which started Erlang).
A command specification may contain handler definition for
each command, and a number argument specifications. When parser is successful,
argparse calls the matching handler, passing arguments extracted from the
command line. Arguments can be positional (occupying specific position in the
command line), and optional, residing anywhere but prefixed with a specified
character.
argparse automatically generates help and usage messages. It will also issue
errors when users give the program invalid arguments.

 Quick start

argparse is designed to work with escript. The
example below is a fully functioning Erlang program accepting two command line
arguments and printing their product.
#!/usr/bin/env escript

main(Args) ->
 argparse:run(Args, cli(), #{progname => mul}).

cli() ->
 #{
 arguments => [
 #{name => left, type => integer},
 #{name => right, type => integer}
],
 handler =>
 fun (#{left := Left, right := Right}) ->
 io:format("~b~n", [Left * Right])
 end
 }.
Running this script with no arguments results in an error, accompanied by the
usage information.
The cli function defines a single command with embedded handler accepting a
map. Keys of the map are argument names as defined by the argument field of
the command, left and right in the example. Values are taken from the
command line, and converted into integers, as requested by the type
specification. Both arguments in the example above are required (and therefore
defined as positional).

 Command hierarchy

A command may contain nested commands, forming a hierarchy. Arguments defined at
the upper level command are automatically added to all nested commands. Nested
commands example (assuming progname is nested):
cli() ->
 #{
 %% top level argument applicable to all commands
 arguments => [#{name => top}],
 commands => #{
 "first" => #{
 %% argument applicable to "first" command and
 %% all commands nested into "first"
 arguments => [#{name => mid}],
 commands => #{
 "second" => #{
 %% argument only applicable for "second" command
 arguments => [#{name => bottom}],
 handler => fun (A) -> io:format("~p~n", [A]) end
 }
 }
 }
 }
 }.
In the example above, a 3-level hierarchy is defined. First is the script itself
(nested), accepting the only argument top. Since it has no associated
handler, run/3 will not accept user input omitting nested command selection.
For this example, user has to supply 5 arguments in the command line, two being
command names, and another 3 - required positional arguments:
./nested.erl one first second two three
#{top => "one",mid => "two",bottom => "three"}
Commands have preference over positional argument values. In the example above,
commands and positional arguments are interleaving, and argparse matches
command name first.

 Arguments

argparse supports positional and optional arguments. Optional arguments, or
options for short, must be prefixed with a special character (- is the default
on all operating systems). Both options and positional arguments have 1 or more
associated values. See argument specification to find more
details about supported combinations.
In the user input, short options may be concatenated with their values. Long
options support values separated by =. Consider this definition:
cli() ->
 #{
 arguments => [
 #{name => long, long => "-long"},
 #{name => short, short => $s}
],
 handler => fun (Args) -> io:format("~p~n", [Args]) end
 }.
Running ./args --long=VALUE prints #{long => "VALUE"}, running
./args -sVALUE prints #{short => "VALUE"}
argparse supports boolean flags concatenation: it is possible to shorten
-r -f -v to -rfv.
Shortened option names are not supported: it is not possible to use --my-argum
instead of --my-argument-name even when such option can be unambiguously
found.

 Summary

 Types

 arg_map()

 Arguments map is the map of argument names to the values extracted from the
command line. It is passed to the matching command handler. If an argument is
omitted, but has the default value is specified, it is added to the map. When no
default value specified, and argument is not present in the command line,
corresponding key is not present in the resulting map.

 arg_type()

 Defines type conversion applied to the string retrieved from the user input. If
the conversion is successful, resulting value is validated using optional
Choices, or minimums and maximums (for integer and floating point values
only). Strings and binary values may be validated using regular expressions.
It's possible to define custom type conversion function, accepting a string and
returning Erlang term. If this function raises error with badarg reason,
argument is treated as invalid.

 argument()

 Argument specification. Defines a single named argument that is returned in the
argument map. The only required field is name, all other
fields have defaults.

 argument_help()

 User-defined help template to print in the command usage. First element of a
tuple must be a string. It is printed as a part of the usage header. Second
element of the tuple can be either a list containing strings, type and
default atoms, or a user-defined function that must return a string. A plain
string should be wrapped as a list such as ["string is nested"].

 argument_name()

 Argument name is used to populate argument map.

 cmd_path()

 Path to the nested command. First element is always the progname, subsequent
elements are nested command names.

 command()

 Command specification. May contain nested commands, forming a hierarchy.

 command_help()

 User-defined help template. Use this option to mix custom and predefined usage
text. Help template may contain unicode strings, and following atoms

 handler()

 Command handler specification. Called by run/3 upon successful
parser return.

 parse_result()

 Returned from parse/2,3. Contains arguments extracted from the
command line, path to the nested command (if any), and a (potentially nested)
command specification that was considered when the parser finished successfully.
It is expected that the command contains a handler definition, that will be
called passing the argument map.

 parser_error()

 Returned from parse/2,3 when the user input cannot be parsed
according to the command specification.

 parser_options()

 Options changing parser behaviour.

 Functions

 format_error(Reason)

 Generates human-readable text for parser error. Does not
include help/usage information, and does not provide localisation.

 help(Command)

 Equivalent to help/2.

 help(Command, Options)

 Generates help/usage information text for the command supplied, or any nested
command when command option is specified. Arguments are displayed in the same
order as specified in Command. Does not provide localisation. Expects
progname to be set, otherwise defaults to return value of
init:get_argument(progname).

 parse(Args, Command)

 Equivalent to parse/3.

 parse(Args, Command, Options)

 Parses command line arguments according to the command specification. Raises an
exception if the command specification is not valid. Use
erl_error:format_exception/3,4 to see a
friendlier message. Invalid command line input does not raise an exception, but
makes parse/2,3 to return a tuple
{error, parser_error()}.

 run(Args, Command, Options)

 Parses command line arguments and calls the matching command handler. Prints
human-readable error, help/usage information for the discovered command, and
halts the emulator with code 1 if there is any error in the command
specification or user-provided command line input.

 Types

 Link to this type

 arg_map()

 View Source

 (since OTP 26.0)

 -type arg_map() :: #{argument_name() => term()}.

Arguments map is the map of argument names to the values extracted from the
command line. It is passed to the matching command handler. If an argument is
omitted, but has the default value is specified, it is added to the map. When no
default value specified, and argument is not present in the command line,
corresponding key is not present in the resulting map.

 Link to this type

 arg_type()

 View Source

 (since OTP 26.0)

 -type arg_type() ::
 boolean | float |
 {float, Choice :: [float()]} |
 {float, [{min, float()} | {max, float()}]} |
 integer |
 {integer, Choices :: [integer()]} |
 {integer, [{min, integer()} | {max, integer()}]} |
 string |
 {string, Choices :: [string()]} |
 {string, Re :: string()} |
 {string, Re :: string(), ReOptions :: [term()]} |
 binary |
 {binary, Choices :: [binary()]} |
 {binary, Re :: binary()} |
 {binary, Re :: binary(), ReOptions :: [term()]} |
 atom |
 {atom, Choices :: [atom()]} |
 {atom, unsafe} |
 {custom, fun((string()) -> term())}.

Defines type conversion applied to the string retrieved from the user input. If
the conversion is successful, resulting value is validated using optional
Choices, or minimums and maximums (for integer and floating point values
only). Strings and binary values may be validated using regular expressions.
It's possible to define custom type conversion function, accepting a string and
returning Erlang term. If this function raises error with badarg reason,
argument is treated as invalid.

 Link to this type

 argument()

 View Source

 (since OTP 26.0)

 -type argument() ::
 #{name := argument_name(),
 short => char(),
 long => string(),
 required => boolean(),
 default => term(),
 type => arg_type(),
 action => store | {store, term()} | append | {append, term()} | count | extend,
 nargs => pos_integer() | 'maybe' | {'maybe', term()} | list | nonempty_list | all,
 help => hidden | unicode:chardata() | argument_help()}.

Argument specification. Defines a single named argument that is returned in the
argument map. The only required field is name, all other
fields have defaults.
If either of the short or long fields is specified, the argument is treated
as optional. Optional arguments do not have specific order and may appear
anywhere in the command line. Positional arguments are ordered the same way as
they appear in the arguments list of the command specification.
By default, all positional arguments must be present in the command line. The
parser will return an error otherwise. Options, however, may be omitted, in
which case resulting argument map will either contain the default value, or not
have the key at all.
	name - Sets the argument name in the parsed argument map. If help is
not defined, name is also used to generate the default usage message.

	short - Defines a short (single character) form of an optional argument.
%% Define a command accepting argument named myarg, with short form $a:
1> Cmd = #{arguments => [#{name => myarg, short => $a}]}.
%% Parse command line "-a str":
2> {ok, ArgMap, _, _} = argparse:parse(["-a", "str"], Cmd), ArgMap.

#{myarg => "str"}

%% Option value can be concatenated with the switch: "-astr"
3> {ok, ArgMap, _, _} = argparse:parse(["-astr"], Cmd), ArgMap.

#{myarg => "str"}
By default all options expect a single value following the option switch. The
only exception is an option of a boolean type.

	long - Defines a long form of an optional argument.
1> Cmd = #{arguments => [#{name => myarg, long => "name"}]}.
%% Parse command line "-name Erlang":
2> {ok, ArgMap, _, _} = argparse:parse(["-name", "Erlang"], Cmd), ArgMap.

#{myarg => "Erlang"}
%% Or use "=" to separate the switch and the value:
3> {ok, ArgMap, _, _} = argparse:parse(["-name=Erlang"], Cmd), ArgMap.

#{myarg => "Erlang"}
If neither short not long is defined, the argument is treated as
positional.

	required - Forces the parser to expect the argument to be present in the
command line. By default, all positional argument are required, and all
options are not.

	default - Specifies the default value to put in the parsed argument map
if the value is not supplied in the command line.
1> argparse:parse([], #{arguments => [#{name => myarg, short => $m}]}).

{ok,#{}, ...
2> argparse:parse([], #{arguments => [#{name => myarg, short => $m, default => "def"}]}).

{ok,#{myarg => "def"}, ...

	type - Defines type conversion and validation routine. The default is
string, assuming no conversion.

	nargs - Defines the number of following arguments to consume from the
command line. By default, the parser consumes the next argument and converts
it into an Erlang term according to the specified type.
	pos_integer/0 - Consume exactly this number of positional arguments,
fail if there is not enough. Value in the argument map contains a list of
exactly this length. Example, defining a positional argument expecting 3
integer values:
1> Cmd = #{arguments => [#{name => ints, type => integer, nargs => 3}]},
argparse:parse(["1", "2", "3"], Cmd).

{ok, #{ints => [1, 2, 3]}, ...
Another example defining an option accepted as -env and expecting two
string arguments:
1> Cmd = #{arguments => [#{name => env, long => "env", nargs => 2}]},
argparse:parse(["-env", "key", "value"], Cmd).

{ok, #{env => ["key", "value"]}, ...

	list - Consume all following arguments until hitting the next option
(starting with an option prefix). May result in an empty list added to the
arguments map.
1> Cmd = #{arguments => [
 #{name => nodes, long => "nodes", nargs => list},
 #{name => verbose, short => $v, type => boolean}
]},
argparse:parse(["-nodes", "one", "two", "-v"], Cmd).

{ok, #{nodes => ["one", "two"], verbose => true}, ...

	nonempty_list - Same as list, but expects at least one argument.
Returns an error if the following command line argument is an option switch
(starting with the prefix).

	'maybe' - Consumes the next argument from the command line, if it does
not start with an option prefix. Otherwise, adds a default value to the
arguments map.
1> Cmd = #{arguments => [
 #{name => level, short => $l, nargs => 'maybe', default => "error"},
 #{name => verbose, short => $v, type => boolean}
]},
argparse:parse(["-l", "info", "-v"], Cmd).

{ok,#{level => "info",verbose => true}, ...

%% When "info" is omitted, argument maps receives the default "error"
2> argparse:parse(["-l", "-v"], Cmd).

{ok,#{level => "error",verbose => true}, ...

	{'maybe', term()} - Consumes the next argument from the command line,
if it does not start with an option prefix. Otherwise, adds a specified
Erlang term to the arguments map.

	all - Fold all remaining command line arguments into a list, ignoring
any option prefixes or switches. Useful for proxying arguments into another
command line utility.
1> Cmd = #{arguments => [
 #{name => verbose, short => $v, type => boolean},
 #{name => raw, long => "-", nargs => all}
]},
argparse:parse(["-v", "--", "-kernel", "arg", "opt"], Cmd).

{ok,#{raw => ["-kernel","arg","opt"],verbose => true}, ...

	action - Defines an action to take when the argument is found in the
command line. The default action is store.
	store - Store the value in the arguments map. Overwrites the value
previously written.
1> Cmd = #{arguments => [#{name => str, short => $s}]},
argparse:parse(["-s", "one", "-s", "two"], Cmd).

{ok, #{str => "two"}, ...

	{store, term()} - Stores the specified term instead of reading the
value from the command line.
1> Cmd = #{arguments => [#{name => str, short => $s, action => {store, "two"}}]},
argparse:parse(["-s"], Cmd).

{ok, #{str => "two"}, ...

	append - Appends the repeating occurrences of the argument instead of
overwriting.
1> Cmd = #{arguments => [#{name => node, short => $n, action => append}]},
argparse:parse(["-n", "one", "-n", "two", "-n", "three"], Cmd).

{ok, #{node => ["one", "two", "three"]}, ...

%% Always produces a list - even if there is one occurrence
2> argparse:parse(["-n", "one"], Cmd).

{ok, #{node => ["one"]}, ...

	{append, term()} - Same as append, but instead of consuming the
argument from the command line, appends a provided term/0.

	count - Puts a counter as a value in the arguments map. Useful for
implementing verbosity option:
1> Cmd = #{arguments => [#{name => verbose, short => $v, action => count}]},
argparse:parse(["-v"], Cmd).

{ok, #{verbose => 1}, ...

2> argparse:parse(["-vvvv"], Cmd).

{ok, #{verbose => 4}, ...

	extend - Works as append, but flattens the resulting list. Valid
only for nargs set to list, nonempty_list, all or pos_integer/0.
1> Cmd = #{arguments => [#{name => duet, short => $d, nargs => 2, action => extend}]},
argparse:parse(["-d", "a", "b", "-d", "c", "d"], Cmd).

{ok, #{duet => ["a", "b", "c", "d"]}, ...

%% 'append' would result in {ok, #{duet => [["a", "b"],["c", "d"]]},

	help - Specifies help/usage text for the argument. argparse provides
automatic generation based on the argument name, type and default value, but
for better usability it is recommended to have a proper description. Setting
this field to hidden suppresses usage output for this argument.

 Link to this type

 argument_help()

 View Source

 (since OTP 26.0)

 -type argument_help() ::
 {unicode:chardata(), [unicode:chardata() | type | default] | fun(() -> unicode:chardata())}.

User-defined help template to print in the command usage. First element of a
tuple must be a string. It is printed as a part of the usage header. Second
element of the tuple can be either a list containing strings, type and
default atoms, or a user-defined function that must return a string. A plain
string should be wrapped as a list such as ["string is nested"].

 Link to this type

 argument_name()

 View Source

 (not exported)

 (since OTP 26.0)

 -type argument_name() :: atom() | string() | binary().

Argument name is used to populate argument map.

 Link to this type

 cmd_path()

 View Source

 (since OTP 26.0)

 -type cmd_path() :: [string()].

Path to the nested command. First element is always the progname, subsequent
elements are nested command names.

 Link to this type

 command()

 View Source

 (since OTP 26.0)

 -type command() ::
 #{commands => #{string() => command()},
 arguments => [argument()],
 help => hidden | unicode:chardata() | command_help(),
 handler => handler()}.

Command specification. May contain nested commands, forming a hierarchy.
	commands - Maps of nested commands. Keys must be strings, matching
command line input. Basic utilities do not need to specify any nested
commands.

	arguments - List of arguments accepted by this command, and all nested
commands in the hierarchy.

	help - Specifies help/usage text for this command. Pass hidden to
remove this command from the usage output.

	handler - Specifies a callback function to call by run/3 when the
parser is successful.

 Link to this type

 command_help()

 View Source

 (not exported)

 (since OTP 26.0)

 -type command_help() :: [unicode:chardata() | usage | commands | arguments | options].

User-defined help template. Use this option to mix custom and predefined usage
text. Help template may contain unicode strings, and following atoms:
	usage - Formatted command line usage text, e.g. rm [-rf] <directory>.

	commands - Expanded list of sub-commands.

	arguments - Detailed description of positional arguments.

	options - Detailed description of optional arguments.

 Link to this type

 handler()

 View Source

 (since OTP 26.0)

 -type handler() ::
 optional |
 fun((arg_map()) -> term()) |
 {module(), Fn :: atom()} |
 {fun(() -> term()), term()} |
 {module(), atom(), term()}.

Command handler specification. Called by run/3 upon successful
parser return.
	fun((arg_map()) -> term()) - Function accepting
argument map. See the basic example in the
Quick Start section.

	{Module :: module(), Function :: atom()} - Function named Function,
exported from Module, accepting argument map.

	{fun(() -> term()), Default :: term()} - Function accepting as many
arguments as there are in the arguments list for this command. Arguments
missing from the parsed map are replaced with the Default. Convenient way to
expose existing functions.
1> Cmd = #{arguments => [
 #{name => x, type => float},
 #{name => y, type => float, short => $p}],
 handler => {fun math:pow/2, 1}},
argparse:run(["2", "-p", "3"], Cmd, #{}).

8.0

%% default term 1 is passed to math:pow/2
2> argparse:run(["2"], Cmd, #{}).

2.0

	{Module :: module(), Function :: atom(), Default :: term()} - Function
named Function, exported from Module, accepting as many arguments as
defined for this command. Arguments missing from the parsed map are replaced
with the Default. Effectively, just a different syntax to the same
functionality as demonstrated in the code above.

 Link to this type

 parse_result()

 View Source

 (not exported)

 (since OTP 26.0)

 -type parse_result() :: {ok, arg_map(), Path :: cmd_path(), command()} | {error, parser_error()}.

Returned from parse/2,3. Contains arguments extracted from the
command line, path to the nested command (if any), and a (potentially nested)
command specification that was considered when the parser finished successfully.
It is expected that the command contains a handler definition, that will be
called passing the argument map.

 Link to this type

 parser_error()

 View Source

 (not exported)

 (since OTP 26.0)

 -type parser_error() ::
 {Path :: cmd_path(),
 Expected :: argument() | undefined,
 Actual :: string() | undefined,
 Details :: unicode:chardata()}.

Returned from parse/2,3 when the user input cannot be parsed
according to the command specification.
First element is the path to the command that was considered when the parser
detected an error. Second element, Expected, is the argument specification
that caused an error. It could be undefined, meaning that Actual argument
had no corresponding specification in the arguments list for the current
command.
When Actual is set to undefined, it means that a required argument is
missing from the command line. If both Expected and Actual have values, it
means validation error.
Use format_error/1 to generate a human-readable error description, unless
there is a need to provide localised error messages.

 Link to this type

 parser_options()

 View Source

 (not exported)

 (since OTP 26.0)

 -type parser_options() ::
 #{prefixes => [char()],
 default => term(),
 progname => string() | atom(),
 command => cmd_path(),
 columns => pos_integer()}.

Options changing parser behaviour.
	prefixes - Changes the option prefix (the default is -).

	default - Specifies the default value for all optional arguments. When
this field is set, resulting argument map will contain all argument names.
Useful for easy pattern matching on the argument map in the handler function.

	progname - Specifies the program (root command) name. Returned as the
first element of the command path, and printed in help/usage text. It is
recommended to have this value set, otherwise the default one is determined
with init:get_argument(progname) and is often set to erl instead of the
actual script name.

	command - Specifies the path to the nested command for help/2. Useful
to limit output for complex utilities with multiple commands, and used by the
default error handling logic.

	columns - Specifies the help/usage text width (characters) for help/2.
Default value is 80.

 Functions

 Link to this function

 format_error(Reason)

 View Source

 (since OTP 26.0)

 -spec format_error(Reason :: parser_error()) -> unicode:chardata().

Generates human-readable text for parser error. Does not
include help/usage information, and does not provide localisation.

 Link to this function

 help(Command)

 View Source

 (since OTP 26.0)

 -spec help(command()) -> string().

Equivalent to help/2.

 Link to this function

 help(Command, Options)

 View Source

 (since OTP 26.0)

 -spec help(command(), parser_options()) -> unicode:chardata().

Generates help/usage information text for the command supplied, or any nested
command when command option is specified. Arguments are displayed in the same
order as specified in Command. Does not provide localisation. Expects
progname to be set, otherwise defaults to return value of
init:get_argument(progname).

 Link to this function

 parse(Args, Command)

 View Source

 (since OTP 26.0)

 -spec parse(Args :: [string()], command()) -> parse_result().

Equivalent to parse/3.

 Link to this function

 parse(Args, Command, Options)

 View Source

 (since OTP 26.0)

 -spec parse(Args :: [string()], command(), Options :: parser_options()) -> parse_result().

Parses command line arguments according to the command specification. Raises an
exception if the command specification is not valid. Use
erl_error:format_exception/3,4 to see a
friendlier message. Invalid command line input does not raise an exception, but
makes parse/2,3 to return a tuple
{error, parser_error()}.
This function does not call command handler.

 Link to this function

 run(Args, Command, Options)

 View Source

 (since OTP 26.0)

 -spec run(Args :: [string()], command(), parser_options()) -> term().

Parses command line arguments and calls the matching command handler. Prints
human-readable error, help/usage information for the discovered command, and
halts the emulator with code 1 if there is any error in the command
specification or user-provided command line input.
Warning
This function is designed to work as an entry point to a standalone
escript. Therefore, it halts the emulator for any
error detected. Do not use this function through remote procedure call, or it
may result in an unexpected shutdown of a remote node.

 escript - stdlib v5.2.1

escript

This module provides functions to create and inspect escripts.
See the escript program documentation
for more details on how to use escripts.

 Summary

 Types

 comment()

 emu_args()

 Any arguments that should be passed to erl when starting.

 extract_option()

 section()

 section_name()

 shebang()

 The initial #! line.

 zip_file()

 Functions

 create(File, Options)

 Creates an escript from a list of sections.

 extract(File, Options)

 Parses an escript and extracts its sections. This is the reverse of create/2.

 script_name()

 Returns the name of the escript that is executed.

 Types

 Link to this type

 comment()

 View Source

 (not exported)

 -type comment() :: string().

 Link to this type

 emu_args()

 View Source

 (not exported)

 -type emu_args() :: string().

Any arguments that should be passed to erl when starting.

 Link to this type

 extract_option()

 View Source

 (not exported)

 -type extract_option() :: compile_source | {section, [section_name()]}.

 Link to this type

 section()

 View Source

 (not exported)

 -type section() ::
 shebang |
 {shebang, shebang() | default | undefined} |
 comment |
 {comment, comment() | default | undefined} |
 {emu_args, emu_args() | undefined} |
 {source, file:filename() | binary()} |
 {beam, file:filename() | binary()} |
 {archive, zip:filename() | binary()} |
 {archive, [zip_file()], [zip:create_option()]}.

 Link to this type

 section_name()

 View Source

 (not exported)

 -type section_name() :: shebang | comment | emu_args | body.

 Link to this type

 shebang()

 View Source

 (not exported)

 -type shebang() :: string().

The initial #! line.
For example:
#!/usr/bin/env escript

 Link to this type

 zip_file()

 View Source

 (not exported)

 -type zip_file() ::
 zip:filename() | {zip:filename(), binary()} | {zip:filename(), binary(), file:file_info()}.

 Functions

 Link to this function

 create(File, Options)

 View Source

 -spec create(file:filename() | binary(), [section()]) -> ok | {ok, binary()} | {error, term()}.

Creates an escript from a list of sections.
The sections can be specified in any order. An escript begins with an optional
Header followed by a mandatory Body. If the header is present, it does always
 begin with a shebang, possibly followed by a comment and emu_args. The
shebang defaults to "/usr/bin/env escript". The comment defaults to
"This is an -*- erlang -*- file". The created escript can either be returned
as a binary or written to file.
As an example of how the function can be used, we create an interpreted escript
that uses emu_args to set some emulator flag. In this case, it happens to set
number of schedulers with +S3. We also extract the different sections from the
newly created script:
> Source = "%% Demo\nmain(_Args) ->\n io:format(\"~p\",[erlang:system_info(schedulers)]).\n".
"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(schedulers)).\n"
> io:format("~s\n", [Source]).
%% Demo
main(_Args) ->
 io:format(erlang:system_info(schedulers)).

ok
> {ok, Bin} = escript:create(binary, [shebang, comment, {emu_args, "+S3"},
 {source, list_to_binary(Source)}]).
{ok,<<"#!/usr/bin/env escript\n%% This is an -*- erlang -*- file\n%%!+S3"...>>}
> file:write_file("demo.escript", Bin).
ok
> os:cmd("escript demo.escript").
"3"
> escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,default}, {emu_args,"+S3"},
 {source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(schedu"...>>}]}
An escript without header can be created as follows:
> file:write_file("demo.erl",
 ["%% demo.erl\n-module(demo).\n-export([main/1]).\n\n", Source]).
ok
> {ok, _, BeamCode} = compile:file("demo.erl", [binary, debug_info]).
{ok,demo,
 <<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,109,0,0,0,
 79,0,0,0,9,4,100,...>>}
> escript:create("demo.beam", [{beam, BeamCode}]).
ok
> escript:extract("demo.beam", []).
{ok,[{shebang,undefined}, {comment,undefined}, {emu_args,undefined},
 {beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
 111,109,0,0,0,83,0,0,0,9,...>>}]}
> os:cmd("escript demo.beam").
"true"
Here we create an archive script containing both Erlang code and Beam code, then
we iterate over all files in the archive and collect their contents and some
information about them:
> {ok, SourceCode} = file:read_file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}
> escript:create("demo.escript",
 [shebang,
 {archive, [{"demo.erl", SourceCode},
 {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {archive, ArchiveBin}]} = escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
 152,61,93,107,0,0,0,118,0,...>>}]}
> file:write_file("demo.zip", ArchiveBin).
ok
> zip:foldl(fun(N, I, B, A) -> [{N, I(), B()} | A] end, [], "demo.zip").
{ok,[{"demo.beam",
 {file_info,748,regular,read_write,
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 54,1,0,0,0,0,0},
 <<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
 83,0,0,...>>},
 {"demo.erl",
 {file_info,118,regular,read_write,
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 {{2010,3,2},{0,59,22}},
 54,1,0,0,0,0,0},
 <<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}]}

 Link to this function

 extract(File, Options)

 View Source

 -spec extract(file:filename(), [extract_option()]) -> {ok, [section()]} | {error, term()}.

Parses an escript and extracts its sections. This is the reverse of create/2.
All sections are returned even if they do not exist in the escript. If a
particular section happens to have the same value as the default value, the
extracted value is set to the atom default. If a section is missing, the
extracted value is set to the atom undefined.
Option compile_source only affects the result if the escript contains source
code. In this case the Erlang code is automatically compiled and
{source, BeamCode} is returned instead of {source, SourceCode}.
Example:
> escript:create("demo.escript",
 [shebang, {archive, [{"demo.erl", SourceCode},
 {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined},
 {archive, ArchiveBin}]} =
 escript:extract("demo.escript", []).
{ok,[{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
 152,61,93,107,0,0,0,118,0,...>>}
 {emu_args,undefined}]}

 Link to this function

 script_name()

 View Source

 -spec script_name() -> string().

Returns the name of the escript that is executed.
If the function is invoked outside the context of an escript,
the behavior is undefined.

 peer - stdlib v5.2.1

peer

Start and control linked Erlang nodes.
This module provides functions for starting linked Erlang nodes. The node
spawning new nodes is called origin, and newly started nodes are peer nodes,
or peers. A peer node automatically terminates when it loses the control
connection to the origin. This connection could be an Erlang distribution
connection, or an alternative - TCP or standard I/O. The alternative connection
provides a way to execute remote procedure calls even when Erlang Distribution
is not available, allowing to test the distribution itself.
Peer node terminal input/output is relayed through the origin. If a standard I/O
alternative connection is requested, console output also goes via the origin,
allowing debugging of node startup and boot script execution (see
-init_debug). File I/O is not redirected,
contrary to slave behaviour.
The peer node can start on the same or a different host (via ssh) or in a
separate container (for example Docker). When the peer starts on the same host
as the origin, it inherits the current directory and environment variables from
the origin.
Note
This module is designed to facilitate multi-node testing with Common Test. Use
the ?CT_PEER() macro to start a linked peer node according to Common Test
conventions: crash dumps written to specific location, node name prefixed with
module name, calling function, and origin OS process ID). Use random_name/1
to create sufficiently unique node names if you need more control.
A peer node started without alternative connection behaves similarly to
slave. When an alternative connection is requested, the behaviour is
similar to test_server:start_node(Name, peer, Args).

 Example

The following example implements a test suite starting extra Erlang nodes. It
employs a number of techniques to speed up testing and reliably shut down peer
nodes:
	peers start linked to test runner process. If the test case fails, the peer
node is stopped automatically, leaving no rogue nodes running in the
background
	arguments used to start the peer are saved in the control process state for
manual analysis. If the test case fails, the CRASH REPORT contains these
arguments
	multiple test cases can run concurrently speeding up overall testing process,
peer node names are unique even when there are multiple instances of the same
test suite running in parallel

-module(my_SUITE).
-behaviour(ct_suite).
-export([all/0, groups/0]).
-export([basic/1, args/1, named/1, restart_node/1, multi_node/1]).

-include_lib("common_test/include/ct.hrl").

groups() ->
 [{quick, [parallel],
 [basic, args, named, restart_node, multi_node]}].

all() ->
 [{group, quick}].

basic(Config) when is_list(Config) ->
 {ok, Peer, _Node} = ?CT_PEER(),
 peer:stop(Peer).

args(Config) when is_list(Config) ->
 %% specify additional arguments to the new node
 {ok, Peer, _Node} = ?CT_PEER(["-emu_flavor", "smp"]),
 peer:stop(Peer).

named(Config) when is_list(Config) ->
 %% pass test case name down to function starting nodes
 Peer = start_node_impl(named_test),
 peer:stop(Peer).

start_node_impl(ActualTestCase) ->
 {ok, Peer, Node} = ?CT_PEER(#{name => ?CT_PEER_NAME(ActualTestCase)}),
 %% extra setup needed for multiple test cases
 ok = rpc:call(Node, application, set_env, [kernel, key, value]),
 Peer.

restart_node(Config) when is_list(Config) ->
 Name = ?CT_PEER_NAME(),
 {ok, Peer, Node} = ?CT_PEER(#{name => Name}),
 peer:stop(Peer),
 %% restart the node with the same name as before
 {ok, Peer2, Node} = ?CT_PEER(#{name => Name, args => ["+fnl"]}),
 peer:stop(Peer2).
The next example demonstrates how to start multiple nodes concurrently:
multi_node(Config) when is_list(Config) ->
 Peers = [?CT_PEER(#{wait_boot => {self(), tag}})
 || _ <- lists:seq(1, 4)],
 %% wait for all nodes to complete boot process, get their names:
 _Nodes = [receive {tag, {started, Node, Peer}} -> Node end
 || {ok, Peer} <- Peers],
 [peer:stop(Peer) || {ok, Peer} <- Peers].
Start a peer on a different host. Requires ssh key-based authentication set
up, allowing "another_host" connection without password prompt.
Ssh = os:find_executable("ssh"),
peer:start_link(#{exec => {Ssh, ["another_host", "erl"]},
 connection => standard_io}),
The following Common Test case demonstrates Docker integration, starting two
containers with hostnames "one" and "two". In this example Erlang nodes running
inside containers form an Erlang cluster.
docker(Config) when is_list(Config) ->
 Docker = os:find_executable("docker"),
 PrivDir = proplists:get_value(priv_dir, Config),
 build_release(PrivDir),
 build_image(PrivDir),

 %% start two Docker containers
 {ok, Peer, Node} = peer:start_link(#{name => lambda,
 connection => standard_io,
 exec => {Docker, ["run", "-h", "one", "-i", "lambda"]}}),
 {ok, Peer2, Node2} = peer:start_link(#{name => lambda,
 connection => standard_io,
 exec => {Docker, ["run", "-h", "two", "-i", "lambda"]}}),

 %% find IP address of the second node using alternative connection RPC
 {ok, Ips} = peer:call(Peer2, inet, getifaddrs, []),
 {"eth0", Eth0} = lists:keyfind("eth0", 1, Ips),
 {addr, Ip} = lists:keyfind(addr, 1, Eth0),

 %% make first node to discover second one
 ok = peer:call(Peer, inet_db, set_lookup, [[file]]),
 ok = peer:call(Peer, inet_db, add_host, [Ip, ["two"]]),

 %% join a cluster
 true = peer:call(Peer, net_kernel, connect_node, [Node2]),
 %% verify that second peer node has only the first node visible
 [Node] = peer:call(Peer2, erlang, nodes, []),

 %% stop peers, causing containers to also stop
 peer:stop(Peer2),
 peer:stop(Peer).

build_release(Dir) ->
 %% load sasl.app file, otherwise application:get_key will fail
 application:load(sasl),
 %% create *.rel - release file
 RelFile = filename:join(Dir, "lambda.rel"),
 Release = {release, {"lambda", "1.0.0"},
 {erts, erlang:system_info(version)},
 [{App, begin {ok, Vsn} = application:get_key(App, vsn), Vsn end}
 || App <- [kernel, stdlib, sasl]]},
 ok = file:write_file(RelFile, list_to_binary(lists:flatten(
 io_lib:format("~tp.", [Release])))),
 RelFileNoExt = filename:join(Dir, "lambda"),

 %% create boot script
 {ok, systools_make, []} = systools:make_script(RelFileNoExt,
 [silent, {outdir, Dir}]),
 %% package release into *.tar.gz
 ok = systools:make_tar(RelFileNoExt, [{erts, code:root_dir()}]).

build_image(Dir) ->
 %% Create Dockerfile example, working only for Ubuntu 20.04
 %% Expose port 4445, and make Erlang distribution to listen
 %% on this port, and connect to it without EPMD
 %% Set cookie on both nodes to be the same.
 BuildScript = filename:join(Dir, "Dockerfile"),
 Dockerfile =
 "FROM ubuntu:20.04 as runner\n"
 "EXPOSE 4445\n"
 "WORKDIR /opt/lambda\n"
 "COPY lambda.tar.gz /tmp\n"
 "RUN tar -zxvf /tmp/lambda.tar.gz -C /opt/lambda\n"
 "ENTRYPOINT [\"/opt/lambda/erts-" ++ erlang:system_info(version) ++
 "/bin/dyn_erl\", \"-boot\", \"/opt/lambda/releases/1.0.0/start\","
 " \"-kernel\", \"inet_dist_listen_min\", \"4445\","
 " \"-erl_epmd_port\", \"4445\","
 " \"-setcookie\", \"secret\"]\n",
 ok = file:write_file(BuildScript, Dockerfile),
 os:cmd("docker build -t lambda " ++ Dir).

 Summary

 Types

 connection()

 Alternative connection between the origin and the peer. When the connection
closes, the peer node terminates automatically.

 disconnect_timeout()

 Disconnect timeout. See stop().

 exec()

 Overrides executable to start peer nodes with.

 peer_state()

 Peer node state.

 server_ref()

 Identifies the controlling process of a peer node.

 start_options()

 Options that can be used when starting a peer node through start/1 and
start_link/0,1.

 wait_boot()

 Specifies start/start_link timeout in milliseconds. Can be set to false,
allowing the peer to start asynchronously. If {Pid, Tag} is specified instead
of a timeout, the peer will send Tag to the requested process.

 Functions

 call(Dest, Module, Function, Args)

 Equivalent to call(Dest, Module, Function, Args, 5000).

 call(Dest, Module, Function, Args, Timeout)

 Uses the alternative connection to evaluate
apply(Module, Function, Args) on the peer node and returns the
corresponding value Result.

 cast(Dest, Module, Function, Args)

 Uses the alternative connection to evaluate
apply(Module, Function, Args) on the peer node. No response is
delivered to the calling process.

 get_state(Dest)

 Returns the peer node state.

 random_name()

 Equivalent to random_name(peer).

 random_name(Prefix)

 Creates a sufficiently unique node name for the current host, combining a
prefix, a unique number, and the current OS process ID.

 send(Dest, To, Message)

 Uses the alternative connection to send Message to a process on the the peer node.

 start(Options)

 Starts a peer node with the specified start_options/0. Returns the
controlling process and the full peer node name, unless wait_boot is not
requested and the host name is not known in advance.

 start_link()

 The same as start_link(#{name => random_name()}).

 start_link(Options)

 Starts a peer node in the same way as start/1, except that the peer node is
linked to the currently executing process. If that process terminates, the peer
node also terminates.

 stop(Dest)

 Stops a peer node. How the node is stopped depends on the
shutdown option passed when starting the peer node.
Currently the following shutdown options are supported

 Types

 Link to this type

 connection()

 View Source

 (not exported)

 (since OTP 25.0)

 -type connection() :: Port :: 0..65535 | {inet:ip_address(), 0..65535} | standard_io.

Alternative connection between the origin and the peer. When the connection
closes, the peer node terminates automatically.
If the peer_down startup flag is set to crash, the controlling process on
the origin node exits with corresponding reason, effectively providing a two-way link.
When connection is set to a port number, the origin starts listening on the
requested TCP port, and the peer node connects to the port. When it is set to an
{IP, Port} tuple, the origin listens only on the specified IP. The port number
can be set to 0 for automatic selection.
Using the standard_io alternative connection starts the peer attached to the
origin (other connections use -detached flag to erl). In this mode peer and
origin communicate via stdin/stdout.

 Link to this type

 disconnect_timeout()

 View Source

 (since OTP 25.0)

 -type disconnect_timeout() :: 1000..4294967295 | infinity.

Disconnect timeout. See stop().

 Link to this type

 exec()

 View Source

 (since OTP 25.0)

 -type exec() :: file:name() | {file:name(), [string()]}.

Overrides executable to start peer nodes with.
By default it is the path to "erl", taken from init:get_argument(progname).
If progname is not known, peer makes best guess given the current ERTS version.
When a tuple is passed, the first element is the path to executable, and the
second element is prepended to the final command line. This can be used to start
peers on a remote host or in a Docker container. See the examples above.
This option is useful for testing backwards compatibility with previous
releases, installed at specific paths, or when the Erlang installation location
is missing from the PATH.

 Link to this type

 peer_state()

 View Source

 (since OTP 25.0)

 -type peer_state() :: booting | running | {down, Reason :: term()}.

Peer node state.

 Link to this type

 server_ref()

 View Source

 (since OTP 25.0)

 -type server_ref() :: pid().

Identifies the controlling process of a peer node.

 Link to this type

 start_options()

 View Source

 (since OTP 25.0)

 -type start_options() ::
 #{name => atom() | string(),
 longnames => boolean(),
 host => string(),
 peer_down => stop | continue | crash,
 connection => connection(),
 exec => exec(),
 detached => boolean(),
 args => [string()],
 post_process_args => fun(([string()]) -> [string()]),
 env => [{string(), string()}],
 wait_boot => wait_boot(),
 shutdown => close | halt | {halt, disconnect_timeout()} | disconnect_timeout()}.

Options that can be used when starting a peer node through start/1 and
start_link/0,1.
	name - Node name (the part before "@"). When name is not specified,
but host is, peer follows compatibility behaviour and uses the origin node
name.

	longnames - Use long names to start a node. Default is taken from the
origin using net_kernel:longnames(). If the origin is not distributed, short
names is the default.

	host - Enforces a specific host name. Can be used to override the
default behaviour and start "node@localhost" instead of "node@realhostname".

	peer_down - Defines the peer control process behaviour when the control
connection is closed from the peer node side (for example when the peer
crashes or dumps core). When set to stop (default), a lost control
connection causes the control process to exit normally. Setting peer_down to
continue keeps the control process running, and crash will cause the
controlling process to exit abnormally.

	connection - Alternative connection specification. See the
connection datatype.

	exec - Alternative mechanism to start peer nodes with, for example, ssh
instead of the default bash.

	detached - Defines whether to pass the -detached flag to the started
peer. This option cannot be set to false using the standard_io alternative
connection type. Default is true.

	args - Extra command line arguments to append to the "erl" command.
Arguments are passed as is, no escaping or quoting is needed or accepted.

	post_process_args - Allows the user to change the arguments passed to
exec before the peer is started. This can for example be useful when the
exec program wants the arguments to "erl" as a single argument. Example:
peer:start(#{ name => peer:random_name(),
 exec => {os:find_executable("bash"),["-c","erl"]},
 post_process_args =>
 fun(["-c"|Args]) -> ["-c", lists:flatten(lists:join($\s, Args))] end
 }).

	env - List of environment variables with their values. This list is
applied to a locally started executable. If you need to change the environment
of the remote peer, adjust args to contain -env ENV_KEY ENV_VALUE.

	wait_boot - Specifies the start/start_link timeout. See
wait_boot datatype.

	shutdown - Specifies the peer node stopping behaviour. See
stop().

 Link to this type

 wait_boot()

 View Source

 (not exported)

 (since OTP 25.0)

 -type wait_boot() :: timeout() | {pid(), Tag :: term()} | false.

Specifies start/start_link timeout in milliseconds. Can be set to false,
allowing the peer to start asynchronously. If {Pid, Tag} is specified instead
of a timeout, the peer will send Tag to the requested process.
The default is 15_000 ms.

 Functions

 Link to this function

 call(Dest, Module, Function, Args)

 View Source

 (since OTP 25.0)

 -spec call(Dest :: server_ref(), Module :: module(), Function :: atom(), Args :: [term()]) ->
 Result :: term().

Equivalent to call(Dest, Module, Function, Args, 5000).

 Link to this function

 call(Dest, Module, Function, Args, Timeout)

 View Source

 (since OTP 25.0)

 -spec call(Dest :: server_ref(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Timeout :: timeout()) ->
 Result :: term().

Uses the alternative connection to evaluate
apply(Module, Function, Args) on the peer node and returns the
corresponding value Result.
Timeout is an integer representing the timeout in milliseconds or the atom
infinity which prevents the operation from ever timing out.
When an alternative connection is not requested, this function will raise exit
signal with the noconnection reason. Use erpc module to communicate over
Erlang distribution.

 Link to this function

 cast(Dest, Module, Function, Args)

 View Source

 (since OTP 25.0)

 -spec cast(Dest :: server_ref(), Module :: module(), Function :: atom(), Args :: [term()]) -> ok.

Uses the alternative connection to evaluate
apply(Module, Function, Args) on the peer node. No response is
delivered to the calling process.
peer:cast/4 fails silently when the alternative connection is not configured.
Use erpc module to communicate over Erlang distribution.

 Link to this function

 get_state(Dest)

 View Source

 (since OTP 25.0)

 -spec get_state(Dest :: server_ref()) -> peer_state().

Returns the peer node state.
The initial state is booting; the node stays in that state until then boot
script is complete, and then the node progresses to running. If the node stops
(gracefully or not), the state changes to down.

 Link to this function

 random_name()

 View Source

 (since OTP 25.0)

 -spec random_name() -> string().

Equivalent to random_name(peer).

 Link to this function

 random_name(Prefix)

 View Source

 (since OTP 25.0)

 -spec random_name(Prefix :: string() | atom()) -> string().

Creates a sufficiently unique node name for the current host, combining a
prefix, a unique number, and the current OS process ID.
Note
Use the ?CT_PEER(["erl_arg1"]) macro provided by Common Test
-include_lib("common_test/include/ct.hrl") for convenience. It starts a new
peer using Erlang distribution as the control channel, supplies thes calling
module's code path to the peer, and uses the calling function name for the
name prefix.

 Link to this function

 send(Dest, To, Message)

 View Source

 (since OTP 25.0)

 -spec send(Dest :: server_ref(), To :: pid() | atom(), Message :: term()) -> ok.

Uses the alternative connection to send Message to a process on the the peer node.
Silently fails if no alternative connection is configured. The process can
be referenced by process ID or registered name.

 Link to this function

 start(Options)

 View Source

 (since OTP 25.0)

 -spec start(start_options()) -> {ok, pid()} | {ok, pid(), node()} | {error, Reason}
 when Reason :: term().

Starts a peer node with the specified start_options/0. Returns the
controlling process and the full peer node name, unless wait_boot is not
requested and the host name is not known in advance.

 Link to this function

 start_link()

 View Source

 (since OTP 25.0)

 -spec start_link() -> {ok, pid(), node()} | {error, Reason :: term()}.

The same as start_link(#{name => random_name()}).

 Link to this function

 start_link(Options)

 View Source

 (since OTP 25.0)

 -spec start_link(start_options()) -> {ok, pid()} | {ok, pid(), node()} | {error, Reason}
 when Reason :: term().

Starts a peer node in the same way as start/1, except that the peer node is
linked to the currently executing process. If that process terminates, the peer
node also terminates.
Accepts start_options/0. Returns the controlling process and the full peer
node name, unless wait_boot is not requested and host name is not known in
advance.
When the standard_io alternative connection is requested, and wait_boot is
not set to false, a failed peer boot sequence causes the caller to exit with
the {boot_failed, {exit_status, ExitCode}} reason.

 Link to this function

 stop(Dest)

 View Source

 (since OTP 25.0)

 -spec stop(Dest :: server_ref()) -> ok.

Stops a peer node. How the node is stopped depends on the
shutdown option passed when starting the peer node.
Currently the following shutdown options are supported:
	halt - This is the default shutdown behavior. It behaves as shutdown
option {halt, DefaultTimeout} where DefaultTimeout currently equals
5000.

	{halt, Timeout :: disconnect_timeout()} - Triggers a call to
erlang:halt() on the peer node and then waits for the
Erlang distribution connection to the peer node to be taken down. If this
connection has not been taken down after Timeout milliseconds, it will
forcefully be taken down by peer:stop/1. See the
warning below for more info about this.

	Timeout :: disconnect_timeout() - Triggers a call to
init:stop() on the peer node and then waits for the Erlang
distribution connection to the peer node to be taken down. If this connection
has not been taken down after Timeout milliseconds, it will forcefully be
taken down by peer:stop/1. See the warning
below for more info about this.

	close - Close the control connection to the peer node and return. This
is the fastest way for the caller of peer:stop/1 to stop a peer node.
Note that if the Erlang distribution connection is not used as control
connection it might not have been taken down when peer:stop/1 returns. Also
note that the warning below applies when the
Erlang distribution connection is used as control connection.

Warning
In the cases where the Erlang distribution connection is taken down by
peer:stop/1, other code independent of the peer code might react to the
connection loss before the peer node is stopped which might cause undesirable
effects. For example, global
might trigger even more Erlang distribution connections to other nodes to be
taken down. The potential undesirable effects are, however, not limited to
this. It is hard to say what the effects will be since these effects can be
caused by any code with links or monitors to something on the origin node, or
code monitoring the connection to the origin node.

 slave - stdlib v5.2.1

slave

This module provides functions for starting Erlang slave nodes.
All slave nodes that are started by a master terminate automatically when the
master terminates. All terminal output produced at the slave is sent back to
the master node. File I/O is done through the master.
Slave nodes on other hosts than the current one are started with the ssh
program. The user must be allowed to ssh to the remote hosts without being
prompted for a password. This can be arranged in a number of ways (for details,
see the ssh documentation). A slave node started on the same host as the
master inherits certain environment values from the master, such as the current
directory and the environment variables. For what can be assumed about the
environment when a slave is started on another host, see the documentation for
the ssh program.
An alternative to the ssh program can be specified on the command line to
erl(1) as follows:
-rsh Program
Note that the command specified with the -rsh flag is treated as a file name
which may contain spaces. It is thus not possible to include any command line
options. The remote node will be launched as
"$RSH" "$REMOTE_HOSTNAME" erl -detached -noinput ..., so the erl command
must be found in the path on the remote host.
The slave node is to use the same file system at the master. At least,
Erlang/OTP is to be installed in the same place on both computers and the same
version of Erlang is to be used.
A node running on Windows can only start slave nodes on the host on which it is
running.
The master node must be alive.

 Summary

 Functions

 pseudo([Master | ServerList])

 deprecated

 Calls pseudo(Master, ServerList). If you want to start a node
from the command line and set up a number of pseudo servers, an Erlang runtime
system can be started as follows

 pseudo(Master, ServerList)

 deprecated

 Starts a number of pseudo servers. A pseudo server is a server with a registered
name that does nothing but pass on all message to the real server that executes
at a master node. A pseudo server is an intermediary that only has the same
registered name as the real server.

 relay(Pid)

 deprecated

 Runs a pseudo server. This function never returns any value and the process that
executes the function receives messages. All messages received are simply passed
on to Pid.

 start(Host)

 deprecated

 Equivalent to start(Host, Name) where Name is the same
as the node that executes this call.

 start(Host, Name)

 deprecated

 Equivalent to start(Host, Name, []).

 start(Host, Name, Args)

 deprecated

 Starts a slave node on host Host. Host names need not necessarily be specified
as fully qualified names; short names can also be used. This is the same
condition that applies to names of distributed Erlang nodes.

 start_link(Host)

 deprecated

 Equivalent to start_link/3.

 start_link(Host, Name)

 deprecated

 Equivalent to start_link/3.

 start_link(Host, Name, Args)

 deprecated

 Starts a slave node in the same way as start/1,2,3, except that the slave node
is linked to the currently executing process. If that process terminates, the
slave node also terminates.

 stop(Node)

 deprecated

 Stops (kills) a node.

 Functions

 Link to this function

 pseudo([Master | ServerList])

 View Source

 This function is deprecated. slave:pseudo/1 is deprecated; use the 'peer' module instead.

 -spec pseudo([Master :: node() | (ServerList :: [atom()])]) -> ok.

Calls pseudo(Master, ServerList). If you want to start a node
from the command line and set up a number of pseudo servers, an Erlang runtime
system can be started as follows:
% erl -name abc -s slave pseudo klacke@super x --

 Link to this function

 pseudo(Master, ServerList)

 View Source

 This function is deprecated. slave:pseudo/2 is deprecated; use the 'peer' module instead.

 -spec pseudo(Master, ServerList) -> ok when Master :: node(), ServerList :: [atom()].

Starts a number of pseudo servers. A pseudo server is a server with a registered
name that does nothing but pass on all message to the real server that executes
at a master node. A pseudo server is an intermediary that only has the same
registered name as the real server.
For example, if you have started a slave node N and want to execute pxw
graphics code on this node, you can start server pxw_server as a pseudo server
at the slave node. This is illustrated as follows:
rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

 Link to this function

 relay(Pid)

 View Source

 This function is deprecated. slave:relay/1 is deprecated; use the 'peer' module instead.

 -spec relay(Pid) -> no_return() when Pid :: pid().

Runs a pseudo server. This function never returns any value and the process that
executes the function receives messages. All messages received are simply passed
on to Pid.

 Link to this function

 start(Host)

 View Source

 This function is deprecated. slave:start/1 is deprecated; use the 'peer' module instead.

 -spec start(Host) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Equivalent to start(Host, Name) where Name is the same
as the node that executes this call.

 Link to this function

 start(Host, Name)

 View Source

 This function is deprecated. slave:start/2 is deprecated; use the 'peer' module instead.

 -spec start(Host, Name) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Name :: atom() | string(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Equivalent to start(Host, Name, []).

 Link to this function

 start(Host, Name, Args)

 View Source

 This function is deprecated. slave:start/3 is deprecated; use the 'peer' module instead.

 -spec start(Host, Name, Args) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Name :: atom() | string(),
 Args :: string(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Starts a slave node on host Host. Host names need not necessarily be specified
as fully qualified names; short names can also be used. This is the same
condition that applies to names of distributed Erlang nodes.
The name of the started node becomes Name@Host.
The slave node resets its io:user/0 process so that all terminal I/O that is
produced at the slave is automatically relayed to the master. Also, the file
server is relayed to the master.
Argument Args is used to set erl command-line arguments. It is
passed to the new node and can be used for a variety of purposes; see
erl(1).
As an example, suppose that you want to start a slave node at host H with node
name Name@H and want the slave node to have the following properties:
	Directory Dir is to be added to the code path.
	The Mnesia directory is to be set to M.
	The Unix DISPLAY environment variable is to be set to the display of the
master node.

The following code is executed to achieve this:
E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).
The function returns {ok, Node}, where Node is the name of the new node,
otherwise {error, Reason}, where Reason can be one of:
	timeout - The master node failed to get in contact with the slave node.
This can occur in a number of circumstances:
	Erlang/OTP is not installed on the remote host.
	The file system on the other host has a different structure to the the
master.
	The Erlang nodes have different cookies.

	no_rsh - No remote shell program was found on the computer. Note that
ssh is used by default, but this can be overridden with the -rsh flag.

	{already_running, Node} - A node with name Name@Host already exists.

 Link to this function

 start_link(Host)

 View Source

 This function is deprecated. slave:start_link/1 is deprecated; use the 'peer' module instead.

 -spec start_link(Host) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Equivalent to start_link/3.

 Link to this function

 start_link(Host, Name)

 View Source

 This function is deprecated. slave:start_link/2 is deprecated; use the 'peer' module instead.

 -spec start_link(Host, Name) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Name :: atom() | string(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Equivalent to start_link/3.

 Link to this function

 start_link(Host, Name, Args)

 View Source

 This function is deprecated. slave:start_link/3 is deprecated; use the 'peer' module instead.

 -spec start_link(Host, Name, Args) -> {ok, Node} | {error, Reason}
 when
 Host :: inet:hostname(),
 Name :: atom() | string(),
 Args :: string(),
 Node :: node(),
 Reason :: timeout | no_rsh | {already_running, Node}.

Starts a slave node in the same way as start/1,2,3, except that the slave node
is linked to the currently executing process. If that process terminates, the
slave node also terminates.
For a description of arguments and return values, see
start/1,2,3.

 Link to this function

 stop(Node)

 View Source

 This function is deprecated. slave:stop/1 is deprecated; use the 'peer' module instead.

 -spec stop(Node) -> ok when Node :: node().

Stops (kills) a node.

 win32reg - stdlib v5.2.1

win32reg

Provides access to the registry on Windows.
This module provides read and write access to the registry on Windows. It is
essentially a port driver wrapped around the Win32 API calls for accessing the
registry.
The registry is a hierarchical database, used to store various system and
software information in Windows. It contains installation data, and is updated
by installers and system programs. The Erlang installer updates the registry by
adding data that Erlang needs.
The registry contains keys and values. Keys are like the directories in a file
system, they form a hierarchy. Values are like files, they have a name and a
value, and also a type.
Paths to keys are left to right, with subkeys to the right and backslash between
keys. (Remember that backslashes must be doubled in Erlang strings.) Case is
preserved but not significant.
For example, "\\hkey_local_machine\\software\\Ericsson\\Erlang\\5.0" is the
key for the installation data for the latest Erlang release.
There are six entry points in the Windows registry, top-level keys. They can be
abbreviated in this module as follows:
Abbreviation Registry key
============ ============
hkcr HKEY_CLASSES_ROOT
current_user HKEY_CURRENT_USER
hkcu HKEY_CURRENT_USER
local_machine HKEY_LOCAL_MACHINE
hklm HKEY_LOCAL_MACHINE
users HKEY_USERS
hku HKEY_USERS
current_config HKEY_CURRENT_CONFIG
hkcc HKEY_CURRENT_CONFIG
dyn_data HKEY_DYN_DATA
hkdd HKEY_DYN_DATA
The key above can be written as "\\hklm\\software\\ericsson\\erlang\\5.0".
This module uses a current key. It works much like the current directory. From
the current key, values can be fetched, subkeys can be listed, and so on.
Under a key, any number of named values can be stored. They have names, types,
and data.
win32reg supports storing of the following types:
	REG_DWORD, which is an integer
	REG_SZ, which is a string
	REG_BINARY, which is a binary

Other types can be read, and are returned as binaries.
There is also a "default" value, which has the empty string as name. It is read
and written with the atom default instead of the name.
Some registry values are stored as strings with references to environment
variables, for example, %SystemRoot%Windows. SystemRoot is an environment
variable, and is to be replaced with its value. Function expand/1 is provided
so that environment variables surrounded by % can be expanded to their values.
For more information on the Windows registry, see consult the Win32 Programmer's
Reference.

 See Also

erl_posix_msg, The Windows 95 Registry (book from O'Reilly), Win32
Programmer's Reference (from Microsoft)

 Summary

 Types

 name()

 reg_handle()

 As returned by open/1.

 value()

 Functions

 change_key(RegHandle, Key)

 Changes the current key to another key. Works like cd. The key can be
specified as a relative path or as an absolute path, starting with \.

 change_key_create(RegHandle, Key)

 Creates a key, or just changes to it, if it is already there. Works like a
combination of mkdir and cd. Calls the Win32 API function
RegCreateKeyEx().

 close(RegHandle)

 Closes the registry. After that, the RegHandle cannot be used.

 current_key(RegHandle)

 Returns the path to the current key. This is the equivalent of pwd.

 delete_key(RegHandle)

 Deletes the current key, if it is valid. Calls the Win32 API function
RegDeleteKey(). Notice that this call does not change the current key (unlike
change_key_create/2). This means that after the call, the current key is
invalid.

 delete_value(RegHandle, Name)

 Deletes a named value on the current key. The atom default is used for the
default value.

 expand(String)

 Expands a string containing environment variables between percent characters.
Anything between two % is taken for an environment variable, and is replaced
by the value. Two consecutive % are replaced by one %.

 format_error(ErrorId)

 Converts a POSIX error code to a string (by calling file:format_error/1).

 open(OpenModeList)

 Opens the registry for reading or writing. The current key is the root
(HKEY_CLASSES_ROOT). Flag read in the mode list can be omitted.

 set_value(RegHandle, Name, Value)

 Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding
registry type is used. The supported types are the following

 sub_keys(RegHandle)

 Returns a list of subkeys to the current key. Calls the Win32 API function
EnumRegKeysEx().

 value(RegHandle, Name)

 Retrieves the named value (or default) on the current key. Registry values of
type REG_SZ are returned as strings. Type REG_DWORD values are returned as
integers. All other types are returned as binaries.

 values(RegHandle)

 Retrieves a list of all values on the current key. The values have types
corresponding to the registry types, see value/2. Calls the Win32 API function
EnumRegValuesEx().

 Types

 Link to this type

 name()

 View Source

 (not exported)

 -type name() :: string() | default.

 Link to this opaque

 reg_handle()

 View Source

 -opaque reg_handle()

As returned by open/1.

 Link to this type

 value()

 View Source

 (not exported)

 -type value() :: string() | integer() | binary().

 Functions

 Link to this function

 change_key(RegHandle, Key)

 View Source

 -spec change_key(RegHandle, Key) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 Key :: string(),
 ReturnValue :: ok | {error, ErrorId :: atom()}.

Changes the current key to another key. Works like cd. The key can be
specified as a relative path or as an absolute path, starting with \.

 Link to this function

 change_key_create(RegHandle, Key)

 View Source

 -spec change_key_create(RegHandle, Key) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 Key :: string(),
 ReturnValue :: ok | {error, ErrorId :: atom()}.

Creates a key, or just changes to it, if it is already there. Works like a
combination of mkdir and cd. Calls the Win32 API function
RegCreateKeyEx().
The registry must have been opened in write mode.

 Link to this function

 close(RegHandle)

 View Source

 -spec close(RegHandle) -> ok when RegHandle :: reg_handle().

Closes the registry. After that, the RegHandle cannot be used.

 Link to this function

 current_key(RegHandle)

 View Source

 -spec current_key(RegHandle) -> ReturnValue
 when RegHandle :: reg_handle(), ReturnValue :: {ok, string()}.

Returns the path to the current key. This is the equivalent of pwd.
Notice that the current key is stored in the driver, and can be invalid (for
example, if the key has been removed).

 Link to this function

 delete_key(RegHandle)

 View Source

 -spec delete_key(RegHandle) -> ReturnValue
 when RegHandle :: reg_handle(), ReturnValue :: ok | {error, ErrorId :: atom()}.

Deletes the current key, if it is valid. Calls the Win32 API function
RegDeleteKey(). Notice that this call does not change the current key (unlike
change_key_create/2). This means that after the call, the current key is
invalid.

 Link to this function

 delete_value(RegHandle, Name)

 View Source

 -spec delete_value(RegHandle, Name) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 Name :: name(),
 ReturnValue :: ok | {error, ErrorId :: atom()}.

Deletes a named value on the current key. The atom default is used for the
default value.
The registry must have been opened in write mode.

 Link to this function

 expand(String)

 View Source

 -spec expand(String) -> ExpandedString when String :: string(), ExpandedString :: string().

Expands a string containing environment variables between percent characters.
Anything between two % is taken for an environment variable, and is replaced
by the value. Two consecutive % are replaced by one %.
A variable name that is not in the environment results in an error.

 Link to this function

 format_error(ErrorId)

 View Source

 -spec format_error(ErrorId) -> ErrorString when ErrorId :: atom(), ErrorString :: string().

Converts a POSIX error code to a string (by calling file:format_error/1).

 Link to this function

 open(OpenModeList)

 View Source

 -spec open(OpenModeList) -> ReturnValue
 when
 OpenModeList :: [OpenMode],
 OpenMode :: read | write,
 ReturnValue :: {ok, RegHandle} | {error, ErrorId :: enotsup},
 RegHandle :: reg_handle().

Opens the registry for reading or writing. The current key is the root
(HKEY_CLASSES_ROOT). Flag read in the mode list can be omitted.
Use change_key/2 with an absolute path after open.

 Link to this function

 set_value(RegHandle, Name, Value)

 View Source

 -spec set_value(RegHandle, Name, Value) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 Name :: name(),
 Value :: value(),
 ReturnValue :: ok | {error, ErrorId :: atom()}.

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding
registry type is used. The supported types are the following:
	REG_DWORD for integers
	REG_SZ for strings
	REG_BINARY for binaries

Other types cannot be added or changed.
The registry must have been opened in write mode.

 Link to this function

 sub_keys(RegHandle)

 View Source

 -spec sub_keys(RegHandle) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 ReturnValue :: {ok, [SubKey]} | {error, ErrorId :: atom()},
 SubKey :: string().

Returns a list of subkeys to the current key. Calls the Win32 API function
EnumRegKeysEx().
Avoid calling this on the root keys, as it can be slow.

 Link to this function

 value(RegHandle, Name)

 View Source

 -spec value(RegHandle, Name) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 Name :: name(),
 ReturnValue :: {ok, Value :: value()} | {error, ErrorId :: atom()}.

Retrieves the named value (or default) on the current key. Registry values of
type REG_SZ are returned as strings. Type REG_DWORD values are returned as
integers. All other types are returned as binaries.

 Link to this function

 values(RegHandle)

 View Source

 -spec values(RegHandle) -> ReturnValue
 when
 RegHandle :: reg_handle(),
 ReturnValue :: {ok, [ValuePair]} | {error, ErrorId :: atom()},
 ValuePair :: {Name :: name(), Value :: value()}.

Retrieves a list of all values on the current key. The values have types
corresponding to the registry types, see value/2. Calls the Win32 API function
EnumRegValuesEx().

 gen_event - stdlib v5.2.1

gen_event behaviour

Generic event handling behavior.
This behavior module provides event handling functionality. It consists of a
generic event manager process with any number of event handlers that are added
and deleted dynamically.
An event manager implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting. It also
fits into an OTP supervision tree. For more information, see
OTP Design Principles.
Each event handler is implemented as a callback module exporting a predefined
set of functions. The relationship between the behavior functions and the
callback functions is as follows:
gen_event module Callback module
---------------- ---------------
gen_event:start
gen_event:start_monitor
gen_event:start_link -----> -

gen_event:add_handler
gen_event:add_sup_handler -----> Module:init/1

gen_event:notify
gen_event:sync_notify -----> Module:handle_event/2

gen_event:send_request
gen_event:call -----> Module:handle_call/2

- -----> Module:handle_info/2

gen_event:delete_handler -----> Module:terminate/2

gen_event:swap_handler
gen_event:swap_sup_handler -----> Module1:terminate/2
 Module2:init/1

gen_event:which_handlers -----> -

gen_event:stop -----> Module:terminate/2

- -----> Module:code_change/3
As each event handler is one callback module, an event manager has many callback
modules that are added and deleted dynamically. gen_event is therefore more
tolerant of callback module errors than the other behaviors. If a callback
function for an installed event handler fails with Reason, or returns a bad
value Term, the event manager does not fail. It deletes the event handler by
calling callback function Module:terminate/2, giving as
argument {error,{'EXIT',Reason}} or {error,Term}, respectively. No other
event handler is affected.
A gen_event process handles system messages as described in sys. The sys
module can be used for debugging an event manager.
Notice that an event manager does trap exit signals automatically.
The gen_event process can go into hibernation (see erlang:hibernate/3) if a
callback function in a handler module specifies hibernate in its return value.
This can be useful if the server is expected to be idle for a long time.
However, use this feature with care, as hibernation implies at least two garbage
collections (when hibernating and shortly after waking up) and is not something
you want to do between each event handled by a busy event manager.
Notice that when multiple event handlers are invoked, it is sufficient that one
single event handler returns a hibernate request for the whole event manager
to go into hibernation.
Unless otherwise stated, all functions in this module fail if the specified
event manager does not exist or if bad arguments are specified.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause call timeouts in gen_event to be
significantly delayed.

 See Also

supervisor, sys

 Summary

 Types

 add_handler_ret()

 debug_flag()

 del_handler_ret()

 emgr_name()

 The name given to an event manager when starting it.

 emgr_ref()

 A reference used to locate an event manager.

 format_status()

 A map that describes the gen_event process status.

 handler()

 handler_args()

 options()

 Options that can be used to configure an event handler when it is started.

 request_id()

 An opaque request identifier. See send_request/3 for details.

 request_id_collection()

 An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 response_timeout()

 Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond. Currently valid values

 start_mon_ret()

 start_ret()

 Callbacks

 code_change(OldVsn, State, Extra)

 This function is called for an installed event handler that is to update its
internal state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, is specified in the appup file.

 format_status(Status)

 This function is called by a gen_event process in in order to format/limit the
server state for debugging and logging purposes.

 format_status(Opt, StatusData)

 deprecated

 This function is called by a gen_event process in in order to format/limit the
server state for debugging and logging purposes.

 handle_call(Request, State)

 Whenever an event manager receives a request sent using call/3,4,
this function is called for the specified event handler to handle the request.

 handle_event(Event, State)

 Whenever an event manager receives an event sent using notify/2 or
sync_notify/2, this function is called for each installed event handler to
handle the event.

 handle_info(Info, State)

 This function is called for each installed event handler when an event manager
receives any other message than an event or a synchronous request (or a system
message).

 init(InitArgs)

 Whenever a new event handler is added to an event manager, this function is
called to initialize the event handler.

 terminate(Args, State)

 Whenever an event handler is deleted from an event manager, this function is
called. It is to be the opposite of Module:init/1 and do any
necessary cleaning up.

 Functions

 add_handler(EventMgrRef, Handler, Args)

 Adds a new event handler to event manager EventMgrRef. The event manager calls
Module:init/1 to initiate the event handler and its internal
state.

 add_sup_handler(EventMgrRef, Handler, Args)

 Adds a new event handler in the same way as add_handler/3, but also supervises
the connection by linking the event handler and the calling process.

 call(EventMgrRef, Handler, Request)

 Equivalent to call(EventMgrRef, Handler, Request, 5000).

 call(EventMgrRef, Handler, Request, Timeout)

 Makes a synchronous call to event handler Handler installed in event manager
EventMgrRef by sending a request and waiting until a reply arrives or a
time-out occurs. The event manager calls
Module:handle_call/2 to handle the request.

 check_response(Msg, ReqId)

 Check if Msg is a response corresponding to the request identifier ReqId.
The request must have been made by send_request/3.

 check_response(Msg, ReqIdCollection, Delete)

 Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.

 delete_handler(EventMgrRef, Handler, Args)

 Deletes an event handler from event manager EventMgrRef. The event manager
calls Module:terminate/2 to terminate the event handler.

 notify(EventMgrRef, Event)

 Sends an asynchronous event notification to event manager EventMgrRef. The event
manager calls Module:handle_event/2 for each installed
event handler to handle the event.

 receive_response(ReqId, Timeout)

 Receive a response corresponding to the request identifier ReqId. The request
must have been made by send_request/3 to the gen_statem process. This
function must be called from the same process from which send_request/3 was
made.

 receive_response(ReqIdCollection, Timeout, Delete)

 Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.

 reqids_add(ReqId, Label, ReqIdCollection)

 Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 reqids_new()

 Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.

 reqids_size(ReqIdCollection)

 Returns the amount of request identifiers saved in ReqIdCollection.

 reqids_to_list(ReqIdCollection)

 Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 send_request(EventMgrRef, Handler, Request)

 Sends an asynchronous call request Request to event handler Handler
installed in the event manager identified by EventMgrRef and returns a request
identifier ReqId. The return value ReqId shall later be used with
receive_response/2, wait_response/2, or check_response/2 to fetch the
actual result of the request.

 send_request(EventMgrRef, Handler, Request, Label, ReqIdCollection)

 Sends an asynchronous call request Request to event handler Handler
installed in the event manager identified by EventMgrRef. The Label will be
associated with the request identifier of the operation and added to the returned
request identifier collection NewReqIdCollection.

 start()

 Equivalent to start([]).

 start(EventMgrNameOrOptions)

 Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree and thus has no supervisor.

 start(EventMgrName, Options)

 Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree and thus has no supervisor.

 start_link()

 Equivalent to start_link([]).

 start_link(EventMgrNameOrOptions)

 Creates an event manager process as part of a supervision tree.

 start_link(EventMgrName, Options)

 Creates an event manager process as part of a supervision tree.

 start_monitor()

 Equivalent to start_monitor([]).

 start_monitor(EventMgrNameOrOptions)

 Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree (and thus has no supervisor) and atomically sets
up a monitor to the newly created process.

 start_monitor(EventMgtName, Options)

 Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree (and thus has no supervisor) and atomically sets
up a monitor to the newly created process.

 stop(EventMgrRef)

 Equivalent to stop(EventMgrRef, normal, infinity).

 stop(EventMgrRef, Reason, Timeout)

 Orders event manager EventMgrRef to exit with the specifies Reason and waits
for it to terminate. Before terminating, gen_event calls
Module:terminate(stop,...) for each installed event
handler.

 swap_handler(EventMgrRef, OldHandler, NewHandler)

 Replaces an old event handler with a new event handler in event manager
EventMgrRef.

 swap_sup_handler(EventMgrRef, OldHandler, NewHandler)

 Replaces an event handler in event manager EventMgrRef in the same way as
swap_handler/3, but also supervises the connection between
NewHandler and the calling process.

 sync_notify(EventMgrRef, Event)

 Sends a synchronous event notification to event manager EventMgrRef. The event
manager calls Module:handle_event/2 for each installed event
handler to handle the event. This function will return ok after the event has
been handled by all event handlers.

 wait_response(ReqId, WaitTime)

 Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/3 to the gen_statem process. This
function must be called from the same process from which send_request/3 was
made.

 wait_response(ReqIdCollection, WaitTime, Delete)

 Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.

 which_handlers(EventMgrRef)

 Returns a list of all event handlers installed in event manager EventMgrRef.

 Types

 Link to this type

 add_handler_ret()

 View Source

 -type add_handler_ret() :: ok | term() | {'EXIT', term()}.

 Link to this type

 debug_flag()

 View Source

 (not exported)

 -type debug_flag() :: trace | log | statistics | debug | {logfile, string()}.

 Link to this type

 del_handler_ret()

 View Source

 -type del_handler_ret() :: ok | term() | {'EXIT', term()}.

 Link to this type

 emgr_name()

 View Source

 (not exported)

 -type emgr_name() :: {local, atom()} | {global, term()} | {via, atom(), term()}.

The name given to an event manager when starting it.
	{local,Name} - the event manager is registered locally as
Name using register/2.
	{global,GlobalName} - The event manager is registered
globally as GlobalName using global:register_name/2. If no name is
provided, the event manager is not registered.
	{via,Module,ViaName}, the event manager registers with the
registry represented by Module. The Module callback is to export the
functions register_name/2, unregister_name/1, whereis_name/1, and
send/2, which are to behave as the corresponding functions in global.
Thus, {via,global,GlobalName} is a valid reference.

 Link to this type

 emgr_ref()

 View Source

 (not exported)

 -type emgr_ref() :: atom() | {atom(), node()} | {global, term()} | {via, atom(), term()} | pid().

A reference used to locate an event manager.
The reference can be any of the following:
	The pid of the event manager
	Name, if the event manager is locally registered
	{Name,Node}, if the event manager is locally registered at another node
	{global,GlobalName}, if the event manager is globally registered
	{via,Module,ViaName}, if the event manager is registered through an
alternative process registry

 Link to this type

 format_status()

 View Source

 -type format_status() ::
 #{state => term(), message => term(), reason => term(), log => [sys:system_event()]}.

A map that describes the gen_event process status.
The keys are:
	state - The internal state of the event handler.

	message - The message that caused the event handler to terminate.

	reason - The reason that caused the event handler to terminate.

	log - The sys log of the server.

New associations may be added into the status map without prior notice.

 Link to this type

 handler()

 View Source

 -type handler() :: atom() | {atom(), term()}.

 Link to this type

 handler_args()

 View Source

 -type handler_args() :: term().

 Link to this type

 options()

 View Source

 (not exported)

 -type options() ::
 [{timeout, timeout()} |
 {debug, [debug_flag()]} |
 {spawn_opt, [proc_lib:start_spawn_option()]} |
 {hibernate_after, timeout()}].

Options that can be used to configure an event handler when it is started.

 Link to this opaque

 request_id()

 View Source

 -opaque request_id()

An opaque request identifier. See send_request/3 for details.

 Link to this opaque

 request_id_collection()

 View Source

 -opaque request_id_collection()

An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 Link to this type

 response_timeout()

 View Source

 (not exported)

 -type response_timeout() :: timeout() | {abs, integer()}.

Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond. Currently valid values:
	0..4294967295 - Timeout relative to current time in milliseconds.

	infinity - Infinite timeout. That is, the operation will never time out.

	{abs, Timeout} - An absolute
Erlang monotonic time timeout in milliseconds.
That is, the operation will time out when
erlang:monotonic_time(millisecond) returns a
value larger than or equal to Timeout. Timeout is not allowed to identify
a time further into the future than 4294967295 milliseconds. Identifying the
timeout using an absolute timeout value is especially handy when you have a
deadline for responses corresponding to a complete collection of requests
(request_id_collection/0) , since you do not have to recalculate the
relative time until the deadline over and over again.

 Link to this type

 start_mon_ret()

 View Source

 (not exported)

 -type start_mon_ret() :: {ok, {pid(), reference()}} | {error, term()}.

 Link to this type

 start_ret()

 View Source

 (not exported)

 -type start_ret() :: {ok, pid()} | {error, term()}.

 Callbacks

 Link to this callback

 code_change(OldVsn, State, Extra)

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()}, State :: term(), Extra :: term()) ->
 {ok, NewState :: term()}.

This function is called for an installed event handler that is to update its
internal state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, is specified in the appup file.
For more information, see OTP Design Principles.
For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is
{down,Vsn}. Vsn is defined by the vsn attribute(s) of the old version of
the callback module Module. If no such attribute is defined, the version is
the checksum of the Beam file.
State is the internal state of the event handler.
Extra is passed "as is" from the {advanced,Extra} part of the update
instruction.
The function is to return the updated internal state.
Note
If a release upgrade/downgrade with Change={advanced,Extra} specified in the
.appup file is made when code_change/3 isn't
implemented the event handler will crash with an undef error reason.

 Link to this callback

 format_status(Status)

 View Source

 (optional)

 (since OTP 19.0)

 -callback format_status(Status) -> NewStatus when Status :: format_status(), NewStatus :: format_status().

This function is called by a gen_event process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	One of sys:get_status/1,2 is invoked to get the
gen_event status.
	The event handler terminates abnormally and gen_event logs an error.

This callback is used to limit the status of the event handler returned by
sys:get_status/1,2 or sent to logger.
The callback gets a map Status describing the current status and shall return
a map NewStatus with the same keys, but it may transform some values.
Two possible use cases for this callback is to remove sensitive information from
the state to prevent it from being printed in log files, or to compact large
irrelevant status items that would only clutter the logs.
Example:
format_status(Status) ->
 maps:map(
 fun(state,State) ->
 maps:remove(private_key, State);
 (message,{password, _Pass}) ->
 {password, removed};
 (_,Value) ->
 Value
 end, Status).
Note
This callback is optional, so event handler modules need not export it. If a
handler does not export this function, the gen_event module uses the handler
state directly for the purposes described below.
If this callback is exported but fails, to hide possibly sensitive data, the
default function will instead return the fact that
format_status/1 has crashed.

 Link to this callback

 format_status(Opt, StatusData)

 View Source

 (optional)

 (since OTP R14B)

 This callback is deprecated. the callback gen_event:format_status(_,_) is deprecated; use format_status/1 instead.

 -callback format_status(Opt, StatusData) -> Status
 when
 Opt :: normal | terminate,
 StatusData :: [PDict | State],
 PDict :: [{Key :: term(), Value :: term()}],
 State :: term(),
 Status :: term().

This function is called by a gen_event process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	One of sys:get_status/1,2 is invoked to get the
gen_event status. Opt is set to the atom normal for this case.
	The event handler terminates abnormally and gen_event logs an error. Opt
is set to the atom terminate for this case.

This function is useful for changing the form and appearance of the event
handler state for these cases. An event handler callback module wishing to
change the sys:get_status/1,2 return value as well as how its state appears in
termination error logs, exports an instance of
format_status/2 that returns a term describing the
current state of the event handler.
PDict is the current value of the process dictionary of gen_event.
State is the internal state of the event handler.
The function is to return Status, a term that change the details of the
current state of the event handler. Any term is allowed for Status. The
gen_event module uses Status as follows:
	When sys:get_status/1,2 is called, gen_event ensures that its return value
contains Status in place of the state term of the event handler.
	When an event handler terminates abnormally, gen_event logs Status in
place of the state term of the event handler.

One use for this function is to return compact alternative state representations
to avoid that large state terms are printed in log files.
Note
This callback is optional, so event handler modules need not export it. If a
handler does not export this function, the gen_event module uses the handler
state directly for the purposes described below.

 Link to this callback

 handle_call(Request, State)

 View Source

 -callback handle_call(Request :: term(), State :: term()) ->
 {ok, Reply :: term(), NewState :: term()} |
 {ok, Reply :: term(), NewState :: term(), hibernate} |
 {swap_handler,
 Reply :: term(),
 Args1 :: term(),
 NewState :: term(),
 Handler2 :: atom() | {atom(), Id :: term()},
 Args2 :: term()} |
 {remove_handler, Reply :: term()}.

Whenever an event manager receives a request sent using call/3,4,
this function is called for the specified event handler to handle the request.
Request is the Request argument of call/3,4.
State is the internal state of the event handler.
The return values are the same as for
Module:handle_event/2 except that they also contain a
term Reply, which is the reply to the client as the return value of
call/3,4.

 Link to this callback

 handle_event(Event, State)

 View Source

 -callback handle_event(Event :: term(), State :: term()) ->
 {ok, NewState :: term()} |
 {ok, NewState :: term(), hibernate} |
 {swap_handler,
 Args1 :: term(),
 NewState :: term(),
 Handler2 :: atom() | {atom(), Id :: term()},
 Args2 :: term()} |
 remove_handler.

Whenever an event manager receives an event sent using notify/2 or
sync_notify/2, this function is called for each installed event handler to
handle the event.
Event is the Event argument of
notify/2/sync_notify/2.
State is the internal state of the event handler.
	If {ok,NewState} or {ok,NewState,hibernate} is returned, the event handler
remains in the event manager with the possible updated internal state
NewState.
	If {ok,NewState,hibernate} is returned, the event manager also goes into
hibernation (by calling proc_lib:hibernate/3), waiting for the next event to
occur. It is sufficient that one of the event handlers return
{ok,NewState,hibernate} for the whole event manager process to hibernate.
	If {swap_handler,Args1,NewState,Handler2,Args2} is returned, the event
handler is replaced by Handler2 by first calling
Module:terminate(Args1,NewState) and then
Module2:init({Args2,Term}), where Term is the return value
of Module:terminate/2. For more information, see
swap_handler/3.
	If remove_handler is returned, the event handler is deleted by calling
Module:terminate(remove_handler,State).

 Link to this callback

 handle_info(Info, State)

 View Source

 (optional)

 -callback handle_info(Info :: term(), State :: term()) ->
 {ok, NewState :: term()} |
 {ok, NewState :: term(), hibernate} |
 {swap_handler,
 Args1 :: term(),
 NewState :: term(),
 Handler2 :: atom() | {atom(), Id :: term()},
 Args2 :: term()} |
 remove_handler.

This function is called for each installed event handler when an event manager
receives any other message than an event or a synchronous request (or a system
message).
Info is the received message.
In particular, this callback will be made when a process terminated after
calling add_sup_handler/3. Any event handler attached to an event manager
which in turn has a supervised handler should expect callbacks of the shape
Module:handle_info({'EXIT', Pid, Reason}, State).
For a description of State and possible return values, see
Module:handle_event/2.
Note
This callback is optional, so callback modules need not export it. The
gen_event module provides a default implementation of this function that
logs about the unexpected Info message, drops it and returns {ok, State}.

 Link to this callback

 init(InitArgs)

 View Source

 -callback init(InitArgs :: term()) ->
 {ok, State :: term()} | {ok, State :: term(), hibernate} | {error, Reason :: term()}.

Whenever a new event handler is added to an event manager, this function is
called to initialize the event handler.
If the event handler is added because of a call to add_handler/3 or
add_sup_handler/3, InitArgs is the Args argument of these functions.
If the event handler replaces another event handler because of a call to
swap_handler/3 or swap_sup_handler/3, or because of a swap return tuple
from one of the other callback functions, InitArgs is a tuple {Args,Term},
where Args is the argument provided in the function call/return tuple and
Term is the result of terminating the old event handler, see swap_handler/3.
If successful, the function returns {ok,State} or {ok,State,hibernate},
where State is the initial internal state of the event handler.
If {ok,State,hibernate} is returned, the event manager goes into hibernation
(by calling proc_lib:hibernate/3), waiting for the next event to occur.

 Link to this callback

 terminate(Args, State)

 View Source

 (optional)

 -callback terminate(Args ::
 term() |
 {stop, Reason :: term()} |
 stop | remove_handler |
 {error, {'EXIT', Reason :: term()}} |
 {error, term()},
 State :: term()) ->
 term().

Whenever an event handler is deleted from an event manager, this function is
called. It is to be the opposite of Module:init/1 and do any
necessary cleaning up.
If the event handler is deleted because of a call to delete_handler/3,
swap_handler/3, or swap_sup_handler/3, Arg is the Args argument of this
function call.
Arg={stop,Reason} if the event handler has a supervised connection to a
process that has terminated with reason Reason.
Arg=stop if the event handler is deleted because the event manager is
terminating.
The event manager terminates if it is part of a supervision tree and it is
ordered by its supervisor to terminate. Even if it is not part of a
supervision tree, it terminates if it receives an 'EXIT' message from its
parent.
Arg=remove_handler if the event handler is deleted because another callback
function has returned remove_handler or {remove_handler,Reply}.
Arg={error,Term} if the event handler is deleted because a callback function
returned an unexpected value Term, or Arg={error,{'EXIT',Reason}} if a
callback function failed.
State is the internal state of the event handler.
The function can return any term. If the event handler is deleted because of a
call to gen_event:delete_handler/3, the return value of that function becomes
the return value of this function. If the event handler is to be replaced with
another event handler because of a swap, the return value is passed to the
init function of the new event handler. Otherwise the return value is ignored.
Note
This callback is optional, so callback modules need not export it. The
gen_event module provides a default implementation without cleanup.

 Functions

 Link to this function

 add_handler(EventMgrRef, Handler, Args)

 View Source

 -spec add_handler(EventMgrRef :: emgr_ref(), Handler :: handler(), Args :: term()) -> term().

Adds a new event handler to event manager EventMgrRef. The event manager calls
Module:init/1 to initiate the event handler and its internal
state.
Handler is the name of the callback module Module or a tuple {Module,Id},
where Id is any term. The {Module,Id} representation makes it possible to
identify a specific event handler when many event handlers use the same callback
module.
Args is any term that is passed as the argument to
Module:init/1.
If Module:init/1 returns a correct value indicating successful
completion, the event manager adds the event handler and this function returns
ok. If Module:init/1 fails with Reason or returns
{error,Reason}, the event handler is ignored and this function returns
{'EXIT',Reason} or {error,Reason}, respectively.

 Link to this function

 add_sup_handler(EventMgrRef, Handler, Args)

 View Source

 -spec add_sup_handler(EventMgrRef :: emgr_ref(), Handler :: handler(), Args :: term()) -> term().

Adds a new event handler in the same way as add_handler/3, but also supervises
the connection by linking the event handler and the calling process.
	If the calling process later terminates with Reason, the event manager
deletes any supervised event handlers by calling
Module:terminate/2, then calls
Module:handle_info/2 for each remaining handler.
	If the event handler is deleted later, the event manager sends a message
{gen_event_EXIT,Handler,Reason} to the calling process. Reason is one of
the following:	normal, if the event handler has been removed because of a call to
delete_handler/3, or remove_handler has been
returned by a callback function (see below).
	shutdown, if the event handler has been removed because the event manager
is terminating.
	{swapped,NewHandler,Pid}, if the process Pid has replaced the event
handler with another event handler NewHandler using a call to
swap_handler/3 or swap_sup_handler/3.
	A term, if the event handler is removed because of an error. Which term
depends on the error.

For a description of the arguments and return values, see add_handler/3.

 Link to this function

 call(EventMgrRef, Handler, Request)

 View Source

 -spec call(EventMgrRef :: emgr_ref(), Handler :: handler(), Request :: term()) -> term().

Equivalent to call(EventMgrRef, Handler, Request, 5000).

