

 wx

 v2.4.1

 [image: Logo]

 Table of contents

 	wxErlang Release Notes

 	User's Guides

 	wx the erlang binding of wxWidgets

 	

 	Modules

 	gl

 	glu

 	wx

 	wxAcceleratorEntry

 	wxAcceleratorTable

 	wxActivateEvent

 	wxArtProvider

 	wxAuiDockArt

 	wxAuiManager

 	wxAuiManagerEvent

 	wxAuiNotebook

 	wxAuiNotebookEvent

 	wxAuiPaneInfo

 	wxAuiSimpleTabArt

 	wxAuiTabArt

 	wxBitmap

 	wxBitmapButton

 	wxBitmapDataObject

 	wxBookCtrlBase

 	wxBookCtrlEvent

 	wxBoxSizer

 	wxBrush

 	wxBufferedDC

 	wxBufferedPaintDC

 	wxButton

 	wxCalendarCtrl

 	wxCalendarDateAttr

 	wxCalendarEvent

 	wxCaret

 	wxCheckBox

 	wxCheckListBox

 	wxChildFocusEvent

 	wxChoice

 	wxChoicebook

 	wxClientDC

 	wxClipboard

 	wxClipboardTextEvent

 	wxCloseEvent

 	wxColourData

 	wxColourDialog

 	wxColourPickerCtrl

 	wxColourPickerEvent

 	wxComboBox

 	wxCommandEvent

 	wxContextMenuEvent

 	wxControl

 	wxControlWithItems

 	wxCursor

 	wxDC

 	wxDCOverlay

 	wxDataObject

 	wxDateEvent

 	wxDatePickerCtrl

 	wxDialog

 	wxDirDialog

 	wxDirPickerCtrl

 	wxDisplay

 	wxDisplayChangedEvent

 	wxDropFilesEvent

 	wxEraseEvent

 	wxEvent

 	wxEvtHandler

 	wxFileDataObject

 	wxFileDialog

 	wxFileDirPickerEvent

 	wxFilePickerCtrl

 	wxFindReplaceData

 	wxFindReplaceDialog

 	wxFlexGridSizer

 	wxFocusEvent

 	wxFont

 	wxFontData

 	wxFontDialog

 	wxFontPickerCtrl

 	wxFontPickerEvent

 	wxFrame

 	wxGBSizerItem

 	wxGCDC

 	wxGLCanvas

 	wxGLContext

 	wxGauge

 	wxGenericDirCtrl

 	wxGraphicsBrush

 	wxGraphicsContext

 	wxGraphicsFont

 	wxGraphicsGradientStops

 	wxGraphicsMatrix

 	wxGraphicsObject

 	wxGraphicsPath

 	wxGraphicsPen

 	wxGraphicsRenderer

 	wxGrid

 	wxGridBagSizer

 	wxGridCellAttr

 	wxGridCellBoolEditor

 	wxGridCellBoolRenderer

 	wxGridCellChoiceEditor

 	wxGridCellEditor

 	wxGridCellFloatEditor

 	wxGridCellFloatRenderer

 	wxGridCellNumberEditor

 	wxGridCellNumberRenderer

 	wxGridCellRenderer

 	wxGridCellStringRenderer

 	wxGridCellTextEditor

 	wxGridEvent

 	wxGridSizer

 	wxHelpEvent

 	wxHtmlEasyPrinting

 	wxHtmlLinkEvent

 	wxHtmlWindow

 	wxIcon

 	wxIconBundle

 	wxIconizeEvent

 	wxIdleEvent

 	wxImage

 	wxImageList

 	wxInitDialogEvent

 	wxJoystickEvent

 	wxKeyEvent

 	wxLayoutAlgorithm

 	wxListBox

 	wxListCtrl

 	wxListEvent

 	wxListItem

 	wxListItemAttr

 	wxListView

 	wxListbook

 	wxLocale

 	wxLogNull

 	wxMDIChildFrame

 	wxMDIClientWindow

 	wxMDIParentFrame

 	wxMask

 	wxMaximizeEvent

 	wxMemoryDC

 	wxMenu

 	wxMenuBar

 	wxMenuEvent

 	wxMenuItem

 	wxMessageDialog

 	wxMiniFrame

 	wxMirrorDC

 	wxMouseCaptureChangedEvent

 	wxMouseCaptureLostEvent

 	wxMouseEvent

 	wxMoveEvent

 	wxMultiChoiceDialog

 	wxNavigationKeyEvent

 	wxNotebook

 	wxNotificationMessage

 	wxNotifyEvent

 	wxOverlay

 	wxPageSetupDialog

 	wxPageSetupDialogData

 	wxPaintDC

 	wxPaintEvent

 	wxPalette

 	wxPaletteChangedEvent

 	wxPanel

 	wxPasswordEntryDialog

 	wxPen

 	wxPickerBase

 	wxPopupTransientWindow

 	wxPopupWindow

 	wxPostScriptDC

 	wxPreviewCanvas

 	wxPreviewControlBar

 	wxPreviewFrame

 	wxPrintData

 	wxPrintDialog

 	wxPrintDialogData

 	wxPrintPreview

 	wxPrinter

 	wxPrintout

 	wxProgressDialog

 	wxQueryNewPaletteEvent

 	wxRadioBox

 	wxRadioButton

 	wxRegion

 	wxSashEvent

 	wxSashLayoutWindow

 	wxSashWindow

 	wxScreenDC

 	wxScrollBar

 	wxScrollEvent

 	wxScrollWinEvent

 	wxScrolledWindow

 	wxSetCursorEvent

 	wxShowEvent

 	wxSingleChoiceDialog

 	wxSizeEvent

 	wxSizer

 	wxSizerFlags

 	wxSizerItem

 	wxSlider

 	wxSpinButton

 	wxSpinCtrl

 	wxSpinEvent

 	wxSplashScreen

 	wxSplitterEvent

 	wxSplitterWindow

 	wxStaticBitmap

 	wxStaticBox

 	wxStaticBoxSizer

 	wxStaticLine

 	wxStaticText

 	wxStatusBar

 	wxStdDialogButtonSizer

 	wxStyledTextCtrl

 	wxStyledTextEvent

 	wxSysColourChangedEvent

 	wxSystemOptions

 	wxSystemSettings

 	wxTaskBarIcon

 	wxTaskBarIconEvent

 	wxTextAttr

 	wxTextCtrl

 	wxTextDataObject

 	wxTextEntryDialog