 Link to this function

 call(EventMgrRef, Handler, Request, Timeout)

 View Source

 -spec call(EventMgrRef :: emgr_ref(), Handler :: handler(), Request :: term(), Timeout :: timeout()) ->
 term().

Makes a synchronous call to event handler Handler installed in event manager
EventMgrRef by sending a request and waiting until a reply arrives or a
time-out occurs. The event manager calls
Module:handle_call/2 to handle the request.
Request is any term that is passed as one of the arguments to
Module:handle_call/2.
Timeout is an integer greater than zero that specifies how many milliseconds
to wait for a reply, or the atom infinity to wait indefinitely. Defaults
to 5000. If no reply is received within the specified time, the function call
fails.
The return value Reply is defined in the return value of
Module:handle_call/2. If the specified event handler is
not installed, the function returns {error,bad_module}. If the callback
function fails with Reason or returns an unexpected value Term, this
function returns {error,{'EXIT',Reason}} or {error,Term}, respectively.
When this call fails it exits the calling process. The exit
term is on the form {Reason, Location} where
Location = {gen_event,call,ArgList}. See
gen_server:call/3 that has a description of relevant
values for the Reason in the exit term.

 Link to this function

 check_response(Msg, ReqId)

 View Source

 (since OTP 23.0)

 -spec check_response(Msg, ReqId) -> Result
 when
 Msg :: term(),
 ReqId :: request_id(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result :: Response | no_reply.

Check if Msg is a response corresponding to the request identifier ReqId.
The request must have been made by send_request/3.
If Msg is a response corresponding to ReqId the response is returned;
otherwise, no_reply is returned and no cleanup is done, and thus the function
must be invoked repeatedly until a response is returned.
If the specified event handler is not installed, the function returns
{error,bad_module}. If the callback function fails with Reason or returns an
unexpected value Term, this function returns {error,{'EXIT',Reason}} or
{error,Term}, respectively. If the event manager dies before or during the
request this function returns {error,{Reason, EventMgrRef}}.

 Link to this function

 check_response(Msg, ReqIdCollection, Delete)

 View Source

 (since OTP 25.0)

 -spec check_response(Msg, ReqIdCollection, Delete) -> Result
 when
 Msg :: term(),
 ReqIdCollection :: request_id_collection(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | no_reply.

Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/5.
Compared to check_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by check_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned. If Msg
does not correspond to any of the request identifiers in ReqIdCollection, the
atom no_reply is returned.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
check_response/3, receive_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
check_response/3, it will always return no_reply.

 Link to this function

 delete_handler(EventMgrRef, Handler, Args)

 View Source

 -spec delete_handler(EventMgrRef :: emgr_ref(), Handler :: handler(), Args :: term()) -> term().

Deletes an event handler from event manager EventMgrRef. The event manager
calls Module:terminate/2 to terminate the event handler.
Args is any term that is passed as one of the arguments to
Module:terminate/2.
The return value is the return value of Module:terminate/2.
If the specified event handler is not installed, the function returns
{error,module_not_found}. If the callback function fails with Reason, the
function returns {'EXIT',Reason}.

 Link to this function

 notify(EventMgrRef, Event)

 View Source

 -spec notify(EventMgrRef :: emgr_ref(), Event :: term()) -> ok.

Sends an asynchronous event notification to event manager EventMgrRef. The event
manager calls Module:handle_event/2 for each installed
event handler to handle the event.
Event is any term that is passed as one of the arguments to
Module:handle_event/2.
notify/1 does not fail even if the specified event manager does not exist,
unless it is specified as Name.

 Link to this function

 receive_response(ReqId, Timeout)

 View Source

 (since OTP 24.0)

 -spec receive_response(ReqId, Timeout) -> Result
 when
 ReqId :: request_id(),
 Timeout :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result :: Response | timeout.

Receive a response corresponding to the request identifier ReqId. The request
must have been made by send_request/3 to the gen_statem process. This
function must be called from the same process from which send_request/3 was
made.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) the request
will also be abandoned. That is, no response will be received after a timeout.
Otherwise, a stray response might be received at a later time.
The return value Reply is defined in the return value of
Module:handle_call/2.
If the specified event handler is not installed, the function returns
{error,bad_module}. If the callback function fails with Reason or returns an
unexpected value Term, this function returns {error,{'EXIT',Reason}} or
{error,Term}, respectively. If the event manager dies before or during the
request this function returns {error,{Reason, EventMgrRef}}.
The difference between wait_response/2 and
receive_response/2 is that
receive_response/2 abandons the request at timeout so
that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 receive_response(ReqIdCollection, Timeout, Delete)

 View Source

 (since OTP 25.0)

 -spec receive_response(ReqIdCollection, Timeout, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 Timeout :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when adding the request id in a request
identifier collection, or when sending the request using send_request/5.
Compared to receive_response/2, the returned result associated with a specific
request identifier will be wrapped in a 3-tuple. The first element of this tuple
equals the value that would have been produced by
receive_response/2, the second element equals the
Label associated with the specific request identifier, and the third element
NewReqIdCollection is a possibly modified request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) all requests
identified by ReqIdCollection will also be abandoned. That is, no responses
will be received after a timeout. Otherwise, stray responses might be received
at a later time.
The difference between receive_response/3 and
wait_response/3 is that receive_response/3 abandons
the requests at timeout so that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
receive_response/3, check_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
receive_response/3, it will always block until a
timeout determined by Timeout is triggered.

 Link to this function

 reqids_add(ReqId, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_add(ReqId :: request_id(), Label :: term(), ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 Link to this function

 reqids_new()

 View Source

 (since OTP 25.0)

 -spec reqids_new() -> NewReqIdCollection :: request_id_collection().

Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.
Request identifiers of requests made by send_request/3 can be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or, check_response/3.
reqids_size/1 can be used to determine the amount of request identifiers in a
request identifier collection.

 Link to this function

 reqids_size(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_size(ReqIdCollection :: request_id_collection()) -> non_neg_integer().

Returns the amount of request identifiers saved in ReqIdCollection.

 Link to this function

 reqids_to_list(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_to_list(ReqIdCollection :: request_id_collection()) ->
 [{ReqId :: request_id(), Label :: term()}].

Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 Link to this function

 send_request(EventMgrRef, Handler, Request)

 View Source

 (since OTP 23.0)

 -spec send_request(EventMgrRef :: emgr_ref(), Handler :: handler(), Request :: term()) ->
 ReqId :: request_id().

Sends an asynchronous call request Request to event handler Handler
installed in the event manager identified by EventMgrRef and returns a request
identifier ReqId. The return value ReqId shall later be used with
receive_response/2, wait_response/2, or check_response/2 to fetch the
actual result of the request.
Besides passing the request identifier directly to these functions, it can also
be saved in a request identifier collection using reqids_add/3. Such a
collection of request identifiers can later be used in
order to get one response corresponding to a request in the collection by
passing the collection as argument to receive_response/3, wait_response/3,
or check_response/3. If you are about to save the request identifier in a
request identifier collection, you may want to consider using send_request/5
instead.
The call
gen_event:receive_response(gen_event:send_request(EventMgrRef, Handler, Request), Timeout)
can be seen as equivalent to
gen_event:call(EventMgrRef, Handler, Request, Timeout), ignoring
the error handling.
The event manager calls Module:handle_call/2 to handle
the request.
Request is any term that is passed as one of the arguments to
Module:handle_call/2.

 Link to this function

 send_request(EventMgrRef, Handler, Request, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec send_request(EventMgrRef :: emgr_ref(),
 Handler :: handler(),
 Request :: term(),
 Label :: term(),
 ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Sends an asynchronous call request Request to event handler Handler
installed in the event manager identified by EventMgrRef. The Label will be
associated with the request identifier of the operation and added to the returned
request identifier collection NewReqIdCollection.
The collection can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to receive_response/3,
wait_response/3, or check_response/3.
The same as calling
gen_event:reqids_add(gen_event:send_request(EventMgrRef, Handler, Request), Label, ReqIdCollection),
but calling send_request/5 is slightly more efficient.

 Link to this function

 start()

 View Source

 (since OTP 20.0)

 -spec start() -> start_ret().

Equivalent to start([]).

 Link to this function

 start(EventMgrNameOrOptions)

 View Source

 (since OTP 20.0)

 -spec start(EventMgrNameOrOptions :: emgr_name() | options()) -> start_ret().

Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree and thus has no supervisor.
For a description of the arguments and return values, see
start_link/1.

 Link to this function

 start(EventMgrName, Options)

 View Source

 (since OTP 20.0)

 -spec start(EventMgrName :: emgr_name(), Options :: options()) -> start_ret().

Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree and thus has no supervisor.
For a description of the arguments and return values, see
start_link/2.

 Link to this function

 start_link()

 View Source

 (since OTP 20.0)

 -spec start_link() -> start_ret().

Equivalent to start_link([]).

 Link to this function

 start_link(EventMgrNameOrOptions)

 View Source

 (since OTP 20.0)

 -spec start_link(EventMgrNameOrOptions :: emgr_name() | options()) -> start_ret().

Creates an event manager process as part of a supervision tree.
If called with emgr_name/0, then it is equivalent to start(EventMgrName, []).
If called with options/0, then a nameless event manager is created using Options.
For a description of the arguments and return values, see
start_link/2.

 Link to this function

 start_link(EventMgrName, Options)

 View Source

 (since OTP 20.0)

 -spec start_link(EventMgrName :: emgr_name(), Options :: options()) -> start_ret().

Creates an event manager process as part of a supervision tree.
The function is to be called, directly or indirectly, by the supervisor.
For example, it ensures that the event manager is linked to the caller (supervisor).
	If option {hibernate_after,HibernateAfterTimeout} is present, the
gen_event process awaits any message for HibernateAfterTimeout
milliseconds and if no message is received, the process goes into hibernation
automatically (by calling proc_lib:hibernate/3).

If the event manager is successfully created, the function returns {ok,Pid},
where Pid is the pid of the event manager.
If a process with the specified EventMgrName exists already, the function
returns {error,{already_started,OtherPid}}, where OtherPid is the pid of
that process, and the event manager process exits with reason normal.
If the event manager fails to start within the specified start timeout
{timeout,Time}, which is very unlikely since the start does not interact with
other processes, the function returns {error,timeout} and the failed event
manager is killed with exit(_, kill).
If start_link/1,2 returns {error,_}, the started event manager process has
terminated. If an 'EXIT' message was delivered to the calling process (due to
the process link), that message has been consumed.
Warning
Before OTP 26.0, if the started event manager failed to register its name,
this founction could return {error,{already_started,OtherPid}} before the
started event manager process had terminated so starting again might fail
because the registered name was not yet unregistered, and an 'EXIT' message
could arrive later to the process calling this function.
But if the start timed out, this function killed the started event manager
process and returned {error,timeout}, and then the process link
{'EXIT',Pid,killed} message was consumed.
The start was made synchronous in OTP 26.0 and the guarantee was implemented
that no process link 'EXIT' message from a failed start will linger in the
caller's inbox.

 Link to this function

 start_monitor()

 View Source

 (since OTP 23.0)

 -spec start_monitor() -> start_mon_ret().

Equivalent to start_monitor([]).

 Link to this function

 start_monitor(EventMgrNameOrOptions)

 View Source

 (since OTP 23.0)

 -spec start_monitor(EventMgrNameOrOptions :: emgr_name() | options()) -> start_mon_ret().

Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree (and thus has no supervisor) and atomically sets
up a monitor to the newly created process.
For a description of the arguments and return values, see start_monitor/2 and
start_link/1.

 Link to this function

 start_monitor(EventMgtName, Options)

 View Source

 (since OTP 23.0)

 -spec start_monitor(EventMgtName :: emgr_name(), Options :: options()) -> start_mon_ret().

Creates a stand-alone event manager process, that is, an event manager that is
not part of a supervision tree (and thus has no supervisor) and atomically sets
up a monitor to the newly created process.
For a description of the arguments and return values, see
start_link/2. Note that the return value on successful
start differs from start_link/2. start_monitor/0,1,2 will return
{ok,{Pid,Mon}} where Pid is the process identifier of the process, and Mon
is a reference to the monitor set up to monitor the process. If the start is not
successful, the caller will be blocked until the DOWN message has been
received and removed from the message queue.

 Link to this function

 stop(EventMgrRef)

 View Source

 (since OTP 18.0)

 -spec stop(EventMgrRef :: emgr_ref()) -> ok.

Equivalent to stop(EventMgrRef, normal, infinity).

 Link to this function

 stop(EventMgrRef, Reason, Timeout)

 View Source

 (since OTP 18.0)

 -spec stop(EventMgrRef :: emgr_ref(), Reason :: term(), Timeout :: timeout()) -> ok.

Orders event manager EventMgrRef to exit with the specifies Reason and waits
for it to terminate. Before terminating, gen_event calls
Module:terminate(stop,...) for each installed event
handler.
The function returns ok if the event manager terminates with the expected
reason. Any other reason than normal, shutdown, or {shutdown,Term} causes
an error report to be issued using logger.
Timeout is an integer greater than zero that specifies how many milliseconds
to wait for the event manager to terminate, or the atom infinity to wait
indefinitely. If the event manager has not terminated
within the specified time, the call exits the calling process with reason
timeout.
If the process does not exist, the call exits the calling process with reason
noproc, and with reason {nodedown,Node} if the connection fails to the
remote Node where the server runs.

 Link to this function

 swap_handler(EventMgrRef, OldHandler, NewHandler)

 View Source

 -spec swap_handler(EventMgrRef :: emgr_ref(),
 OldHandler :: {handler(), term()},
 NewHandler :: {handler(), term()}) ->
 ok | {error, term()}.

Replaces an old event handler with a new event handler in event manager
EventMgrRef.
For a description of OldHandler and NewHandler, see add_handler/3.
First the old event handler OldHandler is deleted. The event manager calls
OldModule:terminate(Args1, ...), where OldModule is the callback module of
OldHandler, and collects the return value.
Then the new event handler NewHandler is added and initiated by calling
NewModule:init({Args2,Term}), where NewModule is the callback
module of OldHandler and Term is the return value of
OldModule:terminate/2. This makes it possible to transfer
information from OldHandler to NewHandler.
The new handler is added even if the the specified old event handler is not
installed, in which case Term=error, or if
OldModule:terminate/2 fails with Reason, in which case
Term={'EXIT',Reason}. The old handler is deleted even if
NewModule:init/1 fails.
If there was a supervised connection between OldHandler and a process Pid,
there is a supervised connection between NewHandler and Pid instead.
If NewModule:init/1 returns a correct value, this function returns
ok. If NewModule:init/1 fails with Reason or returns an
unexpected value Term, this function returns {error,{'EXIT',Reason}} or
{error,Term}, respectively.

 Link to this function

 swap_sup_handler(EventMgrRef, OldHandler, NewHandler)

 View Source

 -spec swap_sup_handler(EventMgrRef :: emgr_ref(),
 OldHandler :: {handler(), term()},
 NewHandler :: {handler(), term()}) ->
 ok | {error, term()}.

Replaces an event handler in event manager EventMgrRef in the same way as
swap_handler/3, but also supervises the connection between
NewHandler and the calling process.
For a description of the arguments and return values, see swap_handler/3.

 Link to this function

 sync_notify(EventMgrRef, Event)

 View Source

 -spec sync_notify(EventMgrRef :: emgr_ref(), Event :: term()) -> ok.

Sends a synchronous event notification to event manager EventMgrRef. The event
manager calls Module:handle_event/2 for each installed event
handler to handle the event. This function will return ok after the event has
been handled by all event handlers.
Event is any term that is passed as one of the arguments to
Module:handle_event/2.

 Link to this function

 wait_response(ReqId, WaitTime)

 View Source

 (since OTP 23.0)

 -spec wait_response(ReqId, WaitTime) -> Result
 when
 ReqId :: request_id(),
 WaitTime :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result :: Response | timeout.

Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/3 to the gen_statem process. This
function must be called from the same process from which send_request/3 was
made.
WaitTime specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout and no cleanup is
done, and thus the function can be invoked repeatedly until a reply is returned.
The return value Reply is defined in the return value of
Module:handle_call/2.
If the specified event handler is not installed, the function returns
{error,bad_module}. If the callback function fails with Reason or returns an
unexpected value Term, this function returns {error,{'EXIT',Reason}} or
{error,Term}, respectively. If the event manager dies before or during the
request this function returns {error,{Reason, EventMgrRef}}.
The difference between receive_response/2 and
wait_response/2 is that
receive_response/2 abandons the request at timeout so
that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 wait_response(ReqIdCollection, WaitTime, Delete)

 View Source

 (since OTP 25.0)

 -spec wait_response(ReqIdCollection, WaitTime, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 WaitTime :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), emgr_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/3 or send_request/5, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/5.
Compared to wait_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by wait_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, no_request will be returned. If no response is
received before the WaitTime timeout has triggered, the atom timeout is
returned. It is valid to continue waiting for a response as many times as needed
up until a response has been received and completed by check_response(),
receive_response(), or wait_response().
The difference between receive_response/3 and
wait_response/3 is that
receive_response/3 abandons requests at timeout so
that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
wait_response/3, check_response/3, and
receive_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
wait_response/3, it will always block until a timeout
determined by WaitTime is triggered and then return no_reply.

 Link to this function

 which_handlers(EventMgrRef)

 View Source

 -spec which_handlers(EventMgrRef :: emgr_ref()) -> [handler()].

Returns a list of all event handlers installed in event manager EventMgrRef.
For a description of Handler, see add_handler/3.

 gen_fsm - stdlib v5.2.1

gen_fsm behaviour

Deprecated and replaced by gen_statem.

 Migration to gen_statem

Here follows a simple example of turning a gen_fsm into a gen_statem. The
example comes from the previous Users Guide for gen_fsm
-module(code_lock).
-define(NAME, code_lock).
%-define(BEFORE_REWRITE, true).

-ifdef(BEFORE_REWRITE).
-behaviour(gen_fsm).
-else.
-behaviour(gen_statem).
-endif.

-export([start_link/1, button/1, stop/0]).

-ifdef(BEFORE_REWRITE).
-export([init/1, locked/2, open/2, handle_sync_event/4, handle_event/3,
	 handle_info/3, terminate/3, code_change/4]).
-else.
-export([init/1, callback_mode/0, locked/3, open/3, terminate/3, code_change/4]).
%% Add callback__mode/0
%% Change arity of the state functions
%% Remove handle_info/3
-endif.

-ifdef(BEFORE_REWRITE).
start_link(Code) ->
 gen_fsm:start_link({local, ?NAME}, ?MODULE, Code, []).
-else.
start_link(Code) ->
 gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
-endif.

-ifdef(BEFORE_REWRITE).
button(Digit) ->
 gen_fsm:send_event(?NAME, {button, Digit}).
-else.
button(Digit) ->
 gen_statem:cast(?NAME, {button,Digit}).
 %% send_event is asynchronous and becomes a cast
-endif.

-ifdef(BEFORE_REWRITE).
stop() ->
 gen_fsm:sync_send_all_state_event(?NAME, stop).
-else.
stop() ->
 gen_statem:call(?NAME, stop).
 %% sync_send is synchronous and becomes call
 %% all_state is handled by callback code in gen_statem
-endif.

init(Code) ->
 do_lock(),
 Data = #{code => Code, remaining => Code},
 {ok, locked, Data}.

-ifdef(BEFORE_REWRITE).
-else.
callback_mode() ->
 state_functions.
%% state_functions mode is the mode most similar to
%% gen_fsm. There is also handle_event mode which is
%% a fairly different concept.
-endif.

-ifdef(BEFORE_REWRITE).
locked({button, Digit}, Data0) ->
 case analyze_lock(Digit, Data0) of
	{open = StateName, Data} ->
	 {next_state, StateName, Data, 10000};
	{StateName, Data} ->
	 {next_state, StateName, Data}
 end.
-else.
locked(cast, {button,Digit}, Data0) ->
 case analyze_lock(Digit, Data0) of
	{open = StateName, Data} ->
	 {next_state, StateName, Data, 10000};
	{StateName, Data} ->
	 {next_state, StateName, Data}
 end;
locked({call, From}, Msg, Data) ->
 handle_call(From, Msg, Data);
locked({info, Msg}, StateName, Data) ->
 handle_info(Msg, StateName, Data).
%% Arity differs
%% All state events are dispatched to handle_call and handle_info help
%% functions. If you want to handle a call or cast event specifically
%% for this state you would add a special clause for it above.
-endif.

-ifdef(BEFORE_REWRITE).
open(timeout, State) ->
 do_lock(),
 {next_state, locked, State};
open({button,_}, Data) ->
 {next_state, locked, Data}.
-else.
open(timeout, _, Data) ->
 do_lock(),
 {next_state, locked, Data};
open(cast, {button,_}, Data) ->
 {next_state, locked, Data};
open({call, From}, Msg, Data) ->
 handle_call(From, Msg, Data);
open(info, Msg, Data) ->
 handle_info(Msg, open, Data).
%% Arity differs
%% All state events are dispatched to handle_call and handle_info help
%% functions. If you want to handle a call or cast event specifically
%% for this state you would add a special clause for it above.
-endif.

-ifdef(BEFORE_REWRITE).
handle_sync_event(stop, _From, _StateName, Data) ->
 {stop, normal, ok, Data}.

handle_event(Event, StateName, Data) ->
 {stop, {shutdown, {unexpected, Event, StateName}}, Data}.

handle_info(Info, StateName, Data) ->
 {stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.
-else.
-endif.

terminate(_Reason, State, _Data) ->
 State =/= locked andalso do_lock(),
 ok.
code_change(_Vsn, State, Data, _Extra) ->
 {ok, State, Data}.

%% Internal functions
-ifdef(BEFORE_REWRITE).
-else.
handle_call(From, stop, Data) ->
 {stop_and_reply, normal, {reply, From, ok}, Data}.

handle_info(Info, StateName, Data) ->
 {stop, {shutdown, {unexpected, Info, StateName}}, StateName, Data}.
%% These are internal functions for handling all state events
%% and not behaviour callbacks as in gen_fsm
-endif.

analyze_lock(Digit, #{code := Code, remaining := Remaining} = Data) ->
 case Remaining of
 [Digit] ->
	 do_unlock(),
	 {open, Data#{remaining := Code}};
 [Digit|Rest] -> % Incomplete
 {locked, Data#{remaining := Rest}};
 _Wrong ->
 {locked, Data#{remaining := Code}}
 end.

do_lock() ->
 io:format("Lock~n", []).
do_unlock() ->
 io:format("Unlock~n", []).

 Summary

 Callbacks

 code_change(OldVsn, StateName, StateData, Extra)

 format_status(Opt, StatusData)

 handle_event(Event, StateName, StateData)

 handle_info(Info, StateName, StateData)

 handle_sync_event(Event, From, StateName, StateData)

 init(Args)

 terminate(Reason, StateName, StateData)

 Callbacks

 Link to this callback

 code_change(OldVsn, StateName, StateData, Extra)

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()},
 StateName :: atom(),
 StateData :: term(),
 Extra :: term()) ->
 {ok, NextStateName :: atom(), NewStateData :: term()}.

 Link to this callback

 format_status(Opt, StatusData)

 View Source

 (optional)

 -callback format_status(Opt, StatusData) -> Status
 when
 Opt :: normal | terminate,
 StatusData :: [PDict | State],
 PDict :: [{Key :: term(), Value :: term()}],
 State :: term(),
 Status :: term().

 Link to this callback

 handle_event(Event, StateName, StateData)

 View Source

 -callback handle_event(Event :: term(), StateName :: atom(), StateData :: term()) ->
 {next_state, NextStateName :: atom(), NewStateData :: term()} |
 {next_state,
 NextStateName :: atom(),
 NewStateData :: term(),
 timeout() | hibernate} |
 {stop, Reason :: term(), NewStateData :: term()}.

 Link to this callback

 handle_info(Info, StateName, StateData)

 View Source

 (optional)

 -callback handle_info(Info :: term(), StateName :: atom(), StateData :: term()) ->
 {next_state, NextStateName :: atom(), NewStateData :: term()} |
 {next_state,
 NextStateName :: atom(),
 NewStateData :: term(),
 timeout() | hibernate} |
 {stop, Reason :: normal | term(), NewStateData :: term()}.

 Link to this callback

 handle_sync_event(Event, From, StateName, StateData)

 View Source

 -callback handle_sync_event(Event :: term(),
 From :: {pid(), Tag :: term()},
 StateName :: atom(),
 StateData :: term()) ->
 {reply, Reply :: term(), NextStateName :: atom(), NewStateData :: term()} |
 {reply,
 Reply :: term(),
 NextStateName :: atom(),
 NewStateData :: term(),
 timeout() | hibernate} |
 {next_state, NextStateName :: atom(), NewStateData :: term()} |
 {next_state,
 NextStateName :: atom(),
 NewStateData :: term(),
 timeout() | hibernate} |
 {stop, Reason :: term(), Reply :: term(), NewStateData :: term()} |
 {stop, Reason :: term(), NewStateData :: term()}.

 Link to this callback

 init(Args)

 View Source

 -callback init(Args :: term()) ->
 {ok, StateName :: atom(), StateData :: term()} |
 {ok, StateName :: atom(), StateData :: term(), timeout() | hibernate} |
 {stop, Reason :: term()} |
 ignore.

 Link to this callback

 terminate(Reason, StateName, StateData)

 View Source

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(),
 StateName :: atom(),
 StateData :: term()) ->
 term().

 gen_server - stdlib v5.2.1

gen_server behaviour

Generic server behavior.
This behavior module provides the server of a client-server relation. A generic
server process (gen_server) implemented using this module has a standard set
of interface functions and includes functionality for tracing and error
reporting. It also fits into an OTP supervision tree. For more information, see
section gen_server Behaviour in OTP Design
Principles.
A gen_server process assumes all specific parts to be located in a callback
module exporting a predefined set of functions. The relationship between the
behavior functions and the callback functions is as follows:
gen_server module Callback module
----------------- ---------------
gen_server:start
gen_server:start_monitor
gen_server:start_link -----> Module:init/1

gen_server:stop -----> Module:terminate/2

gen_server:call
gen_server:send_request
gen_server:multi_call -----> Module:handle_call/3

gen_server:cast
gen_server:abcast -----> Module:handle_cast/2

- -----> Module:handle_info/2

- -----> Module:handle_continue/2

- -----> Module:terminate/2

- -----> Module:code_change/3
If a callback function fails or returns a bad value, the gen_server process
terminates.
A gen_server process handles system messages as described in sys. The
sys module can be used for debugging a gen_server process.
Notice that a gen_server process does not trap exit signals automatically,
this must be explicitly initiated in the callback module.
Unless otherwise stated, all functions in this module fail if the specified
gen_server process does not exist or if bad arguments are specified.
The gen_server process can go into hibernation (see erlang:hibernate/3) if a
callback function specifies 'hibernate' instead of a time-out value. This can
be useful if the server is expected to be idle for a long time. However, use
this feature with care, as hibernation implies at least two garbage collections
(when hibernating and shortly after waking up) and is not something you want to
do between each call to a busy server.
If the gen_server process needs to perform an action immediately after
initialization or to break the execution of a callback into multiple steps, it
can return {continue,Continue} in place of the time-out or hibernation value,
which will immediately invoke the handle_continue/2
callback.
If the gen_server process terminates, e.g. as a result of a function in the
callback module returning {stop,Reason,NewState}, an exit signal with this
Reason is sent to linked processes and ports. See
Processes in the Reference Manual for
details regarding error handling using exit signals.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause call timeouts in gen_server to be
significantly delayed.

 See Also

gen_event, gen_statem, proc_lib, supervisor, sys

 Summary

 Types

 enter_loop_opt()

 Options that can be used when starting a gen_server server through
enter_loop/3-5 or the start functions such as
start_link/3,4.

 format_status()

 A map that describes the gen_server status.

 from()

 Destination, given to the gen_server as the first argument to the callback
function Module:handle_call/3, to be used by the when
replying through reply/2 (instead of through the callback function's return
value) to the process Client that has called the gen_server using
call/2,3. Tag is a term that is unique for this call/request
instance.

 reply_tag()

 A handle that associates a reply to the corresponding request.

 request_id()

 An opaque request identifier. See send_request/2 for details.

 request_id_collection()

 An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 response_timeout()

 Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond.

 server_name()

 Name specification to use when starting a gen_server.

 server_ref()

 Server specification to use when addressing a gen_server.

 start_mon_ret()

 Return value from the start_monitor/3,4 functions. The
same as type start_ret/0 except that for a succesful start it returns both
the process identifier Pid and a monitor/2,3
reference/0 MonRef.

 start_opt()

 Options that can be used when starting a gen_server server through, for
example, start_link/3,4.

 start_ret()

 Return value from the start/3,4 and
start_link/3,4 functions.

 Callbacks

 code_change(OldVsn, State, Extra)

 This function is called by a gen_server process when it is to update its
internal state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, is specified in the appup file.

 format_status(Status)

 This function is called by a gen_server process in in order to format/limit the
server state for debugging and logging purposes.

 format_status(Opt, StatusData)

 deprecated

 This function is called by a gen_server process in in order to format/limit the
server state for debugging and logging purposes.

 handle_call(Request, From, State)

 Whenever a gen_server process receives a request sent using
call/2,3, multi_call/2,3,4 or send_request/2,4,
this function is called to handle the request.

 handle_cast(Request, State)

 Whenever a gen_server process receives a request sent using cast/2 or
abcast/2,3, this function is called to handle the request.

 handle_continue(Info, State)

 This function is called by a gen_server process whenever a previous callback
returns one of the tuples containing {continue, Continue}.
handle_continue/2 is invoked immediately after the
previous callback, which makes it useful for performing work after
initialization or for splitting the work in a callback in multiple steps,
updating the process state along the way.

 handle_info(Info, State)

 This function is called by a gen_server process when a time-out occurs or when
it receives any other message than a synchronous or asynchronous request (or a
system message).

 init(Args)

 Whenever a gen_server process is started using start/3,4,
start_monitor/3,4, or start_link/3,4,
this function is called by the new process to initialize.

 terminate(Reason, State)

 This function is called by a gen_server process when it is about to terminate.

 Functions

 abcast(Name, Request)

 Equivalent to abcast(Nodes, Name, Request) where Nodes
is all nodes connected to the calling node, including the calling node.

 abcast(Nodes, Name, Request)

 Sends an asynchronous request to the gen_server processes locally registered
as Name at the specified nodes. The function returns immediately and ignores
nodes that do not exist, or where the gen_server Name does not exist. The
gen_server processes call Module:handle_cast/2 to
handle the request.

 call(ServerRef, Request)

 Equivalent to call(ServerRef, Request, 5000).

 call(ServerRef, Request, Timeout)

 Makes a synchronous call to the ServerRef of the gen_server process by
sending a request and waiting until a reply arrives or a time-out occurs. The
gen_server process calls Module:handle_call/3 to handle
the request.

 cast(ServerRef, Request)

 Sends an asynchronous request to the ServerRef of the gen_server process and
returns ok immediately, ignoring if the destination node or gen_server
process does not exist. The gen_server process calls
Module:handle_cast/2 to handle the request.

 check_response(Msg, ReqId)

 Check if Msg is a response corresponding to the request identifier ReqId.
The request must have been made by send_request/2, and it must have been made
by the same process calling this function.

 check_response(Msg, ReqIdCollection, Delete)

 Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 enter_loop(Module, Options, State)

 Equivalent to enter_loop(Mod, Options, State, self()).

 enter_loop(Module, Options, State, How)

 Makes an existing process a gen_server process.

 enter_loop/5

 Makes an existing process a gen_server process.

 multi_call(Name, Request)

 Equivalent to multi_call(Nodes, Name, Request) where Nodes
is all nodes connected to the calling node, including the calling node.

 multi_call(Nodes, Name, Request)

 Equivalent to multi_call(Nodes, Name, Request, infinity).

 multi_call(Nodes, Name, Request, Timeout)

 Makes a synchronous call to all gen_server processes locally registered as
Name at the specified nodes, by first sending the request to the nodes, and
then waiting for the replies. The gen_server processes on the nodes call
Module:handle_call/3 to handle the request.

 receive_response(ReqId, Timeout)

 Receive a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2, and it must have been made by the same
process calling this function.

 receive_response(ReqIdCollection, Timeout, Delete)

 Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 reply(Client, Reply)

 This function can be used by a gen_server process to explicitly send a reply
to a client that called call/2,3 or
multi_call/2,3,4, when the reply cannot be passed in the
return value of Module:handle_call/3.

 reqids_add(ReqId, Label, ReqIdCollection)

 Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 reqids_new()

 Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.

 reqids_size(ReqIdCollection)

 Returns the amount of request identifiers saved in ReqIdCollection.

 reqids_to_list(ReqIdCollection)

 Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 send_request(ServerRef, Request)

 Sends an asynchronous call request Request to the gen_server process
identified by ServerRef and returns a request identifier ReqId.

 send_request(ServerRef, Request, Label, ReqIdCollection)

 Sends an asynchronous call request Request to the gen_server process
identified by ServerRef. The Label will be associated with the request
identifier of the operation and added to the returned request identifier
collection NewReqIdCollection. The collection can later be used in order to
get one response corresponding to a request in the collection by passing the
collection as argument to receive_response/3, wait_response/3, or,
check_response/3.

 start(Module, Args, Options)

 Equivalent to start/4 except that the gen_server process is not
registered with any name service.

 start(ServerName, Module, Args, Options)

 Creates a standalone gen_server process, that is, a gen_server process that
is not part of a supervision tree and thus has no supervisor.

 start_link(Module, Args, Options)

 Equivalent to start_link/4 except that the gen_server process is not
registered with any name service.

 start_link(ServerName, Module, Args, Options)

 Creates a gen_server process as part of a supervision tree. This function is
to be called, directly or indirectly, by the supervisor. For example, it ensures
that the gen_server process is spawned as linked to the caller (supervisor).

 start_monitor(Module, Args, Options)

 Equivalent to start_monitor/4 except that the gen_server process is not
registered with any name service.

 start_monitor(ServerName, Module, Args, Options)

 Creates a standalone gen_server process, that is, a gen_server process that
is not part of a supervision tree (and thus has no supervisor) and atomically
sets up a monitor to the newly created server.

 stop(ServerRef)

 Equivalent to stop(ServerRef, normal, infinity).

 stop(ServerRef, Reason, Timeout)

 Orders the generic server specified by ServerRef to exit with the specified
Reason and waits for it to terminate. The gen_server
process calls Module:terminate/2 before exiting.

 wait_response(ReqId, WaitTime)

 Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2, and it must have been made by the same
process calling this function.

 wait_response(ReqIdCollection, WaitTime, Delete)

 Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 Types

 Link to this type

 enter_loop_opt()

 View Source

 -type enter_loop_opt() ::
 {hibernate_after, HibernateAfterTimeout :: timeout()} | {debug, Dbgs :: [sys:debug_option()]}.

Options that can be used when starting a gen_server server through
enter_loop/3-5 or the start functions such as
start_link/3,4.
	{hibernate_after,HibernateAfterTimeout} - Specifies that the
gen_server process awaits any message for HibernateAfterTimeout
milliseconds and if no message is received, the process goes into hibernation
automatically (by calling proc_lib:hibernate/3).

	{debug,Dbgs} - For every entry in Dbgs, the corresponding function in
sys is called.

 Link to this type

 format_status()

 View Source

 -type format_status() ::
 #{state => term(), message => term(), reason => term(), log => [sys:system_event()]}.

A map that describes the gen_server status.
The keys are:
	state - The internal state of the gen_server process.

	message - The message that caused the server to terminate.

	reason - The reason that caused the server to terminate.

	log - The sys log of the server.

New associations may be added to the status map without prior notice.

 Link to this type

 from()

 View Source

 -type from() :: {Client :: pid(), Tag :: reply_tag()}.

Destination, given to the gen_server as the first argument to the callback
function Module:handle_call/3, to be used by the when
replying through reply/2 (instead of through the callback function's return
value) to the process Client that has called the gen_server using
call/2,3. Tag is a term that is unique for this call/request
instance.

 Link to this opaque

 reply_tag()

 View Source

 -opaque reply_tag()

A handle that associates a reply to the corresponding request.

 Link to this opaque

 request_id()

 View Source

 -opaque request_id()

An opaque request identifier. See send_request/2 for details.

 Link to this opaque

 request_id_collection()

 View Source

 -opaque request_id_collection()

An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 Link to this type

 response_timeout()

 View Source

 (not exported)

 -type response_timeout() :: timeout() | {abs, integer()}.

Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond.
Currently valid values:
	0..4294967295 - Timeout relative to current time in milliseconds.

	infinity - Infinite timeout. That is, the operation will never time out.

	{abs, Timeout} - An absolute
Erlang monotonic time timeout in milliseconds.
That is, the operation will time out when
erlang:monotonic_time(millisecond) returns a
value larger than or equal to Timeout. Timeout is not allowed to identify
a time further into the future than 4294967295 milliseconds. Identifying the
timeout using an absolute timeout value is especially handy when you have a
deadline for responses corresponding to a complete collection of requests
(request_id_collection/0) , since you do not have to recalculate the
relative time until the deadline over and over again.

 Link to this type

 server_name()

 View Source

 -type server_name() ::
 {local, LocalName :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}.

Name specification to use when starting a gen_server.
See functions start/3,4, start_link/3,4,
start_monitor/3,4, enter_loop/3,4,5,
and the type server_ref/0.
	{local,LocalName} - Register the gen_server locally as LocalName
using register/2.

	{global,GlobalName} - Register the gen_server process id globally as
GlobalName using global:register_name/2.

	{via,RegMod,ViaName} - Register the gen_server process with the
registry represented by RegMod. The RegMod callback is to export the
functions register_name/2, unregister_name/1, whereis_name/1, and
send/2, which are to behave like the corresponding functions in global.
Thus, {via,global,GlobalName} is a valid reference equivalent to
{global,GlobalName}.

 Link to this type

 server_ref()

 View Source

 -type server_ref() ::
 pid() |
 (LocalName :: atom()) |
 {Name :: atom(), Node :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}.

Server specification to use when addressing a gen_server.
See call/2,3, cast/2, send_request/2, check_response/2,
wait_response/2, stop/2,3 and the type server_name/0.
It can be:
	pid/0 - The gen_server's process identifier.

	LocalName - The gen_server is locally registered as LocalName with
register/2.

	{Name,Node} - The gen_server is locally registered on another node.

	{global,GlobalName} - The gen_server is globally registered in
global.

	{via,RegMod,ViaName} - The gen_server is registered in an alternative
process registry. The registry callback module RegMod is to export functions
register_name/2, unregister_name/1, whereis_name/1, and send/2, which
are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is the same as {global,GlobalName}.

 Link to this type

 start_mon_ret()

 View Source

 -type start_mon_ret() ::
 {ok, {Pid :: pid(), MonRef :: reference()}} | ignore | {error, Reason :: term()}.

Return value from the start_monitor/3,4 functions. The
same as type start_ret/0 except that for a succesful start it returns both
the process identifier Pid and a monitor/2,3
reference/0 MonRef.

 Link to this type

 start_opt()

 View Source

 -type start_opt() ::
 {timeout, Timeout :: timeout()} |
 {spawn_opt, SpawnOptions :: [proc_lib:spawn_option()]} |
 enter_loop_opt().

Options that can be used when starting a gen_server server through, for
example, start_link/3,4.
	{timeout,Timeout} - How many milliseconds the gen_server process is
allowed to spend initializing or it is terminated and the start function
returns {error,timeout}.

	{spawn_opt,SpawnOptions} - The SpawnOptions option list is passed to
the function used to spawn the gen_server; see
spawn_opt/2.
Note
Using spawn option monitor is not allowed, it causes a badarg failure.

	enter_loop_opt/0 - See the type enter_loop_opt/0 below for more
start options that are also allowed by enter_loop/3,4,5.

 Link to this type

 start_ret()

 View Source

 -type start_ret() :: {ok, Pid :: pid()} | ignore | {error, Reason :: term()}.

Return value from the start/3,4 and
start_link/3,4 functions.
	{ok,Pid} - The gen_server process was succesfully created and
initialized, with the process identifier Pid.

	{error,{already_started,OtherPid}} - A process with the specified
ServerName exists already with the process identifier OtherPid. This
gen_server was not started, or rather exited with reason normal before
calling Module:init/1.

	{error,timeout} - The gen_server process failed to initialize since
Module:init/1 did not return within the
start timeout. The gen_server process was killed with
exit(_, kill).

	ignore - The gen_server process failed to initialize since
Module:init/1 returned ignore.

	{error,Reason} - The gen_server process failed to initialize since
Module:init/1 returned {stop,Reason}, {error,Reason}, or
it failed with reason Reason.

See Module:init/1 about the exit reason for the gen_server
process when it fails to initialize.

 Callbacks

 Link to this callback

 code_change(OldVsn, State, Extra)

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()}, State :: term(), Extra :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

This function is called by a gen_server process when it is to update its
internal state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, is specified in the appup file.
For more information, see section
Release Handling Instructions in OTP
Design Principles.
For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is
{down,Vsn}. Vsn is defined by the vsn attribute(s) of the old version of
the callback module Module. If no such attribute is defined, the version is
the checksum of the Beam file.
State is the internal state of the gen_server process.
Extra is passed "as is" from the {advanced,Extra} part of the update
instruction.
If successful, the function must return the updated internal state.
If the function returns {error,Reason}, the ongoing upgrade fails and rolls
back to the old release.
Note
If a release upgrade/downgrade with Change={advanced,Extra} specified in the
.appup file is made when code_change/3 isn't
implemented the event handler will crash with an undef error reason.

 Link to this callback

 format_status(Status)

 View Source

 (optional)

 (since OTP 25.0)

 -callback format_status(Status) -> NewStatus when Status :: format_status(), NewStatus :: format_status().

This function is called by a gen_server process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	sys:get_status/1,2 is invoked to get the gen_server
status.
	The gen_server process terminates abnormally and logs an error.

This callback is used to limit the status of the process returned by
sys:get_status/1,2 or sent to logger.
The callback gets a map Status describing the current status and shall return
a map NewStatus with the same keys, but it may transform some values.
Two possible use cases for this callback is to remove sensitive information from
the state to prevent it from being printed in log files, or to compact large
irrelevant status items that would only clutter the logs.
Example:
format_status(Status) ->
 maps:map(
 fun(state,State) ->
 maps:remove(private_key, State);
 (message,{password, _Pass}) ->
 {password, removed};
 (_,Value) ->
 Value
 end, Status).
Note
This callback is optional, so callback modules need not export it. The
gen_server module provides a default implementation of this function that
returns the callback module state.
If this callback is exported but fails, to hide possibly sensitive data, the
default function will instead return the fact that
format_status/1 has crashed.

 Link to this callback

 format_status(Opt, StatusData)

 View Source

 (optional)

 (since OTP R13B04)

 This callback is deprecated. the callback gen_server:format_status(_,_) is deprecated; use format_status/1 instead.

 -callback format_status(Opt, StatusData) -> Status
 when
 Opt :: normal | terminate,
 StatusData :: [PDict | State],
 PDict :: [{Key :: term(), Value :: term()}],
 State :: term(),
 Status :: term().

This function is called by a gen_server process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	One of sys:get_status/1,2 is invoked to get the
gen_server status. Opt is set to the atom normal.
	The gen_server process terminates abnormally and logs an error. Opt is set
to the atom terminate.

This function is useful for changing the form and appearance of the gen_server
status for these cases. A callback module wishing to change the
sys:get_status/1,2 return value, as well as how its status appears in
termination error logs, exports an instance of
format_status/2 that returns a term describing the
current status of the gen_server process.
PDict is the current value of the process dictionary of the gen_server
process..
State is the internal state of the gen_server process.
The function is to return Status, a term that changes the details of the
current state and status of the gen_server process. There are no restrictions
on the form Status can take, but for the sys:get_status/1,2 case (when Opt
is normal), the recommended form for the Status value is
[{data, [{"State", Term}]}], where Term provides relevant details of the
gen_server state. Following this recommendation is not required, but it makes
the callback module status consistent with the rest of the sys:get_status/1,2
return value.
One use for this function is to return compact alternative state representations
to avoid that large state terms are printed in log files.
Note
This callback is optional, so callback modules need not export it. The
gen_server module provides a default implementation of this function that
returns the callback module state.

 Link to this callback

 handle_call(Request, From, State)

 View Source

 -callback handle_call(Request :: term(), From :: from(), State :: term()) ->
 {reply, Reply :: term(), NewState :: term()} |
 {reply,
 Reply :: term(),
 NewState :: term(),
 timeout() | hibernate | {continue, term()}} |
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate | {continue, term()}} |
 {stop, Reason :: term(), Reply :: term(), NewState :: term()} |
 {stop, Reason :: term(), NewState :: term()}.

Whenever a gen_server process receives a request sent using
call/2,3, multi_call/2,3,4 or send_request/2,4,
this function is called to handle the request.
State is the internal state of the gen_server process, and NewState a
possibly updated one.
Request is passed from the same argument provided to call or multi_call.
The return value Result is interpreted as follows:
	{reply,Reply,NewState}
{reply,Reply,NewState,_}
The Reply value is sent back to the client request and there becomes its
return value.
The gen_server process continues executing with the possibly updated
internal state NewState.

	{noreply,NewState}
{noreply,NewState,_}
The gen_server process continues executing with the possibly updated
internal state NewState.
A reply to the client request has to be created by calling
reply(From, Reply), either in this or in a later callback.

	{reply,_,_,Timeout}
{noreply,_,Timeout}
If an integer Timeout is provided, a time-out occurs unless a request or a
message is received within that many milliseconds. A time-out is represented
by the atom timeout to be handled by the
Module:handle_info/2 callback function.
Timeout =:= infinity can be used to wait indefinitely, which is the same as
returning a value without a Timeout member.

	{reply,_,_,hibernate}
{noreply,_,hibernate}
The process goes into hibernation waiting for the next message to arrive (by
calling proc_lib:hibernate/3).

	{reply,_,_,{continue,Continue}}
{noreply,_,{continue,Continue}}
The process will execute the
Module:handle_continue/2 callback function, with
Continue as the first argument.

	{stop,Reason,NewState}
{stop,Reason,Reply,NewState}
The gen_server process will call
Module:terminate(Reason,NewState) and then terminate.
{stop,_,Reply,_} will create a reply to the client request just as
{reply,Reply,...} while {stop,_,_} will not, so just as for
{noreply,NewState,...} a reply has to be created by calling
reply(From, Reply) before returning {stop,_,_}.

 Link to this callback

 handle_cast(Request, State)

 View Source

 -callback handle_cast(Request :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate | {continue, term()}} |
 {stop, Reason :: term(), NewState :: term()}.

Whenever a gen_server process receives a request sent using cast/2 or
abcast/2,3, this function is called to handle the request.
For a description of the arguments and possible return values, see
Module:handle_call/3.

 Link to this callback

 handle_continue(Info, State)

 View Source

 (optional)

 (since OTP 21.0)

 -callback handle_continue(Info :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate | {continue, term()}} |
 {stop, Reason :: term(), NewState :: term()}.

This function is called by a gen_server process whenever a previous callback
returns one of the tuples containing {continue, Continue}.
handle_continue/2 is invoked immediately after the
previous callback, which makes it useful for performing work after
initialization or for splitting the work in a callback in multiple steps,
updating the process state along the way.
For a description of the other arguments and possible return values, see
Module:handle_call/3.
Note
This callback is optional, so callback modules need to export it only if they
return one of the tuples containing {continue,Continue} from another
callback. If such a {continue,_} tuple is used and the callback is not
implemented, the process will exit with undef error.

 Link to this callback

 handle_info(Info, State)

 View Source

 (optional)

 -callback handle_info(Info :: timeout | term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate | {continue, term()}} |
 {stop, Reason :: term(), NewState :: term()}.

This function is called by a gen_server process when a time-out occurs or when
it receives any other message than a synchronous or asynchronous request (or a
system message).
Info is either the atom timeout, if a time-out has occurred, or the received
message.
For a description of the other arguments and possible return values, see
Module:handle_call/3.
Note
This callback is optional, so callback modules need not export it. The
gen_server module provides a default implementation of this function that
logs about the unexpected Info message, drops it and returns
{noreply, State}.

 Link to this callback

 init(Args)

 View Source

 -callback init(Args :: term()) ->
 {ok, State :: term()} |
 {ok, State :: term(), timeout() | hibernate | {continue, term()}} |
 {stop, Reason :: term()} |
 ignore |
 {error, Reason :: term()}.

Whenever a gen_server process is started using start/3,4,
start_monitor/3,4, or start_link/3,4,
this function is called by the new process to initialize.
Args is the Args argument provided to the start function.
The return value Result is interpreted as follows:
	{ok,State}
{ok,State,_}
Initialization was succesful and State is the internal state of the
gen_server process.

	{ok,_,Timeout}
{ok,_,hibernate}
{ok,_,{continue,Continue}}
See the corresponding return values from
Module:handle_call/3 for a description of this tuple
member.

	{stop,Reason}

Initialization failed. The gen_server process exits with reason Reason.

	{error,Reason}
ignore
Initialization failed. The gen_server process exits with reason normal.
{error,Reason} was introduced in OTP 26.0.

See function start_link/3,4's return value start_ret/0
in these different cases.

 Link to this callback

 terminate(Reason, State)

 View Source

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(), State :: term()) -> term().

This function is called by a gen_server process when it is about to terminate.
It is to be the opposite of Module:init/1 and do any necessary
cleaning up. When it returns, the gen_server process terminates with Reason.
The return value is ignored.
Reason is a term denoting the stop reason and State is the internal state of
the gen_server process.
Reason depends on why the gen_server process is terminating. If it is
because another callback function has returned a stop tuple {stop,..},
Reason has the value specified in that tuple. If it is because of a failure,
Reason is the error reason.
If the gen_server process is part of a supervision tree and is ordered by its
supervisor to terminate, this function is called with Reason=shutdown if the
following conditions apply:
	The gen_server process has been set to trap exit signals.
	The shutdown strategy as defined in the child specification of the supervisor
is an integer time-out value, not brutal_kill.

Even if the gen_server process is not part of a supervision tree, this
function is called if it receives an 'EXIT' message from its parent. Reason
is the same as in the 'EXIT' message.
Otherwise, the gen_server process terminates immediately.
Notice that for any other reason than normal, shutdown, or
{shutdown,Term}, see stop/3, the gen_server process is assumed to
terminate because of an error, and an error report is issued using logger.
When the gen_server process exits, an exit signal with the same reason is sent
to linked processes and ports.
Note
This callback is optional, so callback modules need not export it. The
gen_server module provides a default implementation without cleanup.

 Functions

 Link to this function

 abcast(Name, Request)

 View Source

 -spec abcast(Name :: atom(), Request :: term()) -> abcast.

Equivalent to abcast(Nodes, Name, Request) where Nodes
is all nodes connected to the calling node, including the calling node.

 Link to this function

 abcast(Nodes, Name, Request)

 View Source

 -spec abcast(Nodes :: [node()], Name :: atom(), Request :: term()) -> abcast.

Sends an asynchronous request to the gen_server processes locally registered
as Name at the specified nodes. The function returns immediately and ignores
nodes that do not exist, or where the gen_server Name does not exist. The
gen_server processes call Module:handle_cast/2 to
handle the request.
For a description of the arguments, see multi_call/2,3,4.

 Link to this function

 call(ServerRef, Request)

 View Source

 -spec call(ServerRef :: server_ref(), Request :: term()) -> Reply :: term().

Equivalent to call(ServerRef, Request, 5000).

 Link to this function

 call(ServerRef, Request, Timeout)

 View Source

 -spec call(ServerRef :: server_ref(), Request :: term(), Timeout :: timeout()) -> Reply :: term().

Makes a synchronous call to the ServerRef of the gen_server process by
sending a request and waiting until a reply arrives or a time-out occurs. The
gen_server process calls Module:handle_call/3 to handle
the request.
See also ServerRef's type server_ref/0.
Request is any term that is passed as the first argument to
Module:handle_call/3.
Timeout is an integer that specifies how many milliseconds to wait for a
reply, or the atom infinity to wait indefinitely. If no
reply is received within the specified time, this function exits the calling
process with an exit term containing Reason = timeout as described below.
Note
Before OTP 24, if the caller uses (try...)catch to avoid process exit, and
the server happens to just be late with the reply, it may arrive to the
process message queue any time later. The calling process must therefore after
catching a time-out exit be prepared to receive garbage message(s) on the form
{reference(), _} and deal with them appropriately (discard them) so they do
not clog the process message queue or gets mistaken for other messages.
Starting with OTP 24, gen_server:call uses process aliases, so late replies
will not be received.

The return value Reply is passed from the return value of
Module:handle_call/3.
This call may exit the calling process with an exit term on the form
{Reason, Location} where Location = {gen_server,call,ArgList} and Reason
can be (at least) one of:
	timeout - The call was aborted after waiting Timeout milliseconds for
a reply, as described above.

	noproc - The ServerRef refers to a server by name (it is not a
pid/0) and looking up the server process failed, or the pid/0 was
already terminated.

	{nodedown,Node} - The ServerRef refers to a server on the remote node
Node and the connection to that node failed.

	calling_self - A call to self/0 would hang indefinitely.

	shutdown

The server was stopped during the call by its supervisor. See also stop/3.

	normal
{shutdown,Term}

The server stopped during the call by returning {stop,Reason,_} from one of
its callbacks without replying to this call. See also stop/3.

	_OtherTerm - The server process exited during the call, with reason
Reason. Either by returning {stop,Reason,_} from one of its callbacks
(without replying to this call), by raising an exception, or due to getting an
exit signal it did not trap.

 Link to this function

 cast(ServerRef, Request)

 View Source

 -spec cast(ServerRef :: server_ref(), Request :: term()) -> ok.

Sends an asynchronous request to the ServerRef of the gen_server process and
returns ok immediately, ignoring if the destination node or gen_server
process does not exist. The gen_server process calls
Module:handle_cast/2 to handle the request.
See also ServerRef's type server_ref/0.
Request is any term that is passed as the first argument to
Module:handle_cast/2.

 Link to this function

 check_response(Msg, ReqId)

 View Source

 (since OTP 23.0)

 -spec check_response(Msg, ReqId) -> Result
 when
 Msg :: term(),
 ReqId :: request_id(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | no_reply.

Check if Msg is a response corresponding to the request identifier ReqId.
The request must have been made by send_request/2, and it must have been made
by the same process calling this function.
If Msg is a response corresponding to ReqId the response is returned;
otherwise, no_reply is returned and no cleanup is done, and thus the function
must be invoked repeatedly until a response is returned.
The return value Reply is passed from the return value of
Module:handle_call/3.
The function returns an error if the gen_server died before a reply was sent.

 Link to this function

 check_response(Msg, ReqIdCollection, Delete)

 View Source

 (since OTP 25.0)

 -spec check_response(Msg, ReqIdCollection, Delete) -> Result
 when
 Msg :: term(),
 ReqIdCollection :: request_id_collection(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | no_reply.

Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to check_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by check_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned. If Msg
does not correspond to any of the request identifiers in ReqIdCollection, the
atom no_reply is returned.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
check_response/3, receive_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
check_response/3, it will always return no_reply.

 Link to this function

 enter_loop(Module, Options, State)

 View Source

 -spec enter_loop(Module :: module(), Options :: [enter_loop_opt()], State :: term()) -> no_return().

Equivalent to enter_loop(Mod, Options, State, self()).

 Link to this function

 enter_loop(Module, Options, State, How)

 View Source

 -spec enter_loop(Module :: module(),
 Options :: [enter_loop_opt()],
 State :: term(),
 ServerName :: server_name() | pid()) ->
 no_return();
 (Module :: module(),
 Options :: [enter_loop_opt()],
 State :: term(),
 How :: timeout() | hibernate | {continue, term()}) ->
 no_return().

Makes an existing process a gen_server process.
Equivalent to enter_loop(Module, Options, State, ServerName, infinity) if
called as enter_loop(Module, Options, State, ServerName).
Equivalent to enter_loop(Module, Options, State, self(), How) if
called as enter_loop(Module, Options, State, How).

 Link to this function

 enter_loop/5

 View Source

 -spec enter_loop(Module :: module(),
 Options :: [enter_loop_opt()],
 State :: term(),
 ServerName :: server_name() | pid(),
 Timeout :: timeout()) ->
 no_return();
 (Module :: module(),
 Options :: [enter_loop_opt()],
 State :: term(),
 ServerName :: server_name() | pid(),
 Hibernate :: hibernate) ->
 no_return();
 (Module :: module(),
 Options :: [enter_loop_opt()],
 State :: term(),
 ServerName :: server_name() | pid(),
 Cont :: {continue, term()}) ->
 no_return().

Makes an existing process a gen_server process.
Does not return, instead the calling process enters the gen_server process
receive loop and becomes a gen_server process. The process must have been
started using one of the start functions in proc_lib. The user is responsible
for any initialization of the process, including registering a name for it.
This function is useful when a more complex initialization procedure is needed
than the gen_server process behavior provides.
Module, Options, and ServerName have the same meanings as when calling
start[_link|_monitor]/3,4 or it can be self/0 for an
anonymous server, which is the same as calling an enter_loop/3,4 function
without a ServerName argument. However, if ServerName is specified (and not
as self/0), the process must have been registered accordingly before this
function is called.
State, Timeout, Hibernate and Cont have the same meanings as in the
return value of Module:init/1, which is not called when
enter_loop/3,4,5 is used. Note that to adhere to the
gen_server Behaviour such a callback
function needs to be defined, and it might as well be the one used when starting
the gen_server process through proc_lib, and then be the one that calls
enter_loop/3,4,5. But if such a Module:init/1 function in for
example error cases cannot call enter_loop/3,4,5, it should return a value
that follows the type specification for Module:init/1 such as
ignore, although that value will be lost when returning to the spawning
function.
This function fails if the calling process was not started by a proc_lib start
function, or if it is not registered according to ServerName.

 Link to this function

 multi_call(Name, Request)

 View Source

 -spec multi_call(Name :: atom(), Request :: term()) ->
 {Replies :: [{Node :: node(), Reply :: term()}], BadNodes :: [node()]}.

Equivalent to multi_call(Nodes, Name, Request) where Nodes
is all nodes connected to the calling node, including the calling node.

 Link to this function

 multi_call(Nodes, Name, Request)

 View Source

 -spec multi_call(Nodes :: [node()], Name :: atom(), Request :: term()) ->
 {Replies :: [{Node :: node(), Reply :: term()}], BadNodes :: [node()]}.

Equivalent to multi_call(Nodes, Name, Request, infinity).

 Link to this function

 multi_call(Nodes, Name, Request, Timeout)

 View Source

 -spec multi_call(Nodes :: [node()], Name :: atom(), Request :: term(), Timeout :: timeout()) ->
 {Replies :: [{Node :: node(), Reply :: term()}], BadNodes :: [node()]}.

Makes a synchronous call to all gen_server processes locally registered as
Name at the specified nodes, by first sending the request to the nodes, and
then waiting for the replies. The gen_server processes on the nodes call
Module:handle_call/3 to handle the request.
The function returns a tuple {Replies,BadNodes}, where Replies is a list of
{Node,Reply} tuples, and BadNodes is a list of nodes that either did not
exist, where Name was not a registered gen_server, or where it did not
reply.
Nodes is a list of node names to which the request is to be sent.
Name is the locally registered name for each gen_server process.
Request is any term that is passed as the first argument to
Module:handle_call/3.
Timeout is an integer that specifies how many milliseconds to wait for all
replies, or the atom infinity to wait indefinitely. If
no reply is received from a node within the specified time, the node is added to
BadNodes.
When a reply Reply is received from the gen_server process at a node Node,
{Node,Reply} is added to Replies. Reply is passed from the return value of
Module:handle_call/3.
Warning
If one of the nodes cannot process monitors, for example, C or Java nodes, and
the gen_server process is not started when the requests are sent, but starts
within 2 seconds, this function waits the whole Timeout, which may be
infinity.
This problem does not exist if all nodes are Erlang nodes.

To prevent late answers (after the time-out) from polluting the message queue of
the caller, a middleman process is used to do the calls. Late answers are then
discarded when they arrive to a terminated process.

 Link to this function

 receive_response(ReqId, Timeout)

 View Source

 (since OTP 24.0)

 -spec receive_response(ReqId, Timeout) -> Result
 when
 ReqId :: request_id(),
 Timeout :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Receive a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2, and it must have been made by the same
process calling this function.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) the request
will also be abandoned. That is, no response will be received after a timeout.
Otherwise, a stray response might be received at a later time.
The return value Reply is passed from the return value of
Module:handle_call/3.
The function returns an error if the gen_server died before a reply was sent.
The difference between receive_response/2 and
wait_response/2 is that receive_response/2 abandons
the request at timeout so that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 receive_response(ReqIdCollection, Timeout, Delete)

 View Source

 (since OTP 25.0)

 -spec receive_response(ReqIdCollection, Timeout, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 Timeout :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when adding the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to receive_response/2, the returned result associated with a specific
request identifier will be wrapped in a 3-tuple. The first element of this tuple
equals the value that would have been produced by
receive_response/2, the second element equals the
Label associated with the specific request identifier, and the third element
NewReqIdCollection is a possibly modified request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) all requests
identified by ReqIdCollection will also be abandoned. That is, no responses
will be received after a timeout. Otherwise, stray responses might be received
at a later time.
The difference between receive_response/3 and
wait_response/3 is that receive_response/3 abandons
the requests at timeout so that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
receive_response/3, check_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
receive_response/3, it will always block until a
timeout determined by Timeout is triggered.

 Link to this function

 reply(Client, Reply)

 View Source

 -spec reply(Client :: from(), Reply :: term()) -> ok.

This function can be used by a gen_server process to explicitly send a reply
to a client that called call/2,3 or
multi_call/2,3,4, when the reply cannot be passed in the
return value of Module:handle_call/3.
Client must be the From argument provided to the handle_call callback
function. Reply is any term passed back to the client as the return value of
call/2,3 or multi_call/2,3,4.

 Link to this function

 reqids_add(ReqId, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_add(ReqId :: request_id(), Label :: term(), ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 Link to this function

 reqids_new()

 View Source

 (since OTP 25.0)

 -spec reqids_new() -> NewReqIdCollection :: request_id_collection().

Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.
Request identifiers of requests made by send_request/2 can be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or, check_response/3.
reqids_size/1 can be used to determine the amount of request identifiers in a
request identifier collection.

 Link to this function

 reqids_size(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_size(ReqIdCollection :: request_id_collection()) -> non_neg_integer().

Returns the amount of request identifiers saved in ReqIdCollection.

 Link to this function

 reqids_to_list(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_to_list(ReqIdCollection :: request_id_collection()) ->
 [{ReqId :: request_id(), Label :: term()}].

Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 Link to this function

 send_request(ServerRef, Request)

 View Source

 (since OTP 23.0)

 -spec send_request(ServerRef :: server_ref(), Request :: term()) -> ReqId :: request_id().

Sends an asynchronous call request Request to the gen_server process
identified by ServerRef and returns a request identifier ReqId.
The return value ReqId shall later be used with receive_response/2, wait_response/2,
or check_response/2 to fetch the actual result of the request. Besides passing
the request identifier directly to these functions, it can also be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or check_response/3. If you are about
to save the request identifier in a request identifier collection, you may want
to consider using send_request/4 instead.
The call
gen_server:receive_response(gen_server:send_request(ServerRef, Request), Timeout)
can be seen as equivalent to
gen_server:call(ServerRef, Request, Timeout), ignoring the error
handling.
The gen_server process calls Module:handle_call/3 to
handle the request.
See the type server_ref/0 for the possible values for ServerRef.
Request is any term that is passed as the first argument to
Module:handle_call/3.

 Link to this function

 send_request(ServerRef, Request, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec send_request(ServerRef :: server_ref(),
 Request :: term(),
 Label :: term(),
 ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Sends an asynchronous call request Request to the gen_server process
identified by ServerRef. The Label will be associated with the request
identifier of the operation and added to the returned request identifier
collection NewReqIdCollection. The collection can later be used in order to
get one response corresponding to a request in the collection by passing the
collection as argument to receive_response/3, wait_response/3, or,
check_response/3.
The same as calling
gen_server:reqids_add(gen_server:send_request(ServerRef, Request), Label, ReqIdCollection),
but calling send_request/4 is slightly more efficient.

 Link to this function

 start(Module, Args, Options)

 View Source

 -spec start(Module :: module(), Args :: term(), Options :: [start_opt()]) -> start_ret().

Equivalent to start/4 except that the gen_server process is not
registered with any name service.

 Link to this function

 start(ServerName, Module, Args, Options)

 View Source

 -spec start(ServerName :: server_name(), Module :: module(), Args :: term(), Options :: [start_opt()]) ->
 start_ret().

Creates a standalone gen_server process, that is, a gen_server process that
is not part of a supervision tree and thus has no supervisor.
Other than that see start_link/4.

 Link to this function

 start_link(Module, Args, Options)

 View Source

 -spec start_link(Module :: module(), Args :: term(), Options :: [start_opt()]) -> start_ret().

Equivalent to start_link/4 except that the gen_server process is not
registered with any name service.

 Link to this function

 start_link(ServerName, Module, Args, Options)

 View Source

 -spec start_link(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Options :: [start_opt()]) ->
 start_ret().

Creates a gen_server process as part of a supervision tree. This function is
to be called, directly or indirectly, by the supervisor. For example, it ensures
that the gen_server process is spawned as linked to the caller (supervisor).
The gen_server process calls Module:init/1 to initialize. To
ensure a synchronized startup procedure, start_link/3,4 does not return until
Module:init/1 has returned or failed.
Using the argument ServerName creates a gen_server with a registered name.
See type server_name/0 for different name registrations.
Module is the name of the callback module.
Args is any term that is passed as the argument to
Module:init/1.
See type start_opt/0 for Options when starting the gen_server process.
See type start_ret/0 for a description this function's return values.
If start_link/3,4 returns ignore or {error,_}, the started gen_server
process has terminated. If an 'EXIT' message was delivered to the calling
process (due to the process link), that message has been consumed.
Warning
Before OTP 26.0, if the started gen_server process returned e.g.
{stop,Reason} from Module:init/1, this function could return
{error,Reason} before the started gen_statem process had terminated so
starting again might fail because VM resources such as the registered name was
not yet unregistered. An 'EXIT' message could arrive later to the process
calling this function.
But if the started gen_server process instead failed during
Module:init/1, a process link {'EXIT',Pid,Reason} message
caused this function to return {error,Reason} so the 'EXIT' message had
been consumed and the started gen_statem process had terminated.
Since it was impossible to tell the difference between these two cases from
start_link/3,4's return value, this inconsistency was cleaned up in OTP
26.0.

The difference between returning {stop,_} and {error,_} from
Module:init/1, is that {error,_} results in a graceful
("silent") termination since the gen_server process exits with reason
normal.

 Link to this function

 start_monitor(Module, Args, Options)

 View Source

 (since OTP 23.0)

 -spec start_monitor(Module :: module(), Args :: term(), Options :: [start_opt()]) -> start_mon_ret().

Equivalent to start_monitor/4 except that the gen_server process is not
registered with any name service.

 Link to this function

 start_monitor(ServerName, Module, Args, Options)

 View Source

 (since OTP 23.0)

 -spec start_monitor(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Options :: [start_opt()]) ->
 start_mon_ret().

Creates a standalone gen_server process, that is, a gen_server process that
is not part of a supervision tree (and thus has no supervisor) and atomically
sets up a monitor to the newly created server.
Other than that see start_link/3,4. Note that the return
value for a successful start differs in that it returns a monitor reference.
See type start_mon_ret/0.
If the start is not successful, the caller will be blocked until the monitor's
'DOWN' message has been received and removed from the message queue.

 Link to this function

 stop(ServerRef)

 View Source

 (since OTP 18.0)

 -spec stop(ServerRef :: server_ref()) -> ok.

Equivalent to stop(ServerRef, normal, infinity).

 Link to this function

 stop(ServerRef, Reason, Timeout)

 View Source

 (since OTP 18.0)

 -spec stop(ServerRef :: server_ref(), Reason :: term(), Timeout :: timeout()) -> ok.

Orders the generic server specified by ServerRef to exit with the specified
Reason and waits for it to terminate. The gen_server
process calls Module:terminate/2 before exiting.
The function returns ok if the server terminates with the expected reason. Any
other reason than normal, shutdown, or {shutdown,Term} causes an error
report to be issued using logger. An exit signal with the same reason is
sent to linked processes and ports.
Timeout is an integer that specifies how many milliseconds to wait for the
server to terminate, or the atom infinity to wait indefinitely. If the server
has not terminated within the specified time, the call exits the calling process
with reason timeout.
If the process does not exist, the call exits the calling process with reason
noproc, and with reason {nodedown,Node} if the connection fails to the
remote Node where the server runs.

 Link to this function

 wait_response(ReqId, WaitTime)

 View Source

 (since OTP 23.0)

 -spec wait_response(ReqId, WaitTime) -> Result
 when
 ReqId :: request_id(),
 WaitTime :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2, and it must have been made by the same
process calling this function.
WaitTime specifies how long to wait for a reply. If no reply is received
within the specified time, the function returns timeout and no cleanup is
done, and thus the function can be invoked repeatedly until a reply is returned.
The return value Reply is passed from the return value of
Module:handle_call/3.
The function returns an error if the gen_server died before a reply was sent.
The difference between receive_response/2 and
wait_response/2 is that
receive_response/2 abandons the request at time-out so
that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 wait_response(ReqIdCollection, WaitTime, Delete)

 View Source

 (since OTP 25.0)

 -spec wait_response(ReqIdCollection, WaitTime, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 WaitTime :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to wait_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by wait_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, no_request will be returned. If no response is
received before the WaitTime timeout has triggered, the atom timeout is
returned. It is valid to continue waiting for a response as many times as needed
up until a response has been received and completed by check_response(),
receive_response(), or wait_response().
The difference between receive_response/3 and
wait_response/3 is that
receive_response/3 abandons requests at timeout so
that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
wait_response/3, check_response/3, and
receive_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
wait_response/3, it will always block until a timeout
determined by WaitTime is triggered and then return no_reply.

 gen_statem - stdlib v5.2.1

gen_statem behaviour

Generic state machine behavior.
gen_statem provides a generic state machine behaviour that for new code
replaces its predecessor gen_fsm since Erlang/OTP 20.0. The gen_fsm
behaviour remains in OTP "as is".
Note
If you are new to gen_statem and want an overview of concepts and operation
the section gen_statem Behaviour located in the
User's Guide OTP Design Principles is recommended to
read before this reference manual, possibly after the Description section you
are reading here.

This reference manual contains type descriptions generated from types in the
gen_statem source code, so they are correct. However, the generated
descriptions also reflect the type hierarchy, which sometimes makes it hard to
get a good overview. If so, see the section
gen_statem Behaviour in the
OTP Design Principles User's Guide.
Note
	This behavior appeared in Erlang/OTP 19.0.
	In OTP 19.1 a backwards incompatible change of the return tuple from
Module:init/1 was made and the mandatory callback function
Module:callback_mode/0 was introduced.
	In OTP 20.0 generic time-outs were added.
	In OTP 22.1 time-out content update and
explicit time-out cancel were added.
	In OTP 22.3 the possibility to change the callback module with actions
change_callback_module,
push_callback_module and
pop_callback_module, was added.

gen_statem has got the same features that gen_fsm had and adds some really
useful:
	Co-located state code
	Arbitrary term state
	Event postponing
	Self-generated events
	State time-out
	Multiple generic named time-outs
	Absolute time-out time
	Automatic state enter calls
	Reply from other state than the request, sys traceable
	Multiple sys traceable replies
	Changing the callback module

Two callback modes are supported:
	One for finite-state machines (gen_fsm like), which requires the state to
be an atom and uses that state as the name of the current callback function.
	One that allows the state to be any term and that uses one callback function
for all states.

The callback model(s) for gen_statem differs from the one for gen_fsm, but
it is still fairly easy to
rewrite from gen_fsm to gen_statem.
A generic state machine server process (gen_statem) implemented using this
module has a standard set of interface functions and includes functionality for
tracing and error reporting. It also fits into an OTP supervision tree. For more
information, see OTP Design Principles.
A gen_statem assumes all specific parts to be located in a callback module
exporting a predefined set of functions. The relationship between the behavior
functions and the callback functions is as follows:
gen_statem module Callback module
----------------- ---------------
gen_statem:start
gen_statem:start_monitor
gen_statem:start_link -----> Module:init/1

Server start or code change
 -----> Module:callback_mode/0

gen_statem:stop -----> Module:terminate/3

gen_statem:call
gen_statem:cast
gen_statem:send_request
erlang:send
erlang:'!' -----> Module:StateName/3
 Module:handle_event/4

- -----> Module:terminate/3

- -----> Module:code_change/4
Events are of different types, so the callback functions can
know the origin of an event and how to respond.
If a callback function fails or returns a bad value, the gen_statem
terminates, unless otherwise stated. However, an exception of class
throw is not regarded as an error but as a valid return
from all callback functions.

The state callback for a specific state in a gen_statem is
the callback function that is called for all events in this state. It is
selected depending on which callback mode that the
callback module defines with the callback function
Module:callback_mode/0.
When the callback mode is state_functions, the state
must be an atom and is used as the state callback name; see
Module:StateName/3. This co-locates all code for a specific
state in one function as the gen_statem engine branches depending on state
name. Note the fact that the callback function
Module:terminate/3 makes the state name terminate
unusable in this mode.
When the callback mode is handle_event_function, the
state can be any term and the state callback name is
Module:handle_event/4. This makes it easy to branch
depending on state or event as you desire. Be careful about which events you
handle in which states so that you do not accidentally postpone an event forever
creating an infinite busy loop.
When gen_statem receives a process message it is converted into an event and
the state callback is called with the event
as two arguments: type and content. When the
state callback has processed the event it
returns to gen_statem which does a state transition. If this state
transition is to a different state, that is: NextState =/= State, it is a
state change.
The state callback may return
transition actions for gen_statem to execute during the
state transition, for example to reply to a gen_statem:call/2,3.
One of the possible transition actions is to postpone the current event. Then
it is not retried in the current state. The gen_statem engine keeps a queue of
events divided into the postponed events and the events still to process. After
a state change the queue restarts with the postponed events.
The gen_statem event queue model is sufficient to emulate the normal process
message queue with selective receive. Postponing an event corresponds to not
matching it in a receive statement, and changing states corresponds to entering
a new receive statement.
The state callback can insert events using
the transition actions next_event and such an event is
inserted in the event queue as the next to call the
state callback with. That is, as if it is the
oldest incoming event. A dedicated event_type/0 internal can be used for
such events making them impossible to mistake for external events.
Inserting an event replaces the trick of calling your own state handling
functions that you often would have to resort to in, for example, gen_fsm to
force processing an inserted event before others.
The gen_statem engine can automatically make a specialized call to the
state callback whenever a new state is
entered; see state_enter/0. This is for writing code common to all state
entries. Another way to do it is to explicitly insert an event at the state
transition, and/or to use a dedicated state transition function, but that is
something you will have to remember at every state transition to the state(s)
that need it.
Note
If you in gen_statem, for example, postpone an event in one state and then
call another state callback of yours, you have not done a state change and
hence the postponed event is not retried, which is logical but can be
confusing.

For the details of a state transition, see type transition_option/0.
A gen_statem handles system messages as described in sys. The sys module
can be used for debugging a gen_statem.
Notice that a gen_statem does not trap exit signals automatically, this must
be explicitly initiated in the callback module (by calling
process_flag(trap_exit, true).
Unless otherwise stated, all functions in this module fail if the specified
gen_statem does not exist or if bad arguments are specified.
The gen_statem process can go into hibernation; see proc_lib:hibernate/3. It
is done when a state callback or
Module:init/1 specifies hibernate in the returned
Actions list. This feature can be useful to reclaim process
heap memory while the server is expected to be idle for a long time. However,
use this feature with care, as hibernation can be too costly to use after every
event; see erlang:hibernate/3.
There is also a server start option
{hibernate_after, Timeout} for
start/3,4, start_monitor/3,4,
start_link/3,4 or enter_loop/4,5,6, that
may be used to automatically hibernate the server.
If the gen_statem process terminates, e.g. as a result of a function in the
callback module returning {stop,Reason}, an exit signal with this Reason is
sent to linked processes and ports. See
Processes in the Reference Manual for
details regarding error handling using exit signals.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause call timeouts in gen_statem to be
significantly delayed.

 Example

The following example shows a simple pushbutton model for a toggling pushbutton
implemented with callback mode state_functions. You
can push the button and it replies if it went on or off, and you can ask for a
count of how many times it has been pushed to switch on.
The following is the complete callback module file pushbutton.erl:
-module(pushbutton).
-behaviour(gen_statem).

-export([start/0,push/0,get_count/0,stop/0]).
-export([terminate/3,code_change/4,init/1,callback_mode/0]).
-export([on/3,off/3]).

name() -> pushbutton_statem. % The registered server name

%% API. This example uses a registered name name()
%% and does not link to the caller.
start() ->
 gen_statem:start({local,name()}, ?MODULE, [], []).
push() ->
 gen_statem:call(name(), push).
get_count() ->
 gen_statem:call(name(), get_count).
stop() ->
 gen_statem:stop(name()).

%% Mandatory callback functions
terminate(_Reason, _State, _Data) ->
 void.
code_change(_Vsn, State, Data, _Extra) ->
 {ok,State,Data}.
init([]) ->
 %% Set the initial state + data. Data is used only as a counter.
 State = off, Data = 0,
 {ok,State,Data}.
callback_mode() -> state_functions.

%%% state callback(s)

off({call,From}, push, Data) ->
 %% Go to 'on', increment count and reply
 %% that the resulting status is 'on'
 {next_state,on,Data+1,[{reply,From,on}]};
off(EventType, EventContent, Data) ->
 handle_event(EventType, EventContent, Data).

on({call,From}, push, Data) ->
 %% Go to 'off' and reply that the resulting status is 'off'
 {next_state,off,Data,[{reply,From,off}]};
on(EventType, EventContent, Data) ->
 handle_event(EventType, EventContent, Data).

%% Handle events common to all states
handle_event({call,From}, get_count, Data) ->
 %% Reply with the current count
 {keep_state,Data,[{reply,From,Data}]};
handle_event(_, _, Data) ->
 %% Ignore all other events
 {keep_state,Data}.
The following is a shell session when running it:
1> pushbutton:start().
{ok,<0.36.0>}
2> pushbutton:get_count().
0
3> pushbutton:push().
on
4> pushbutton:get_count().
1
5> pushbutton:push().
off
6> pushbutton:get_count().
1
7> pushbutton:stop().
ok
8> pushbutton:push().
** exception exit: {noproc,{gen_statem,call,[pushbutton_statem,push,infinity]}}
 in function gen:do_for_proc/2 (gen.erl, line 261)
 in call from gen_statem:call/3 (gen_statem.erl, line 386)
To compare styles, here follows the same example using
callback mode handle_event_function, or rather the
code to replace after function init/1 of the pushbutton.erl
example file above:
callback_mode() -> handle_event_function.

%%% state callback(s)

handle_event({call,From}, push, off, Data) ->
 %% Go to 'on', increment count and reply
 %% that the resulting status is 'on'
 {next_state,on,Data+1,[{reply,From,on}]};
handle_event({call,From}, push, on, Data) ->
 %% Go to 'off' and reply that the resulting status is 'off'
 {next_state,off,Data,[{reply,From,off}]};
%%
%% Event handling common to all states
handle_event({call,From}, get_count, State, Data) ->
 %% Reply with the current count
 {next_state,State,Data,[{reply,From,Data}]};
handle_event(_, _, State, Data) ->
 %% Ignore all other events
 {next_state,State,Data}.

 See Also

gen_event, gen_fsm, gen_server, proc_lib, supervisor,
sys.

 Summary

 Types

 action()

 These transition actions can be invoked by returning them from the
state callback when it is called with an
event, from Module:init/1 or by giving them
to enter_loop/5,6.

 callback_mode()

 The callback mode is selected with the return value from
Module:callback_mode/0

 callback_mode_result()

 This is the return type from Module:callback_mode/0 and
selects callback mode and whether to do
state enter calls, or not.

 data()

 A term in which the state machine implementation is to store any server data it
needs. The difference between this and the state/0 itself is that a change
in this data does not cause postponed events to be retried. Hence, if a change
in this data would change the set of events that are handled, then that data
item is to be made a part of the state.

 enter_action()

 These transition actions can be invoked by returning them from the
state callback, from
Module:init/1 or by giving them to
enter_loop/5,6.

 enter_loop_opt()

 Options that can be used when starting a gen_statem server through,
enter_loop/4-6.

 event_content()

 Any event's content can be any term.

 event_handler_result(StateType)

 event_handler_result(StateType, DataType)

 StateType is state_name/0 if callback mode is
state_functions, or state/0 if callback mode is
handle_event_function.

 event_timeout()

 Starts a timer set by enter_action/0 timeout. When the timer expires an
event of event_type/0 timeout will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.

 event_type()

 There are 3 categories of events: external,
timeout, and internal.

 external_event_type()

 External events are of 3 types: {call,From}, cast, or info. Type call
originates from the API functions call/2 and send_request/2. For calls, the
event contains whom to reply to. Type cast originates from the API function
cast/2. Type info originates from regular process messages sent to the
gen_statem.

 format_status()

 A map that describes the gen_statem status.

 from()

 Destination to use when replying through, for example, the action/0
{reply,From,Reply} to a process that has called the gen_statem server using
call/2.

 generic_timeout()

 Starts a timer set by enter_action/0 {timeout,Name}. When the timer
expires an event of event_type/0 {timeout,Name} will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.

 handle_event_result()

 hibernate()

 If true, hibernates the gen_statem by calling proc_lib:hibernate/3 before
going into receive to wait for a new external event.

 init_result(StateType)

 init_result(StateType, DataType)

 For a succesful initialization, State is the initial state/0 and Data
the initial server data/0 of the gen_statem.

 postpone()

 If true, postpones the current event and retries it after a state change
(NextState =/= State).

 reply_action()

 This transition action can be invoked by returning it from the
state callback, from
Module:init/1 or by giving it to
enter_loop/5,6.

 reply_tag()

 A handle that associates a reply to the corresponding request.

 request_id()

 An opaque request identifier. See send_request/2 for details.

 request_id_collection()

 An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 response_timeout()

 Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond. Currently valid values

 server_name()

 Name specification to use when starting a gen_statem server. See
start_link/3 and server_ref/0 below.

 server_ref()

 Server specification to use when addressing a gen_statem server.

 start_mon_ret()

 Return value from the start_monitor/3,4 functions.

 start_opt()

 Options that can be used when starting a gen_statem server through, for
example, start_link/3.

 start_ret()

 Return value from the start/3,4 and
start_link/3,4 functions.

 state()

 If the callback mode is handle_event_function, the
state can be any term. After a state change (NextState =/= State), all
postponed events are retried.

 state_callback_result(ActionType)

 state_callback_result(ActionType, DataType)

 ActionType is enter_action/0 if the state callback was called with a
state enter call and action/0 if the state callback
was called with an event.

 state_enter()

 Whether the state machine should use state enter calls or not is selected when
starting the gen_statem and after code change using the return value from
Module:callback_mode/0.

 state_enter_result(State)

 state_enter_result(State, DataType)

 State is the current state and it cannot be changed since the state callback
was called with a state enter call.

 state_function_result()

 state_name()

 If the callback mode is state_functions, the state
must be an atom. After a state change (NextState =/= State), all postponed
events are retried. Note that the state terminate is not possible to use since
it would collide with the optional callback function
Module:terminate/3.

 state_timeout()

 Starts a timer set by enter_action/0 state_timeout. When the timer expires
an event of event_type/0 state_timeout will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.

 timeout_action()

 These transition actions can be invoked by returning them from the
state callback, from
Module:init/1 or by giving them to
enter_loop/5,6.

 timeout_cancel_action()

 This is a shorter and clearer form of
timeout_action() with Time = infinity which cancels a
time-out.

 timeout_event_type()

 There are 3 types of time-out events that the state machine can generate for
itself with the corresponding timeout_action/0s.

 timeout_option()

 If Abs is true an absolute timer is started, and if it is false a
relative, which is the default. See
erlang:start_timer/4 for details.

 timeout_update_action()

 Updates a time-out with a new EventContent. See
timeout_action() for how to start a time-out.

 transition_option()

 Transition options can be set by actions and modify the state
transition. The state transition takes place when the
state callback has processed an event and
returns. Here are the sequence of steps for a state transition

 Callbacks

 callback_mode()

 This function is called by a gen_statem when it needs to find out the
callback mode of the callback module.

 code_change(OldVsn, OldState, OldData, Extra)

 This function is called by a gen_statem when it is to update its internal
state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, where Change = {advanced,Extra}, is specified in
the appup file. For more information, see
OTP Design Principles.

 format_status(Status)

 This function is called by a gen_statem process in in order to format/limit the
server state for debugging and logging purposes.

 format_status/2

 deprecated

 This function is called by a gen_statem process in in order to format/limit the
server state for debugging and logging purposes.

 handle_event/4

 Whenever a gen_statem receives an event from call/2, cast/2, or as a
normal process message, one of these functions is called. If
callback mode is state_functions,
Module:StateName/3 is called, and if it is handle_event_function,
Module:handle_event/4 is called.

 init(Args)

 Whenever a gen_statem is started using start_link/3,4,
start_monitor/3,4, or start/3,4, this
function is called by the new process to initialize the implementation state and
server data.

 'StateName'/3

 Equivalent to handle_event/4.

 terminate/3

 This function is called by a gen_statem when it is about to terminate. It is
to be the opposite of Module:init/1 and do any necessary
cleaning up. When it returns, the gen_statem terminates with Reason. The
return value is ignored.

 Functions

 call(ServerRef, Request)

 Equivalent to call(ServerRef, Request, infinity).

 call(ServerRef, Request, Timeout)

 Makes a synchronous call to the gen_statem ServerRef by
sending a request and waiting until its reply arrives.

 cast(ServerRef, Msg)

 Sends an asynchronous event to the gen_statem ServerRef
and returns ok immediately, ignoring if the destination node or gen_statem
does not exist.

 check_response(Msg, ReqId)

 Check if Msg is a response corresponding to the request identifier ReqId.

 check_response(Msg, ReqIdCollection, Delete)

 Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 enter_loop(Module, Opts, State, Data)

 The same as enter_loop/6 with Actions = [] except that no server_name/0
must have been registered. This creates an anonymous server.

 enter_loop(Module, Opts, State, Data, Server_or_Actions)

 If Server_or_Actions is a list/0, the same as enter_loop/6 except that
no server_name/0 must have been registered and
Actions = Server_or_Actions. This creates an anonymous server.

 enter_loop(Module, Opts, State, Data, Server, Actions)

 Makes the calling process become a gen_statem.

 receive_response(ReqId)

 Equivalent to receive_response(ReqId, infinity).

 receive_response(ReqId, Timeout)

 Receive a response corresponding to the request identifier ReqId- The request
must have been made by send_request/2 to the gen_statem process. This
function must be called from the same process from which send_request/2 was
made.

 receive_response(ReqIdCollection, Timeout, Delete)

 Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 reply(Replies)

 Send a reply or multiple replies using one or several reply_action/0s from a
state callback.

 reply(From, Reply)

 Send a Reply to From.

 reqids_add(ReqId, Label, ReqIdCollection)

 Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 reqids_new()

 Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.

 reqids_size(ReqIdCollection)

 Returns the amount of request identifiers saved in ReqIdCollection.

 reqids_to_list(ReqIdCollection)

 Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 send_request(ServerRef, Request)

 Sends an asynchronous call request Request to the gen_statem process
identified by ServerRef and returns a request identifier ReqId.

 send_request(ServerRef, Request, Label, ReqIdCollection)

 Sends an asynchronous call request Request to the gen_statem process
identified by ServerRef. The Label will be associated with the request
identifier of the operation and added to the returned request identifier
collection NewReqIdCollection. The collection can later be used in order to
get one response corresponding to a request in the collection by passing the
collection as argument to receive_response/3, wait_response/3, or,
check_response/3.

 start(Module, Args, Opts)

 Equivalent to start/4 except that the gen_statem process is not
registered with any name service.

 start(ServerName, Module, Args, Opts)

 Creates a standalone gen_statem process according to OTP design principles
(using proc_lib primitives). As it does not get linked to the calling
process, this start function cannot be used by a supervisor to start a child.

 start_link(Module, Args, Opts)

 Equivalent to start_link/4 except that the gen_statem process is not
registered with any name service.

 start_link(ServerName, Module, Args, Opts)

 Creates a gen_statem process according to OTP design principles (using
proc_lib primitives) that is spawned as linked to the calling process. This
is essential when the gen_statem must be part of a supervision tree so it gets
linked to its supervisor.

 start_monitor(Module, Args, Opts)

 Equivalent to start_monitor/4 except that the gen_statem process is not
registered with any name service.

 start_monitor(ServerName, Module, Args, Opts)

 Creates a standalone gen_statem process according to OTP design principles
(using proc_lib primitives) and atomically sets up a monitor to the newly
created process. As it does not get linked to the calling process, this start
function cannot be used by a supervisor to start a child.

 stop(ServerRef)

 Equivalent to stop(ServerRef, normal, infinity).

 stop(ServerRef, Reason, Timeout)

 Orders the gen_statem ServerRef to exit with the
specified Reason and waits for it to terminate. The gen_statem calls
Module:terminate/3 before exiting.

 wait_response(ReqId)

 Equivalent to receive_response(ReqId, infinity).

 wait_response(ReqId, WaitTime)

 Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2 to the gen_statem process. This
function must be called from the same process from which send_request/2 was
made.

 wait_response(ReqIdCollection, WaitTime, Delete)

 Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.

 Types

 Link to this type

 action()

 View Source

 (since OTP 19.0)

 -type action() ::
 postpone |
 {postpone, Postpone :: postpone()} |
 {next_event, EventType :: event_type(), EventContent :: event_content()} |
 {change_callback_module, NewModule :: module()} |
 {push_callback_module, NewModule :: module()} |
 pop_callback_module |
 enter_action().

These transition actions can be invoked by returning them from the
state callback when it is called with an
event, from Module:init/1 or by giving them
to enter_loop/5,6.
Actions are executed in the containing list order.
Actions that set transition options override any
previous of the same type, so the last in the containing list wins. For example,
the last postpone/0 overrides any previous postpone/0 in the list.
	postpone - Sets the
transition_option() postpone/0 for this
state transition. This action is ignored when returned from
Module:init/1 or given to enter_loop/5,6,
as there is no event to postpone in those cases.

	next_event - This action does not set any
transition_option() but instead stores the
specified EventType and EventContent for insertion after all actions have
been executed.
The stored events are inserted in the queue as the next to process before any
already queued events. The order of these stored events is preserved, so the
first next_event in the containing list becomes the first to process.
An event of type internal is to be used when you want to
reliably distinguish an event inserted this way from any external event.

	change_callback_module - Changes the callback module to NewModule
which will be used when calling all subsequent
state callbacks.
The gen_statem engine will find out the
callback mode of NewModule by calling
NewModule:callback_mode/0 before the next
state callback.
Changing the callback module does not affect the state transition in any
way, it only changes which module that handles the events. Be aware that all
relevant callback functions in NewModule such as the
state callback,
NewModule:code_change/4,
NewModule:format_status/1 and
NewModule:terminate/3 must be able to handle the state
and data from the old module.

	push_callback_module - Pushes the current callback module to the top of
an internal stack of callback modules and changes the callback module to
NewModule. Otherwise like {change_callback_module, NewModule} above.

	pop_callback_module - Pops the top module from the internal stack of
callback modules and changes the callback module to be the popped module. If
the stack is empty the server fails. Otherwise like
{change_callback_module, NewModule} above.

 Link to this type

 callback_mode()

 View Source

 (not exported)

 (since OTP 19.0)

 -type callback_mode() :: state_functions | handle_event_function.

The callback mode is selected with the return value from
Module:callback_mode/0:
	state_functions - The state must be of type state_name/0 and one
callback function per state, that is, Module:StateName/3,
is used.

	handle_event_function - The state can be any term and the callback
function Module:handle_event/4 is used for all states.

The function Module:callback_mode/0 is called when
starting the gen_statem, after code change and after changing the callback
module with any of the actions change_callback_module,
push_callback_module or pop_callback_module.
The result is cached for subsequent calls to
state callbacks.

 Link to this type

 callback_mode_result()

 View Source

 (since OTP 19.0)

 -type callback_mode_result() :: callback_mode() | [callback_mode() | state_enter()].

This is the return type from Module:callback_mode/0 and
selects callback mode and whether to do
state enter calls, or not.

 Link to this type

 data()

 View Source

 (not exported)

 (since OTP 19.0)

 -type data() :: term().

A term in which the state machine implementation is to store any server data it
needs. The difference between this and the state/0 itself is that a change
in this data does not cause postponed events to be retried. Hence, if a change
in this data would change the set of events that are handled, then that data
item is to be made a part of the state.

 Link to this type

 enter_action()

 View Source

 (since OTP 19.0)

 -type enter_action() ::
 hibernate | {hibernate, Hibernate :: hibernate()} | timeout_action() | reply_action().

These transition actions can be invoked by returning them from the
state callback, from
Module:init/1 or by giving them to
enter_loop/5,6.
Actions are executed in the containing list order.
Actions that set transition options override any
previous of the same type, so the last in the containing list wins. For example,
the last event_timeout/0 overrides any previous event_timeout/0 in the
list.
	hibernate - Sets the transition_option/0 hibernate/0 for this
state transition.

 Link to this type

 enter_loop_opt()

 View Source

 (since OTP 19.0)

 -type enter_loop_opt() ::
 {hibernate_after, HibernateAfterTimeout :: timeout()} | {debug, Dbgs :: [sys:debug_option()]}.

Options that can be used when starting a gen_statem server through,
enter_loop/4-6.
	hibernate_after - HibernateAfterTimeout specifies that the
gen_statem process awaits any message for HibernateAfterTimeout
milliseconds and if no message is received, the process goes into hibernation
automatically (by calling proc_lib:hibernate/3).

	debug - For every entry in Dbgs, the corresponding function in sys
is called.

 Link to this type

 event_content()

 View Source

 (not exported)

 (since OTP 19.0)

 -type event_content() :: term().

Any event's content can be any term.
See event_type that describes the origins of the different
event types, which is also where the event content comes from.

 Link to this type

 event_handler_result(StateType)

 View Source

 (since OTP 19.0)

 -type event_handler_result(StateType) :: event_handler_result(StateType, term()).

 Link to this type

 event_handler_result(StateType, DataType)

 View Source

 (since OTP 19.0)

 -type event_handler_result(StateType, DataType) ::
 {next_state, NextState :: StateType, NewData :: DataType} |
 {next_state, NextState :: StateType, NewData :: DataType, Actions :: [action()] | action()} |
 state_callback_result(action()).

StateType is state_name/0 if callback mode is
state_functions, or state/0 if callback mode is
handle_event_function.
	next_state - The gen_statem does a state transition to NextState
(which can be the same as the current state), sets NewData, and executes all
Actions. If NextState =/= CurrentState the state transition is a state
change.

 Link to this type

 event_timeout()

 View Source

 (not exported)

 (since OTP 19.0)

 -type event_timeout() :: Time :: timeout() | integer().

Starts a timer set by enter_action/0 timeout. When the timer expires an
event of event_type/0 timeout will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.
Any event that arrives cancels this time-out. Note that a retried or inserted
event counts as arrived. So does a state time-out zero event, if it was
generated before this time-out is requested.
If Time is infinity, no timer is started, as it never would expire anyway.
If Time is relative and 0 no timer is actually started, instead the the
time-out event is enqueued to ensure that it gets processed before any not yet
received external event, but after already queued events.
Note that it is not possible nor needed to cancel this time-out, as it is
cancelled automatically by any other event.

 Link to this type

 event_type()

 View Source

 (since OTP 19.0)

 -type event_type() :: external_event_type() | timeout_event_type() | internal.

There are 3 categories of events: external,
timeout, and internal.
internal events can only be generated by the state machine itself through the
transition action next_event.

 Link to this type

 external_event_type()

 View Source

 (not exported)

 (since OTP 19.0)

 -type external_event_type() :: {call, From :: from()} | cast | info.

External events are of 3 types: {call,From}, cast, or info. Type call
originates from the API functions call/2 and send_request/2. For calls, the
event contains whom to reply to. Type cast originates from the API function
cast/2. Type info originates from regular process messages sent to the
gen_statem.

 Link to this type

 format_status()

 View Source

 (since OTP 19.0)

 -type format_status() ::
 #{state => state(),
 data => data(),
 reason => term(),
 queue => [{event_type(), event_content()}],
 postponed => [{event_type(), event_content()}],
 timeouts => [{timeout_event_type(), event_content()}],
 log => [sys:system_event()]}.

A map that describes the gen_statem status.
The keys are:
	state - The current state of the gen_statem process.

	data - The state data of the the gen_statem process.

	reason - The reason that caused the state machine to terminate.

	queue - The event queue of the gen_statem process.

	postponed - The postponed events queue of the
gen_statem process.

	timeouts - The active time-outs of the
gen_statem process.

	log - The sys log of the server.

New associations may be added to the status map without prior notice.

 Link to this type

 from()

 View Source

 (since OTP 19.0)

 -type from() :: {To :: pid(), Tag :: reply_tag()}.

Destination to use when replying through, for example, the action/0
{reply,From,Reply} to a process that has called the gen_statem server using
call/2.

 Link to this type

 generic_timeout()

 View Source

 (not exported)

 (since OTP 19.0)

 -type generic_timeout() :: Time :: timeout() | integer().

Starts a timer set by enter_action/0 {timeout,Name}. When the timer
expires an event of event_type/0 {timeout,Name} will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.
If Time is infinity, no timer is started, as it never would expire anyway.
If Time is relative and 0 no timer is actually started, instead the the
time-out event is enqueued to ensure that it gets processed before any not yet
received external event.
Setting a timer with the same Name while it is running will restart it with
the new time-out value. Therefore it is possible to cancel a specific time-out
by setting it to infinity.

 Link to this type

 handle_event_result()

 View Source

 (since OTP 19.0)

 -type handle_event_result() :: event_handler_result(state()).

 Link to this type

 hibernate()

 View Source

 (not exported)

 (since OTP 19.0)

 -type hibernate() :: boolean().

If true, hibernates the gen_statem by calling proc_lib:hibernate/3 before
going into receive to wait for a new external event.
Note
If there are enqueued events to process when hibernation is requested, this is
optimized by not hibernating but instead calling
erlang:garbage_collect/0 to simulate that the
gen_statem entered hibernation and immediately got awakened by an enqueued
event.

 Link to this type

 init_result(StateType)

 View Source

 (since OTP 19.0)

 -type init_result(StateType) :: init_result(StateType, term()).

 Link to this type

 init_result(StateType, DataType)

 View Source

 (since OTP 19.0)

 -type init_result(StateType, DataType) ::
 {ok, State :: StateType, Data :: DataType} |
 {ok, State :: StateType, Data :: DataType, Actions :: [action()] | action()} |
 ignore |
 {stop, Reason :: term()} |
 {error, Reason :: term()}.

For a succesful initialization, State is the initial state/0 and Data
the initial server data/0 of the gen_statem.
The Actions are executed when entering the first
state just as for a
state callback, except that the action
postpone is forced to false since there is no event to postpone.
For an unsuccesful initialization, {stop,Reason}, {error,Reason} or ignore
should be used; see start_link/3,4.
{error,Reason} was introduced in OTP 26.0.

 Link to this type

 postpone()

 View Source

 (not exported)

 (since OTP 19.0)

 -type postpone() :: boolean().

If true, postpones the current event and retries it after a state change
(NextState =/= State).

 Link to this type

 reply_action()

 View Source

 (since OTP 19.0)

 -type reply_action() :: {reply, From :: from(), Reply :: term()}.

This transition action can be invoked by returning it from the
state callback, from
Module:init/1 or by giving it to
enter_loop/5,6.
It does not set any transition_option() but instead
replies to a caller waiting for a reply in call/2. From must be the term
from argument {call,From} in a call to a
state callback.
Note that using this action from Module:init/1 or
enter_loop/5,6 would be weird on the border of witchcraft
since there has been no earlier call to a
state callback in this server.

 Link to this opaque

 reply_tag()

 View Source

 (since OTP 19.0)

 -opaque reply_tag()

A handle that associates a reply to the corresponding request.

 Link to this opaque

 request_id()

 View Source

 (since OTP 19.0)

 -opaque request_id()

An opaque request identifier. See send_request/2 for details.

 Link to this opaque

 request_id_collection()

 View Source

 (since OTP 19.0)

 -opaque request_id_collection()

An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 Link to this type

 response_timeout()

 View Source

 (not exported)

 (since OTP 19.0)

 -type response_timeout() :: timeout() | {abs, integer()}.

Used to set a time limit on how long to wait for a response using either
receive_response/2, receive_response/3, wait_response/2, or
wait_response/3. The time unit used is millisecond. Currently valid values:
	0..4294967295 - Timeout relative to current time in milliseconds.

	infinity - Infinite timeout. That is, the operation will never time out.

	{abs, Timeout} - An absolute
Erlang monotonic time timeout in milliseconds.
That is, the operation will time out when
erlang:monotonic_time(millisecond) returns a
value larger than or equal to Timeout. Timeout is not allowed to identify
a time further into the future than 4294967295 milliseconds. Identifying the
timeout using an absolute timeout value is especially handy when you have a
deadline for responses corresponding to a complete collection of requests
(request_id_collection/0) , since you do not have to recalculate the
relative time until the deadline over and over again.

 Link to this type

 server_name()

 View Source

 (since OTP 19.0)

 -type server_name() ::
 {local, atom()} | {global, GlobalName :: term()} | {via, RegMod :: module(), Name :: term()}.

Name specification to use when starting a gen_statem server. See
start_link/3 and server_ref/0 below.

 Link to this type

 server_ref()

 View Source

 (since OTP 19.0)

 -type server_ref() ::
 pid() |
 (LocalName :: atom()) |
 {Name :: atom(), Node :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}.

Server specification to use when addressing a gen_statem server.
See call/2 and server_name/0.
It can be:
	pid() | LocalName - The gen_statem is locally registered.

	{Name,Node} - The gen_statem is locally registered on another node.

	{global,GlobalName} - The gen_statem is globally registered in
global.

	{via,RegMod,ViaName} - The gen_statem is registered in an alternative
process registry. The registry callback module RegMod is to export functions
register_name/2, unregister_name/1, whereis_name/1, and send/2, which
are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is the same as {global,GlobalName}.

 Link to this type

 start_mon_ret()

 View Source

 (since OTP 19.0)

 -type start_mon_ret() :: {ok, {pid(), reference()}} | ignore | {error, term()}.

Return value from the start_monitor/3,4 functions.

 Link to this type

 start_opt()

 View Source

 (since OTP 19.0)

 -type start_opt() ::
 {timeout, Time :: timeout()} | {spawn_opt, [proc_lib:spawn_option()]} | enter_loop_opt().

Options that can be used when starting a gen_statem server through, for
example, start_link/3.

 Link to this type

 start_ret()

 View Source

 (since OTP 19.0)

 -type start_ret() :: {ok, pid()} | ignore | {error, term()}.

Return value from the start/3,4 and
start_link/3,4 functions.

 Link to this type

 state()

 View Source

 (not exported)

 (since OTP 19.0)

 -type state() :: state_name() | term().

If the callback mode is handle_event_function, the
state can be any term. After a state change (NextState =/= State), all
postponed events are retried.

 Link to this type

 state_callback_result(ActionType)

 View Source

 (not exported)

 (since OTP 19.0)

 -type state_callback_result(ActionType) :: state_callback_result(ActionType, term()).

 Link to this type

 state_callback_result(ActionType, DataType)

 View Source

 (not exported)

 (since OTP 19.0)

 -type state_callback_result(ActionType, DataType) ::
 {keep_state, NewData :: DataType} |
 {keep_state, NewData :: DataType, Actions :: [ActionType] | ActionType} |
 keep_state_and_data |
 {keep_state_and_data, Actions :: [ActionType] | ActionType} |
 {repeat_state, NewData :: DataType} |
 {repeat_state, NewData :: DataType, Actions :: [ActionType] | ActionType} |
 repeat_state_and_data |
 {repeat_state_and_data, Actions :: [ActionType] | ActionType} |
 stop |
 {stop, Reason :: term()} |
 {stop, Reason :: term(), NewData :: DataType} |
 {stop_and_reply, Reason :: term(), Replies :: [reply_action()] | reply_action()} |
 {stop_and_reply,
 Reason :: term(),
 Replies :: [reply_action()] | reply_action(),
 NewData :: DataType}.

ActionType is enter_action/0 if the state callback was called with a
state enter call and action/0 if the state callback
was called with an event.
	keep_state - The same as {next_state,CurrentState,NewData,Actions}.

	keep_state_and_data - The same as {keep_state,CurrentData,Actions}.

	repeat_state - If the gen_statem runs with
state enter calls, the state enter call is repeated,
see type transition_option/0, other than that repeat_state is the same
as keep_state.

	repeat_state_and_data - The same as
{repeat_state,CurrentData,Actions}.

	stop - Terminates the gen_statem by calling
Module:terminate/3 with Reason and NewData, if
specified. An exit signal with this reason is sent to linked processes and
ports. The default Reason is normal.

	stop_and_reply - Sends all Replies, then terminates the gen_statem
by calling Module:terminate/3 with Reason and
NewData, if specified. An exit signal with this reason is sent to linked
processes and ports.

All these terms are tuples or atoms and this property will hold in any future
version of gen_statem.

 Link to this type

 state_enter()

 View Source

 (not exported)

 (since OTP 19.0)

 -type state_enter() :: state_enter.

Whether the state machine should use state enter calls or not is selected when
starting the gen_statem and after code change using the return value from
Module:callback_mode/0.
If Module:callback_mode/0 returns a list containing
state_enter, the gen_statem engine will, at every state change, call the
state callback with arguments
(enter, OldState, Data) or (enter, OldState, State, Data), depending on the
callback mode. This may look like an event but is
really a call performed after the previous
state callback returned and before any event
is delivered to the new state callback. See
Module:StateName/3 and
Module:handle_event/4. Such a call can be repeated by
returning a repeat_state or
repeat_state_and_data tuple from the state
callback.
If Module:callback_mode/0 does not return such a list,
no state enter calls are done.
If Module:code_change/4 should transform the state, it is
regarded as a state rename and not a state change, which will not cause a
state enter call.
Note that a state enter call will be done right before entering the initial
state even though this actually is not a state change. In this case
OldState =:= State, which cannot happen for a subsequent state change, but
will happen when repeating the state enter call.

 Link to this type

 state_enter_result(State)

 View Source

 (since OTP 19.0)

 -type state_enter_result(State) :: state_enter_result(State, term()).

 Link to this type

 state_enter_result(State, DataType)

 View Source

 (since OTP 19.0)

 -type state_enter_result(State, DataType) ::
 {next_state, State, NewData :: DataType} |
 {next_state, State, NewData :: DataType, Actions :: [enter_action()] | enter_action()} |
 state_callback_result(enter_action()).

State is the current state and it cannot be changed since the state callback
was called with a state enter call.
	next_state - The gen_statem does a state transition to State, which
has to be the current state, sets NewData, and executes all Actions.

 Link to this type

 state_function_result()

 View Source

 (since OTP 19.0)

 -type state_function_result() :: event_handler_result(state_name()).

 Link to this type

 state_name()

 View Source

 (not exported)

 (since OTP 19.0)

 -type state_name() :: atom().

If the callback mode is state_functions, the state
must be an atom. After a state change (NextState =/= State), all postponed
events are retried. Note that the state terminate is not possible to use since
it would collide with the optional callback function
Module:terminate/3.

 Link to this type

 state_timeout()

 View Source

 (not exported)

 (since OTP 19.0)

 -type state_timeout() :: Time :: timeout() | integer().

Starts a timer set by enter_action/0 state_timeout. When the timer expires
an event of event_type/0 state_timeout will be generated. See
erlang:start_timer/4 for how Time and Options are
interpreted. Future erlang:start_timer/4 Options will not necessarily be
supported.
If Time is infinity, no timer is started, as it never would expire anyway.
If Time is relative and 0 no timer is actually started, instead the the
time-out event is enqueued to ensure that it gets processed before any not yet
received external event.
Setting this timer while it is running will restart it with the new time-out
value. Therefore it is possible to cancel this time-out by setting it to
infinity.

 Link to this type

 timeout_action()

 View Source

 (not exported)

 (since OTP 19.0)

 -type timeout_action() ::
 (Time :: event_timeout()) |
 {timeout, Time :: event_timeout(), EventContent :: event_content()} |
 {timeout,
 Time :: event_timeout(),
 EventContent :: event_content(),
 Options :: timeout_option() | [timeout_option()]} |
 {{timeout, Name :: term()}, Time :: generic_timeout(), EventContent :: event_content()} |
 {{timeout, Name :: term()},
 Time :: generic_timeout(),
 EventContent :: event_content(),
 Options :: timeout_option() | [timeout_option()]} |
 {state_timeout, Time :: state_timeout(), EventContent :: event_content()} |
 {state_timeout,
 Time :: state_timeout(),
 EventContent :: event_content(),
 Options :: timeout_option() | [timeout_option()]} |
 timeout_cancel_action() |
 timeout_update_action().

These transition actions can be invoked by returning them from the
state callback, from
Module:init/1 or by giving them to
enter_loop/5,6.
These time-out actions sets time-out
transition options.
	Time - Short for {timeout,Time,Time}, that is, the time-out message is
the time-out time. This form exists to make the
state callback return value
{next_state,NextState,NewData,Time} allowed like for gen_fsm.

	timeout - Sets the transition_option/0 event_timeout/0 to Time
with EventContent and time-out options Options.

	{timeout,Name} - Sets the transition_option/0 generic_timeout/0
to Time for Name with EventContent and time-out options
Options.

	state_timeout - Sets the transition_option/0 state_timeout/0 to
Time with EventContent and time-out options
Options.

 Link to this type

 timeout_cancel_action()

 View Source

 (not exported)

 (since OTP 19.0)

 -type timeout_cancel_action() ::
 {timeout, cancel} | {{timeout, Name :: term()}, cancel} | {state_timeout, cancel}.

This is a shorter and clearer form of
timeout_action() with Time = infinity which cancels a
time-out.

 Link to this type

 timeout_event_type()

 View Source

 (not exported)

 (since OTP 19.0)

 -type timeout_event_type() :: timeout | {timeout, Name :: term()} | state_timeout.

There are 3 types of time-out events that the state machine can generate for
itself with the corresponding timeout_action/0s.

 Link to this type

 timeout_option()

 View Source

 (not exported)

 (since OTP 19.0)

 -type timeout_option() :: {abs, Abs :: boolean()}.

If Abs is true an absolute timer is started, and if it is false a
relative, which is the default. See
erlang:start_timer/4 for details.

 Link to this type

 timeout_update_action()

 View Source

 (not exported)

 (since OTP 19.0)

 -type timeout_update_action() ::
 {timeout, update, EventContent :: event_content()} |
 {{timeout, Name :: term()}, update, EventContent :: event_content()} |
 {state_timeout, update, EventContent :: event_content()}.

Updates a time-out with a new EventContent. See
timeout_action() for how to start a time-out.
If no time-out of the same type is active instead insert the time-out event just
like when starting a time-out with relative Time = 0.

 Link to this type

 transition_option()

 View Source

 (since OTP 19.0)

 -type transition_option() ::
 postpone() | hibernate() | event_timeout() | generic_timeout() | state_timeout().

Transition options can be set by actions and modify the state
transition. The state transition takes place when the
state callback has processed an event and
returns. Here are the sequence of steps for a state transition:
	All returned actions are processed in order of appearance. In
this step all replies generated by any reply_action/0 are sent. Other
actions set transition_option/0s that come into play in subsequent steps.
	If state enter calls are used, and either it is the
initial state or one of the callback results
repeat_state_and_data or
repeat_state_and_data is used the
gen_statem engine calls the current state callback with arguments
(enter, State, Data) or
(enter, State, State, Data) (depending on
callback mode) and when it returns starts again from
the top of this sequence.

If state enter calls are used, and the state changes the
gen_statem engine calls the new state callback with arguments
(enter, OldState, Data) or
(enter, OldState, State, Data) (depending on
callback mode) and when it returns starts again from
the top of this sequence.
	If postpone/0 is true, the current event is postponed.
	If this is a state change, the queue of incoming events is reset to start
with the oldest postponed.
	All events stored with action/0 next_event are inserted to be processed
before previously queued events.
	Time-out timers event_timeout/0, generic_timeout/0 and
state_timeout/0 are handled. Time-outs with zero time are guaranteed to
be delivered to the state machine before any external not yet received event
so if there is such a time-out requested, the corresponding time-out zero
event is enqueued as the newest received event; that is after already queued
events such as inserted and postponed events.

Any event cancels an event_timeout/0 so a zero time event time-out is only
generated if the event queue is empty.
A state change cancels a state_timeout/0 and any new transition option of
this type belongs to the new state, that is; a state_timeout/0 applies to
the state the state machine enters.
	If there are enqueued events the
state callback for the possibly new state
is called with the oldest enqueued event, and we start again from the top of
this sequence.
	Otherwise the gen_statem goes into receive or hibernation (if
hibernate/0 is true) to wait for the next message. In hibernation the
next non-system event awakens the gen_statem, or rather the next incoming
message awakens the gen_statem, but if it is a system event it goes right
back into hibernation. When a new message arrives the
state callback is called with the
corresponding event, and we start again from the top of this sequence.

 Callbacks

 Link to this callback

 callback_mode()

 View Source

 (since OTP 19.1)

 -callback callback_mode() -> callback_mode_result().

This function is called by a gen_statem when it needs to find out the
callback mode of the callback module.
The value is cached by gen_statem for efficiency reasons, so this function is only called
once after server start, after code change, and after changing the callback
module, but before the first state callback
in the current callback module's code version is called. More occasions may be
added in future versions of gen_statem.
Server start happens either when Module:init/1 returns or when
enter_loop/4-6 is called. Code change happens when
Module:code_change/4 returns. A change of the callback
module happens when a state callback returns
any of the actions change_callback_module,
push_callback_module or pop_callback_module.
The CallbackMode is either just callback_mode/0 or a list containing
callback_mode/0 and possibly the atom state_enter.
Note
If this function's body does not return an inline constant value the callback
module is doing something strange.

 Link to this callback

 code_change(OldVsn, OldState, OldData, Extra)

 View Source

 (optional)

 (since OTP 19.0)

 -callback code_change(OldVsn :: term() | {down, term()},
 OldState :: state(),
 OldData :: data(),
 Extra :: term()) ->
 {ok, NewState :: state(), NewData :: data()} | (Reason :: term()).

This function is called by a gen_statem when it is to update its internal
state during a release upgrade/downgrade, that is, when the instruction
{update,Module,Change,...}, where Change = {advanced,Extra}, is specified in
the appup file. For more information, see
OTP Design Principles.
For an upgrade, OldVsn is Vsn, and for a downgrade, OldVsn is
{down,Vsn}. Vsn is defined by the vsn attribute(s) of the old version of
the callback module Module. If no such attribute is defined, the version is
the checksum of the Beam file.
OldState and OldData is the internal state of the gen_statem.
Extra is passed "as is" from the {advanced,Extra} part of the update
instruction.
If successful, the function must return the updated internal state in an
{ok,NewState,NewData} tuple.
If the function returns a failure Reason, the ongoing upgrade fails and rolls
back to the old release. Note that Reason cannot be an {ok,_,_} tuple since
that will be regarded as a {ok,NewState,NewData} tuple, and that a tuple
matching {ok,_} is an also invalid failure Reason. It is recommended to use
an atom as Reason since it will be wrapped in an {error,Reason} tuple.
Also note when upgrading a gen_statem, this function and hence the
Change = {advanced,Extra} parameter in the appup file
is not only needed to update the internal state or to act on the Extra
argument. It is also needed if an upgrade or downgrade should change
callback mode, or else the callback mode after the
code change will not be honoured, most probably causing a server crash.
If the server changes callback module using any of the actions
change_callback_module, push_callback_module
or pop_callback_module, be aware that it is always the current
callback module that will get this callback call. That the current callback
module handles the current state and data update should be no surprise, but it
must be able to handle even parts of the state and data that it is not familiar
with, somehow.
In the supervisor
child specification there is a
list of modules which is recommended to contain only the callback module. For a
gen_statem with multiple callback modules there is no real need to list all of
them, it may not even be possible since the list could change after code
upgrade. If this list would contain only the start callback module, as
recommended, what is important is to upgrade that module whenever a
synchronized code replacement is done. Then the release handler concludes that
an upgrade that upgrades that module needs to suspend, code change, and resume
any server whose child specification declares that it is using that module.
And again; the current callback module will get the
Module:code_change/4 call.
Note
If a release upgrade/downgrade with Change = {advanced,Extra} specified in the
.appup file is made when code_change/4 is not
implemented the process will crash with exit reason undef.

 Link to this callback

 format_status(Status)

 View Source

 (optional)

 (since OTP 25.0)

 -callback format_status(Status) -> NewStatus when Status :: format_status(), NewStatus :: format_status().

This function is called by a gen_statem process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	sys:get_status/1,2 is invoked to get the gen_statem
status.
	The gen_statem process terminates abnormally and logs an error.

This function is useful for changing the form and appearance of the gen_statem
status for these cases. A callback module wishing to change the
sys:get_status/1,2 return value and how its status
appears in termination error logs exports an instance of
format_status/1, which will get a map Status that
describes the current states of the gen_statem, and shall return a map
NewStatus containing the same keys as the input map, but it may transform some
values.
One use case for this function is to return compact alternative state
representations to avoid having large state terms printed in log files. Another
is to hide sensitive data from being written to the error log.
Example:
format_status(Status) ->
 maps:map(
 fun(state,State) ->
 maps:remove(private_key, State);
 (message,{password, _Pass}) ->
 {password, removed};
 (_,Value) ->
 Value
 end, Status).
Note
This callback is optional, so a callback module does not need to export it.
The gen_statem module provides a default implementation of this function
that returns {State,Data}.
If this callback is exported but fails, to hide possibly sensitive data, the
default function will instead return {State,Info}, where Info says nothing
but the fact that format_status/2 has crashed.

 Link to this callback

 format_status/2

 View Source

 (optional)

 (since OTP 19.0)

 This callback is deprecated. the callback gen_statem:format_status(_,_) is deprecated; use format_status/1 instead.

 -callback format_status(StatusOption, [[{Key :: term(), Value :: term()}] | state() | data()]) ->
 Status :: term()
 when StatusOption :: normal | terminate.

This function is called by a gen_statem process in in order to format/limit the
server state for debugging and logging purposes.
It is called in the following situations:
	One of sys:get_status/1,2 is invoked to get the
gen_statem status. Opt is set to the atom normal for this case.
	The gen_statem terminates abnormally and logs an error. Opt is set to the
atom terminate for this case.

This function is useful for changing the form and appearance of the gen_statem
status for these cases. A callback module wishing to change the
sys:get_status/1,2 return value and how its status
appears in termination error logs exports an instance of
format_status/2, which returns a term describing the
current status of the gen_statem.
PDict is the current value of the process dictionary of the gen_statem.
State is the internal state of the gen_statem.
Data is the internal server data of the gen_statem.
The function is to return Status, a term that contains the appropriate details
of the current state and status of the gen_statem. There are no restrictions
on the form Status can take, but for the
sys:get_status/1,2 case (when Opt is normal), the
recommended form for the Status value is [{data, [{"State", Term}]}], where
Term provides relevant details of the gen_statem state. Following this
recommendation is not required, but it makes the callback module status
consistent with the rest of the sys:get_status/1,2
return value.
One use for this function is to return compact alternative state representations
to avoid having large state terms printed in log files. Another use is to hide
sensitive data from being written to the error log.
Note
This callback is optional, so a callback module does not need to export it.
The gen_statem module provides a default implementation of this function
that returns {State,Data}.
If this callback is exported but fails, to hide possibly sensitive data, the
default function will instead return {State,Info}, where Info says nothing
but the fact that format_status/2 has crashed.

 Link to this callback

 handle_event/4

 View Source

 (optional)

 (since OTP 19.0)

 -callback handle_event(enter, OldState :: state(), CurrentState, data()) -> state_enter_result(CurrentState);
 (event_type(), event_content(), CurrentState :: state(), data()) ->
 event_handler_result(state()).

Whenever a gen_statem receives an event from call/2, cast/2, or as a
normal process message, one of these functions is called. If
callback mode is state_functions,
Module:StateName/3 is called, and if it is handle_event_function,
Module:handle_event/4 is called.
If EventType is {call,From}, the caller waits for a
reply. The reply can be sent from this or from any other
state callback by returning with
{reply,From,Reply} in Actions, in
Replies, or by calling
reply(From, Reply).
If this function returns with a next state that does not match equal (=/=) to
the current state, all postponed events are retried in the next state.
The only difference between StateFunctionResult and HandleEventResult is
that for StateFunctionResult the next state must be an atom, but for
HandleEventResult there is no restriction on the next state.
For options that can be set and actions that can be done by gen_statem after
returning from this function, see action/0.
When the gen_statem runs with state enter calls, these
functions are also called with arguments (enter, OldState, ...) during every
state change. In this case there are some restrictions on the
actions that may be returned: postpone/0 is not
allowed since a state enter call is not an event so there is no event to
postpone, and {next_event,_,_} is not allowed since using
state enter calls should not affect how events are consumed and produced. You
may also not change states from this call. Should you return
{next_state,NextState, ...} with NextState =/= State the gen_statem
crashes. Note that it is actually allowed to use {repeat_state, NewData, ...}
although it makes little sense since you immediately will be called again with a
new state enter call making this just a weird way of looping, and there are
better ways to loop in Erlang. If you do not update NewData and have some loop
termination condition, or if you use {repeat_state_and_data, _} or
repeat_state_and_data you have an infinite loop! You are advised to use
{keep_state,...}, {keep_state_and_data,_} or keep_state_and_data since
changing states from a state enter call is not possible anyway.
Note the fact that you can use throw to return the result,
which can be useful. For example to bail out with
throw(keep_state_and_data) from deep within complex code that
cannot return {next_state,State,Data} because State or Data is no longer
in scope.

 Link to this callback

 init(Args)

 View Source

 (since OTP 19.0)

 -callback init(Args :: term()) -> init_result(state()).

Whenever a gen_statem is started using start_link/3,4,
start_monitor/3,4, or start/3,4, this
function is called by the new process to initialize the implementation state and
server data.
Args is the Args argument provided to that start function.
Note
Note that if the gen_statem is started through proc_lib and
enter_loop/4-6, this callback will never be called. Since
this callback is not optional it can in that case be implemented as:
-spec init(_) -> no_return().
init(Args) -> erlang:error(not_implemented, [Args]).

 Link to this callback

 'StateName'/3

 View Source

 (optional)

 (since OTP 19.0)

 -callback 'StateName'(enter, OldStateName :: state_name(), data()) -> state_enter_result(state_name);
 (event_type(), event_content(), data()) -> event_handler_result(state_name()).

Equivalent to handle_event/4.

 Link to this callback

 terminate/3

 View Source

 (optional)

 (since OTP 19.0)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(),
 CurrentState :: state(),
 data()) ->
 any().

This function is called by a gen_statem when it is about to terminate. It is
to be the opposite of Module:init/1 and do any necessary
cleaning up. When it returns, the gen_statem terminates with Reason. The
return value is ignored.
Reason is a term denoting the stop reason and State is the
internal state of the gen_statem.
Reason depends on why the gen_statem is terminating. If it is because
another callback function has returned, a stop tuple {stop,Reason} in
Actions, Reason has the value specified in that tuple. If it
is because of a failure, Reason is the error reason.
If the gen_statem is part of a supervision tree and is ordered by its
supervisor to terminate, this function is called with Reason = shutdown if
both the following conditions apply:
	The gen_statem has been set to trap exit signals.
	The shutdown strategy as defined in the supervisor's child specification is an
integer time-out value, not brutal_kill.

Even if the gen_statem is not part of a supervision tree, this function is
called if it receives an 'EXIT' message from its parent. Reason is the same
as in the 'EXIT' message.
Otherwise, the gen_statem is immediately terminated.
Notice that for any other reason than normal, shutdown, or
{shutdown,Term}, the gen_statem is assumed to terminate because of an error
and an error report is issued using logger.
When the gen_statem process exits, an exit signal with the same reason is sent
to linked processes and ports.

 Functions

 Link to this function

 call(ServerRef, Request)

 View Source

 (since OTP 19.0)

 -spec call(ServerRef :: server_ref(), Request :: term()) -> Reply :: term().

Equivalent to call(ServerRef, Request, infinity).

 Link to this function

 call(ServerRef, Request, Timeout)

 View Source

 (since OTP 19.0)

 -spec call(ServerRef :: server_ref(),
 Request :: term(),
 Timeout :: timeout() | {clean_timeout, T :: timeout()} | {dirty_timeout, T :: timeout()}) ->
 Reply :: term().

Makes a synchronous call to the gen_statem ServerRef by
sending a request and waiting until its reply arrives.
The gen_statem calls the state callback
with event_type/0 {call,From} and event content Request.
A Reply is generated when a state callback
returns with {reply,From,Reply} as one action/0, and that Reply becomes
the return value of this function.
Timeout is an integer > 0, which specifies how many milliseconds to wait for a
reply, or the atom infinity to wait indefinitely, which is the default. If no
reply is received within the specified time, the function call fails.
Previous issue with late replies that could occur when having network issues or
using dirty_timeout is now prevented by use of
process aliases.
{clean_timeout, T} and {dirty_timeout, T} therefore no longer serves any
purpose and will work the same as Timeout while all of them also being equally
efficient.
The call can also fail, for example, if the gen_statem dies before or during
this function call.
When this call fails it exits the calling process. The exit
term is on the form {Reason, Location} where
Location = {gen_statem,call,ArgList}. See
gen_server:call/3 that has a description of relevant
values for the Reason in the exit term.

 Link to this function

 cast(ServerRef, Msg)

 View Source

 (since OTP 19.0)

 -spec cast(ServerRef :: server_ref(), Msg :: term()) -> ok.

Sends an asynchronous event to the gen_statem ServerRef
and returns ok immediately, ignoring if the destination node or gen_statem
does not exist.
The gen_statem calls the
state callback with event_type/0 cast
and event content Msg.

 Link to this function

 check_response(Msg, ReqId)

 View Source

 (since OTP 23.0)

 -spec check_response(Msg, ReqId) -> Result
 when
 Msg :: term(),
 ReqId :: request_id(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | no_reply.

Check if Msg is a response corresponding to the request identifier ReqId.
The request must have been made by send_request/2. If Msg is a reply to the
handle ReqId the result of the request is returned in Reply. Otherwise
returns no_reply and no cleanup is done, and thus the function shall be
invoked repeatedly until a reply is returned.
The return value Reply is generated when a
state callback returns with
{reply,From,Reply} as one action/0, and that Reply becomes the return
value of this function.
The function returns an error if the gen_statem dies before or during this
request.

 Link to this function

 check_response(Msg, ReqIdCollection, Delete)

 View Source

 (since OTP 25.0)

 -spec check_response(Msg, ReqIdCollection, Delete) -> Result
 when
 Msg :: term(),
 ReqIdCollection :: request_id_collection(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | no_reply.

Check if Msg is a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to check_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by check_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned. If Msg
does not correspond to any of the request identifiers in ReqIdCollection, the
atom no_reply is returned.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
check_response/3, receive_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
check_response/3, it will always return no_reply.

 Link to this function

 enter_loop(Module, Opts, State, Data)

 View Source

 (since OTP 19.1)

 -spec enter_loop(Module :: module(), Opts :: [enter_loop_opt()], State :: state(), Data :: data()) ->
 no_return().

The same as enter_loop/6 with Actions = [] except that no server_name/0
must have been registered. This creates an anonymous server.

 Link to this function

 enter_loop(Module, Opts, State, Data, Server_or_Actions)

 View Source

 (since OTP 19.0)

 -spec enter_loop(Module :: module(),
 Opts :: [enter_loop_opt()],
 State :: state(),
 Data :: data(),
 Server_or_Actions :: server_name() | pid() | [action()]) ->
 no_return().

If Server_or_Actions is a list/0, the same as enter_loop/6 except that
no server_name/0 must have been registered and
Actions = Server_or_Actions. This creates an anonymous server.
Otherwise the same as enter_loop/6 with Server = Server_or_Actions and
Actions = [].

 Link to this function

 enter_loop(Module, Opts, State, Data, Server, Actions)

 View Source

 (since OTP 19.0)

 -spec enter_loop(Module :: module(),
 Opts :: [enter_loop_opt()],
 State :: state(),
 Data :: data(),
 Server :: server_name() | pid(),
 Actions :: [action()] | action()) ->
 no_return().

Makes the calling process become a gen_statem.
Does not return, instead the
calling process enters the gen_statem receive loop and becomes a gen_statem
server. The process must have been started using one of the start functions in
proc_lib. The user is responsible for any initialization of the process,
including registering a name for it.
This function is useful when a more complex initialization procedure is needed
than the gen_statem behavior provides.
Module, Opts have the same meaning as when calling
start[_link|_monitor]/3,4.
If Server is self/0 an anonymous server is created just as when using
start[_link|_monitor]/3. If Server is a server_name/0
a named server is created just as when using
start[_link|_monitor]/4. However, the server_name/0 name
must have been registered accordingly before this function is called.
State, Data, and Actions have the same meanings as in the return value of
Module:init/1. Also, the callback module does not need to export
a Module:init/1 function.
The function fails if the calling process was not started by a proc_lib
start function, or if it is not registered according to server_name/0.

 Link to this function

 receive_response(ReqId)

 View Source

 (since OTP 24.0)

 -spec receive_response(ReqId) -> Result
 when
 ReqId :: request_id(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Equivalent to receive_response(ReqId, infinity).

 Link to this function

 receive_response(ReqId, Timeout)

 View Source

 (since OTP 24.0)

 -spec receive_response(ReqId, Timeout) -> Result
 when
 ReqId :: request_id(),
 Timeout :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Receive a response corresponding to the request identifier ReqId- The request
must have been made by send_request/2 to the gen_statem process. This
function must be called from the same process from which send_request/2 was
made.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) the request
will also be abandoned. That is, no response will be received after a timeout.
Otherwise, a stray response might be received at a later time.
The return value Reply is generated when a
state callback returns with
{reply,From,Reply} as one action/0, and that Reply becomes the return
value of this function.
The function returns an error if the gen_statem dies before or during this
function call.
The difference between wait_response/2 and
receive_response/2 is that
receive_response/2 abandons the request at timeout so
that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 receive_response(ReqIdCollection, Timeout, Delete)

 View Source

 (since OTP 25.0)

 -spec receive_response(ReqIdCollection, Timeout, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 Timeout :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Receive a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when adding the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to receive_response/2, the returned result associated with a specific
request identifier will be wrapped in a 3-tuple. The first element of this tuple
equals the value that would have been produced by
receive_response/2, the second element equals the
Label associated with the specific request identifier, and the third element
NewReqIdCollection is a possibly modified request identifier collection.
If ReqIdCollection is empty, the atom no_request will be returned.
Timeout specifies how long to wait for a response. If no response is received
within the specified time, the function returns timeout. Assuming that the
server executes on a node supporting aliases (introduced in OTP 24) all requests
identified by ReqIdCollection will also be abandoned. That is, no responses
will be received after a timeout. Otherwise, stray responses might be received
at a later time.
The difference between receive_response/3 and
wait_response/3 is that receive_response/3 abandons
the requests at timeout so that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
receive_response/3, check_response/3, and
wait_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
receive_response/3, it will always block until a
timeout determined by Timeout is triggered.

 Link to this function

 reply(Replies)

 View Source

 (since OTP 19.0)

 -spec reply(Replies :: [reply_action()] | reply_action()) -> ok.

Send a reply or multiple replies using one or several reply_action/0s from a
state callback.
This function can be used by a gen_statem to explicitly send a reply to a
process that waits in call/2 when the reply cannot be defined in the return
value of a state callback.
Note
A reply sent with this function is not visible in sys debug output.

 Link to this function

 reply(From, Reply)

 View Source

 (since OTP 19.0)

 -spec reply(From :: from(), Reply :: term()) -> ok.

Send a Reply to From.
This function can be used by a gen_statem to explicitly send a reply to a
process that waits in call/2 when the reply cannot be defined in the return
value of a state callback.
From must be the term from argument {call,From} to the
state callback.
Note
A reply sent with this function is not visible in sys debug output.

 Link to this function

 reqids_add(ReqId, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_add(ReqId :: request_id(), Label :: term(), ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Saves ReqId and associates a Label with the request identifier by adding
this information to ReqIdCollection and returning the resulting request
identifier collection.

 Link to this function

 reqids_new()

 View Source

 (since OTP 25.0)

 -spec reqids_new() -> NewReqIdCollection :: request_id_collection().

Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.
Request identifiers of requests made by send_request/2 can be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or, check_response/3.
reqids_size/1 can be used to determine the amount of request identifiers in a
request identifier collection.

 Link to this function

 reqids_size(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_size(ReqIdCollection :: request_id_collection()) -> non_neg_integer().

Returns the amount of request identifiers saved in ReqIdCollection.

 Link to this function

 reqids_to_list(ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec reqids_to_list(ReqIdCollection :: request_id_collection()) ->
 [{ReqId :: request_id(), Label :: term()}].

Returns a list of {ReqId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the ReqIdCollection
collection.

 Link to this function

 send_request(ServerRef, Request)

 View Source

 (since OTP 23.0)

 -spec send_request(ServerRef :: server_ref(), Request :: term()) -> ReqId :: request_id().

Sends an asynchronous call request Request to the gen_statem process
identified by ServerRef and returns a request identifier ReqId.
The return value ReqId shall later be used with receive_response/2, wait_response/2,
or check_response/2 to fetch the actual result of the request. Besides passing
the request identifier directly to these functions, it can also be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or check_response/3. If you are about
to save the request identifier in a request identifier collection, you may want
to consider using send_request/4 instead.
The call
gen_statem:wait_response(gen_statem:send_request(ServerRef,Request), Timeout)
can be seen as equivalent to
gen_statem:call(Server,Request,Timeout), ignoring the error
handling.
The gen_statem calls the state callback
with event_type/0 {call,From} and event content Request.
A Reply is generated when a state callback
returns with {reply,From,Reply} as one action/0, and that Reply becomes
the return value of receive_response/1,2,
wait_response/1,2, or check_response/2 function.

 Link to this function

 send_request(ServerRef, Request, Label, ReqIdCollection)

 View Source

 (since OTP 25.0)

 -spec send_request(ServerRef :: server_ref(),
 Request :: term(),
 Label :: term(),
 ReqIdCollection :: request_id_collection()) ->
 NewReqIdCollection :: request_id_collection().

Sends an asynchronous call request Request to the gen_statem process
identified by ServerRef. The Label will be associated with the request
identifier of the operation and added to the returned request identifier
collection NewReqIdCollection. The collection can later be used in order to
get one response corresponding to a request in the collection by passing the
collection as argument to receive_response/3, wait_response/3, or,
check_response/3.
The same as calling
gen_statem:reqids_add(statem:send_request(ServerRef, Request), Label, ReqIdCollection),
but calling send_request/4 is slightly more efficient.

 Link to this function

 start(Module, Args, Opts)

 View Source

 (since OTP 19.0)

 -spec start(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_ret().

Equivalent to start/4 except that the gen_statem process is not
registered with any name service.

 Link to this function

 start(ServerName, Module, Args, Opts)

 View Source

 (since OTP 19.0)

 -spec start(ServerName :: server_name(), Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
 start_ret().

Creates a standalone gen_statem process according to OTP design principles
(using proc_lib primitives). As it does not get linked to the calling
process, this start function cannot be used by a supervisor to start a child.
For a description of arguments and return values, see
start_link/4.

 Link to this function

 start_link(Module, Args, Opts)

 View Source

 (since OTP 19.0)

 -spec start_link(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_ret().

Equivalent to start_link/4 except that the gen_statem process is not
registered with any name service.

 Link to this function

 start_link(ServerName, Module, Args, Opts)

 View Source

 (since OTP 19.0)

 -spec start_link(ServerName :: server_name(), Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
 start_ret().

Creates a gen_statem process according to OTP design principles (using
proc_lib primitives) that is spawned as linked to the calling process. This
is essential when the gen_statem must be part of a supervision tree so it gets
linked to its supervisor.
The gen_statem process calls Module:init/1 to initialize the
server. To ensure a synchronized startup procedure, start_link/3,4 does not
return until Module:init/1 has returned or failed.
ServerName specifies the server_name/0 to register for the gen_statem
process. If the gen_statem process is started with
start_link/3, no ServerName is provided and the
gen_statem process is not registered.
Module is the name of the callback module.
Args is an arbitrary term that is passed as the argument to
Module:init/1.
	If option {timeout,Time} is present in Opts, the
gen_statem process is allowed to spend Time milliseconds initializing or
it is terminated and the start function returns
{error,timeout}.
	If option {hibernate_after,HibernateAfterTimeout} is
present, the gen_statem process awaits any message for
HibernateAfterTimeout milliseconds and if no message is received, the
process goes into hibernation automatically (by calling
proc_lib:hibernate/3).
	If option {debug,Dbgs} is present in Opts,
debugging through sys is activated.
	If option {spawn_opt,SpawnOpts} is present in Opts,
SpawnOpts is passed as option list to erlang:spawn_opt/2, which is used to
spawn the gen_statem process.

Note
Using spawn option monitor is not allowed, it causes this function to fail
with reason badarg.

If the gen_statem process is successfully created and initialized, this
function returns {ok,Pid}, where Pid is the pid/0 of
the gen_statem process. If a process with the specified ServerName exists
already, this function returns
{error,{already_started,OtherPid}}, where OtherPid is the
pid/0 of that process, and the gen_statem process exits with reason
normal before calling Module:init/1.
If Module:init/1 does not return within the
start timeout, the gen_statem process is killed with
exit(_, kill), and this function returns
{error,timeout}.
This function returns {error,Reason} if
Module:init/1 returns {stop,Reason} or
{error,Reason}, or fails with reason Reason. This
function returns ignore if Module:init/1
returns ignore. In these cases the gen_statem process
exits with reason Reason, except when Module:init/1 returns
ignore or {error,_}; then the gen_statem process exits with reason
normal.
If start_link/3,4 returns ignore or {error,_}, the started gen_statem
process has terminated. If an 'EXIT' message was delivered to the calling
process (due to the process link), that message has been consumed.
Warning
Before OTP 26.0, if the started gen_statem process returned e.g.
{stop,Reason} from Module:init/1, this function could return
{error,Reason} before the started gen_statem process had terminated so
starting again might fail because VM resources such as the registered name was
not yet unregistered, and an 'EXIT' message could arrive later to the
process calling this function.
But if the started gen_statem process instead failed during
Module:init/1, a process link {'EXIT',Pid,Reason} message
caused this function to return {error,Reason} so the 'EXIT' message had
been consumed and the started gen_statem process had terminated.
Since it was impossible to tell the difference between these two cases from
start_link/3,4's return value, this inconsistency was cleaned up in OTP
26.0.

The difference between returning {stop,_} and {error,_} from
Module:init/1, is that {error,_} results in a graceful
("silent") termination since the gen_statem process exits with reason
normal.

 Link to this function

 start_monitor(Module, Args, Opts)

 View Source

 (since OTP 23.0)

 -spec start_monitor(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_mon_ret().

Equivalent to start_monitor/4 except that the gen_statem process is not
registered with any name service.

 Link to this function

 start_monitor(ServerName, Module, Args, Opts)

 View Source

 (since OTP 23.0)

 -spec start_monitor(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Opts :: [start_opt()]) ->
 start_mon_ret().

Creates a standalone gen_statem process according to OTP design principles
(using proc_lib primitives) and atomically sets up a monitor to the newly
created process. As it does not get linked to the calling process, this start
function cannot be used by a supervisor to start a child.
For a description of arguments and return values, see
start_link/3,4. Note that the return value on successful
start differs from start_link/3,4. start_monitor/3,4 will return
{ok,{Pid,Mon}} where Pid is the process identifier of the process, and Mon
is a reference to the monitor set up to monitor the process. If the start is not
successful, the caller will be blocked until the DOWN message has been
received and removed from the message queue.

 Link to this function

 stop(ServerRef)

 View Source

 (since OTP 19.0)

 -spec stop(ServerRef :: server_ref()) -> ok.

Equivalent to stop(ServerRef, normal, infinity).

 Link to this function

 stop(ServerRef, Reason, Timeout)

 View Source

 (since OTP 19.0)

 -spec stop(ServerRef :: server_ref(), Reason :: term(), Timeout :: timeout()) -> ok.

Orders the gen_statem ServerRef to exit with the
specified Reason and waits for it to terminate. The gen_statem calls
Module:terminate/3 before exiting.
This function returns ok if the server terminates with the expected reason.
Any other reason than normal, shutdown, or {shutdown,Term} causes an error
report to be issued through logger. An exit signal with the same reason is
sent to linked processes and ports. The default Reason is normal.
Timeout is an integer > 0, which specifies how many milliseconds to wait for
the server to terminate, or the atom infinity to wait indefinitely. Defaults
to infinity. If the server does not terminate within the specified time, the
call exits the calling process with reason timeout.
If the process does not exist, the call exits the calling process with reason
noproc, and with reason {nodedown,Node} if the connection fails to the
remote Node where the server runs.

 Link to this function

 wait_response(ReqId)

 View Source

 (since OTP 23.0)

 -spec wait_response(ReqId) -> Result
 when
 ReqId :: request_id(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Equivalent to receive_response(ReqId, infinity).

 Link to this function

 wait_response(ReqId, WaitTime)

 View Source

 (since OTP 23.0)

 -spec wait_response(ReqId, WaitTime) -> Result
 when
 ReqId :: request_id(),
 WaitTime :: response_timeout(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result :: Response | timeout.

Wait for a response corresponding to the request identifier ReqId. The request
must have been made by send_request/2 to the gen_statem process. This
function must be called from the same process from which send_request/2 was
made.
WaitTime specifies how long to wait for a reply. If no reply is received
within the specified time, the function returns timeout and no cleanup is
done, and thus the function can be invoked repeatedly until a reply is returned.
The return value Reply is generated when a
state callback returns with
{reply,From,Reply} as one action/0, and that Reply becomes the return
value of this function.
The function returns an error if the gen_statem dies before or during this
function call.
The difference between receive_response/2 and
wait_response/2 is that
receive_response/2 abandons the request at timeout so
that a potential future response is ignored, while
wait_response/2 does not.

 Link to this function

 wait_response(ReqIdCollection, WaitTime, Delete)

 View Source

 (since OTP 25.0)

 -spec wait_response(ReqIdCollection, WaitTime, Delete) -> Result
 when
 ReqIdCollection :: request_id_collection(),
 WaitTime :: response_timeout(),
 Delete :: boolean(),
 Response ::
 {reply, Reply :: term()} | {error, {Reason :: term(), server_ref()}},
 Result ::
 {Response,
 Label :: term(),
 NewReqIdCollection :: request_id_collection()} |
 no_request | timeout.

Wait for a response corresponding to a request identifier saved in
ReqIdCollection. All request identifiers of ReqIdCollection must correspond
to requests that have been made using send_request/2 or send_request/4, and
all requests must have been made by the process calling this function.
The Label in the response equals the Label associated with the request
identifier that the response corresponds to. The Label of a request identifier
is associated when saving the request id in a request
identifier collection, or when sending the request using send_request/4.
Compared to wait_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by wait_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewReqIdCollection is a possibly modified
request identifier collection.
If ReqIdCollection is empty, no_request will be returned. If no response is
received before the WaitTime timeout has triggered, the atom timeout is
returned. It is valid to continue waiting for a response as many times as needed
up until a response has been received and completed by check_response(),
receive_response(), or wait_response().
The difference between receive_response/3 and
wait_response/3 is that
receive_response/3 abandons requests at timeout so
that potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from ReqIdCollection in the resulting NewReqIdCollection. If Delete equals
false, NewReqIdCollection will equal ReqIdCollection. Note that deleting
an association is not for free and that a collection containing already handled
requests can still be used by subsequent calls to
wait_response/3, check_response/3, and
receive_response/3. However, without deleting handled associations, the above
calls will not be able to detect when there are no more outstanding requests to
handle, so you will have to keep track of this some other way than relying on a
no_request return. Note that if you pass a collection only containing
associations of already handled or abandoned requests to
wait_response/3, it will always block until a timeout
determined by WaitTime is triggered and then return no_reply.

 log_mf_h - stdlib v5.2.1

log_mf_h

An event handler that logs events to disk.
This module is a gen_event handler module that can be installed in any
gen_event process. It logs onto disk all events that are sent to an event
manager. Each event is written as a binary, which makes the logging very fast.
However, a tool such as the Report Browser (rb) must be used to read the
files. The events are written to multiple files. When all files have been used,
the first one is reused and overwritten. The directory location, the number of
files, and the size of each file are configurable. The directory will include
one file called index, and report files 1, 2,

 See Also

gen_event, rb

 Summary

 Types

 args()

 Term to be sent to gen_event:add_handler/3.

 b()

 f()

 pred()

 Functions

 init(Dir, MaxBytes, MaxFiles)

 Equivalent to init(Dir, MaxBytes, MaxFiles, fun(_) -> true end).

 init(Dir, MaxBytes, MaxFiles, Pred)

 Initiates the event handler. Returns Args, which is to be used in a call to
gen_event:add_handler(EventMgr, log_mf_h, Args).

 Types

 Link to this opaque

 args()

 View Source

 -opaque args()

Term to be sent to gen_event:add_handler/3.

 Link to this type

 b()

 View Source

 (not exported)

 -type b() :: non_neg_integer().

 Link to this type

 f()

 View Source

 (not exported)

 -type f() :: 1..255.

 Link to this type

 pred()

 View Source

 (not exported)

 -type pred() :: fun((term()) -> boolean()).

 Functions

 Link to this function

 init(Dir, MaxBytes, MaxFiles)

 View Source

 -spec init(Dir, MaxBytes, MaxFiles) -> Args
 when
 Dir :: file:filename(),
 MaxBytes :: non_neg_integer(),
 MaxFiles :: 1..255,
 Args :: args().

Equivalent to init(Dir, MaxBytes, MaxFiles, fun(_) -> true end).

 Link to this function

 init(Dir, MaxBytes, MaxFiles, Pred)

 View Source

 -spec init(Dir, MaxBytes, MaxFiles, Pred) -> Args
 when
 Dir :: file:filename(),
 MaxBytes :: non_neg_integer(),
 MaxFiles :: 1..255,
 Pred :: fun((Event :: term()) -> boolean()),
 Args :: args().

Initiates the event handler. Returns Args, which is to be used in a call to
gen_event:add_handler(EventMgr, log_mf_h, Args).
Dir specifies which directory to use for the log files. MaxBytes specifies
the size of each individual file. MaxFiles specifies how many files are used.
Pred is a predicate function used to filter the events. If no predicate
function is specified, all events are logged.

 pool - stdlib v5.2.1

pool

Load distribution facility.
This module can be used to run a set of Erlang nodes as a pool of computational
processors. It is organized as a master and a set of slave nodes and includes
the following features:
	The slave nodes send regular reports to the master about their current load.
	Queries can be sent to the master to determine which node will have the least
load.

The BIF statistics(run_queue) is used for estimating future
loads. It returns the length of the queue of ready to run processes in the
Erlang runtime system.
The slave nodes are started with the slave module. This effects terminal
I/O, file I/O, and code loading.
If the master node fails, the entire pool exits.

 Files

.hosts.erlang is used to pick hosts where nodes can be started. For
information about format and location of this file, see net_adm:host_file/0.
$HOME/.erlang.slave.out.HOST is used for all extra I/O that can come from the
slave nodes on standard I/O. If the startup procedure does not work, this file
can indicate the reason.

 Summary

 Functions

 attach(Node)

 Ensures that a pool master is running and includes Node in the pool master's
pool of nodes.

 get_node()

 Returns the node with the expected lowest future load.

 get_nodes()

 Returns a list of the current member nodes of the pool.

 pspawn(Mod, Fun, Args)

 Spawns a process on the pool node that is expected to have the lowest future
load.

 pspawn_link(Mod, Fun, Args)

 Spawns and links to a process on the pool node that is expected to have the
lowest future load.

 start(Name)

 Equivalent to start(Name, []).

 start(Name, Args)

 Starts a new pool.

 stop()

 Stops the pool and kills all the slave nodes.

 Functions

 Link to this function

 attach(Node)

 View Source

 -spec attach(Node) -> already_attached | attached when Node :: node().

Ensures that a pool master is running and includes Node in the pool master's
pool of nodes.

 Link to this function

 get_node()

 View Source

 -spec get_node() -> node().

Returns the node with the expected lowest future load.

 Link to this function

 get_nodes()

 View Source

 -spec get_nodes() -> [node()].

Returns a list of the current member nodes of the pool.

 Link to this function

 pspawn(Mod, Fun, Args)

 View Source

 -spec pspawn(Mod, Fun, Args) -> pid() when Mod :: module(), Fun :: atom(), Args :: [term()].

Spawns a process on the pool node that is expected to have the lowest future
load.

 Link to this function

 pspawn_link(Mod, Fun, Args)

 View Source

 -spec pspawn_link(Mod, Fun, Args) -> pid() when Mod :: module(), Fun :: atom(), Args :: [term()].

Spawns and links to a process on the pool node that is expected to have the
lowest future load.

 Link to this function

 start(Name)

 View Source

 -spec start(Name) -> Nodes when Name :: atom(), Nodes :: [node()].

Equivalent to start(Name, []).

 Link to this function

 start(Name, Args)

 View Source

 -spec start(Name, Args) -> Nodes when Name :: atom(), Args :: string(), Nodes :: [node()].

Starts a new pool.
The file .hosts.erlang is read to find host names where the
pool nodes can be started; see section Files. The startup
procedure fails if the file is not found.
The slave nodes are started with slave:start/2,3, passing
along Name and, if provided, Args. Name is used as the first part of the
node names, Args is used to specify command-line arguments.
Access rights must be set so that all nodes in the pool have the authority to
access each other.
The function is synchronous and all the nodes, and all the system servers, are
running when it returns a value.

 Link to this function

 stop()

 View Source

 -spec stop() -> stopped.

Stops the pool and kills all the slave nodes.

 proc_lib - stdlib v5.2.1

proc_lib

Functions for asynchronous and synchronous start of processes adhering to the
OTP design principles.
This module is used to start processes adhering to the
OTP Design Principles. Specifically, the
functions in this module are used by the OTP standard behaviors (for example,
gen_server and gen_statem) when starting new processes. The functions can
also be used to start special processes, user-defined processes that comply to
the OTP design principles. For an example, see section
sys and proc_lib in OTP Design Principles.
Some useful information is initialized when a process starts. The registered
names, or the process identifiers, of the parent process, and the parent
ancestors, are stored together with information about the function initially
called in the process.
While in "plain Erlang", a process is said to terminate normally only for exit
reason normal, a process started using proc_lib is also said to terminate
normally if it exits with reason shutdown or {shutdown,Term}. shutdown is
the reason used when an application (supervision tree) is stopped.
When a process that is started using proc_lib terminates abnormally (that is,
with another exit reason than normal, shutdown, or {shutdown,Term}), a
crash report is generated, which is written to terminal by the default logger
handler setup by Kernel. For more information about how crash reports were
logged prior to Erlang/OTP 21.0, see
SASL Error Logging in the SASL User's Guide.
Unlike in "plain Erlang", proc_lib processes will not generate error
reports, which are written to the terminal by the emulator. All exceptions are
converted to exits which are ignored by the default logger handler.
The crash report contains the previously stored information, such as ancestors
and initial function, the termination reason, and information about other
processes that terminate as a result of this process terminating.

 See Also

logger

 Summary

 Types

 dict_or_pid()

 exception()

 An exception passed to init_fail/3. See erlang:raise/3 for a description
of Class, Reason and Stacktrace.

 spawn_option()

 Equivalent to erlang:spawn_opt_option/0.

 start_spawn_option()

 A restricted set of spawn options. Most notably monitor
is not part of these options.

 Functions

 format(CrashReport)

 Equivalent to format(CrashReport, latin1).

 format(CrashReport, Encoding)

 Note
This function is deprecated in the sense that the error_logger is no longer
the preferred interface for logging in Erlang/OTP. A new
logging API was added in Erlang/OTP 21.0, but
legacy error_logger handlers can still be used. New Logger handlers do not
need to use this function, since the formatting callback (report_cb) is
included as metadata in the log event.

 supervisor - stdlib v5.2.1

supervisor behaviour

Generic supervisor behavior.
This behavior module provides a supervisor, a process that supervises other
processes called child processes. A child process can either be another
supervisor or a worker process. Worker processes are normally implemented using
one of the gen_event, gen_server, or gen_statem behaviors. A
supervisor implemented using this module has a standard set of interface
functions and includes functionality for tracing and error reporting.
Supervisors are used to build a hierarchical process structure called a
supervision tree, a nice way to structure a fault-tolerant application. For more
information, see Supervisor Behaviour in OTP Design
Principles.
A supervisor expects the definition of which child processes to supervise to be
specified in a callback module exporting a predefined set of functions.
Unless otherwise stated, all functions in this module fail if the specified
supervisor does not exist or if bad arguments are specified.

 Supervision Principles

The supervisor is responsible for starting, stopping, and monitoring its child
processes. The basic idea of a supervisor is that it must keep its child
processes alive by restarting them when necessary.
The children of a supervisor are defined as a list of child specifications.
When the supervisor is started, the child processes are started in order from
left to right according to this list. When the supervisor is going to terminate,
it first terminates its child processes in reversed start order, from right to
left.

 Supervisor flags

The supervisor properties are defined by the supervisor flags. The type
definition for the supervisor flags is as follows:
sup_flags() = #{strategy => strategy(), % optional
 intensity => non_neg_integer(), % optional
 period => pos_integer(), % optional
 auto_shutdown => auto_shutdown()} % optional
Restart Strategies
A supervisor can have one of the following restart strategies specified with
the strategy key in the above map:
	one_for_one - If one child process terminates and is to be restarted, only
that child process is affected. This is the default restart strategy.

	one_for_all - If one child process terminates and is to be restarted, all
other child processes are terminated and then all child processes are
restarted.

	rest_for_one - If one child process terminates and is to be restarted, the
'rest' of the child processes (that is, the child processes after the
terminated child process in the start order) are terminated. Then the
terminated child process and all child processes after it are restarted.

	simple_one_for_one - A simplified one_for_one supervisor, where all child
processes are dynamically added instances of the same process type, that is,
running the same code.
Functions delete_child/2 and restart_child/2 are invalid for
simple_one_for_one supervisors and return {error,simple_one_for_one} if
the specified supervisor uses this restart strategy.
Function terminate_child/2 can be used for children under
simple_one_for_one supervisors by specifying the child's pid/0 as the
second argument. If instead the child specification identifier is used,
terminate_child/2 return
{error,simple_one_for_one}.
As a simple_one_for_one supervisor can have many children, it shuts them all
down asynchronously. This means that the children do their cleanup in
parallel, and therefore the order in which they are stopped is not defined.

Restart intensity and period
To prevent a supervisor from getting into an infinite loop of child process
terminations and restarts, a maximum restart intensity is defined using two
integer values specified with keys intensity and period in the above map.
Assuming the values MaxR for intensity and MaxT for period, then, if
more than MaxR restarts occur within MaxT seconds, the supervisor terminates
all child processes and then itself. The termination reason for the supervisor
itself in that case will be shutdown. intensity defaults to 1 and period
defaults to 5.

Automatic Shutdown
A supervisor can be configured to automatically shut itself down with exit
reason shutdown when significant children
terminate with the auto_shutdown key in the above map:
	never - Automic shutdown is disabled. This is the default setting.
With auto_shutdown set to never, child specs with the significant flag
set to true are considered invalid and will be rejected.

	any_significant - The supervisor will shut itself down when any
significant child terminates, that is, when a transient significant child
terminates normally or when a temporary significant child terminates
normally or abnormally.

	all_significant - The supervisor will shut itself down when all
significant children have terminated, that is, when the last active
significant child terminates. The same rules as for any_significant apply.

For more information, see the section
Automatic Shutdown in Supervisor
Behavior in OTP Design Principles.
Warning
The automatic shutdown feature appeared in OTP 24.0, but applications using
this feature will also compile and run with older OTP versions.
However, such applications, when compiled with an OTP version that predates
the appearance of the automatic shutdown feature, will leak processes because
the automatic shutdowns they rely on will not happen.
It is up to implementors to take proper precautions if they expect that their
applications may be compiled with older OTP versions.

 Child specification

The type definition of a child specification is as follows:
child_spec() = #{id => child_id(), % mandatory
 start => mfargs(), % mandatory
 restart => restart(), % optional
 significant => significant(), % optional
 shutdown => shutdown(), % optional
 type => worker(), % optional
 modules => modules()} % optional
The old tuple format is kept for backwards compatibility, see child_spec/0,
but the map is preferred.
	id is used to identify the child specification internally by the supervisor.
The id key is mandatory.
Notice that this identifier on occations has been called "name". As far as
possible, the terms "identifier" or "id" are now used but to keep backward
compatibility, some occurences of "name" can still be found, for example in
error messages.

	start defines the function call used to start the child process. It must be
a module-function-arguments tuple {M,F,A} used as
apply(M,F,A).
The start function must create and link to the child process, and must
return {ok,Child} or {ok,Child,Info}, where Child is the pid of the
child process and Info any term that is ignored by the supervisor.
The start function can also return ignore if the child process for some
reason cannot be started, in which case the child specification is kept by the
supervisor (unless it is a temporary child) but the non-existing child process
is ignored.
If something goes wrong, the function can also return an error tuple
{error,Error}.
Notice that the start_link functions of the different behavior modules
fulfill the above requirements.
The start key is mandatory.

	 restart defines when a terminated child process must be
restarted. A permanent child process is always restarted. A temporary
child process is never restarted (even when the supervisor's restart strategy
is rest_for_one or one_for_all and a sibling's death causes the temporary
process to be terminated). A transient child process is restarted only if it
terminates abnormally, that is, with another exit reason than normal,
shutdown, or {shutdown,Term}.
The restart key is optional. If it is not specified, it defaults to
permanent.

	 significant defines if a child is considered
significant for automatic self-shutdown of the
supervisor.
Setting this option to true when the restart type
is permanent is invalid. Also, it is considered invalid to start children
with this option set to true in a supervisor when the
auto_shutdown supervisor flag is set to
never.
The significant key is optional. If it is not specified, it defaults to
false.

	shutdown defines how a child process must be terminated. brutal_kill means
that the child process is unconditionally terminated using
exit(Child,kill). An integer time-out value means that the
supervisor tells the child process to terminate by calling
exit(Child,shutdown) and then wait for an exit signal with
reason shutdown back from the child process. If no exit signal is received
within the specified number of milliseconds, the child process is
unconditionally terminated using exit(Child,kill).
If the child process is another supervisor, the shutdown time must be set to
infinity to give the subtree ample time to shut down.
Warning
Setting the shutdown time to anything other than infinity for a child of
type supervisor can cause a race condition where the child in question
unlinks its own children, but fails to terminate them before it is killed.

It is also allowed to set it to infinity, if the child process is a worker.
Warning
Be careful when setting the shutdown time to infinity when the child
process is a worker. Because, in this situation, the termination of the
supervision tree depends on the child process, it must be implemented in a
safe way and its cleanup procedure must always return.

Notice that all child processes implemented using the standard OTP behavior
modules automatically adhere to the shutdown protocol.
The shutdown key is optional. If it is not specified, it defaults to 5000
if the child is of type worker and it defaults to infinity if the child is
of type supervisor.

	type specifies if the child process is a supervisor or a worker.
The type key is optional. If it is not specified, it defaults to worker.

	modules is used by the release handler during code replacement to determine
which processes are using a certain module. As a rule of thumb, if the child
process is a supervisor, gen_server or, gen_statem, this is to be a list
with one element [Module], where Module is the callback module. If the
child process is an event manager (gen_event) with a dynamic set of callback
modules, value dynamic must be used. For more information about release
handling, see Release Handling in OTP Design
Principles.
The modules key is optional. If it is not specified, it defaults to [M],
where M comes from the child's start {M,F,A}.

	Internally, the supervisor also keeps track of the pid Child of the child
process, or undefined if no pid exists.

 See Also

gen_event, gen_statem, gen_server, sys

 Summary

 Types

 auto_shutdown()

 child()

 child_id()

 Not a pid/0.

 child_rec()

 child_spec()

 The tuple format is kept for backward compatibility only. A map is preferred;
see more details above.

 children()

 mfargs()

 Value undefined for A (the argument list) is only to be used internally in
supervisor. If the restart type of the child is temporary, the process is
never to be restarted and therefore there is no need to store the real argument
list. Value undefined is then stored instead.

 modules()

 restart()

 shutdown()

 significant()

 startchild_err()

 startchild_ret()

 startlink_err()

 startlink_ret()

 strategy()

 sup_flags()

 The tuple format is kept for backward compatibility only. A map is preferred;
see more details above.

 sup_name()

 Name specification to use when starting a supervisor. See function
start_link/2,3 and the type sup_ref/0 below.

 sup_ref()

 Supervisor specification to use when addressing a supervisor. See
count_children/1, delete_child/2,
get_childspec/2, restart_child/2,
start_child/2, terminate_child/2,
which_children/1 and the type sup_name/0 above.

 worker()

 Callbacks

 init(Args)

 Whenever a supervisor is started using start_link/2,3, this
function is called by the new process to find out about restart strategy,
maximum restart intensity, and child specifications.

 Functions

 check_childspecs(ChildSpecs)

 Equivalent to check_childspecs(ChildSpecs, undefined).

 check_childspecs(ChildSpecs, AutoShutdown)

 Takes a list of child specification as argument and returns ok if all of them
are syntactically correct, otherwise {error,Error}.

 count_children(SupRef)

 Returns a property list containing the counts for each of
the following elements of the supervisor's child specifications and managed
processes

 delete_child(SupRef, Id)

 Tells supervisor SupRef to delete the child specification identified by Id.
The corresponding child process must not be running. Use terminate_child/2 to
terminate it.

 get_childspec(SupRef, Id)

 Returns the child specification map for the child identified by Id under
supervisor SupRef. The returned map contains all keys, both mandatory and
optional.

 restart_child(SupRef, Id)

 Tells supervisor SupRef to restart a child process corresponding to the child
specification identified by Id. The child specification must exist, and the
corresponding child process must not be running.

 start_child(Supervisor, ChildSpecOrExtraArgs)

 Dynamically adds a child specification to supervisor SupRef, which starts the
corresponding child process.

 start_link(Module, Args)

 Creates a nameless supervisor process as part of a supervision tree.

 start_link(SupName, Module, Args)

 Creates a supervisor process as part of a supervision tree.

 terminate_child(SupRef, Id)

 Tells supervisor SupRef to terminate the specified child.

 which_children(SupRef)

 Returns a newly created list with information about all child specifications and
child processes belonging to supervisor SupRef.

 Types

 Link to this type

 auto_shutdown()

 View Source

 (not exported)

 -type auto_shutdown() :: never | any_significant | all_significant.

 Link to this type

 child()

 View Source

 (not exported)

 -type child() :: undefined | pid().

 Link to this type

 child_id()

 View Source

 (not exported)

 -type child_id() :: term().

Not a pid/0.

 Link to this type

 child_rec()

 View Source

 (not exported)

 -type child_rec() ::
 #child{pid :: child() | {restarting, pid() | undefined} | [pid()],
 id :: child_id(),
 mfargs :: mfargs(),
 restart_type :: restart(),
 significant :: significant(),
 shutdown :: shutdown(),
 child_type :: worker(),
 modules :: modules()}.

 Link to this type

 child_spec()

 View Source

 -type child_spec() ::
 #{id := child_id(),
 start := mfargs(),
 restart => restart(),
 significant => significant(),
 shutdown => shutdown(),
 type => worker(),
 modules => modules()} |
 {Id :: child_id(),
 StartFunc :: mfargs(),
 Restart :: restart(),
 Shutdown :: shutdown(),
 Type :: worker(),
 Modules :: modules()}.

The tuple format is kept for backward compatibility only. A map is preferred;
see more details above.

 Link to this type

 children()

 View Source

 (not exported)

 -type children() :: {Ids :: [child_id()], Db :: #{child_id() => child_rec()}}.

 Link to this type

 mfargs()

 View Source

 (not exported)

 -type mfargs() :: {M :: module(), F :: atom(), A :: [term()] | undefined}.

Value undefined for A (the argument list) is only to be used internally in
supervisor. If the restart type of the child is temporary, the process is
never to be restarted and therefore there is no need to store the real argument
list. Value undefined is then stored instead.

 Link to this type

 modules()

 View Source

 (not exported)

 -type modules() :: [module()] | dynamic.

 Link to this type

 restart()

 View Source

 (not exported)

 -type restart() :: permanent | transient | temporary.

 Link to this type

 shutdown()

 View Source

 (not exported)

 -type shutdown() :: brutal_kill | timeout().

 Link to this type

 significant()

 View Source

 (not exported)

 -type significant() :: boolean().

 Link to this type

 startchild_err()

 View Source

 -type startchild_err() :: already_present | {already_started, Child :: child()} | term().

 Link to this type

 startchild_ret()

 View Source

 -type startchild_ret() ::
 {ok, Child :: child()} | {ok, Child :: child(), Info :: term()} | {error, startchild_err()}.

 Link to this type

 startlink_err()

 View Source

 -type startlink_err() :: {already_started, pid()} | {shutdown, term()} | term().

 Link to this type

 startlink_ret()

 View Source

 -type startlink_ret() :: {ok, pid()} | ignore | {error, startlink_err()}.

 Link to this type

 strategy()

 View Source

 -type strategy() :: one_for_all | one_for_one | rest_for_one | simple_one_for_one.

 Link to this type

 sup_flags()

 View Source

 -type sup_flags() ::
 #{strategy => strategy(),
 intensity => non_neg_integer(),
 period => pos_integer(),
 auto_shutdown => auto_shutdown()} |
 {RestartStrategy :: strategy(), Intensity :: non_neg_integer(), Period :: pos_integer()}.

The tuple format is kept for backward compatibility only. A map is preferred;
see more details above.

 Link to this type

 sup_name()

 View Source

 -type sup_name() ::
 {local, Name :: atom()} | {global, Name :: term()} | {via, Module :: module(), Name :: any()}.

Name specification to use when starting a supervisor. See function
start_link/2,3 and the type sup_ref/0 below.
	{local,LocalName} - Register the supervisor locally as LocalName
using register/2.

	{global,GlobalName} - Register the supervisor process id globally as
GlobalName using global:register_name/2.

	{via,RegMod,ViaName} - Register the supervisor process with the
registry represented by RegMod. The RegMod callback is to export the
functions register_name/2, unregister_name/1, whereis_name/1, and
send/2, which are to behave like the corresponding functions in global.
Thus, {via,global,GlobalName} is a valid reference equivalent to
{global,GlobalName}.

 Link to this type

 sup_ref()

 View Source

 -type sup_ref() ::
 (Name :: atom()) |
 {Name :: atom(), Node :: node()} |
 {global, Name :: term()} |
 {via, Module :: module(), Name :: any()} |
 pid().

Supervisor specification to use when addressing a supervisor. See
count_children/1, delete_child/2,
get_childspec/2, restart_child/2,
start_child/2, terminate_child/2,
which_children/1 and the type sup_name/0 above.
It can be:
	pid/0 - The supervisor's process identifier.

	LocalName - The supervisor is locally registered as LocalName with
register/2.

	{Name,Node} - The supervisor is locally registered on another node.

	{global,GlobalName} - The supervisor is globally registered in
global.

	{via,RegMod,ViaName} - The supervisor is registered in an alternative
process registry. The registry callback module RegMod is to export functions
register_name/2, unregister_name/1, whereis_name/1, and send/2, which
are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is the same as {global,GlobalName}.

 Link to this type

 worker()

 View Source

 (not exported)

 -type worker() :: worker | supervisor.

 Callbacks

 Link to this callback

 init(Args)

 View Source

 -callback init(Args :: term()) -> {ok, {SupFlags :: sup_flags(), [ChildSpec :: child_spec()]}} | ignore.

Whenever a supervisor is started using start_link/2,3, this
function is called by the new process to find out about restart strategy,
maximum restart intensity, and child specifications.
Args is the Args argument provided to the start function.
SupFlags is the supervisor flags defining the restart strategy and maximum
restart intensity for the supervisor. [ChildSpec] is a list of valid child
specifications defining which child processes the supervisor must start and
monitor. See the discussion in section
Supervision Principles earlier.
Notice that when the restart strategy is simple_one_for_one, the list of child
specifications must be a list with one child specification only. (The child
specification identifier is ignored.) No child process is then started during
the initialization phase, but all children are assumed to be started dynamically
using start_child/2.
The function can also return ignore.
Notice that this function can also be called as a part of a code upgrade
procedure. Therefore, the function is not to have any side effects. For more
information about code upgrade of supervisors, see section
Changing a Supervisor in OTP Design
Principles.

 Functions

 Link to this function

 check_childspecs(ChildSpecs)

 View Source

 (since OTP 24.0)

 -spec check_childspecs(ChildSpecs) -> Result
 when ChildSpecs :: [child_spec()], Result :: ok | {error, Error :: term()}.

Equivalent to check_childspecs(ChildSpecs, undefined).

 Link to this function

 check_childspecs(ChildSpecs, AutoShutdown)

 View Source

 (since OTP 24.0)

 -spec check_childspecs(ChildSpecs, AutoShutdown) -> Result
 when
 ChildSpecs :: [child_spec()],
 AutoShutdown :: undefined | auto_shutdown(),
 Result :: ok | {error, Error :: term()}.

Takes a list of child specification as argument and returns ok if all of them
are syntactically correct, otherwise {error,Error}.
If the AutoShutdown argument is not undefined, also
checks if the child specifications are allowed for the given
auto_shutdown option.

 Link to this function

 count_children(SupRef)

 View Source

 (since OTP R13B04)

 -spec count_children(SupRef) -> PropListOfCounts
 when
 SupRef :: sup_ref(),
 PropListOfCounts :: [Count],
 Count ::
 {specs, ChildSpecCount :: non_neg_integer()} |
 {active, ActiveProcessCount :: non_neg_integer()} |
 {supervisors, ChildSupervisorCount :: non_neg_integer()} |
 {workers, ChildWorkerCount :: non_neg_integer()}.

Returns a property list containing the counts for each of
the following elements of the supervisor's child specifications and managed
processes:
	specs - The total count of children, dead or alive.
	active - The count of all actively running child processes managed by this
supervisor. For a simple_one_for_one supervisors, no check is done to ensure
that each child process is still alive, although the result provided here is
likely to be very accurate unless the supervisor is heavily overloaded.
	supervisors - The count of all children marked as child_type = supervisor
in the specification list, regardless if the child process is still alive.
	workers - The count of all children marked as child_type = worker in the
specification list, regardless if the child process is still alive.

 Link to this function

 delete_child(SupRef, Id)

 View Source

 -spec delete_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: child_id(),
 Result :: ok | {error, Error},
 Error :: running | restarting | not_found | simple_one_for_one.

Tells supervisor SupRef to delete the child specification identified by Id.
The corresponding child process must not be running. Use terminate_child/2 to
terminate it.
If successful, the function returns ok. If the child specification identified
by Id exists but the corresponding child process is running or is about to be
restarted, the function returns {error,running} or {error,restarting},
respectively. If the child specification identified by Id does not exist, the
function returns {error,not_found}.

 Link to this function

 get_childspec(SupRef, Id)

 View Source

 (since OTP 18.0)

 -spec get_childspec(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: pid() | child_id(),
 Result :: {ok, child_spec()} | {error, Error},
 Error :: not_found.