 	wxToggleButton

 	wxToolBar

 	wxToolTip

 	wxToolbook

 	wxTopLevelWindow

 	wxTreeCtrl

 	wxTreeEvent

 	wxTreebook

 	wxUpdateUIEvent

 	wxWebView

 	wxWebViewEvent

 	wxWindow

 	wxWindowCreateEvent

 	wxWindowDC

 	wxWindowDestroyEvent

 	wxXmlResource

 	wx_misc

 	wx_object

wxErlang Release Notes

This document describes the changes made to the wxErlang application.

 Wx 2.4.1

 Fixed Bugs and Malfunctions

	Add option to silence wx depracation macros.
Own Id: OTP-18988 Aux Id: PR-7750

 Wx 2.4

 Improvements and New Features

	Guards have been added to gen_*:start* API functions to catch bad arguments
earlier. Before this change, in some cases, a bad argument could tag along and
cause the server to fail later, right after start.
Own Id: OTP-18857 Aux Id: GH-7685

 Wx 2.3.1

 Fixed Bugs and Malfunctions

	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

 Wx 2.3

 Improvements and New Features

	Runtime dependencies have been updated.
Own Id: OTP-18350

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

 Wx 2.2.2.1

 Fixed Bugs and Malfunctions

	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

 Wx 2.2.2

 Fixed Bugs and Malfunctions

	Improve debug prints from the nifs. Some minor fixes for wxWidgets-3.2. Fixed
OpenGL debug functions.
Own Id: OTP-18512

 Wx 2.2.1

 Fixed Bugs and Malfunctions

	Added environment variable WX_MACOS_NON_GUI_APP to allow user to override
OSXIsGUIApplication behavior.
Own Id: OTP-18213 Aux Id: PR-6113

 Wx 2.2

 Improvements and New Features

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Added aux1Down and aux2Down fields to the wxMouseState record. Since one
record have been changed a recompilation of user code might be required.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17950

	Add mac specific menubar functions.
Own Id: OTP-18008 Aux Id: PR-5816

 Wx 2.1.4

 Fixed Bugs and Malfunctions

	Fix build failure with wxWidgets-3.1.6.
Own Id: OTP-18064 Aux Id: GH-5893

 Improvements and New Features

	Enable the possibility to build wx on windows with wxWidgets-3.1.6.
Own Id: OTP-18061 Aux Id: GH-5883

 Wx 2.1.3

 Fixed Bugs and Malfunctions

	Fixed a bug in callback handling which could lead to a unresponsive gui.
Own Id: OTP-17982 Aux Id: GH-5758

 Wx 2.1.2

 Fixed Bugs and Malfunctions

	Removed the static_data option from wxImage creation functions, as it was
broken and could lead to crashes. Now image data is always copied to wxWidgets
as was the default behavior.
Removed some non working wxGridEvent event types, which have there own
events in newer wxWidgets versions, and added a couple of event types that
where missing in wx.
Own Id: OTP-17947

 Wx 2.1.1

 Fixed Bugs and Malfunctions

	Fix crash in cleanup code when a gui application is exiting.
Fix errors in the OpenGL wrapper that could cause crashes and improve the
documentation.
Own Id: OTP-17745

 Wx 2.1

 Fixed Bugs and Malfunctions

	Fix crash when closing an application.
Own Id: OTP-17507

	Some functions with overloaded color arguments could not be used. For example
the copy constructor wxTextAttr:new(TextAttr) did not work.
Own Id: OTP-17577 Aux Id: GH-4999

 Improvements and New Features

	Added the Microsoft Edge WebView loader dll to the installer on windows.
Own Id: OTP-17325

	Handle specific Mac gui application events.
Own Id: OTP-17438 Aux Id: PR-4780

 Wx 2.0.1

 Fixed Bugs and Malfunctions

	Fix build problems when wxWidgets are built with -enable-std.
Own Id: OTP-17407 Aux Id: GH-4834

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 2.0

 Fixed Bugs and Malfunctions

	Fix compiler warnings produced by the clang compiler.
Own Id: OTP-17105 Aux Id: PR-2872

 Improvements and New Features

	The application has been completely rewritten in order to use wxWidgets
version 3 as its base.
Add basic documentation generated from the wxWidgets project.
Own Id: OTP-16800

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Added support for wxWebView.
Own Id: OTP-17213 Aux Id: PR-3027

	Due to the support of the new backend versions some API incompatibilities have
been introduced. Examples of changes are:
wxWindowDC default creators have been removed
wxClientDC default creators have been removed
wxPaintDC default creators have been removed
wxWindow:setVirtualSizeHints() has been deprecated in wxWidgets and removed
wxWindow:makeModal() has been deprecated in wxWidgets and removed
wxToolBar:add/insertTool without label have been deprecated in wxWidgets and
removed
wxStyledTextCtrl some functions have changed arguments from boolean to int
wxSizerItem:new() Some arguments have become options
Removed deprecated wxSizerItem:setWindow() use assignWindow()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSizer() use assignSizer()
wxMenu append/insert/prepend have changed return value and lost IsCheckable
argument
wxListCtrl:setItem/4 changed return value
wxImage:convertToGreyscale() options have changed
wxGridSizer:wxGridSizer() options have changed
wxGrid API have many changes
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGraphicsRenderer:createPen() have been removed
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGLCanvas API is incompatible
wxFlexGridSizer:wxFlexGridSizer() options have changed
wxDisplay:new() options have changed
wxCalendarDateAttr:new(ColText [,OptList]) have been removed
wxBitmapButton:set/getBitmapSelected() have been removed
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17219 Aux Id: OTP-16800

 Wx 1.9.3.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 1.9.3

 Fixed Bugs and Malfunctions

	Fixed wx initialization on mac, top level menus did not always work on newer
MacOS versions. The menus will not work until wxWidgets-3.1.5 is released and
used on these MacOS versions.
Own Id: OTP-17187

 Wx 1.9.2

 Fixed Bugs and Malfunctions

	Add popup menu callback to wxTaskBarIcon:new/1.
Own Id: OTP-16983 Aux Id: PR-2743

 Wx 1.9.1

 Fixed Bugs and Malfunctions

	Fix various compiler warnings on 64-bit Windows.
Own Id: OTP-15800

 Improvements and New Features

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

 Wx 1.9.0.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 1.9

 Improvements and New Features

	Added wxWindow:isShownOnScreen/1, wxMouseEvent:getWheelAxis and mac
specific menubar functions. Fixed defines that have changed in newer wxWidgets
versions, that caused some literals to become run-time dependent on wxWidgets
version.
Own Id: OTP-16285

 Wx 1.8.9

 Fixed Bugs and Malfunctions

	Fix a driver bug that could crashes when allocating memory.
Own Id: OTP-15883 Aux Id: PR-2261

 Wx 1.8.8

 Fixed Bugs and Malfunctions

	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

 Wx 1.8.7

 Fixed Bugs and Malfunctions

	Improved support for wxWidgets 3.1.3 which have changed wxFONTWEIGTH, also
added wxGCDC and wxDisplay modules.
Fixed a crash on Mojave and check for events more often.
Own Id: OTP-15587

 Wx 1.8.6

 Fixed Bugs and Malfunctions

	Fixed delayed delete bug which caused wx applications to crash on Mojave.
Own Id: OTP-15426 Aux Id: ERL-755

 Wx 1.8.5

 Fixed Bugs and Malfunctions

	Fixed compilation warning on Darwin.
Own Id: OTP-15230 Aux Id: PR-1860

 Wx 1.8.4

 Improvements and New Features

	Changed implementation so wx can now be built towards wxWidgets-3.1.1.
Own Id: OTP-15027

 Wx 1.8.3

 Fixed Bugs and Malfunctions

	wx crashes in otp 20.1 if empty binaries was sent down as arguments.
Own Id: OTP-14688

 Wx 1.8.2

 Fixed Bugs and Malfunctions

	Do not deprecate wxGraphicsContext:createLinearGradientBrush/7 and
wxGraphicsContext:createRadialGradientBrush/8 which are still available in
wxWidgets-3.0.
Own Id: OTP-14539

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

 Wx 1.8.1

 Fixed Bugs and Malfunctions

	Fix a livelock that could be caused by wx:batch/1.
Own Id: OTP-14289

 Wx 1.8

 Fixed Bugs and Malfunctions

	Allow string arguments to be binaries as specified, i.e. unicode:chardata().
Own Id: OTP-13934 Aux Id: ERL-270

 Improvements and New Features

	Add wxWindow:dragAcceptFiles/2 and wxDropFilesEvent to support simple drag and
drop from file browser.
Own Id: OTP-13933

 Wx 1.7.1

 Fixed Bugs and Malfunctions

	Increased the stacksize for the wx thread. The default stacksize on Windows is
1MB which is not enough if the user created many nested dialogs.
Own Id: OTP-13816

 Wx 1.7

 Fixed Bugs and Malfunctions

	Fixed bugs which could cause called functions to be invoked twice or not at
all when callbacks where invoked at the same time.
Own Id: OTP-13491

 Improvements and New Features

	Changed atom 'boolean' fields in #wxMouseState{} to 'boolean()'.
Moved out arguments in wxListCtrl:hitTest to result.
Removed no-op functions in wxGauge that have been removed from wxWidgets-3.1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13553

 Wx 1.6.1

 Fixed Bugs and Malfunctions

	Fixed commands with multiple binaries, such as wxImage:new/4. Added
wxWindow:SetDoubleBuffered/1, wxWindow:isDoubleBuffered/1,
wxWindow:setTransparent/2 and wxWindow:canSetTransparent/1. Fixed timing
issues.
Own Id: OTP-13404