Returns the child specification map for the child identified by Id under
supervisor SupRef. The returned map contains all keys, both mandatory and
optional.

 Link to this function

 restart_child(SupRef, Id)

 View Source

 -spec restart_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: child_id(),
 Result ::
 {ok, Child :: child()} |
 {ok, Child :: child(), Info :: term()} |
 {error, Error},
 Error :: running | restarting | not_found | simple_one_for_one | term().

Tells supervisor SupRef to restart a child process corresponding to the child
specification identified by Id. The child specification must exist, and the
corresponding child process must not be running.
Notice that for temporary children, the child specification is automatically
deleted when the child terminates; thus, it is not possible to restart such
children.
If the child specification identified by Id does not exist, the function
returns {error,not_found}. If the child specification exists but the
corresponding process is already running, the function returns
{error,running}.
If the child process start function returns {ok,Child} or {ok,Child,Info},
the pid is added to the supervisor and the function returns the same value.
If the child process start function returns ignore, the pid remains set to
undefined and the function returns {ok,undefined}.
If the child process start function returns an error tuple or an erroneous
value, or if it fails, the function returns {error,Error}, where Error is a
term containing information about the error.

 Link to this function

 start_child(Supervisor, ChildSpecOrExtraArgs)

 View Source

 -spec start_child(SupRef, ChildSpec) -> startchild_ret()
 when SupRef :: sup_ref(), ChildSpec :: child_spec();
 (SupRef, ExtraArgs) -> startchild_ret() when SupRef :: sup_ref(), ExtraArgs :: [term()].

Dynamically adds a child specification to supervisor SupRef, which starts the
corresponding child process.
For one_for_one, one_for_all and rest_for_one supervisors, the second
argument must be a valid child specification ChildSpec. The child process
is started by using the start function as defined in the child specification.
For simple_one_for_one supervisors, the child specification defined in
Module:init/1 is used, and the second argument must instead
be an arbitrary list of terms ExtraArgs. The child process is then started
by appending ExtraArgs to the existing start function arguments, that is, by
calling apply(M, F, A++ExtraArgs), where {M,F,A} is the start
function defined in the child specification.
	If there already exists a child specification with the specified identifier,
ChildSpec is discarded, and the function returns {error,already_present}
or {error,{already_started,Child}}, depending on if the corresponding child
process is running or not.
	If the child process start function returns {ok,Child} or {ok,Child,Info},
the child specification and pid are added to the supervisor and the function
returns the same value.
	If the child process start function returns ignore, the child specification
ChildSpec is added to the supervisor if it is an one_for_one, one_for_all
or rest_for_one supervisor, and the pid is set to undefined. For
simple_one_for_one supervisors, no child is added to the supervisor. The
function returns {ok,undefined}.

If the child process start function returns an error tuple or an erroneous
value, or if it fails, the child specification is discarded, and the function
returns {error,Error}, where Error is a term containing information about
the error and child specification.

 Link to this function

 start_link(Module, Args)

 View Source

 -spec start_link(Module, Args) -> startlink_ret() when Module :: module(), Args :: term().

Creates a nameless supervisor process as part of a supervision tree.
Equivalent to start_link/3 except that the supervisor process is not
registered.

 Link to this function

 start_link(SupName, Module, Args)

 View Source

 -spec start_link(SupName, Module, Args) -> startlink_ret()
 when SupName :: sup_name(), Module :: module(), Args :: term().

Creates a supervisor process as part of a supervision tree.
For example, the function ensures that the supervisor is linked to the calling
process (its supervisor).
The created supervisor process calls Module:init/1 to find out
about restart strategy, maximum restart intensity, and child processes. To
ensure a synchronized startup procedure, start_link/2,3 does not return until
Module:init/1 has returned and all child processes have been
started.
	If SupName={local,Name}, the supervisor is registered locally as Name
using register/2.
	If SupName={global,Name}, the supervisor is registered globally as Name
using global:register_name/2.
	If SupName={via,Module,Name}, the supervisor is registered as Name using
the registry represented by Module. The Module callback must export the
functions register_name/2, unregister_name/1, and send/2, which must
behave like the corresponding functions in global. Thus,
{via,global,Name} is a valid reference.

Module is the name of the callback module.
Args is any term that is passed as the argument to
Module:init/1.
	If the supervisor and its child processes are successfully created (that is,
if all child process start functions return {ok,Child}, {ok,Child,Info},
or ignore), the function returns {ok,Pid}, where Pid is the pid of the
supervisor.
	If there already exists a process with the specified SupName, the function
returns {error,{already_started,Pid}}, where Pid is the pid of that
process.
	If Module:init/1 returns ignore, this function returns
ignore as well, and the supervisor terminates with reason normal.
	If Module:init/1 fails or returns an incorrect value, this
function returns {error,Term}, where Term is a term with information about
the error, and the supervisor terminates with reason Term.
	If any child process start function fails or returns an error tuple or an
erroneous value, the supervisor first terminates all already started child
processes with reason shutdown and then terminate itself and returns
{error, {shutdown, Reason}}.

 Link to this function

 terminate_child(SupRef, Id)

 View Source

 -spec terminate_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: pid() | child_id(),
 Result :: ok | {error, Error},
 Error :: not_found | simple_one_for_one.

Tells supervisor SupRef to terminate the specified child.
If the supervisor is not simple_one_for_one, Id must be the child
specification identifier. The process, if any, is terminated and, unless it is a
temporary child, the child specification is kept by the supervisor. The child
process can later be restarted by the supervisor. The child process can also be
restarted explicitly by calling restart_child/2. Use delete_child/2 to
remove the child specification.
If the child is temporary, the child specification is deleted as soon as the
process terminates. This means that delete_child/2 has no
meaning and restart_child/2 cannot be used for these
children.
If the supervisor is simple_one_for_one, Id must be the pid/0 of the
child process. If the specified process is alive, but is not a child of the
specified supervisor, the function returns {error,not_found}. If the child
specification identifier is specified instead of a pid/0, the function
returns {error,simple_one_for_one}.
If successful, the function returns ok. If there is no child specification
with the specified Id, the function returns {error,not_found}.

 Link to this function

 which_children(SupRef)

 View Source

 -spec which_children(SupRef) -> [{Id, Child, Type, Modules}]
 when
 SupRef :: sup_ref(),
 Id :: child_id() | undefined,
 Child :: child() | restarting,
 Type :: worker(),
 Modules :: modules().

Returns a newly created list with information about all child specifications and
child processes belonging to supervisor SupRef.
Notice that calling this function when supervising many children under low
memory conditions can cause an out of memory exception.
The following information is given for each child specification/process:
	Id - As defined in the child specification or undefined for a
simple_one_for_one supervisor.
	Child - The pid of the corresponding child process, the atom restarting
if the process is about to be restarted, or undefined if there is no such
process.
	Type - As defined in the child specification.
	Modules - As defined in the child specification.

 supervisor_bridge - stdlib v5.2.1

supervisor_bridge behaviour

Generic supervisor bridge behavior.
This behavior module provides a supervisor bridge, a process that connects a
subsystem not designed according to the OTP design principles to a supervision
tree. The supervisor bridge sits between a supervisor and the subsystem. It
behaves like a real supervisor to its own supervisor, but has a different
interface than a real supervisor to the subsystem. For more information, see
Supervisor Behaviour in OTP Design Principles.
A supervisor bridge assumes the functions for starting and stopping the
subsystem to be located in a callback module exporting a predefined set of
functions.
The sys module can be used for debugging a supervisor bridge.
Unless otherwise stated, all functions in this module fail if the specified
supervisor bridge does not exist or if bad arguments are specified.

 See Also

supervisor, sys

 Summary

 Callbacks

 init(Args)

 Whenever a supervisor bridge is started using
start_link/2,3, this function is called by the new process
to start the subsystem and initialize.

 terminate(Reason, State)

 This function is called by the supervisor bridge when it is about to terminate.
It is to be the opposite of Module:init/1 and stop the subsystem
and do any necessary cleaning up. The return value is ignored.

 Functions

 start_link(Module, Args)

 Creates a nameless supervisor bridge process as part of a supervision tree.

 start_link(SupBridgeName, Module, Args)

 Creates a supervisor bridge process, linked to the calling process, which calls
Module:init/1 to start the subsystem.

 Callbacks

 Link to this callback

 init(Args)

 View Source

 -callback init(Args :: term()) -> {ok, Pid :: pid(), State :: term()} | ignore | {error, Error :: term()}.

Whenever a supervisor bridge is started using
start_link/2,3, this function is called by the new process
to start the subsystem and initialize.
Args is the Args argument provided to the start function.
The function is to return {ok,Pid,State}, where Pid is the pid of the main
process in the subsystem and State is any term.
If later Pid terminates with a reason Reason, the supervisor bridge
terminates with reason Reason as well. If later the supervisor bridge is
stopped by its supervisor with reason Reason, it calls
Module:terminate(Reason,State) to terminate.
If the initialization fails, the function is to return {error,Error}, where
Error is any term, or ignore.

 Link to this callback

 terminate(Reason, State)

 View Source

 -callback terminate(Reason :: shutdown | term(), State :: term()) -> Ignored :: term().

This function is called by the supervisor bridge when it is about to terminate.
It is to be the opposite of Module:init/1 and stop the subsystem
and do any necessary cleaning up. The return value is ignored.
Reason is shutdown if the supervisor bridge is terminated by its supervisor.
If the supervisor bridge terminates because a a linked process (apart from the
main process of the subsystem) has terminated with reason Term, then Reason
becomes Term.
State is taken from the return value of Module:init/1.

 Functions

 Link to this function

 start_link(Module, Args)

 View Source

 -spec start_link(Module, Args) -> Result
 when
 Module :: module(),
 Args :: term(),
 Result :: {ok, Pid} | ignore | {error, Error},
 Error :: {already_started, Pid} | term(),
 Pid :: pid().

Creates a nameless supervisor bridge process as part of a supervision tree.
Equivalent to start_link/3 except that the supervisor process is not
registered.

 Link to this function

 start_link(SupBridgeName, Module, Args)

 View Source

 -spec start_link(SupBridgeName, Module, Args) -> Result
 when
 SupBridgeName :: {local, Name} | {global, GlobalName} | {via, Module, ViaName},
 Name :: atom(),
 GlobalName :: term(),
 ViaName :: term(),
 Module :: module(),
 Args :: term(),
 Result :: {ok, Pid} | ignore | {error, Error},
 Error :: {already_started, Pid} | term(),
 Pid :: pid().

Creates a supervisor bridge process, linked to the calling process, which calls
Module:init/1 to start the subsystem.
To ensure a synchronized startup procedure, this function does not return until
Module:init/1 has returned.
	If SupBridgeName={local,Name}, the supervisor bridge is registered locally
as Name using register/2.
	If SupBridgeName={global,GlobalName}, the supervisor bridge is registered
globally as GlobalName using global:register_name/2.
	If SupBridgeName={via,Module,ViaName}, the supervisor bridge is registered
as ViaName using a registry represented by Module. The Module callback is
to export functions register_name/2, unregister_name/1, and send/2,
which are to behave like the corresponding functions in global. Thus,
{via,global,GlobalName} is a valid reference.

Module is the name of the callback module.
Args is an arbitrary term that is passed as the argument to
Module:init/1.
	If the supervisor bridge and the subsystem are successfully started, the
function returns {ok,Pid}, where Pid is is the pid of the supervisor
bridge.
	If there already exists a process with the specified SupBridgeName, the
function returns {error,{already_started,Pid}}, where Pid is the pid of
that process.
	If Module:init/1 returns ignore, this function returns
ignore as well and the supervisor bridge terminates with reason normal.
	If Module:init/1 fails or returns an error tuple or an
incorrect value, this function returns {error,Error}, where Error is a
term with information about the error, and the supervisor bridge terminates
with reason Error.

 sys - stdlib v5.2.1

sys behaviour

A functional interface to system messages.
This module contains functions for sending system messages used by programs, and
messages used for debugging purposes.
Functions used for implementation of processes are also expected to understand
system messages, such as debug messages and code change. These functions must be
used to implement the use of system messages for a process; either directly, or
through standard behaviors, such as gen_server.
The default time-out is 5000 ms, unless otherwise specified. timeout defines
the time to wait for the process to respond to a request. If the process does
not respond, the function evaluates exit({timeout, {M, F, A}}).

The functions make references to a debug structure. The debug structure is a
list of dbg_opt/0, which is an internal data type used by function
handle_system_msg/6. No debugging is performed if it is an empty list.

 System Messages

Processes that are not implemented as one of the standard behaviors must still
understand system messages. The following three messages must be understood:
	Plain system messages. These are received as {system, From, Msg}. The
content and meaning of this message are not interpreted by the receiving
process module. When a system message is received, function
handle_system_msg/6 is called to handle the request.

	Shutdown messages. If the process traps exits, it must be able to handle a
shutdown request from its parent, the supervisor. The message
{'EXIT', Parent, Reason} from the parent is an order to terminate. The
process must terminate when this message is received, normally with the same
Reason as Parent.

	If the modules used to implement the process change dynamically during
runtime, the process must understand one more message. An example is the
gen_event processes. The message is {_Label, {From, Ref}, get_modules}.
The reply to this message is From ! {Ref, Modules}, where Modules is a
list of the currently active modules in the process.
This message is used by the release handler to find which processes that
execute a certain module. The process can later be suspended and ordered to
perform a code change for one of its modules.

 System Events

When debugging a process with the functions of this module, the process
generates system_events, which are then treated in the debug function. For
example, trace formats the system events to the terminal.
Four predefined system events are used when a process receives or sends a
message. The process can also define its own system events. It is always up to
the process itself to format these events.

 Summary

 Types

 dbg_fun()

 dbg_opt()

 See the introduction of this manual page.

 debug_option()

 format_fun()

 name()

 system_event()

 Debug events produced by gen_server, gen_statem and gen_event

 Process Implementation Functions

 debug_options(Options)

 Can be used by a process that initiates a debug structure from a list of
options. The values of argument Opt are the same as for the corresponding
functions.

 get_debug(Item, Debug, Default)

 deprecated

 Gets the data associated with a debug option. Default is returned if Item is
not found. Can be used by the process to retrieve debug data for printing before
it terminates.

 get_log(Debug)

 Returns the logged system events in the debug structure, that is the last
argument to handle_debug/4.

 handle_debug(Debug, FormFunc, Extra, Event)

 This function is called by a process when it generates a system event.
FormFunc is a formatting function, called as FormFunc(Device, Event, Extra)
to print the events, which is necessary if tracing is activated. Extra is any
extra information that the process needs in the format function, for example,
the process name.

 handle_system_msg(Msg, From, Parent, Module, Debug, Misc)

 This function is used by a process module to take care of system messages. The
process receives a {system, From, Msg} message and passes Msg and From to
this function.

 print_log(Debug)

 Prints the logged system events in the debug structure, using FormFunc as
defined when the event was generated by a call to handle_debug/4.

 Callbacks

 system_code_change(Misc, Module, OldVsn, Extra)

 Called from handle_system_msg/6 when the process is to perform a code change.
The code change is used when the internal data structure has changed. This
function converts argument Misc to the new data structure. OldVsn is
attribute vsn of the old version of the Module. If no such attribute is
defined, the atom undefined is sent.

 system_continue(Parent, Debug, Misc)

 Called from handle_system_msg/6 when the process is to continue its execution
(for example, after it has been suspended). This function never returns.

 system_get_state(Misc)

 Called from handle_system_msg/6 when the process is to return a term that
reflects its current state. State is the value returned by get_state/2.

 system_replace_state(StateFun, Misc)

 Called from handle_system_msg/6 when the process is to replace its current
state. NState is the value returned by replace_state/3.

 system_terminate(Reason, Parent, Debug, Misc)

 Called from handle_system_msg/6 when the process is to terminate. For example,
this function is called when the process is suspended and its parent orders
shutdown. It gives the process a chance to do a cleanup. This function never
returns.

 Functions

 change_code(Name, Module, OldVsn, Extra)

 Equivalent to change_code(Name, Module, OldVsn, Extra, 5000).

 change_code(Name, Module, OldVsn, Extra, Timeout)

 Tells the process to change code.

 get_state(Name)

 Equivalent to get_state(Name, 5000).

 get_state(Name, Timeout)

 Gets the state of the process.

 get_status(Name)

 Equivalent to get_status(Name, 5000).

 get_status(Name, Timeout)

 Gets the status of the process.

 install(Name, FuncSpec)

 Equivalent to install(Name, FuncSpec, 5000).

 install(Name, FuncSpec, Timeout)

 Enables installation of alternative debug functions. An example of such a
function is a trigger, a function that waits for some special event and performs
some action when the event is generated. For example, turning on low-level
tracing.

 log(Name, Flag)

 Equivalent to log(Name, Flag, 5000).

 log(Name, Flag, Timeout)

 Turns the logging of system events on or off. If on, a maximum of N events are
kept in the debug structure (default is 10).

 log_to_file(Name, Flag)

 Equivalent to log_to_file(Name, FileName, 5000).

 log_to_file(Name, Flag, Timeout)

 Enables or disables the logging of all system events in text format to the file.
The events are formatted with a function that is defined by the process that
generated the event (with a call to handle_debug/4). The file is opened with
encoding UTF-8.

 no_debug(Name)

 Equivalent to no_debug(Name, 5000).

 no_debug(Name, Timeout)

 Turns off all debugging for the process. This includes functions that are
installed explicitly with function install/2,3, for example,
triggers.

 remove(Name, FuncOrFuncId)

 Equivalent to remove(Name, FuncOrFuncId, 5000).

 remove(Name, FuncOrFuncId, Timeout)

 Removes an installed debug function from the process. Func or FuncId must be
the same as previously installed.

 replace_state(Name, StateFun)

 Equivalent to replace_state(Name, StateFun, 5000).

 replace_state(Name, StateFun, Timeout)

 Replaces the state of the process, and returns the new state.

 resume(Name)

 Equivalent to resume(Name, 5000).

 resume(Name, Timeout)

 Resumes a suspended process.

 statistics(Name, Flag)

 Equivalent to statistics(Name, Flag, 5000).

 statistics(Name, Flag, Timeout)

 Enables or disables the collection of statistics. If Flag is get, the
statistical collection is returned.

 suspend(Name)

 Equivalent to suspend(Name, 5000).

 suspend(Name, Timeout)

 Suspends the process. When the process is suspended, it only responds to other
system messages, but not other messages.

 terminate(Name, Reason)

 Equivalent to terminate(Name, Reason, 5000).

 terminate(Name, Reason, Timeout)

 Orders the process to terminate with the specified Reason. The termination is
done asynchronously, so it is not guaranteed that the process is terminated when
the function returns.

 trace(Name, Flag)

 Equivalent to trace(Name, Flag, 5000).

 trace(Name, Flag, Timeout)

 Prints all system events on standard_io. The events
are formatted with a function that is defined by the process that generated the
event (with a call to handle_debug/4).

 Types

 Link to this type

 dbg_fun()

 View Source

 -type dbg_fun() ::
 fun((FuncState :: _, Event :: system_event(), ProcState :: _) -> done | (NewFuncState :: _)).

 Link to this opaque

 dbg_opt()

 View Source

 -opaque dbg_opt()

See the introduction of this manual page.

 Link to this type

 debug_option()

 View Source

 -type debug_option() ::
 trace | log |
 {log, N :: pos_integer()} |
 statistics |
 {log_to_file, FileName :: file:name()} |
 {install,
 {Func :: dbg_fun(), FuncState :: term()} |
 {FuncId :: term(), Func :: dbg_fun(), FuncState :: term()}}.

 Link to this type

 format_fun()

 View Source

 (not exported)

 -type format_fun() ::
 fun((Device :: io:device() | file:io_device(), Event :: system_event(), Extra :: term()) ->
 any()).

 Link to this type

 name()

 View Source

 (not exported)

 -type name() :: pid() | atom() | {global, term()} | {via, module(), term()}.

 Link to this type

 system_event()

 View Source

 -type system_event() ::
 {in, Msg :: _} |
 {in, Msg :: _, State :: _} |
 {out, Msg :: _, To :: _} |
 {out, Msg :: _, To :: _, State :: _} |
 {noreply, State :: _} |
 {continue, Continuation :: _} |
 {postpone, Event :: _, State :: _, NextState :: _} |
 {consume, Event :: _, State :: _, NextState :: _} |
 {start_timer, Action :: _, State :: _} |
 {insert_timeout, Event :: _, State :: _} |
 {enter, Module :: module(), State :: _} |
 {module, Module :: module(), State :: _} |
 {terminate, Reason :: _, State :: _} |
 term().

Debug events produced by gen_server, gen_statem and gen_event
	{in,Msg} - Is produced by gen_server and gen_event when the message
Msg arrives.

	{in,Msg,State} - Is produced by gen_statem when the message Msg
arrives in state State.
For gen_statem the Msg term is an {EventType,EventContent} tuple.

	{out,Msg,To} - Is produced by gen_statem when the reply Msg is sent
back to To by returning a {reply,To,Msg} action from the callback module.
To is of the same type as the first argument to gen_statem:reply/2.

	{out,Msg,To,State} - Is produced by gen_server when the reply Msg is
sent back to To by returning a {reply,...} tuple from the callback module.
To is of the same type as the first argument to gen_server:reply/2.
State is the new server state.

	{noreply,State} - Is produced by gen_server when a {noreply,...}
tuple is returned from the callback module.
State is the new server state.

	{continue,Continuation} - Is produced by gen_server when a
{continue,Continuation} tuple is returned from the callback module.

	{postpone,Event,State,NextState} - Is produced by gen_statem when the
message Event is postponed in state State. NextState is the new state.
Event is an {EventType,EventContent} tuple.

	{consume,Event,State,NextState} - Is produced by gen_statem when the
message Event is consumed in state State. NextState is the new state.
Event is an {EventType,EventContent} tuple.

	{start_timer,Action,State} - Is produced by gen_statem when the action
Action starts a timer in state State.

	{insert_timeout,Event,State} - Is produced by gen_statem when a
timeout zero action inserts event Event in state State.
Event is an {EventType,EventContent} tuple.

	{enter,Module,State} - Is produced by gen_statem when module Module
enters the first state State.

	{module,Module,State} - Is produced by gen_statem when setting module
Module in state State.

	{terminate,Reason,State} - Is produced by gen_statem when it
terminates with reason Reason in state State.

 Process Implementation Functions

 Link to this function

 debug_options(Options)

 View Source

 -spec debug_options([Opt :: debug_option()]) -> [dbg_opt()].

Can be used by a process that initiates a debug structure from a list of
options. The values of argument Opt are the same as for the corresponding
functions.

 Link to this function

 get_debug(Item, Debug, Default)

 View Source

 This function is deprecated. sys:get_debug/3 is deprecated; incorrectly documented and only for internal use. Can often be replaced with sys:get_log/1.

 -spec get_debug(Item, Debug, Default) -> term()
 when Item :: log | statistics, Debug :: [dbg_opt()], Default :: term().

Gets the data associated with a debug option. Default is returned if Item is
not found. Can be used by the process to retrieve debug data for printing before
it terminates.

 Link to this function

 get_log(Debug)

 View Source

 (since OTP-22.0)

 -spec get_log(Debug) -> [system_event()] when Debug :: [dbg_opt()].

Returns the logged system events in the debug structure, that is the last
argument to handle_debug/4.

 Link to this function

 handle_debug(Debug, FormFunc, Extra, Event)

 View Source

 -spec handle_debug(Debug, FormFunc, Extra, Event) -> [dbg_opt()]
 when
 Debug :: [dbg_opt()],
 FormFunc :: format_fun(),
 Extra :: term(),
 Event :: system_event().

This function is called by a process when it generates a system event.
FormFunc is a formatting function, called as FormFunc(Device, Event, Extra)
to print the events, which is necessary if tracing is activated. Extra is any
extra information that the process needs in the format function, for example,
the process name.

 Link to this function

 handle_system_msg(Msg, From, Parent, Module, Debug, Misc)

 View Source

 -spec handle_system_msg(Msg, From, Parent, Module, Debug, Misc) -> no_return()
 when
 Msg :: term(),
 From :: {pid(), Tag :: _},
 Parent :: pid(),
 Module :: module(),
 Debug :: [dbg_opt()],
 Misc :: term().

This function is used by a process module to take care of system messages. The
process receives a {system, From, Msg} message and passes Msg and From to
this function.
This function never returns. It calls either of the following functions:
	Module:system_continue(Parent, NDebug, Misc), where
the process continues the execution.
	Module:system_terminate(Reason, Parent, Debug, Misc),
if the process is to terminate.

Module must export the following:
	system_continue/3
	system_terminate/4
	system_code_change/4
	system_get_state/1
	system_replace_state/2

Argument Misc can be used to save internal data in a process, for example, its
state. It is sent to Module:system_continue/3 or
Module:system_terminate/4.

 Link to this function

 print_log(Debug)

 View Source

 -spec print_log(Debug) -> ok when Debug :: [dbg_opt()].

Prints the logged system events in the debug structure, using FormFunc as
defined when the event was generated by a call to handle_debug/4.

 Callbacks

 Link to this callback

 system_code_change(Misc, Module, OldVsn, Extra)

 View Source

 -callback system_code_change(Misc, Module, OldVsn, Extra) -> {ok, NMisc}
 when
 Misc :: term(),
 OldVsn :: undefined | term(),
 Module :: atom(),
 Extra :: term(),
 NMisc :: term().

Called from handle_system_msg/6 when the process is to perform a code change.
The code change is used when the internal data structure has changed. This
function converts argument Misc to the new data structure. OldVsn is
attribute vsn of the old version of the Module. If no such attribute is
defined, the atom undefined is sent.

 Link to this callback

 system_continue(Parent, Debug, Misc)

 View Source

 -callback system_continue(Parent, Debug, Misc) -> no_return()
 when Parent :: pid(), Debug :: [dbg_opt()], Misc :: term().

Called from handle_system_msg/6 when the process is to continue its execution
(for example, after it has been suspended). This function never returns.

 Link to this callback

 system_get_state(Misc)

 View Source

 (since OTP 17.0)

 -callback system_get_state(Misc) -> {ok, State} when Misc :: term(), State :: term().

Called from handle_system_msg/6 when the process is to return a term that
reflects its current state. State is the value returned by get_state/2.

 Link to this callback

 system_replace_state(StateFun, Misc)

 View Source

 (since OTP 17.0)

 -callback system_replace_state(StateFun, Misc) -> {ok, NState, NMisc}
 when
 Misc :: term(),
 NState :: term(),
 NMisc :: term(),
 StateFun :: fun((State :: term()) -> NState).

Called from handle_system_msg/6 when the process is to replace its current
state. NState is the value returned by replace_state/3.

 Link to this callback

 system_terminate(Reason, Parent, Debug, Misc)

 View Source

 -callback system_terminate(Reason, Parent, Debug, Misc) -> no_return()
 when Reason :: term(), Parent :: pid(), Debug :: [dbg_opt()], Misc :: term().

Called from handle_system_msg/6 when the process is to terminate. For example,
this function is called when the process is suspended and its parent orders
shutdown. It gives the process a chance to do a cleanup. This function never
returns.

 Functions

 Link to this function

 change_code(Name, Module, OldVsn, Extra)

 View Source

 -spec change_code(Name, Module, OldVsn, Extra) -> ok | {error, Reason}
 when
 Name :: name(),
 Module :: module(),
 OldVsn :: undefined | term(),
 Extra :: term(),
 Reason :: term().

Equivalent to change_code(Name, Module, OldVsn, Extra, 5000).

 Link to this function

 change_code(Name, Module, OldVsn, Extra, Timeout)

 View Source

 -spec change_code(Name, Module, OldVsn, Extra, Timeout) -> ok | {error, Reason}
 when
 Name :: name(),
 Module :: module(),
 OldVsn :: undefined | term(),
 Extra :: term(),
 Timeout :: timeout(),
 Reason :: term().

Tells the process to change code.
The process must be suspended to handle this message.
Argument Extra is reserved for each process to use as its own.
Function Module:system_code_change/4 is called.
OldVsn is the old version of the Module.

 Link to this function

 get_state(Name)

 View Source

 (since OTP R16B01)

 -spec get_state(Name) -> State when Name :: name(), State :: term().

Equivalent to get_state(Name, 5000).

 Link to this function

 get_state(Name, Timeout)

 View Source

 (since OTP R16B01)

 -spec get_state(Name, Timeout) -> State when Name :: name(), Timeout :: timeout(), State :: term().

Gets the state of the process.
Note
These functions are intended only to help with debugging. They are provided
for convenience, allowing developers to avoid having to create their own state
extraction functions and also avoid having to interactively extract the state
from the return values of get_status/1 or get_status/2 while debugging.

The value of State varies for different types of processes, as follows:
	For a gen_server process, the returned State is the state of the
callback module.
	For a gen_statem process, State is the tuple
{CurrentState,CurrentData}.
	For a gen_event process, State is a list of tuples, where each tuple
corresponds to an event handler registered in the process and contains
{Module, Id, HandlerState}, as follows:	Module - The module name of the event handler.

	Id - The ID of the handler (which is false if it was registered
without an ID).

	HandlerState - The state of the handler.

If the callback module exports a function
system_get_state/1, it is called in the target
process to get its state. Its argument is the same as the Misc value returned
by get_status/1,2, and function
Module:system_get_state/1 is expected to extract the
state of the callback module from it. Function
system_get_state/1 must return {ok, State}, where
State is the state of the callback module.
If the callback module does not export a
system_get_state/1 function, get_state/1,2 assumes
that the Misc value is the state of the callback module and returns it
directly instead.
If the callback module's system_get_state/1 function
crashes or throws an exception, the caller exits with error
{callback_failed, {Module, system_get_state}, {Class, Reason}}, where Module
is the name of the callback module and Class and Reason indicate details of
the exception.
Function system_get_state/1 is primarily useful for
user-defined behaviors and modules that implement OTP
special processes. The gen_server,
gen_statem, and gen_event OTP behavior modules export this function, so
callback modules for those behaviors need not to supply their own.
For more information about a process, including its state, see get_status/1
and get_status/2.

 Link to this function

 get_status(Name)

 View Source

 -spec get_status(Name) -> Status
 when
 Name :: name(),
 Status :: {status, Pid :: pid(), {module, Module :: module()}, [SItem]},
 SItem ::
 (PDict :: [{Key :: term(), Value :: term()}]) |
 (SysState :: running | suspended) |
 (Parent :: pid()) |
 (Dbg :: [dbg_opt()]) |
 (Misc :: term()).

Equivalent to get_status(Name, 5000).

 Link to this function

 get_status(Name, Timeout)

 View Source

 -spec get_status(Name, Timeout) -> Status
 when
 Name :: name(),
 Timeout :: timeout(),
 Status :: {status, Pid :: pid(), {module, Module :: module()}, [SItem]},
 SItem ::
 (PDict :: [{Key :: term(), Value :: term()}]) |
 (SysState :: running | suspended) |
 (Parent :: pid()) |
 (Dbg :: [dbg_opt()]) |
 (Misc :: term()).

Gets the status of the process.
The value of Misc varies for different types of processes, for example:
	A gen_server process returns the state of the callback module.
	A gen_statem process returns information, such as its current state name
and state data.
	A gen_event process returns information about each of its registered
handlers.

Callback modules for gen_server, gen_statem, and gen_event can also change
the value of Misc by exporting a function format_status/2, which contributes
module-specific information. For details, see gen_server:format_status/2,
gen_statem:format_status/2, and gen_event:format_status/2.

 Link to this function

 install(Name, FuncSpec)

 View Source

 -spec install(Name, FuncSpec) -> ok
 when
 Name :: name(),
 FuncSpec :: {Func, FuncState} | {FuncId, Func, FuncState},
 FuncId :: term(),
 Func :: dbg_fun(),
 FuncState :: term().

Equivalent to install(Name, FuncSpec, 5000).

 Link to this function

 install(Name, FuncSpec, Timeout)

 View Source

 -spec install(Name, FuncSpec, Timeout) -> ok
 when
 Name :: name(),
 FuncSpec :: {Func, FuncState} | {FuncId, Func, FuncState},
 FuncId :: term(),
 Func :: dbg_fun(),
 FuncState :: term(),
 Timeout :: timeout().

Enables installation of alternative debug functions. An example of such a
function is a trigger, a function that waits for some special event and performs
some action when the event is generated. For example, turning on low-level
tracing.
Func is called whenever a system event is generated. This function is to
return done, or a new Func state. In the first case, the function is
removed. It is also removed if the function fails. If one debug function should
be installed more times, a unique FuncId must be specified for each
installation.

 Link to this function

 log(Name, Flag)

 View Source

 -spec log(Name, Flag) -> ok | {ok, [system_event()]}
 when Name :: name(), Flag :: true | {true, N :: pos_integer()} | false | get | print.

Equivalent to log(Name, Flag, 5000).

 Link to this function

 log(Name, Flag, Timeout)

 View Source

 -spec log(Name, Flag, Timeout) -> ok | {ok, [system_event()]}
 when
 Name :: name(),
 Flag :: true | {true, N :: pos_integer()} | false | get | print,
 Timeout :: timeout().

Turns the logging of system events on or off. If on, a maximum of N events are
kept in the debug structure (default is 10).
If Flag is get, a list of all logged events is returned.
If Flag is print, the logged events are printed to
standard_io.
The events are formatted with a function that is defined by the process that
generated the event (with a call to handle_debug/4).

 Link to this function

 log_to_file(Name, Flag)

 View Source

 -spec log_to_file(Name, Flag) -> ok | {error, open_file}
 when Name :: name(), Flag :: (FileName :: string()) | false.

Equivalent to log_to_file(Name, FileName, 5000).

 Link to this function

 log_to_file(Name, Flag, Timeout)

 View Source

 -spec log_to_file(Name, Flag, Timeout) -> ok | {error, open_file}
 when Name :: name(), Flag :: (FileName :: string()) | false, Timeout :: timeout().

Enables or disables the logging of all system events in text format to the file.
The events are formatted with a function that is defined by the process that
generated the event (with a call to handle_debug/4). The file is opened with
encoding UTF-8.

 Link to this function

 no_debug(Name)

 View Source

 -spec no_debug(Name) -> ok when Name :: name().

Equivalent to no_debug(Name, 5000).

 Link to this function

 no_debug(Name, Timeout)

 View Source

 -spec no_debug(Name, Timeout) -> ok when Name :: name(), Timeout :: timeout().

Turns off all debugging for the process. This includes functions that are
installed explicitly with function install/2,3, for example,
triggers.

 Link to this function

 remove(Name, FuncOrFuncId)

 View Source

 -spec remove(Name, Func | FuncId) -> ok when Name :: name(), Func :: dbg_fun(), FuncId :: term().

Equivalent to remove(Name, FuncOrFuncId, 5000).

 Link to this function

 remove(Name, FuncOrFuncId, Timeout)

 View Source

 -spec remove(Name, Func | FuncId, Timeout) -> ok
 when Name :: name(), Func :: dbg_fun(), FuncId :: term(), Timeout :: timeout().

Removes an installed debug function from the process. Func or FuncId must be
the same as previously installed.

 Link to this function

 replace_state(Name, StateFun)

 View Source

 (since OTP R16B01)

 -spec replace_state(Name, StateFun) -> NewState
 when
 Name :: name(),
 StateFun :: fun((State :: term()) -> NewState :: term()),
 NewState :: term().

Equivalent to replace_state(Name, StateFun, 5000).

 Link to this function

 replace_state(Name, StateFun, Timeout)

 View Source

 (since OTP R16B01)

 -spec replace_state(Name, StateFun, Timeout) -> NewState
 when
 Name :: name(),
 StateFun :: fun((State :: term()) -> NewState :: term()),
 Timeout :: timeout(),
 NewState :: term().

Replaces the state of the process, and returns the new state.
Note
These functions are intended only to help with debugging, and are not to be
called from normal code. They are provided for convenience, allowing
developers to avoid having to create their own custom state replacement
functions.

Function StateFun provides a new state for the process. Argument State and
the NewState return value of StateFun vary for different types of processes
as follows:
	For a gen_server process, State is the state of the callback module and
NewState is a new instance of that state.

	For a gen_statem process, State is the tuple
{CurrentState,CurrentData}, and NewState is a similar tuple, which can
contain a new current state, new state data, or both.

	For a gen_event process, State is the tuple {Module, Id, HandlerState}
as follows:
	Module - The module name of the event handler.

	Id - The ID of the handler (which is false if it was registered
without an ID).

	HandlerState - The state of the handler.

NewState is a similar tuple where Module and Id are to have the same
values as in State, but the value of HandlerState can be different.
Returning a NewState, whose Module or Id values differ from those of
State, leaves the state of the event handler unchanged. For a gen_event
process, StateFun is called once for each event handler registered in the
gen_event process.

If a StateFun function decides not to effect any change in process state, then
regardless of process type, it can return its State argument.
If a StateFun function crashes or throws an exception, the original state of
the process is unchanged for gen_server, and gen_statem processes. For
gen_event processes, a crashing or failing StateFun function means that only
the state of the particular event handler it was working on when it failed or
crashed is unchanged; it can still succeed in changing the states of other event
handlers registered in the same gen_event process.
If the callback module exports a system_replace_state/2 function, it is
called in the target process to replace its state using StateFun. Its two
arguments are StateFun and Misc, where Misc is the same as the Misc
value returned by get_status/1,2. A
system_replace_state/2 function is expected to
return {ok, NewState, NewMisc}, where NewState is the new state of the
callback module, obtained by calling StateFun, and NewMisc is a possibly new
value used to replace the original Misc (required as Misc often contains the
state of the callback module within it).
If the callback module does not export a
system_replace_state/2 function,
replace_state/2,3 assumes that Misc is the state of the
callback module, passes it to StateFun and uses the return value as both the
new state and as the new value of Misc.
If the callback module's function
system_replace_state/2 crashes or throws an
exception, the caller exits with error
{callback_failed, {Module, system_replace_state}, {Class, Reason}}, where
Module is the name of the callback module and Class and Reason indicate
details of the exception. If the callback module does not provide a
system_replace_state/2 function and StateFun
crashes or throws an exception, the caller exits with error
{callback_failed, StateFun, {Class, Reason}}.
Function system_replace_state/2 is primarily
useful for user-defined behaviors and modules that implement OTP
special processes. The OTP behavior
modules gen_server, gen_statem, and gen_event export this function, so
callback modules for those behaviors need not to supply their own.

 Link to this function

 resume(Name)

 View Source

 -spec resume(Name) -> ok when Name :: name().

Equivalent to resume(Name, 5000).

 Link to this function

 resume(Name, Timeout)

 View Source

 -spec resume(Name, Timeout) -> ok when Name :: name(), Timeout :: timeout().

Resumes a suspended process.

 Link to this function

 statistics(Name, Flag)

 View Source

 -spec statistics(Name, Flag) -> ok | {ok, Statistics}
 when
 Name :: name(),
 Flag :: true | false | get,
 Statistics :: [StatisticsTuple] | no_statistics,
 StatisticsTuple ::
 {start_time, DateTime1} |
 {current_time, DateTime2} |
 {reductions, non_neg_integer()} |
 {messages_in, non_neg_integer()} |
 {messages_out, non_neg_integer()},
 DateTime1 :: file:date_time(),
 DateTime2 :: file:date_time().

Equivalent to statistics(Name, Flag, 5000).

 Link to this function

 statistics(Name, Flag, Timeout)

 View Source

 -spec statistics(Name, Flag, Timeout) -> ok | {ok, Statistics}
 when
 Name :: name(),
 Flag :: true | false | get,
 Statistics :: [StatisticsTuple] | no_statistics,
 StatisticsTuple ::
 {start_time, DateTime1} |
 {current_time, DateTime2} |
 {reductions, non_neg_integer()} |
 {messages_in, non_neg_integer()} |
 {messages_out, non_neg_integer()},
 DateTime1 :: file:date_time(),
 DateTime2 :: file:date_time(),
 Timeout :: timeout().

Enables or disables the collection of statistics. If Flag is get, the
statistical collection is returned.

 Link to this function

 suspend(Name)

 View Source

 -spec suspend(Name) -> ok when Name :: name().

Equivalent to suspend(Name, 5000).

 Link to this function

 suspend(Name, Timeout)

 View Source

 -spec suspend(Name, Timeout) -> ok when Name :: name(), Timeout :: timeout().

Suspends the process. When the process is suspended, it only responds to other
system messages, but not other messages.

 Link to this function

 terminate(Name, Reason)

 View Source

 (since OTP 18.0)

 -spec terminate(Name, Reason) -> ok when Name :: name(), Reason :: term().

Equivalent to terminate(Name, Reason, 5000).

 Link to this function

 terminate(Name, Reason, Timeout)

 View Source

 (since OTP 18.0)

 -spec terminate(Name, Reason, Timeout) -> ok when Name :: name(), Reason :: term(), Timeout :: timeout().

Orders the process to terminate with the specified Reason. The termination is
done asynchronously, so it is not guaranteed that the process is terminated when
the function returns.

 Link to this function

 trace(Name, Flag)

 View Source

 -spec trace(Name, Flag) -> ok when Name :: name(), Flag :: boolean().

Equivalent to trace(Name, Flag, 5000).

 Link to this function

 trace(Name, Flag, Timeout)

 View Source

 -spec trace(Name, Flag, Timeout) -> ok when Name :: name(), Flag :: boolean(), Timeout :: timeout().

Prints all system events on standard_io. The events
are formatted with a function that is defined by the process that generated the
event (with a call to handle_debug/4).

 c - stdlib v5.2.1

c

Command line interface module.
This module enables users to enter the short form of some commonly used
commands.
Note
These functions are intended for interactive use in the Erlang shell only. The
module prefix can be omitted.

 See Also

filename, compile, erlang, yecc, xref

 Summary

 Types

 cmd_line_arg()

 h_return()

 hcb_return()

 hf_return()

 ht_return()

 Functions

 bt(Pid)

 Stack backtrace for a process. Equivalent to
erlang:process_display(Pid, backtrace).

 c(Module)

 Works like c(Module, []).

 c(Module, Options)

 Compiles and then purges and loads the code for a module. Module can be either
a module name or a source file path, with or without .erl extension.

 c(Module, Options, Filter)

 Compiles and then purges and loads the code for module Module, which must be
an atom.

 cd(Dir)

 Changes working directory to Dir, which can be a relative name, and then
prints the name of the new working directory.

 erlangrc(PathList)

 Search PathList and load .erlang resource file if found.

 flush()

 Flushes any messages sent to the shell.

 h(Module)

 Print the documentation for Module

 h(Module, Function)

 Print the documentation for all Module:Functions (regardless of arity).

 h(Module, Function, Arity)

 Print the documentation for Module:Function/Arity.

 hcb(Module)

 Print the callback documentation for Module

 hcb(Module, Callback)

 Print the callback documentation for all Module:Callbacks (regardless of
arity).

 hcb(Module, Callback, Arity)

 Print the callback documentation for Module:Callback/Arity.

 help()

 Displays help information: all valid shell internal commands, and commands in
this module.

 ht(Module)

 Print the type documentation for Module

 ht(Module, Type)

 Print the type documentation for Type in Module regardless of arity.

 ht(Module, Type, Arity)

 Print the type documentation for Type/Arity in Module.

 i()

 Equivalent to ni/0.

 i(X, Y, Z)

 Displays information about a process, Equivalent to
process_info(pid(X, Y, Z)), but location transparent.

 l(Module)

 Purges and loads, or reloads, a module by calling code:purge(Module) followed
by code:load_file(Module).

 lc(Files)

 lc(Files) -> ok

 lm()

 Reloads all currently loaded modules that have changed on disk (see mm/0).
Returns the list of results from calling l(M) for each such M.

 ls()

 Lists files in the current directory.

 ls(Dir)

 Lists files in directory Dir or, if Dir is a file, only lists it.

 m()

 Displays information about the loaded modules, including the files from which
they have been loaded.

 m(Module)

 Displays information about Module.

 memory()

 Memory allocation information. Equivalent to erlang:memory/0.

 memory(TypeSpec)

 Memory allocation information. Equivalent to erlang:memory/1.

 mm()

 Lists all modified modules. Shorthand for code:modified_modules/0.

 nc(File)

 Equivalent to nc/2.

 nc(File, Options)

 Compiles and then loads the code for a file on all nodes. Options defaults to
[]. Compilation is equivalent to

 ni()

 i/0 displays system information, listing information about all processes.
ni/0 does the same, but for all nodes in the network.

 nl(Module)

 Loads Module on all nodes.

 nregs()

 Equivalent to regs/0.

 pid(X, Y, Z)

 Converts X, Y, Z to pid <X.Y.Z>. This function is only to be used when
debugging.

 pwd()

 Prints the name of the working directory.

 q()

 This function is shorthand for init:stop(), that is, it causes the node to
stop in a controlled fashion.

 regs()

 regs/0 displays information about all registered processes. nregs/0 does the
same, but for all nodes in the network.

 uptime()

 Prints the node uptime (as specified by erlang:statistics(wall_clock)) in
human-readable form.

 xm(M)

 xm(ModSpec) -> term()

 y(File)

 y(File) -> YeccRet

 y(File, Opts)

 y(File, Options) -> YeccRet

 Types

 Link to this type

 cmd_line_arg()

 View Source

 (not exported)

 -type cmd_line_arg() :: atom() | string().

 Link to this type

 h_return()

 View Source

 (not exported)

 -type h_return() :: ok | {error, missing | {unknown_format, unicode:chardata()}}.

 Link to this type

 hcb_return()

 View Source

 (not exported)

 -type hcb_return() :: h_return() | {error, callback_missing}.

 Link to this type

 hf_return()

 View Source

 (not exported)

 -type hf_return() :: h_return() | {error, function_missing}.

 Link to this type

 ht_return()

 View Source

 (not exported)

 -type ht_return() :: h_return() | {error, type_missing}.

 Functions

 Link to this function

 bt(Pid)

 View Source

 -spec bt(Pid) -> ok | undefined when Pid :: pid().

Stack backtrace for a process. Equivalent to
erlang:process_display(Pid, backtrace).

 Link to this function

 c(Module)

 View Source

 -spec c(Module) -> {ok, ModuleName} | error when Module :: file:name(), ModuleName :: module().

Works like c(Module, []).

 Link to this function

 c(Module, Options)

 View Source

 -spec c(Module, Options) -> {ok, ModuleName} | error
 when
 Module :: file:name(),
 Options :: [compile:option()] | compile:option(),
 ModuleName :: module().

Compiles and then purges and loads the code for a module. Module can be either
a module name or a source file path, with or without .erl extension.
If Module is a string, it is assumed to be a source file path, and the
compiler will attempt to compile the source file with the options Options. If
compilation fails, the old object file (if any) is deleted.
If Module is an atom, a source file with that exact name or with .erl
extension will be looked for. If found, the source file is compiled with the
options Options. If compilation fails, the old object file (if any) is
deleted.
If Module is an atom and is not the path of a source file, then the code path
is searched to locate the object file for the module and extract its original
compiler options and source path. If the source file is not found in the
original location, filelib:find_source/1 is used to search for it relative to
the directory of the object file.
The source file is compiled with the the original options appended to the given
Options, the output replacing the old object file if and only if compilation
succeeds.
Notice that purging the code means that any processes lingering in old code for
the module are killed without warning. For more information, see the code
module.

 Link to this function

 c(Module, Options, Filter)

 View Source

 (since OTP 20.0)

 -spec c(Module, Options, Filter) -> {ok, ModuleName} | error
 when
 Module :: atom(),
 Options :: [compile:option()],
 Filter :: fun((compile:option()) -> boolean()),
 ModuleName :: module().

Compiles and then purges and loads the code for module Module, which must be
an atom.
The code path is searched to locate the object file for module Module and
extract its original compiler options and source path. If the source file is not
found in the original location, filelib:find_source/1 is used to search for it
relative to the directory of the object file.
The source file is compiled with the the original options appended to the given
Options, the output replacing the old object file if and only if compilation
succeeds. The function Filter specifies which elements to remove from the
original compiler options before the new options are added. The Filter fun
should return true for options to keep, and false for options to remove.
Notice that purging the code means that any processes lingering in old code for
the module are killed without warning. For more information, see the code
module.

 Link to this function

 cd(Dir)

 View Source

 -spec cd(Dir) -> ok when Dir :: file:name().

Changes working directory to Dir, which can be a relative name, and then
prints the name of the new working directory.
Example:
2> cd("../erlang").
/home/ron/erlang

 Link to this function

 erlangrc(PathList)

 View Source

 (since OTP 21.0)

 -spec erlangrc(PathList) -> {ok, file:filename()} | {error, term()}
 when PathList :: [Dir :: file:name()].

Search PathList and load .erlang resource file if found.

 Link to this function

 flush()

 View Source

 -spec flush() -> ok.

Flushes any messages sent to the shell.

 Link to this function

 h(Module)

 View Source

 (since OTP 23.0)

 -spec h(module()) -> h_return().

Print the documentation for Module

 Link to this function

 h(Module, Function)

 View Source

 (since OTP 23.0)

 -spec h(module(), function()) -> hf_return().

Print the documentation for all Module:Functions (regardless of arity).

 Link to this function

 h(Module, Function, Arity)

 View Source

 (since OTP 23.0)

 -spec h(module(), function(), arity()) -> hf_return().

Print the documentation for Module:Function/Arity.

 Link to this function

 hcb(Module)

 View Source

 (since OTP 23.0)

 -spec hcb(module()) -> h_return().

Print the callback documentation for Module

 Link to this function

 hcb(Module, Callback)

 View Source

 (since OTP 23.0)

 -spec hcb(module(), Callback :: atom()) -> hcb_return().

Print the callback documentation for all Module:Callbacks (regardless of
arity).

 Link to this function

 hcb(Module, Callback, Arity)

 View Source

 (since OTP 23.0)

 -spec hcb(module(), Callback :: atom(), arity()) -> hcb_return().

Print the callback documentation for Module:Callback/Arity.

 Link to this function

 help()

 View Source

 -spec help() -> ok.

Displays help information: all valid shell internal commands, and commands in
this module.

 Link to this function

 ht(Module)

 View Source

 (since OTP 23.0)

 -spec ht(module()) -> h_return().

Print the type documentation for Module

 Link to this function

 ht(Module, Type)

 View Source

 (since OTP 23.0)

 -spec ht(module(), Type :: atom()) -> ht_return().

Print the type documentation for Type in Module regardless of arity.

 Link to this function

 ht(Module, Type, Arity)

 View Source

 (since OTP 23.0)

 -spec ht(module(), Type :: atom(), arity()) -> ht_return().

Print the type documentation for Type/Arity in Module.

 Link to this function

 i()

 View Source

 -spec i() -> ok.

Equivalent to ni/0.

 Link to this function

 i(X, Y, Z)

 View Source

 -spec i(X, Y, Z) -> [{atom(), term()}]
 when X :: non_neg_integer(), Y :: non_neg_integer(), Z :: non_neg_integer().

Displays information about a process, Equivalent to
process_info(pid(X, Y, Z)), but location transparent.

 Link to this function

 l(Module)

 View Source

 -spec l(Module) -> code:load_ret() when Module :: module().

Purges and loads, or reloads, a module by calling code:purge(Module) followed
by code:load_file(Module).
Notice that purging the code means that any processes lingering in old code for
the module are killed without warning. For more information, see code/3.

 Link to this function

 lc(Files)

 View Source

 -spec lc(Files) -> ok | error when Files :: [File :: cmd_line_arg()].

lc(Files) -> ok
Compiles a list of files by calling
compile:file(File, [report_errors, report_warnings]) for each File in
Files.
For information about File, see file:filename/0.

 Link to this function

 lm()

 View Source

 (since OTP 20.0)

 -spec lm() -> [code:load_ret()].

Reloads all currently loaded modules that have changed on disk (see mm/0).
Returns the list of results from calling l(M) for each such M.

 Link to this function

 ls()

 View Source

 -spec ls() -> ok.

Lists files in the current directory.

 Link to this function

 ls(Dir)

 View Source

 -spec ls(Dir) -> ok when Dir :: file:name().

Lists files in directory Dir or, if Dir is a file, only lists it.

 Link to this function

 m()

 View Source

 -spec m() -> ok.

Displays information about the loaded modules, including the files from which
they have been loaded.

 Link to this function

 m(Module)

 View Source

 -spec m(Module) -> ok when Module :: module().

Displays information about Module.

 Link to this function

 memory()

 View Source

 -spec memory() -> [{Type, Size}] when Type :: atom(), Size :: non_neg_integer().

Memory allocation information. Equivalent to erlang:memory/0.

 Link to this function

 memory(TypeSpec)

 View Source

 -spec memory(Type) -> Size when Type :: atom(), Size :: non_neg_integer();
 (Types) -> [{Type, Size}] when Types :: [Type], Type :: atom(), Size :: non_neg_integer().

Memory allocation information. Equivalent to erlang:memory/1.

 Link to this function

 mm()

 View Source

 (since OTP 20.0)

 -spec mm() -> [module()].

Lists all modified modules. Shorthand for code:modified_modules/0.

 Link to this function

 nc(File)

 View Source

 -spec nc(File) -> {ok, Module} | error when File :: file:name(), Module :: module().

Equivalent to nc/2.

 Link to this function

 nc(File, Options)

 View Source

 -spec nc(File, Options) -> {ok, Module} | error
 when
 File :: file:name(),
 Options :: [Option] | Option,
 Option :: compile:option(),
 Module :: module().

Compiles and then loads the code for a file on all nodes. Options defaults to
[]. Compilation is equivalent to:
compile:file(File, Options ++ [report_errors, report_warnings])

 Link to this function

 ni()

 View Source

 -spec ni() -> ok.

i/0 displays system information, listing information about all processes.
ni/0 does the same, but for all nodes in the network.

 Link to this function

 nl(Module)

 View Source

 -spec nl(Module) -> abcast | error when Module :: module().

Loads Module on all nodes.

 Link to this function

 nregs()

 View Source

 -spec nregs() -> ok.

Equivalent to regs/0.

 Link to this function

 pid(X, Y, Z)

 View Source

 -spec pid(X, Y, Z) -> pid() when X :: non_neg_integer(), Y :: non_neg_integer(), Z :: non_neg_integer().

Converts X, Y, Z to pid <X.Y.Z>. This function is only to be used when
debugging.

 Link to this function

 pwd()

 View Source

 -spec pwd() -> ok.

Prints the name of the working directory.

 Link to this function

 q()

 View Source

 -spec q() -> no_return().

This function is shorthand for init:stop(), that is, it causes the node to
stop in a controlled fashion.

 Link to this function

 regs()

 View Source

 -spec regs() -> ok.

regs/0 displays information about all registered processes. nregs/0 does the
same, but for all nodes in the network.

 Link to this function

 uptime()

 View Source

 (since OTP 18.0)

 -spec uptime() -> ok.

Prints the node uptime (as specified by erlang:statistics(wall_clock)) in
human-readable form.

 Link to this function

 xm(M)

 View Source

 -spec xm(module() | file:filename()) -> XRefMRet :: term().

xm(ModSpec) -> term()
Finds undefined functions, unused functions, and calls to deprecated functions
in a module by calling xref:m/1.

 Link to this function

 y(File)

 View Source

 -spec y(file:name()) -> YeccFileRet :: term().

y(File) -> YeccRet
Generates an LALR-1 parser. Equivalent to:
yecc:file(File)
For information about File = name(), see filename. For information about
YeccRet, see yecc:file/2.

 Link to this function

 y(File, Opts)

 View Source

 -spec y(file:name(), [yecc:option()]) -> YeccFileRet :: yecc:yecc_ret().

y(File, Options) -> YeccRet
Generates an LALR-1 parser. Equivalent to:
yecc:file(File, Options)
For information about File = name(), see filename. For information about
Options and YeccRet, see yecc:file/2.

 edlin - stdlib v5.2.1

edlin

Line and input interpretter for the erlang shell.
This module reads input, handles any escape sequences that have been configured
via edlin_key and outputs action requests. The action requests are handled
either by modules group or the user_drv.

 Key configuration

You can setup a custom key configuration that overrides the default key
configuration. This is done by setting the stdlib application parameter
shell_keymap before Erlang is started. If you
want to have the same keymap in all Erlang shells you can do so by putting a
config file in your user's home directory and then set
ERL_FLAGS to load it at startup. For example:
$ cat $HOME/.erlang_keymap.config
[{stdlib,
 [{shell_keymap,
 #{ normal => #{ "\^[A" => clear } }
 }]
}].
$ ERL_FLAGS="-config $HOME/.erlang_keymap" erl
The current keymap configuration can be fetched through
edlin:keymap(). If a custom keymap or keymap file is specified,
then it will be merged with the default keymap.
The keymap is a map of maps where the keys in the parent map corresponds to
different editing modes in the shell. The valid modes currently supported are
normal and search.
The keys in the child maps are the escape sequences that are sent from the
terminal when a key is pressed and each value is a valid action as seen below.
The default atom is used to specify that an action should happen when a key is
pressed that does not have any mapping. Typically used to exit a mode.
See tty - A Command-Line Interface for more information about
the default keymap.

 Actions

The commands below are the built-in action requests for switching input modes on
the normal shell or navigating, or manipulating the line feed. The line feed
supports multiple lines.
	auto_blink - Automatically close the closest matching opening
parenthesis.

	backward_char - Move backward one character.

	backward_delete_char - Delete the character behind the cursor.

	backward_delete_word - Delete the word behind the cursor.

	backward_kill_line - Delete all characters from the cursor to the
beginning of the line and save them in the kill buffer.

	backward_kill_word - Delete the word behind the cursor and save it in
the kill buffer.

	backward_line - Move backward one line.

	backward_word - Move backward one word.

	beginning_of_expression - Move to the beginning of the expression.

	beginning_of_line - Move to the beginning of the line.

	clear - Clear the screen.

	clear_line - Clear the current expression.

	end_of_expression - Move to the end of the expression.

	end_of_line - Move to the end of the line.

	forward_char - Move forward one character.

	forward_delete_char - Delete the character under the cursor.

	forward_line - Move forward one line.

	forward_word - Move forward one word.

	help - Display help for the module or function closest on the left of
the cursor.

	history_down - Move to the next item in the history.

	history_up - Move to the previous item in the history.

	kill_line - Delete all characters from the cursor to the end of the line
and save them in the kill buffer.

	kill_word - Delete the word under the cursor and save it in the kill
buffer.

	move_expand_down - Move down one line in the expand area e.g. help or
tab completion pager.

	move_expand_up - Move up one line in the expand area e.g. help or tab
completion pager.

	new_line_finish - Add a newline at the end of the line and try to
evaluate the current expression.

	newline - Add a newline at the cursor position.

	open_editor - Open the current line in an editor e.g. EDITOR="code -w"
opens a buffer in vs code. Note that you need to pass a flag to the editor so
that it signals the shell when you close the buffer.

	redraw_line - Redraw the current line.

	scroll_expand_down - Scroll down five lines in the expand area e.g. help
or tab completion pager.

	scroll_expand_up - Scroll up five lines in the expand area e.g. help or
tab completion pager.

	search_cancel - Cancel the current search.

	search_found - Accept the current search result and submit it.

	search_quit - Accept the current search result, but edit it before
submitting.

	search - Enter search mode, search the history.

	skip_down - Skip to the next line in the history that matches the
current search expression.

	skip_up - Skip to the previous line in the history that matches the
current search expression.

	tab_expand_full - Output all possible tab completions.

	tab_expand_quit - Go back to normal mode.

	tab_expand - Autocomplete the current word, or show 5 lines of possible
completions.

	transpose_char - Swap the character behind the cursor with the one in
front of it.

	transpose_word - Swap the word behind the cursor with the one in front
of it.

	yank - Insert the contents of the kill buffer at the cursor position.

 Summary

 Types

 keymap()

 A map of maps for each shell mode containing key, action pairs.

 Functions

 keymap()

 Get the current keymap used in the shell. Each key in the parent map represents
a shell mode e.g. normal or search. Each map associated with the shell
modes contains key sequences represented as strings, paired with an action,
which is one of the valid actions mentioned above.

 Types

 Link to this type

 keymap()

 View Source

 (not exported)

 (since OTP 26.1)

 -type keymap() :: #{atom() => #{string() | default => atom()}}.

A map of maps for each shell mode containing key, action pairs.

 Functions

 Link to this function

 keymap()

 View Source

 (since OTP 26.1)

 -spec keymap() -> keymap().

Get the current keymap used in the shell. Each key in the parent map represents
a shell mode e.g. normal or search. Each map associated with the shell
modes contains key sequences represented as strings, paired with an action,
which is one of the valid actions mentioned above.

 edlin_expand - stdlib v5.2.1

edlin_expand

Shell expansion and formatting of expansion suggestions.
This module provides an expand_fun for the erlang shell
expand/1,2. It is possible to override this expand_fun
io:setopts/1,2.

 Summary

 Functions

 expand(Bef0)

 Equivalent to expand/2.

 expand(Bef0, Opts)

 The standard expansion function is able to expand strings to valid erlang terms.
This includes module names

 Functions

 Link to this function

 expand(Bef0)

 View Source

 (since OTP 26.0)

 -spec expand(Bef0) -> {Res, Completion, Matches}
 when
 Bef0 :: string(),
 Res :: yes | no,
 Completion :: string(),
 Matches :: [Element] | [Section],
 Element :: {string(), [ElementOption]},
 ElementOption :: {ending, string()},
 Section :: #{title := string(), elems := Matches, options := SectionOption},
 SectionOption ::
 {highlight_all} |
 {highlight, string()} |
 {highlight_param, integer()} |
 {hide, title} |
 {hide, result} |
 {separator, string()}.

Equivalent to expand/2.

 Link to this function

 expand(Bef0, Opts)

 View Source

 (since OTP 26.0)

 -spec expand(Bef0, Opts) -> {Res, Completion, Matches}
 when
 Bef0 :: string(),
 Opts :: [Option],
 Option :: {legacy_output, boolean()},
 Res :: yes | no,
 Completion :: string(),
 Matches :: [Element] | [Section],
 Element :: {string(), [ElementOption]},
 ElementOption :: {ending, string()},
 Section :: #{title := string(), elems := Matches, options := SectionOption},
 SectionOption ::
 {highlight_all} |
 {highlight, string()} |
 {highlight_param, integer()} |
 {hide, title} |
 {hide, result} |
 {separator, string()}.

The standard expansion function is able to expand strings to valid erlang terms.
This includes module names:
1> erla
modules
erlang:
function names:
1> is_ato
functions
is_atom(
2> erlang:is_ato
functions
is_atom(
function types:
1> erlang:is_atom(
typespecs
erlang:is_atom(Term)
any()
and automatically add , or closing parenthesis when no other valid expansion is
possible. The expand function also completes: shell bindings, record names,
record fields and map keys.
As seen below, function headers are grouped together if they've got the same
expansion suggestion, in this case all had the same suggestions, that is '}'.
There is also limited support for filtering out function typespecs that that
does not match the types on the terms on the prompt. Only 4 suggestions are
shown below but there exists plenty more typespecs for erlang:system_info.
1> erlang:system_info({allocator, my_allocator
typespecs
erlang:system_info(wordsize | {wordsize, ...} | {wordsize, ...})
erlang:system_info({allocator, ...})
erlang:system_info({allocator_sizes, ...})
erlang:system_info({cpu_topology, ...})
}
The return type of expand function specifies either a list of Element tuples
or a list of Section maps. The section concept was introduced to enable more
formatting options for the expansion results. For example, the shell expansion
has support to highlight text and hide suggestions. There are also a
{highlight, Text} that highlights all occurances of Text in the title, and a
highlight_all for simplicity which highlights the whole title, as can be seen
above for functions and typespecs.
By setting the {hide, result} or {hide, title} options you may hide
suggestions. Sometimes the title isn't useful and just produces text noise, in
the example above the any/0 result is part of a section with title Types.
Hiding results is currently not in use, but the idea is that a section can be
selected in the expand area and all the other section entries should be
collapsed.
Its possible to set a custom separator between the title and the results. This
can be done with {separator, Separator}. By default its set to be \n, some
results display a type_name() ::followed by all types that define
type_name().
The {ending, Text} ElementOption just appends Text to the Element.

 shell - stdlib v5.2.1

shell

The Erlang shell.
The shell is a user interface program for entering expression sequences. The
expressions are evaluated and a value is returned. The shell provides an Emacs
like set of shortcuts for editing the text of the current line. See
tty - A Command-Line Interface in the ERTS User's Guide for a
list of all available shortcuts. You may also change the shortcuts to suit your
preferences more, see edlin - line editor in the shell.
A history mechanism saves previous commands and their values, which can then be
incorporated in later commands. How many commands and results to save can be
determined by the user, either interactively, by calling history/1 and
results/1, or by setting the application configuration parameters
shell_history_length and
shell_saved_results for the STDLIB
application. The shell history can be saved to disk by setting the application
configuration parameter
shell_history for the Kernel
application.
The shell uses a helper process for evaluating commands to protect the history
mechanism from exceptions. By default the evaluator process is killed when an
exception occurs, but by calling catch_exception/1 or by setting the
application configuration parameter shell_catch_exception for the STDLIB
application this behavior can be changed. See also the example below.
Variable bindings, and local process dictionary changes that are generated in
user expressions are preserved, and the variables can be used in later commands
to access their values. The bindings can also be forgotten so the variables can
be reused.
The special shell commands all have the syntax of (local) function calls. They
are evaluated as normal function calls and many commands can be used in one
expression sequence.
If a command (local function call) is not recognized by the shell, an attempt is
first made to find the function in module user_default, where customized local
commands can be placed. If found, the function is evaluated, otherwise an
attempt is made to evaluate the function in module shell_default. Module
user_default must be explicitly loaded.
The shell also permits the user to start multiple concurrent jobs. A job can be
regarded as a set of processes that can communicate with the shell.
There is some support for reading and printing records in the shell. During
compilation record expressions are translated to tuple expressions. In runtime
it is not known whether a tuple represents a record, and the record definitions
used by the compiler are unavailable at runtime. So, to read the record syntax
and print tuples as records when possible, record definitions must be maintained
by the shell itself.
The shell commands for reading, defining, forgetting, listing, and printing
records are described below. Notice that each job has its own set of record
definitions. To facilitate matters, record definitions in modules
shell_default and user_default (if loaded) are read each time a new job is
started. For example, adding the following line to user_default makes the
definition of file_info readily available in the shell:
-include_lib("kernel/include/file.hrl").
The shell runs in two modes:
	Normal (possibly restricted) mode, in which commands can be edited and
expressions evaluated
	Job Control Mode, JCL, in which jobs can be started, killed, detached, and
connected

Only the currently connected job can 'talk' to the shell.

 Shell Commands

The commands below are the built-in shell commands that are always available. In
most system the commands listed in the c module are also available in the
shell.
	b() - Prints the current variable bindings.

	f() - Removes all variable bindings.

	f(X) - Removes the binding of variable X.
Note
If a huge value is stored in a variable binding, you have to both call
f(X) and call history(0) or results(0)
to free up that memory.

	h() - Prints the history list.

	history(N) - Sets the number of previous commands to keep
in the history list to N. The previous number is returned. Defaults to 20.

	results(N) - Sets the number of results from previous
commands to keep in the history list to N. The previous number is returned.
Defaults to 20.

	e(N) - Repeats command N, if N is positive. If it is negative, the
Nth previous command is repeated (that is, e(-1) repeats the previous
command).

	v(N) - Uses the return value of command N in the current command, if
N is positive. If it is negative, the return value of the Nth previous
command is used (that is, v(-1) uses the value of the previous command).

	help() - Evaluates shell_default:help().

	h(Module, Function) - Print the documentation for Module:Function in
the shell if available.

	ht(Module, Type) - Print the documentation for Module:Type in the
shell if available.

	hcb(Module, Callback) - Print the documentation for Module:Callback in
the shell if available.

	c(Mod) - Evaluates shell_default:c(Mod). This compiles and loads the
module Mod and purges old versions of the code, if necessary. Mod can be
either a module name or a a source file path, with or without .erl
extension.

	catch_exception(Bool) - Sets the exception
handling of the evaluator process. The previous exception handling is
returned. The default (false) is to kill the evaluator process when an
exception occurs, which causes the shell to create a new evaluator process.
When the exception handling is set to true, the evaluator process lives on.
This means, for example, that ports and ETS tables as well as processes linked
to the evaluator process survive the exception.

	rd(RecordName, RecordDefinition) - Defines a record in the shell.
RecordName is an atom and RecordDefinition lists the field names and the
default values. Usually record definitions are made known to the shell by use
of the rr/1,2,3 commands described below, but sometimes it is handy to
define records on the fly.

	rf() - Removes all record definitions, then reads record definitions
from the modules shell_default and user_default (if loaded). Returns the
names of the records defined.

	rf(RecordNames) - Removes selected record definitions. RecordNames is
a record name or a list of record names. To remove all record definitions, use
'_'.

	rl() - Prints all record definitions.

	rl(RecordNames) - Prints selected record definitions. RecordNames is a
record name or a list of record names.

	rp(Term) - Prints a term using the record definitions known to the
shell. All of Term is printed; the depth is not limited as is the case when
a return value is printed.

	rr(Module) - Reads record definitions from a module's BEAM file. If
there are no record definitions in the BEAM file, the source file is located
and read instead. Returns the names of the record definitions read. Module
is an atom.

	rr(Wildcard) - Reads record definitions from files. Existing definitions
of any of the record names read are replaced. Wildcard is a wildcard string
as defined in filelib, but not an atom.

	rr(WildcardOrModule, RecordNames) - Reads record definitions from files
but discards record names not mentioned in RecordNames (a record name or a
list of record names).

	rr(WildcardOrModule, RecordNames, Options) - Reads record definitions
from files. The compiler options {i, Dir}, {d, Macro}, and
{d, Macro, Value} are recognized and used for setting up the include path
and macro definitions. To read all record definitions, use '_' as value of
RecordNames.

	lf() - Outputs locally defined function with function specs if they
exist.

	lt() - Outputs locally defined types.

	lr() - Outputs locally defined records.

	ff() - Forget locally defined functions (including function specs if
they exist).

	ff({FunName,Arity}) - Forget a locally defined function (including
function spec if it exist). Where FunName is the name of the function as an
atom and Arity is an integer.

	tf() - Forget locally defined types.

	tf(Type) - Forget locally defined type where Type is the name of the
type represented as an atom.

	fl() - Forget locally defined functions, types and records.

	save_module(FilePath) - Saves all locally defined functions, types and
records to a module file, where FilePath should include both the path to the
file and the name of the module with .erl suffix.
Example: src/my_module.erl

 Example

The following example is a long dialog with the shell. Commands starting with
> are inputs to the shell. All other lines are output from the shell.
strider 1> erl
Erlang (BEAM) emulator version 5.3 [hipe] [threads:0]

Eshell V5.3 (abort with ^G)
1> Str = "abcd".
"abcd"
Command 1 sets variable Str to string "abcd".
2> L = length(Str).
4
Command 2 sets L to the length of string Str.
3> Descriptor = {L, list_to_atom(Str)}.
{4,abcd}
Command 3 builds the tuple Descriptor, evaluating the BIF
list_to_atom/1 .
4> L.
4
Command 4 prints the value of variable L.
5> b().
Descriptor = {4,abcd}
L = 4
Str = "abcd"
ok
Command 5 evaluates the internal shell command b(), which is an abbreviation
of "bindings". This prints the current shell variables and their bindings. ok
at the end is the return value of function b().
6> f(L).
ok
Command 6 evaluates the internal shell command f(L) (abbreviation of
"forget"). The value of variable L is removed.
7> b().
Descriptor = {4,abcd}
Str = "abcd"
ok
Command 7 prints the new bindings.
8> f(L).
ok
Command 8 has no effect, as L has no value.
9> {L, _} = Descriptor.
{4,abcd}
Command 9 performs a pattern matching operation on Descriptor, binding a new
value to L.
10> L.
4
Command 10 prints the current value of L.
11> {P, Q, R} = Descriptor.
** exception error: no match of right hand side value {4,abcd}
Command 11 tries to match {P, Q, R} against Descriptor, which is {4, abc}.
The match fails and none of the new variables become bound. The printout
starting with "** exception error:" is not the value of the expression (the
expression had no value because its evaluation failed), but a warning printed by
the system to inform the user that an error has occurred. The values of the
other variables (L, Str, and so on) are unchanged.
12> P.
* 1:1: variable 'P' is unbound
13> Descriptor.
{4,abcd}
Commands 12 and 13 show that P is unbound because the previous command failed,
and that Descriptor has not changed.
14>{P, Q} = Descriptor.
{4,abcd}
15> P.
4
Commands 14 and 15 show a correct match where P and Q are bound.
16> f().
ok
Command 16 clears all bindings.
The next few commands assume that test1:demo(X) is defined as follows:
demo(X) ->
 put(aa, worked),
 X = 1,
 X + 10.
17> put(aa, hello).
undefined
18> get(aa).
hello
Commands 17 and 18 set and inspect the value of item aa in the process
dictionary.
19> Y = test1:demo(1).
11
Command 19 evaluates test1:demo(1). The evaluation succeeds and the changes
made in the process dictionary become visible to the shell. The new value of
dictionary item aa can be seen in command 20.
20> get().
[{aa,worked}]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
** exception error: no match of right hand side value 1
 in function test1:demo/1
Commands 21 and 22 change the value of dictionary item aa to hello and call
test1:demo(2). Evaluation fails and the changes made to the dictionary in
test1:demo(2), before the error occurred, are discarded.
23> Z.
* 1:1: variable 'Z' is unbound
24> get(aa).
hello
Commands 23 and 24 show that Z was not bound and that dictionary item aa has
retained its original value.
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.57.0>
27> get(aa).
hello
Commands 25, 26, and 27 show the effect of evaluating test1:demo(1) in the
background. In this case, the expression is evaluated in a newly spawned
process. Any changes made in the process dictionary are local to the newly
spawned process and therefore not visible to the shell.
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
Commands 28, 29 and 30 use the history facilities of the shell. Command 29
re-evaluates command 28. Command 30 uses the value (result) of command 28. In
the cases of a pure function (a function with no side effects), the result is
the same. For a function with side effects, the result can be different.
The next few commands show some record manipulation. It is assumed that ex.erl
defines a record as follows:
-record(rec, {a, b = val()}).
val() ->
 3.
31> c(ex).
{ok,ex}
32> rr(ex).
[rec]
Commands 31 and 32 compile file ex.erl and read the record definitions in
ex.beam. If the compiler did not output any record definitions on the BEAM
file, rr(ex) tries to read record definitions from the source file instead.
33> rl(rec).
-record(rec,{a,b = val()}).
ok
Command 33 prints the definition of the record named rec.
34> #rec{}.
** exception error: undefined shell command val/0
Command 34 tries to create a rec record, but fails as function val/0 is
undefined.
35> #rec{b = 3}.
#rec{a = undefined,b = 3}
Command 35 shows the workaround: explicitly assign values to record fields that
cannot otherwise be initialized.
36> rp(v(-1)).
#rec{a = undefined,b = 3}
ok
Command 36 prints the newly created record using record definitions maintained
by the shell.
37> rd(rec, {f = orddict:new()}).
rec
Command 37 defines a record directly in the shell. The definition replaces the
one read from file ex.beam.
38> #rec{}.
#rec{f = []}
ok
Command 38 creates a record using the new definition, and prints the result.
39> rd(rec, {c}), A.
* 1:15: variable 'A' is unbound
40> #rec{}.
#rec{c = undefined}
ok
Command 39 and 40 show that record definitions are updated as side effects. The
evaluation of the command fails, but the definition of rec has been carried
out.
For the next command, it is assumed that test1:loop(N) is defined as follows:
loop(N) ->
 io:format("Hello Number: ~w~n", [N]),
 loop(N+1).
41> test1:loop(0).
Hello Number: 0
Hello Number: 1
Hello Number: 2
Hello Number: 3

User switch command
 --> i
 --> c
.
.
.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exception exit: killed
Command 41 evaluates test1:loop(0), which puts the system into an infinite
loop. At this point the user types ^G (Control G), which suspends output from
the current process, which is stuck in a loop, and activates JCL mode. In
JCL mode the user can start and stop jobs.
In this particular case, command i ("interrupt") terminates the looping
program, and command c connects to the shell again. As the process was running
in the background before we killed it, more printouts occur before message
"** exception exit: killed" is shown.
42> E = ets:new(t, []).
#Ref<0.1662103692.2407923716.214192>
Command 42 creates an ETS table.
43> ets:insert({d,1,2}).
** exception error: undefined function ets:insert/1
Command 43 tries to insert a tuple into the ETS table, but the first argument
(the table) is missing. The exception kills the evaluator process.
44> ets:insert(E, {d,1,2}).
** exception error: argument is of wrong type
 in function ets:insert/2
 called as ets:insert(16,{d,1,2})
Command 44 corrects the mistake, but the ETS table has been destroyed as it was
owned by the killed evaluator process.
45> f(E).
ok
46> catch_exception(true).
false
Command 46 sets the exception handling of the evaluator process to true. The
exception handling can also be set when starting Erlang by
erl -stdlib shell_catch_exception true.
47> E = ets:new(t, []).
#Ref<0.1662103692.2407923716.214197>
48> ets:insert({d,1,2}).
* exception error: undefined function ets:insert/1
Command 48 makes the same mistake as in command 43, but this time the evaluator
process lives on. The single star at the beginning of the printout signals that
the exception has been caught.
49> ets:insert(E, {d,1,2}).
true
Command 49 successfully inserts the tuple into the ETS table.
50> ets:insert(#Ref<0.1662103692.2407923716.214197>, {e,3,4}).
true
Command 50 inserts another tuple into the ETS table. This time the first
argument is the table identifier itself. The shell can parse commands with pids
(<0.60.0>), ports (#Port<0.536>), references
(#Ref<0.1662103692.2407792644.214210>), and external functions
(#Fun<a.b.1>), but the command fails unless the corresponding pid, port,
reference, or function can be created in the running system.
51> halt().
strider 2>
Command 51 exits the Erlang runtime system.

 JCL Mode

When the shell starts, it starts a single evaluator process. This process,
together with any local processes that it spawns, is referred to as a job.
Only the current job, which is said to be connected, can perform operations
with standard I/O. All other jobs, which are said to be detached, are
blocked if they attempt to use standard I/O.
All jobs that do not use standard I/O run in the normal way.
The shell escape key ^G (Control G) detaches the current job and activates
JCL mode. The JCL mode prompt is "-->". If "?" is entered at the prompt,
the following help message is displayed:
--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang
? | h - this message
The JCL commands have the following meaning:
	c [nn] - Connects to job number <nn> or the current job. The standard
shell is resumed. Operations that use standard I/O by the current job are
interleaved with user inputs to the shell.

	i [nn] - Stops the current evaluator process for job number nn or the
current job, but does not kill the shell process. So, any variable bindings
and the process dictionary are preserved and the job can be connected again.
This command can be used to interrupt an endless loop.

	k [nn] - Kills job number nn or the current job. All spawned processes
in the job are killed, provided they have not evaluated the group_leader/1
BIF and are located on the local machine. Processes spawned on remote nodes
are not killed.

	j - Lists all jobs. A list of all known jobs is printed. The current job
name is prefixed with '*'.

	s - Starts a new job. This is assigned the new index [nn], which can
be used in references.

	s [shell] - Starts a new job. This is assigned the new index [nn],
which can be used in references. If optional argument shell is specified, it
is assumed to be a module that implements an alternative shell.

	r [node] - Starts a remote job on node. This is used in distributed
Erlang to allow a shell running on one node to control a number of
applications running on a network of nodes. If optional argument shell is
specified, it is assumed to be a module that implements an alternative shell.

	q - Quits Erlang. Notice that this option is disabled if Erlang is
started with the ignore break, +Bi, system flag (which can be useful, for
example when running a restricted shell, see the next section).

	? - Displays the help message above.

The behavior of shell escape can be changed by the STDLIB application variable
shell_esc. The value of the variable can be either jcl
(erl -stdlib shell_esc jcl) or abort (erl -stdlib shell_esc abort). The
first option sets ^G to activate JCL mode (which is also default behavior).
The latter sets ^G to terminate the current shell and start a new one. JCL
mode cannot be invoked when shell_esc is set to abort.
If you want an Erlang node to have a remote job active from the start (rather
than the default local job), start Erlang with flag
-remsh, for example,
erl -remsh other_node@other_host

 Restricted Shell

The shell can be started in a restricted mode. In this mode, the shell evaluates
a function call only if allowed. This feature makes it possible to, for example,
prevent a user from accidentally calling a function from the prompt that could
harm a running system (useful in combination with system flag +Bi).
When the restricted shell evaluates an expression and encounters a function call
or an operator application, it calls a callback function (with information about
the function call in question). This callback function returns true to let the
shell go ahead with the evaluation, or false to abort it. There are two
possible callback functions for the user to implement:
	local_allowed(Func, ArgList, State) -> {boolean(),NewState}
This is used to determine if the call to the local function Func with
arguments ArgList is to be allowed.

	non_local_allowed(FuncSpec, ArgList, State) -> {boolean(),NewState} | {{redirect,NewFuncSpec,NewArgList},NewState}
This is used to determine if the call to non-local function FuncSpec
({Module,Func} or a fun) with arguments ArgList is to be allowed. The
return value {redirect,NewFuncSpec,NewArgList} can be used to let the shell
evaluate some other function than the one specified by FuncSpec and
ArgList.

These callback functions are called from local and non-local evaluation function
handlers, described in the erl_eval manual page. (Arguments in ArgList are
evaluated before the callback functions are called.)
From OTP 25.0, if there are errors evaluating Erlang constructs, such as
badmatch during pattern matching or bad_generator in a comprehension, the
evaluator will dispatch to erlang:raise(error, Reason, Stacktrace). This call
will be checked against the non_local_allowed/3 callback function. You can
either forbid it, allow it, or redirect to another call of your choice.
Argument State is a tuple {ShellState,ExprState}. The return value
NewState has the same form. This can be used to carry a state between calls to
the callback functions. Data saved in ShellState lives through an entire shell
session. Data saved in ExprState lives only through the evaluation of the
current expression.
There are two ways to start a restricted shell session:
	Use STDLIB application variable restricted_shell and specify, as its value,
the name of the callback module. Example (with callback functions implemented
in callback_mod.erl): $ erl -stdlib restricted_shell callback_mod.
	From a normal shell session, call function start_restricted/1. This exits
the current evaluator and starts a new one in restricted mode.

Notes:
	When restricted shell mode is activated or deactivated, new jobs started on
the node run in restricted or normal mode, respectively.
	If restricted mode has been enabled on a particular node, remote shells
connecting to this node also run in restricted mode.
	The callback functions cannot be used to allow or disallow execution of
functions called from compiled code (only functions called from expressions
entered at the shell prompt).

Errors when loading the callback module is handled in different ways depending
on how the restricted shell is activated:
	If the restricted shell is activated by setting the STDLIB variable during
emulator startup, and the callback module cannot be loaded, a default
restricted shell allowing only the commands q() and init:stop() is used as
fallback.
	If the restricted shell is activated using start_restricted/1 and the
callback module cannot be loaded, an error report is sent to the error logger
and the call returns {error,Reason}.

 Prompting

The default shell prompt function displays the name of the node (if the node can
be part of a distributed system) and the current command number. The user can
customize the prompt function by calling prompt_func/1 or by setting
application configuration parameter shell_prompt_func for the STDLIB
application. Similarly the multiline prompt can be configured as well, by
calling multiline_prompt_func/1 or by setting the application parameter
shell_multiline_prompt for the STDLIB application.
A customized prompt function is stated as a tuple {Mod, Func}. The function is
called as Mod:Func(L), where L is a list of key-value pairs created by the
shell. Currently there is only one pair: {history, N}, where N is the
current command number. The function is to return a list of characters or an
atom. This constraint is because of the Erlang I/O protocol. Unicode characters
beyond code point 255 are allowed in the list and the atom. Notice that in
restricted mode the call Mod:Func(L) must be allowed or the default shell
prompt function is called.

 Summary

 Functions

 catch_exception(Bool)

 catch_exception(Bool) -> boolean()

 default_multiline_prompt(Pbs)

 Configures the multiline prompt as two trailing dots. This is the default
function but it may also be set explicitly as
-stdlib shell_multiline_prompt {shell, default_multiline_prompt}.

 erl_pp_format_func(String)

 A formatting function that can be set with format_shell_func/1 that will make
expressions submitted to the shell prettier.

 format_shell_func(ShellFormatFunc)

 Can be used to set the formatting of the Erlang shell output.

 history(N)

 Sets the number of previous commands to keep in the history list to N. The
previous number is returned. Defaults to 20.

 inverted_space_prompt(Pbs)

 Configures the multiline prompt as inverted space. It may be set explicitly as
-stdlib shell_multiline_prompt {shell, inverted_space_prompt} or calling
multiline_prompt_func({shell, inverted_space_prompt}).

 multiline_prompt_func(PromptFunc)

 Sets the shell multiline prompt function to PromptFunc. The previous prompt
function is returned.

 prompt_func(PromptFunc)

 Sets the shell prompt function to PromptFunc. The previous prompt function is
returned.

 prompt_width(String)

 Equivalent to prompt_width/2 with Encoding set to the encoding used by
io:user/0.

 prompt_width(String, Encoding)

 It receives a prompt and computes its width, considering its Unicode characters
and ANSI escapes.

 results(N)

 Sets the number of results from previous commands to keep in the history list to
N. The previous number is returned. Defaults to 20.

 start_interactive()

 Starts the interactive shell if it has not already been started. It can be used
to programatically start the shell from an escript or when erl is started with
the -noinput or -noshell flags.

 start_interactive/1

 Starts the interactive shell if it has not already been started. It can be used
to programatically start the shell from an escript
or when erl is started with the
-noinput or
-noshell flags. The following options are
allowed

 start_restricted(Module)

 Exits a normal shell and starts a restricted shell. Module specifies the
callback module for the functions local_allowed/3 and non_local_allowed/3.
The function is meant to be called from the shell.

 stop_restricted()

 Exits a restricted shell and starts a normal shell. The function is meant to be
called from the shell.

 strings(Strings)

 Sets pretty printing of lists to Strings. The previous value of the flag is
returned.

 whereis()

 Returns the current shell process on the node where the calling process'
group_leader is located. If that node has no shell this function will return
undefined.