 Wx 1.6

 Improvements and New Features

	Add wxOverlay and make wxPostScripDC optional to make it easier to build on
windows.
Correct some function specifications.
The driver implementation have been optimized and now invokes commands after
events have been sent to erlang.
Own Id: OTP-13160

 Wx 1.5

 Improvements and New Features

	Extend AUI functionality.
Own Id: OTP-12961

 Wx 1.4

 Fixed Bugs and Malfunctions

	The undocumented option generic_debug for gen_server has been removed.
Own Id: OTP-12183

	Remove raise condition where wx could crash during emulator stoppage.
Own Id: OTP-12734

 Improvements and New Features

	Use wxWidgets-3.0, if found, as default backend on windows.
Own Id: OTP-12632

	Add missing fields in some events records. May require a recompilation of user
applications.
Own Id: OTP-12660

 Wx 1.3.3

 Fixed Bugs and Malfunctions

	Fix timing related crash during wx application stop.
Own Id: OTP-12374

 Wx 1.3.2

 Fixed Bugs and Malfunctions

	Fixed a minor typo in the graphicsContext example.
Own Id: OTP-12259

 Improvements and New Features

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

 Wx 1.3.1

 Fixed Bugs and Malfunctions

	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

 Wx 1.3

 Fixed Bugs and Malfunctions

	Fix delayed destroy for wxPaintDC objects which could cause an eternal loop
for modal dialogs.
Fix wxSL_LABELS compatibility between wxWidgets-2.8 and wxWidgets-3.0 versions
Own Id: OTP-11985

 Improvements and New Features

	Add missing classes wxPopup[Transient]Window, wxActivateEvent and
wxTextCtrl:cahngeValue/2 function.
Own Id: OTP-11986

 Wx 1.2

 Fixed Bugs and Malfunctions

	Refactored C++ code, fixed crashes and a deadlock on linux.
Own Id: OTP-11586

	Some local implementations of removing the last element from a list are
replaced by lists:droplast/1. Note that this requires at least stdlib-2.0,
which is the stdlib version delivered in OTP 17.0. (Thanks to Hans Svensson)
Own Id: OTP-11678

	Reworked the internal event handling to avoid crashes in destroy objects.
Thanks Tom for the bug report.
Own Id: OTP-11699

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Wx 1.1.2

 Fixed Bugs and Malfunctions

	Fixed a problem which caused the debugger to crash when closing a window.
Fixed static linking on mac.
Own Id: OTP-11444

 Wx 1.1.1

 Fixed Bugs and Malfunctions

	wx initialization hanged with wxWidgets-3.0 on mac. Fixed a crash with
wxListBox on wxWidgets-3.0 (thanks Sergei Golovan) Fixed documentation links.
Fixed event callbacks cleanup.
Own Id: OTP-11393

	Improve documentation (Thanks to Boris Mühmer)
Own Id: OTP-11505

 Improvements and New Features

	Fix silent make rules (Thanks to Anthony Ramine)
Own Id: OTP-11515

 Wx 1.0

 Fixed Bugs and Malfunctions

	Add {silent_start, boolean()} option to wx:new/1 in order to be able to
suppress error messages during startup of wx. (Thanks to Håkan Mattsson)
Own Id: OTP-10585

	Fix wxTreeCtrl:getBoundingRect/2 and wxTreeCtrl:hitTest/1. wxTreeCtrl:hitTest
now returns a tuple not bug compatible with previous releases but needed.
Own Id: OTP-10743

 Improvements and New Features

	The wx application now compiles and is usable with the unstable development
branch of wxWidgets-2.9. Some functions are currently not available in
wxWidgets-2.9 and their erlang counterparts are marked as deprecated. They
will generate an error if called when linked against wxWidgets-2.9 libraries.
This means that wx can now be built on 64bit MacOsX, but keep in mind that
wxWidgets-2.9 is still a development branch and needs (a lot) more work before
it becomes stable.
Own Id: OTP-10407 Aux Id: kunagi-262 [173]

 Wx 0.99.2

 Improvements and New Features

	Fix errors in wxDC and wxGraphicsContext api.
Add wxTaskBarIcon.
Add wxStyledTextControl:setEdgeMode/2.
Add type and specs for all functions and records.
Own Id: OTP-9947

 Wx 0.99.1

 Fixed Bugs and Malfunctions

	Fixed a deadlock in the driver, which could happen if a callback caused
another callback to be invoked.
Own Id: OTP-9725

 Improvements and New Features

	Implemented wxSystemOptions.
Load Opengl from libGL.so.1 instead libGL.so to work around linux problems.
Own Id: OTP-9702

 Wx 0.99

 Fixed Bugs and Malfunctions

	wx: fix obsolete guard warning (list/1) (Thanks to Tuncer Ayaz)
Own Id: OTP-9513

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Improvements and New Features

	Support virtual tables in wxListCtrl.
Own Id: OTP-9415

 Wx 0.98.10

 Fixed Bugs and Malfunctions

	Fixed wx app files on mac and solaris. Thanks Jachym Holecek and Joe Williams.
Own Id: OTP-9324

 Wx 0.98.9

 Fixed Bugs and Malfunctions

	Wx crashed if graphics could not be initiated, for instance if DISPLAY was not
available.
Wx could crash during startup, thanks Boris Muhmer for extra ordinary testing.
Own Id: OTP-9080

	Wx on MacOS X generated complains on stderr about certain cocoa functions not
being called from the "Main thread". This is now corrected.
Own Id: OTP-9081

 Wx 0.98.8

 Improvements and New Features

	Add wxSystemSettings which was missing in the previous release, despite
previous comments.
Fix an external loop when stopping erlang nicely.
Separate OpenGL to it's own dynamic loaded library, so other graphic libraries
can reuse the gl module and it will not waste memory if not used.
Own Id: OTP-8951

 Wx 0.98.7

 Fixed Bugs and Malfunctions

	Fix crash (segmentation fault) in callback handling.
Own Id: OTP-8766

 Improvements and New Features

	Add wxSystemSettings module.
Add wxTreeCtrl:editLabel/2.
Own Id: OTP-8767

 Wx 0.98.6

 Improvements and New Features

	Calling sys:get_status() for processes that have globally registered names
that were not atoms would cause a crash. Corrected. (Thanks to Steve Vinoski.)
Own Id: OTP-8656

 Wx 0.98.5

 Fixed Bugs and Malfunctions

	Corrected incorrectly generated wxFileDialog:getPaths/1. Reported by
Jason/hornja.
Own Id: OTP-8330

	Fixed a memory reference bug which caused unexplained {badarg, Int} exits
when running multiple wx applications.
Own Id: OTP-8461

 Improvements and New Features

	Added wxListCtrl:getEditCtrl/1 (not available on Mac).
Own Id: OTP-8408

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

	Changed representation of wxTreeItem to be an integer. This saves memory,
where the driver do not need to keep a object reference to each tree item.
Added getFirstChild and getNextChild to wxTreeCtrl.
Own Id: OTP-8462

 Wx 0.98.4

 Improvements and New Features

	Added wx_object improvements from Mazen.
Fixed pid issues, reported by Mazen.
Added wxLogNull class, reported by Amit Murthy.
Various configure fixes.
Own Id: OTP-8243 Aux Id: seq11418

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

	wx now builds with wxWidgets 2.8.4 or a later 2.8 release, thanks Nico Kruber.
Own Id: OTP-8292

 Wx 0.98.3

 Fixed Bugs and Malfunctions

	Added wxListCtrl sorting and build fixes supplied by Paul Hampson. Thanks.
Own Id: OTP-8126

 Improvements and New Features

	wxHtmlWindow class implemented.
All exceptions from callbacks are now caught and written to the log.
Some defines where wrong in 'wx.hrl'.
wx:batch/1 and friends could hang forever if for instance a breakpoint was
set inside the fun. That caused all wx applications to hang.
Added missing wxAuiPaneInfo constructor and destructor.
Added wxAuiNotebookEvent and wxAuiManagerEvent.
Calling non supported wxWidgets functions hanged instead of crashed.
Update OpenGL to version 3.1 and added some of the missing glu functions.
Fixed wxRadioBox which inherited the wrong class, thanks Atilla Erdodi.
Own Id: OTP-8083

	Removed some of the automatic garbage collecting after application exit, user
will get a warning instead so he can correct the code.
Own Id: OTP-8138

 Wx 0.98.2

 Improvements and New Features

	Olle Mattson have made a large demo, see examples/demo/, that triggered the
following bugs and new features:
New book controls.
Added wxToolbar:addTool/6.
Empty binaries will be used to indicate NULL where applicable.
Own Id: OTP-7943

	Applied patch from Nico Kruber, which fixes building on some wxwidgets
installations.
Open source

 Wx 0.98.1

 Improvements and New Features

	Added xrcctrl/3 to wxXmlResource and added a resource example.
Added several event types and events records and fixed a couple of event
related bugs.
Event callbacks can now use wxEvtHandler:connect/2.
Error handling and debugging aid have been improved.
Added wxSplitterWindow and wxGauge:pulse and a couple of missing macros in
wx.hrl.
Thanks to Steve Davis for feedback and bug reports.
Own Id: OTP-7875

 Wx 0.98

 Improvements and New Features

	A first beta release of wxErlang.
Own Id: OTP-7859

wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document
describes the erlang mapping to wxWidgets and it's implementation. It is not a
complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with
the original API so that the original documentation and examples shall be as
easy as possible to use.
wxErlang examples and test suite can be found in the erlang src release. They
can also provide some help on how to use the API.
This is currently a very brief introduction to wx. The application is still
under development, which means the interface may change, and the test suite
currently have a poor coverage ratio.

 Contents

	Introduction
	Multiple processes and memory handling
	Event Handling
	Acknowledgments