 Functions

 Link to this function

 catch_exception(Bool)

 View Source

 -spec catch_exception(Bool) -> boolean() when Bool :: boolean().

catch_exception(Bool) -> boolean()
Sets the exception handling of the evaluator process. The previous exception
handling is returned. The default (false) is to kill the evaluator process
when an exception occurs, which causes the shell to create a new evaluator
process. When the exception handling is set to true, the evaluator process
lives on, which means that, for example, ports and ETS tables as well as
processes linked to the evaluator process survive the exception.

 Link to this function

 default_multiline_prompt(Pbs)

 View Source

 (since OTP @OTP-18834@)

 -spec default_multiline_prompt(unicode:chardata()) -> unicode:chardata().

Configures the multiline prompt as two trailing dots. This is the default
function but it may also be set explicitly as
-stdlib shell_multiline_prompt {shell, default_multiline_prompt}.

 Link to this function

 erl_pp_format_func(String)

 View Source

 (since OTP @OTP-18848@)

 -spec erl_pp_format_func(String) -> String2 when String :: string(), String2 :: string().

A formatting function that can be set with format_shell_func/1 that will make
expressions submitted to the shell prettier.
Note
This formatting function filter comments away from the expressions.

 Link to this function

 format_shell_func(ShellFormatFunc)

 View Source

 (since OTP @OTP-18848@)

 -spec format_shell_func(ShellFormatFunc) -> ShellFormatFunc2
 when
 ShellFormatFunc :: default | {module(), function()} | string(),
 ShellFormatFunc2 :: default | {module(), function()} | string().

Can be used to set the formatting of the Erlang shell output.
This has an effect on commands that have been submitted, and how it is saved in history.
Or if the formatting hotkey is pressed while editing an expression (Alt-r by default). You
can specify a Mod:Func/1 that expects the whole expression as a string and
returns a formatted expressions as a string. See
stdlib app config for how to set it before
shell started.
If instead a string is provided, it will be used as a shell command. Your
command must include ${file} somewhere in the string, for the shell to know
where the file goes in the command.
shell:format_shell_func("\"emacs -batch \${file} -l ~/erlang-format/emacs-format-file -f emacs-format-function\"").
shell:format_shell_func({shell, erl_pp_format_func}).

 Link to this function

 history(N)

 View Source

 -spec history(N) -> non_neg_integer() when N :: non_neg_integer().

Sets the number of previous commands to keep in the history list to N. The
previous number is returned. Defaults to 20.

 Link to this function

 inverted_space_prompt(Pbs)

 View Source

 (since OTP @OTP-18834@)

 -spec inverted_space_prompt(unicode:chardata()) -> unicode:chardata().

Configures the multiline prompt as inverted space. It may be set explicitly as
-stdlib shell_multiline_prompt {shell, inverted_space_prompt} or calling
multiline_prompt_func({shell, inverted_space_prompt}).

 Link to this function

 multiline_prompt_func(PromptFunc)

 View Source

 (since OTP @OTP-18834@)

 -spec multiline_prompt_func(PromptFunc) -> PromptFunc2
 when
 PromptFunc :: default | {module(), function()} | string(),
 PromptFunc2 :: default | {module(), function()} | string().

Sets the shell multiline prompt function to PromptFunc. The previous prompt
function is returned.

 Link to this function

 prompt_func(PromptFunc)

 View Source

 (since OTP R13B04)

 -spec prompt_func(PromptFunc) -> PromptFunc2
 when
 PromptFunc :: default | {module(), atom()},
 PromptFunc2 :: default | {module(), atom()}.

Sets the shell prompt function to PromptFunc. The previous prompt function is
returned.

 Link to this function

 prompt_width(String)

 View Source

 (since OTP @OTP-18834@)

 -spec prompt_width(unicode:chardata()) -> non_neg_integer().

Equivalent to prompt_width/2 with Encoding set to the encoding used by
io:user/0.

 Link to this function

 prompt_width(String, Encoding)

 View Source

 (since OTP @OTP-18834@)

 -spec prompt_width(unicode:chardata(), unicode | latin1) -> non_neg_integer().

It receives a prompt and computes its width, considering its Unicode characters
and ANSI escapes.
Useful for creating custom multiline prompts.
Example:
1> shell:prompt_width("olá> ", unicode).
5
%% "olá> " is printed as "ol\341> " on a latin1 systems
2> shell:prompt_width("olá> ", latin1).
8
%% Ansi escapes are ignored
3> shell:prompt_width("\e[32molá\e[0m> ", unicode).
5
%% Double width characters count as 2
4> shell:prompt_width("😀> ", unicode).
4
%% "😀> " is printed as "\x{1F600}> " on latin1 systems
5> shell:prompt_width("😀> ", latin1).
11

 Link to this function

 results(N)

 View Source

 -spec results(N) -> non_neg_integer() when N :: non_neg_integer().

Sets the number of results from previous commands to keep in the history list to
N. The previous number is returned. Defaults to 20.

 Link to this function

 start_interactive()

 View Source

 (since OTP 26.0)

 -spec start_interactive() -> ok | {error, already_started}.

Starts the interactive shell if it has not already been started. It can be used
to programatically start the shell from an escript or when erl is started with
the -noinput or -noshell flags.

 Link to this function

 start_interactive/1

 View Source

 (since OTP 26.0)

 -spec start_interactive(noshell | {module(), atom(), [term()]}) -> ok | {error, already_started};
 ({remote, string()}) -> ok | {error, already_started | noconnection};
 ({node(), {module(), atom(), [term()]}} |
 {remote, string(), {module(), atom(), [term()]}}) ->
 ok |
 {error, already_started | noconnection | badfile | nofile | on_load_failure}.

Starts the interactive shell if it has not already been started. It can be used
to programatically start the shell from an escript
or when erl is started with the
-noinput or
-noshell flags. The following options are
allowed:
	noshell - Starts the interactive shell as if
-noshell was given to
erl. This is only useful when erl is started with
-noinput and the system want to read input
data.

	mfa() - Starts the interactive shell using
mfa() as the default shell.

	{node(), mfa()} - Starts the
interactive shell using mfa() on
node() as the default shell.

	{remote, string()} - Starts the interactive
shell using as if -remsh was given to
erl.

	{remote, string(),
mfa()} - Starts the interactive shell using as if
-remsh was given to
erl but with an alternative shell implementation.

On error this function will return:
	already_started - if an interactive shell is already started.

	noconnection - if a remote shell was requested but it could not be
connected to.

	badfile | nofile | on_load_failure - if a remote shell was requested with
a custom mfa(), but the module could not be loaded. See
Error Reasons for Code-Loading Functions for a
description of the error reasons.

 Link to this function

 start_restricted(Module)

 View Source

 -spec start_restricted(Module) -> {error, Reason}
 when Module :: module(), Reason :: code:load_error_rsn().

Exits a normal shell and starts a restricted shell. Module specifies the
callback module for the functions local_allowed/3 and non_local_allowed/3.
The function is meant to be called from the shell.
If the callback module cannot be loaded, an error tuple is returned. The
Reason in the error tuple is the one returned by the code loader when trying
to load the code of the callback module.

 Link to this function

 stop_restricted()

 View Source

 -spec stop_restricted() -> no_return().

Exits a restricted shell and starts a normal shell. The function is meant to be
called from the shell.

 Link to this function

 strings(Strings)

 View Source

 (since OTP R16B)

 -spec strings(Strings) -> Strings2 when Strings :: boolean(), Strings2 :: boolean().

Sets pretty printing of lists to Strings. The previous value of the flag is
returned.
The flag can also be set by the STDLIB application variable shell_strings.
Defaults to true, which means that lists of integers are printed using the
string syntax, when possible. Value false means that no lists are printed
using the string syntax.

 Link to this function

 whereis()

 View Source

 (since OTP 26.0)

 -spec whereis() -> pid() | undefined.

Returns the current shell process on the node where the calling process'
group_leader is located. If that node has no shell this function will return
undefined.

 shell_default - stdlib v5.2.1

shell_default

Customizing the Erlang environment.
The functions in this module are called when no module name is specified in a
shell command.
Consider the following shell dialog:
1> lists:reverse("abc").
"cba"
2> c(foo).
{ok, foo}
In command one, module lists is called. In command two, no module name is
specified. The shell searches module user_default followed by module
shell_default for function c/1.
shell_default is intended for "system wide" customizations to the shell.
user_default is intended for "local" or individual user customizations.

 Hint

To add your own commands to the shell, create a module called user_default and
add the commands you want. Then add the following line as the first line in
your .erlang file in your home directory.
code:load_abs("$PATH/user_default").
$PATH is the directory where your user_default module can be found.

 Summary

 Functions

 help()

 Print the help for all shell internal commands.

 Functions

 Link to this function

 help()

 View Source

 -spec help() -> true.

Print the help for all shell internal commands.

 shell_docs - stdlib v5.2.1

shell_docs

Functions used to render EEP-48 style documentation for a shell.
This module can be used to render function and type documentation to be printed
in a shell. This is the module that is used to render the documentation accessed through
the shell through c:h/1,2,3). Example:
1> h(maps,new,0).

 -spec new() -> Map when Map :: #{}.

Since:
 OTP 17.0

 Returns a new empty map.

 Example:

 > maps:new().
 #{}
This module formats and renders EEP-48 documentation of the format
application/erlang+html. For more information about this format see
Documentation Storage in EDoc's User's
Guide. It can also render any other format of "text" type, although those will
be rendered as is.

 Summary

 Types

 chunk_element()

 chunk_element_attr()

 chunk_element_attrs()

 chunk_element_block_type()

 chunk_element_inline_type()

 chunk_element_type()

 The HTML tags allowed in application/erlang+html.

 chunk_elements()

 config()

 The configuration of how the documentation should be rendered.

 docs_v1()

 The record holding EEP-48 documentation for a module. You can use
code:get_doc/1 to fetch this information from a module.

 Functions

 normalize(Docs)

 This function can be used to do whitespace normalization of
application/erlang+html documentation.

 render(Module, Docs)

 Equivalent to render(Module, Docs, #{}).

 render(Module, DocsOrFunction, ConfigOrDocs)

 Render module or function documentation.

 render(Module, Function, DocsOrArity, ConfigOrDocs)

 Render function documentation.

 render(Module, Function, Arity, Docs, Config)

 Render the documentation for a function.

 render_callback(Module, Docs)

 Equivalent to render_callback(Module, Docs, #{}).

 render_callback(Module, DocsOrCallback, ConfigOrDocs)

 Render all callbacks in a module or callback documentation.

 render_callback(Module, Callback, DocsOrArity, ConfigOrDocs)

 Render callback documentation.

 render_callback(Module, Callback, Arity, Docs, Config)

 Render the documentation of a callback in a module.

 render_type(Module, Docs)

 Equivalent to render_type(Module, Docs, #{}).

 render_type(Module, DocsOrType, ConfigOrDocs)

 Render all types in a module or type documentation.

 render_type(Module, Type, DocsOrArity, ConfigOrDocs)

 Render type documentation.

 render_type(Module, Type, Arity, Docs, Config)

 Render the documentation of a type in a module.

 supported_tags()

 This function can be used to find out which tags are supported by
application/erlang+html documentation.

 validate(Module)

 This function can be used to do a basic validation of the doc content of
application/erlang+html format.

 Types

 Link to this type

 chunk_element()

 View Source

 (not exported)

 (since OTP 23.0)

 -type chunk_element() :: {chunk_element_type(), chunk_element_attrs(), chunk_elements()} | binary().

 Link to this type

 chunk_element_attr()

 View Source

 (since OTP 23.0)

 -type chunk_element_attr() :: {atom(), unicode:chardata()}.

 Link to this type

 chunk_element_attrs()

 View Source

 (not exported)

 (since OTP 23.0)

 -type chunk_element_attrs() :: [chunk_element_attr()].

 Link to this type

 chunk_element_block_type()

 View Source

 (not exported)

 (since OTP 23.0)

 -type chunk_element_block_type() ::
 p | 'div' | br | pre | ul | ol | li | dl | dt | dd | h1 | h2 | h3 | h4 | h5 | h6.

 Link to this type

 chunk_element_inline_type()

 View Source

 (not exported)

 (since OTP 23.0)

 -type chunk_element_inline_type() :: a | code | em | strong | i | b.

 Link to this type

 chunk_element_type()

 View Source

 (not exported)

 (since OTP 23.0)

 -type chunk_element_type() :: chunk_element_inline_type() | chunk_element_block_type().

The HTML tags allowed in application/erlang+html.

 Link to this type

 chunk_elements()

 View Source

 (since OTP 23.0)

 -type chunk_elements() :: [chunk_element()].

 Link to this type

 config()

 View Source

 (not exported)

 (since OTP 23.2)

 -type config() :: #{encoding => unicode | latin1, columns => pos_integer(), ansi => boolean()}.

The configuration of how the documentation should be rendered.
	encoding - Configure the encoding that should be used by the renderer for
graphical details such as bullet-points. By default shell_docs uses the
value returned by io:getopts().

	ansi - Configure whether
ansi escape codes should be
used to render graphical details such as bold and underscore. By default
shell_docs will try to determine if the receiving shell supports ansi escape
codes. It is possible to override the automated check by setting the kernel
configuration parameter shell_docs_ansi to a boolean/0 value.

	columns - Configure how wide the target documentation should be rendered.
By default shell_docs used the value returned by
io:columns().

 Link to this type

 docs_v1()

 View Source

 (not exported)

 (since OTP 23.0)

 -type docs_v1() ::
 #docs_v1{anno :: term(),
 beam_language :: term(),
 format :: term(),
 module_doc :: term(),
 metadata :: term(),
 docs :: term()}.

The record holding EEP-48 documentation for a module. You can use
code:get_doc/1 to fetch this information from a module.

 Functions

 Link to this function

 normalize(Docs)

 View Source

 (since OTP 23.0)

 -spec normalize(Docs) -> NormalizedDocs
 when Docs :: chunk_elements(), NormalizedDocs :: chunk_elements().

This function can be used to do whitespace normalization of
application/erlang+html documentation.

 Link to this function

 render(Module, Docs)

 View Source

 (since OTP 23.0)

 -spec render(Module, Docs) -> unicode:chardata() when Module :: module(), Docs :: docs_v1().

Equivalent to render(Module, Docs, #{}).

 Link to this function

 render(Module, DocsOrFunction, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render(Module, Docs, Config) -> unicode:chardata()
 when Module :: module(), Docs :: docs_v1(), Config :: config();
 (Module, Function, Docs) -> Res
 when
 Module :: module(),
 Function :: atom(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, function_missing}.

Render module or function documentation.
Renders the module documentation if called as render(Module, Docs, Config).
Equivalent to render(Module, Function, Docs, #{}) if called
as render(Module, Function, Docs).

 Link to this function

 render(Module, Function, DocsOrArity, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render(Module, Function, Docs, Config) -> Res
 when
 Module :: module(),
 Function :: atom(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, function_missing};
 (Module, Function, Arity, Docs) -> Res
 when
 Module :: module(),
 Function :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, function_missing}.

Render function documentation.
Renders the function documentation if called as render(Module, Function, Docs, Config).
Equivalent to render(Module, Function, Arity, Docs, #{}) if called
as render(Module, Function, Arity, Docs).

 Link to this function

 render(Module, Function, Arity, Docs, Config)

 View Source

 (since OTP 23.0)

 -spec render(Module, Function, Arity, Docs, Config) -> Res
 when
 Module :: module(),
 Function :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, function_missing}.

Render the documentation for a function.

 Link to this function

 render_callback(Module, Docs)

 View Source

 (since OTP 23.0)

 -spec render_callback(Module, Docs) -> unicode:chardata() when Module :: module(), Docs :: docs_v1().

Equivalent to render_callback(Module, Docs, #{}).

 Link to this function

 render_callback(Module, DocsOrCallback, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render_callback(Module, Docs, Config) -> unicode:chardata()
 when Module :: module(), Docs :: docs_v1(), Config :: config();
 (Module, Callback, Docs) -> Res
 when
 Module :: module(),
 Callback :: atom(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, callback_missing}.

Render all callbacks in a module or callback documentation.
Renders a list with all callbacks if called as render_callback(Module, Docs, Config).
Equivalent to render_callback(Module, Callback, Docs, #{}) if called
as render_callback(Module, Callback, Docs).

 Link to this function

 render_callback(Module, Callback, DocsOrArity, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render_callback(Module, Callback, Docs, Config) -> Res
 when
 Module :: module(),
 Callback :: atom(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, callback_missing};
 (Module, Callback, Arity, Docs) -> Res
 when
 Module :: module(),
 Callback :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, callback_missing}.

Render callback documentation.
Renders the callback documentation if called as render_callback(Module, Callback, Docs, Config).
Equivalent to render_callback(Module, Callback, Arity, Docs, #{}) if called
as render_callback(Module, Callback, Arity, Docs).

 Link to this function

 render_callback(Module, Callback, Arity, Docs, Config)

 View Source

 (since OTP 23.0)

 -spec render_callback(Module, Callback, Arity, Docs, Config) -> Res
 when
 Module :: module(),
 Callback :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, callback_missing}.

Render the documentation of a callback in a module.

 Link to this function

 render_type(Module, Docs)

 View Source

 (since OTP 23.0)

 -spec render_type(Module, Docs) -> unicode:chardata() when Module :: module(), Docs :: docs_v1().

Equivalent to render_type(Module, Docs, #{}).

 Link to this function

 render_type(Module, DocsOrType, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render_type(Module, Docs, Config) -> unicode:chardata()
 when Module :: module(), Docs :: docs_v1(), Config :: config();
 (Module, Type, Docs) -> Res
 when
 Module :: module(),
 Type :: atom(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, type_missing}.

Render all types in a module or type documentation.
Renders a list with all types if called as render_type(Module, Docs, Config).
Equivalent to render_type(Module, Type, Docs, #{}) if called
as render_type(Module, Type, Docs).

 Link to this function

 render_type(Module, Type, DocsOrArity, ConfigOrDocs)

 View Source

 (since OTP 23.0)

 -spec render_type(Module, Type, Docs, Config) -> Res
 when
 Module :: module(),
 Type :: atom(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, type_missing};
 (Module, Type, Arity, Docs) -> Res
 when
 Module :: module(),
 Type :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Res :: unicode:chardata() | {error, type_missing}.

Render type documentation.
Renders the type documentation if called as render_type(Module, Type, Docs, Config).
Equivalent to render_type(Module, Type, Arity, Docs, #{}) if called
as render_type(Module, Type, Arity, Docs).

 Link to this function

 render_type(Module, Type, Arity, Docs, Config)

 View Source

 (since OTP 23.0)

 -spec render_type(Module, Type, Arity, Docs, Config) -> Res
 when
 Module :: module(),
 Type :: atom(),
 Arity :: arity(),
 Docs :: docs_v1(),
 Config :: config(),
 Res :: unicode:chardata() | {error, type_missing}.

Render the documentation of a type in a module.

 Link to this function

 supported_tags()

 View Source

 (since OTP 24.0)

 -spec supported_tags() -> [chunk_element_type()].

This function can be used to find out which tags are supported by
application/erlang+html documentation.

 Link to this function

 validate(Module)

 View Source

 (since OTP 23.0)

 -spec validate(Module) -> ok when Module :: module() | docs_v1().

This function can be used to do a basic validation of the doc content of
application/erlang+html format.

 base64 - stdlib v5.2.1

base64

Provides base64 encode and decode, see
RFC 2045.

 Summary

 Types

 base64_alphabet()

 Base 64 Encoding alphabet, see
RFC 4648.

 base64_binary()

 Base 64 encoded binary.

 base64_mode()

 Selector for the Base 64 Encoding alphabet used for encoding and
decoding. See
RFC 4648 Sections
4 and
5.

 base64_string()

 Base 64 encoded string.

 byte_string()

 Arbitrary sequences of octets.

 decode_options()

 Customizes the behaviour of the decode functions.

 encode_options()

 Customizes the behaviour of the decode functions.

 Functions

 decode(Base64)

 Equivalent to decode(Base64, #{}).

 decode(Base64, Options)

 Decodes a base64 string encoded using the standard alphabet according to
RFC 4648 Section 4 to
plain ASCII.

 decode_to_string(Base64)

 Equivalent to decode(Base64), but returns a byte_string/0.

 decode_to_string(Base64, Options)

 Equivalent to decode(Base64, Options), but returns a byte_string/0.

 encode(Data)

 Equivalent to encode(Data, #{}).

 encode(Data, Options)

 Encodes a plain ASCII string into base64 using the alphabet indicated by the
mode option. The result is 33% larger than the data.

 encode_to_string(Data)

 Equivalent to encode(Data), but returns a byte_string/0.

 encode_to_string(Data, Options)

 Equivalent to encode(Data, Options), but returns a byte_string/0.

 mime_decode(Base64)

 Equivalent to mime_decode_to_string(Base64, #{}).

 mime_decode(Base64, Options)

 Decodes a base64 "mime" string encoded using the standard alphabet according to
RFC 4648 Section 4 to
plain ASCII.

 mime_decode_to_string(Base64)

 Equivalent to mime_decode(Base64),
but returns a byte_string/0.

 mime_decode_to_string(Base64, Options)

 Equivalent to mime_decode(Base64, Options),
but returns a byte_string/0.

 Types

 Link to this type

 base64_alphabet()

 View Source

 (not exported)

 -type base64_alphabet() :: $A..$Z | $a..$z | $0..$9 | $+ | $/ | $- | $_ | $=.

Base 64 Encoding alphabet, see
RFC 4648.

 Link to this type

 base64_binary()

 View Source

 (not exported)

 -type base64_binary() :: binary().

Base 64 encoded binary.

 Link to this type

 base64_mode()

 View Source

 (not exported)

 -type base64_mode() :: standard | urlsafe.

Selector for the Base 64 Encoding alphabet used for encoding and
decoding. See
RFC 4648 Sections
4 and
5.

 Link to this type

 base64_string()

 View Source

 (not exported)

 -type base64_string() :: [base64_alphabet()].

Base 64 encoded string.

 Link to this type

 byte_string()

 View Source

 (not exported)

 -type byte_string() :: [byte()].

Arbitrary sequences of octets.

 Link to this type

 decode_options()

 View Source

 (not exported)

 -type decode_options() :: #{padding => boolean(), mode => base64_mode()}.

Customizes the behaviour of the decode functions.
Default value if omitted entirely or partially is #{mode => standard, padding => true}.
The mode option can be one of the following:
	standard - Default. Decode the given string using the standard base64
alphabet according to
RFC 4648 Section 4,
that is "+" and "/" are representing bytes 62 and 63 respectively,
while "-" and "_" are illegal characters.

	urlsafe - Decode the given string using the alternative "URL and
Filename safe" base64 alphabet according to
RFC 4648 Section 5,
that is "-" and "_" are representing bytes 62 and 63 respectively,
while "+" and "/" are illegal characters.

The padding option can be one of the following:
	true - Default. Checks the correct number of = padding characters at
the end of the encoded string.

	false - Accepts an encoded string with missing = padding characters at
the end.

 Link to this type

 encode_options()

 View Source

 (not exported)

 -type encode_options() :: #{padding => boolean(), mode => base64_mode()}.

Customizes the behaviour of the decode functions.
Default value if omitted entirely or partially is #{mode => standard, padding => true}.
The mode option can be one of the following:
	standard - Default. Encode the given string using the standard base64
alphabet according to
RFC 4648 Section 4.

	urlsafe - Encode the given string using the alternative "URL and
Filename safe" base64 alphabet according to
RFC 4648 Section 5.

The padding option can be one of the following:
	true - Default. Appends correct number of = padding characters to the
encoded string.

	false - Skips appending = padding characters to the encoded string.

 Functions

 Link to this function

 decode(Base64)

 View Source

 -spec decode(Base64) -> Data when Base64 :: base64_string() | base64_binary(), Data :: binary().

Equivalent to decode(Base64, #{}).

 Link to this function

 decode(Base64, Options)

 View Source

 (since OTP 26.0)

 -spec decode(Base64, Options) -> Data
 when
 Base64 :: base64_string() | base64_binary(),
 Options :: decode_options(),
 Data :: binary().

Decodes a base64 string encoded using the standard alphabet according to
RFC 4648 Section 4 to
plain ASCII.
The function will strips away any whitespace characters and check for the
the correct number of = padding characters at the end of the encoded string.
See decode_options/0 for details on which options can be passed.
Example:
1> base64:decode("AQIDBA==").
<<1,2,3,4>>
2> base64:decode("AQ ID BA==").
<<1,2,3,4>>
3> base64:decode("AQIDBA=").
** exception error: missing_padding
 in function base64:decode_list/7 (base64.erl, line 734)
 *** data to decode is missing final = padding characters, if this is intended, use the `padding => false` option
4> base64:decode("AQIDBA=", #{ padding => false }).
<<1,2,3,4>>

 Link to this function

 decode_to_string(Base64)

 View Source

 -spec decode_to_string(Base64) -> DataString
 when Base64 :: base64_string() | base64_binary(), DataString :: byte_string().

Equivalent to decode(Base64), but returns a byte_string/0.

 Link to this function

 decode_to_string(Base64, Options)

 View Source

 (since OTP 26.0)

 -spec decode_to_string(Base64, Options) -> DataString
 when
 Base64 :: base64_string() | base64_binary(),
 Options :: decode_options(),
 DataString :: byte_string().

Equivalent to decode(Base64, Options), but returns a byte_string/0.

 Link to this function

 encode(Data)

 View Source

 -spec encode(Data) -> Base64 when Data :: byte_string() | binary(), Base64 :: base64_binary().

Equivalent to encode(Data, #{}).

 Link to this function

 encode(Data, Options)

 View Source

 (since OTP 26.0)

 -spec encode(Data, Options) -> Base64
 when
 Data :: byte_string() | binary(),
 Options :: encode_options(),
 Base64 :: base64_binary().

Encodes a plain ASCII string into base64 using the alphabet indicated by the
mode option. The result is 33% larger than the data.
See encode_options/0 for details on which options can be passed.

 Link to this function

 encode_to_string(Data)

 View Source

 -spec encode_to_string(Data) -> Base64String
 when Data :: byte_string() | binary(), Base64String :: base64_string().

Equivalent to encode(Data), but returns a byte_string/0.

 Link to this function

 encode_to_string(Data, Options)

 View Source

 (since OTP 26.0)

 -spec encode_to_string(Data, Options) -> Base64String
 when
 Data :: byte_string() | binary(),
 Options :: encode_options(),
 Base64String :: base64_string().

Equivalent to encode(Data, Options), but returns a byte_string/0.

 Link to this function

 mime_decode(Base64)

 View Source

 -spec mime_decode(Base64) -> Data when Base64 :: base64_string() | base64_binary(), Data :: binary().

Equivalent to mime_decode_to_string(Base64, #{}).

 Link to this function

 mime_decode(Base64, Options)

 View Source

 (since OTP 26.0)

 -spec mime_decode(Base64, Options) -> Data
 when
 Base64 :: base64_string() | base64_binary(),
 Options :: decode_options(),
 Data :: binary().

Decodes a base64 "mime" string encoded using the standard alphabet according to
RFC 4648 Section 4 to
plain ASCII.
The function will strips away any illegal characters. It does not check for the
the correct number of = padding characters at the end of the encoded string.
See decode_options/0 for details on which options can be passed.
Example:
1> base64:mime_decode("AQIDBA==").
<<1,2,3,4>>
2> base64:mime_decode("AQIDB=A=").
<<1,2,3,4>>

 Link to this function

 mime_decode_to_string(Base64)

 View Source

 -spec mime_decode_to_string(Base64) -> DataString
 when
 Base64 :: base64_string() | base64_binary(),
 DataString :: byte_string().

Equivalent to mime_decode(Base64),
but returns a byte_string/0.

 Link to this function

 mime_decode_to_string(Base64, Options)

 View Source

 (since OTP 26.0)

 -spec mime_decode_to_string(Base64, Options) -> DataString
 when
 Base64 :: base64_string() | base64_binary(),
 Options :: decode_options(),
 DataString :: byte_string().

Equivalent to mime_decode(Base64, Options),
but returns a byte_string/0.

 erl_error - stdlib v5.2.1

erl_error behaviour

This module provides functions for pretty-printing errors and exceptions. It is
used by both the shell and by proc_lib to print exceptions.
It is possible for the module raising an error to provide additional information
by calling error/3 with extra error information. More
details about this mechanism is described in
EEP-54.

 Callback Functions

The following functions are to be exported from an Error Info handler.

 Summary

 Types

 column()

 Start column number. Default is 1.

 format_fun()

 A fun used to format function arguments for BIF and function calls. By default
the following fun will be used

 format_options()

 A map with formatting options.

 stack_trim_fun()

 A fun used to trim the end of the stacktrace. It is called with module,
function, and arity from an entry from the stacktrace. The fun is to return
true if the entry should be trimmed, and false otherwise. The default value
is

 Callbacks

 format_error(Reason, StackTrace)

 This callback is called when format_exception/4 or similar functionality wants
to provide extra information about an error. The Module:Function called is
the one specificed by the error_info map.

 Functions

 format_exception(Class, Reason, StackTrace)

 Equivalent to format_exception/4.

 format_exception(Class, Reason, StackTrace, Options)

 Format the error reason and stack back-trace caught using try ... catch in
the same style as the shell formats them.

 Types

 Link to this type

 column()

 View Source

 (not exported)

 (since OTP 24.0)

 -type column() :: pos_integer().

Start column number. Default is 1.

 Link to this type

 format_fun()

 View Source

 (since OTP 24.0)

 -type format_fun() :: fun((term(), column()) -> iolist()).

A fun used to format function arguments for BIF and function calls. By default
the following fun will be used:
fun(Term, I) -> io_lib:print(Term, I, 80, 30) end

 Link to this type

 format_options()

 View Source

 (since OTP 24.0)

 -type format_options() ::
 #{column => column(), stack_trim_fun => stack_trim_fun(), format_fun => format_fun()}.

A map with formatting options.

 Link to this type

 stack_trim_fun()

 View Source

 (since OTP 24.0)

 -type stack_trim_fun() :: fun((module(), atom(), arity()) -> boolean()).

A fun used to trim the end of the stacktrace. It is called with module,
function, and arity from an entry from the stacktrace. The fun is to return
true if the entry should be trimmed, and false otherwise. The default value
is:
fun(_, _, _) -> false end

 Callbacks

 Link to this callback

 format_error(Reason, StackTrace)

 View Source

 (since OTP 24.0)

 -callback format_error(Reason, StackTrace) -> ErrorDescription
 when
 Reason :: term(),
 StackTrace :: erlang:stacktrace(),
 ArgumentPosition :: pos_integer(),
 ErrorDescription ::
 #{ArgumentPosition => unicode:chardata(),
 general => unicode:chardata(),
 reason => unicode:chardata()}.

This callback is called when format_exception/4 or similar functionality wants
to provide extra information about an error. The Module:Function called is
the one specificed by the error_info map.
The function should return a map with additional information about what have
caused the exception. The possible keys of the map are:
	ArgumentPosition = pos_integer() - The position of the argument that
caused the error starting at 1.

	general - An error that is not associated with any argument caused the
error.

	reason - If the Reason should be printed differently than the default
way.

If the text returned includes new-lines, format_exception/4 will indent the
text correctly.
Example:
-module(my_error_module).
-export([atom_to_string/1, format_error/2]).

atom_to_string(Arg) when is_atom(Arg) ->
 atom_to_list(Arg);
atom_to_string(Arg) ->
 erlang:error(badarg,[Arg],
 [{error_info,#{ module => ?MODULE,
 cause => #{ 1 => "should be an atom" }}}]).

format_error(Reason, [{_M,_F,_As,Info}|_]) ->
 ErrorInfo = proplists:get_value(error_info, Info, #{}),
 ErrorMap = maps:get(cause, ErrorInfo),
 ErrorMap#{ general => "optional general information",
 reason => io_lib:format("~p: ~p",[?MODULE, Reason]) }.
1> c(my_error_module).
{ok,my_error_module}
2> my_error_module:atom_to_string(1).
** exception error: my_error_module: badarg
 in function my_error_module:atom_to_string/1
 called as my_error_module:atom_to_string(1)
 *** argument 1: should be an atom
 *** optional general information

 Functions

 Link to this function

 format_exception(Class, Reason, StackTrace)

 View Source

 (since OTP 24.0)

 -spec format_exception(Class, Reason, StackTrace) -> unicode:chardata()
 when
 Class :: error | exit | throw,
 Reason :: term(),
 StackTrace :: erlang:stacktrace().

Equivalent to format_exception/4.

 Link to this function

 format_exception(Class, Reason, StackTrace, Options)

 View Source

 (since OTP 24.0)

 -spec format_exception(Class, Reason, StackTrace, Options) -> unicode:chardata()
 when
 Class :: error | exit | throw,
 Reason :: term(),
 StackTrace :: erlang:stacktrace(),
 Options :: format_options().

Format the error reason and stack back-trace caught using try ... catch in
the same style as the shell formats them.
Example:
try
 do_something()
catch
 C:R:Stk ->
 Message = erl_error:format_exception(C, R, Stk),
 io:format(LogFile, "~ts\n", [Message])
end
If error_info is provided with the exception, format_exception will use that
information to provide additional information about the exception.
Example:
try
 erlang:raise(badarg,[],[{error_info,#{}}])
catch
 C:R:Stk ->
 Message = erl_error:format_exception(C, R, Stk),
 io:format(LogFile, "~ts\n", [Message])
end
See erlang:error/3 for details on how to raise an exception with error_info
included.

 file_sorter - stdlib v5.2.1

file_sorter

File sorter.
This module contains functions for sorting terms on files, merging already
sorted files, and checking files for sortedness. Chunks containing binary terms
are read from a sequence of files, sorted internally in memory and written on
temporary files, which are merged producing one sorted file as output. Merging
is provided as an optimization; it is faster when the files are already sorted,
but it always works to sort instead of merge.
On a file, a term is represented by a header and a binary. Two options define
the format of terms on files:
	{header, HeaderLength} - HeaderLength determines the number of bytes
preceding each binary and containing the length of the binary in bytes.
Defaults to 4. The order of the header bytes is defined as follows: if B is
a binary containing a header only, size Size of the binary is calculated as
<<Size:HeaderLength/unit:8>> = B.

	{format, Format} - Option Format determines the function that is
applied to binaries to create the terms to be sorted. Defaults to
binary_term, which is equivalent to fun binary_to_term/1. Value binary
is equivalent to fun(X) -> X end, which means that the binaries are sorted
as they are. This is the fastest format. If Format is term, io:read/2 is
called to read terms. In that case, only the default value of option header
is allowed.
Option format also determines what is written to the sorted output file: if
Format is term, then io:format/3 is called to write each term, otherwise
the binary prefixed by a header is written. Notice that the binary written is
the same binary that was read; the results of applying function Format are
thrown away when the terms have been sorted. Reading and writing terms using
the io module is much slower than reading and writing binaries.

Other options are:
	{order, Order} - The default is to sort terms in ascending order, but
that can be changed by value descending or by specifying an ordering
function Fun. An ordering function is antisymmetric, transitive, and total.
Fun(A, B) is to return true if A comes before B in the ordering,
otherwise false. An example of a typical ordering function is less than or
equal to, =</2. Using an ordering function slows down the sort considerably.
Functions keysort, keymerge and keycheck do not accept ordering
functions.

	{unique, boolean()} - When sorting or merging files, only the first of a
sequence of terms that compare equal (==) is output if this option is set to
true. Defaults to false, which implies that all terms that compare equal
are output. When checking files for sortedness, a check that no pair of
consecutive terms compares equal is done if this option is set to true.

	{tmpdir, TempDirectory} - The directory where temporary files are put
can be chosen explicitly. The default, implied by value "", is to put
temporary files on the same directory as the sorted output file. If output is
a function (see below), the directory returned by file:get_cwd() is used
instead. The names of temporary files are derived from the Erlang nodename
(node/0), the process identifier of the current Erlang emulator
(os:getpid()), and a unique integer (erlang:unique_integer([positive])). A
typical name is fs_mynode@myhost_1763_4711.17, where 17 is a sequence
number. Existing files are overwritten. Temporary files are deleted unless
some uncaught EXIT signal occurs.

	{compressed, boolean()} - Temporary files and the output file can be
compressed. Defaults false, which implies that written files are not
compressed. Regardless of the value of option compressed, compressed files
can always be read. Notice that reading and writing compressed files are
significantly slower than reading and writing uncompressed files.

	{size, Size} - By default about 512*1024 bytes read from files are
sorted internally. This option is rarely needed.

	{no_files, NoFiles} - By default 16 files are merged at a time. This
option is rarely needed.

As an alternative to sorting files, a function of one argument can be specified
as input. When called with argument read, the function is assumed to return
either of the following:
	end_of_input or {end_of_input, Value}} when there is no more input
(Value is explained below).
	{Objects, Fun}, where Objects is a list of binaries or terms depending on
the format, and Fun is a new input function.

Any other value is immediately returned as value of the current call to sort
or keysort. Each input function is called exactly once. If an error occurs,
the last function is called with argument close, the reply of which is
ignored.
A function of one argument can be specified as output. The results of sorting or
merging the input is collected in a non-empty sequence of variable length lists
of binaries or terms depending on the format. The output function is called with
one list at a time, and is assumed to return a new output function. Any other
return value is immediately returned as value of the current call to the sort or
merge function. Each output function is called exactly once. When some output
function has been applied to all of the results or an error occurs, the last
function is called with argument close, and the reply is returned as value of
the current call to the sort or merge function.
If a function is specified as input and the last input function returns
{end_of_input, Value}, the function specified as output is called with
argument {value, Value}. This makes it easy to initiate the sequence of output
functions with a value calculated by the input functions.
As an example, consider sorting the terms on a disk log file. A function that
reads chunks from the disk log and returns a list of binaries is used as input.
The results are collected in a list of terms.
sort(Log) ->
 {ok, _} = disk_log:open([{name,Log}, {mode,read_only}]),
 Input = input(Log, start),
 Output = output([]),
 Reply = file_sorter:sort(Input, Output, {format,term}),
 ok = disk_log:close(Log),
 Reply.

input(Log, Cont) ->
 fun(close) ->
 ok;
 (read) ->
 case disk_log:chunk(Log, Cont) of
 {error, Reason} ->
 {error, Reason};
 {Cont2, Terms} ->
 {Terms, input(Log, Cont2)};
 {Cont2, Terms, _Badbytes} ->
 {Terms, input(Log, Cont2)};
 eof ->
 end_of_input
 end
 end.

output(L) ->
 fun(close) ->
 lists:append(lists:reverse(L));
 (Terms) ->
 output([Terms | L])
 end.
For more examples of functions as input and output, see the end of the
file_sorter module; the term format is implemented with functions.
The possible values of Reason returned when an error occurs are:
	bad_object, {bad_object, FileName} - Applying the format function failed
for some binary, or the key(s) could not be extracted from some term.
	{bad_term, FileName} - io:read/2 failed to read some term.
	{file_error, FileName, file:posix()} - For an explanation of
file:posix(), see file.
	{premature_eof, FileName} - End-of-file was encountered inside some binary
term.

 Summary

 Types

 file_name()

 file_names()

 format()

 format_fun()

 header_length()

 i_command()

 i_reply()

 infun()

 input()

 input_reply()

 key_pos()

 no_files()

 o_command()

 o_reply()

 object()

 option()

 options()

 order()

 order_fun()

 outfun()

 output()

 output_reply()

 reason()

 size()

 tmp_directory()

 value()

 Functions

 check(FileName)

 Equivalent to check([FileName], []).

 check(FileNames, Options)

 Checks files for sortedness. If a file is not sorted, the first out-of-order
element is returned. The first term on a file has position 1.

 keycheck(KeyPos, FileName)

 Equivalent to keycheck(KeyPos, [Filename], []).

 keycheck(KeyPos, FileNames, Options)

 Checks files for sortedness. If a file is not sorted, the first out-of-order
element is returned. The first term on a file has position 1.

 keymerge(KeyPos, FileNames, Output)

 Equivalent to keymerge(KeyPos, FileNames, Output, []).

 keymerge(KeyPos, FileNames, Output, Options)

 Merges tuples on files. Each input file is assumed to be sorted on key(s).

 keysort(KeyPos, FileName)

 Sorts tuples on files.

 keysort(KeyPos, Input, Output)

 Equivalent to keysort(KeyPos, Input, Output, []).

 keysort(KeyPos, Input, Output, Options)

 Sorts tuples on files. The sort is performed on the element(s) mentioned in
KeyPos. If two tuples compare equal (==) on one element, the next element
according to KeyPos is compared. The sort is stable.

 merge(FileNames, Output)

 Equivalent to merge(FileNames, Output, []).

 merge(FileNames, Output, Options)

 Merges terms on files. Each input file is assumed to be sorted.

 sort(FileName)

 Sorts terms on files.

 sort(Input, Output)

 Equivalent to sort(Input, Output, []).

 sort(Input, Output, Options)

 Sorts terms on files.

 Types

 Link to this type

 file_name()

 View Source

 (not exported)

 -type file_name() :: file:name().

 Link to this type

 file_names()

 View Source

 (not exported)

 -type file_names() :: [file:name()].

 Link to this type

 format()

 View Source

 (not exported)

 -type format() :: binary_term | term | binary | format_fun().

 Link to this type

 format_fun()

 View Source

 (not exported)

 -type format_fun() :: fun((binary()) -> term()).

 Link to this type

 header_length()

 View Source

 (not exported)

 -type header_length() :: pos_integer().

 Link to this type

 i_command()

 View Source

 (not exported)

 -type i_command() :: read | close.

 Link to this type

 i_reply()

 View Source

 (not exported)

 -type i_reply() :: end_of_input | {end_of_input, value()} | {[object()], infun()} | input_reply().

 Link to this type

 infun()

 View Source

 (not exported)

 -type infun() :: fun((i_command()) -> i_reply()).

 Link to this type

 input()

 View Source

 (not exported)

 -type input() :: file_names() | infun().

 Link to this type

 input_reply()

 View Source

 (not exported)

 -type input_reply() :: term().

 Link to this type

 key_pos()

 View Source

 (not exported)

 -type key_pos() :: pos_integer() | [pos_integer()].

 Link to this type

 no_files()

 View Source

 (not exported)

 -type no_files() :: pos_integer().

 Link to this type

 o_command()

 View Source

 (not exported)

 -type o_command() :: {value, value()} | [object()] | close.

 Link to this type

 o_reply()

 View Source

 (not exported)

 -type o_reply() :: outfun() | output_reply().

 Link to this type

 object()

 View Source

 (not exported)

 -type object() :: term() | binary().

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 {compressed, boolean()} |
 {header, header_length()} |
 {format, format()} |
 {no_files, no_files()} |
 {order, order()} |
 {size, size()} |
 {tmpdir, tmp_directory()} |
 {unique, boolean()}.

 Link to this type

 options()

 View Source

 (not exported)

 -type options() :: [option()] | option().

 Link to this type

 order()

 View Source

 (not exported)

 -type order() :: ascending | descending | order_fun().

 Link to this type

 order_fun()

 View Source

 (not exported)

 -type order_fun() :: fun((term(), term()) -> boolean()).

 Link to this type

 outfun()

 View Source

 (not exported)

 -type outfun() :: fun((o_command()) -> o_reply()).

 Link to this type

 output()

 View Source

 (not exported)

 -type output() :: file_name() | outfun().

 Link to this type

 output_reply()

 View Source

 (not exported)

 -type output_reply() :: term().

 Link to this type

 reason()

 View Source

 -type reason() ::
 bad_object |
 {bad_object, file_name()} |
 {bad_term, file_name()} |
 {file_error, file_name(), file:posix() | badarg | system_limit} |
 {premature_eof, file_name()}.

 Link to this type

 size()

 View Source

 (not exported)

 -type size() :: non_neg_integer().

 Link to this type

 tmp_directory()

 View Source

 (not exported)

 -type tmp_directory() :: [] | file:name().

 Link to this type

 value()

 View Source

 (not exported)

 -type value() :: term().

 Functions

 Link to this function

 check(FileName)

 View Source

 -spec check(FileName) -> Reply
 when
 FileName :: file_name(),
 Reply :: {ok, [Result]} | {error, reason()},
 Result :: {FileName, TermPosition, term()},
 TermPosition :: pos_integer().

Equivalent to check([FileName], []).

 Link to this function

 check(FileNames, Options)

 View Source

 -spec check(FileNames, Options) -> Reply
 when
 FileNames :: file_names(),
 Options :: options(),
 Reply :: {ok, [Result]} | {error, reason()},
 Result :: {FileName, TermPosition, term()},
 FileName :: file_name(),
 TermPosition :: pos_integer().

Checks files for sortedness. If a file is not sorted, the first out-of-order
element is returned. The first term on a file has position 1.

 Link to this function

 keycheck(KeyPos, FileName)

 View Source

 -spec keycheck(KeyPos, FileName) -> Reply
 when
 KeyPos :: key_pos(),
 FileName :: file_name(),
 Reply :: {ok, [Result]} | {error, reason()},
 Result :: {FileName, TermPosition, term()},
 TermPosition :: pos_integer().

Equivalent to keycheck(KeyPos, [Filename], []).

 Link to this function

 keycheck(KeyPos, FileNames, Options)

 View Source

 -spec keycheck(KeyPos, FileNames, Options) -> Reply
 when
 KeyPos :: key_pos(),
 FileNames :: file_names(),
 Options :: options(),
 Reply :: {ok, [Result]} | {error, reason()},
 Result :: {FileName, TermPosition, term()},
 FileName :: file_name(),
 TermPosition :: pos_integer().

Checks files for sortedness. If a file is not sorted, the first out-of-order
element is returned. The first term on a file has position 1.

 Link to this function

 keymerge(KeyPos, FileNames, Output)

 View Source

 -spec keymerge(KeyPos, FileNames, Output) -> Reply
 when
 KeyPos :: key_pos(),
 FileNames :: file_names(),
 Output :: output(),
 Reply :: ok | {error, reason()} | output_reply().

Equivalent to keymerge(KeyPos, FileNames, Output, []).

 Link to this function

 keymerge(KeyPos, FileNames, Output, Options)

 View Source

 -spec keymerge(KeyPos, FileNames, Output, Options) -> Reply
 when
 KeyPos :: key_pos(),
 FileNames :: file_names(),
 Output :: output(),
 Options :: options(),
 Reply :: ok | {error, reason()} | output_reply().

Merges tuples on files. Each input file is assumed to be sorted on key(s).

 Link to this function

 keysort(KeyPos, FileName)

 View Source

 -spec keysort(KeyPos, FileName) -> Reply
 when
 KeyPos :: key_pos(),
 FileName :: file_name(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Sorts tuples on files.

 Link to this function

 keysort(KeyPos, Input, Output)

 View Source

 -spec keysort(KeyPos, Input, Output) -> Reply
 when
 KeyPos :: key_pos(),
 Input :: input(),
 Output :: output(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Equivalent to keysort(KeyPos, Input, Output, []).

 Link to this function

 keysort(KeyPos, Input, Output, Options)

 View Source

 -spec keysort(KeyPos, Input, Output, Options) -> Reply
 when
 KeyPos :: key_pos(),
 Input :: input(),
 Output :: output(),
 Options :: options(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Sorts tuples on files. The sort is performed on the element(s) mentioned in
KeyPos. If two tuples compare equal (==) on one element, the next element
according to KeyPos is compared. The sort is stable.

 Link to this function

 merge(FileNames, Output)

 View Source

 -spec merge(FileNames, Output) -> Reply
 when
 FileNames :: file_names(),
 Output :: output(),
 Reply :: ok | {error, reason()} | output_reply().

Equivalent to merge(FileNames, Output, []).

 Link to this function

 merge(FileNames, Output, Options)

 View Source

 -spec merge(FileNames, Output, Options) -> Reply
 when
 FileNames :: file_names(),
 Output :: output(),
 Options :: options(),
 Reply :: ok | {error, reason()} | output_reply().

Merges terms on files. Each input file is assumed to be sorted.

 Link to this function

 sort(FileName)

 View Source

 -spec sort(FileName) -> Reply
 when
 FileName :: file_name(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Sorts terms on files.

 Link to this function

 sort(Input, Output)

 View Source

 -spec sort(Input, Output) -> Reply
 when
 Input :: input(),
 Output :: output(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Equivalent to sort(Input, Output, []).

 Link to this function

 sort(Input, Output, Options)

 View Source

 -spec sort(Input, Output, Options) -> Reply
 when
 Input :: input(),
 Output :: output(),
 Options :: options(),
 Reply :: ok | {error, reason()} | input_reply() | output_reply().

Sorts terms on files.

 filelib - stdlib v5.2.1

filelib

File utilities, such as wildcard matching of filenames.
This module contains utilities on a higher level than the file module.
This module does not support "raw" filenames (that is, files whose names do not
comply with the expected encoding). Such files are ignored by the functions in
this module.
For more information about raw filenames, see the file module.
Note
Functionality in this module generally assumes valid input and does not
necessarily fail on input that does not use a valid encoding, but may instead
very likely produce invalid output.
File operations used to accept filenames containing null characters (integer
value zero). This caused the name to be truncated and in some cases arguments
to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file
operations to fail.

Warning
Currently null characters at the end of the filename will be accepted by
primitive file operations. Such filenames are however still documented as
invalid. The implementation will also change in the future and reject such
filenames.

 Summary

 Types

 dirname()

 dirname_all()

 filename()

 filename_all()

 find_file_rule()

 find_source_rule()

 Functions

 ensure_dir(Name)

 Ensures that all parent directories for the specified file or directory name
Name exist, trying to create them if necessary.

 ensure_path(Path)

 Ensures that all parent directories for the specified path Path exist, trying
to create them if necessary.

 file_size(Filename)

 Returns the size of the specified file.

 find_file(Filename, Dir)

 Equivalent to find_file(Filename, Dir, []).

 find_file/3

 Looks for a file of the given name by applying suffix rules to the given
directory path.

 find_source(FilePath)

 Equivalent to find_source(Base, Dir), where Dir is
filename:dirname(FilePath) and Base is filename:basename(FilePath).

 find_source(Filename, Dir)

 Equivalent to find_source(Filename, Dir, []).

 find_source/3

 Applies file extension specific rules to find the source file for a given object
file relative to the object directory.

 fold_files(Dir, RegExp, Recursive, Fun, AccIn)

 Folds function Fun over all (regular) files F in directory Dir whose
basename (for example, just "baz.erl" in "foo/bar/baz.erl") matches the
regular expression RegExp (for a description of the allowed regular
expressions, see the re module).

 is_dir(Name)

 Returns true if Name refers to a directory, otherwise false.

 is_file(Name)

 Returns true if Name refers to a file or a directory, otherwise false.

 is_regular(Name)

 Returns true if Name refers to a (regular) file, otherwise false.

 last_modified(Name)

 Returns the date and time the specified file or directory was last modified, or
0 if the file does not exist.

 safe_relative_path(Filename, Cwd)

 Sanitizes the relative path by eliminating ".." and "." components to protect
against directory traversal attacks.

 wildcard(Wildcard)

 Returns a list of all files that match Unix-style wildcard string Wildcard.

 wildcard(Wildcard, Cwd)

 Same as wildcard/1, except that Cwd is used instead of the working
directory.

 Types

 Link to this type

 dirname()

 View Source

 (not exported)

 -type dirname() :: filename().

 Link to this type

 dirname_all()

 View Source

 (not exported)

 -type dirname_all() :: filename_all().

 Link to this type

 filename()

 View Source

 (not exported)

 -type filename() :: file:name().

 Link to this type

 filename_all()

 View Source

 (not exported)

 -type filename_all() :: file:name_all().

 Link to this type

 find_file_rule()

 View Source

 (not exported)

 -type find_file_rule() :: {ObjDirSuffix :: string(), SrcDirSuffix :: string()}.

 Link to this type

 find_source_rule()

 View Source

 (not exported)

 -type find_source_rule() :: {ObjExtension :: string(), SrcExtension :: string(), [find_file_rule()]}.

 Functions

 Link to this function

 ensure_dir(Name)

 View Source

 -spec ensure_dir(Name) -> ok | {error, Reason}
 when Name :: filename_all() | dirname_all(), Reason :: file:posix().

Ensures that all parent directories for the specified file or directory name
Name exist, trying to create them if necessary.
Returns ok if all parent directories already exist or can be created. Returns
{error, Reason} if some parent directory does not exist and cannot be created.

 Link to this function

 ensure_path(Path)

 View Source

 (since OTP 25.0)

 -spec ensure_path(Path) -> ok | {error, Reason} when Path :: dirname_all(), Reason :: file:posix().

Ensures that all parent directories for the specified path Path exist, trying
to create them if necessary.
Unlike ensure_dir/1, this function will attempt to create all path segments as
a directory, including the last segment.
Returns ok if all parent directories already exist or can be created. Returns
{error, Reason} if some parent directory does not exist and cannot be created.

 Link to this function

 file_size(Filename)

 View Source

 -spec file_size(Filename) -> non_neg_integer() when Filename :: filename_all().

Returns the size of the specified file.

 Link to this function

 find_file(Filename, Dir)

 View Source

 (since OTP 20.0)

 -spec find_file(Filename :: filename(), Dir :: filename()) -> {ok, filename()} | {error, not_found}.

Equivalent to find_file(Filename, Dir, []).

 Link to this function

 find_file/3

 View Source

 (since OTP 20.0)

 -spec find_file(filename(), filename(), [find_file_rule()]) -> {ok, filename()} | {error, not_found}.

Looks for a file of the given name by applying suffix rules to the given
directory path.
For example, a rule {"ebin", "src"} means that if the directory path ends with
 "ebin", the corresponding path ending in "src" should be searched.
If Rules is left out or is an empty list, the default system rules are used.
See also the Kernel application parameter
source_search_rules.

 Link to this function

 find_source(FilePath)

 View Source

 (since OTP 20.0)

 -spec find_source(filename()) -> {ok, filename()} | {error, not_found}.

Equivalent to find_source(Base, Dir), where Dir is
filename:dirname(FilePath) and Base is filename:basename(FilePath).

 Link to this function

 find_source(Filename, Dir)

 View Source

 (since OTP 20.0)

 -spec find_source(filename(), filename()) -> {ok, filename()} | {error, not_found}.

Equivalent to find_source(Filename, Dir, []).

 Link to this function

 find_source/3

 View Source

 (since OTP 20.0)

 -spec find_source(filename(), filename(), [find_source_rule()]) -> {ok, filename()} | {error, not_found}.

Applies file extension specific rules to find the source file for a given object
file relative to the object directory.
For example, for a file with the extension .beam, the default rule is to look
for a file with a corresponding extension .erl by replacing the suffix "ebin"
of the object directory path with "src" or "src/*". The file search is done
through find_file/3. The directory of the object file is always tried before
any other directory specified by the rules.
If Rules is left out or is an empty list, the default system rules are used.
See also the Kernel application parameter
source_search_rules.

 Link to this function

 fold_files(Dir, RegExp, Recursive, Fun, AccIn)

 View Source

 -spec fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut
 when
 Dir :: dirname(),
 RegExp :: string(),
 Recursive :: boolean(),
 Fun :: fun((F :: file:filename(), AccIn) -> AccOut),
 AccIn :: term(),
 AccOut :: term().

Folds function Fun over all (regular) files F in directory Dir whose
basename (for example, just "baz.erl" in "foo/bar/baz.erl") matches the
regular expression RegExp (for a description of the allowed regular
expressions, see the re module).
If Recursive is true, all subdirectories to Dir are processed.
The regular expression matching is only done on the filename without the directory part.
If Unicode filename translation is in effect and the file system is transparent,
filenames that cannot be interpreted as Unicode can be encountered, in which
case the fun() must be prepared to handle raw filenames (that is, binaries).
If the regular expression contains codepoints > 255, it does not match filenames
that do not conform to the expected character encoding (that is, are not encoded
in valid UTF-8).
For more information about raw filenames, see the file module.

 Link to this function

 is_dir(Name)

 View Source

 -spec is_dir(Name) -> boolean() when Name :: filename_all() | dirname_all().

Returns true if Name refers to a directory, otherwise false.

 Link to this function

 is_file(Name)

 View Source

 -spec is_file(Name) -> boolean() when Name :: filename_all() | dirname_all().

Returns true if Name refers to a file or a directory, otherwise false.

 Link to this function

 is_regular(Name)

 View Source

 -spec is_regular(Name) -> boolean() when Name :: filename_all().

Returns true if Name refers to a (regular) file, otherwise false.

 Link to this function

 last_modified(Name)

 View Source

 -spec last_modified(Name) -> file:date_time() | 0 when Name :: filename_all() | dirname_all().

Returns the date and time the specified file or directory was last modified, or
0 if the file does not exist.

 Link to this function

 safe_relative_path(Filename, Cwd)

 View Source

 (since OTP 23.0)

 -spec safe_relative_path(Filename, Cwd) -> unsafe | SafeFilename
 when
 Filename :: filename_all(),
 Cwd :: filename_all(),
 SafeFilename :: filename_all().

Sanitizes the relative path by eliminating ".." and "." components to protect
against directory traversal attacks.
Either returns the sanitized path name, or the atom unsafe if the path is unsafe.
The path is considered unsafe in the following circumstances:
	The path is not relative.
	A ".." component would climb up above the root of the relative path.
	A symbolic link in the path points above the root of the relative path.

Examples:
1> {ok, Cwd} = file:get_cwd().
...
2> filelib:safe_relative_path("dir/sub_dir/..", Cwd).
"dir"
3> filelib:safe_relative_path("dir/..", Cwd).
[]
4> filelib:safe_relative_path("dir/../..", Cwd).
unsafe
5> filelib:safe_relative_path("/abs/path", Cwd).
unsafe

 Link to this function

 wildcard(Wildcard)

 View Source

 -spec wildcard(Wildcard) -> [file:filename()] when Wildcard :: filename() | dirname().

Returns a list of all files that match Unix-style wildcard string Wildcard.
The wildcard string looks like an ordinary filename, except that the following
"wildcard characters" are interpreted in a special way:
	? - Matches one character.

	* - Matches any number of characters up to the end of the filename, the
next dot, or the next slash.

	** - Two adjacent * used as a single pattern match all files and zero
or more directories and subdirectories.

	[Character1,Character2,...] - Matches any of the characters listed. Two
characters separated by a hyphen match a range of characters. Example: [A-Z]
matches any uppercase letter.

	{Item,...} - Alternation. Matches one of the alternatives.

Other characters represent themselves. Only filenames that have exactly the same
character in the same position match. Matching is case-sensitive, for example,
"a" does not match "A".
Directory separators must always be written as /, even on Windows.
A character preceded by \ loses its special meaning. Note that \ must be
written as \\ in a string literal. For example, "\\?*" will match any
filename starting with ?.
Notice that multiple "*" characters are allowed (as in Unix wildcards, but
opposed to Windows/DOS wildcards).
Examples:
The following examples assume that the current directory is the top of an
Erlang/OTP installation.
To find all .beam files in all applications, use the following line:
filelib:wildcard("lib/*/ebin/*.beam").
To find .erl or .hrl in all applications src directories, use either of
the following lines:
filelib:wildcard("lib/*/src/*.?rl")
filelib:wildcard("lib/*/src/*.{erl,hrl}")
To find all .hrl files in src or include directories:
filelib:wildcard("lib/*/{src,include}/*.hrl").
To find all .erl or .hrl files in either src or include directories:
filelib:wildcard("lib/*/{src,include}/*.{erl,hrl}")
To find all .erl or .hrl files in any subdirectory:
filelib:wildcard("lib/**/*.{erl,hrl}")

 Link to this function

 wildcard(Wildcard, Cwd)

 View Source

 -spec wildcard(Wildcard, Cwd) -> [file:filename()]
 when Wildcard :: filename() | dirname(), Cwd :: dirname().

Same as wildcard/1, except that Cwd is used instead of the working
directory.

 filename - stdlib v5.2.1

filename

Filename manipulation functions.
This module provides functions for analyzing and manipulating filenames. These
functions are designed so that the Erlang code can work on many different
platforms with different filename formats. With filename is meant all strings
that can be used to denote a file. The filename can be a short relative name
like foo.erl, a long absolute name including a drive designator, a directory
name like D:\usr/local\bin\erl/lib\tools\foo.erl, or any variations in
between.
In Windows, all functions return filenames with forward slashes only, even if
the arguments contain backslashes. To normalize a filename by removing redundant
directory separators, use join/1.
The module supports raw filenames
in the way that if a binary is present, or the filename cannot be interpreted
according to the return value of file:native_name_encoding/0, a raw filename
is also returned. For example, join/1 provided with a path
component that is a binary (and cannot be interpreted under the current native
filename encoding) results in a raw filename that is returned (the join
operation is performed of course). For more information about raw filenames, see
the file module.
Note
Functionality in this module generally assumes valid input and does not
necessarily fail on input that does not use a valid encoding, but may instead
very likely produce invalid output.
File operations used to accept filenames containing null characters (integer
value zero). This caused the name to be truncated and in some cases arguments
to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file
operations to fail.

Warning
Currently null characters at the end of the filename will be accepted by
primitive file operations. Such filenames are however still documented as
invalid. The implementation will also change in the future and reject such
filenames.

 Summary

 Types

 basedir_opts()

 basedir_path_type()

 basedir_paths_type()

 Functions

 absname(Filename)

 Converts a relative Filename and returns an absolute name. No attempt is made
to create the shortest absolute name, as this can give incorrect results on file
systems that allow links.

 absname(Filename, Dir)

 Same as absname/1, except that the directory to which the filename is to be
made relative is specified in argument Dir.

 absname_join(Dir, Filename)

 Joins an absolute directory with a relative filename.

 basedir(Type, Application)

 Equivalent to basedir(PathType, Application, #{})
or basedir(PathsType, Application, #{}).

 basedir(Type, Application, Opts)

 basename(Filename)

 Returns the last component of Filename, or Filename itself if it does not
contain any directory separators.

 basename(Filename, Ext)

 Returns the last component of Filename with extension Ext stripped.

 dirname(Filename)

 Returns the directory part of Filename.

 extension(Filename)

 Returns the file extension of Filename, including the period. Returns an empty
string if no extension exists.

 flatten(Filename)

 Converts a possibly deep list filename consisting of characters and atoms into
the corresponding flat string filename.

 join(Components)

 Joins a list of filename Components with directory separators. If one of the
elements of Components includes an absolute path, such as "/xxx", the
preceding elements, if any, are removed from the result.

 join(Name1, Name2)

 Joins two filename components with directory separators. Equivalent to
join([Name1, Name2]).

 nativename(Path)

 Converts Path to a form accepted by the command shell and native applications
on the current platform. On Windows, forward slashes are converted to backward
slashes. On all platforms, the name is normalized as done by join/1.

 pathtype(Path)

 Returns the path type, which is one of the following

 rootname(Filename)

 Removes the filename extension.

 rootname(Filename, Ext)

 Removes the filename extension Ext from Filename.

 split(Filename)

 Returns a list whose elements are the path components of Filename.

 Types

 Link to this type

 basedir_opts()

 View Source

 (not exported)

 -type basedir_opts() ::
 #{author => string() | binary(),
 os => windows | darwin | linux,
 version => string() | binary()}.

 Link to this type

 basedir_path_type()

 View Source

 (not exported)

 -type basedir_path_type() :: user_cache | user_config | user_data | user_log.

 Link to this type

 basedir_paths_type()

 View Source

 (not exported)

 -type basedir_paths_type() :: site_config | site_data.

 Functions

 Link to this function

 absname(Filename)

 View Source

 -spec absname(Filename) -> file:filename_all() when Filename :: file:name_all().

Converts a relative Filename and returns an absolute name. No attempt is made
to create the shortest absolute name, as this can give incorrect results on file
systems that allow links.
Unix examples:
1> pwd().
"/usr/local"
2> filename:absname("foo").
"/usr/local/foo"
3> filename:absname("../x").
"/usr/local/../x"
4> filename:absname("/").
"/"
Windows examples:
1> pwd().
"D:/usr/local"
2> filename:absname("foo").
"D:/usr/local/foo"
3> filename:absname("../x").
"D:/usr/local/../x"
4> filename:absname("/").
"D:/"

 Link to this function

 absname(Filename, Dir)

 View Source

 -spec absname(Filename, Dir) -> file:filename_all()
 when Filename :: file:name_all(), Dir :: file:name_all().

Same as absname/1, except that the directory to which the filename is to be
made relative is specified in argument Dir.

 Link to this function

 absname_join(Dir, Filename)

 View Source

 -spec absname_join(Dir, Filename) -> file:filename_all()
 when Dir :: file:name_all(), Filename :: file:name_all().

Joins an absolute directory with a relative filename.
Similar to join/2, but on platforms with tight restrictions on raw filename length
and no support for symbolic links, leading parent directory components in Filename are matched
against trailing directory components in Dir so they can be removed from the
result - minimizing its length.

 Link to this function

 basedir(Type, Application)

 View Source

 (since OTP 19.0)

 -spec basedir(PathType, Application) -> file:filename_all()
 when PathType :: basedir_path_type(), Application :: string() | binary();
 (PathsType, Application) -> [file:filename_all()]
 when PathsType :: basedir_paths_type(), Application :: string() | binary().

Equivalent to basedir(PathType, Application, #{})
or basedir(PathsType, Application, #{}).

 Link to this function

 basedir(Type, Application, Opts)

 View Source

 (since OTP 19.0)

 -spec basedir(PathType, Application, Opts) -> file:filename_all()
 when
 PathType :: basedir_path_type(),
 Application :: string() | binary(),
 Opts :: basedir_opts();
 (PathsType, Application, Opts) -> [file:filename_all()]
 when
 PathsType :: basedir_paths_type(),
 Application :: string() | binary(),
 Opts :: basedir_opts().

Returns a suitable path, or paths, for a given type. If os is not set in
Opts the function will default to the native option, that is 'linux',
'darwin' or 'windows', as understood by os:type/0. Anything not recognized
as 'darwin' or 'windows' is interpreted as 'linux'.
The options 'author' and 'version' are only used with 'windows' option
mode.
	user_cache
The path location is intended for transient data files on a local machine.
On Linux: Respects the os environment variable XDG_CACHE_HOME.
1> filename:basedir(user_cache, "my_application", #{os=>linux}).
"/home/otptest/.cache/my_application"
On Darwin:
1> filename:basedir(user_cache, "my_application", #{os=>darwin}).
"/home/otptest/Library/Caches/my_application"
On Windows:
1> filename:basedir(user_cache, "My App").
"c:/Users/otptest/AppData/Local/My App/Cache"
2> filename:basedir(user_cache, "My App").
"c:/Users/otptest/AppData/Local/My App/Cache"
3> filename:basedir(user_cache, "My App", #{author=>"Erlang"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/Cache"
4> filename:basedir(user_cache, "My App", #{version=>"1.2"}).
"c:/Users/otptest/AppData/Local/My App/1.2/Cache"
5> filename:basedir(user_cache, "My App", #{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2/Cache"

	user_config
The path location is intended for persistent configuration files.
On Linux: Respects the os environment variable XDG_CONFIG_HOME.
2> filename:basedir(user_config, "my_application", #{os=>linux}).
"/home/otptest/.config/my_application"
On Darwin:
2> filename:basedir(user_config, "my_application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my_application"
On Windows:
1> filename:basedir(user_config, "My App").
"c:/Users/otptest/AppData/Roaming/My App"
2> filename:basedir(user_config, "My App", #{author=>"Erlang", version=>"1.2"}).
"c:/Users/otptest/AppData/Roaming/Erlang/My App/1.2"

	user_data
The path location is intended for persistent data files.
On Linux: Respects the os environment variable XDG_DATA_HOME.
3> filename:basedir(user_data, "my_application", #{os=>linux}).
"/home/otptest/.local/my_application"
On Darwin:
3> filename:basedir(user_data, "my_application", #{os=>darwin}).
"/home/otptest/Library/Application Support/my_application"
On Windows:
8> filename:basedir(user_data, "My App").
"c:/Users/otptest/AppData/Local/My App"
9> filename:basedir(user_data, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2"

	user_log
The path location is intended for transient log files on a local machine.
On Linux: Respects the os environment variable XDG_CACHE_HOME.
4> filename:basedir(user_log, "my_application", #{os=>linux}).
"/home/otptest/.cache/my_application/log"
On Darwin:
4> filename:basedir(user_log, "my_application", #{os=>darwin}).
"/home/otptest/Library/Logs/my_application"
On Windows:
12> filename:basedir(user_log, "My App").
"c:/Users/otptest/AppData/Local/My App/Logs"
13> filename:basedir(user_log, "My App",#{author=>"Erlang",version=>"1.2"}).
"c:/Users/otptest/AppData/Local/Erlang/My App/1.2/Logs"

	site_config
On Linux: Respects the os environment variable XDG_CONFIG_DIRS.
5> filename:basedir(site_config, "my_application", #{os=>linux}).
["/usr/local/share/my_application",
 "/usr/share/my_application"]
6> os:getenv("XDG_CONFIG_DIRS").
"/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg"
7> filename:basedir(site_config, "my_application", #{os=>linux}).
["/etc/xdg/xdg-ubuntu/my_application",
 "/usr/share/upstart/xdg/my_application",
 "/etc/xdg/my_application"]
8> os:unsetenv("XDG_CONFIG_DIRS").
true
9> filename:basedir(site_config, "my_application", #{os=>linux}).
["/etc/xdg/my_application"]
On Darwin:
5> filename:basedir(site_config, "my_application", #{os=>darwin}).
["/Library/Application Support/my_application"]

	site_data
On Linux: Respects the os environment variable XDG_DATA_DIRS.
10> os:getenv("XDG_DATA_DIRS").
"/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/"
11> filename:basedir(site_data, "my_application", #{os=>linux}).
["/usr/share/ubuntu/my_application",
 "/usr/share/gnome/my_application",
 "/usr/local/share/my_application",
 "/usr/share/my_application"]
12> os:unsetenv("XDG_DATA_DIRS").
true
13> filename:basedir(site_data, "my_application", #{os=>linux}).
["/usr/local/share/my_application",
 "/usr/share/my_application"]
On Darwin:
5> filename:basedir(site_data, "my_application", #{os=>darwin}).
["/Library/Application Support/my_application"]

 Link to this function

 basename(Filename)

 View Source

 -spec basename(Filename) -> file:filename_all() when Filename :: file:name_all().

Returns the last component of Filename, or Filename itself if it does not
contain any directory separators.
Examples:
5> filename:basename("foo").
"foo"
6> filename:basename("/usr/foo").
"foo"
7> filename:basename("/").
[]

 Link to this function

 basename(Filename, Ext)

 View Source

 -spec basename(Filename, Ext) -> file:filename_all()
 when Filename :: file:name_all(), Ext :: file:name_all().

Returns the last component of Filename with extension Ext stripped.
This function is to be used to remove a (possible) specific extension.
To remove an existing extension when you are unsure which one it is, use
rootname(basename(Filename)).
Examples:
8> filename:basename("~/src/kalle.erl", ".erl").
"kalle"
9> filename:basename("~/src/kalle.beam", ".erl").
"kalle.beam"
10> filename:basename("~/src/kalle.old.erl", ".erl").
"kalle.old"
11> filename:rootname(filename:basename("~/src/kalle.erl")).
"kalle"
12> filename:rootname(filename:basename("~/src/kalle.beam")).
"kalle"

 Link to this function

 dirname(Filename)

 View Source

 -spec dirname(Filename) -> file:filename_all() when Filename :: file:name_all().

Returns the directory part of Filename.
Examples:
13> filename:dirname("/usr/src/kalle.erl").
"/usr/src"
14> filename:dirname("kalle.erl").
"."
5> filename:dirname("\\usr\\src/kalle.erl"). % Windows
"/usr/src"

 Link to this function

 extension(Filename)

 View Source

 -spec extension(Filename) -> file:filename_all() when Filename :: file:name_all().

Returns the file extension of Filename, including the period. Returns an empty
string if no extension exists.
Examples:
15> filename:extension("foo.erl").
".erl"
16> filename:extension("beam.src/kalle").
[]

 Link to this function

 flatten(Filename)

 View Source

 -spec flatten(Filename) -> file:filename_all() when Filename :: file:name_all().

Converts a possibly deep list filename consisting of characters and atoms into
the corresponding flat string filename.

 Link to this function

 join(Components)

 View Source

 -spec join(Components) -> file:filename_all() when Components :: [file:name_all()].

Joins a list of filename Components with directory separators. If one of the
elements of Components includes an absolute path, such as "/xxx", the
preceding elements, if any, are removed from the result.
The result is "normalized":
	Redundant directory separators are removed.
	In Windows, all directory separators are forward slashes and the drive letter
is in lower case.

Examples:
17> filename:join(["/usr", "local", "bin"]).
"/usr/local/bin"
18> filename:join(["a/b///c/"]).
"a/b/c"
6> filename:join(["B:a\\b///c/"]). % Windows
"b:a/b/c"

 Link to this function

 join(Name1, Name2)

 View Source

 -spec join(Name1, Name2) -> file:filename_all() when Name1 :: file:name_all(), Name2 :: file:name_all().

Joins two filename components with directory separators. Equivalent to
join([Name1, Name2]).

 Link to this function

 nativename(Path)

 View Source

 -spec nativename(Path) -> file:filename_all() when Path :: file:name_all().

Converts Path to a form accepted by the command shell and native applications
on the current platform. On Windows, forward slashes are converted to backward
slashes. On all platforms, the name is normalized as done by join/1.
Examples:
19> filename:nativename("/usr/local/bin/"). % Unix
"/usr/local/bin"
7> filename:nativename("/usr/local/bin/"). % Windows
"\\usr\\local\\bin"

 Link to this function

 pathtype(Path)

 View Source

 -spec pathtype(Path) -> absolute | relative | volumerelative when Path :: file:name_all().

Returns the path type, which is one of the following:
	absolute - The path name refers to a specific file on a specific volume.
Unix example: /usr/local/bin
Windows example: D:/usr/local/bin

	relative - The path name is relative to the current working directory on
the current volume.
Example: foo/bar, ../src

	volumerelative - The path name is relative to the current working
directory on a specified volume, or it is a specific file on the current
working volume.
Windows example: D:bar.erl, /bar/foo.erl

 Link to this function

 rootname(Filename)

 View Source

 -spec rootname(Filename) -> file:filename_all() when Filename :: file:name_all().

Removes the filename extension.
Examples:
1> filename:rootname("/beam.src/kalle").
"/beam.src/kalle"
2> filename:rootname("/beam.src/foo.erl").
"/beam.src/foo"

 Link to this function

 rootname(Filename, Ext)

 View Source

 -spec rootname(Filename, Ext) -> file:filename_all()
 when Filename :: file:name_all(), Ext :: file:name_all().

Removes the filename extension Ext from Filename.
Examples:
1> filename:rootname("/beam.src/foo.erl", ".erl").
"/beam.src/foo"
2> filename:rootname("/beam.src/foo.beam", ".erl").
"/beam.src/foo.beam"

 Link to this function

 split(Filename)

 View Source

 -spec split(Filename) -> Components when Filename :: file:name_all(), Components :: [file:name_all()].

Returns a list whose elements are the path components of Filename.
Examples:
24> filename:split("/usr/local/bin").
["/","usr","local","bin"]
25> filename:split("foo/bar").
["foo","bar"]
26> filename:split("a:\\msdev\\include").
["a:/","msdev","include"]

 io - stdlib v5.2.1

io

Standard I/O server interface functions.
This module provides an interface to standard Erlang I/O servers. The output
functions all return ok if they are successful, or exit if they are not.
All functions in this module have an optional parameter
IoDevice. If included, it must be the pid of a process that
handles the I/O protocols. Normally, it is an IoDevice returned by
file:open/2. If no IoDevice is given,
standard_io is used.
For a description of the I/O protocols, see section
The Erlang I/O Protocol in the User's Guide.
Warning
The data supplied to function put_chars/2 is to be in
the unicode:chardata/0 format. This means that programs supplying binaries
to this function must convert them to UTF-8 before trying to output the data
on an I/O device.
If an I/O device is set in binary mode, functions
get_chars/2,3 and get_line/1,2 can return
binaries instead of lists. The binaries are encoded in UTF-8.
To work with binaries in ISO Latin-1 encoding, use the file module
instead.
For conversion functions between character encodings, see the unicode
module.

 Error Information

The ErrorInfo mentioned in this module is the standard ErrorInfo structure
that is returned from all I/O modules. It has the following format:
{ErrorLocation, Module, ErrorDescriptor}
A string that describes the error is obtained with the following call:
Module:format_error(ErrorDescriptor)

 Summary

 Types

 device()

 An I/O device, either standard_io, standard_error, user, a registered
name, or a pid handling I/O protocols (returned from file:open/2).

 encoding()

 expand_fun()

 format()

 getopt()

 option()

 parse_form_ret()

 parse_ret()

 prompt()

 server_no_data()

 What the I/O server sends when there is no data.

 setopt()

 standard_error()

 The I/O device standard_error can be used to direct output to whatever the
current operating system considers a suitable I/O device for error output. This
can be useful when standard output is redirected.

 standard_io()

 The default standard I/O device assigned to a process. This device is used when
no IoDevice argument is specified in the function calls in this module.

 user()

 An I/O device that can be used to interact with the node local stdout and
stdin. This can be either a terminal, a pipe, a file, or a combination.

 Functions

 columns()

 Equivalent to columns(standard_io).

 columns(IoDevice)

 Retrieves the number of columns of the IoDevice (that is, the width of a
terminal).

 format(Format)

 Equivalent to format(Format, []).

 format(Format, Data)

 Equivalent to format(standard_io, Format, Data).

 format(IoDevice, Format, Data)

 Equivalent to fwrite(IoDevice, Format, Data).

 fread(Prompt, Format)

 Equivalent to fread(standard_io, Prompt, Format).

 fread(IoDevice, Prompt, Format)

 Reads characters from IoDevice, prompting it with Prompt. Interprets the
characters in accordance with Format.

 fwrite(Format)

 Equivalent to fwrite(Format, []).

 fwrite(Format, Data)

 Equivalent to fwrite(standard_io, Format, Data).

 fwrite(IoDevice, Format, Data)

 Writes the items in Data on the IoDevice in accordance with Format.

 get_chars(Prompt, Count)

 Equivalent to get_chars(standard_io, Prompt, Count).

 get_chars(IoDevice, Prompt, Count)

 Reads Count characters from IoDevice, prompting it with Prompt.

 get_line(Prompt)

 Equivalent to get_line(standard_io, Prompt).

 get_line(IoDevice, Prompt)

 Reads a line from IoDevice, prompting it with Prompt.

 getopts()

 Equivalent to getopts(standard_io).

 getopts(IoDevice)

 Requests all available options and their current values for a IoDevice.

 nl()

 Equivalent to nl(standard_io).

 nl(IoDevice)

 Writes new line to the standard output (IoDevice).

 parse_erl_exprs(Prompt)

 Equivalent to parse_erl_exprs(standard_io, Prompt).

 parse_erl_exprs(IoDevice, Prompt)

 Equivalent to parse_erl_exprs(IoDevice, Prompt, 1).

 parse_erl_exprs(IoDevice, Prompt, StartLocation)

 Equivalent to parse_erl_exprs(IoDevice, Prompt, StartLocation, []).

 parse_erl_exprs(IoDevice, Prompt, StartLocation, Options)

 Reads data from IoDevice, prompting it with Prompt.

 parse_erl_form(Prompt)

 Equivalent to parse_erl_form(standard_io, Prompt).

 parse_erl_form(IoDevice, Prompt)

 Equivalent to parse_erl_form(IoDevice, Prompt, 1).

 parse_erl_form(IoDevice, Prompt, StartLocation)

 Equivalent to parse_erl_form(IoDevice, Prompt, StartLocation, []).

 parse_erl_form(IoDevice, Prompt, StartLocation, Options)

 Reads data from IoDevice, prompting it with Prompt.

 printable_range()

 Returns the user-requested range of printable Unicode characters.

 put_chars(CharData)

 Equivalent to put_chars(standard_io, CharData).

 put_chars(IoDevice, CharData)

 Writes the characters of CharData to the IoDevice.

 read(Prompt)

 Equivalent to read(standard_io, Prompt).

 read(IoDevice, Prompt)

 Reads a term Term from the standard input (IoDevice), prompting it with
Prompt.

 read(IoDevice, Prompt, StartLocation)

 Equivalent to read(IoDevice, Prompt, StartLocation, []).

 read(IoDevice, Prompt, StartLocation, Options)

 Reads a term Term from IoDevice, prompting it with Prompt.

 rows()

 Equivalent to rows(standard_io).

 rows(IoDevice)

 Retrieves the number of rows of IoDevice (that is, the height of a terminal).

 scan_erl_exprs(Prompt)

 Equivalent to scan_erl_exprs(standard_io, Prompt).

 scan_erl_exprs(Device, Prompt)

 Equivalent to scan_erl_exprs(Device, Prompt, 1).

 scan_erl_exprs(Device, Prompt, StartLocation)

 Equivalent to scan_erl_exprs(Device, Prompt, StartLocation, []).

 scan_erl_exprs(Device, Prompt, StartLocation, Options)

 Reads data from IoDevice, prompting it with Prompt.

 scan_erl_form(Prompt)

 Equivalent to scan_erl_form(standard_io, Prompt).

 scan_erl_form(IoDevice, Prompt)

 Equivalent to scan_erl_form(IoDevice, Prompt, 1).

 scan_erl_form(IoDevice, Prompt, StartLocation)

 Equivalent to scan_erl_form(IoDevice, Prompt, StartLocation, []).

 scan_erl_form(IoDevice, Prompt, StartLocation, Options)

 Reads data from IoDevice, prompting it with Prompt.

 setopts(Opts)

 Equivalent to setopts(standard_io, Opts).

 setopts(IoDevice, Opts)

 Set options for IoDevice. Possible options and values vary
depending on the I/O device.

 write(Term)

 Equivalent to write(standard_io, Term).

 write(IoDevice, Term)

 Writes term Term to IoDevice.

 Types

 Link to this type

 device()

 View Source

 -type device() :: atom() | pid() | standard_io() | standard_error() | user().

An I/O device, either standard_io, standard_error, user, a registered
name, or a pid handling I/O protocols (returned from file:open/2).

 Link to this type

 encoding()

 View Source

 (not exported)

 -type encoding() ::
 latin1 | unicode | utf8 | utf16 | utf32 | {utf16, big | little} | {utf32, big | little}.

 Link to this type

 expand_fun()

 View Source

 (not exported)

 -type expand_fun() :: fun((string()) -> {yes | no, string(), list()}).

 Link to this type

 format()

 View Source

 -type format() :: atom() | string() | binary().

 Link to this type

 getopt()

 View Source

 (not exported)

 -type getopt() :: {terminal, boolean()} | option().

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 {binary, boolean()} |
 {echo, boolean()} |
 {expand_fun, expand_fun()} |
 {encoding, encoding()} |
 {atom(), term()}.

 Link to this type

 parse_form_ret()

 View Source

 (not exported)

 -type parse_form_ret() ::
 {ok, AbsForm :: erl_parse:abstract_form(), EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 {error,
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 ErrorLocation :: erl_anno:location()} |
 server_no_data().

 Link to this type

 parse_ret()

 View Source

 (not exported)

 -type parse_ret() ::
 {ok, ExprList :: [erl_parse:abstract_expr()], EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 {error,
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info(),
 ErrorLocation :: erl_anno:location()} |
 server_no_data().

 Link to this type

 prompt()

 View Source

 (not exported)

 -type prompt() :: atom() | unicode:chardata().

 Link to this type

 server_no_data()

 View Source

 -type server_no_data() :: {error, ErrorDescription :: term()} | eof.

What the I/O server sends when there is no data.

 Link to this type

 setopt()

 View Source

 (not exported)

 -type setopt() :: binary | list | option().

 Link to this type

 standard_error()

 View Source

 -type standard_error() :: standard_error.

The I/O device standard_error can be used to direct output to whatever the
current operating system considers a suitable I/O device for error output. This
can be useful when standard output is redirected.
Example on a Unix-like operating system:
$ erl -noinput -eval 'io:format(standard_error,"Error: ~s~n",["error 11"]),'\
'init:stop().' > /dev/null
Error: error 11

 Link to this type

 standard_io()

 View Source

 -type standard_io() :: standard_io.

The default standard I/O device assigned to a process. This device is used when
no IoDevice argument is specified in the function calls in this module.
It is sometimes desirable to use an explicit IoDevice argument that
refers to the default I/O device. This is the case with functions that can
access either a file or the default I/O device. The atom standard_io has this
special meaning. The following example illustrates this:
27> io:read('enter>').
enter>foo.
{ok,foo}
28> io:read(standard_io, 'enter>').
enter>bar.
{ok,bar}
By default all I/O sent to standard_io will end up in the user
I/O device of the node that spawned the calling process.
standard_io is an alias for group_leader/0, so in
order to change where the default input/output requests are sent you can change
the group leader of the current process using
group_leader(NewGroupLeader, self()).

 Link to this type

 user()

 View Source

 -type user() :: user.

An I/O device that can be used to interact with the node local stdout and
stdin. This can be either a terminal, a pipe, a file, or a combination.
Use getopts/1 to get more information about the I/O device.
See The Interactive Shell and
Escripts and non-interactive I/O
in the Using Unicode In Erlang User's Guide for details on how Unicode is
handled by user.

 Functions

 Link to this function

 columns()

 View Source

 -spec columns() -> {ok, pos_integer()} | {error, enotsup}.

Equivalent to columns(standard_io).

 Link to this function

 columns(IoDevice)

 View Source

 -spec columns(IoDevice) -> {ok, pos_integer()} | {error, enotsup} when IoDevice :: device().

Retrieves the number of columns of the IoDevice (that is, the width of a
terminal).
The function succeeds for terminal devices and returns {error, enotsup} for
all other I/O devices.

 Link to this function

 format(Format)

 View Source

 -spec format(Format) -> ok when Format :: format().