 Introduction

The original wxWidgets is an object-oriented (C++) API and that is reflected
in the erlang mapping. In most cases each class in wxWidgets is represented as a
module in erlang. This gives the wx application a huge interface, spread over
several modules, and it all starts with the wx module. The wx module
contains functions to create and destroy the GUI, i.e. wx:new/0,
wx:destroy/0, and some other useful functions.
Objects or object references in wx should be seen as erlang processes rather
than erlang terms. When you operate on them they can change state, e.g. they are
not functional objects as erlang terms are. Each object has a type or rather a
class, which is manipulated with the corresponding module or by sub-classes of
that object. Type checking is done so that a module only operates on it's
objects or inherited classes.
An object is created with new and destroyed with destroy. Most functions in
the classes are named the same as their C++ counterpart, except that for
convenience, in erlang they start with a lowercase letter and the first argument
is the object reference. Optional arguments are last and expressed as tagged
tuples in any order.
For example the wxWindow C++ class is implemented in the wxWindow erlang
module and the member wxWindow::CenterOnParent is thus
wxWindow:centerOnParent. The following C++ code:
 wxWindow MyWin = new wxWindow();
 MyWin.CenterOnParent(wxVERTICAL);
 ...
 delete MyWin;
would in erlang look like:
 MyWin = wxWindow:new(),
 wxWindow:centerOnParent(MyWin, [{dir,?wxVERTICAL}]),
 ...
 wxWindow:destroy(MyWin),
When you are reading wxWidgets documentation or the examples, you will notice
that some of the most basic classes are missing in wx, they are directly
mapped to corresponding erlang terms:
	wxPoint is represented by {Xcoord,Ycoord}

	wxSize is represented by {Width,Height}

	wxRect is represented by {Xcoord,Ycoord,Width,Height}

	wxColour is represented by {Red,Green,Blue[,Alpha]}

	wxString is represented by
unicode:charlist()

	wxGBPosition is represented by {Row,Column}

	wxGBSpan is represented by {RowSpan,ColumnSPan}

	wxGridCellCoords is represented by {Row,Column}

In the places where the erlang API differs from the original one it should be
obvious from the erlang documentation which representation has been used. E.g.
the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.
Colours are represented with {Red,Green,Blue[,Alpha]}, the Alpha value is
optional when used as an argument to functions, but it will always be returned
from wx functions.
Defines, enumerations and global variables exists in wx.hrl as defines. Most
of these defines are constants but not all. Some are platform dependent and
therefore the global variables must be instantiated during runtime. These will
be acquired from the driver with a call, so not all defines can be used in
matching statements. Class local enumerations will be prefixed with the class
name and a underscore as in ClassName_Enum.
Additionally some global functions, i.e. non-class functions, exist in the
wx_misc module.
wxErlang is implemented as a (threaded) driver and a rather direct interface
to the C++ API, with the drawback that if the erlang programmer does an error,
it might crash the emulator.
Since the driver is threaded it requires a smp enabled emulator, that provides
a thread safe interface to the driver.

 Multiple processes and memory handling

The intention is that each erlang application calls wx:new() once to setup it's
GUI which creates an environment and a memory mapping. To be able to use wx
from several processes in your application, you must share the environment. You
can get the active environment with wx:get_env/0 and set it in the new
processes with wx:set_env/1. Two processes or applications which have both
called wx:new() will not be able use each others objects.
 wx:new(),
 MyWin = wxFrame:new(wx:null(), 42, "Example", []),
 Env = wx:get_env(),
 spawn(fun() ->
 wx:set_env(Env),
 %% Here you can do wx calls from your helper process.
 ...
 end),
 ...
When wx:destroy/0 is invoked or when all processes in the application have
died, the memory is deleted and all windows created by that application are
closed.
The wx application never cleans or garbage collects memory as long as the user
application is alive. Most of the objects are deleted when a window is closed,
or at least all the objects which have a parent argument that is non null. By
using wxCLASS:destroy/1 when possible you can avoid an increasing memory
usage. This is especially important when wxWidgets assumes or recommends that
you (or rather the C++ programmer) have allocated the object on the stack since
that will never be done in the erlang binding. For example wxDC class or its
sub-classes or wxSizerFlags.
Currently the dialogs show modal function freezes wxWidgets until the dialog is
closed. That is intended but in erlang where you can have several GUI
applications running at the same time it causes trouble. This will hopefully be
fixed in future wxWidgets releases.

 Event Handling

Event handling in wx differs most from the original API. You must specify
every event you want to handle in wxWidgets, that is the same in the erlang
binding but you can choose to receive the events as messages or handle them with
callback funs.
Otherwise the event subscription is handled as wxWidgets dynamic event-handler
connection. You subscribe to events of a certain type from objects with an ID
or within a range of IDs. The callback fun is optional, if not supplied the
event will be sent to the process that called connect/2. Thus, a handler is a
callback fun or a process which will receive an event message.
Events are handled in order from bottom to top, in the widgets hierarchy, by the
last subscribed handler first. Depending on if wxEvent:skip() is called the
event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.
Message events looks like
#wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec
}. The id is the identifier of the object that received the event. The obj
field contains the object that you used connect on. The userData field
contains a user supplied term, this is an option to connect. And the event
field contains a record with event type dependent information. The first element
in the event record is always the type you subscribed to. For example if you
subscribed to key_up events you will receive the #wx{event=Event} where
Event will be a wxKey event record where Event#wxKey.type = key_up.
In wxWidgets the developer has to call wxEvent:skip() if he wants the event
to be processed by other handlers. You can do the same in wx if you use
callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the
default it is false. True means that you get the message but let the subsequent
handlers also handle the event. If you want to change this behavior dynamically
you must use callbacks and call wxEvent:skip().
Callback event handling is done by using the optional callback fun/2 when
attaching the handler. The fun(#wx{},wxObject() must take two arguments
where the first is the same as with message events described above and the
second is an object reference to the actual event object. With the event object
you can call wxEvent:skip() and access all the data. When using callbacks you
must call wxEvent:skip() by yourself if you want any of the events to be
forwarded to the following handlers. The actual event objects are deleted after
the fun returns.
The callbacks are always invoked by another process and have exclusive usage of
the GUI when invoked. This means that a callback fun cannot use the process
dictionary and should not make calls to other processes. Calls to another
process inside a callback fun may cause a deadlock if the other process is
waiting on completion of his call to the GUI.

 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master
thesis. The current version is a total re-write but many ideas have been reused.
The reason for the re-write was mostly due to the limited requirements he had
been given by us.
Also thanks to the wxWidgets team that develops and supports it so we have
something to use.

gl

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 clamp()

 enum()

 f()

 i()

 m12()

 m16()

 matrix()

 mem()

 offset()

 Functions

 accum(Op, Value)

 The accumulation buffer is an extended-range color buffer. Images are not
rendered into it. Rather, images rendered into one of the color buffers are
added to the contents of the accumulation buffer after rendering. Effects such
as antialiasing (of points, lines, and polygons), motion blur, and depth of
field can be created by accumulating images generated with different
transformation matrices.

 activeShaderProgram(Pipeline, Program)

 gl:activeShaderProgram/2 sets the linked program
named by Program to be the active program for the program pipeline object
Pipeline. The active program in the active program pipeline object is the
target of calls to gl:uniform() when no program has been made
current through a call to gl:useProgram/1.

 activeTexture(Texture)

 gl:activeTexture/1 selects which texture unit subsequent
texture state calls will affect. The number of texture units an implementation
supports is implementation dependent, but must be at least 80.

 alphaFunc(Func, Ref)

 The alpha test discards fragments depending on the outcome of a comparison
between an incoming fragment's alpha value and a constant reference value.
gl:alphaFunc/2 specifies the reference value and the
comparison function. The comparison is performed only if alpha testing is
enabled. By default, it is not enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_ALPHA_TEST.)

 areTexturesResident(Textures)

 GL establishes a ``working set'' of textures that are resident in texture
memory. These textures can be bound to a texture target much more efficiently
than textures that are not resident.

 arrayElement(I)

 gl:arrayElement/1 commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
vertex and attribute data for point, line, and polygon primitives. If
?GL_VERTEX_ARRAY is enabled when gl:arrayElement/1 is
called, a single vertex is drawn, using vertex and attribute data taken from
location I of the enabled arrays. If ?GL_VERTEX_ARRAY is not enabled, no
drawing occurs but the attributes corresponding to the enabled arrays are
modified.

 attachShader(Program, Shader)

 In order to create a complete shader program, there must be a way to specify the
list of things that will be linked together. Program objects provide this
mechanism. Shaders that are to be linked together in a program object must first
be attached to that program object. gl:attachShader/2
attaches the shader object specified by Shader to the program object specified
by Program. This indicates that Shader will be included in link operations
that will be performed on Program.

 'begin'(Mode)

 Equivalent to '\'end\''/0.

 beginConditionalRender(Id, Mode)

 Equivalent to endConditionalRender/0.

 beginQuery(Target, Id)

 Equivalent to endQuery/1.

 beginQueryIndexed(Target, Index, Id)

 Equivalent to endQueryIndexed/2.

 beginTransformFeedback(PrimitiveMode)

 Equivalent to endTransformFeedback/0.

 bindAttribLocation(Program, Index, Name)

 gl:bindAttribLocation/3 is used to associate a
user-defined attribute variable in the program object specified by Program
with a generic vertex attribute index. The name of the user-defined attribute
variable is passed as a null terminated string in Name. The generic vertex
attribute index to be bound to this variable is specified by Index. When
Program is made part of current state, values provided via the generic vertex
attribute Index will modify the value of the user-defined attribute variable
specified by Name.

 bindBuffer(Target, Buffer)

 gl:bindBuffer/2 binds a buffer object to the specified
buffer binding point. Calling gl:bindBuffer/2 with Target
set to one of the accepted symbolic constants and Buffer set to the name of a
buffer object binds that buffer object name to the target. If no buffer object
with name Buffer exists, one is created with that name. When a buffer object
is bound to a target, the previous binding for that target is automatically
broken.

 bindBufferBase(Target, Index, Buffer)

 gl:bindBufferBase/3 binds the buffer object Buffer to
the binding point at index Index of the array of targets specified by
Target. Each Target represents an indexed array of buffer binding points, as
well as a single general binding point that can be used by other buffer
manipulation functions such as gl:bindBuffer/2 or
glMapBuffer. In addition to binding Buffer to the indexed buffer binding
target, gl:bindBufferBase/3 also binds Buffer to the
generic buffer binding point specified by Target.

 bindBufferRange(Target, Index, Buffer, Offset, Size)

 gl:bindBufferRange/5 binds a range the buffer object
Buffer represented by Offset and Size to the binding point at index
Index of the array of targets specified by Target. Each Target represents
an indexed array of buffer binding points, as well as a single general binding
point that can be used by other buffer manipulation functions such as
gl:bindBuffer/2 or glMapBuffer. In addition to binding a
range of Buffer to the indexed buffer binding target,
gl:bindBufferRange/5 also binds the range to the
generic buffer binding point specified by Target.