Equivalent to format(Format, []).

 Link to this function

 format(Format, Data)

 View Source

 -spec format(Format, Data) -> ok when Format :: format(), Data :: [term()].

Equivalent to format(standard_io, Format, Data).

 Link to this function

 format(IoDevice, Format, Data)

 View Source

 -spec format(IoDevice, Format, Data) -> ok
 when IoDevice :: device(), Format :: format(), Data :: [term()].

Equivalent to fwrite(IoDevice, Format, Data).

 Link to this function

 fread(Prompt, Format)

 View Source

 -spec fread(Prompt, Format) -> Result
 when
 Prompt :: prompt(),
 Format :: format(),
 Result :: {ok, Terms :: [term()]} | eof | {error, What :: term()}.

Equivalent to fread(standard_io, Prompt, Format).

 Link to this function

 fread(IoDevice, Prompt, Format)

 View Source

 -spec fread(IoDevice, Prompt, Format) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 Format :: format(),
 Result ::
 {ok, Terms :: [term()]} |
 {error, {fread, FreadError :: io_lib:fread_error()}} |
 server_no_data().

Reads characters from IoDevice, prompting it with Prompt. Interprets the
characters in accordance with Format.
Format can contain the following:
	Whitespace characters (Space, Tab, and Newline) that cause input to be
read to the next non-whitespace character.
	Ordinary characters that must match the next input character.
	Control sequences, which have the general format ~*FMC, where:	Character * is an optional return suppression character. It provides a
method to specify a field that is to be omitted.
	F is the field width of the input field.
	M is an optional translation modifier (of which t is the only supported,
meaning Unicode translation).
	C determines the type of control sequence.

Unless otherwise specified, leading whitespace is ignored for all control
sequences. An input field cannot be more than one line wide.Available control sequences:	~ - A single ~ is expected in the input.

	d - A decimal integer is expected.

	u - An unsigned integer in base 2-36 is expected. The field width
parameter is used to specify base. Leading whitespace characters are not
skipped.

	- - An optional sign character is expected. A sign character - gives
return value -1. Sign character + or none gives 1. The field width
parameter is ignored. Leading whitespace characters are not skipped.

	# - An integer in base 2-36 with Erlang-style base prefix (for
example, "16#ffff") is expected.

	f - A floating point number is expected. It must follow the Erlang
floating point number syntax.

	s - A string of non-whitespace characters is read. If a field width
has been specified, this number of characters are read and all trailing
whitespace characters are stripped. An Erlang string (list of characters) is
returned.
If Unicode translation is in effect (~ts), characters > 255 are accepted,
otherwise not. With the translation modifier, the returned list can as a
consequence also contain integers > 255:
1> io:fread("Prompt> ","~s").
Prompt> <Characters beyond latin1 range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ","~ts").
Prompt> <Characters beyond latin1 range not printable in this medium>
{ok,[[1091,1085,1080,1094,1086,1076,1077]]}

	a - Similar to s, but the resulting string is converted into an
atom.

	c - The number of characters equal to the field width are read
(default is 1) and returned as an Erlang string. However, leading and
trailing whitespace characters are not omitted as they are with s. All
characters are returned.
The Unicode translation modifier works as with s:
1> io:fread("Prompt> ","~c").
Prompt> <Character beyond latin1 range not printable in this medium>
{error,{fread,string}}
2> io:fread("Prompt> ","~tc").
Prompt> <Character beyond latin1 range not printable in this medium>
{ok,[[1091]]}

	l - Returns the number of characters that have been scanned up to that
point, including whitespace characters.

The function returns:	{ok, Terms} - The read was successful and Terms is the list of
successfully matched and read items.

	eof - End of file was encountered.

	{error, FreadError} - The reading failed and FreadError gives a hint
about the error.

	{error, ErrorDescription} - The read operation failed and parameter
ErrorDescription gives a hint about the error.

Examples:
20> io:fread('enter>', "~f~f~f").
enter>1.9 35.5e3 15.0
{ok,[1.9,3.55e4,15.0]}
21> io:fread('enter>', "~10f~d").
enter> 5.67899
{ok,[5.678,99]}
22> io:fread('enter>', ":~10s:~10c:").
enter>: alan : joe :
{ok, ["alan", " joe "]}

 Link to this function

 fwrite(Format)

 View Source

 -spec fwrite(Format) -> ok when Format :: format().

Equivalent to fwrite(Format, []).

 Link to this function

 fwrite(Format, Data)

 View Source

 -spec fwrite(Format, Data) -> ok when Format :: format(), Data :: [term()].

Equivalent to fwrite(standard_io, Format, Data).

 Link to this function

 fwrite(IoDevice, Format, Data)

 View Source

 -spec fwrite(IoDevice, Format, Data) -> ok
 when IoDevice :: device(), Format :: format(), Data :: [term()].

Writes the items in Data on the IoDevice in accordance with Format.
Format contains plain characters that are copied to
the output device, and control sequences for formatting, see below. If Format
is an atom or a binary, it is first converted to a list with the aid of
atom_to_list/1 or
binary_to_list/1. Example:
1> io:fwrite("Hello world!~n", []).
Hello world!
ok
The general format of a control sequence is ~F.P.PadModC.
The character C determines the type of control sequence to be used. It is the
only required field. All of F, P, Pad, and Mod are optional. For
example, to use a # for Pad but use the default values for F and P, you
can write ~..#C.
	F is the field width of the printed argument. A negative value means that
the argument is left-justified within the field, otherwise right-justified. If
no field width is specified, the required print width is used. If the field
width specified is too small, the whole field is filled with * characters.

	P is the precision of the printed argument. A default value is used if no
precision is specified. The interpretation of precision depends on the control
sequences. Unless otherwise specified, argument within is used to determine
print width.

	Pad is the padding character. This is the character used to pad the printed
representation of the argument so that it conforms to the specified field
width and precision. Only one padding character can be specified and, whenever
applicable, it is used for both the field width and precision. The default
padding character is ' ' (space).

	Mod is the control sequence modifier. This is one or more characters that
change the interpretation of Data.
The current modifiers are:
	t - For Unicode translation.

	l - For stopping p and P from detecting printable characters.

	k - For use with p, P, w, and W to format maps in map-key
ordered order (see maps:iterator_order/0).

	K - Similar to k, for formatting maps in map-key order, but takes an
extra argument that specifies the maps:iterator_order/0.
For example:
> M = #{ a => 1, b => 2 }.
#{a => 1,b => 2}
> io:format("~Kp~n", [reversed, M]).
#{b => 2,a => 1}
ok

If F, P, or Pad is a * character, the next argument in Data is used as
the value. For example:
1> io:fwrite("~*.*.0f~n",[9, 5, 3.14159265]).
003.14159
ok
To use a literal * character as Pad, it must be passed as an argument:
2> io:fwrite("~*.*.*f~n",[9, 5, $*, 3.14159265]).
**3.14159
ok
Available control sequences:
	~ - Character ~ is written.

	c - The argument is a number that is interpreted as an ASCII code. The
precision is the number of times the character is printed and defaults to the
field width, which in turn defaults to 1. Example:
1> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $c]).
| aaaaa|bbbbb |ccccc|
ok
If the Unicode translation modifier (t) is in effect, the integer argument
can be any number representing a valid Unicode codepoint, otherwise it is to
be an integer less than or equal to 255, otherwise it is masked with 16#FF:
2> io:fwrite("~tc~n",[1024]).
\x{400}
ok
3> io:fwrite("~c~n",[1024]).
^@
ok

	f - The argument is a float that is written as [-]ddd.ddd, where the
precision is the number of digits after the decimal point. The default
precision is 6 and it cannot be < 1.

	e - The argument is a float that is written as [-]d.ddde+-ddd, where
the precision is the number of digits written. The default precision is 6 and
it cannot be < 2.

	g - The argument is a float that is written as f, if it is >= 0.1 and
< 10000.0. Otherwise, it is written in the e format. The precision is the
number of significant digits. It defaults to 6 and is not to be < 2. If the
absolute value of the float does not allow it to be written in the f format
with the desired number of significant digits, it is also written in the e
format.

	s - Prints the argument with the string syntax. The argument is, if no
Unicode translation modifier is present, an iolist/0, a binary/0, or
an atom/0. If the Unicode translation modifier (t) is in effect, the
argument is unicode:chardata(), meaning that
binaries are in UTF-8. The characters are printed without quotes. The string
is first truncated by the specified precision and then padded and justified to
the specified field width. The default precision is the field width.
This format can be used for printing any object and truncating the output so
it fits a specified field:
1> io:fwrite("|~10w|~n", [{hey, hey, hey}]).
|**********|
ok
2> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey,hey,h|
3> io:fwrite("|~-10.8s|~n", [io_lib:write({hey, hey, hey})]).
|{hey,hey |
ok
A list with integers > 255 is considered an error if the Unicode translation
modifier is not specified:
4> io:fwrite("~ts~n",[[1024]]).
\x{400}
ok
5> io:fwrite("~s~n",[[1024]]).
** exception error: bad argument
 in function io:format/3
 called as io:format(<0.53.0>,"~s~n",[[1024]])

	w - Writes data with the standard syntax. This is used to output Erlang
terms. Atoms are printed within quotes if they contain embedded non-printable
characters. Atom characters > 255 are escaped unless the Unicode translation
modifier (t) is used. Floats are printed accurately as the shortest,
correctly rounded string.

	p - Writes the data with standard syntax in the same way as ~w, but
breaks terms whose printed representation is longer than one line into many
lines and indents each line sensibly. Left-justification is not supported. It
also tries to detect flat lists of printable characters and output these as
strings. For example:
1> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}], [{id,cho},{mode,explicit},{typename,'Cho'}]]},
{typename,'Person'},{tag,{'PRIVATE',3}},{mode,implicit}].
...
2> io:fwrite("~w~n", [T]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,
[73,78,84,69,71,69,82]}],[{id,cho},{mode,explicit},{typena
me,'Cho'}]]},{typename,'Person'},{tag,{'PRIVATE',3}},{mode
,implicit}]
ok
3> io:fwrite("~62p~n", [T]).
[{attributes,[[{id,age,1.5},
 {mode,explicit},
 {typename,"INTEGER"}],
 [{id,cho},{mode,explicit},{typename,'Cho'}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok
The field width specifies the maximum line length. It defaults to 80. The
precision specifies the initial indentation of the term. It defaults to the
number of characters printed on this line in the same call to write/1 or
format/1,2,3. For example, using T above:
4> io:fwrite("Here T = ~62p~n", [T]).
Here T = [{attributes,[[{id,age,1.5},
 {mode,explicit},
 {typename,"INTEGER"}],
 [{id,cho},
 {mode,explicit},
 {typename,'Cho'}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok
As from Erlang/OTP 21.0, a field width of value 0 can be used for specifying
that a line is infinitely long, which means that no line breaks are inserted.
For example:
5> io:fwrite("~0p~n", [lists:seq(1, 30)]).
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
ok
When the modifier l is specified, no detection of printable character lists
takes place, for example:
6> S = [{a,"a"}, {b, "b"}],
 io:fwrite("~15p~n", [S]).
[{a,"a"},
 {b,"b"}]
ok
7> io:fwrite("~15lp~n", [S]).
[{a,[97]},
 {b,[98]}]
ok
The Unicode translation modifier t specifies how to treat characters outside
the Latin-1 range of codepoints, in atoms, strings, and binaries. For example,
printing an atom containing a character > 255:
8> io:fwrite("~p~n",[list_to_atom([1024])]).
'\x{400}'
ok
9> io:fwrite("~tp~n",[list_to_atom([1024])]).
'Ѐ'
ok
By default, Erlang only detects lists of characters in the Latin-1 range as
strings, but the +pc unicode flag can be used to change this (see
printable_range/0 for details). For example:
10> io:fwrite("~p~n",[[214]]).
"Ö"
ok
11> io:fwrite("~p~n",[[1024]]).
[1024]
ok
12> io:fwrite("~tp~n",[[1024]]).
[1024]
ok
but if Erlang was started with +pc unicode:
13> io:fwrite("~p~n",[[1024]]).
[1024]
ok
14> io:fwrite("~tp~n",[[1024]]).
"Ѐ"
ok
Similarly, binaries that look like UTF-8 encoded strings are output with the
binary string syntax if the t modifier is specified:
15> io:fwrite("~p~n", [<<208,128>>]).
<<208,128>>
ok
16> io:fwrite("~tp~n", [<<208,128>>]).
<<"Ѐ"/utf8>>
ok
17> io:fwrite("~tp~n", [<<128,128>>]).
<<128,128>>
ok

	W - Writes data in the same way as ~w, but takes an extra argument
that is the maximum depth to which terms are printed. Anything below this
depth is replaced with For example, using T above:
8> io:fwrite("~W~n", [T,9]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,...}],
[{id,cho},{mode,...},{...}]]},{typename,'Person'},
{tag,{'PRIVATE',3}},{mode,implicit}]
ok
If the maximum depth is reached, it cannot be read in the resultant output.
Also, the ,... form in a tuple denotes that there are more elements in the
tuple but these are below the print depth.

	P - Writes data in the same way as ~p, but takes an extra argument
that is the maximum depth to which terms are printed. Anything below this
depth is replaced with ..., for example:
9> io:fwrite("~62P~n", [T,9]).
[{attributes,[[{id,age,1.5},{mode,explicit},{typename,...}],
 [{id,cho},{mode,...},{...}]]},
 {typename,'Person'},
 {tag,{'PRIVATE',3}},
 {mode,implicit}]
ok

	B - Writes an integer in base 2-36, the default base is 10. A leading
dash is printed for negative integers.
The precision field selects base, for example:
1> io:fwrite("~.16B~n", [31]).
1F
ok
2> io:fwrite("~.2B~n", [-19]).
-10011
ok
3> io:fwrite("~.36B~n", [5*36+35]).
5Z
ok

	X - Like B, but takes an extra argument that is a prefix to insert
before the number, but after the leading dash, if any.
The prefix can be a possibly deep list of characters or an atom. Example:
1> io:fwrite("~X~n", [31,"10#"]).
10#31
ok
2> io:fwrite("~.16X~n", [-31,"0x"]).
-0x1F
ok

	# - Like B, but prints the number with an Erlang style #-separated
base prefix. Example:
1> io:fwrite("~.10#~n", [31]).
10#31
ok
2> io:fwrite("~.16#~n", [-31]).
-16#1F
ok

	b - Like B, but prints lowercase letters.

	x - Like X, but prints lowercase letters.

	+ - Like #, but prints lowercase letters.

	n - Writes a new line.

	i - Ignores the next term.

The function returns:
	ok - The formatting succeeded.

If an error occurs, there is no output. Example:
1> io:fwrite("~s ~w ~i ~w ~c ~n",['abc def', 'abc def', {foo, 1},{foo, 1}, 65]).
abc def 'abc def' {foo,1} A
ok
2> io:fwrite("~s", [65]).
** exception error: bad argument
 in function io:format/3
 called as io:format(<0.53.0>,"~s","A")
In this example, an attempt was made to output the single character 65 with the
aid of the string formatting directive "~s".

 Link to this function

 get_chars(Prompt, Count)

 View Source

 -spec get_chars(Prompt, Count) -> Data | server_no_data()
 when
 Prompt :: prompt(),
 Count :: non_neg_integer(),
 Data :: string() | unicode:unicode_binary().

Equivalent to get_chars(standard_io, Prompt, Count).

 Link to this function

 get_chars(IoDevice, Prompt, Count)

 View Source

 -spec get_chars(IoDevice, Prompt, Count) -> Data | server_no_data()
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 Count :: non_neg_integer(),
 Data :: string() | unicode:unicode_binary().

Reads Count characters from IoDevice, prompting it with Prompt.
The function returns:
	Data - The input characters. If the I/O device supports Unicode, the
data can represent codepoints > 255 (the latin1 range). If the I/O server is
set to deliver binaries, they are encoded in UTF-8 (regardless of whether the
I/O device supports Unicode). If you want the data to be returned as a latin1
encoded binary you should use file:read/2 instead.

	eof - End of file was encountered.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

 Link to this function

 get_line(Prompt)

 View Source

 -spec get_line(Prompt) -> Data | server_no_data()
 when Prompt :: prompt(), Data :: string() | unicode:unicode_binary().

Equivalent to get_line(standard_io, Prompt).

 Link to this function

 get_line(IoDevice, Prompt)

 View Source

 -spec get_line(IoDevice, Prompt) -> Data | server_no_data()
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 Data :: string() | unicode:unicode_binary().

Reads a line from IoDevice, prompting it with Prompt.
The function returns:
	Data - The characters in the line terminated by a line feed (or end of
file). If the I/O device supports Unicode, the data can represent codepoints >
255 (the latin1 range). If the I/O server is set to deliver binaries, they
are encoded in UTF-8 (regardless of if the I/O device supports Unicode). If
you want the data to be returned as a latin1 encoded binary you should use
file:read_line/1 instead.

	eof - End of file was encountered.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

 Link to this function

 getopts()

 View Source

 -spec getopts() -> [getopt()] | {error, Reason} when Reason :: term().

Equivalent to getopts(standard_io).

 Link to this function

 getopts(IoDevice)

 View Source

 -spec getopts(IoDevice) -> [getopt()] | {error, Reason} when IoDevice :: device(), Reason :: term().

Requests all available options and their current values for a IoDevice.
For example:
1> {ok,F} = file:open("/dev/null",[read]).
{ok,<0.42.0>}
2> io:getopts(F).
[{binary,false},{encoding,latin1}]
Here the file I/O server returns all available options for a file, which are the
expected ones, encoding and binary. However, the standard shell has some
more options:
3> io:getopts().
[{expand_fun,#Fun<group.0.120017273>},
 {echo,true},
 {binary,false},
 {encoding,unicode},
 {terminal,true}]
This example is, as can be seen, run in an environment where the terminal
supports Unicode input and output.
The terminal option is read only and indicates whether the output stream is a
terminal or not. When it is a terminal, most systems that Erlang runs on allows
the use of ANSI escape codes
to control what the terminal outputs.
See setopts/1 for a description of the other options.

 Link to this function

 nl()

 View Source

 -spec nl() -> ok.

Equivalent to nl(standard_io).

 Link to this function

 nl(IoDevice)

 View Source

 -spec nl(IoDevice) -> ok when IoDevice :: device().

Writes new line to the standard output (IoDevice).

 Link to this function

 parse_erl_exprs(Prompt)

 View Source

 (since OTP R16B)

 -spec parse_erl_exprs(Prompt) -> Result when Prompt :: prompt(), Result :: parse_ret().

Equivalent to parse_erl_exprs(standard_io, Prompt).

 Link to this function

 parse_erl_exprs(IoDevice, Prompt)

 View Source

 (since OTP R16B)

 -spec parse_erl_exprs(IoDevice, Prompt) -> Result
 when IoDevice :: device(), Prompt :: prompt(), Result :: parse_ret().

Equivalent to parse_erl_exprs(IoDevice, Prompt, 1).

 Link to this function

 parse_erl_exprs(IoDevice, Prompt, StartLocation)

 View Source

 (since OTP R16B)

 -spec parse_erl_exprs(IoDevice, Prompt, StartLocation) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Result :: parse_ret().

Equivalent to parse_erl_exprs(IoDevice, Prompt, StartLocation, []).

 Link to this function

 parse_erl_exprs(IoDevice, Prompt, StartLocation, Options)

 View Source

 (since OTP R16B)

 -spec parse_erl_exprs(IoDevice, Prompt, StartLocation, Options) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Options :: erl_scan:options(),
 Result :: parse_ret().

Reads data from IoDevice, prompting it with Prompt.
Starts reading at location StartLocation. Argument Options is passed
on as argument Options of function erl_scan:tokens/4. The data is tokenized
and parsed as if it was a sequence of Erlang expressions until a final dot (.)
is reached.
The function returns:
	{ok, ExprList, EndLocation} - The parsing was successful.

	{eof, EndLocation} - End of file was encountered by the tokenizer.

	eof - End of file was encountered by the I/O server.

	{error, ErrorInfo, ErrorLocation} - An error occurred while tokenizing
or parsing.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

Example:
25> io:parse_erl_exprs('enter>').
enter>abc(), "hey".
{ok, [{call,1,{atom,1,abc},[]},{string,1,"hey"}],2}
26> io:parse_erl_exprs('enter>').
enter>abc("hey".
{error,{1,erl_parse,["syntax error before: ",["'.'"]]},2}

 Link to this function

 parse_erl_form(Prompt)

 View Source

 (since OTP R16B)

 -spec parse_erl_form(Prompt) -> Result when Prompt :: prompt(), Result :: parse_form_ret().

Equivalent to parse_erl_form(standard_io, Prompt).

 Link to this function

 parse_erl_form(IoDevice, Prompt)

 View Source

 (since OTP R16B)

 -spec parse_erl_form(IoDevice, Prompt) -> Result
 when IoDevice :: device(), Prompt :: prompt(), Result :: parse_form_ret().

Equivalent to parse_erl_form(IoDevice, Prompt, 1).

 Link to this function

 parse_erl_form(IoDevice, Prompt, StartLocation)

 View Source

 (since OTP R16B)

 -spec parse_erl_form(IoDevice, Prompt, StartLocation) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Result :: parse_form_ret().

Equivalent to parse_erl_form(IoDevice, Prompt, StartLocation, []).

 Link to this function

 parse_erl_form(IoDevice, Prompt, StartLocation, Options)

 View Source

 (since OTP R16B)

 -spec parse_erl_form(IoDevice, Prompt, StartLocation, Options) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Options :: erl_scan:options(),
 Result :: parse_form_ret().

Reads data from IoDevice, prompting it with Prompt.
Starts reading at location StartLocation. Argument Options is passed
on as argument Options of function erl_scan:tokens/4. The data is tokenized
and parsed as if it was an Erlang form (one of the valid Erlang expressions in
an Erlang source file) until a final dot (.) is reached.
The function returns:
	{ok, AbsForm, EndLocation} - The parsing was successful.

	{eof, EndLocation} - End of file was encountered by the tokenizer.

	eof - End of file was encountered by the I/O server.

	{error, ErrorInfo, ErrorLocation} - An error occurred while tokenizing
or parsing.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

 Link to this function

 printable_range()

 View Source

 (since OTP R16B)

 -spec printable_range() -> unicode | latin1.

Returns the user-requested range of printable Unicode characters.
The user can request a range of characters that are to be considered printable
in heuristic detection of strings by the shell and by the formatting functions.
This is done by supplying +pc <range> when starting Erlang.
The only valid values for <range> are latin1 and unicode. latin1 means
that only code points < 256 (except control characters, and so on) are
considered printable. unicode means that all printable characters in all
Unicode character ranges are considered printable by the I/O functions.
By default, Erlang is started so that only the latin1 range of characters
indicate that a list of integers is a string.
The simplest way to use the setting is to call io_lib:printable_list/1, which
uses the return value of this function to decide if a list is a string of
printable characters.
Note
In a future release, this function may return more values and ranges. To avoid
compatibility problems, it is recommended to use function
io_lib:printable_list/1.

 Link to this function

 put_chars(CharData)

 View Source

 -spec put_chars(CharData) -> ok when CharData :: unicode:chardata().

Equivalent to put_chars(standard_io, CharData).

 Link to this function

 put_chars(IoDevice, CharData)

 View Source

 -spec put_chars(IoDevice, CharData) -> ok when IoDevice :: device(), CharData :: unicode:chardata().

Writes the characters of CharData to the IoDevice.
If you want to write latin1 encoded bytes to the IoDevice you should use
file:write/2 instead.

 Link to this function

 read(Prompt)

 View Source

 -spec read(Prompt) -> Result
 when
 Prompt :: prompt(),
 Result :: {ok, Term :: term()} | server_no_data() | {error, ErrorInfo},
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info().

Equivalent to read(standard_io, Prompt).

 Link to this function

 read(IoDevice, Prompt)

 View Source

 -spec read(IoDevice, Prompt) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 Result :: {ok, Term :: term()} | server_no_data() | {error, ErrorInfo},
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info().

Reads a term Term from the standard input (IoDevice), prompting it with
Prompt.
The function returns:
	{ok, Term} - The parsing was successful.

	eof - End of file was encountered.

	{error, ErrorInfo} - The parsing failed.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

 Link to this function

 read(IoDevice, Prompt, StartLocation)

 View Source

 (since OTP R16B)

 -spec read(IoDevice, Prompt, StartLocation) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Result ::
 {ok, Term :: term(), EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 server_no_data() |
 {error, ErrorInfo, ErrorLocation :: erl_anno:location()},
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info().

Equivalent to read(IoDevice, Prompt, StartLocation, []).

 Link to this function

 read(IoDevice, Prompt, StartLocation, Options)

 View Source

 (since OTP R16B)

 -spec read(IoDevice, Prompt, StartLocation, Options) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Options :: erl_scan:options(),
 Result ::
 {ok, Term :: term(), EndLocation :: erl_anno:location()} |
 {eof, EndLocation :: erl_anno:location()} |
 server_no_data() |
 {error, ErrorInfo, ErrorLocation :: erl_anno:location()},
 ErrorInfo :: erl_scan:error_info() | erl_parse:error_info().

Reads a term Term from IoDevice, prompting it with Prompt.
Reading starts at location StartLocation. Argument Options is passed on as
argument Options of function erl_scan:tokens/4.
The function returns:
	{ok, Term, EndLocation} - The parsing was successful.

	{eof, EndLocation} - End of file was encountered.

	{error, ErrorInfo, ErrorLocation} - The parsing failed.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

 Link to this function

 rows()

 View Source

 -spec rows() -> {ok, pos_integer()} | {error, enotsup}.

Equivalent to rows(standard_io).

 Link to this function

 rows(IoDevice)

 View Source

 -spec rows(IoDevice) -> {ok, pos_integer()} | {error, enotsup} when IoDevice :: device().

Retrieves the number of rows of IoDevice (that is, the height of a terminal).
The function only succeeds for terminal devices, for all other I/O devices the
function returns {error, enotsup}.

 Link to this function

 scan_erl_exprs(Prompt)

 View Source

 (since OTP R16B)

 -spec scan_erl_exprs(Prompt) -> Result
 when Prompt :: prompt(), Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_exprs(standard_io, Prompt).

 Link to this function

 scan_erl_exprs(Device, Prompt)

 View Source

 (since OTP R16B)

 -spec scan_erl_exprs(Device, Prompt) -> Result
 when
 Device :: device(),
 Prompt :: prompt(),
 Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_exprs(Device, Prompt, 1).

 Link to this function

 scan_erl_exprs(Device, Prompt, StartLocation)

 View Source

 (since OTP R16B)

 -spec scan_erl_exprs(Device, Prompt, StartLocation) -> Result
 when
 Device :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_exprs(Device, Prompt, StartLocation, []).

 Link to this function

 scan_erl_exprs(Device, Prompt, StartLocation, Options)

 View Source

 (since OTP R16B)

 -spec scan_erl_exprs(Device, Prompt, StartLocation, Options) -> Result
 when
 Device :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Options :: erl_scan:options(),
 Result :: erl_scan:tokens_result() | server_no_data().

Reads data from IoDevice, prompting it with Prompt.
Reading starts at location StartLocation. Argument Options is passed on as
argument Options of function erl_scan:tokens/4. The data is tokenized
as if it were a sequence of Erlang expressions until a final dot (.) is
reached. This token is also returned.
The function returns:
	{ok, Tokens, EndLocation} - The tokenization succeeded.

	{eof, EndLocation} - End of file was encountered by the tokenizer.

	eof - End of file was encountered by the I/O server.

	{error, ErrorInfo, ErrorLocation} - An error occurred while tokenizing.

	{error, ErrorDescription} - Other (rare) error condition, such as
{error, estale} if reading from an NFS file system.

Example:
23> io:scan_erl_exprs('enter>').
enter>abc(), "hey".
{ok,[{atom,1,abc},{'(',1},{')',1},{',',1},{string,1,"hey"},{dot,1}],2}
24> io:scan_erl_exprs('enter>').
enter>1.0er.
{error,{1,erl_scan,{illegal,float}},2}

 Link to this function

 scan_erl_form(Prompt)

 View Source

 (since OTP R16B)

 -spec scan_erl_form(Prompt) -> Result
 when Prompt :: prompt(), Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_form(standard_io, Prompt).

 Link to this function

 scan_erl_form(IoDevice, Prompt)

 View Source

 (since OTP R16B)

 -spec scan_erl_form(IoDevice, Prompt) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_form(IoDevice, Prompt, 1).

 Link to this function

 scan_erl_form(IoDevice, Prompt, StartLocation)

 View Source

 (since OTP R16B)

 -spec scan_erl_form(IoDevice, Prompt, StartLocation) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Result :: erl_scan:tokens_result() | server_no_data().

Equivalent to scan_erl_form(IoDevice, Prompt, StartLocation, []).

 Link to this function

 scan_erl_form(IoDevice, Prompt, StartLocation, Options)

 View Source

 (since OTP R16B)

 -spec scan_erl_form(IoDevice, Prompt, StartLocation, Options) -> Result
 when
 IoDevice :: device(),
 Prompt :: prompt(),
 StartLocation :: erl_anno:location(),
 Options :: erl_scan:options(),
 Result :: erl_scan:tokens_result() | server_no_data().

Reads data from IoDevice, prompting it with Prompt.
Starts reading at location StartLocation (1). Argument Options is passed
on as argument Options of function erl_scan:tokens/4. The data is tokenized
as if it was an Erlang form (one of the valid Erlang expressions in an Erlang
source file) until a final dot (.) is reached. This last token is also
returned.
The return values are the same as for scan_erl_exprs/4.

 Link to this function

 setopts(Opts)

 View Source

 -spec setopts(Opts) -> ok | {error, Reason} when Opts :: [setopt()], Reason :: term().

Equivalent to setopts(standard_io, Opts).

 Link to this function

 setopts(IoDevice, Opts)

 View Source

 -spec setopts(IoDevice, Opts) -> ok | {error, Reason}
 when IoDevice :: device(), Opts :: [setopt()], Reason :: term().

Set options for IoDevice. Possible options and values vary
depending on the I/O device.
For a list of supported options and their current values on a specific I/O
device, use function getopts/1.
The options and values supported by the OTP I/O devices are as follows:
	binary, list, or {binary, boolean()} - If set in binary mode
(binary or {binary, true}), the I/O server sends binary data (encoded in
UTF-8) as answers to the get_line, get_chars, and, if possible,
get_until requests (for details, see section
The Erlang I/O Protocol) in the User's Guide). The immediate
effect is that get_chars/2,3 and
get_line/1,2 return UTF-8 binaries instead of lists of
characters for the affected I/O device.
By default, all I/O devices in OTP are set in list mode. However, the I/O
functions can handle any of these modes and so should other, user-written,
modules behaving as clients to I/O servers.
This option is supported by the standard shell (group.erl), the 'oldshell'
(user.erl), and the file I/O servers.

	{echo, boolean()} - Denotes if the terminal is to echo input. Only
supported for the standard shell I/O server (group.erl)

	{expand_fun, expand_fun()} - Provides a function for tab-completion
(expansion) like the Erlang shell. This function is called when the user
presses the Tab key. The expansion is active when calling line-reading
functions, such as get_line/1,2.
The function is called with the current line, up to the cursor, as a reversed
string. It is to return a three-tuple: {yes|no, string(), list()}. The first
element gives a beep if no, otherwise the expansion is silent; the second is
a string that will be entered at the cursor position; the third is a list of
possible expansions. If this list is not empty, it is printed below the
current input line. The list of possible expansions can be formatted in
different ways to make more advanced expansion suggestions more readable to
the user, see edlin_expand:expand/2 for documentation of that.
Trivial example (beep on anything except empty line, which is expanded to
"quit"):
fun("") -> {yes, "quit", []};
 (_) -> {no, "", ["quit"]} end
This option is only supported by the standard shell (group.erl).

	{encoding, latin1 | unicode} - Specifies how characters are input or
output from or to the I/O device, implying that, for example, a terminal is
set to handle Unicode input and output or a file is set to handle UTF-8 data
encoding.
The option does not affect how data is returned from the I/O functions or
how it is sent in the I/O protocol, it only affects how the I/O device is to
handle Unicode characters to the "physical" device.
The standard shell is set for unicode or latin1 encoding when the system
is started. The encoding is set with the help of the LANG or LC_CTYPE
environment variables on Unix-like system or by other means on other systems.
So, the user can input Unicode characters and the I/O device is in
{encoding, unicode} mode if the I/O device supports it. The mode can be
changed, if the assumption of the runtime system is wrong, by setting this
option.
Note
Prior to OTP 26.0, when Erlang was started with the -oldshell or
-noshell flags (for example, in an escript), the default encoding for
standard_io was set to latin1, meaning that any
characters > codepoint 255 were escaped and that input was expected to be
plain 8-bit ISO Latin-1. As of OTP 26.0, standard_io
always defaults to unicode if its supported, otherwise latin1.
If you want to send raw bytes on standard_io, you now
always need to explicitly set the encoding to latin1; otherwise, code
points 128-255 will be converted to UTF-8. This is best done by setting the
kernel configuration parameter
standard_io_encoding to
latin1.

Files can also be set in {encoding, unicode}, meaning that data is written
and read as UTF-8. More encodings are possible for files, see below.
{encoding, unicode | latin1} is supported by both the standard shell
(group.erl including werl on Windows), the 'oldshell' (user.erl), and
the file I/O servers.

	{encoding, utf8 | utf16 | utf32 | {utf16,big} | {utf16,little} | {utf32,big} | {utf32,little}} -
For disk files, the encoding can be set to various UTF variants. This has the
effect that data is expected to be read as the specified encoding from the
file, and the data is written in the specified encoding to the disk file.
{encoding, utf8} has the same effect as {encoding, unicode} on files.
The extended encodings are only supported on disk files (opened by function
file:open/2).

 Link to this function

 write(Term)

 View Source

 -spec write(Term) -> ok when Term :: term().

Equivalent to write(standard_io, Term).

 Link to this function

 write(IoDevice, Term)

 View Source

 -spec write(IoDevice, Term) -> ok when IoDevice :: device(), Term :: term().

Writes term Term to IoDevice.

 io_lib - stdlib v5.2.1

io_lib

I/O library functions.
This module contains functions for converting to and from strings (lists of
characters). They are used for implementing the functions in the io module.
There is no guarantee that the character lists returned from some of the
functions are flat, they can be deep lists. Function lists:flatten/1 can be
used for flattening deep lists.

 Summary

 Types

 chars()

 An possibly deep list containing only char/0s.

 chars_limit()

 continuation()

 A continuation as returned by fread/3.

 depth()

 format_spec()

 A map describing the contents of a format string.

 fread_error()

 fread_item()

 latin1_string()

 Functions

 build_text(FormatList)

 For details, see scan_format/2.

 char_list(Term)

 Returns true if Term is a flat list of characters in the Unicode range,
otherwise false.

 deep_char_list(Term)

 Returns true if Term is a, possibly deep, list of characters in the Unicode
range, otherwise false.

 deep_latin1_char_list(Term)

 Returns true if Term is a, possibly deep, list of characters in the ISO
Latin-1 range, otherwise false.

 format(Format, Data)

 Equivalent to fwrite(Format, Data).

 format(Format, Data, Options)

 Equivalent to fwrite(Format, Data, Options).

 fread(Format, String)

 Tries to read String in accordance with the control sequences in Format.

 fread(Continuation, CharSpec, Format)

 This is the re-entrant formatted reader. The continuation of the first call to
the functions must be [].

 fwrite(Format, Data)

 Returns a character list that represents Data formatted in accordance with
Format.

 fwrite(Format, Data, Options)

 Returns a character list that represents Data formatted in accordance with
Format in the same way as fwrite/2 and format/2, but takes an extra
argument, a list of options.

 indentation(String, StartIndent)

 Returns the indentation if String has been printed, starting at StartIndent.

 latin1_char_list(Term)

 Returns true if Term is a flat list of characters in the ISO Latin-1 range,
otherwise false.

 nl()

 Returns a character list that represents a new line character.

 print(Term)

 Equivalent to print(Term, 1, 80, -1).

 print(Term, Column, LineLength, Depth)

 Returns a list of characters that represents Term, but breaks representations
longer than one line into many lines and indents each line sensibly.

 printable_latin1_list(Term)

 Returns true if Term is a flat list of printable ISO Latin-1 characters,
otherwise false.

 printable_list(Term)

 Returns true if Term is a flat list of printable characters, otherwise
false.

 printable_unicode_list(Term)

 Returns true if Term is a flat list of printable Unicode characters,
otherwise false.

 scan_format(Format, Data)

 Returns a list corresponding to the specified format string, where control
sequences have been replaced with corresponding tuples. This list can be passed
to

 unscan_format(FormatList)

 For details, see scan_format/2.

 write(Term)

 Equivalent to write(Term, -1).

 write(Term, DepthOrOptions)

 Returns a character list that represents Term. Option Depth controls the
depth of the structures written.

 write_atom(Atom)

 Returns the list of characters needed to print atom Atom.

 write_atom_as_latin1(Atom)

 Returns the list of characters needed to print atom Atom. Non-Latin-1
characters are escaped.

 write_char(Char)

 Returns the list of characters needed to print a character constant in the
Unicode character set.

 write_char_as_latin1(Char)

 Returns the list of characters needed to print a character constant in the
Unicode character set. Non-Latin-1 characters are escaped.

 write_latin1_char(Latin1Char)

 Returns the list of characters needed to print a character constant in the ISO
Latin-1 character set.

 write_latin1_string(Latin1String)

 Returns the list of characters needed to print Latin1String as a string.

 write_string(String)

 Returns the list of characters needed to print String as a string.

 write_string_as_latin1(String)

 Returns the list of characters needed to print String as a string. Non-Latin-1
characters are escaped.

 Types

 Link to this type

 chars()

 View Source

 -type chars() :: [char() | chars()].

An possibly deep list containing only char/0s.

 Link to this type

 chars_limit()

 View Source

 -type chars_limit() :: integer().

 Link to this opaque

 continuation()

 View Source

 -opaque continuation()

A continuation as returned by fread/3.

 Link to this type

 depth()

 View Source

 (not exported)

 -type depth() :: -1 | non_neg_integer().

 Link to this type

 format_spec()

 View Source

 -type format_spec() ::
 #{control_char := char(),
 args := [any()],
 width := none | integer(),
 adjust := left | right,
 precision := none | integer(),
 pad_char := char(),
 encoding := unicode | latin1,
 strings := boolean(),
 maps_order => maps:iterator_order()}.

A map describing the contents of a format string.
	control_char is the type of control sequence: $P, $w, and so on.
	args is a list of the arguments used by the control sequence, or an empty
list if the control sequence does not take any arguments.
	width is the field width.
	adjust is the adjustment.
	precision is the precision of the printed argument.
	pad_char is the padding character.
	encoding is set to true if translation modifier t is present.
	strings is set to false if modifier l is present.
	maps_order is set to undefined by default, ordered if modifier k is
present, or reversed or CmpFun if modifier K is present.

 Link to this type

 fread_error()

 View Source

 -type fread_error() :: atom | based | character | float | format | input | integer | string | unsigned.

 Link to this type

 fread_item()

 View Source

 -type fread_item() :: string() | atom() | integer() | float().

 Link to this type

 latin1_string()

 View Source

 -type latin1_string() :: [unicode:latin1_char()].

 Functions

 Link to this function

 build_text(FormatList)

 View Source

 (since OTP 18.0)

 -spec build_text(FormatList) -> chars() when FormatList :: [char() | format_spec()].

For details, see scan_format/2.

 Link to this function

 char_list(Term)

 View Source

 -spec char_list(Term) -> boolean() when Term :: term().

Returns true if Term is a flat list of characters in the Unicode range,
otherwise false.

 Link to this function

 deep_char_list(Term)

 View Source

 -spec deep_char_list(Term) -> boolean() when Term :: term().

Returns true if Term is a, possibly deep, list of characters in the Unicode
range, otherwise false.

 Link to this function

 deep_latin1_char_list(Term)

 View Source

 (since OTP R16B)

 -spec deep_latin1_char_list(Term) -> boolean() when Term :: term().

Returns true if Term is a, possibly deep, list of characters in the ISO
Latin-1 range, otherwise false.

 Link to this function

 format(Format, Data)

 View Source

 -spec format(Format, Data) -> chars() when Format :: io:format(), Data :: [term()].

Equivalent to fwrite(Format, Data).

 Link to this function

 format(Format, Data, Options)

 View Source

 (since OTP 21.0)

 -spec format(Format, Data, Options) -> chars()
 when
 Format :: io:format(),
 Data :: [term()],
 Options :: [Option],
 Option :: {chars_limit, CharsLimit},
 CharsLimit :: chars_limit().

Equivalent to fwrite(Format, Data, Options).

 Link to this function

 fread(Format, String)

 View Source

 -spec fread(Format, String) -> Result
 when
 Format :: string(),
 String :: string(),
 Result ::
 {ok, InputList :: [fread_item()], LeftOverChars :: string()} |
 {more,
 RestFormat :: string(),
 Nchars :: non_neg_integer(),
 InputStack :: chars()} |
 {error, {fread, What :: fread_error()}}.

Tries to read String in accordance with the control sequences in Format.
For a detailed description of the available formatting options, see io:fread/3.
It is assumed that String contains whole lines.
The function returns:
	{ok, InputList, LeftOverChars} - The string was read. InputList is the
list of successfully matched and read items, and LeftOverChars are the input
characters not used.

	{more, RestFormat, Nchars, InputStack} - The string was read, but more
input is needed to complete the original format string. RestFormat is the
remaining format string, Nchars is the number of characters scanned, and
InputStack is the reversed list of inputs matched up to that point.

	{error, What} - The read operation failed and parameter What gives a
hint about the error.

Example:
3> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok,[15.6,1.73e-5,24.5],[]}

 Link to this function

 fread(Continuation, CharSpec, Format)

 View Source

 -spec fread(Continuation, CharSpec, Format) -> Return
 when
 Continuation :: continuation() | [],
 CharSpec :: string() | eof,
 Format :: string(),
 Return ::
 {more, Continuation1 :: continuation()} |
 {done, Result, LeftOverChars :: string()},
 Result ::
 {ok, InputList :: [fread_item()]} | eof | {error, {fread, What :: fread_error()}}.

This is the re-entrant formatted reader. The continuation of the first call to
the functions must be [].
For a complete description of how the re-entrant input scheme works,
see Armstrong, Virding, Williams: 'Concurrent Programming in
Erlang', Chapter 13.
The function returns:
	{done, Result, LeftOverChars} - The input is complete. The result is one
of the following:
	{ok, InputList} - The string was read. InputList is the list of
successfully matched and read items, and LeftOverChars are the remaining
characters.

	eof - End of file was encountered. LeftOverChars are the input
characters not used.

	{error, What} - An error occurred and parameter What gives a hint
about the error.

	{more, Continuation} - More data is required to build a term.
Continuation must be passed to fread/3 when more data becomes
available.

 Link to this function

 fwrite(Format, Data)

 View Source

 -spec fwrite(Format, Data) -> chars() when Format :: io:format(), Data :: [term()].

Returns a character list that represents Data formatted in accordance with
Format.
For a detailed description of the available formatting options, see
io:fwrite/1,2,3. If the format string or argument list
contains an error, a fault is generated.
If and only if the Unicode translation modifier is used in the format string
(that is, ~ts or ~tc), the resulting list can contain characters beyond the
ISO Latin-1 character range (that is, numbers > 255). If so, the result is still
an ordinary Erlang string/0, and can well be used in any context where
Unicode data is allowed.

 Link to this function

 fwrite(Format, Data, Options)

 View Source

 (since OTP 21.0)

 -spec fwrite(Format, Data, Options) -> chars()
 when
 Format :: io:format(),
 Data :: [term()],
 Options :: [Option],
 Option :: {chars_limit, CharsLimit},
 CharsLimit :: chars_limit().

Returns a character list that represents Data formatted in accordance with
Format in the same way as fwrite/2 and format/2, but takes an extra
argument, a list of options.
Valid option:
	{chars_limit, CharsLimit} - A soft limit on the number of characters
returned. When the number of characters is reached, remaining structures are
replaced by "...". CharsLimit defaults to -1, which means no limit on the
number of characters returned.

 Link to this function

 indentation(String, StartIndent)

 View Source

 -spec indentation(String, StartIndent) -> integer() when String :: string(), StartIndent :: integer().

Returns the indentation if String has been printed, starting at StartIndent.

 Link to this function

 latin1_char_list(Term)

 View Source

 (since OTP R16B)

 -spec latin1_char_list(Term) -> boolean() when Term :: term().

Returns true if Term is a flat list of characters in the ISO Latin-1 range,
otherwise false.

 Link to this function

 nl()

 View Source

 -spec nl() -> string().

Returns a character list that represents a new line character.

 Link to this function

 print(Term)

 View Source

 -spec print(Term) -> chars() when Term :: term().

Equivalent to print(Term, 1, 80, -1).

 Link to this function

 print(Term, Column, LineLength, Depth)

 View Source

 -spec print(Term, Column, LineLength, Depth) -> chars()
 when
 Term :: term(),
 Column :: non_neg_integer(),
 LineLength :: non_neg_integer(),
 Depth :: depth().

Returns a list of characters that represents Term, but breaks representations
longer than one line into many lines and indents each line sensibly.
Also tries to detect and output lists of printable characters as strings.
	Column is the starting column; defaults to 1.
	LineLength is the maximum line length; defaults to 80.
	Depth is the maximum print depth; defaults to -1, which means no limitation.

 Link to this function

 printable_latin1_list(Term)

 View Source

 (since OTP R16B)

 -spec printable_latin1_list(Term) -> boolean() when Term :: term().

Returns true if Term is a flat list of printable ISO Latin-1 characters,
otherwise false.

 Link to this function

 printable_list(Term)

 View Source

 -spec printable_list(Term) -> boolean() when Term :: term().

Returns true if Term is a flat list of printable characters, otherwise
false.
What is a printable character in this case is determined by startup flag +pc
to the Erlang VM; see io:printable_range/0 and
erl(1).

 Link to this function

 printable_unicode_list(Term)

 View Source

 (since OTP R16B)

 -spec printable_unicode_list(Term) -> boolean() when Term :: term().

Returns true if Term is a flat list of printable Unicode characters,
otherwise false.

 Link to this function

 scan_format(Format, Data)

 View Source

 (since OTP 18.0)

 -spec scan_format(Format, Data) -> FormatList
 when
 Format :: io:format(), Data :: [term()], FormatList :: [char() | format_spec()].

Returns a list corresponding to the specified format string, where control
sequences have been replaced with corresponding tuples. This list can be passed
to:
	build_text/1 to have the same effect as format(Format, Args)
	unscan_format/1 to get the corresponding pair of Format and Args (with
every * and corresponding argument expanded to numeric values)

A typical use of this function is to replace unbounded-size control sequences
like ~w and ~p with the depth-limited variants ~W and ~P before
formatting to text in, for example, a logger.

 Link to this function

 unscan_format(FormatList)

 View Source

 (since OTP 18.0)

 -spec unscan_format(FormatList) -> {Format, Data}
 when
 FormatList :: [char() | format_spec()],
 Format :: io:format(),
 Data :: [term()].

For details, see scan_format/2.

 Link to this function

 write(Term)

 View Source

 (since OTP 20.0)

 -spec write(Term) -> chars() when Term :: term().

Equivalent to write(Term, -1).

 Link to this function

 write(Term, DepthOrOptions)

 View Source

 (since OTP 20.0)

 -spec write(Term, Depth) -> chars() when Term :: term(), Depth :: depth();
 (Term, Options) -> chars()
 when
 Term :: term(),
 Options :: [Option],
 Option ::
 {chars_limit, CharsLimit} | {depth, Depth} | {encoding, latin1 | utf8 | unicode},
 CharsLimit :: chars_limit(),
 Depth :: depth().

Returns a character list that represents Term. Option Depth controls the
depth of the structures written.
When the specified depth is reached, everything below this level is replaced by
"...".
Depth defaults to -1, which means no limitation. Option CharsLimit puts a
soft limit on the number of characters returned. When the number of characters is
reached, remaining structures are replaced by "...". CharsLimit defaults to -1,
which means no limit on the number of characters returned.
Example:
1> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9})).
"{1,[2],[3],[4,5],6,7,8,9}"
2> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9}, 5)).
"{1,[2],[3],[...],...}"
3> lists:flatten(io_lib:write({[1,2,3],[4,5],6,7,8,9}, [{chars_limit,20}])).
"{[1,2|...],[4|...],...}"

 Link to this function

 write_atom(Atom)

 View Source

 -spec write_atom(Atom) -> chars() when Atom :: atom().

Returns the list of characters needed to print atom Atom.

 Link to this function

 write_atom_as_latin1(Atom)

 View Source

 (since OTP 20.0)

 -spec write_atom_as_latin1(Atom) -> latin1_string() when Atom :: atom().

Returns the list of characters needed to print atom Atom. Non-Latin-1
characters are escaped.

 Link to this function

 write_char(Char)

 View Source

 -spec write_char(Char) -> chars() when Char :: char().

Returns the list of characters needed to print a character constant in the
Unicode character set.

 Link to this function

 write_char_as_latin1(Char)

 View Source

 (since OTP R16B)

 -spec write_char_as_latin1(Char) -> latin1_string() when Char :: char().

Returns the list of characters needed to print a character constant in the
Unicode character set. Non-Latin-1 characters are escaped.

 Link to this function

 write_latin1_char(Latin1Char)

 View Source

 (since OTP R16B)

 -spec write_latin1_char(Latin1Char) -> latin1_string() when Latin1Char :: unicode:latin1_char().

Returns the list of characters needed to print a character constant in the ISO
Latin-1 character set.

 Link to this function

 write_latin1_string(Latin1String)

 View Source

 (since OTP R16B)

 -spec write_latin1_string(Latin1String) -> latin1_string() when Latin1String :: latin1_string().

Returns the list of characters needed to print Latin1String as a string.

 Link to this function

 write_string(String)

 View Source

 -spec write_string(String) -> chars() when String :: string().

Returns the list of characters needed to print String as a string.

 Link to this function

 write_string_as_latin1(String)

 View Source

 (since OTP R16B)

 -spec write_string_as_latin1(String) -> latin1_string() when String :: string().

Returns the list of characters needed to print String as a string. Non-Latin-1
characters are escaped.

 re - stdlib v5.2.1

re

This module contains regular expression matching functions for strings and
binaries.
The regular expression syntax and
semantics resemble that of Perl.
The matching algorithms of the library are based on the PCRE library, but not
all of the PCRE library is interfaced and some parts of the library go beyond
what PCRE offers. Currently PCRE version 8.40 (release date 2017-01-11) is used.
The sections of the PCRE documentation that are relevant to this module are
included here.
Note
The Erlang literal syntax for strings uses the \\ (backslash) character as
an escape code. You need to escape backslashes in literal strings, both in
your code and in the shell, with an extra backslash, that is, "\\\\" or
<<"\\\\">>.
Since Erlang/OTP 27 you can use verbaim sigils
to write literal strings. The example above would be written as ~S"\" or ~B"\".

 Perl-Like Regular Expression Syntax

The following sections contain reference material for the regular expressions
used by this module. The information is based on the PCRE documentation, with
changes where this module behaves differently to the PCRE library.

 PCRE Regular Expression Details

The syntax and semantics of the regular expressions supported by PCRE are
described in detail in the following sections. Perl's regular expressions are
described in its own documentation, and regular expressions in general are
covered in many books, some with copious examples. Jeffrey Friedl's "Mastering
Regular Expressions", published by O'Reilly, covers regular expressions in great
detail. This description of the PCRE regular expressions is intended as
reference material.
The reference material is divided into the following sections:
	Special Start-of-Pattern Items
	Characters and Metacharacters
	Backslash
	Circumflex and Dollar
	Full Stop (Period, Dot) and \N
	Matching a Single Data Unit
	Square Brackets and Character Classes
	Posix Character Classes
	Vertical Bar
	Internal Option Setting
	Subpatterns
	Duplicate Subpattern Numbers
	Named Subpatterns
	Repetition
	Atomic Grouping and Possessive Quantifiers
	Back References
	Assertions
	Conditional Subpatterns
	Comments
	Recursive Patterns
	Subpatterns as Subroutines
	Oniguruma Subroutine Syntax
	Backtracking Control

 Special Start-of-Pattern Items

Some options that can be passed to compile/2 can also be set by special items
at the start of a pattern. These are not Perl-compatible, but are provided to
make these options accessible to pattern writers who are not able to change the
program that processes the pattern. Any number of these items can appear, but
they must all be together right at the start of the pattern string, and the
letters must be in upper case.
UTF Support
Unicode support is basically UTF-8 based. To use Unicode characters, you either
call compile/2 or run/3 with option unicode, or the pattern must start
with one of these special sequences:
(*UTF8)
(*UTF)
Both options give the same effect, the input string is interpreted as UTF-8.
Notice that with these instructions, the automatic conversion of lists to UTF-8
is not performed by the re functions. Therefore, using these sequences is not
recommended. Add option unicode when running compile/2 instead.
Some applications that allow their users to supply patterns can wish to restrict
them to non-UTF data for security reasons. If option never_utf is set at
compile time, (*UTF), and so on, are not allowed, and their appearance causes
an error.
Unicode Property Support
The following is another special sequence that can appear at the start of a
pattern:
(*UCP)
This has the same effect as setting option ucp: it causes sequences such as
\d and \w to use Unicode properties to determine character types, instead of
recognizing only characters with codes < 256 through a lookup table.
Disabling Startup Optimizations
If a pattern starts with (*NO_START_OPT), it has the same effect as setting
option no_start_optimize at compile time.
Newline Conventions

PCRE supports five conventions for indicating line breaks in strings: a single
CR (carriage return) character, a single LF (line feed) character, the
two-character sequence CRLF, any of the three preceding, and any Unicode newline
sequence.
A newline convention can also be specified by starting a pattern string with one
of the following five sequences:
	(*CR) - Carriage return

	(*LF) - Line feed

	(*CRLF) - >Carriage return followed by line feed

	(*ANYCRLF) - Any of the three above

	(*ANY) - All Unicode newline sequences

These override the default and the options specified to compile/2. For
example, the following pattern changes the convention to CR:
(*CR)a.b
This pattern matches a\nb, as LF is no longer a newline. If more than one of
them is present, the last one is used.
The newline convention affects where the circumflex and dollar assertions are
true. It also affects the interpretation of the dot metacharacter when dotall
is not set, and the behavior of \N. However, it does not affect what the \R
escape sequence matches. By default, this is any Unicode newline sequence, for
Perl compatibility. However, this can be changed; see the description of \R in
section Newline Sequences. A change of the \R
setting can be combined with a change of the newline convention.
Setting Match and Recursion Limits
The caller of run/3 can set a limit on the number of times the internal
match() function is called and on the maximum depth of recursive calls. These
facilities are provided to catch runaway matches that are provoked by patterns
with huge matching trees (a typical example is a pattern with nested unlimited
repeats) and to avoid running out of system stack by too much recursion. When
one of these limits is reached, pcre_exec() gives an error return. The limits
can also be set by items at the start of the pattern of the following forms:
(*LIMIT_MATCH=d)
(*LIMIT_RECURSION=d)
Here d is any number of decimal digits. However, the value of the setting must
be less than the value set by the caller of run/3 for it to have
any effect. That is, the pattern writer can lower the limit set by the
programmer, but not raise it. If there is more than one setting of one of these
limits, the lower value is used.
The default value for both the limits is 10,000,000 in the Erlang VM. Notice
that the recursion limit does not affect the stack depth of the VM, as PCRE for
Erlang is compiled in such a way that the match function never does recursion on
the C stack.
Note that LIMIT_MATCH and LIMIT_RECURSION can only reduce the value of the
limits set by the caller, not increase them.

 Characters and Metacharacters

A regular expression is a pattern that is matched against a subject string from
left to right. Most characters stand for themselves in a pattern and match the
corresponding characters in the subject. As a trivial example, the following
pattern matches a portion of a subject string that is identical to itself:
The quick brown fox
When caseless matching is specified (option caseless), letters are matched
independently of case.
The power of regular expressions comes from the ability to include alternatives
and repetitions in the pattern. These are encoded in the pattern by the use of
metacharacters, which do not stand for themselves but instead are interpreted
in some special way.
Two sets of metacharacters exist: those that are recognized anywhere in the
pattern except within square brackets, and those that are recognized within
square brackets. Outside square brackets, the metacharacters are as follows:
	\ - General escape character with many uses

	^ - Assert start of string (or line, in multiline mode)

	$ - Assert end of string (or line, in multiline mode)

	. - Match any character except newline (by default)

	[- Start character class definition

	| - Start of alternative branch

	(- Start subpattern

) - End subpattern

	? - Extends the meaning of (, also 0 or 1 quantifier, also quantifier
minimizer

	* - 0 or more quantifiers

	+ - 1 or more quantifier, also "possessive quantifier"

	{ - Start min/max quantifier

Part of a pattern within square brackets is called a "character class". The
following are the only metacharacters in a character class:
	\ - General escape character

	^ - Negate the class, but only if the first character

	- - Indicates character range

	[- Posix character class (only if followed by Posix syntax)

] - Terminates the character class

The following sections describe the use of each metacharacter.

 Backslash

The backslash character has many uses. First, if it is followed by a character
that is not a number or a letter, it takes away any special meaning that a
character can have. This use of backslash as an escape character applies both
inside and outside character classes.
For example, if you want to match a "_" character, you write _ in the pattern.
This escaping action applies if the following character would otherwise be
interpreted as a metacharacter, so it is always safe to precede a
non-alphanumeric with backslash to specify that it stands for itself. In
particular, if you want to match a backslash, write \\.
In unicode mode, only ASCII numbers and letters have any special meaning after
a backslash. All other characters (in particular, those whose code points
are > 127) are treated as literals.
If a pattern is compiled with option extended, whitespace in the pattern
(other than in a character class) and characters between a # outside a character
class and the next newline are ignored. An escaping backslash can be used to
include a whitespace or # character as part of the pattern.
To remove the special meaning from a sequence of characters, put them between
\Q and \E. This is different from Perl in that $ and @ are handled as literals
in \Q...\E sequences in PCRE, while $ and @ cause variable interpolation in
Perl. Notice the following examples:
Pattern PCRE matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz
The \Q...\E sequence is recognized both inside and outside character classes.
An isolated \E that is not preceded by \Q is ignored. If \Q is not followed
by \E later in the pattern, the literal interpretation continues to the end of
the pattern (that is, \E is assumed at the end). If the isolated \Q is inside
a character class, this causes an error, as the character class is not
terminated.
Non-Printing Characters

A second use of backslash provides a way of encoding non-printing characters in
patterns in a visible manner. There is no restriction on the appearance of
non-printing characters, apart from the binary zero that terminates a pattern.
When a pattern is prepared by text editing, it is often easier to use one of the
following escape sequences than the binary character it represents:
	\a - Alarm, that is, the BEL character (hex 07)

	\cx - "Control-x", where x is any ASCII character

	\e - Escape (hex 1B)

	\f - Form feed (hex 0C)

	\n - Line feed (hex 0A)

	\r - Carriage return (hex 0D)

	\t - Tab (hex 09)

	\0dd - Character with octal code 0dd

	\ddd - Character with octal code ddd, or back reference

	\o{ddd..} - character with octal code ddd..

	\xhh - Character with hex code hh

	\x{hhh..} - Character with hex code hhh..

Note
Note that \0dd is always an octal code, and that \8 and \9 are the literal
characters "8" and "9".

The precise effect of \cx on ASCII characters is as follows: if x is a
lowercase letter, it is converted to upper case. Then bit 6 of the character
(hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is
5A), but \c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If
the data item (byte or 16-bit value) following \c has a value > 127, a
compile-time error occurs. This locks out non-ASCII characters in all modes.
The \c facility was designed for use with ASCII characters, but with the
extension to Unicode it is even less useful than it once was.
After \0 up to two further octal digits are read. If there are fewer than two
digits, just those that are present are used. Thus the sequence \0\x\015
specifies two binary zeros followed by a CR character (code value 13). Make sure
you supply two digits after the initial zero if the pattern character that
follows is itself an octal digit.
The escape \o must be followed by a sequence of octal digits, enclosed in
braces. An error occurs if this is not the case. This escape is a recent
addition to Perl; it provides way of specifying character code points as octal
numbers greater than 0777, and it also allows octal numbers and back references
to be unambiguously specified.
For greater clarity and unambiguity, it is best to avoid following \ by a digit
greater than zero. Instead, use \o{} or \x{} to specify character numbers,
and \g{} to specify back references. The following paragraphs describe the
old, ambiguous syntax.
The handling of a backslash followed by a digit other than 0 is complicated, and
Perl has changed in recent releases, causing PCRE also to change. Outside a
character class, PCRE reads the digit and any following digits as a decimal
number. If the number is < 8, or if there have been at least that many previous
capturing left parentheses in the expression, the entire sequence is taken as a
back reference. A description of how this works is provided later, following
the discussion of parenthesized subpatterns.
Inside a character class, or if the decimal number following \ is > 7 and there
have not been that many capturing subpatterns, PCRE handles \8 and \9 as the
literal characters "8" and "9", and otherwise re-reads up to three octal digits
following the backslash, and using them to generate a data character. Any
subsequent digits stand for themselves. For example:
	\040 - Another way of writing an ASCII space

	\40 - The same, provided there are < 40 previous capturing subpatterns

	\7 - Always a back reference

	\11 - Can be a back reference, or another way of writing a tab

	\011 - Always a tab

	\0113 - A tab followed by character "3"

	\113 - Can be a back reference, otherwise the character with octal code
113

	\377 - Can be a back reference, otherwise value 255 (decimal)

	\81 - Either a back reference, or the two characters "8" and "1"

Notice that octal values >= 100 that are specified using this syntax must not be
introduced by a leading zero, as no more than three octal digits are ever read.
By default, after \x that is not followed by {, from zero to two hexadecimal
digits are read (letters can be in upper or lower case). Any number of
hexadecimal digits may appear between \x{ and }. If a character other than a
hexadecimal digit appears between \x{ and }, or if there is no terminating
}, an error occurs.
Characters whose value is less than 256 can be defined by either of the two
syntaxes for \x. There is no difference in the way they are handled. For
example, \xdc is exactly the same as \x{dc}.
Constraints on character values
Characters that are specified using octal or hexadecimal numbers are limited to
certain values, as follows:
	8-bit non-UTF mode - < 0x100

	8-bit UTF-8 mode - < 0x10ffff and a valid codepoint

Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-called
"surrogate" codepoints), and 0xffef.
Escape sequences in character classes
All the sequences that define a single character value can be used both inside
and outside character classes. Also, inside a character class, \b is
interpreted as the backspace character (hex 08).
\N is not allowed in a character class. \B, \R, and \X are not special
inside a character class. Like other unrecognized escape sequences, they are
treated as the literal characters "B", "R", and "X". Outside a character class,
these sequences have different meanings.
Unsupported Escape Sequences
In Perl, the sequences \l, \L, \u, and \U are recognized by its string
handler and used to modify the case of following characters. PCRE does not
support these escape sequences.
Absolute and Relative Back References
The sequence \g followed by an unsigned or a negative number, optionally
enclosed in braces, is an absolute or relative back reference. A named back
reference can be coded as \g{name}. Back references are discussed later,
following the discussion of parenthesized subpatterns.
Absolute and Relative Subroutine Calls
For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
a number enclosed either in angle brackets or single quotes, is alternative
syntax for referencing a subpattern as a "subroutine". Details are discussed
later. Notice that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are
not synonymous. The former is a back reference and the latter is a subroutine
call.
Generic Character Types

Another use of backslash is for specifying generic character types:
	\d - Any decimal digit

	\D - Any character that is not a decimal digit

	\h - Any horizontal whitespace character

	\H - Any character that is not a horizontal whitespace character

	\s - Any whitespace character

	\S - Any character that is not a whitespace character

	\v - Any vertical whitespace character

	\V - Any character that is not a vertical whitespace character

	\w - Any "word" character

	\W - Any "non-word" character

There is also the single sequence \N, which matches a non-newline character.
This is the same as the "." metacharacter when dotall is not set. Perl also
uses \N to match characters by name, but PCRE does not support this.
Each pair of lowercase and uppercase escape sequences partitions the complete
set of characters into two disjoint sets. Any given character matches one, and
only one, of each pair. The sequences can appear both inside and outside
character classes. They each match one character of the appropriate type. If the
current matching point is at the end of the subject string, all fail, as there
is no character to match.
For compatibility with Perl, \s did not used to match the VT character (code
11), which made it different from the the POSIX "space" class. However, Perl
added VT at release 5.18, and PCRE followed suit at release 8.34. The default
\s characters are now HT (9), LF (10), VT (11), FF (12), CR (13), and space
(32), which are defined as white space in the "C" locale. This list may vary if
locale-specific matching is taking place. For example, in some locales the
"non-breaking space" character (\xA0) is recognized as white space, and in
others the VT character is not.
A "word" character is an underscore or any character that is a letter or a
digit. By default, the definition of letters and digits is controlled by the
PCRE low-valued character tables, in Erlang's case (and without option
unicode), the ISO Latin-1 character set.
By default, in unicode mode, characters with values > 255, that is, all
characters outside the ISO Latin-1 character set, never match \d, \s, or \w,
and always match \D, \S, and \W. These sequences retain their original
meanings from before UTF support was available, mainly for efficiency reasons.
However, if option ucp is set, the behavior is changed so that Unicode
properties are used to determine character types, as follows:
	\d - Any character that \p{Nd} matches (decimal digit)

	\s - Any character that \p{Z} or \h or \v

	\w - Any character that matches \p{L} or \p{N} matches, plus
underscore

The uppercase escapes match the inverse sets of characters. Notice that \d
matches only decimal digits, while \w matches any Unicode digit, any Unicode
letter, and underscore. Notice also that ucp affects \b and \B, as they are
defined in terms of \w and \W. Matching these sequences is noticeably slower
when ucp is set.
The sequences \h, \H, \v, and \V are features that were added to Perl in
release 5.10. In contrast to the other sequences, which match only ASCII
characters by default, these always match certain high-valued code points,
regardless if ucp is set.
The following are the horizontal space characters:
	U+0009 - Horizontal tab (HT)

	U+0020 - Space

	U+00A0 - Non-break space

	U+1680 - Ogham space mark

	U+180E - Mongolian vowel separator

	U+2000 - En quad

	U+2001 - Em quad

	U+2002 - En space

	U+2003 - Em space

	U+2004 - Three-per-em space

	U+2005 - Four-per-em space

	U+2006 - Six-per-em space

	U+2007 - Figure space

	U+2008 - Punctuation space

	U+2009 - Thin space

	U+200A - Hair space

	U+202F - Narrow no-break space

	U+205F - Medium mathematical space

	U+3000 - Ideographic space

The following are the vertical space characters:
	U+000A - Line feed (LF)

	U+000B - Vertical tab (VT)

	U+000C - Form feed (FF)

	U+000D - Carriage return (CR)

	U+0085 - Next line (NEL)

	U+2028 - Line separator

	U+2029 - Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with code points < 256 are
relevant.
Newline Sequences

Outside a character class, by default, the escape sequence \R matches any
Unicode newline sequence. In non-UTF-8 mode, \R is equivalent to the following:
(?>\r\n|\n|\x0b|\f|\r|\x85)
This is an example of an "atomic group", details are provided below.
This particular group matches either the two-character sequence CR followed by
LF, or one of the single characters LF (line feed, U+000A), VT (vertical tab,
U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL (next
line, U+0085). The two-character sequence is treated as a single unit that
cannot be split.
In Unicode mode, two more characters whose code points are > 255 are added: LS
(line separator, U+2028) and PS (paragraph separator, U+2029). Unicode character
property support is not needed for these characters to be recognized.
\R can be restricted to match only CR, LF, or CRLF (instead of the complete set
of Unicode line endings) by setting option bsr_anycrlf either at compile time
or when the pattern is matched. (BSR is an acronym for "backslash R".) This can
be made the default when PCRE is built; if so, the other behavior can be
requested through option bsr_unicode. These settings can also be specified by
starting a pattern string with one of the following sequences:
	(*BSR_ANYCRLF) - CR, LF, or CRLF only

	(*BSR_UNICODE) - Any Unicode newline sequence

These override the default and the options specified to the compiling function,
but they can themselves be overridden by options specified to a matching
function. Notice that these special settings, which are not Perl-compatible, are
recognized only at the very start of a pattern, and that they must be in upper
case. If more than one of them is present, the last one is used. They can be
combined with a change of newline convention; for example, a pattern can start
with:
(*ANY)(*BSR_ANYCRLF)
They can also be combined with the (UTF8), (UTF), or (*UCP) special
sequences. Inside a character class, \R is treated as an unrecognized escape
sequence, and so matches the letter "R" by default.
Unicode Character Properties
Three more escape sequences that match characters with specific properties are
available. When in 8-bit non-UTF-8 mode, these sequences are limited to testing
characters whose code points are < 256, but they do work in this mode. The
following are the extra escape sequences:
	\p{_xx_} - A character with property xx

	\P{_xx_} - A character without property xx

	\X - A Unicode extended grapheme cluster

The property names represented by xx above are limited to the Unicode script
names, the general category properties, "Any", which matches any character
(including newline), and some special PCRE properties (described in the next
section). Other Perl properties, such as "InMusicalSymbols", are currently not
supported by PCRE. Notice that \P{Any} does not match any characters and
always causes a match failure.
Sets of Unicode characters are defined as belonging to certain scripts. A
character from one of these sets can be matched using a script name, for
example:
\p{Greek} \P{Han}
Those that are not part of an identified script are lumped together as "Common".
The following is the current list of scripts:
	Arabic
	Armenian
	Avestan
	Balinese
	Bamum
	Bassa_Vah
	Batak
	Bengali
	Bopomofo
	Braille
	Buginese
	Buhid
	Canadian_Aboriginal
	Carian
	Caucasian_Albanian
	Chakma
	Cham
	Cherokee
	Common
	Coptic
	Cuneiform
	Cypriot
	Cyrillic
	Deseret
	Devanagari
	Duployan
	Egyptian_Hieroglyphs
	Elbasan
	Ethiopic
	Georgian
	Glagolitic
	Gothic
	Grantha
	Greek
	Gujarati
	Gurmukhi
	Han
	Hangul
	Hanunoo
	Hebrew
	Hiragana
	Imperial_Aramaic
	Inherited
	Inscriptional_Pahlavi
	Inscriptional_Parthian
	Javanese
	Kaithi
	Kannada
	Katakana
	Kayah_Li
	Kharoshthi
	Khmer
	Khojki
	Khudawadi
	Lao
	Latin
	Lepcha
	Limbu
	Linear_A
	Linear_B
	Lisu
	Lycian
	Lydian
	Mahajani
	Malayalam
	Mandaic
	Manichaean
	Meetei_Mayek
	Mende_Kikakui
	Meroitic_Cursive
	Meroitic_Hieroglyphs
	Miao
	Modi
	Mongolian
	Mro
	Myanmar
	Nabataean
	New_Tai_Lue
	Nko
	Ogham
	Ol_Chiki
	Old_Italic
	Old_North_Arabian
	Old_Permic
	Old_Persian
	Oriya
	Old_South_Arabian
	Old_Turkic
	Osmanya
	Pahawh_Hmong
	Palmyrene
	Pau_Cin_Hau
	Phags_Pa
	Phoenician
	Psalter_Pahlavi
	Rejang
	Runic
	Samaritan
	Saurashtra
	Sharada
	Shavian
	Siddham
	Sinhala
	Sora_Sompeng
	Sundanese
	Syloti_Nagri
	Syriac
	Tagalog
	Tagbanwa
	Tai_Le
	Tai_Tham
	Tai_Viet
	Takri
	Tamil
	Telugu
	Thaana
	Thai
	Tibetan
	Tifinagh
	Tirhuta
	Ugaritic
	Vai
	Warang_Citi
	Yi

Each character has exactly one Unicode general category property, specified by a
two-letter acronym. For compatibility with Perl, negation can be specified by
including a circumflex between the opening brace and the property name. For
example, \p{^Lu} is the same as \P{Lu}.
If only one letter is specified with \p or \P, it includes all the general
category properties that start with that letter. In this case, in the absence of
negation, the curly brackets in the escape sequence are optional. The following
two examples have the same effect:
\p{L}
\pL
The following general category property codes are supported:
	C - Other

	Cc - Control

	Cf - Format

	Cn - Unassigned

	Co - Private use

	Cs - Surrogate

	L - Letter

	Ll - Lowercase letter

	Lm - Modifier letter

	Lo - Other letter

	Lt - Title case letter

	Lu - Uppercase letter

	M - Mark

	Mc - Spacing mark

	Me - Enclosing mark

	Mn - Non-spacing mark

	N - Number

	Nd - Decimal number

	Nl - Letter number

	No - Other number

	P - Punctuation

	Pc - Connector punctuation

	Pd - Dash punctuation

	Pe - Close punctuation

	Pf - Final punctuation

	Pi - Initial punctuation

	Po - Other punctuation

	Ps - Open punctuation

	S - Symbol

	Sc - Currency symbol

	Sk - Modifier symbol

	Sm - Mathematical symbol

	So - Other symbol

	Z - Separator

	Zl - Line separator

	Zp - Paragraph separator

	Zs - Space separator

The special property L& is also supported. It matches a character that has the
Lu, Ll, or Lt property, that is, a letter that is not classified as a modifier
or "other".
The Cs (Surrogate) property applies only to characters in the range U+D800 to
U+DFFF. Such characters are invalid in Unicode strings and so cannot be tested
by PCRE. Perl does not support the Cs property.
The long synonyms for property names supported by Perl (such as \p{Letter})
are not supported by PCRE. It is not permitted to prefix any of these properties
with "Is".
No character in the Unicode table has the Cn (unassigned) property. This
property is instead assumed for any code point that is not in the Unicode table.
Specifying caseless matching does not affect these escape sequences. For
example, \p{Lu} always matches only uppercase letters. This is different from
the behavior of current versions of Perl.
Matching characters by Unicode property is not fast, as PCRE must do a
multistage table lookup to find a character property. That is why the
traditional escape sequences such as \d and \w do not use Unicode properties
in PCRE by default. However, you can make them do so by setting option ucp or
by starting the pattern with (*UCP).
Extended Grapheme Clusters
The \X escape matches any number of Unicode characters that form an "extended
grapheme cluster", and treats the sequence as an atomic group (see below). Up to
and including release 8.31, PCRE matched an earlier, simpler definition that was
equivalent to (?>\PM\pM*). That is, it matched a character without the "mark"
property, followed by zero or more characters with the "mark" property.
Characters with the "mark" property are typically non-spacing accents that
affect the preceding character.
This simple definition was extended in Unicode to include more complicated kinds
of composite character by giving each character a grapheme breaking property,
and creating rules that use these properties to define the boundaries of
extended grapheme clusters. In PCRE releases later than 8.31, \X matches one of
these clusters.
\X always matches at least one character. Then it decides whether to add more
characters according to the following rules for ending a cluster:
	End at the end of the subject string.
	Do not end between CR and LF; otherwise end after any control character.
	Do not break Hangul (a Korean script) syllable sequences. Hangul characters
are of five types: L, V, T, LV, and LVT. An L character can be followed by an
L, V, LV, or LVT character. An LV or V character can be followed by a V or T
character. An LVT or T character can be followed only by a T character.
	Do not end before extending characters or spacing marks. Characters with the
"mark" property always have the "extend" grapheme breaking property.
	Do not end after prepend characters.
	Otherwise, end the cluster.

PCRE Additional Properties
In addition to the standard Unicode properties described earlier, PCRE supports
four more that make it possible to convert traditional escape sequences, such as
\w and \s to use Unicode properties. PCRE uses these non-standard, non-Perl
properties internally when the ucp option is passed. However, they can also be
used explicitly. The properties are as follows:
	Xan - Any alphanumeric character. Matches characters that have either the
L (letter) or the N (number) property.

	Xps - Any Posix space character. Matches the characters tab, line feed,
vertical tab, form feed, carriage return, and any other character that has the
Z (separator) property.

	Xsp - Any Perl space character. Matches the same as Xps, except that
vertical tab is excluded.

	Xwd - Any Perl "word" character. Matches the same characters as Xan, plus
underscore.

Perl and POSIX space are now the same. Perl added VT to its space character set
at release 5.18 and PCRE changed at release 8.34.
Xan matches characters that have either the L (letter) or the N (number)
property. Xps matches the characters tab, linefeed, vertical tab, form feed, or
carriage return, and any other character that has the Z (separator) property.
Xsp is the same as Xps; it used to exclude vertical tab, for Perl compatibility,
but Perl changed, and so PCRE followed at release 8.34. Xwd matches the same
characters as Xan, plus underscore.
There is another non-standard property, Xuc, which matches any character that
can be represented by a Universal Character Name in C++ and other programming
languages. These are the characters $, @, ` (grave accent), and all characters
with Unicode code points >= U+00A0, except for the surrogates U+D800 to U+DFFF.
Notice that most base (ASCII) characters are excluded. (Universal Character
Names are of the form \uHHHH or \UHHHHHHHH, where H is a hexadecimal digit.
Notice that the Xuc property does not match these sequences but the characters
that they represent.)
Resetting the Match Start
The escape sequence \K causes any previously matched characters not to be
included in the final matched sequence. For example, the following pattern
matches "foobar", but reports that it has matched "bar":
foo\Kbar
This feature is similar to a lookbehind assertion (described below). However, in
this case, the part of the subject before the real match does not have to be of
fixed length, as lookbehind assertions do. The use of \K does not interfere
with the setting of captured substrings. For example, when the following pattern
matches "foobar", the first substring is still set to "foo":
(foo)\Kbar
Perl documents that the use of \K within assertions is "not well defined". In
PCRE, \K is acted upon when it occurs inside positive assertions, but is
ignored in negative assertions. Note that when a pattern such as (?=ab\K)
matches, the reported start of the match can be greater than the end of the
match.
Simple Assertions
The final use of backslash is for certain simple assertions. An assertion
specifies a condition that must be met at a particular point in a match, without
consuming any characters from the subject string. The use of subpatterns for
more complicated assertions is described below. The following are the
backslashed assertions:
	\b - Matches at a word boundary.

	\B - Matches when not at a word boundary.

	\A - Matches at the start of the subject.

	\Z - Matches at the end of the subject, and before a newline at the end
of the subject.

	\z - Matches only at the end of the subject.

	\G - Matches at the first matching position in the subject.

Inside a character class, \b has a different meaning; it matches the backspace
character. If any other of these assertions appears in a character class, by
default it matches the corresponding literal character (for example, \B matches
the letter B).
A word boundary is a position in the subject string where the current character
and the previous character do not both match \w or \W (that is, one matches
\w and the other matches \W), or the start or end of the string if the first
or last character matches \w, respectively. In UTF mode, the meanings of \w
and \W can be changed by setting option ucp. When this is done, it also
affects \b and \B. PCRE and Perl do not have a separate "start of word" or
"end of word" metasequence. However, whatever follows \b normally determines
which it is. For example, the fragment \ba matches "a" at the start of a word.
The \A, \Z, and \z assertions differ from the traditional circumflex and
dollar (described in the next section) in that they only ever match at the very
start and end of the subject string, whatever options are set. Thus, they are
independent of multiline mode. These three assertions are not affected by
options notbol or noteol, which affect only the behavior of the circumflex
and dollar metacharacters. However, if argument startoffset of run/3 is
non-zero, indicating that matching is to start at a point other than the
beginning of the subject, \A can never match. The difference between \Z and
\z is that \Z matches before a newline at the end of the string and at the
very end, while \z matches only at the end.
The \G assertion is true only when the current matching position is at the
start point of the match, as specified by argument startoffset of
run/3. It differs from \A when the value of startoffset is
non-zero. By calling run/3 multiple times with appropriate
arguments, you can mimic the Perl option /g, and it is in this kind of
implementation where \G can be useful.
Notice, however, that the PCRE interpretation of \G, as the start of the
current match, is subtly different from Perl, which defines it as the end of the
previous match. In Perl, these can be different when the previously matched
string was empty. As PCRE does only one match at a time, it cannot reproduce
this behavior.
If all the alternatives of a pattern begin with \G, the expression is anchored
to the starting match position, and the "anchored" flag is set in the compiled
regular expression.

 Circumflex and Dollar

The circumflex and dollar metacharacters are zero-width assertions. That is,
they test for a particular condition to be true without consuming any characters
from the subject string.
Outside a character class, in the default matching mode, the circumflex
character is an assertion that is true only if the current matching point is at
the start of the subject string. If argument startoffset of run/3 is
non-zero, circumflex can never match if option multiline is unset. Inside a
character class, circumflex has an entirely different meaning (see below).
Circumflex needs not to be the first character of the pattern if some
alternatives are involved, but it is to be the first thing in each alternative
in which it appears if the pattern is ever to match that branch. If all possible
alternatives start with a circumflex, that is, if the pattern is constrained to
match only at the start of the subject, it is said to be an "anchored" pattern.
(There are also other constructs that can cause a pattern to be anchored.)
The dollar character is an assertion that is true only if the current matching
point is at the end of the subject string, or immediately before a newline at
the end of the string (by default). Notice however that it does not match the
newline. Dollar needs not to be the last character of the pattern if some
alternatives are involved, but it is to be the last item in any branch in which
it appears. Dollar has no special meaning in a character class.
The meaning of dollar can be changed so that it matches only at the very end of
the string, by setting option dollar_endonly at compile time. This does not
affect the \Z assertion.
The meanings of the circumflex and dollar characters are changed if option
multiline is set. When this is the case, a circumflex matches immediately
after internal newlines and at the start of the subject string. It does not
match after a newline that ends the string. A dollar matches before any newlines
in the string, and at the very end, when multiline is set. When newline is
specified as the two-character sequence CRLF, isolated CR and LF characters do
not indicate newlines.
For example, the pattern /^abc$/ matches the subject string "def\nabc" (where
\n represents a newline) in multiline mode, but not otherwise. So, patterns
that are anchored in single-line mode because all branches start with ^ are not
anchored in multiline mode, and a match for circumflex is possible when argument
startoffset of run/3 is non-zero. Option dollar_endonly is
ignored if multiline is set.
Notice that the sequences \A, \Z, and \z can be used to match the start and
end of the subject in both modes. If all branches of a pattern start with \A,
it is always anchored, regardless if multiline is set.

 Full Stop (Period, Dot) and \N

Outside a character class, a dot in the pattern matches any character in the
subject string except (by default) a character that signifies the end of a line.
When a line ending is defined as a single character, dot never matches that
character. When the two-character sequence CRLF is used, dot does not match CR
if it is immediately followed by LF, otherwise it matches all characters
(including isolated CRs and LFs). When any Unicode line endings are recognized,
dot does not match CR, LF, or any of the other line-ending characters.
The behavior of dot regarding newlines can be changed. If option dotall is
set, a dot matches any character, without exception. If the two-character
sequence CRLF is present in the subject string, it takes two dots to match it.
The handling of dot is entirely independent of the handling of circumflex and
dollar, the only relationship is that both involve newlines. Dot has no special
meaning in a character class.
The escape sequence \N behaves like a dot, except that it is not affected by
option PCRE_DOTALL. That is, it matches any character except one that
signifies the end of a line. Perl also uses \N to match characters by name but
PCRE does not support this.

 Matching a Single Data Unit

Outside a character class, the escape sequence \C matches any data unit,
regardless if a UTF mode is set. One data unit is one byte. Unlike a dot, \C
always matches line-ending characters. The feature is provided in Perl to match
individual bytes in UTF-8 mode, but it is unclear how it can usefully be used.
As \C breaks up characters into individual data units, matching one unit with
\C in a UTF mode means that the remaining string can start with a malformed UTF
character. This has undefined results, as PCRE assumes that it deals with valid
UTF strings.
PCRE does not allow \C to appear in lookbehind assertions (described below) in
a UTF mode, as this would make it impossible to calculate the length of the
lookbehind.
The \C escape sequence is best avoided. However, one way of using it that
avoids the problem of malformed UTF characters is to use a lookahead to check
the length of the next character, as in the following pattern, which can be used
with a UTF-8 string (ignore whitespace and line breaks):
(?| (?=[\x00-\x7f])(\C) |
 (?=[\x80-\x{7ff}])(\C)(\C) |
 (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
 (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
A group that starts with (?| resets the capturing parentheses numbers in each
alternative (see section Duplicate Subpattern Numbers). The
assertions at the start of each branch check the next UTF-8 character for values
whose encoding uses 1, 2, 3, or 4 bytes, respectively. The individual bytes of
the character are then captured by the appropriate number of groups.

 Square Brackets and Character Classes

An opening square bracket introduces a character class, terminated by a closing
square bracket. A closing square bracket on its own is not special by default.
However, if option PCRE_JAVASCRIPT_COMPAT is set, a lone closing square
bracket causes a compile-time error. If a closing square bracket is required as
a member of the class, it is to be the first data character in the class (after
an initial circumflex, if present) or escaped with a backslash.
A character class matches a single character in the subject. In a UTF mode, the
character can be more than one data unit long. A matched character must be in
the set of characters defined by the class, unless the first character in the
class definition is a circumflex, in which case the subject character must not
be in the set defined by the class. If a circumflex is required as a member of
the class, ensure that it is not the first character, or escape it with a
backslash.
For example, the character class [aeiou] matches any lowercase vowel, while
[^aeiou] matches any character that is not a lowercase vowel. Notice that a
circumflex is just a convenient notation for specifying the characters that are
in the class by enumerating those that are not. A class that starts with a
circumflex is not an assertion; it still consumes a character from the subject
string, and therefore it fails if the current pointer is at the end of the
string.
In UTF-8 mode, characters with values > 255 (0xffff) can be included in a class
as a literal string of data units, or by using the \x{ escaping mechanism.
When caseless matching is set, any letters in a class represent both their
uppercase and lowercase versions. For example, a caseless [aeiou] matches "A"
and "a", and a caseless [^aeiou] does not match "A", but a caseful version
would. In a UTF mode, PCRE always understands the concept of case for characters
whose values are < 256, so caseless matching is always possible. For characters
with higher values, the concept of case is supported only if PCRE is compiled
with Unicode property support. If you want to use caseless matching in a UTF
mode for characters >=, ensure that PCRE is compiled with Unicode property
support and with UTF support.
Characters that can indicate line breaks are never treated in any special way
when matching character classes, whatever line-ending sequence is in use, and
whatever setting of options PCRE_DOTALL and PCRE_MULTILINE is used. A class
such as [^a] always matches one of these characters.
The minus (hyphen) character can be used to specify a range of characters in a
character class. For example, [d-m] matches any letter between d and m,
inclusive. If a minus character is required in a class, it must be escaped with
a backslash or appear in a position where it cannot be interpreted as indicating
a range, typically as the first or last character in the class, or immediately
after a range. For example, [b-d-z] matches letters in the range b to d, a
hyphen character, or z.
The literal character "]" cannot be the end character of a range. A pattern such
as [W-]46] is interpreted as a class of two characters ("W" and "-") followed
by a literal string "46]", so it would match "W46]" or "-46]". However, if "]"
is escaped with a backslash, it is interpreted as the end of range, so
[W-\]46] is interpreted as a class containing a range followed by two other
characters. The octal or hexadecimal representation of "]" can also be used to
end a range.
An error is generated if a POSIX character class (see below) or an escape
sequence other than one that defines a single character appears at a point where
a range ending character is expected. For example, [z-\xff] is valid, but
[A-\d] and [A-[:digit:]] are not.
Ranges operate in the collating sequence of character values. They can also be
used for characters specified numerically, for example, [\000-\037]. Ranges
can include any characters that are valid for the current mode.
If a range that includes letters is used when caseless matching is set, it
matches the letters in either case. For example, [W-c] is equivalent to
[][\\^_`wxyzabc], matched caselessly. In a non-UTF mode, if character
tables for a French locale are in use, [\xc8-\xcb] matches accented E
characters in both cases. In UTF modes, PCRE supports the concept of case for
characters with values > 255 only when it is compiled with Unicode property
support.
The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V,
\w, and \W can appear in a character class, and add the characters that they
match to the class. For example, [\dABCDEF] matches any hexadecimal digit. In
UTF modes, option ucp affects the meanings of \d, \s, \w and their
uppercase partners, just as it does when they appear outside a character class,
as described in section
Generic Character Types earlier. The escape
sequence \b has a different meaning inside a character class; it matches the
backspace character. The sequences \B, \N, \R, and \X are not special inside
a character class. Like any other unrecognized escape sequences, they are
treated as the literal characters "B", "N", "R", and "X".
A circumflex can conveniently be used with the uppercase character types to
specify a more restricted set of characters than the matching lowercase type.
For example, class [^\W_] matches any letter or digit, but not underscore,
while [\w] includes underscore. A positive character class is to be read as
"something OR something OR ..." and a negative class as "NOT something AND NOT
something AND NOT ...".
Only the following metacharacters are recognized in character classes:
	Backslash
	Hyphen (only where it can be interpreted as specifying a range)
	Circumflex (only at the start)
	Opening square bracket (only when it can be interpreted as introducing a Posix
class name, or for a special compatibility feature; see the next two sections)
	Terminating closing square bracket

However, escaping other non-alphanumeric characters does no harm.

 Posix Character Classes

Perl supports the Posix notation for character classes. This uses names enclosed
by [: and :] within the enclosing square brackets. PCRE also supports this
notation. For example, the following matches "0", "1", any alphabetic character,
or "%":
[01[:alpha:]%]
The following are the supported class names:
	alnum - Letters and digits

	alpha - Letters

	blank - Space or tab only

	cntrl - Control characters

	digit - Decimal digits (same as \d)

	graph - Printing characters, excluding space

	lower - Lowercase letters

	print - Printing characters, including space

	punct - Printing characters, excluding letters, digits, and space

	space - Whitespace (the same as \s from PCRE 8.34)

	upper - Uppercase letters

	word - "Word" characters (same as \w)

	xdigit - Hexadecimal digits

There is another character class, ascii, that erroneously matches Latin-1
characters instead of the 0-127 range specified by POSIX. This cannot be fixed
without altering the behaviour of other classes, so we recommend matching the
range with [\\0-\x7f] instead.
The default "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
and space (32). If locale-specific matching is taking place, the list of space
characters may be different; there may be fewer or more of them. "Space" used to
be different to \s, which did not include VT, for Perl compatibility. However,
Perl changed at release 5.18, and PCRE followed at release 8.34. "Space" and \s
now match the same set of characters.
The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
5.8. Another Perl extension is negation, which is indicated by a ^ character
after the colon. For example, the following matches "1", "2", or any non-digit:
[12[:^digit:]]
PCRE (and Perl) also recognize the Posix syntax [.ch.] and [=ch=] where "ch"
is a "collating element", but these are not supported, and an error is given if
they are encountered.
By default, characters with values > 255 do not match any of the Posix character
classes. However, if option PCRE_UCP is passed to pcre_compile(), some of
the classes are changed so that Unicode character properties are used. This is
achieved by replacing certain Posix classes by other sequences, as follows:
	[:alnum:] - Becomes \p{Xan}

	[:alpha:] - Becomes \p{L}

	[:blank:] - Becomes \h

	[:digit:] - Becomes \p{Nd}

	[:lower:] - Becomes \p{Ll}

	[:space:] - Becomes \p{Xps}

	[:upper:] - Becomes \p{Lu}

	[:word:] - Becomes \p{Xwd}

Negated versions, such as [:^alpha:], use \P instead of \p. Three other POSIX
classes are handled specially in UCP mode:
	[:graph:] - This matches characters that have glyphs that mark the page
when printed. In Unicode property terms, it matches all characters with the L,
M, N, P, S, or Cf properties, except for:
	U+061C - Arabic Letter Mark

	U+180E - Mongolian Vowel Separator

	U+2066 - U+2069 - Various "isolate"s

	[:print:] - This matches the same characters as [:graph:] plus space
characters that are not controls, that is, characters with the Zs property.

	[:punct:] - This matches all characters that have the Unicode P
(punctuation) property, plus those characters whose code points are less than
128 that have the S (Symbol) property.

The other POSIX classes are unchanged, and match only characters with code
points less than 128.
Compatibility Feature for Word Boundaries
In the POSIX.2 compliant library that was included in 4.4BSD Unix, the ugly
syntax [[:<:]] and [[:>:]] is used for matching "start of word" and "end of
word". PCRE treats these items as follows:
	[[:<:]] - is converted to \b(?=\w)

	[[:>:]] - is converted to \b(?<=\w)

Only these exact character sequences are recognized. A sequence such as
[a[:<:]b] provokes error for an unrecognized POSIX class name. This support is
not compatible with Perl. It is provided to help migrations from other
environments, and is best not used in any new patterns. Note that \b matches at
the start and the end of a word (see "Simple assertions" above), and in a
Perl-style pattern the preceding or following character normally shows which is
wanted, without the need for the assertions that are used above in order to give
exactly the POSIX behaviour.

 Vertical Bar

Vertical bar characters are used to separate alternative patterns. For example,
the following pattern matches either "gilbert" or "sullivan":
gilbert|sullivan
Any number of alternatives can appear, and an empty alternative is permitted
(matching the empty string). The matching process tries each alternative in
turn, from left to right, and the first that succeeds is used. If the
alternatives are within a subpattern (defined in section
Subpatterns), "succeeds" means matching the remaining main
pattern and the alternative in the subpattern.

 Internal Option Setting

The settings of the Perl-compatible options caseless, multiline, dotall,
and extended can be changed from within the pattern by a sequence of Perl
option letters enclosed between "(?" and ")". The option letters are as follows:
	i - For caseless

	m - For multiline

	s - For dotall

	x - For extended

For example, (?im) sets caseless, multiline matching. These options can also
be unset by preceding the letter with a hyphen. A combined setting and unsetting
such as (?im-sx), which sets caseless and multiline, while unsetting
dotall and extended, is also permitted. If a letter appears both before and
after the hyphen, the option is unset.
The PCRE-specific options dupnames, ungreedy, and extra can be changed in
the same way as the Perl-compatible options by using the characters J, U, and X
respectively.
When one of these option changes occurs at top-level (that is, not inside
subpattern parentheses), the change applies to the remainder of the pattern that
follows.
An option change within a subpattern (see section Subpatterns)
affects only that part of the subpattern that follows it. So, the following
matches abc and aBc and no other strings (assuming caseless is not used):
(a(?i)b)c
By this means, options can be made to have different settings in different parts
of the pattern. Any changes made in one alternative do carry on into subsequent
branches within the same subpattern. For example:
(a(?i)b|c)
matches "ab", "aB", "c", and "C", although when matching "C" the first branch is
abandoned before the option setting. This is because the effects of option
settings occur at compile time. There would be some weird behavior otherwise.
Note
Other PCRE-specific options can be set by the application when the compiling
or matching functions are called. Sometimes the pattern can contain special
leading sequences, such as (*CRLF), to override what the application has set
or what has been defaulted. Details are provided in section
Newline Sequences earlier.
The (UTF8) and (UCP) leading sequences can be used to set UTF and Unicode
property modes. They are equivalent to setting options unicode and ucp,
respectively. The (UTF) sequence is a generic version that can be used with
any of the libraries. However, the application can set option never_utf,
which locks out the use of the (UTF) sequences.

 Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested.
Turning part of a pattern into a subpattern does two things:
	1. - It localizes a set of alternatives. For example, the following
pattern matches "cataract", "caterpillar", or "cat":
cat(aract|erpillar|)
Without the parentheses, it would match "cataract", "erpillar", or an empty
string.

	2. - It sets up the subpattern as a capturing subpattern. That is, when
the complete pattern matches, that portion of the subject string that matched
the subpattern is passed back to the caller through the return value of
run/3.

Opening parentheses are counted from left to right (starting from 1) to obtain
numbers for the capturing subpatterns. For example, if the string "the red king"
is matched against the following pattern, the captured substrings are "red
king", "red", and "king", and are numbered 1, 2, and 3, respectively:
the ((red|white) (king|queen))
It is not always helpful that plain parentheses fulfill two functions. Often a
grouping subpattern is required without a capturing requirement. If an opening
parenthesis is followed by a question mark and a colon, the subpattern does not
do any capturing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string "the white queen" is matched
against the following pattern, the captured substrings are "white queen" and
"queen", and are numbered 1 and 2:
the ((?:red|white) (king|queen))
The maximum number of capturing subpatterns is 65535.
As a convenient shorthand, if any option settings are required at the start of a
non-capturing subpattern, the option letters can appear between "?" and ":".
Thus, the following two patterns match the same set of strings:
(?i:saturday|sunday)
(?:(?i)saturday|sunday)
As alternative branches are tried from left to right, and options are not reset
until the end of the subpattern is reached, an option setting in one branch does
affect subsequent branches, so the above patterns match both "SUNDAY" and
"Saturday".

 Duplicate Subpattern Numbers

Perl 5.10 introduced a feature where each alternative in a subpattern uses the
same numbers for its capturing parentheses. Such a subpattern starts with (?|
and is itself a non-capturing subpattern. For example, consider the following
pattern:
(?|(Sat)ur|(Sun))day
As the two alternatives are inside a (?| group, both sets of capturing
parentheses are numbered one. Thus, when the pattern matches, you can look at
captured substring number one, whichever alternative matched. This construct is
useful when you want to capture a part, but not all, of one of many
alternatives. Inside a (?| group, parentheses are numbered as usual, but the
number is reset at the start of each branch. The numbers of any capturing
parentheses that follow the subpattern start after the highest number used in
any branch. The following example is from the Perl documentation; the numbers
underneath show in which buffer the captured content is stored:
before ---------------branch-reset----------- after
/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
1 2 2 3 2 3 4
A back reference to a numbered subpattern uses the most recent value that is set
for that number by any subpattern. The following pattern matches "abcabc" or
"defdef":
/(?|(abc)|(def))\1/
In contrast, a subroutine call to a numbered subpattern always refers to the
first one in the pattern with the given number. The following pattern matches
"abcabc" or "defabc":
/(?|(abc)|(def))(?1)/
If a condition test for a subpattern having matched refers to a non-unique
number, the test is true if any of the subpatterns of that number have matched.
An alternative approach using this "branch reset" feature is to use duplicate
named subpatterns, as described in the next section.

 Named Subpatterns

Identifying capturing parentheses by number is simple, but it can be hard to
keep track of the numbers in complicated regular expressions. Also, if an
expression is modified, the numbers can change. To help with this difficulty,
PCRE supports the naming of subpatterns. This feature was not added to Perl
until release 5.10. Python had the feature earlier, and PCRE introduced it at
release 4.0, using the Python syntax. PCRE now supports both the Perl and the
Python syntax. Perl allows identically numbered subpatterns to have different
names, but PCRE does not.
In PCRE, a subpattern can be named in one of three ways: (?<name>...) or
(?'name'...) as in Perl, or (?P<name>...) as in Python. References to
capturing parentheses from other parts of the pattern, such as back references,
recursion, and conditions, can be made by name and by number.
Names consist of up to 32 alphanumeric characters and underscores, but must
start with a non-digit. Named capturing parentheses are still allocated numbers
as well as names, exactly as if the names were not present. The capture
specification to run/3 can use named values if they are present in the regular
expression.
By default, a name must be unique within a pattern, but this constraint can be
relaxed by setting option dupnames at compile time. (Duplicate names are also
always permitted for subpatterns with the same number, set up as described in
the previous section.) Duplicate names can be useful for patterns where only one
instance of the named parentheses can match. Suppose that you want to match the
name of a weekday, either as a 3-letter abbreviation or as the full name, and in
both cases you want to extract the abbreviation. The following pattern (ignoring
the line breaks) does the job:
(?<DN>Mon|Fri|Sun)(?:day)?|
(?<DN>Tue)(?:sday)?|
(?<DN>Wed)(?:nesday)?|
(?<DN>Thu)(?:rsday)?|
(?<DN>Sat)(?:urday)?
There are five capturing substrings, but only one is ever set after a match. (An
alternative way of solving this problem is to use a "branch reset" subpattern,
as described in the previous section.)
For capturing named subpatterns which names are not unique, the first matching
occurrence (counted from left to right in the subject) is returned from run/3,
if the name is specified in the values part of the capture statement. The
all_names capturing value matches all the names in the same way.
Note
You cannot use different names to distinguish between two subpatterns with the
same number, as PCRE uses only the numbers when matching. For this reason, an
error is given at compile time if different names are specified to subpatterns
with the same number. However, you can specify the same name to subpatterns
with the same number, even when dupnames is not set.

 Repetition

Repetition is specified by quantifiers, which can follow any of the following
items:
	A literal data character
	The dot metacharacter
	The \C escape sequence
	The \X escape sequence
	The \R escape sequence
	An escape such as \d or \pL that matches a single character
	A character class
	A back reference (see the next section)
	A parenthesized subpattern (including assertions)
	A subroutine call to a subpattern (recursive or otherwise)

The general repetition quantifier specifies a minimum and maximum number of
permitted matches, by giving the two numbers in curly brackets (braces),
separated by a comma. The numbers must be < 65536, and the first must be less
than or equal to the second. For example, the following matches "zz", "zzz", or
"zzzz":
z{2,4}
A closing brace on its own is not a special character. If the second number is
omitted, but the comma is present, there is no upper limit. If the second number
and the comma are both omitted, the quantifier specifies an exact number of
required matches. Thus, the following matches at least three successive vowels,
but can match many more:
[aeiou]{3,}
The following matches exactly eight digits:
\d{8}
An opening curly bracket that appears in a position where a quantifier is not
allowed, or one that does not match the syntax of a quantifier, is taken as a
literal character. For example, {,6} is not a quantifier, but a literal string
of four characters.
In Unicode mode, quantifiers apply to characters rather than to individual data
units. Thus, for example, \x{100}{2} matches two characters, each of which
is represented by a 2-byte sequence in a UTF-8 string. Similarly, \X{3}
matches three Unicode extended grapheme clusters, each of which can be many data
units long (and they can be of different lengths).
The quantifier {0} is permitted, causing the expression to behave as if the
previous item and the quantifier were not present. This can be useful for
subpatterns that are referenced as subroutines from elsewhere in the pattern
(but see also section
Defining Subpatterns for Use by Reference Only).
Items other than subpatterns that have a {0} quantifier are omitted from the
compiled pattern.
For convenience, the three most common quantifiers have single-character
abbreviations:
	* - Equivalent to {0,}

	+ - Equivalent to {1,}

	? - Equivalent to {0,1}

Infinite loops can be constructed by following a subpattern that can match no
characters with a quantifier that has no upper limit, for example:
(a?)*
Earlier versions of Perl and PCRE used to give an error at compile time for such
patterns. However, as there are cases where this can be useful, such patterns
are now accepted. However, if any repetition of the subpattern matches no
characters, the loop is forcibly broken.
By default, the quantifiers are "greedy", that is, they match as much as
possible (up to the maximum number of permitted times), without causing the
remaining pattern to fail. The classic example of where this gives problems is
in trying to match comments in C programs. These appear between / and /.
Within the comment, individual * and / characters can appear. An attempt to
match C comments by applying the pattern
/*.**/
to the string
/* first comment */ not comment /* second comment */
fails, as it matches the entire string owing to the greediness of the .* item.
However, if a quantifier is followed by a question mark, it ceases to be greedy,
and instead matches the minimum number of times possible, so the following
pattern does the right thing with the C comments:
/*.*?*/
The meaning of the various quantifiers is not otherwise changed, only the
preferred number of matches. Do not confuse this use of question mark with its
use as a quantifier in its own right. As it has two uses, it can sometimes
appear doubled, as in
\d??\d
which matches one digit by preference, but can match two if that is the only way
the remaining pattern matches.
If option ungreedy is set (an option that is not available in Perl), the
quantifiers are not greedy by default, but individual ones can be made greedy by
following them with a question mark. That is, it inverts the default behavior.
When a parenthesized subpattern is quantified with a minimum repeat count that
is > 1 or with a limited maximum, more memory is required for the compiled
pattern, in proportion to the size of the minimum or maximum.
If a pattern starts with .* or .{0,} and option dotall (equivalent to Perl
option /s) is set, thus allowing the dot to match newlines, the pattern is
implicitly anchored, because whatever follows is tried against every character
position in the subject string. So, there is no point in retrying the overall
match at any position after the first. PCRE normally treats such a pattern as if
it was preceded by \A.
In cases where it is known that the subject string contains no newlines, it is
worth setting dotall to obtain this optimization, or alternatively using ^ to
indicate anchoring explicitly.
However, there are some cases where the optimization cannot be used. When .* is
inside capturing parentheses that are the subject of a back reference elsewhere
in the pattern, a match at the start can fail where a later one succeeds.
Consider, for example:
(.*)abc\1
If the subject is "xyz123abc123", the match point is the fourth character.
Therefore, such a pattern is not implicitly anchored.
Another case where implicit anchoring is not applied is when the leading .* is
inside an atomic group. Once again, a match at the start can fail where a later
one succeeds. Consider the following pattern:
(?>.*?a)b
It matches "ab" in the subject "aab". The use of the backtracking control verbs
(PRUNE) and (SKIP) also disable this optimization.
When a capturing subpattern is repeated, the value captured is the substring
that matched the final iteration. For example, after
(tweedle[dume]{3}\s*)+
has matched "tweedledum tweedledee", the value of the captured substring is
"tweedledee". However, if there are nested capturing subpatterns, the
corresponding captured values can have been set in previous iterations. For
example, after
/(a|(b))+/
matches "aba", the value of the second captured substring is "b".

 Atomic Grouping and Possessive Quantifiers

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
repetition, failure of what follows normally causes the repeated item to be
re-evaluated to see if a different number of repeats allows the remaining
pattern to match. Sometimes it is useful to prevent this, either to change the
nature of the match, or to cause it to fail earlier than it otherwise might,
when the author of the pattern knows that there is no point in carrying on.
Consider, for example, the pattern \d+foo when applied to the following subject
line:
123456bar
After matching all six digits and then failing to match "foo", the normal action
of the matcher is to try again with only five digits matching item \d+, and
then with four, and so on, before ultimately failing. "Atomic grouping" (a term
taken from Jeffrey Friedl's book) provides the means for specifying that once a
subpattern has matched, it is not to be re-evaluated in this way.
If atomic grouping is used for the previous example, the matcher gives up
immediately on failing to match "foo" the first time. The notation is a kind of
special parenthesis, starting with (?> as in the following example:
(?>\d+)foo
This kind of parenthesis "locks up" the part of the pattern it contains once it
has matched, and a failure further into the pattern is prevented from
backtracking into it. Backtracking past it to previous items, however, works as
normal.
An alternative description is that a subpattern of this type matches the string
of characters that an identical standalone pattern would match, if anchored at
the current point in the subject string.
Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
the above example can be thought of as a maximizing repeat that must swallow
everything it can. So, while both \d+ and \d+? are prepared to adjust the
number of digits they match to make the remaining pattern match, (?>\d+) can
only match an entire sequence of digits.
Atomic groups in general can contain any complicated subpatterns, and can be
nested. However, when the subpattern for an atomic group is just a single
repeated item, as in the example above, a simpler notation, called a "possessive
quantifier" can be used. This consists of an extra + character following a
quantifier. Using this notation, the previous example can be rewritten as
\d++foo
Notice that a possessive quantifier can be used with an entire group, for
example:
(abc|xyz){2,3}+
Possessive quantifiers are always greedy; the setting of option ungreedy is
ignored. They are a convenient notation for the simpler forms of an atomic
group. However, there is no difference in the meaning of a possessive quantifier
and the equivalent atomic group, but there can be a performance difference;
possessive quantifiers are probably slightly faster.
The possessive quantifier syntax is an extension to the Perl 5.8 syntax. Jeffrey
Friedl originated the idea (and the name) in the first edition of his book. Mike
McCloskey liked it, so implemented it when he built the Sun Java package, and
PCRE copied it from there. It ultimately found its way into Perl at release
5.10.
PCRE has an optimization that automatically "possessifies" certain simple
pattern constructs. For example, the sequence A+B is treated as A++B, as there
is no point in backtracking into a sequence of A:s when B must follow.
When a pattern contains an unlimited repeat inside a subpattern that can itself
be repeated an unlimited number of times, the use of an atomic group is the only
way to avoid some failing matches taking a long time. The pattern
(\D+|<\d+>)*[!?]
matches an unlimited number of substrings that either consist of non-digits, or
digits enclosed in <>, followed by ! or ?. When it matches, it runs quickly.
However, if it is applied to
aa
it takes a long time before reporting failure. This is because the string can be
divided between the internal \D+ repeat and the external * repeat in many
ways, and all must be tried. (The example uses [!?] rather than a single
character at the end, as both PCRE and Perl have an optimization that allows for
fast failure when a single character is used. They remember the last single
character that is required for a match, and fail early if it is not present in
the string.) If the pattern is changed so that it uses an atomic group, like the
following, sequences of non-digits cannot be broken, and failure happens
quickly:
((?>\D+)|<\d+>)*[!?]

 Back References

Outside a character class, a backslash followed by a digit > 0 (and possibly
further digits) is a back reference to a capturing subpattern earlier (that is,
to its left) in the pattern, provided there have been that many previous
capturing left parentheses.
However, if the decimal number following the backslash is < 10, it is always
taken as a back reference, and causes an error only if there are not that many
capturing left parentheses in the entire pattern. That is, the parentheses that
are referenced do need not be to the left of the reference for numbers < 10. A
"forward back reference" of this type can make sense when a repetition is
involved and the subpattern to the right has participated in an earlier
iteration.
It is not possible to have a numerical "forward back reference" to a subpattern
whose number is 10 or more using this syntax, as a sequence such as \50 is
interpreted as a character defined in octal. For more details of the handling of
digits following a backslash, see section
Non-Printing Characters earlier. There is no
such problem when named parentheses are used. A back reference to any subpattern
is possible using named parentheses (see below).
Another way to avoid the ambiguity inherent in the use of digits following a
backslash is to use the \g escape sequence. This escape must be followed by an
unsigned number or a negative number, optionally enclosed in braces. The
following examples are identical:
(ring), \1
(ring), \g1
(ring), \g{1}
An unsigned number specifies an absolute reference without the ambiguity that is
present in the older syntax. It is also useful when literal digits follow the
reference. A negative number is a relative reference. Consider the following
example:
(abc(def)ghi)\g{-1}
The sequence \g{-1} is a reference to the most recently started capturing
subpattern before \g, that is, it is equivalent to \2 in this example.
Similarly, \g{-2} would be equivalent to \1. The use of relative references
can be helpful in long patterns, and also in patterns that are created by
joining fragments containing references within themselves.
A back reference matches whatever matched the capturing subpattern in the
current subject string, rather than anything matching the subpattern itself
(section Subpattern as Subroutines describes a way of doing
that). So, the following pattern matches "sense and sensibility" and "response
and responsibility", but not "sense and responsibility":
(sens|respons)e and \1ibility
If caseful matching is in force at the time of the back reference, the case of
letters is relevant. For example, the following matches "rah rah" and "RAH RAH",
but not "RAH rah", although the original capturing subpattern is matched
caselessly:
((?i)rah)\s+\1
There are many different ways of writing back references to named subpatterns.
The .NET syntax \k{name} and the Perl syntax \k<name> or \k'name' are
supported, as is the Python syntax (?P=name). The unified back reference
syntax in Perl 5.10, in which \g can be used for both numeric and named
references, is also supported. The previous example can be rewritten in the
following ways:
(?<p1>(?i)rah)\s+\k<p1>
(?'p1'(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
(?<p1>(?i)rah)\s+\g{p1}
A subpattern that is referenced by name can appear in the pattern before or
after the reference.
There can be more than one back reference to the same subpattern. If a
subpattern has not been used in a particular match, any back references to it
always fails. For example, the following pattern always fails if it starts to
match "a" rather than "bc":
(a|(bc))\2
As there can be many capturing parentheses in a pattern, all digits following
the backslash are taken as part of a potential back reference number. If the
pattern continues with a digit character, some delimiter must be used to
terminate the back reference. If option extended is set, this can be
whitespace. Otherwise an empty comment (see section Comments)
can be used.
Recursive Back References
A back reference that occurs inside the parentheses to which it refers fails
when the subpattern is first used, so, for example, (a\1) never matches.
However, such references can be useful inside repeated subpatterns. For example,
the following pattern matches any number of "a"s and also "aba", "ababbaa", and
so on:
(a|b\1)+
At each iteration of the subpattern, the back reference matches the character
string corresponding to the previous iteration. In order for this to work, the
pattern must be such that the first iteration does not need to match the back
reference. This can be done using alternation, as in the example above, or by a
quantifier with a minimum of zero.
Back references of this type cause the group that they reference to be treated
as an atomic group. Once the whole group has been matched, a subsequent matching
failure cannot cause backtracking into the middle of the group.

 Assertions

An assertion is a test on the characters following or preceding the current
matching point that does not consume any characters. The simple assertions coded
as \b, \B, \A, \G, \Z, \z, ^, and $ are described in the previous
sections.
More complicated assertions are coded as subpatterns. There are two kinds: those
that look ahead of the current position in the subject string, and those that
look behind it. An assertion subpattern is matched in the normal way, except
that it does not cause the current matching position to be changed.
Assertion subpatterns are not capturing subpatterns. If such an assertion
contains capturing subpatterns within it, these are counted for the purposes of
numbering the capturing subpatterns in the whole pattern. However, substring
capturing is done only for positive assertions. (Perl sometimes, but not always,
performs capturing in negative assertions.)
Warning
If a positive assertion containing one or more capturing subpatterns succeeds,
but failure to match later in the pattern causes backtracking over this
assertion, the captures within the assertion are reset only if no higher
numbered captures are already set. This is, unfortunately, a fundamental
limitation of the current implementation, and as PCRE1 is now in
maintenance-only status, it is unlikely ever to change.

For compatibility with Perl, assertion subpatterns can be repeated. However, it
makes no sense to assert the same thing many times, the side effect of capturing
parentheses can occasionally be useful. In practice, there are only three cases:
	If the quantifier is {0}, the assertion is never obeyed during matching.
However, it can contain internal capturing parenthesized groups that are
called from elsewhere through the subroutine mechanism.
	If quantifier is {0,n}, where n > 0, it is treated as if it was {0,1}. At
runtime, the remaining pattern match is tried with and without the assertion,
the order depends on the greediness of the quantifier.
	If the minimum repetition is > 0, the quantifier is ignored. The assertion is
obeyed only once when encountered during matching.

Lookahead Assertions
Lookahead assertions start with (?= for positive assertions and (?! for
negative assertions. For example, the following matches a word followed by a
semicolon, but does not include the semicolon in the match:
\w+(?=;)
The following matches any occurrence of "foo" that is not followed by "bar":
foo(?!bar)
Notice that the apparently similar pattern
(?!foo)bar
does not find an occurrence of "bar" that is preceded by something other than
"foo". It finds any occurrence of "bar" whatsoever, as the assertion (?!foo) is
always true when the next three characters are "bar". A lookbehind assertion is
needed to achieve the other effect.
If you want to force a matching failure at some point in a pattern, the most
convenient way to do it is with (?!), as an empty string always matches. So, an
assertion that requires there is not to be an empty string must always fail. The
backtracking control verb (FAIL) or (F) is a synonym for (?!).
Lookbehind Assertions
Lookbehind assertions start with (?<= for positive assertions and (?<! for
negative assertions. For example, the following finds an occurrence of "bar"
that is not preceded by "foo":
(?<!foo)bar
The contents of a lookbehind assertion are restricted such that all the strings
it matches must have a fixed length. However, if there are many top-level
alternatives, they do not all have to have the same fixed length. Thus, the
following is permitted:
(?<=bullock|donkey)
The following causes an error at compile time:
(?<!dogs?|cats?)
Branches that match different length strings are permitted only at the top-level
of a lookbehind assertion. This is an extension compared with Perl, which
requires all branches to match the same length of string. An assertion such as
the following is not permitted, as its single top-level branch can match two
different lengths:
(?<=ab(c|de))
However, it is acceptable to PCRE if rewritten to use two top-level branches:
(?<=abc|abde)
Sometimes the escape sequence \K (see above) can be used instead of a
lookbehind assertion to get round the fixed-length restriction.
The implementation of lookbehind assertions is, for each alternative, to move
the current position back temporarily by the fixed length and then try to match.
If there are insufficient characters before the current position, the assertion
fails.
In a UTF mode, PCRE does not allow the \C escape (which matches a single data
unit even in a UTF mode) to appear in lookbehind assertions, as it makes it
impossible to calculate the length of the lookbehind. The \X and \R escapes,
which can match different numbers of data units, are not permitted either.
"Subroutine" calls (see below), such as (?2) or (?&X), are permitted in
lookbehinds, as long as the subpattern matches a fixed-length string. Recursion,
however, is not supported.
Possessive quantifiers can be used with lookbehind assertions to specify
efficient matching of fixed-length strings at the end of subject strings.
Consider the following simple pattern when applied to a long string that does
not match:
abcd$
As matching proceeds from left to right, PCRE looks for each "a" in the subject
and then sees if what follows matches the remaining pattern. If the pattern is
specified as
^.*abcd$
the initial .* matches the entire string at first. However, when this fails (as
there is no following "a"), it backtracks to match all but the last character,
then all but the last two characters, and so on. Once again the search for "a"
covers the entire string, from right to left, so we are no better off. However,
if the pattern is written as
^.*+(?<=abcd)
there can be no backtracking for the .*+ item; it can match only the entire
string. The subsequent lookbehind assertion does a single test on the last four
characters. If it fails, the match fails immediately. For long strings, this
approach makes a significant difference to the processing time.
Using Multiple Assertions
Many assertions (of any sort) can occur in succession. For example, the
following matches "foo" preceded by three digits that are not "999":
(?<=\d{3})(?<!999)foo
Notice that each of the assertions is applied independently at the same point in
the subject string. First there is a check that the previous three characters
are all digits, and then there is a check that the same three characters are not
"999". This pattern does not match "foo" preceded by six characters, the first
of which are digits and the last three of which are not "999". For example, it
does not match "123abcfoo". A pattern to do that is the following:
(?<=\d{3}...)(?<!999)foo
This time the first assertion looks at the preceding six characters, checks that
the first three are digits, and then the second assertion checks that the
preceding three characters are not "999".
Assertions can be nested in any combination. For example, the following matches
an occurrence of "baz" that is preceded by "bar", which in turn is not preceded
by "foo":
(?<=(?<!foo)bar)baz
The following pattern matches "foo" preceded by three digits and any three
characters that are not "999":
(?<=\d{3}(?!999)...)foo

 Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally
or to choose between two alternative subpatterns, depending on the result of an
assertion, or whether a specific capturing subpattern has already been matched.
The following are the two possible forms of conditional subpattern:
(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)
If the condition is satisfied, the yes-pattern is used, otherwise the no-pattern
(if present). If more than two alternatives exist in the subpattern, a
compile-time error occurs. Each of the two alternatives can itself contain
nested subpatterns of any form, including conditional subpatterns; the
restriction to two alternatives applies only at the level of the condition. The
following pattern fragment is an example where the alternatives are complex:
(?(1) (A|B|C) | (D | (?(2)E|F) | E))
There are four kinds of condition: references to subpatterns, references to
recursion, a pseudo-condition called DEFINE, and assertions.
Checking for a Used Subpattern By Number
If the text between the parentheses consists of a sequence of digits, the
condition is true if a capturing subpattern of that number has previously
matched. If more than one capturing subpattern with the same number exists (see
section Duplicate Subpattern Numbers earlier), the condition is
true if any of them have matched. An alternative notation is to precede the
digits with a plus or minus sign. In this case, the subpattern number is
relative rather than absolute. The most recently opened parentheses can be
referenced by (?(-1), the next most recent by (?(-2), and so on. Inside loops,
it can also make sense to refer to subsequent groups. The next parentheses to be
opened can be referenced as (?(+1), and so on. (The value zero in any of these
forms is not used; it provokes a compile-time error.)
Consider the following pattern, which contains non-significant whitespace to
make it more readable (assume option extended) and to divide it into three
parts for ease of discussion:
(\()? [^()]+ (?(1) \))
The first part matches an optional opening parenthesis, and if that character is
present, sets it as the first captured substring. The second part matches one or
more characters that are not parentheses. The third part is a conditional
subpattern that tests whether the first set of parentheses matched or not. If
they did, that is, if subject started with an opening parenthesis, the condition
is true, and so the yes-pattern is executed and a closing parenthesis is
required. Otherwise, as no-pattern is not present, the subpattern matches
nothing. That is, this pattern matches a sequence of non-parentheses, optionally
enclosed in parentheses.
If this pattern is embedded in a larger one, a relative reference can be used:
...other stuff... (\()? [^()]+ (?(-1) \)) ...
This makes the fragment independent of the parentheses in the larger pattern.
Checking for a Used Subpattern By Name
Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a used
subpattern by name. For compatibility with earlier versions of PCRE, which had
this facility before Perl, the syntax (?(name)...) is also recognized.
Rewriting the previous example to use a named subpattern gives:
(?<OPEN> \()? [^()]+ (?(<OPEN>) \))
If the name used in a condition of this kind is a duplicate, the test is applied
to all subpatterns of the same name, and is true if any one of them has matched.
Checking for Pattern Recursion
If the condition is the string (R), and there is no subpattern with the name R,
the condition is true if a recursive call to the whole pattern or any subpattern
has been made. If digits or a name preceded by ampersand follow the letter R,
for example:
(?(R3)...) or (?(R&name)...)
the condition is true if the most recent recursion is into a subpattern whose
number or name is given. This condition does not check the entire recursion
stack. If the name used in a condition of this kind is a duplicate, the test is
applied to all subpatterns of the same name, and is true if any one of them is
the most recent recursion.
At "top-level", all these recursion test conditions are false. The syntax for
recursive patterns is described below.
Defining Subpatterns for Use By Reference Only

If the condition is the string (DEFINE), and there is no subpattern with the
name DEFINE, the condition is always false. In this case, there can be only one
alternative in the subpattern. It is always skipped if control reaches this
point in the pattern. The idea of DEFINE is that it can be used to define
"subroutines" that can be referenced from elsewhere. (The use of subroutines is
described below.) For example, a pattern to match an IPv4 address, such as
"192.168.23.245", can be written like this (ignore whitespace and line breaks):
(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d)) \b (?&byte) (\.(?&byte)){3} \b
The first part of the pattern is a DEFINE group inside which is a another group
named "byte" is defined. This matches an individual component of an IPv4 address
(a number < 256). When matching takes place, this part of the pattern is
skipped, as DEFINE acts like a false condition. The remaining pattern uses
references to the named group to match the four dot-separated components of an
IPv4 address, insisting on a word boundary at each end.
Assertion Conditions
If the condition is not in any of the above formats, it must be an assertion.
This can be a positive or negative lookahead or lookbehind assertion. Consider
the following pattern, containing non-significant whitespace, and with the two
alternatives on the second line:
(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})
The condition is a positive lookahead assertion that matches an optional
sequence of non-letters followed by a letter. That is, it tests for the presence
of at least one letter in the subject. If a letter is found, the subject is
matched against the first alternative, otherwise it is matched against the
second. This pattern matches strings in one of the two forms dd-aaa-dd or
dd-dd-dd, where aaa are letters and dd are digits.

 Comments

There are two ways to include comments in patterns that are processed by PCRE.
In both cases, the start of the comment must not be in a character class, or in
the middle of any other sequence of related characters such as (?: or a
subpattern name or number. The characters that make up a comment play no part in
the pattern matching.
The sequence (?# marks the start of a comment that continues up to the next
closing parenthesis. Nested parentheses are not permitted. If option
PCRE_EXTENDED is set, an unescaped # character also introduces a comment, which
in this case continues to immediately after the next newline character or
character sequence in the pattern. Which characters are interpreted as newlines
is controlled by the options passed to a compiling function or by a special
sequence at the start of the pattern, as described in section
Newline Conventions earlier.
Notice that the end of this type of comment is a literal newline sequence in the
pattern; escape sequences that happen to represent a newline do not count. For
example, consider the following pattern when extended is set, and the default
newline convention is in force:
abc #comment \n still comment
On encountering character #, pcre_compile() skips along, looking for a newline
in the pattern. The sequence \n is still literal at this stage, so it does not
terminate the comment. Only a character with code value 0x0a (the default
newline) does so.

 Recursive Patterns

Consider the problem of matching a string in parentheses, allowing for unlimited
nested parentheses. Without the use of recursion, the best that can be done is
to use a pattern that matches up to some fixed depth of nesting. It is not
possible to handle an arbitrary nesting depth.
For some time, Perl has provided a facility that allows regular expressions to
recurse (among other things). It does this by interpolating Perl code in the
expression at runtime, and the code can refer to the expression itself. A Perl
pattern using code interpolation to solve the parentheses problem can be created
like this:
$re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;
Item (?p{...}) interpolates Perl code at runtime, and in this case refers
recursively to the pattern in which it appears.
Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
supports special syntax for recursion of the entire pattern, and for individual
subpattern recursion. After its introduction in PCRE and Python, this kind of
recursion was later introduced into Perl at release 5.10.
A special item that consists of (? followed by a number > 0 and a closing
parenthesis is a recursive subroutine call of the subpattern of the given
number, if it occurs inside that subpattern. (If not, it is a non-recursive
subroutine call, which is described in the next section.) The special item (?R)
or (?0) is a recursive call of the entire regular expression.
This PCRE pattern solves the nested parentheses problem (assume that option
extended is set so that whitespace is ignored):
\(([^()]++ | (?R))* \)
First it matches an opening parenthesis. Then it matches any number of
substrings, which can either be a sequence of non-parentheses or a recursive
match of the pattern itself (that is, a correctly parenthesized substring).
Finally there is a closing parenthesis. Notice the use of a possessive
quantifier to avoid backtracking into sequences of non-parentheses.
If this was part of a larger pattern, you would not want to recurse the entire
pattern, so instead you can use:
(\(([^()]++ | (?1))* \))
The pattern is here within parentheses so that the recursion refers to them
instead of the whole pattern.
In a larger pattern, keeping track of parenthesis numbers can be tricky. This is
made easier by the use of relative references. Instead of (?1) in the pattern
above, you can write (?-2) to refer to the second most recently opened
parentheses preceding the recursion. That is, a negative number counts capturing
parentheses leftwards from the point at which it is encountered.
It is also possible to refer to later opened parentheses, by writing references
such as (?+2). However, these cannot be recursive, as the reference is not
inside the parentheses that are referenced. They are always non-recursive
subroutine calls, as described in the next section.
An alternative approach is to use named parentheses instead. The Perl syntax for
this is (?&name). The earlier PCRE syntax (?P>name) is also supported. We can
rewrite the above example as follows:
(?<pn> \(([^()]++ | (?&pn))* \))
If there is more than one subpattern with the same name, the earliest one is
used.
This particular example pattern that we have studied contains nested unlimited
repeats, and so the use of a possessive quantifier for matching strings of
non-parentheses is important when applying the pattern to strings that do not
match. For example, when this pattern is applied to
(aaa()
it gives "no match" quickly. However, if a possessive quantifier is not used,
the match runs for a long time, as there are so many different ways the + and *
repeats can carve up the subject, and all must be tested before failure can be
reported.
At the end of a match, the values of capturing parentheses are those from the
outermost level. If the pattern above is matched against
(ab(cd)ef)
the value for the inner capturing parentheses (numbered 2) is "ef", which is the
last value taken on at the top-level. If a capturing subpattern is not matched
at the top level, its final captured value is unset, even if it was
(temporarily) set at a deeper level during the matching process.
Do not confuse item (?R) with condition (R), which tests for recursion. Consider
the following pattern, which matches text in angle brackets, allowing for
arbitrary nesting. Only digits are allowed in nested brackets (that is, when
recursing), while any characters are permitted at the outer level.
< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >
Here (?(R) is the start of a conditional subpattern, with two different
alternatives for the recursive and non-recursive cases. Item (?R) is the actual
recursive call.
Differences in Recursion Processing between PCRE and Perl
Recursion processing in PCRE differs from Perl in two important ways. In PCRE
(like Python, but unlike Perl), a recursive subpattern call is always treated as
an atomic group. That is, once it has matched some of the subject string, it is
never re-entered, even if it contains untried alternatives and there is a
subsequent matching failure. This can be illustrated by the following pattern,
which means to match a palindromic string containing an odd number of characters
(for example, "a", "aba", "abcba", "abcdcba"):
^(.|(.)(?1)\2)$
The idea is that it either matches a single character, or two identical
characters surrounding a subpalindrome. In Perl, this pattern works; in PCRE it
does not work if the pattern is longer than three characters. Consider the
subject string "abcba".
At the top level, the first character is matched, but as it is not at the end of
the string, the first alternative fails, the second alternative is taken, and
the recursion kicks in. The recursive call to subpattern 1 successfully matches
the next character ("b"). (Notice that the beginning and end of line tests are
not part of the recursion.)
Back at the top level, the next character ("c") is compared with what subpattern
2 matched, which was "a". This fails. As the recursion is treated as an atomic
group, there are now no backtracking points, and so the entire match fails.
(Perl can now re-enter the recursion and try the second alternative.) However,
if the pattern is written with the alternatives in the other order, things are
different:
^((.)(?1)\2|.)$
This time, the recursing alternative is tried first, and continues to recurse
until it runs out of characters, at which point the recursion fails. But this
time we have another alternative to try at the higher level. That is the
significant difference: in the previous case the remaining alternative is at a
deeper recursion level, which PCRE cannot use.
To change the pattern so that it matches all palindromic strings, not only those
with an odd number of characters, it is tempting to change the pattern to this:
^((.)(?1)\2|.?)$
Again, this works in Perl, but not in PCRE, and for the same reason. When a
deeper recursion has matched a single character, it cannot be entered again to
match an empty string. The solution is to separate the two cases, and write out
the odd and even cases as alternatives at the higher level:
^(?:((.)(?1)\2|)|((.)(?3)\4|.))
If you want to match typical palindromic phrases, the pattern must ignore all
non-word characters, which can be done as follows:
^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
If run with option caseless, this pattern matches phrases such as "A man, a
plan, a canal: Panama!" and it works well in both PCRE and Perl. Notice the use
of the possessive quantifier *+ to avoid backtracking into sequences of
non-word characters. Without this, PCRE takes much longer (10 times or more) to
match typical phrases, and Perl takes so long that you think it has gone into a
loop.
Note
The palindrome-matching patterns above work only if the subject string does
not start with a palindrome that is shorter than the entire string. For
example, although "abcba" is correctly matched, if the subject is "ababa",
PCRE finds palindrome "aba" at the start, and then fails at top level, as the
end of the string does not follow. Once again, it cannot jump back into the
recursion to try other alternatives, so the entire match fails.

The second way in which PCRE and Perl differ in their recursion processing is in
the handling of captured values. In Perl, when a subpattern is called
recursively or as a subpattern (see the next section), it has no access to any
values that were captured outside the recursion. In PCRE these values can be
referenced. Consider the following pattern:
^(.)(\1|a(?2))
In PCRE, it matches "bab". The first capturing parentheses match "b", then in
the second group, when the back reference \1 fails to match "b", the second
alternative matches "a", and then recurses. In the recursion, \1 does now match
"b" and so the whole match succeeds. In Perl, the pattern fails to match because
inside the recursive call \1 cannot access the externally set value.

 Subpatterns as Subroutines

If the syntax for a recursive subpattern call (either by number or by name) is
used outside the parentheses to which it refers, it operates like a subroutine
in a programming language. The called subpattern can be defined before or after
the reference. A numbered reference can be absolute or relative, as in the
following examples:
(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...
An earlier example pointed out that the following pattern matches "sense and
sensibility" and "response and responsibility", but not "sense and
responsibility":
(sens|respons)e and \1ibility
If instead the following pattern is used, it matches "sense and responsibility"
and the other two strings:
(sens|respons)e and (?1)ibility
Another example is provided in the discussion of DEFINE earlier.
All subroutine calls, recursive or not, are always treated as atomic groups.
That is, once a subroutine has matched some of the subject string, it is never
re-entered, even if it contains untried alternatives and there is a subsequent
matching failure. Any capturing parentheses that are set during the subroutine
call revert to their previous values afterwards.
Processing options such as case-independence are fixed when a subpattern is
defined, so if it is used as a subroutine, such options cannot be changed for
different calls. For example, the following pattern matches "abcabc" but not
"abcABC", as the change of processing option does not affect the called
subpattern:
(abc)(?i:(?-1))

 Oniguruma Subroutine Syntax

For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
a number enclosed either in angle brackets or single quotes, is alternative
syntax for referencing a subpattern as a subroutine, possibly recursively. Here
follows two of the examples used above, rewritten using this syntax:
(?<pn> \(((?>[^()]+) | \g<pn>)* \))
(sens|respons)e and \g'1'ibility
PCRE supports an extension to Oniguruma: if a number is preceded by a plus or
minus sign, it is taken as a relative reference, for example:
(abc)(?i:\g<-1>)
Notice that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
synonymous. The former is a back reference; the latter is a subroutine call.

 Backtracking Control

Perl 5.10 introduced some "Special Backtracking Control Verbs", which are still
described in the Perl documentation as "experimental and subject to change or
removal in a future version of Perl". It goes on to say: "Their usage in
production code should be noted to avoid problems during upgrades." The same
remarks apply to the PCRE features described in this section.
The new verbs make use of what was previously invalid syntax: an opening
parenthesis followed by an asterisk. They are generally of the form (VERB) or
(VERB:NAME). Some can take either form, possibly behaving differently depending
on whether a name is present. A name is any sequence of characters that does not
include a closing parenthesis. The maximum name length is 255 in the 8-bit
library and 65535 in the 16-bit and 32-bit libraries. If the name is empty, that
is, if the closing parenthesis immediately follows the colon, the effect is as
if the colon was not there. Any number of these verbs can occur in a pattern.
The behavior of these verbs in repeated groups, assertions, and in subpatterns
called as subroutines (whether or not recursively) is described below.
Optimizations That Affect Backtracking Verbs
PCRE contains some optimizations that are used to speed up matching by running
some checks at the start of each match attempt. For example, it can know the
minimum length of matching subject, or that a particular character must be
present. When one of these optimizations bypasses the running of a match, any
included backtracking verbs are not processed. processed. You can suppress the
start-of-match optimizations by setting option no_start_optimize when calling
compile/2 or run/3, or by starting the pattern with (*NO_START_OPT).
Experiments with Perl suggest that it too has similar optimizations, sometimes
leading to anomalous results.
Verbs That Act Immediately
The following verbs act as soon as they are encountered. They must not be
followed by a name.
(*ACCEPT)
This verb causes the match to end successfully, skipping the remainder of the
pattern. However, when it is inside a subpattern that is called as a subroutine,
only that subpattern is ended successfully. Matching then continues at the outer
level. If (*ACCEPT) is triggered in a positive assertion, the assertion
succeeds; in a negative assertion, the assertion fails.
If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For
example, the following matches "AB", "AAD", or "ACD". When it matches "AB", "B"
is captured by the outer parentheses.
A((?:A|B(*ACCEPT)|C)D)
The following verb causes a matching failure, forcing backtracking to occur. It
is equivalent to (?!) but easier to read.
(*FAIL) or (*F)
The Perl documentation states that it is probably useful only when combined with
(?{}) or (??{}). Those are Perl features that are not present in PCRE.
A match with the string "aaaa" always fails, but the callout is taken before
each backtrack occurs (in this example, 10 times).
Recording Which Path Was Taken
The main purpose of this verb is to track how a match was arrived at, although
it also has a secondary use in with advancing the match starting point (see
(*SKIP) below).
Note
In Erlang, there is no interface to retrieve a mark with run/2,3,
so only the secondary purpose is relevant to the Erlang programmer.
The rest of this section is therefore deliberately not adapted for reading by
the Erlang programmer, but the examples can help in understanding NAMES as
they can be used by (*SKIP).

(*MARK:NAME) or (*:NAME)
A name is always required with this verb. There can be as many instances of
(*MARK) as you like in a pattern, and their names do not have to be unique.
When a match succeeds, the name of the last encountered (MARK:NAME),
(PRUNE:NAME), or (THEN:NAME) on the matching path is passed back to the caller
as described in section "Extra data for pcre_exec()" in the pcreapi
documentation. In the following example of pcretest output, the /K modifier
requests the retrieval and outputting of (MARK) data:
re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
 0: XY
MK: A
XZ
 0: XZ
MK: B
The (*MARK) name is tagged with "MK:" in this output, and in this example it
indicates which of the two alternatives matched. This is a more efficient way of
obtaining this information than putting each alternative in its own capturing
parentheses.
If a verb with a name is encountered in a positive assertion that is true, the
name is recorded and passed back if it is the last encountered. This does not
occur for negative assertions or failing positive assertions.
After a partial match or a failed match, the last encountered name in the entire
match process is returned, for example:
re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B
Notice that in this unanchored example, the mark is retained from the match
attempt that started at letter "X" in the subject. Subsequent match attempts
starting at "P" and then with an empty string do not get as far as the (*MARK)
item, nevertheless do not reset it.
Verbs That Act after Backtracking
The following verbs do nothing when they are encountered. Matching continues
with what follows, but if there is no subsequent match, causing a backtrack to
the verb, a failure is forced. That is, backtracking cannot pass to the left of
the verb. However, when one of these verbs appears inside an atomic group or an
assertion that is true, its effect is confined to that group, as once the group
has been matched, there is never any backtracking into it. In this situation,
backtracking can "jump back" to the left of the entire atomic group or
assertion. (Remember also, as stated above, that this localization also applies
in subroutine calls.)
These verbs differ in exactly what kind of failure occurs when backtracking
reaches them. The behavior described below is what occurs when the verb is not
in a subroutine or an assertion. Subsequent sections cover these special cases.
The following verb, which must not be followed by a name, causes the whole match
to fail outright if there is a later matching failure that causes backtracking
to reach it. Even if the pattern is unanchored, no further attempts to find a
match by advancing the starting point take place.
(*COMMIT)
If (*COMMIT) is the only backtracking verb that is encountered, once it has
been passed, run/2,3 is committed to find a match at the current
starting point, or not at all, for example:
a+(*COMMIT)b
This matches "xxaab" but not "aacaab". It can be thought of as a kind of dynamic
anchor, or "I've started, so I must finish". The name of the most recently
passed (MARK) in the path is passed back when (COMMIT) forces a match failure.
If more than one backtracking verb exists in a pattern, a different one that
follows (COMMIT) can be triggered first, so merely passing (COMMIT) during a
match does not always guarantee that a match must be at this starting point.
Notice that (*COMMIT) at the start of a pattern is not the same as an anchor,
unless the PCRE start-of-match optimizations are turned off, as shown in the
following example:
1> re:run("xyzabc","(*COMMIT)abc",[{capture,all,list}]).
{match,["abc"]}
2> re:run("xyzabc","(*COMMIT)abc",[{capture,all,list},no_start_optimize]).
nomatch
For this pattern, PCRE knows that any match must start with "a", so the
optimization skips along the subject to "a" before applying the pattern to the
first set of data. The match attempt then succeeds. In the second call the
no_start_optimize disables the optimization that skips along to the first
character. The pattern is now applied starting at "x", and so the (*COMMIT)
causes the match to fail without trying any other starting points.
The following verb causes the match to fail at the current starting position in
the subject if there is a later matching failure that causes backtracking to
reach it:
(*PRUNE) or (*PRUNE:NAME)
If the pattern is unanchored, the normal "bumpalong" advance to the next
starting character then occurs. Backtracking can occur as usual to the left of
(PRUNE), before it is reached, or when matching to the right of (PRUNE), but
if there is no match to the right, backtracking cannot cross (PRUNE). In simple
cases, the use of (PRUNE) is just an alternative to an atomic group or
possessive quantifier, but there are some uses of (PRUNE) that cannot be
expressed in any other way. In an anchored pattern, (PRUNE) has the same effect
as (*COMMIT).
The behavior of (PRUNE:NAME) is the not the same as (MARK:NAME)(PRUNE). It is
like (MARK:NAME) in that the name is remembered for passing back to the caller.
However, (SKIP:NAME) searches only for names set with (MARK).
Note
The fact that (*PRUNE:NAME) remembers the name is useless to the Erlang
programmer, as names cannot be retrieved.

The following verb, when specified without a name, is like (PRUNE), except that
if the pattern is unanchored, the "bumpalong" advance is not to the next
character, but to the position in the subject where (SKIP) was encountered.
(*SKIP)
(*SKIP) signifies that whatever text was matched leading up to it cannot be
part of a successful match. Consider:
a+(*SKIP)b
If the subject is "aaaac...", after the first match attempt fails (starting at
the first character in the string), the starting point skips on to start the
next attempt at "c". Notice that a possessive quantifier does not have the same
effect as this example; although it would suppress backtracking during the first
match attempt, the second attempt would start at the second character instead of
skipping on to "c".
When (*SKIP) has an associated name, its behavior is modified:
(*SKIP:NAME)
When this is triggered, the previous path through the pattern is searched for
the most recent (MARK) that has the same name. If one is found, the "bumpalong"
advance is to the subject position that corresponds to that (MARK) instead of
to where (SKIP) was encountered. If no (MARK) with a matching name is found,
(*SKIP) is ignored.
Notice that (SKIP:NAME) searches only for names set by (MARK:NAME). It ignores
names that are set by (PRUNE:NAME) or (THEN:NAME).
The following verb causes a skip to the next innermost alternative when
backtracking reaches it. That is, it cancels any further backtracking within the
current alternative.
(*THEN) or (*THEN:NAME)
The verb name comes from the observation that it can be used for a pattern-based
if-then-else block:
(COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...
If the COND1 pattern matches, FOO is tried (and possibly further items after the
end of the group if FOO succeeds). On failure, the matcher skips to the second
alternative and tries COND2, without backtracking into COND1. If that succeeds
and BAR fails, COND3 is tried. If BAZ then fails, there are no more
alternatives, so there is a backtrack to whatever came before the entire group.
If (THEN) is not inside an alternation, it acts like (PRUNE).
The behavior of (THEN:NAME) is the not the same as (MARK:NAME)(THEN). It is
like (MARK:NAME) in that the name is remembered for passing back to the caller.
However, (SKIP:NAME) searches only for names set with (MARK).
Note
The fact that (*THEN:NAME) remembers the name is useless to the Erlang
programmer, as names cannot be retrieved.

A subpattern that does not contain a | character is just a part of the enclosing
alternative; it is not a nested alternation with only one alternative. The
effect of (*THEN) extends beyond such a subpattern to the enclosing
alternative. Consider the following pattern, where A, B, and so on, are complex
pattern fragments that do not contain any | characters at this level:
A (B(*THEN)C) | D
If A and B are matched, but there is a failure in C, matching does not backtrack
into A; instead it moves to the next alternative, that is, D. However, if the
subpattern containing (*THEN) is given an alternative, it behaves differently:
A (B(*THEN)C | (*FAIL)) | D
The effect of (THEN) is now confined to the inner subpattern. After a failure
in C, matching moves to (FAIL), which causes the whole subpattern to fail, as
there are no more alternatives to try. In this case, matching does now backtrack
into A.
Notice that a conditional subpattern is not considered as having two
alternatives, as only one is ever used. That is, the | character in a
conditional subpattern has a different meaning. Ignoring whitespace, consider:
^.*? (?(?=a) a | b(*THEN)c)
If the subject is "ba", this pattern does not match. As .? is ungreedy, it
initially matches zero characters. The condition (?=a) then fails, the character
"b" is matched, but "c" is not. At this point, matching does not backtrack to
.? as can perhaps be expected from the presence of the | character. The
conditional subpattern is part of the single alternative that comprises the
whole pattern, and so the match fails. (If there was a backtrack into .*?,
allowing it to match "b", the match would succeed.)
The verbs described above provide four different "strengths" of control when
subsequent matching fails:
	(*THEN) is the weakest, carrying on the match at the next alternative.
	(*PRUNE) comes next, fails the match at the current starting position, but
allows an advance to the next character (for an unanchored pattern).
	(*SKIP) is similar, except that the advance can be more than one character.
	(*COMMIT) is the strongest, causing the entire match to fail.

More than One Backtracking Verb
If more than one backtracking verb is present in a pattern, the one that is
backtracked onto first acts. For example, consider the following pattern, where
A, B, and so on, are complex pattern fragments:
(A(*COMMIT)B(*THEN)C|ABD)
If A matches but B fails, the backtrack to (COMMIT) causes the entire match to
fail. However, if A and B match, but C fails, the backtrack to (THEN) causes
the next alternative (ABD) to be tried. This behavior is consistent, but is not
always the same as in Perl. It means that if two or more backtracking verbs
appear in succession, the last of them has no effect. Consider the following
example:
...(*COMMIT)(*PRUNE)...
If there is a matching failure to the right, backtracking onto (PRUNE) causes
it to be triggered, and its action is taken. There can never be a backtrack onto
(COMMIT).
Backtracking Verbs in Repeated Groups
PCRE differs from Perl in its handling of backtracking verbs in repeated groups.
For example, consider:
/(a(*COMMIT)b)+ac/
If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in
the second repeat of the group acts.
Backtracking Verbs in Assertions
(*FAIL) in an assertion has its normal effect: it forces an immediate
backtrack.
(ACCEPT) in a positive assertion causes the assertion to succeed without any
further processing. In a negative assertion, (ACCEPT) causes the assertion to
fail without any further processing.
The other backtracking verbs are not treated specially if they appear in a
positive assertion. In particular, (*THEN) skips to the next alternative in the
innermost enclosing group that has alternations, regardless if this is within
the assertion.
Negative assertions are, however, different, to ensure that changing a positive
assertion into a negative assertion changes its result. Backtracking into
(COMMIT), (SKIP), or (PRUNE) causes a negative assertion to be true, without
considering any further alternative branches in the assertion. Backtracking into
(THEN) causes it to skip to the next enclosing alternative within the assertion
(the normal behavior), but if the assertion does not have such an alternative,
(THEN) behaves like (PRUNE).
Backtracking Verbs in Subroutines
These behaviors occur regardless if the subpattern is called recursively. The
treatment of subroutines in Perl is different in some cases.
	(*FAIL) in a subpattern called as a subroutine has its normal effect: it
forces an immediate backtrack.
	(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match
to succeed without any further processing. Matching then continues after the
subroutine call.
	(COMMIT), (SKIP), and (*PRUNE) in a subpattern called as a subroutine cause
the subroutine match to fail.
	(THEN) skips to the next alternative in the innermost enclosing group within
the subpattern that has alternatives. If there is no such group within the
subpattern, (THEN) causes the subroutine match to fail.

 Summary

 Types

 capture()

 compile_option()

 compile_options()

 mp()

 Opaque data type containing a compiled regular expression.

 nl_spec()

 option()

 options()

 replace_fun()

 Functions

 compile(Regexp)

 The same as compile(Regexp,[])

 compile(Regexp, Options)

 Compiles a regular expression, with the syntax described below, into an internal
format to be used later as a parameter to run/2 and run/3.

 inspect(MP, Item)

 Takes a compiled regular expression and an item, and returns the relevant data
from the regular expression.

 replace(Subject, RE, Replacement)

 Equivalent to replace(Subject, RE, Replacement, []).

 replace(Subject, RE, Replacement, Options)

 Replaces the matched part of the Subject string with Replacement.

 run(Subject, RE)

 Equivalent to run(Subject, RE, []).

 run(Subject, RE, Options)

 Executes a regular expression matching, and returns match/{match, Captured} or
nomatch.

 split(Subject, RE)

 Equivalent to split(Subject, RE, []).

 split(Subject, RE, Options)

 Splits the input into parts by finding tokens according to the regular
expression supplied.

 version()

 The return of this function is a string with the PCRE version of the system that
was used in the Erlang/OTP compilation.

 Types

 Link to this type

 capture()

 View Source

 (not exported)

 -type capture() ::
 all | all_but_first | all_names | first | none |
 (ValueList :: [integer() | string() | atom()]).

 Link to this type

 compile_option()

 View Source

 (not exported)

 -type compile_option() ::
 unicode | anchored | caseless | dollar_endonly | dotall | extended | firstline | multiline |
 no_auto_capture | dupnames | ungreedy |
 {newline, nl_spec()} |
 bsr_anycrlf | bsr_unicode | no_start_optimize | ucp | never_utf.

 Link to this type

 compile_options()

 View Source

 -type compile_options() :: [compile_option()].

 Link to this type

 mp()

 View Source

 -type mp() :: {re_pattern, _, _, _, _}.

Opaque data type containing a compiled regular expression.
mp/0 is guaranteed to be a tuple() having the atom re_pattern as its first element, to
allow for matching in guards. The arity of the tuple or the content of the other
fields can change in future Erlang/OTP releases.

 Link to this type

 nl_spec()

 View Source

 (not exported)

 -type nl_spec() :: cr | crlf | lf | anycrlf | any.

 Link to this type

 option()

 View Source

 (not exported)

 -type option() ::
 anchored | global | notbol | noteol | notempty | notempty_atstart | report_errors |
 {offset, non_neg_integer()} |
 {match_limit, non_neg_integer()} |
 {match_limit_recursion, non_neg_integer()} |
 {newline, NLSpec :: nl_spec()} |
 bsr_anycrlf | bsr_unicode |
 {capture, ValueSpec :: capture()} |
 {capture, ValueSpec :: capture(), Type :: index | list | binary} |
 compile_option().

 Link to this type

 options()

 View Source

 -type options() :: [option()].

 Link to this type

 replace_fun()

 View Source

 (not exported)

 -type replace_fun() :: fun((binary(), [binary()]) -> iodata() | unicode:charlist()).

 Functions

 Link to this function

 compile(Regexp)

 View Source

 -spec compile(Regexp) -> {ok, MP} | {error, ErrSpec}
 when
 Regexp :: iodata(),
 MP :: mp(),
 ErrSpec :: {ErrString :: string(), Position :: non_neg_integer()}.

The same as compile(Regexp,[])

 Link to this function

 compile(Regexp, Options)

 View Source

 -spec compile(Regexp, Options) -> {ok, MP} | {error, ErrSpec}
 when
 Regexp :: iodata() | unicode:charlist(),
 Options :: [Option],
 Option :: compile_option(),
 MP :: mp(),
 ErrSpec :: {ErrString :: string(), Position :: non_neg_integer()}.

Compiles a regular expression, with the syntax described below, into an internal
format to be used later as a parameter to run/2 and run/3.
Compiling the regular expression before matching is useful if the same
expression is to be used in matching against multiple subjects during the
lifetime of the program. Compiling once and executing many times is far more
efficient than compiling each time one wants to match.
When option unicode is specified, the regular expression is to be specified as
a valid Unicode charlist(), otherwise as any valid iodata/0.

Options:
	unicode - The regular expression is specified as a Unicode charlist()
and the resulting regular expression code is to be run against a valid Unicode
charlist() subject. Also consider option ucp when using Unicode
characters.

	anchored - The pattern is forced to be "anchored", that is, it is
constrained to match only at the first matching point in the string that is
searched (the "subject string"). This effect can also be achieved by
appropriate constructs in the pattern itself.

	caseless - Letters in the pattern match both uppercase and lowercase
letters. It is equivalent to Perl option /i and can be changed within a
pattern by a (?i) option setting. Uppercase and lowercase letters are
defined as in the ISO 8859-1 character set.

	dollar_endonly - A dollar metacharacter in the pattern matches only at
the end of the subject string. Without this option, a dollar also matches
immediately before a newline at the end of the string (but not before any
other newlines). This option is ignored if option multiline is specified.
There is no equivalent option in Perl, and it cannot be set within a pattern.

	dotall - A dot in the pattern matches all characters, including those
indicating newline. Without it, a dot does not match when the current position
is at a newline. This option is equivalent to Perl option /s and it can be
changed within a pattern by a (?s) option setting. A negative class, such as
[^a], always matches newline characters, independent of the setting of this
option.

	extended - If this option is set, most white space characters in the
pattern are totally ignored except when escaped or inside a character class.
However, white space is not allowed within sequences such as (?> that
introduce various parenthesized subpatterns, nor within a numerical quantifier
such as {1,3}. However, ignorable white space is permitted between an item
and a following quantifier and between a quantifier and a following + that
indicates possessiveness.
White space did not used to include the VT character (code 11), because Perl
did not treat this character as white space. However, Perl changed at release
5.18, so PCRE followed at release 8.34, and VT is now treated as white space.
This also causes characters between an unescaped # outside a character class
and the next newline, inclusive, to be ignored. This is equivalent to Perl's
/x option, and it can be changed within a pattern by a (?x) option
setting.
With this option, comments inside complicated patterns can be included.
However, notice that this applies only to data characters. Whitespace
characters can never appear within special character sequences in a pattern,
for example within sequence (?(that introduces a conditional subpattern.

	firstline - An unanchored pattern is required to match before or at the
first newline in the subject string, although the matched text can continue
over the newline.

	multiline - By default, PCRE treats the subject string as consisting of
a single line of characters (even if it contains newlines). The "start of
line" metacharacter (^) matches only at the start of the string, while the
"end of line" metacharacter ($) matches only at the end of the string, or
before a terminating newline (unless option dollar_endonly is specified).
This is the same as in Perl.
When this option is specified, the "start of line" and "end of line"
constructs match immediately following or immediately before internal newlines
in the subject string, respectively, as well as at the very start and end.
This is equivalent to Perl option /m and can be changed within a pattern by
a (?m) option setting. If there are no newlines in a subject string, or no
occurrences of ^ or $ in a pattern, setting multiline has no effect.

	no_auto_capture - Disables the use of numbered capturing parentheses in
the pattern. Any opening parenthesis that is not followed by ? behaves as if
it is followed by ?:. Named parentheses can still be used for capturing (and
they acquire numbers in the usual way). There is no equivalent option in Perl.

	dupnames - Names used to identify capturing subpatterns need not be
unique. This can be helpful for certain types of pattern when it is known that
only one instance of the named subpattern can ever be matched. More details of
named subpatterns are provided below.

	ungreedy - Inverts the "greediness" of the quantifiers so that they are
not greedy by default, but become greedy if followed by "?". It is not
compatible with Perl. It can also be set by a (?U) option setting within the
pattern.

	{newline, NLSpec} - Overrides the default definition of a newline in the
subject string, which is LF (ASCII 10) in Erlang.
	cr - Newline is indicated by a single character cr (ASCII 13).

	lf - Newline is indicated by a single character LF (ASCII 10), the
default.

	crlf - Newline is indicated by the two-character CRLF (ASCII 13
followed by ASCII 10) sequence.

	anycrlf - Any of the three preceding sequences is to be recognized.

	any - Any of the newline sequences above, and the Unicode sequences VT
(vertical tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS
(line separator, U+2028), and PS (paragraph separator, U+2029).

	bsr_anycrlf - Specifies specifically that \R is to match only the CR,
LF, or CRLF sequences, not the Unicode-specific newline characters.

	bsr_unicode - Specifies specifically that \R is to match all the
Unicode newline characters (including CRLF, and so on, the default).

	no_start_optimize - Disables optimization that can malfunction if
"Special start-of-pattern items" are present in the regular expression. A
typical example would be when matching "DEFABC" against "(COMMIT)ABC", where
the start optimization of PCRE would skip the subject up to "A" and never
realize that the (COMMIT) instruction is to have made the matching fail. This
option is only relevant if you use "start-of-pattern items", as discussed in
section PCRE Regular Expression Details.

	ucp - Specifies that Unicode character properties are to be used when
resolving \B, \b, \D, \d, \S, \s, \W and \w. Without this flag, only
ISO Latin-1 properties are used. Using Unicode properties hurts performance,
but is semantically correct when working with Unicode characters beyond the
ISO Latin-1 range.

	never_utf - Specifies that the (UTF) and/or (UTF8) "start-of-pattern
items" are forbidden. This flag cannot be combined with option unicode.
Useful if ISO Latin-1 patterns from an external source are to be compiled.

 Link to this function

 inspect(MP, Item)

 View Source

 (since OTP 17.0)

 -spec inspect(MP, Item) -> {namelist, [binary()]} when MP :: mp(), Item :: namelist.

Takes a compiled regular expression and an item, and returns the relevant data
from the regular expression.
The only supported item is namelist, which returns the tuple {namelist, [binary()]},
containing the names of all (unique) named subpatterns in the regular expression.
For example:
1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
2> re:inspect(MP,namelist).
{namelist,[<<"A">>,<<"B">>,<<"C">>]}
3> {ok,MPD} = re:compile("(?<C>A)|(?B)|(?<C>C)",[dupnames]).
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,8,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
4> re:inspect(MPD,namelist).
{namelist,[<<"B">>,<<"C">>]}
Notice in the second example that the duplicate name only occurs once in the
returned list, and that the list is in alphabetical order regardless of where
the names are positioned in the regular expression. The order of the names is
the same as the order of captured subexpressions if {capture, all_names} is
specified as an option to run/3. You can therefore create a name-to-value
mapping from the result of run/3 like this:
1> {ok,MP} = re:compile("(?<A>A)|(?B)|(?<C>C)").
{ok,{re_pattern,3,0,0,
 <<69,82,67,80,119,0,0,0,0,0,0,0,1,0,0,0,255,255,255,255,
 255,255,...>>}}
2> {namelist, N} = re:inspect(MP,namelist).
{namelist,[<<"A">>,<<"B">>,<<"C">>]}
3> {match,L} = re:run("AA",MP,[{capture,all_names,binary}]).
{match,[<<"A">>,<<>>,<<>>]}
4> NameMap = lists:zip(N,L).
[{<<"A">>,<<"A">>},{<<"B">>,<<>>},{<<"C">>,<<>>}]

 Link to this function

 replace(Subject, RE, Replacement)

 View Source

 -spec replace(Subject, RE, Replacement) -> iodata() | unicode:charlist()
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata(),
 Replacement :: iodata() | unicode:charlist() | replace_fun().

Equivalent to replace(Subject, RE, Replacement, []).

 Link to this function

 replace(Subject, RE, Replacement, Options)

 View Source

 -spec replace(Subject, RE, Replacement, Options) -> iodata() | unicode:charlist()
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata() | unicode:charlist(),
 Replacement :: iodata() | unicode:charlist() | replace_fun(),
 Options :: [Option],
 Option ::
 anchored | global | notbol | noteol | notempty | notempty_atstart |
 {offset, non_neg_integer()} |
 {newline, NLSpec} |
 bsr_anycrlf |
 {match_limit, non_neg_integer()} |
 {match_limit_recursion, non_neg_integer()} |
 bsr_unicode |
 {return, ReturnType} |
 CompileOpt,
 ReturnType :: iodata | list | binary,
 CompileOpt :: compile_option(),
 NLSpec :: cr | crlf | lf | anycrlf | any.

Replaces the matched part of the Subject string with Replacement.
The permissible options are the same as for run/3, except that
optioncapture is not allowed. Instead a {return, ReturnType} is present.
The default return type is iodata, constructed in a way to minimize copying.
The iodata result can be used directly in many I/O operations. If a flat
list/0 is desired, specify {return, list}. If a binary is desired, specify
{return, binary}.
As in function run/3, an mp/0 compiled with option unicode
requires Subject to be a Unicode charlist(). If compilation is done
implicitly and the unicode compilation option is specified to this function,
both the regular expression and Subject are to specified as valid Unicode
charlist()s.
If the replacement is given as a string, it can contain the special character
&, which inserts the whole matching expression in the result, and the special
sequence \N (where N is an integer > 0), \gN, or \g{N}, resulting in the
subexpression number N, is inserted in the result. If no subexpression with that
number is generated by the regular expression, nothing is inserted.
To insert an & or a \ in the result, precede it with a \. Notice that Erlang
already gives a special meaning to \ in literal strings, so a single \ must be
written as "\\" and therefore a double \ as "\\\\".
Example:
1> re:replace("abcd","c","[&]",[{return,list}]).
"ab[c]d"
while
2> re:replace("abcd","c","[\\&]",[{return,list}]).
"ab[&]d"
If the replacement is given as a fun, it will be called with the whole matching
expression as the first argument and a list of subexpression matches in the
order in which they appear in the regular expression. The returned value will be
inserted in the result.
Example:
3> re:replace("abcd", ".(.)",
 fun(Whole, [<<C>>]) ->
 <<$#, Whole/binary, $-, (C - $a + $A), $#>>
 end,
 [{return, list}]).
"#ab-B#cd"
Note
Non-matching optional subexpressions will not be included in the list of
subexpression matches if they are the last subexpressions in the regular
expression.
Example:
The regular expression "(a)(b)?(c)?" ("a", optionally followed by "b",
optionally followed by "c") will create the following subexpression lists:
	[<<"a">>, <<"b">>, <<"c">>] when applied to the string "abc"
	[<<"a">>, <<>>, <<"c">>] when applied to the string "acx"
	[<<"a">>, <<"b">>] when applied to the string "abx"
	[<<"a">>] when applied to the string "axx"

As with run/3, compilation errors raise the badarg exception.
compile/2 can be used to get more information about the error.

 Link to this function

 run(Subject, RE)

 View Source

 -spec run(Subject, RE) -> {match, Captured} | nomatch
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata(),
 Captured :: [CaptureData],
 CaptureData :: {integer(), integer()}.

Equivalent to run(Subject, RE, []).

 Link to this function

 run(Subject, RE, Options)

 View Source

 -spec run(Subject, RE, Options) -> {match, Captured} | match | nomatch | {error, ErrType}
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata() | unicode:charlist(),
 Options :: options(),
 Captured :: [CaptureData] | [[CaptureData]],
 CaptureData :: {integer(), integer()} | ListConversionData | binary(),
 ListConversionData ::
 string() | {error, string(), binary()} | {incomplete, string(), binary()},
 ErrType :: match_limit | match_limit_recursion | {compile, CompileErr},
 CompileErr :: {ErrString :: string(), Position :: non_neg_integer()}.

Executes a regular expression matching, and returns match/{match, Captured} or
nomatch.
The regular expression can be specified either as iodata/0 in
which case it is automatically compiled (as by compile/2) and
executed, or as a precompiled mp/0 in which case it is executed against the
subject directly.
When compilation is involved, exception badarg is thrown if a compilation
error occurs. Call compile/2 to get information about the
location of the error in the regular expression.
If the regular expression is previously compiled, the option list can only
contain the following options:
	anchored
	{capture, ValueSpec}/{capture, ValueSpec, Type}
	global
	{match_limit, integer() >= 0}
	{match_limit_recursion, integer() >= 0}
	{newline, NLSpec}
	notbol
	notempty
	notempty_atstart
	noteol
	{offset, integer() >= 0}
	report_errors

Otherwise all options valid for function compile/2 are also
allowed. Options allowed both for compilation and execution of a match, namely
anchored and {newline, NLSpec}, affect both the compilation and execution if
present together with a non-precompiled regular expression.
If the regular expression was previously compiled with option unicode,
Subject is to be provided as a valid Unicode charlist(), otherwise any
iodata/0 will do. If compilation is involved and option unicode is
specified, both Subject and the regular expression are to be specified as
valid Unicode charlists().
{capture, ValueSpec}/{capture, ValueSpec, Type} defines what to return from
the function upon successful matching. The capture tuple can contain both a
value specification, telling which of the captured substrings are to be
returned, and a type specification, telling how captured substrings are to be
returned (as index tuples, lists, or binaries). The options are described in
detail below.
If the capture options describe that no substring capturing is to be done
({capture, none}), the function returns the single atom match upon
successful matching, otherwise the tuple {match, ValueList}. Disabling
capturing can be done either by specifying none or an empty list as
ValueSpec.
Option report_errors adds the possibility that an error tuple is returned. The
tuple either indicates a matching error (match_limit or
match_limit_recursion), or a compilation error, where the error tuple has the
format {error, {compile, CompileErr}}. Notice that if option report_errors
is not specified, the function never returns error tuples, but reports
compilation errors as a badarg exception and failed matches because of
exceeded match limits simply as nomatch.
The following options are relevant for execution:
	anchored - Limits run/3 to matching at the first matching
position. If a pattern was compiled with anchored, or turned out to be
anchored by virtue of its contents, it cannot be made unanchored at matching
time, hence there is no unanchored option.

	global - Implements global (repetitive) search (flag g in Perl). Each
match is returned as a separate list/0 containing the specific match and
any matching subexpressions (or as specified by option capture. The
Captured part of the return value is hence a list/0 of list/0s when
this option is specified.
The interaction of option global with a regular expression that matches an
empty string surprises some users. When option global is specified,
run/3 handles empty matches in the same way as Perl: a
zero-length match at any point is also retried with options
[anchored, notempty_atstart]. If that search gives a result of length > 0,
the result is included. Example:
re:run("cat","(|at)",[global]).
The following matchings are performed:
	At offset 0 - The regular expression (|at) first match at the
initial position of string cat, giving the result set [{0,0},{0,0}] (the
second {0,0} is because of the subexpression marked by the parentheses).
As the length of the match is 0, we do not advance to the next position yet.

	At offset 0 with [anchored, notempty_atstart] - The search is
retried with options [anchored, notempty_atstart] at the same position,
which does not give any interesting result of longer length, so the search
position is advanced to the next character (a).

	At offset 1 - The search results in [{1,0},{1,0}], so this search is
also repeated with the extra options.

	At offset 1 with [anchored, notempty_atstart] - Alternative ab is
found and the result is [{1,2},{1,2}]. The result is added to the list
of results and the position in the search string is advanced two steps.

	At offset 3 - The search once again matches the empty string, giving
[{3,0},{3,0}].

	At offset 1 with [anchored, notempty_atstart] - This gives no result
of length > 0 and we are at the last position, so the global search is
complete.

The result of the call is:
{match,[[{0,0},{0,0}],[{1,0},{1,0}],[{1,2},{1,2}],[{3,0},{3,0}]]}

	notempty - An empty string is not considered to be a valid match if this
option is specified. If alternatives in the pattern exist, they are tried. If
all the alternatives match the empty string, the entire match fails.
Example:
If the following pattern is applied to a string not beginning with "a" or "b",
it would normally match the empty string at the start of the subject:
a?b?
With option notempty, this match is invalid, so run/3 searches
further into the string for occurrences of "a" or "b".

	notempty_atstart - Like notempty, except that an empty string match
that is not at the start of the subject is permitted. If the pattern is
anchored, such a match can occur only if the pattern contains \K.
Perl has no direct equivalent of notempty or notempty_atstart, but it does
make a special case of a pattern match of the empty string within its split()
function, and when using modifier /g. The Perl behavior can be emulated
after matching a null string by first trying the match again at the same
offset with notempty_atstart and anchored, and then, if that fails, by
advancing the starting offset (see below) and trying an ordinary match again.

	notbol - Specifies that the first character of the subject string is not
the beginning of a line, so the circumflex metacharacter is not to match
before it. Setting this without multiline (at compile time) causes
circumflex never to match. This option only affects the behavior of the
circumflex metacharacter. It does not affect \A.

	noteol - Specifies that the end of the subject string is not the end of
a line, so the dollar metacharacter is not to match it nor (except in
multiline mode) a newline immediately before it. Setting this without
multiline (at compile time) causes dollar never to match. This option
affects only the behavior of the dollar metacharacter. It does not affect \Z
or \z.

	report_errors - Gives better control of the error handling in
run/3. When specified, compilation errors (if the regular
expression is not already compiled) and runtime errors are explicitly returned
as an error tuple.
The following are the possible runtime errors:
	match_limit - The PCRE library sets a limit on how many times the
internal match function can be called. Defaults to 10,000,000 in the library
compiled for Erlang. If {error, match_limit} is returned, the execution of
the regular expression has reached this limit. This is normally to be
regarded as a nomatch, which is the default return value when this occurs,
but by specifying report_errors, you are informed when the match fails
because of too many internal calls.

	match_limit_recursion - This error is very similar to match_limit,
but occurs when the internal match function of PCRE is "recursively" called
more times than the match_limit_recursion limit, which defaults to
10,000,000 as well. Notice that as long as the match_limit and
match_limit_default values are kept at the default values, the
match_limit_recursion error cannot occur, as the match_limit error
occurs before that (each recursive call is also a call, but not conversely).
Both limits can however be changed, either by setting limits directly in the
regular expression string (see section
PCRE Regular Eexpression Details) or by
specifying options to run/3.

It is important to understand that what is referred to as "recursion" when
limiting matches is not recursion on the C stack of the Erlang machine or on
the Erlang process stack. The PCRE version compiled into the Erlang VM uses
machine "heap" memory to store values that must be kept over recursion in
regular expression matches.

	{match_limit, integer() >= 0} - Limits the execution time of a match in
an implementation-specific way. It is described as follows by the PCRE
documentation:
The match_limit field provides a means of preventing PCRE from using
up a vast amount of resources when running patterns that are not going
to match, but which have a very large number of possibilities in their
search trees. The classic example is a pattern that uses nested
unlimited repeats.
Internally, pcre_exec() uses a function called match(), which it calls
repeatedly (sometimes recursively). The limit set by match_limit is
imposed on the number of times this function is called during a match,
which has the effect of limiting the amount of backtracking that can
take place. For patterns that are not anchored, the count restarts
from zero for each position in the subject string.

This means that runaway regular expression matches can fail faster if the
limit is lowered using this option. The default value 10,000,000 is compiled
into the Erlang VM.
Note
This option does in no way affect the execution of the Erlang VM in terms of
"long running BIFs". run/3 always gives control back to the
scheduler of Erlang processes at intervals that ensures the real-time
properties of the Erlang system.

	{match_limit_recursion, integer() >= 0} - Limits the execution time and
memory consumption of a match in an implementation-specific way, very similar
to match_limit. It is described as follows by the PCRE documentation:
The match_limit_recursion field is similar to match_limit, but instead
of limiting the total number of times that match() is called, it
limits the depth of recursion. The recursion depth is a smaller number
than the total number of calls, because not all calls to match() are
recursive. This limit is of use only if it is set smaller than
match_limit.
Limiting the recursion depth limits the amount of machine stack that
can be used, or, when PCRE has been compiled to use memory on the heap
instead of the stack, the amount of heap memory that can be used.

The Erlang VM uses a PCRE library where heap memory is used when regular
expression match recursion occurs. This therefore limits the use of machine
heap, not C stack.
Specifying a lower value can result in matches with deep recursion failing,
when they should have matched:
1> re:run("aaaaaaaaaaaaaz","(a+)*z").
{match,[{0,14},{0,13}]}
2> re:run("aaaaaaaaaaaaaz","(a+)*z",[{match_limit_recursion,5}]).
nomatch
3> re:run("aaaaaaaaaaaaaz","(a+)*z",[{match_limit_recursion,5},report_errors]).
{error,match_limit_recursion}
This option and option match_limit are only to be used in rare cases.
Understanding of the PCRE library internals is recommended before tampering
with these limits.

	{offset, integer() >= 0} - Start matching at the offset (position)
specified in the subject string. The offset is zero-based, so that the default
is {offset,0} (all of the subject string).

	{newline, NLSpec} - Overrides the default definition of a newline in the
subject string, which is LF (ASCII 10) in Erlang.
	cr - Newline is indicated by a single character CR (ASCII 13).

	lf - Newline is indicated by a single character LF (ASCII 10), the
default.

	crlf - Newline is indicated by the two-character CRLF (ASCII 13
followed by ASCII 10) sequence.

	anycrlf - Any of the three preceding sequences is be recognized.

	any - Any of the newline sequences above, and the Unicode sequences VT
(vertical tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS
(line separator, U+2028), and PS (paragraph separator, U+2029).

	bsr_anycrlf - Specifies specifically that \R is to match only the CR
LF, or CRLF sequences, not the Unicode-specific newline characters. (Overrides
the compilation option.)

	bsr_unicode - Specifies specifically that \R is to match all the
Unicode newline characters (including CRLF, and so on, the default).
(Overrides the compilation option.)

	{capture, ValueSpec}/{capture, ValueSpec, Type} - Specifies which
captured substrings are returned and in what format. By default,
run/3 captures all of the matching part of the substring and all
capturing subpatterns (all of the pattern is automatically captured). The
default return type is (zero-based) indexes of the captured parts of the
string, specified as {Offset,Length} pairs (the index Type of
capturing).
As an example of the default behavior, the following call returns, as first
and only captured string, the matching part of the subject ("abcd" in the
middle) as an index pair {3,4}, where character positions are zero-based,
just as in offsets:
re:run("ABCabcdABC","abcd",[]).
The return value of this call is:
{match,[{3,4}]}
Another (and quite common) case is where the regular expression matches all of
the subject:
re:run("ABCabcdABC",".*abcd.*",[]).
Here the return value correspondingly points out all of the string, beginning
at index 0, and it is 10 characters long:
{match,[{0,10}]}
If the regular expression contains capturing subpatterns, like in:
re:run("ABCabcdABC",".*(abcd).*",[]).
all of the matched subject is captured, as well as the captured substrings:
{match,[{0,10},{3,4}]}
The complete matching pattern always gives the first return value in the list
and the remaining subpatterns are added in the order they occurred in the
regular expression.
The capture tuple is built up as follows:
	ValueSpec - Specifies which captured (sub)patterns are to be returned.
ValueSpec can either be an atom describing a predefined set of return
values, or a list containing the indexes or the names of specific
subpatterns to return.
The following are the predefined sets of subpatterns:
	all - All captured subpatterns including the complete matching
string. This is the default.

	all_names - All named subpatterns in the regular expression, as if
a list/0 of all the names in alphabetical order was specified. The
list of all names can also be retrieved with inspect/2.

	first - Only the first captured subpattern, which is always the
complete matching part of the subject. All explicitly captured subpatterns
are discarded.

	all_but_first - All but the first matching subpattern, that is, all
explicitly captured subpatterns, but not the complete matching part of the
subject string. This is useful if the regular expression as a whole
matches a large part of the subject, but the part you are interested in is
in an explicitly captured subpattern. If the return type is list or
binary, not returning subpatterns you are not interested in is a good
way to optimize.

	none - Returns no matching subpatterns, gives the single atom
match as the return value of the function when matching successfully
instead of the {match, list()} return. Specifying an empty list gives
the same behavior.

The value list is a list of indexes for the subpatterns to return, where
index 0 is for all of the pattern, and 1 is for the first explicit capturing
subpattern in the regular expression, and so on. When using named captured
subpatterns (see below) in the regular expression, one can use atom/0s
or string/0s to specify the subpatterns to be returned. For example,
consider the regular expression:
".*(abcd).*"
matched against string "ABCabcdABC", capturing only the "abcd" part (the
first explicit subpattern):
re:run("ABCabcdABC",".*(abcd).*",[{capture,[1]}]).
The call gives the following result, as the first explicitly captured
subpattern is "(abcd)", matching "abcd" in the subject, at (zero-based)
position 3, of length 4:
{match,[{3,4}]}
Consider the same regular expression, but with the subpattern explicitly
named 'FOO':
".*(?<FOO>abcd).*"
With this expression, we could still give the index of the subpattern with
the following call:
re:run("ABCabcdABC",".*(?<FOO>abcd).*",[{capture,[1]}]).
giving the same result as before. But, as the subpattern is named, we can
also specify its name in the value list:
re:run("ABCabcdABC",".*(?<FOO>abcd).*",[{capture,['FOO']}]).
This would give the same result as the earlier examples, namely:
{match,[{3,4}]}
The values list can specify indexes or names not present in the regular
expression, in which case the return values vary depending on the type. If
the type is index, the tuple {-1,0} is returned for values with no
corresponding subpattern in the regular expression, but for the other types
(binary and list), the values are the empty binary or list,
respectively.

	Type - Optionally specifies how captured substrings are to be
returned. If omitted, the default of index is used.
Type can be one of the following:
	index - Returns captured substrings as pairs of byte indexes into
the subject string and length of the matching string in the subject (as if
the subject string was flattened with erlang:iolist_to_binary/1 or
unicode:characters_to_binary/2 before matching). Notice that option
unicode results in byte-oriented indexes in a (possibly virtual)
UTF-8 encoded binary. A byte index tuple {0,2} can therefore represent
one or two characters when unicode is in effect. This can seem
counter-intuitive, but has been deemed the most effective and useful way
to do it. To return lists instead can result in simpler code if that is
desired. This return type is the default.

	list - Returns matching substrings as lists of characters (Erlang
string/0s). It option unicode is used in combination with the \C
sequence in the regular expression, a captured subpattern can contain
bytes that are not valid UTF-8 (\C matches bytes regardless of character
encoding). In that case the list capturing can result in the same types
of tuples that unicode:characters_to_list/2 can return, namely
three-tuples with tag incomplete or error, the successfully converted
characters and the invalid UTF-8 tail of the conversion as a binary. The
best strategy is to avoid using the \C sequence when capturing lists.

	binary - Returns matching substrings as binaries. If option
unicode is used, these binaries are in UTF-8. If the \C sequence is
used together with unicode, the binaries can be invalid UTF-8.

In general, subpatterns that were not assigned a value in the match are
returned as the tuple {-1,0} when type is index. Unassigned subpatterns
are returned as the empty binary or list, respectively, for other return
types. Consider the following regular expression:
".*((?<FOO>abdd)|a(..d)).*"
There are three explicitly capturing subpatterns, where the opening
parenthesis position determines the order in the result, hence
((?<FOO>abdd)|a(..d)) is subpattern index 1, (?<FOO>abdd) is subpattern
index 2, and (..d) is subpattern index 3. When matched against the following
string:
"ABCabcdABC"
the subpattern at index 2 does not match, as "abdd" is not present in the
string, but the complete pattern matches (because of the alternative
a(..d)). The subpattern at index 2 is therefore unassigned and the default
return value is:
{match,[{0,10},{3,4},{-1,0},{4,3}]}
Setting the capture Type to binary gives:
{match,[<<"ABCabcdABC">>,<<"abcd">>,<<>>,<<"bcd">>]}
Here the empty binary (<<>>) represents the unassigned subpattern. In the
binary case, some information about the matching is therefore lost, as
<<>> can also be an empty string captured.
If differentiation between empty matches and non-existing subpatterns is
necessary, use the type index and do the conversion to the final type in
Erlang code.
When option global is speciified, the capture specification affects each
match separately, so that:
re:run("cacb","c(a|b)",[global,{capture,[1],list}]).
gives
{match,[["a"],["b"]]}

For a descriptions of options only affecting the compilation step, see
compile/2.

 Link to this function

 split(Subject, RE)

 View Source

 -spec split(Subject, RE) -> SplitList
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata(),
 SplitList :: [iodata() | unicode:charlist()].

Equivalent to split(Subject, RE, []).

 Link to this function

 split(Subject, RE, Options)

 View Source

 -spec split(Subject, RE, Options) -> SplitList
 when
 Subject :: iodata() | unicode:charlist(),
 RE :: mp() | iodata() | unicode:charlist(),
 Options :: [Option],
 Option ::
 anchored | notbol | noteol | notempty | notempty_atstart |
 {offset, non_neg_integer()} |
 {newline, nl_spec()} |
 {match_limit, non_neg_integer()} |
 {match_limit_recursion, non_neg_integer()} |
 bsr_anycrlf | bsr_unicode |
 {return, ReturnType} |
 {parts, NumParts} |
 group | trim | CompileOpt,
 NumParts :: non_neg_integer() | infinity,
 ReturnType :: iodata | list | binary,
 CompileOpt :: compile_option(),
 SplitList :: [RetData] | [GroupedRetData],
 GroupedRetData :: [RetData],
 RetData :: iodata() | unicode:charlist() | binary() | list().

Splits the input into parts by finding tokens according to the regular
expression supplied.
The splitting is basically done by running a global regular
expression match and dividing the initial string wherever a match occurs. The
matching part of the string is removed from the output.
As in run/3, an mp/0 compiled with option unicode requires Subject to
be a Unicode charlist(). If compilation is done implicitly and the unicode
compilation option is specified to this function, both the regular expression
and Subject are to be specified as valid Unicode charlist()s.
The result is given as a list of "strings", the preferred data type specified in
option return (default iodata).
If subexpressions are specified in the regular expression, the matching
subexpressions are returned in the resulting list as well. For example:
re:split("Erlang","[ln]",[{return,list}]).
gives
["Er","a","g"]
while
re:split("Erlang","([ln])",[{return,list}]).
gives
["Er","l","a","n","g"]
The text matching the subexpression (marked by the parentheses in the regular
expression) is inserted in the result list where it was found. This means that
concatenating the result of a split where the whole regular expression is a
single subexpression (as in the last example) always results in the original
string.
As there is no matching subexpression for the last part in the example (the
"g"), nothing is inserted after that. To make the group of strings and the parts
matching the subexpressions more obvious, one can use option group, which
groups together the part of the subject string with the parts matching the
subexpressions when the string was split:
re:split("Erlang","([ln])",[{return,list},group]).
gives
[["Er","l"],["a","n"],["g"]]
Here the regular expression first matched the "l", causing "Er" to be the first
part in the result. When the regular expression matched, the (only)
subexpression was bound to the "l", so the "l" is inserted in the group together
with "Er". The next match is of the "n", making "a" the next part to be
returned. As the subexpression is bound to substring "n" in this case, the "n"
is inserted into this group. The last group consists of the remaining string, as
no more matches are found.
By default, all parts of the string, including the empty strings, are returned
from the function, for example:
re:split("Erlang","[lg]",[{return,list}]).
gives
["Er","an",[]]
as the matching of the "g" in the end of the string leaves an empty rest, which
is also returned. This behavior differs from the default behavior of the split
function in Perl, where empty strings at the end are by default removed. To get
the "trimming" default behavior of Perl, specify trim as an option:
re:split("Erlang","[lg]",[{return,list},trim]).
gives
["Er","an"]
The "trim" option says; "give me as many parts as possible except the empty
ones", which sometimes can be useful. You can also specify how many parts you
want, by specifying {parts,N}:
re:split("Erlang","[lg]",[{return,list},{parts,2}]).
gives
["Er","ang"]
Notice that the last part is "ang", not "an", as splitting was specified into
two parts, and the splitting stops when enough parts are given, which is why the
result differs from that of trim.
More than three parts are not possible with this indata, so
re:split("Erlang","[lg]",[{return,list},{parts,4}]).
gives the same result as the default, which is to be viewed as "an infinite
number of parts".
Specifying 0 as the number of parts gives the same effect as option trim. If
subexpressions are captured, empty subexpressions matched at the end are also
stripped from the result if trim or {parts,0} is specified.
The trim behavior corresponds exactly to the Perl default. {parts,N}, where
N is a positive integer, corresponds exactly to the Perl behavior with a
positive numerical third parameter. The default behavior of
split/3 corresponds to the Perl behavior when a negative integer
is specified as the third parameter for the Perl routine.
Summary of options not previously described for function run/3:
	{return,ReturnType} - Specifies how the parts of the original string are
presented in the result list. Valid types:
	iodata - The variant of iodata/0 that gives the least copying of
data with the current implementation (often a binary, but do not depend on
it).

	binary - All parts returned as binaries.

	list - All parts returned as lists of characters ("strings").

	group - Groups together the part of the string with the parts of the
string matching the subexpressions of the regular expression.
The return value from the function is in this case a list/0 of
list/0s. Each sublist begins with the string picked out of the subject
string, followed by the parts matching each of the subexpressions in order of
occurrence in the regular expression.

	{parts,N} - Specifies the number of parts the subject string is to be
split into.
The number of parts is to be a positive integer for a specific maximum number
of parts, and infinity for the maximum number of parts possible (the
default). Specifying {parts,0} gives as many parts as possible disregarding
empty parts at the end, the same as specifying trim.

	trim - Specifies that empty parts at the end of the result list are to
be disregarded. The same as specifying {parts,0}. This corresponds to the
default behavior of the split built-in function in Perl.

 Link to this function

 version()

 View Source

 (since OTP 20.0)

 -spec version() -> binary().

The return of this function is a string with the PCRE version of the system that
was used in the Erlang/OTP compilation.

 string - stdlib v5.2.1

string

String processing functions.
This module provides functions for string processing.
A string in this module is represented by unicode:chardata/0, that is, a
list of codepoints, binaries with UTF-8-encoded codepoints (UTF-8 binaries),
or a mix of the two.
"abcd" is a valid string
<<"abcd">> is a valid string
["abcd"] is a valid string
<<"abc..åäö"/utf8>> is a valid string
<<"abc..åäö">> is NOT a valid string,
 but a binary with Latin-1-encoded codepoints
[<<"abc">>, "..åäö"] is a valid string
[atom] is NOT a valid string
This module operates on grapheme clusters. A grapheme cluster is a
user-perceived character, which can be represented by several codepoints.
"å" [229] or [97, 778]
"e̊" [101, 778]
The string length of "ß↑e̊" is 3, even though it is represented by the codepoints
[223,8593,101,778] or the UTF-8 binary <<195,159,226,134,145,101,204,138>>.
Grapheme clusters for codepoints of class prepend and non-modern (or
decomposed) Hangul is not handled for performance reasons in find/3,
replace/3, split/2, split/3 and trim/3.
Splitting and appending strings is to be done on grapheme clusters borders.
There is no verification that the results of appending strings are valid or
normalized.
Most of the functions expect all input to be normalized to one form, see for
example unicode:characters_to_nfc_list/1.
Language or locale specific handling of input is not considered in any function.
The functions can crash for non-valid input strings. For example, the functions
expect UTF-8 binaries but not all functions verify that all binaries are encoded
correctly.
Unless otherwise specified the return value type is the same as the input type.
That is, binary input returns binary output, list input returns a list output,
and mixed input can return a mixed output.
1> string:trim(" sarah ").
"sarah"
2> string:trim(<<" sarah ">>).
<<"sarah">>
3> string:lexemes("foo bar", " ").
["foo","bar"]
4> string:lexemes(<<"foo bar">>, " ").
[<<"foo">>,<<"bar">>]
This module has been reworked in Erlang/OTP 20 to handle unicode:chardata/0
and operate on grapheme clusters. The
old functions that only work on Latin-1
lists as input are still available but should not be used, they will be
deprecated in a future release.

 Notes

Some of the general string functions can seem to overlap each other. The reason
is that this string package is the combination of two earlier packages and all
functions of both packages have been retained.

 Summary

 Types

 direction()

 grapheme_cluster()

 A user-perceived character, consisting of one or more codepoints.

 Functions

 casefold(String)

 Converts String to a case-agnostic comparable string. Function
casefold/1 is preferred over lowercase/1
when two strings are to be compared for equality. See also equal/4.

 chomp(String)

 Returns a string where any trailing \n or \r\n have been removed from
String.

 equal(A, B)

 Equivalent to equal(A, B, true).

 equal(A, B, IgnoreCase)

 Equivalent to equal(A, B, IgnoreCase, none).

 equal(A, B, IgnoreCase, Norm)

 Returns true if A and B are equal, otherwise false.

 find(String, SearchPattern)

 Equivalent to find(String, SearchPattern, leading).

 find(String, SearchPattern, Dir)

 Removes anything before SearchPattern in String and returns the remainder of
the string or nomatch if SearchPattern is not found. Dir, which can be
leading or trailing, indicates from which direction characters are to be
searched.

 is_empty(String)

 Returns true if String is the empty string, otherwise false.

 jaro_similarity(String1, String2)

 Returns a float between +0.0 and 1.0 representing the
Jaro similarity
between the given strings. Strings with many letters in common relative to their
lengths will score closer to 1.0.

 length(String)

 Returns the number of grapheme clusters in String.

 lexemes(String, SeparatorList)

 Returns a list of lexemes in String, separated by the grapheme clusters in
SeparatorList.

 lowercase(String)

 Converts String to lowercase.

 next_codepoint(String)

 Returns the first codepoint in String and the rest of String in the tail.
Returns an empty list if String is empty or an {error, String} tuple if the
next byte is invalid.

 next_grapheme(String)

 Returns the first grapheme cluster in String and the rest of String in the
tail. Returns an empty list if String is empty or an {error, String} tuple
if the next byte is invalid.

 nth_lexeme(String, N, SeparatorList)

 Returns lexeme number N in String, where lexemes are separated by the
grapheme clusters in SeparatorList.

 pad(String, Length)

 Equivalent to pad(String, Length, trailing).

 pad(String, Length, Dir)

 Equivalent to pad(String, Length, Dir, $).

 pad(String, Length, Dir, Char)

 Pads String to Length with grapheme cluster Char. Dir, which can be
leading, trailing, or both, indicates where the padding should be added.

 prefix(String, Prefix)

 If Prefix is the prefix of String, removes it and returns the remainder of
String, otherwise returns nomatch.

 replace(String, SearchPattern, Replacement)

 Equivalent to replace(String, SearchPattern, Replacement, leading).

 replace(String, SearchPattern, Replacement, Where)

 Replaces SearchPattern in String with Replacement. Where, indicates whether
the leading, the trailing or all encounters of SearchPattern are to be replaced.

 reverse(String)

 Returns the reverse list of the grapheme clusters in String.

 slice(String, Start)

 Equivalent to slice(String, Length, infinity).

 slice(String, Start, Length)

 Returns a substring of String of at most Length grapheme clusters, starting
at position Start.

 split(String, SearchPattern)

 Equivalent to split(String, SearchPattern, leading).

 split(String, SearchPattern, Where)

 Splits String where SearchPattern is encountered and return the remaining
parts. Where, default leading, indicates whether the leading, the
trailing or all encounters of SearchPattern will split String.

 take(String, Characters)

 Equivalent to take(String, Characters, false).

 take(String, Characters, Complement)

 Equivalent to take(String, Characters, Complement, leading).

 take(String, Characters, Complement, Dir)

 Takes characters from String as long as the characters are members of set
Characters or the complement of set Characters. Dir, which can be
leading or trailing, indicates from which direction characters are to be
taken.

 titlecase(String)

 Converts String to titlecase.

 to_float(String)

 Argument String is expected to start with a valid text represented float (the
digits are ASCII values). Remaining characters in the string after the float are
returned in Rest.

 to_graphemes(String)

 Converts String to a list of grapheme clusters.

 to_integer(String)

 Argument String is expected to start with a valid text represented integer
(the digits are ASCII values). Remaining characters in the string after the
integer are returned in Rest.

 trim(String)

 Equivalent to trim(String, both).

 trim(String, Dir)

 Equivalent to trim(String, Dir, Whitespace}) where
Whitespace is the set of nonbreakable whitespace codepoints, defined
as Pattern_White_Space in
Unicode Standard Annex #31.

 trim(String, Dir, Characters)

 Returns a string, where leading or trailing, or both, Characters have been
removed.

 uppercase(String)

 Converts String to uppercase.

 Obsolete API functions

 centre(String, Number)

 Equivalent to centre(String, Number, $).

 centre(String, Number, Character)

 Returns a string, where String is centered in the string and surrounded by
blanks or Character. The resulting string has length Number.

 chars(Character, Number)

 Equivalent to chars(Character, Number, []).

 chars(Character, Number, Tail)

 Returns a string consisting of Number characters Character. Optionally, the
string can end with string Tail.

 chr(String, Character)

 Returns the index of the first occurrence of Character in String. Returns
0 if Character does not occur.

 concat(String1, String2)

 Concatenates String1 and String2 to form a new string String3, which is
returned.

 copies(String, Number)

 Returns a string containing String repeated Number times.

 cspan(String, Chars)

 Returns the length of the maximum initial segment of String, which consists
entirely of characters not from Chars.

 join(StringList, Separator)

 Returns a string with the elements of StringList separated by the string in
Separator.

 left(String, Number)

 Equivalent to left(String, Number, $).

 left(String, Number, Character)

 Returns String with the length adjusted in accordance with Number. The left
margin is fixed. If length(String) < Number, then String is
padded with blanks or Characters.

 len(String)

 Returns the number of characters in String.

 rchr(String, Character)

 Returns the index of the last occurrence of Character in String. Returns 0
if Character does not occur.

 right(String, Number)

 Equivalent to right(String, Number, $).

 right(String, Number, Character)

 Returns String with the length adjusted in accordance with Number. The right
margin is fixed. If the length of (String) < Number, then String is padded
with blanks or Characters.

 rstr(String, SubString)

 Returns the position where the last occurrence of SubString begins in
String. Returns 0 if SubString does not exist in String.

 span(String, Chars)

 Returns the length of the maximum initial segment of String, which consists
entirely of characters from Chars.

 str(String, SubString)

 Returns the position where the first occurrence of SubString begins in
String. Returns 0 if SubString does not exist in String.

 strip(String)

 Equivalent to strip(String, both).

 strip(String, Direction)

 Equivalent to strip(String, Direction, $).

 strip(String, Direction, Character)

 Returns a string, where leading or trailing, or both, blanks or a number of
Character have been removed.

 sub_string(String, Start)

 Equivalent to sub_string(String, Start, string:length(String)).

 sub_string(String, Start, Stop)

 Returns a substring of String, starting at position Start to the end of the
string, or to and including position Stop.

 sub_word(String, Number)

 Equivalent to sub_word(String, Number, $).

 sub_word(String, Number, Character)

 Returns the word in position Number of String. Words are separated by blanks
or Characters.

 substr(String, Start)

 Equivalent to substr(String, Start, string:length(String) - Start).

 substr(String, Start, Length)

 Returns a substring of String, starting at position Start, and ending at the
end of the string or at length Length.

 to_lower/1

 The specified string or character is case-converted. Notice that the supported
character set is ISO/IEC 8859-1 (also called Latin 1); all values outside this
set are unchanged.

 to_upper/1

 The specified string or character is case-converted. Notice that the supported
character set is ISO/IEC 8859-1 (also called Latin 1); all values outside this
set are unchanged.

 tokens(String, SeparatorList)

 Returns a list of tokens in String, separated by the characters in
SeparatorList.

 words(String)

 Equivalent to words(String, $).

 words(String, Character)

 Returns the number of words in String, separated by blanks or Character.

 Types

 Link to this type

 direction()

 View Source

 (not exported)

 -type direction() :: leading | trailing.

 Link to this type

 grapheme_cluster()

 View Source

 -type grapheme_cluster() :: char() | [char()].

A user-perceived character, consisting of one or more codepoints.

 Functions

 Link to this function

 casefold(String)

 View Source

 (since OTP 20.0)

 -spec casefold(String :: unicode:chardata()) -> unicode:chardata().

Converts String to a case-agnostic comparable string. Function
casefold/1 is preferred over lowercase/1
when two strings are to be compared for equality. See also equal/4.
Example:
1> string:casefold("Ω and ẞ SHARP S").
"ω and ss sharp s"

 Link to this function

 chomp(String)

 View Source

 (since OTP 20.0)

 -spec chomp(String :: unicode:chardata()) -> unicode:chardata().

Returns a string where any trailing \n or \r\n have been removed from
String.
Example:
182> string:chomp(<<"\nHello\n\n">>).
<<"\nHello">>
183> string:chomp("\nHello\r\r\n").
"\nHello\r"

 Link to this function

 equal(A, B)

 View Source

 (since OTP 20.0)

 -spec equal(A, B) -> boolean() when A :: unicode:chardata(), B :: unicode:chardata().

Equivalent to equal(A, B, true).

 Link to this function

 equal(A, B, IgnoreCase)

 View Source

 (since OTP 20.0)

 -spec equal(A, B, IgnoreCase) -> boolean()
 when A :: unicode:chardata(), B :: unicode:chardata(), IgnoreCase :: boolean().

Equivalent to equal(A, B, IgnoreCase, none).

 Link to this function

 equal(A, B, IgnoreCase, Norm)

 View Source

 (since OTP 20.0)

 -spec equal(A, B, IgnoreCase, Norm) -> boolean()
 when
 A :: unicode:chardata(),
 B :: unicode:chardata(),
 IgnoreCase :: boolean(),
 Norm :: none | nfc | nfd | nfkc | nfkd.

Returns true if A and B are equal, otherwise false.
If IgnoreCase is true the function does casefolding on the
fly before the equality test.
If Norm is not none the function applies normalization on the fly before the
equality test. There are four available normalization forms:
nfc,
nfd,
nfkc, and
nfkd.
Example:
1> string:equal("åäö", <<"åäö"/utf8>>).
true
2> string:equal("åäö", unicode:characters_to_nfd_binary("åäö")).
false
3> string:equal("åäö", unicode:characters_to_nfd_binary("ÅÄÖ"), true, nfc).
true

 Link to this function

 find(String, SearchPattern)

 View Source

 (since OTP 20.0)

 -spec find(String, SearchPattern) -> unicode:chardata() | nomatch
 when String :: unicode:chardata(), SearchPattern :: unicode:chardata().

Equivalent to find(String, SearchPattern, leading).

 Link to this function

 find(String, SearchPattern, Dir)

 View Source

 (since OTP 20.0)

 -spec find(String, SearchPattern, Dir) -> unicode:chardata() | nomatch
 when String :: unicode:chardata(), SearchPattern :: unicode:chardata(), Dir :: direction().

Removes anything before SearchPattern in String and returns the remainder of
the string or nomatch if SearchPattern is not found. Dir, which can be
leading or trailing, indicates from which direction characters are to be
searched.
Example:
1> string:find("ab..cd..ef", ".").
"..cd..ef"
2> string:find(<<"ab..cd..ef">>, "..", trailing).
<<"..ef">>
3> string:find(<<"ab..cd..ef">>, "x", leading).
nomatch
4> string:find("ab..cd..ef", "x", trailing).
nomatch

 Link to this function

 is_empty(String)

 View Source

 (since OTP 20.0)

 -spec is_empty(String :: unicode:chardata()) -> boolean().

Returns true if String is the empty string, otherwise false.
Example:
1> string:is_empty("foo").
false
2> string:is_empty(["",<<>>]).
true

 Link to this function

 jaro_similarity(String1, String2)

 View Source

 (since OTP 27.0)

 -spec jaro_similarity(String1, String2) -> Similarity
 when
 String1 :: unicode:chardata(),
 String2 :: unicode:chardata(),
 Similarity :: float().

Returns a float between +0.0 and 1.0 representing the
Jaro similarity
between the given strings. Strings with many letters in common relative to their
lengths will score closer to 1.0.
The Jaro distance between two strings can be calculated with
JaroDistance = 1.0-JaroSimilarity.
Example:
1> string:jaro_similarity("ditto", "ditto").
1.0
2> string:jaro_similarity("foo", "bar").
+0.0
3> string:jaro_similarity("michelle", "michael").
0.8690476190476191
4> string:jaro_similarity(<<"Édouard"/utf8>>, <<"Claude">>).
0.5317460317460317

 Link to this function

 length(String)

 View Source

 (since OTP 20.0)

 -spec length(String :: unicode:chardata()) -> non_neg_integer().

Returns the number of grapheme clusters in String.
Example:
1> string:length("ß↑e̊").
3
2> string:length(<<195,159,226,134,145,101,204,138>>).
3

 Link to this function

 lexemes(String, SeparatorList)

 View Source

 (since OTP 20.0)

 -spec lexemes(String :: unicode:chardata(), SeparatorList :: [grapheme_cluster()]) ->
 [unicode:chardata()].

Returns a list of lexemes in String, separated by the grapheme clusters in
SeparatorList.
Notice that, as shown in this example, two or more adjacent separator graphemes
clusters in String are treated as one. That is, there are no empty strings in
the resulting list of lexemes. See also split/3 which returns empty strings.
Notice that [$\r,$\n] is one grapheme cluster.
Example:
1> string:lexemes("abc de̊fxxghix jkl\r\nfoo", "x e" ++ [[$\r,$\n]]).
["abc","de̊f","ghi","jkl","foo"]
2> string:lexemes(<<"abc de̊fxxghix jkl\r\nfoo"/utf8>>, "x e" ++ [$\r,$\n]).
[<<"abc">>,<<"de̊f"/utf8>>,<<"ghi">>,<<"jkl\r\nfoo">>]

 Link to this function

 lowercase(String)

 View Source

 (since OTP 20.0)

 -spec lowercase(String :: unicode:chardata()) -> unicode:chardata().

Converts String to lowercase.
Notice that function casefold/1 should be used when converting a string to be
tested for equality.
Example:
2> string:lowercase(string:uppercase("Michał")).
"michał"

 Link to this function

 next_codepoint(String)

 View Source

 (since OTP 20.0)

 -spec next_codepoint(String :: unicode:chardata()) ->
 maybe_improper_list(char(), unicode:chardata()) | {error, unicode:chardata()}.

Returns the first codepoint in String and the rest of String in the tail.
Returns an empty list if String is empty or an {error, String} tuple if the
next byte is invalid.
Example:
1> string:next_codepoint(unicode:characters_to_binary("e̊fg")).
[101|<<"̊fg"/utf8>>]

 Link to this function

 next_grapheme(String)

 View Source

 (since OTP 20.0)

 -spec next_grapheme(String :: unicode:chardata()) ->
 maybe_improper_list(grapheme_cluster(), unicode:chardata()) |
 {error, unicode:chardata()}.

Returns the first grapheme cluster in String and the rest of String in the
tail. Returns an empty list if String is empty or an {error, String} tuple
if the next byte is invalid.
Example:
1> string:next_grapheme(unicode:characters_to_binary("e̊fg")).
["e̊"|<<"fg">>]

 Link to this function

 nth_lexeme(String, N, SeparatorList)

 View Source

 (since OTP 20.0)

 -spec nth_lexeme(String, N, SeparatorList) -> unicode:chardata()
 when
 String :: unicode:chardata(),
 N :: non_neg_integer(),
 SeparatorList :: [grapheme_cluster()].

Returns lexeme number N in String, where lexemes are separated by the
grapheme clusters in SeparatorList.
Example:
1> string:nth_lexeme("abc.de̊f.ghiejkl", 3, ".e").
"ghi"

 Link to this function

 pad(String, Length)

 View Source

 (since OTP 20.0)

 -spec pad(String, Length) -> unicode:charlist() when String :: unicode:chardata(), Length :: integer().

Equivalent to pad(String, Length, trailing).

 Link to this function

 pad(String, Length, Dir)

 View Source

 (since OTP 20.0)

 -spec pad(String, Length, Dir) -> unicode:charlist()
 when String :: unicode:chardata(), Length :: integer(), Dir :: direction() | both.

Equivalent to pad(String, Length, Dir, $).

 Link to this function

 pad(String, Length, Dir, Char)

 View Source

 (since OTP 20.0)

 -spec pad(String, Length, Dir, Char) -> unicode:charlist()
 when
 String :: unicode:chardata(),
 Length :: integer(),
 Dir :: direction() | both,
 Char :: grapheme_cluster().

Pads String to Length with grapheme cluster Char. Dir, which can be
leading, trailing, or both, indicates where the padding should be added.
Example:
1> string:pad(<<"He̊llö"/utf8>>, 8).
[<<72,101,204,138,108,108,195,182>>,32,32,32]
2> io:format("'~ts'~n",[string:pad("He̊llö", 8, leading)]).
' He̊llö'
3> io:format("'~ts'~n",[string:pad("He̊llö", 8, both)]).
' He̊llö '

 Link to this function

 prefix(String, Prefix)

 View Source

 (since OTP 20.0)

 -spec prefix(String :: unicode:chardata(), Prefix :: unicode:chardata()) -> nomatch | unicode:chardata().

If Prefix is the prefix of String, removes it and returns the remainder of
String, otherwise returns nomatch.
Example:
1> string:prefix(<<"prefix of string">>, "pre").
<<"fix of string">>
2> string:prefix("pre", "prefix").
nomatch

 Link to this function

 replace(String, SearchPattern, Replacement)

 View Source

 (since OTP 20.0)

 -spec replace(String, SearchPattern, Replacement) -> [unicode:chardata()]
 when
 String :: unicode:chardata(),
 SearchPattern :: unicode:chardata(),
 Replacement :: unicode:chardata().

Equivalent to replace(String, SearchPattern, Replacement, leading).

 Link to this function

 replace(String, SearchPattern, Replacement, Where)

 View Source

 (since OTP 20.0)

 -spec replace(String, SearchPattern, Replacement, Where) -> [unicode:chardata()]
 when
 String :: unicode:chardata(),
 SearchPattern :: unicode:chardata(),
 Replacement :: unicode:chardata(),
 Where :: direction() | all.

Replaces SearchPattern in String with Replacement. Where, indicates whether
the leading, the trailing or all encounters of SearchPattern are to be replaced.
Can be implemented as:
lists:join(Replacement, split(String, SearchPattern, Where)).
Example:
1> string:replace(<<"ab..cd..ef">>, "..", "*").
[<<"ab">>,"*",<<"cd..ef">>]
2> string:replace(<<"ab..cd..ef">>, "..", "*", all).
[<<"ab">>,"*",<<"cd">>,"*",<<"ef">>]

 Link to this function

 reverse(String)

 View Source

 (since OTP 20.0)

 -spec reverse(String :: unicode:chardata()) -> [grapheme_cluster()].

Returns the reverse list of the grapheme clusters in String.
Example:
1> Reverse = string:reverse(unicode:characters_to_nfd_binary("ÅÄÖ")).
[[79,776],[65,776],[65,778]]
2> io:format("~ts~n",[Reverse]).
ÖÄÅ

 Link to this function

 slice(String, Start)

 View Source

 (since OTP 20.0)

 -spec slice(String, Start) -> Slice
 when
 String :: unicode:chardata(), Start :: non_neg_integer(), Slice :: unicode:chardata().

Equivalent to slice(String, Length, infinity).

 Link to this function

 slice(String, Start, Length)

 View Source

 (since OTP 20.0)

 -spec slice(String, Start, Length) -> Slice
 when
 String :: unicode:chardata(),
 Start :: non_neg_integer(),
 Length :: infinity | non_neg_integer(),
 Slice :: unicode:chardata().

Returns a substring of String of at most Length grapheme clusters, starting
at position Start.
Example:
1> string:slice(<<"He̊llö Wörld"/utf8>>, 4).
<<"ö Wörld"/utf8>>
2> string:slice(["He̊llö ", <<"Wörld"/utf8>>], 4,4).
"ö Wö"
3> string:slice(["He̊llö ", <<"Wörld"/utf8>>], 4,50).
"ö Wörld"

 Link to this function

 split(String, SearchPattern)

 View Source

 (since OTP 20.0)

 -spec split(String, SearchPattern) -> [unicode:chardata()]
 when String :: unicode:chardata(), SearchPattern :: unicode:chardata().

Equivalent to split(String, SearchPattern, leading).

 Link to this function

 split(String, SearchPattern, Where)

 View Source

 (since OTP 20.0)

 -spec split(String, SearchPattern, Where) -> [unicode:chardata()]
 when
 String :: unicode:chardata(),
 SearchPattern :: unicode:chardata(),
 Where :: direction() | all.

Splits String where SearchPattern is encountered and return the remaining
parts. Where, default leading, indicates whether the leading, the
trailing or all encounters of SearchPattern will split String.
Example:
0> string:split("ab..bc..cd", "..").
["ab","bc..cd"]
1> string:split(<<"ab..bc..cd">>, "..", trailing).
[<<"ab..bc">>,<<"cd">>]
2> string:split(<<"ab..bc....cd">>, "..", all).
[<<"ab">>,<<"bc">>,<<>>,<<"cd">>]

 Link to this function

 take(String, Characters)

 View Source

 (since OTP 20.0)

 -spec take(String, Characters) -> {Leading, Trailing}
 when
 String :: unicode:chardata(),
 Characters :: [grapheme_cluster()],
 Leading :: unicode:chardata(),
 Trailing :: unicode:chardata().

Equivalent to take(String, Characters, false).

 Link to this function

 take(String, Characters, Complement)

 View Source

 (since OTP 20.0)

 -spec take(String, Characters, Complement) -> {Leading, Trailing}
 when
 String :: unicode:chardata(),
 Characters :: [grapheme_cluster()],
 Complement :: boolean(),
 Leading :: unicode:chardata(),
 Trailing :: unicode:chardata().

Equivalent to take(String, Characters, Complement, leading).

 Link to this function

 take(String, Characters, Complement, Dir)

 View Source

 (since OTP 20.0)

 -spec take(String, Characters, Complement, Dir) -> {Leading, Trailing}
 when
 String :: unicode:chardata(),
 Characters :: [grapheme_cluster()],
 Complement :: boolean(),
 Dir :: direction(),
 Leading :: unicode:chardata(),
 Trailing :: unicode:chardata().

Takes characters from String as long as the characters are members of set
Characters or the complement of set Characters. Dir, which can be
leading or trailing, indicates from which direction characters are to be
taken.
Example:
5> string:take("abc0z123", lists:seq($a,$z)).
{"abc","0z123"}
6> string:take(<<"abc0z123">>, lists:seq($0,$9), true, leading).
{<<"abc">>,<<"0z123">>}
7> string:take("abc0z123", lists:seq($0,$9), false, trailing).
{"abc0z","123"}
8> string:take(<<"abc0z123">>, lists:seq($a,$z), true, trailing).
{<<"abc0z">>,<<"123">>}

 Link to this function

 titlecase(String)

 View Source

 (since OTP 20.0)

 -spec titlecase(String :: unicode:chardata()) -> unicode:chardata().

Converts String to titlecase.
Example:
1> string:titlecase("ß is a SHARP s").
"Ss is a SHARP s"

 Link to this function

 to_float(String)

 View Source

 -spec to_float(String) -> {Float, Rest} | {error, Reason}
 when
 String :: unicode:chardata(),
 Float :: float(),
 Rest :: unicode:chardata(),
 Reason :: no_float | badarg.

Argument String is expected to start with a valid text represented float (the
digits are ASCII values). Remaining characters in the string after the float are
returned in Rest.
Example:
1> {F1,Fs} = string:to_float("1.0-1.0e-1"),
1> {F2,[]} = string:to_float(Fs),
1> F1+F2.
0.9
2> string:to_float("3/2=1.5").
{error,no_float}
3> string:to_float("-1.5eX").
{-1.5,"eX"}

 Link to this function

 to_graphemes(String)

 View Source

 (since OTP 20.0)

 -spec to_graphemes(String :: unicode:chardata()) -> [grapheme_cluster()].

Converts String to a list of grapheme clusters.
Example:
1> string:to_graphemes("ß↑e̊").
[223,8593,[101,778]]
2> string:to_graphemes(<<"ß↑e̊"/utf8>>).
[223,8593,[101,778]]

 Link to this function

 to_integer(String)

 View Source

 -spec to_integer(String) -> {Int, Rest} | {error, Reason}
 when
 String :: unicode:chardata(),
 Int :: integer(),
 Rest :: unicode:chardata(),
 Reason :: no_integer | badarg.

Argument String is expected to start with a valid text represented integer
(the digits are ASCII values). Remaining characters in the string after the
integer are returned in Rest.
Example:
1> {I1,Is} = string:to_integer("33+22"),
1> {I2,[]} = string:to_integer(Is),
1> I1-I2.
11
2> string:to_integer("0.5").
{0,".5"}
3> string:to_integer("x=2").
{error,no_integer}

 Link to this function

 trim(String)

 View Source

 (since OTP 20.0)

 -spec trim(String) -> unicode:chardata() when String :: unicode:chardata().

Equivalent to trim(String, both).

 Link to this function

 trim(String, Dir)

 View Source

 (since OTP 20.0)

 -spec trim(String, Dir) -> unicode:chardata()
 when String :: unicode:chardata(), Dir :: direction() | both.

Equivalent to trim(String, Dir, Whitespace}) where
Whitespace is the set of nonbreakable whitespace codepoints, defined
as Pattern_White_Space in
Unicode Standard Annex #31.

 Link to this function

 trim(String, Dir, Characters)

 View Source

 (since OTP 20.0)

 -spec trim(String, Dir, Characters) -> unicode:chardata()
 when
 String :: unicode:chardata(),
 Dir :: direction() | both,
 Characters :: [grapheme_cluster()].

Returns a string, where leading or trailing, or both, Characters have been
removed.
Dir which can be leading, trailing, or both, indicates from
which direction characters are to be removed.
Note that [$\r,$\n] is one grapheme cluster according to the Unicode
Standard.
Example:
1> string:trim("\t Hello \n").
"Hello"
2> string:trim(<<"\t Hello \n">>, leading).
<<"Hello \n">>
3> string:trim(<<".Hello.\n">>, trailing, "\n.").
<<".Hello">>

 Link to this function

 uppercase(String)

 View Source

 (since OTP 20.0)

 -spec uppercase(String :: unicode:chardata()) -> unicode:chardata().

Converts String to uppercase.
See also titlecase/1.
Example:
1> string:uppercase("Michał").
"MICHAŁ"

 Obsolete API functions

 Link to this function

 centre(String, Number)

 View Source

 -spec centre(String, Number) -> Centered
 when String :: string(), Centered :: string(), Number :: non_neg_integer().

Equivalent to centre(String, Number, $).

 Link to this function

 centre(String, Number, Character)

 View Source

 -spec centre(String, Number, Character) -> Centered
 when
 String :: string(),
 Centered :: string(),
 Number :: non_neg_integer(),
 Character :: char().

Returns a string, where String is centered in the string and surrounded by
blanks or Character. The resulting string has length Number.
This function is obsolete. Use pad/3.

 Link to this function

 chars(Character, Number)

 View Source

 -spec chars(Character, Number) -> String
 when Character :: char(), Number :: non_neg_integer(), String :: string().

Equivalent to chars(Character, Number, []).

 Link to this function

 chars(Character, Number, Tail)

 View Source

 -spec chars(Character, Number, Tail) -> String
 when
 Character :: char(),
 Number :: non_neg_integer(),
 Tail :: string(),
 String :: string().

Returns a string consisting of Number characters Character. Optionally, the
string can end with string Tail.
This function is obsolete. Use
lists:duplicate/2.

 Link to this function

 chr(String, Character)

 View Source

 -spec chr(String, Character) -> Index
 when String :: string(), Character :: char(), Index :: non_neg_integer().

Returns the index of the first occurrence of Character in String. Returns
0 if Character does not occur.
This function is obsolete. Use find/2.

 Link to this function

 concat(String1, String2)

 View Source

 -spec concat(String1, String2) -> String3
 when String1 :: string(), String2 :: string(), String3 :: string().

Concatenates String1 and String2 to form a new string String3, which is
returned.
This function is obsolete. Use
[String1, String2] as Data argument, and call unicode:characters_to_list/2
or unicode:characters_to_binary/2 to flatten the output.

 Link to this function

 copies(String, Number)

 View Source

 -spec copies(String, Number) -> Copies
 when String :: string(), Copies :: string(), Number :: non_neg_integer().

Returns a string containing String repeated Number times.
This function is obsolete. Use
lists:duplicate/2.

 Link to this function

 cspan(String, Chars)

 View Source

 -spec cspan(String, Chars) -> Length
 when String :: string(), Chars :: string(), Length :: non_neg_integer().

Returns the length of the maximum initial segment of String, which consists
entirely of characters not from Chars.
This function is obsolete. Use take/3.
Example:
1> string:cspan("\t abcdef", " \t").
0

 Link to this function

 join(StringList, Separator)

 View Source

 -spec join(StringList, Separator) -> String
 when StringList :: [string()], Separator :: string(), String :: string().

Returns a string with the elements of StringList separated by the string in
Separator.
This function is obsolete. Use
lists:join/2.
Example:
1> join(["one", "two", "three"], ", ").
"one, two, three"

 Link to this function

 left(String, Number)

 View Source

 -spec left(String, Number) -> Left
 when String :: string(), Left :: string(), Number :: non_neg_integer().

Equivalent to left(String, Number, $).

 Link to this function

 left(String, Number, Character)

 View Source

 -spec left(String, Number, Character) -> Left
 when
 String :: string(), Left :: string(), Number :: non_neg_integer(), Character :: char().

Returns String with the length adjusted in accordance with Number. The left
margin is fixed. If length(String) < Number, then String is
padded with blanks or Characters.
This function is obsolete. Use pad/2 or
pad/3.
Example:
1> string:left("Hello",10,$.).
"Hello....."

 Link to this function

 len(String)

 View Source

 -spec len(String) -> Length when String :: string(), Length :: non_neg_integer().

Returns the number of characters in String.
This function is obsolete. Use length/1.

 Link to this function

 rchr(String, Character)

 View Source

 -spec rchr(String, Character) -> Index
 when String :: string(), Character :: char(), Index :: non_neg_integer().

Returns the index of the last occurrence of Character in String. Returns 0
if Character does not occur.
This function is obsolete. Use find/3.

 Link to this function

 right(String, Number)

 View Source

 -spec right(String, Number) -> Right
 when String :: string(), Right :: string(), Number :: non_neg_integer().

Equivalent to right(String, Number, $).

 Link to this function

 right(String, Number, Character)

 View Source

 -spec right(String, Number, Character) -> Right
 when
 String :: string(),
 Right :: string(),
 Number :: non_neg_integer(),
 Character :: char().

Returns String with the length adjusted in accordance with Number. The right
margin is fixed. If the length of (String) < Number, then String is padded
with blanks or Characters.
This function is obsolete. Use pad/3.
Example:
1> string:right("Hello", 10, $.).
".....Hello"

 Link to this function

 rstr(String, SubString)

 View Source

 -spec rstr(String, SubString) -> Index
 when String :: string(), SubString :: string(), Index :: non_neg_integer().

Returns the position where the last occurrence of SubString begins in
String. Returns 0 if SubString does not exist in String.
This function is obsolete. Use find/3.
Example:
1> string:rstr(" Hello Hello World World ", "Hello World").
8

 Link to this function

 span(String, Chars)

 View Source

 -spec span(String, Chars) -> Length
 when String :: string(), Chars :: string(), Length :: non_neg_integer().

Returns the length of the maximum initial segment of String, which consists
entirely of characters from Chars.
This function is obsolete. Use take/2.
Example:
1> string:span("\t abcdef", " \t").
5

 Link to this function

 str(String, SubString)

 View Source

 -spec str(String, SubString) -> Index
 when String :: string(), SubString :: string(), Index :: non_neg_integer().

Returns the position where the first occurrence of SubString begins in
String. Returns 0 if SubString does not exist in String.
This function is obsolete. Use find/2.
Example:
1> string:str(" Hello Hello World World ", "Hello World").
8

 Link to this function

 strip(String)

 View Source

 -spec strip(string()) -> string().

Equivalent to strip(String, both).

 Link to this function

 strip(String, Direction)

 View Source

 -spec strip(String, Direction) -> Stripped
 when String :: string(), Stripped :: string(), Direction :: left | right | both.

Equivalent to strip(String, Direction, $).

 Link to this function

 strip(String, Direction, Character)

 View Source

 -spec strip(String, Direction, Character) -> Stripped
 when
 String :: string(),
 Stripped :: string(),
 Direction :: left | right | both,
 Character :: char().

Returns a string, where leading or trailing, or both, blanks or a number of
Character have been removed.
Direction, which can be left, right, or
both, indicates from which direction blanks are to be removed.
strip/1 is equivalent to strip(String, both).
This function is obsolete. Use trim/3.
Example:
1> string:strip("...Hello.....", both, $.).
"Hello"

 Link to this function

 sub_string(String, Start)

 View Source

 -spec sub_string(String, Start) -> SubString
 when String :: string(), SubString :: string(), Start :: pos_integer().

Equivalent to sub_string(String, Start, string:length(String)).

 Link to this function

 sub_string(String, Start, Stop)

 View Source

 -spec sub_string(String, Start, Stop) -> SubString
 when
 String :: string(),
 SubString :: string(),
 Start :: pos_integer(),
 Stop :: pos_integer().

Returns a substring of String, starting at position Start to the end of the
string, or to and including position Stop.
This function is obsolete. Use slice/3.
Example:
1> sub_string("Hello World", 4, 8).
"lo Wo"

 Link to this function

 sub_word(String, Number)

 View Source

 -spec sub_word(String, Number) -> Word when String :: string(), Word :: string(), Number :: integer().

Equivalent to sub_word(String, Number, $).

 Link to this function

 sub_word(String, Number, Character)

 View Source

 -spec sub_word(String, Number, Character) -> Word
 when String :: string(), Word :: string(), Number :: integer(), Character :: char().

Returns the word in position Number of String. Words are separated by blanks
or Characters.
This function is obsolete. Use
nth_lexeme/3.
Example:
1> string:sub_word(" Hello old boy !",3,$o).
"ld b"

 Link to this function

 substr(String, Start)

 View Source

 -spec substr(String, Start) -> SubString
 when String :: string(), SubString :: string(), Start :: pos_integer().

Equivalent to substr(String, Start, string:length(String) - Start).

 Link to this function

 substr(String, Start, Length)

 View Source

 -spec substr(String, Start, Length) -> SubString
 when
 String :: string(),
 SubString :: string(),
 Start :: pos_integer(),
 Length :: non_neg_integer().

Returns a substring of String, starting at position Start, and ending at the
end of the string or at length Length.
This function is obsolete. Use slice/3.
Example:
1> substr("Hello World", 4, 5).
"lo Wo"

 Link to this function

 to_lower/1

 View Source

 -spec to_lower(String) -> Result when String :: io_lib:latin1_string(), Result :: io_lib:latin1_string();
 (Char) -> CharResult when Char :: char(), CharResult :: char().

The specified string or character is case-converted. Notice that the supported
character set is ISO/IEC 8859-1 (also called Latin 1); all values outside this
set are unchanged.
This function is obsolete use
lowercase/1, titlecase/1 or casefold/1.

 Link to this function

 to_upper/1

 View Source

 -spec to_upper(String) -> Result when String :: io_lib:latin1_string(), Result :: io_lib:latin1_string();
 (Char) -> CharResult when Char :: char(), CharResult :: char().

The specified string or character is case-converted. Notice that the supported
character set is ISO/IEC 8859-1 (also called Latin 1); all values outside this
set are unchanged.
This function is obsolete use
uppercase/1, titlecase/1 or casefold/1.

 Link to this function

 tokens(String, SeparatorList)

 View Source

 -spec tokens(String, SeparatorList) -> Tokens
 when
 String :: string(),
 SeparatorList :: string(),
 Tokens :: [Token :: nonempty_string()].

Returns a list of tokens in String, separated by the characters in
SeparatorList.
Example:
1> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]
Notice that, as shown in this example, two or more adjacent separator characters
in String are treated as one. That is, there are no empty strings in the
resulting list of tokens.
This function is obsolete. Use lexemes/2.

 Link to this function

 words(String)

 View Source

 -spec words(String) -> Count when String :: string(), Count :: pos_integer().

Equivalent to words(String, $).

 Link to this function

 words(String, Character)

 View Source

 -spec words(String, Character) -> Count
 when String :: string(), Character :: char(), Count :: pos_integer().

Returns the number of words in String, separated by blanks or Character.
This function is obsolete. Use lexemes/2.
Example:
1> words(" Hello old boy!", $o).
4

 unicode - stdlib v5.2.1

unicode

Functions for converting Unicode characters.
This module contains functions for converting between different character
representations. It converts between ISO Latin-1 characters and Unicode
characters, but it can also convert between different Unicode encodings (like
UTF-8, UTF-16, and UTF-32).
The default Unicode encoding in Erlang binaries is UTF-8, which is also the
format in which built-in functions and libraries in OTP expect to find binary
Unicode data. In lists, Unicode data is encoded as integers, each integer
representing one character and encoded simply as the Unicode code point for the
character.
Other Unicode encodings than integers representing code points or UTF-8 in
binaries are referred to as "external encodings". The ISO Latin-1 encoding is in
binaries and lists referred to as latin1-encoding.
It is recommended to only use external encodings for communication with external
entities where this is required. When working inside the Erlang/OTP environment,
it is recommended to keep binaries in UTF-8 when representing Unicode
characters. ISO Latin-1 encoding is supported both for backward compatibility
and for communication with external entities not supporting Unicode character
sets.
Programs should always operate on a normalized form and compare
canonical-equivalent Unicode characters as equal. All characters should thus be
normalized to one form once on the system borders. One of the following
functions can convert characters to their normalized forms
characters_to_nfc_list/1, characters_to_nfc_binary/1,
characters_to_nfd_list/1 or characters_to_nfd_binary/1. For general text
characters_to_nfc_list/1 or characters_to_nfc_binary/1 is preferred, and for
identifiers one of the compatibility normalization functions, such as
characters_to_nfkc_list/1, is preferred for security reasons. The
normalization functions where introduced in OTP 20. Additional information on
normalization can be found in the
Unicode FAQ.

 Summary

 Types

 chardata()

 charlist()

 encoding()

 endian()

 external_chardata()

 external_charlist()

 external_unicode_binary()

 A binary/0 with characters coded in a user-specified Unicode encoding other
than UTF-8 (that is, UTF-16 or UTF-32).

 latin1_binary()

 A binary/0 with characters coded in ISO Latin-1.

 latin1_char()

 An integer/0 representing a valid ISO Latin-1 character (0-255).

 latin1_chardata()

 Equivalent to iodata/0.

 latin1_charlist()

 Equivalent to iolist/0.

 unicode_binary()

 A binary/0 with characters encoded in the UTF-8 coding standard.

 Functions

 bom_to_encoding(Bin)

 Checks for a UTF Byte Order Mark (BOM) in the beginning of a binary.

 characters_to_binary(Data)

 Equivalent to characters_to_binary(Data, unicode, unicode).

 characters_to_binary(Data, InEncoding)

 Equivalent to characters_to_binary(Data, InEncoding, unicode).

 characters_to_binary(Data, InEncoding, OutEncoding)

 Behaves as characters_to_list/2, but produces a binary instead of a Unicode
list.

 characters_to_list(Data)

 Equivalent to characters_to_list(Data, unicode).

 characters_to_list(Data, InEncoding)

 Converts a possibly deep list of integers and binaries into a list of integers
representing Unicode characters. The binaries in the input can have characters
encoded as one of the following

 characters_to_nfc_binary(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Composed characters according to the Unicode standard.

 characters_to_nfc_list(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Composed characters according to the Unicode standard.

 characters_to_nfd_binary(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Decomposed characters according to the Unicode standard.

 characters_to_nfd_list(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Decomposed characters according to the Unicode standard.

 characters_to_nfkc_binary(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Composed characters according to the Unicode standard.

 characters_to_nfkc_list(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Composed characters according to the Unicode standard.

 characters_to_nfkd_binary(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Decomposed characters according to the Unicode
standard.

 characters_to_nfkd_list(CD)

 Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Decomposed characters according to the Unicode
standard.

 encoding_to_bom(InEncoding)

 Creates a UTF Byte Order Mark (BOM) as a binary from the supplied InEncoding.

 Types

 Link to this type

 chardata()

 View Source

 -type chardata() :: charlist() | unicode_binary().

 Link to this type

 charlist()

 View Source

 -type charlist() :: maybe_improper_list(char() | unicode_binary() | charlist(), unicode_binary() | []).

 Link to this type

 encoding()

 View Source

 -type encoding() :: latin1 | unicode | utf8 | utf16 | {utf16, endian()} | utf32 | {utf32, endian()}.

 Link to this type

 endian()

 View Source

 (not exported)

 -type endian() :: big | little.

 Link to this type

 external_chardata()

 View Source

 -type external_chardata() :: external_charlist() | external_unicode_binary().

 Link to this type

 external_charlist()

 View Source

 -type external_charlist() ::
 maybe_improper_list(char() | external_unicode_binary() | external_charlist(),
 external_unicode_binary() | []).

 Link to this type

 external_unicode_binary()

 View Source

 (not exported)

 -type external_unicode_binary() :: binary().

A binary/0 with characters coded in a user-specified Unicode encoding other
than UTF-8 (that is, UTF-16 or UTF-32).

 Link to this type

 latin1_binary()

 View Source

 -type latin1_binary() :: binary().

A binary/0 with characters coded in ISO Latin-1.

 Link to this type

 latin1_char()

 View Source

 -type latin1_char() :: byte().

An integer/0 representing a valid ISO Latin-1 character (0-255).

 Link to this type

 latin1_chardata()

 View Source

 -type latin1_chardata() :: latin1_charlist() | latin1_binary().

Equivalent to iodata/0.

 Link to this type

 latin1_charlist()

 View Source

 -type latin1_charlist() ::
 maybe_improper_list(latin1_char() | latin1_binary() | latin1_charlist(), latin1_binary() | []).

Equivalent to iolist/0.

 Link to this type

 unicode_binary()

 View Source

 -type unicode_binary() :: binary().

A binary/0 with characters encoded in the UTF-8 coding standard.

 Functions

 Link to this function

 bom_to_encoding(Bin)

 View Source

 -spec bom_to_encoding(Bin) -> {Encoding, Length}
 when
 Bin :: binary(),
 Encoding :: latin1 | utf8 | {utf16, endian()} | {utf32, endian()},
 Length :: non_neg_integer().

Checks for a UTF Byte Order Mark (BOM) in the beginning of a binary.
If the supplied binary Bin begins with a valid BOM for either UTF-8, UTF-16, or
UTF-32, the function returns the encoding identified along with the BOM length
in bytes.
If no BOM is found, the function returns {latin1,0}.

 Link to this function

 characters_to_binary(Data)

 View Source

 -spec characters_to_binary(Data) -> Result
 when
 Data :: latin1_chardata() | chardata() | external_chardata(),
 Result ::
 binary() |
 {error, binary(), RestData} |
 {incomplete, binary(), binary()},
 RestData :: latin1_chardata() | chardata() | external_chardata().

Equivalent to characters_to_binary(Data, unicode, unicode).

 Link to this function

 characters_to_binary(Data, InEncoding)

 View Source

 -spec characters_to_binary(Data, InEncoding) -> Result
 when
 Data :: latin1_chardata() | chardata() | external_chardata(),
 InEncoding :: encoding(),
 Result ::
 binary() |
 {error, binary(), RestData} |
 {incomplete, binary(), binary()},
 RestData :: latin1_chardata() | chardata() | external_chardata().

Equivalent to characters_to_binary(Data, InEncoding, unicode).

 Link to this function

 characters_to_binary(Data, InEncoding, OutEncoding)

 View Source

 -spec characters_to_binary(Data, InEncoding, OutEncoding) -> Result
 when
 Data :: latin1_chardata() | chardata() | external_chardata(),
 InEncoding :: encoding(),
 OutEncoding :: encoding(),
 Result ::
 binary() |
 {error, binary(), RestData} |
 {incomplete, binary(), binary()},
 RestData :: latin1_chardata() | chardata() | external_chardata().

Behaves as characters_to_list/2, but produces a binary instead of a Unicode
list.
InEncoding defines how input is to be interpreted if binaries are present in
Data
OutEncoding defines in what format output is to be generated.
Options:
	unicode - An alias for utf8, as this is the preferred encoding for
Unicode characters in binaries.

	utf16 - An alias for {utf16,big}.

	utf32 - An alias for {utf32,big}.

The atoms big and little denote big- or little-endian encoding.
Errors and exceptions occur as in characters_to_list/2, but the second element
in tuple error or incomplete is a binary/0 and not a list/0.

 Link to this function

 characters_to_list(Data)

 View Source

 -spec characters_to_list(Data) -> Result
 when
 Data :: latin1_chardata() | chardata() | external_chardata(),
 Result ::
 string() |
 {error, string(), RestData} |
 {incomplete, string(), binary()},
 RestData :: latin1_chardata() | chardata() | external_chardata().

Equivalent to characters_to_list(Data, unicode).

 Link to this function

 characters_to_list(Data, InEncoding)

 View Source

 -spec characters_to_list(Data, InEncoding) -> Result
 when
 Data :: latin1_chardata() | chardata() | external_chardata(),
 InEncoding :: encoding(),
 Result ::
 string() |
 {error, string(), RestData} |
 {incomplete, string(), binary()},
 RestData :: latin1_chardata() | chardata() | external_chardata().

Converts a possibly deep list of integers and binaries into a list of integers
representing Unicode characters. The binaries in the input can have characters
encoded as one of the following:
	ISO Latin-1 (0-255, one character per byte). Here, case parameter InEncoding
is to be specified as latin1.
	One of the UTF-encodings, which is specified as parameter InEncoding.

Note that integers in the list always represent code points regardless of
InEncoding passed. If InEncoding latin1 is passed, only code points < 256
are allowed; otherwise, all valid unicode code points are allowed.
If InEncoding is latin1, parameter Data corresponds to the iodata/0
type, but for unicode, parameter Data can contain integers > 255 (Unicode
characters beyond the ISO Latin-1 range), which makes it invalid as
iodata/0.
The purpose of the function is mainly to convert combinations of Unicode
characters into a pure Unicode string in list representation for further
processing. For writing the data to an external entity, the reverse function
characters_to_binary/3 comes in handy.
Option unicode is an alias for utf8, as this is the preferred encoding for
Unicode characters in binaries. utf16 is an alias for {utf16,big} and
utf32 is an alias for {utf32,big}. The atoms big and little denote big-
or little-endian encoding.
If the data cannot be converted, either because of illegal Unicode/ISO Latin-1
characters in the list, or because of invalid UTF encoding in any binaries, an
error tuple is returned. The error tuple contains the tag error, a list
representing the characters that could be converted before the error occurred
and a representation of the characters including and after the offending
integer/bytes. The last part is mostly for debugging, as it still constitutes a
possibly deep or mixed list, or both, not necessarily of the same depth as the
original data. The error occurs when traversing the list and whatever is left to
decode is returned "as is".
However, if the input Data is a pure binary, the third part of the error tuple
is guaranteed to be a binary as well.
Errors occur for the following reasons:
	Integers out of range.
If InEncoding is latin1, an error occurs whenever an integer > 255 is
found in the lists.
If InEncoding is of a Unicode type, an error occurs whenever either of the
following is found:
	An integer > 16#10FFFF (the maximum Unicode character)
	An integer in the range 16#D800 to 16#DFFF (invalid range reserved for
UTF-16 surrogate pairs)

	Incorrect UTF encoding.
If InEncoding is one of the UTF types, the bytes in any binaries must be
valid in that encoding.
Errors can occur for various reasons, including the following:
	"Pure" decoding errors (like the upper bits of the bytes being wrong).
	The bytes are decoded to a too large number.
	The bytes are decoded to a code point in the invalid Unicode range.
	Encoding is "overlong", meaning that a number should have been encoded in
fewer bytes.

The case of a truncated UTF is handled specially, see the paragraph about
incomplete binaries below.
If InEncoding is latin1, binaries are always valid as long as they contain
whole bytes, as each byte falls into the valid ISO Latin-1 range.

A special type of error is when no actual invalid integers or bytes are found,
but a trailing binary/0 consists of too few bytes to decode the last
character. This error can occur if bytes are read from a file in chunks or if
binaries in other ways are split on non-UTF character boundaries. An
incomplete tuple is then returned instead of the error tuple. It consists of
the same parts as the error tuple, but the tag is incomplete instead of
error and the last element is always guaranteed to be a binary consisting of
the first part of a (so far) valid UTF character.
If one UTF character is split over two consecutive binaries in the Data, the
conversion succeeds. This means that a character can be decoded from a range of
binaries as long as the whole range is specified as input without errors
occurring.
Example:
decode_data(Data) ->
 case unicode:characters_to_list(Data,unicode) of
 {incomplete,Encoded, Rest} ->
 More = get_some_more_data(),
 Encoded ++ decode_data([Rest, More]);
 {error,Encoded,Rest} ->
 handle_error(Encoded,Rest);
 List ->
 List
 end.
However, bit strings that are not whole bytes are not allowed, so a UTF
character must be split along 8-bit boundaries to ever be decoded.
A badarg exception is thrown for the following cases:
	Any parameters are of the wrong type.
	The list structure is invalid (a number as tail).
	The binaries do not contain whole bytes (bit strings).

 Link to this function

 characters_to_nfc_binary(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfc_binary(chardata()) -> unicode_binary() | {error, unicode_binary(), chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Composed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is an utf8 encoded binary.
4> unicode:characters_to_nfc_binary([<<"abc..a">>,[778],$a,[776],$o,[776]]).
<<"abc..åäö"/utf8>>

 Link to this function

 characters_to_nfc_list(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfc_list(chardata()) -> [char()] | {error, [char()], chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Composed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is a list of characters.
3> unicode:characters_to_nfc_list([<<"abc..a">>,[778],$a,[776],$o,[776]]).
"abc..åäö"

 Link to this function

 characters_to_nfd_binary(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfd_binary(chardata()) -> unicode_binary() | {error, unicode_binary(), chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Decomposed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is an utf8 encoded binary.
2> unicode:characters_to_nfd_binary("abc..åäö").
<<97,98,99,46,46,97,204,138,97,204,136,111,204,136>>

 Link to this function

 characters_to_nfd_list(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfd_list(chardata()) -> [char()] | {error, [char()], chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of canonical equivalent Decomposed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is a list of characters.
1> unicode:characters_to_nfd_list("abc..åäö").
[97,98,99,46,46,97,778,97,776,111,776]

 Link to this function

 characters_to_nfkc_binary(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfkc_binary(chardata()) -> unicode_binary() | {error, unicode_binary(), chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Composed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is an utf8 encoded binary.
4> unicode:characters_to_nfkc_binary([<<"abc..a">>,[778],$a,[776],$o,[776],[65299,65298]]).
<<"abc..åäö32"/utf8>>

 Link to this function

 characters_to_nfkc_list(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfkc_list(chardata()) -> [char()] | {error, [char()], chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Composed characters according to the Unicode standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is a list of characters.
3> unicode:characters_to_nfkc_list([<<"abc..a">>,[778],$a,[776],$o,[776],[65299,65298]]).
"abc..åäö32"

 Link to this function

 characters_to_nfkd_binary(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfkd_binary(chardata()) -> unicode_binary() | {error, unicode_binary(), chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Decomposed characters according to the Unicode
standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is an utf8 encoded binary.
2> unicode:characters_to_nfkd_binary(["abc..åäö",[65299,65298]]).
<<97,98,99,46,46,97,204,138,97,204,136,111,204,136,51,50>>

 Link to this function

 characters_to_nfkd_list(CD)

 View Source

 (since OTP 20.0)

 -spec characters_to_nfkd_list(chardata()) -> [char()] | {error, [char()], chardata()}.

Converts a possibly deep list of characters and binaries into a Normalized Form
of compatibly equivalent Decomposed characters according to the Unicode
standard.
Any binaries in the input must be encoded with utf8 encoding.
The result is a list of characters.
1> unicode:characters_to_nfkd_list(["abc..åäö",[65299,65298]]).
[97,98,99,46,46,97,778,97,776,111,776,51,50]

 Link to this function

 encoding_to_bom(InEncoding)

 View Source

 -spec encoding_to_bom(InEncoding) -> Bin when Bin :: binary(), InEncoding :: encoding().

Creates a UTF Byte Order Mark (BOM) as a binary from the supplied InEncoding.
The BOM is, if supported at all, expected to be placed first in UTF encoded
files or messages.
The function returns <<>> for latin1 encoding, as there is no BOM for ISO
Latin-1.
Notice that the BOM for UTF-8 is seldom used, and it is really not a byte
order mark. There are obviously no byte order issues with UTF-8, so the BOM is
only there to differentiate UTF-8 encoding from other UTF formats.

 uri_string - stdlib v5.2.1

uri_string

URI processing functions.
This module contains functions for parsing and handling URIs
(RFC 3986) and form-urlencoded query
strings (HTML 5.2).
Parsing and serializing non-UTF-8 form-urlencoded query strings are also
supported (HTML 5.0).
A URI is an identifier consisting of a sequence of characters matching the
syntax rule named URI in RFC 3986.
The generic URI syntax consists of a hierarchical sequence of components
referred to as the scheme, authority, path, query, and fragment:
 URI = scheme ":" hier-part ["?" query] ["#" fragment]
 hier-part = "//" authority path-abempty
 / path-absolute
 / path-rootless
 / path-empty
 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
 authority = [userinfo "@"] host [":" port]
 userinfo = *(unreserved / pct-encoded / sub-delims / ":")

 reserved = gen-delims / sub-delims
 gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"
 sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

 unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
The interpretation of a URI depends only on the characters used and not on how
those characters are represented in a network protocol.
The functions implemented by this module cover the following use cases:
	Parsing URIs into its components and returing a map: parse/1
	Recomposing a map of URI components into a URI string: recompose/1
	Changing inbound binary and percent-encoding of URIs: transcode/2
	Transforming URIs into a normalized form: normalize/1, normalize/2
	Composing form-urlencoded query strings from a list of key-value pairs:
compose_query/1, compose_query/2
	Dissecting form-urlencoded query strings into a list of key-value pairs:
dissect_query/1
	Decoding percent-encoded triplets in URI map or a specific component of URI:
percent_decode/1
	Preparing and retrieving application specific data included in URI
components:
quote/1, quote/2, unquote/1

There are four different encodings present during the handling of URIs:
	Inbound binary encoding in binaries
	Inbound percent-encoding in lists and binaries
	Outbound binary encoding in binaries
	Outbound percent-encoding in lists and binaries

Functions with uri_string/0 argument accept lists, binaries and mixed lists
(lists with binary elements) as input type. All of the functions but
transcode/2 expects input as lists of unicode codepoints,
UTF-8 encoded binaries and UTF-8 percent-encoded URI parts ("%C3%B6" corresponds
to the unicode character "ö").
Unless otherwise specified the return value type and encoding are the same as
the input type and encoding. That is, binary input returns binary output, list
input returns a list output but mixed input returns list output.
In case of lists there is only percent-encoding. In binaries, however, both
binary encoding and percent-encoding shall be considered.
transcode/2 provides the means to convert between the
supported encodings, it takes a uri_string/0 and a list of options
specifying inbound and outbound encodings.
RFC 3986 does not mandate any specific
character encoding and it is usually defined by the protocol or surrounding
text. This library takes the same assumption, binary and percent-encoding are
handled as one configuration unit, they cannot be set to different values.
Quoting functions are intended to be used by URI producing application during
component preparation or retrieval phase to avoid conflicts between data and
characters used in URI syntax. Quoting functions use percent encoding, but with
different rules than for example during execution of
recompose/1. It is user responsibility to provide quoting
functions with application data only and using their output to combine an URI
component.
Quoting functions can for instance be used for constructing a path component
with a segment containing '/' character which should not collide with '/' used
as general delimiter in path component.

 Summary

 Types

 error()

 Error tuple indicating the type of error. Possible values of the second
component

 uri_map()

 Map holding the main components of a URI.

 uri_string()

 List of unicode codepoints, a UTF-8 encoded binary, or a mix of the two,
representing an RFC 3986 compliant URI
(percent-encoded form). A URI is a sequence of characters from a very limited
set: the letters of the basic Latin alphabet, digits, and a few special
characters.

 Functions

 allowed_characters()

 This is a utility function meant to be used in the shell for printing the
allowed characters in each major URI component, and also in the most important
characters sets.

 compose_query(QueryList)

 Composes a form-urlencoded QueryString based on a QueryList, a list of
non-percent-encoded key-value pairs.

 compose_query(QueryList, Options)

 Same as compose_query/1 but with an additional Options
parameter, that controls the encoding ("charset") used by the encoding
algorithm.

 dissect_query(QueryString)

 Dissects an urlencoded QueryString and returns a QueryList, a list of
non-percent-encoded key-value pairs.

 normalize(URI)

 Transforms an URI into a normalized form using Syntax-Based Normalization as
defined by RFC 3986.

 normalize(URI, Options)

 Same as normalize/1 but with an additional Options
parameter, that controls whether the normalized URI shall be returned as an
uri_map().

 parse(URIString)

 Parses an RFC 3986 compliant
uri_string/0 into a uri_map/0, that holds the parsed components of the
URI. If parsing fails, an error tuple is returned.

 percent_decode(URI)

 Decodes all percent-encoded triplets in the input that can be both a
uri_string/0 and a uri_map/0.

 quote(Data)

 Replaces characters out of unreserved set with their percent encoded
equivalents.

 quote(Data, Safe)

 Same as quote/1, but Safe allows user to provide a list of
characters to be protected from encoding.

 recompose(URIMap)

 Creates an RFC 3986 compliant
URIString (percent-encoded), based on the components of URIMap. If the
URIMap is invalid, an error tuple is returned.

 resolve(RefURI, BaseURI)

 Convert a RefURI reference that might be relative to a given base URI into the
parsed components of the reference's target, which can then be recomposed to
form the target URI.

 resolve(RefURI, BaseURI, Options)

 Same as resolve/2 but with an additional Options parameter,
that controls whether the target URI shall be returned as an uri_map(). There is
one supported option: return_map.

 transcode(URIString, Options)

 Transcodes an RFC 3986 compliant
URIString, where Options is a list of tagged tuples, specifying the inbound
(in_encoding) and outbound (out_encoding) encodings.

 unquote(QuotedData)

 Percent decode characters.

 Types

 Link to this type

 error()

 View Source

 (since OTP 21.0)

 -type error() :: {error, atom(), term()}.

Error tuple indicating the type of error. Possible values of the second
component:
	invalid_character
	invalid_encoding
	invalid_input
	invalid_map
	invalid_percent_encoding
	invalid_scheme
	invalid_uri
	invalid_utf8
	missing_value

The third component is a term providing additional information about the cause
of the error.

 Link to this type

 uri_map()

 View Source

 (since OTP 21.0)

 -type uri_map() ::
 #{fragment => unicode:chardata(),
 host => unicode:chardata(),
 path => unicode:chardata(),
 port => non_neg_integer() | undefined,
 query => unicode:chardata(),
 scheme => unicode:chardata(),
 userinfo => unicode:chardata()}.

Map holding the main components of a URI.

 Link to this type

 uri_string()

 View Source

 (since OTP 21.0)

 -type uri_string() :: iodata().

List of unicode codepoints, a UTF-8 encoded binary, or a mix of the two,
representing an RFC 3986 compliant URI
(percent-encoded form). A URI is a sequence of characters from a very limited
set: the letters of the basic Latin alphabet, digits, and a few special
characters.

 Functions

 Link to this function

 allowed_characters()

 View Source

 (since OTP 23.2)

 -spec allowed_characters() -> [{atom(), list()}].

This is a utility function meant to be used in the shell for printing the
allowed characters in each major URI component, and also in the most important
characters sets.
Note that this function does not replace the ABNF rules defined by the standards,
these character sets are derived directly from those aformentioned rules. For more
information see the
Uniform Resource Identifiers chapter in
stdlib's Users Guide.

 Link to this function

 compose_query(QueryList)

 View Source

 (since OTP 21.0)

 -spec compose_query(QueryList) -> QueryString
 when
 QueryList :: [{unicode:chardata(), unicode:chardata() | true}],
 QueryString :: uri_string() | error().

Composes a form-urlencoded QueryString based on a QueryList, a list of
non-percent-encoded key-value pairs.
Form-urlencoding is defined in section 4.10.21.6 of the HTML 5.2
specification and in section 4.10.22.6 of the HTML 5.0
specification for non-UTF-8 encodings.
See also the opposite operation dissect_query/1.
Example:
1> uri_string:compose_query([{"foo bar","1"},{"city","örebro"}]).
"foo+bar=1&city=%C3%B6rebro"
2> uri_string:compose_query([{<<"foo bar">>,<<"1">>},
2> {<<"city">>,<<"örebro"/utf8>>}]).
<<"foo+bar=1&city=%C3%B6rebro">>

 Link to this function

 compose_query(QueryList, Options)

 View Source

 (since OTP 21.0)

 -spec compose_query(QueryList, Options) -> QueryString
 when
 QueryList :: [{unicode:chardata(), unicode:chardata() | true}],
 Options :: [{encoding, atom()}],
 QueryString :: uri_string() | error().

Same as compose_query/1 but with an additional Options
parameter, that controls the encoding ("charset") used by the encoding
algorithm.
There are two supported encodings: utf8 (or unicode) and latin1.
Each character in the entry's name and value that cannot be expressed using the
selected character encoding, is replaced by a string consisting of a U+0026
AMPERSAND character (&), a "#" (U+0023) character, one or more ASCII digits
representing the Unicode code point of the character in base ten, and finally a
";" (U+003B) character.
Bytes that are out of the range 0x2A, 0x2D, 0x2E, 0x30 to 0x39, 0x41 to 0x5A,
0x5F, 0x61 to 0x7A, are percent-encoded (U+0025 PERCENT SIGN character (%)
followed by uppercase ASCII hex digits representing the hexadecimal value of the
byte).
See also the opposite operation dissect_query/1.
Example:
1> uri_string:compose_query([{"foo bar","1"},{"city","örebro"}],
1> [{encoding, latin1}]).
"foo+bar=1&city=%F6rebro"
2> uri_string:compose_query([{<<"foo bar">>,<<"1">>},
2> {<<"city">>,<<"東京"/utf8>>}], [{encoding, latin1}]).
<<"foo+bar=1&city=%26%2326481%3B%26%2320140%3B">>

 Link to this function

 dissect_query(QueryString)

 View Source

 (since OTP 21.0)

 -spec dissect_query(QueryString) -> QueryList
 when
 QueryString :: uri_string(),
 QueryList :: [{unicode:chardata(), unicode:chardata() | true}] | error().

Dissects an urlencoded QueryString and returns a QueryList, a list of
non-percent-encoded key-value pairs.
Form-urlencoding is defined in section 4.10.21.6 of the HTML 5.2
specification and in section 4.10.22.6 of the HTML 5.0
specification for non-UTF-8 encodings.
See also the opposite operation compose_query/1.
Example:
1> uri_string:dissect_query("foo+bar=1&city=%C3%B6rebro").
[{"foo bar","1"},{"city","örebro"}]
2> uri_string:dissect_query(<<"foo+bar=1&city=%26%2326481%3B%26%2320140%3B">>).
[{<<"foo bar">>,<<"1">>},
 {<<"city">>,<<230,157,177,228,186,172>>}]

 Link to this function

 normalize(URI)

 View Source

 (since OTP 21.0)

 -spec normalize(URI) -> NormalizedURI
 when URI :: uri_string() | uri_map(), NormalizedURI :: uri_string() | error().

Transforms an URI into a normalized form using Syntax-Based Normalization as
defined by RFC 3986.
This function implements case normalization, percent-encoding normalization,
path segment normalization and scheme based normalization for HTTP(S) with basic
support for FTP, SSH, SFTP and TFTP.
Example:
1> uri_string:normalize("/a/b/c/./../../g").
"/a/g"
2> uri_string:normalize(<<"mid/content=5/../6">>).
<<"mid/6">>
3> uri_string:normalize("http://localhost:80").
"http://localhost/"
4> uri_string:normalize(#{scheme => "http",port => 80,path => "/a/b/c/./../../g",
4> host => "localhost-örebro"}).
"http://localhost-%C3%B6rebro/a/g"

 Link to this function

 normalize(URI, Options)

 View Source

 (since OTP 21.0)

 -spec normalize(URI, Options) -> NormalizedURI
 when
 URI :: uri_string() | uri_map(),
 Options :: [return_map],
 NormalizedURI :: uri_string() | uri_map() | error().

Same as normalize/1 but with an additional Options
parameter, that controls whether the normalized URI shall be returned as an
uri_map().
There is one supported option: return_map.
Example:
1> uri_string:normalize("/a/b/c/./../../g", [return_map]).
#{path => "/a/g"}
2> uri_string:normalize(<<"mid/content=5/../6">>, [return_map]).
#{path => <<"mid/6">>}
3> uri_string:normalize("http://localhost:80", [return_map]).
#{scheme => "http",path => "/",host => "localhost"}
4> uri_string:normalize(#{scheme => "http",port => 80,path => "/a/b/c/./../../g",
4> host => "localhost-örebro"}, [return_map]).
#{scheme => "http",path => "/a/g",host => "localhost-örebro"}

 Link to this function

 parse(URIString)

 View Source

 (since OTP 21.0)

 -spec parse(URIString) -> URIMap when URIString :: uri_string(), URIMap :: uri_map() | error().

Parses an RFC 3986 compliant
uri_string/0 into a uri_map/0, that holds the parsed components of the
URI. If parsing fails, an error tuple is returned.
See also the opposite operation recompose/1.
Example:
1> uri_string:parse("foo://user@example.com:8042/over/there?name=ferret#nose").
#{fragment => "nose",host => "example.com",
 path => "/over/there",port => 8042,query => "name=ferret",
 scheme => foo,userinfo => "user"}
2> uri_string:parse(<<"foo://user@example.com:8042/over/there?name=ferret">>).
#{host => <<"example.com">>,path => <<"/over/there">>,
 port => 8042,query => <<"name=ferret">>,scheme => <<"foo">>,
 userinfo => <<"user">>}

 Link to this function

 percent_decode(URI)

 View Source

 (since OTP 23.2)

 -spec percent_decode(URI) -> Result
 when
 URI :: uri_string() | uri_map(),
 Result ::
 uri_string() |
 uri_map() |
 {error, {invalid, {atom(), {term(), term()}}}}.

Decodes all percent-encoded triplets in the input that can be both a
uri_string/0 and a uri_map/0.
Note, that this function performs raw decoding and it shall be used on already
parsed URI components. Applying this function directly on a standard URI can
effectively change it.
If the input encoding is not UTF-8, an error tuple is returned.
Example:
1> uri_string:percent_decode(#{host => "localhost-%C3%B6rebro",path => [],
1> scheme => "http"}).
#{host => "localhost-örebro",path => [],scheme => "http"}
2> uri_string:percent_decode(<<"%C3%B6rebro">>).
<<"örebro"/utf8>>
Warning
Using uri_string:percent_decode/1 directly on a URI is not safe. This
example shows, that after each consecutive application of the function the
resulting URI will be changed. None of these URIs refer to the same resource.
3> uri_string:percent_decode(<<"http://local%252Fhost/path">>).
<<"http://local%2Fhost/path">>
4> uri_string:percent_decode(<<"http://local%2Fhost/path">>).
<<"http://local/host/path">>

 Link to this function

 quote(Data)

 View Source

 (since OTP 25.0)

 -spec quote(Data) -> QuotedData when Data :: unicode:chardata(), QuotedData :: unicode:chardata().

Replaces characters out of unreserved set with their percent encoded
equivalents.
Unreserved characters defined in
RFC 3986 are not quoted.
Example:
1> uri_string:quote("SomeId/04").
"SomeId%2F04"
2> uri_string:quote(<<"SomeId/04">>).
<<"SomeId%2F04">>
Warning
Function is not aware about any URI component context and should not be used
on whole URI. If applied more than once on the same data, might produce
unexpected results.

 Link to this function

 quote(Data, Safe)

 View Source

 (since OTP 25.0)

 -spec quote(Data, Safe) -> QuotedData
 when Data :: unicode:chardata(), Safe :: string(), QuotedData :: unicode:chardata().

Same as quote/1, but Safe allows user to provide a list of
characters to be protected from encoding.
Example:
1> uri_string:quote("SomeId/04", "/").
"SomeId/04"
2> uri_string:quote(<<"SomeId/04">>, "/").
<<"SomeId/04">>
Warning
Function is not aware about any URI component context and should not be used
on whole URI. If applied more than once on the same data, might produce
unexpected results.

 Link to this function

 recompose(URIMap)

 View Source

 (since OTP 21.0)

 -spec recompose(URIMap) -> URIString when URIMap :: uri_map(), URIString :: uri_string() | error().

Creates an RFC 3986 compliant
URIString (percent-encoded), based on the components of URIMap. If the
URIMap is invalid, an error tuple is returned.
See also the opposite operation parse/1.
Example:
1> URIMap = #{fragment => "nose", host => "example.com", path => "/over/there",
1> port => 8042, query => "name=ferret", scheme => "foo", userinfo => "user"}.
#{fragment => "nose",host => "example.com",
 path => "/over/there",port => 8042,query => "name=ferret",
 scheme => "foo",userinfo => "user"}

2> uri_string:recompose(URIMap).
"foo://example.com:8042/over/there?name=ferret#nose"

 Link to this function

 resolve(RefURI, BaseURI)

 View Source

 (since OTP 22.3)

 -spec resolve(RefURI, BaseURI) -> TargetURI
 when
 RefURI :: uri_string() | uri_map(),
 BaseURI :: uri_string() | uri_map(),
 TargetURI :: uri_string() | error().

Convert a RefURI reference that might be relative to a given base URI into the
parsed components of the reference's target, which can then be recomposed to
form the target URI.
Example:
1> uri_string:resolve("/abs/ol/ute", "http://localhost/a/b/c?q").
"http://localhost/abs/ol/ute"
2> uri_string:resolve("../relative", "http://localhost/a/b/c?q").
"http://localhost/a/relative"
3> uri_string:resolve("http://localhost/full", "http://localhost/a/b/c?q").
"http://localhost/full"
4> uri_string:resolve(#{path => "path", query => "xyz"}, "http://localhost/a/b/c?q").
"http://localhost/a/b/path?xyz"

 Link to this function

 resolve(RefURI, BaseURI, Options)

 View Source

 (since OTP 22.3)

 -spec resolve(RefURI, BaseURI, Options) -> TargetURI
 when
 RefURI :: uri_string() | uri_map(),
 BaseURI :: uri_string() | uri_map(),
 Options :: [return_map],
 TargetURI :: uri_string() | uri_map() | error().

Same as resolve/2 but with an additional Options parameter,
that controls whether the target URI shall be returned as an uri_map(). There is
one supported option: return_map.
Example:
1> uri_string:resolve("/abs/ol/ute", "http://localhost/a/b/c?q", [return_map]).
#{host => "localhost",path => "/abs/ol/ute",scheme => "http"}
2> uri_string:resolve(#{path => "/abs/ol/ute"}, #{scheme => "http",
2> host => "localhost", path => "/a/b/c?q"}, [return_map]).
#{host => "localhost",path => "/abs/ol/ute",scheme => "http"}

 Link to this function

 transcode(URIString, Options)

 View Source

 (since OTP 21.0)

 -spec transcode(URIString, Options) -> Result
 when
 URIString :: uri_string(),
 Options ::
 [{in_encoding, unicode:encoding()} | {out_encoding, unicode:encoding()}],
 Result :: uri_string() | error().

Transcodes an RFC 3986 compliant
URIString, where Options is a list of tagged tuples, specifying the inbound
(in_encoding) and outbound (out_encoding) encodings.
in_encoding and out_encoding specifies both binary encoding and percent-encoding
for the input and output data. Mixed encoding, where binary encoding is not the same as
percent-encoding, is not supported. If an argument is invalid, an error tuple is
returned.
Example:
1> uri_string:transcode(<<"foo%00%00%00%F6bar"/utf32>>,
1> [{in_encoding, utf32},{out_encoding, utf8}]).
<