 bindBuffersBase(Target, First, Buffers)

 gl:bindBuffersBase/3 binds a set of Count buffer
objects whose names are given in the array Buffers to the Count consecutive
binding points starting from index First of the array of targets specified by
Target. If Buffers is ?NULL then
gl:bindBuffersBase/3 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferBase/3, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersBase/3

 bindBuffersRange(Target, First, Buffers, Offsets, Sizes)

 gl:bindBuffersRange/5 binds a set of Count ranges
from buffer objects whose names are given in the array Buffers to the Count
consecutive binding points starting from index First of the array of targets
specified by Target. Offsets specifies the address of an array containing
Count starting offsets within the buffers, and Sizes specifies the address
of an array of Count sizes of the ranges. If Buffers is ?NULL then
Offsets and Sizes are ignored and
gl:bindBuffersRange/5 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferRange/5, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersRange/5

 bindFragDataLocation(Program, Color, Name)

 gl:bindFragDataLocation/3 explicitly specifies the
binding of the user-defined varying out variable Name to fragment shader color
number ColorNumber for program Program. If Name was bound previously, its
assigned binding is replaced with ColorNumber. Name must be a
null-terminated string. ColorNumber must be less than ?GL_MAX_DRAW_BUFFERS.

 bindFragDataLocationIndexed(Program, ColorNumber, Index, Name)

 gl:bindFragDataLocationIndexed/4 specifies
that the varying out variable Name in Program should be bound to fragment
color ColorNumber when the program is next linked. Index may be zero or one
to specify that the color be used as either the first or second color input to
the blend equation, respectively.

 bindFramebuffer(Target, Framebuffer)

 gl:bindFramebuffer/2 binds the framebuffer object with
name Framebuffer to the framebuffer target specified by Target. Target
must be either ?GL_DRAW_FRAMEBUFFER, ?GL_READ_FRAMEBUFFER or
?GL_FRAMEBUFFER. If a framebuffer object is bound to ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback
operations, respectively, until it is deleted or another framebuffer is bound to
the corresponding bind point. Calling
gl:bindFramebuffer/2 with Target set to
?GL_FRAMEBUFFER binds Framebuffer to both the read and draw framebuffer
targets. Framebuffer is the name of a framebuffer object previously returned
from a call to gl:genFramebuffers/1, or zero to break
the existing binding of a framebuffer object to Target.

 bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format)

 gl:bindImageTexture/7 binds a single level of a
texture to an image unit for the purpose of reading and writing it from shaders.
Unit specifies the zero-based index of the image unit to which to bind the
texture level. Texture specifies the name of an existing texture object to
bind to the image unit. If Texture is zero, then any existing binding to the
image unit is broken. Level specifies the level of the texture to bind to the
image unit.

 bindImageTextures(First, Textures)

 gl:bindImageTextures/2 binds images from an array of
existing texture objects to a specified number of consecutive image units.
Count specifies the number of texture objects whose names are stored in the
array Textures. That number of texture names are read from the array and bound
to the Count consecutive texture units starting from First. If the name zero
appears in the Textures array, any existing binding to the image unit is
reset. Any non-zero entry in Textures must be the name of an existing texture
object. When a non-zero entry in Textures is present, the image at level zero
is bound, the binding is considered layered, with the first layer set to zero,
and the image is bound for read-write access. The image unit format parameter is
taken from the internal format of the image at level zero of the texture object.
For cube map textures, the internal format of the positive X image of level zero
is used. If Textures is ?NULL then it is as if an appropriately sized array
containing only zeros had been specified.

 bindProgramPipeline(Pipeline)

 gl:bindProgramPipeline/1 binds a program pipeline
object to the current context. Pipeline must be a name previously returned
from a call to gl:genProgramPipelines/1. If no
program pipeline exists with name Pipeline then a new pipeline object is
created with that name and initialized to the default state vector.

 bindRenderbuffer(Target, Renderbuffer)

 gl:bindRenderbuffer/2 binds the renderbuffer object
with name Renderbuffer to the renderbuffer target specified by Target.
Target must be ?GL_RENDERBUFFER. Renderbuffer is the name of a
renderbuffer object previously returned from a call to
gl:genRenderbuffers/1, or zero to break the existing
binding of a renderbuffer object to Target.

 bindSampler(Unit, Sampler)

 gl:bindSampler/2 binds Sampler to the texture unit at
index Unit. Sampler must be zero or the name of a sampler object previously
returned from a call to gl:genSamplers/1. Unit must be
less than the value of ?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

 bindSamplers(First, Samplers)

 gl:bindSamplers/2 binds samplers from an array of existing
sampler objects to a specified number of consecutive sampler units. Count
specifies the number of sampler objects whose names are stored in the array
Samplers. That number of sampler names is read from the array and bound to the
Count consecutive sampler units starting from First.

 bindTexture(Target, Texture)

 gl:bindTexture/2 lets you create or use a named texture.
Calling gl:bindTexture/2 with Target set to
?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_BUFFER, ?GL_TEXTURE_2D_MULTISAMPLE
or ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY and Texture set to the name of the new
texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

 bindTextures(First, Textures)

 gl:bindTextures/2 binds an array of existing texture
objects to a specified number of consecutive texture units. Count specifies
the number of texture objects whose names are stored in the array Textures.
That number of texture names are read from the array and bound to the Count
consecutive texture units starting from First. The target, or type of texture
is deduced from the texture object and each texture is bound to the
corresponding target of the texture unit. If the name zero appears in the
Textures array, any existing binding to any target of the texture unit is
reset and the default texture for that target is bound in its place. Any
non-zero entry in Textures must be the name of an existing texture object. If
Textures is ?NULL then it is as if an appropriately sized array containing
only zeros had been specified.

 bindTextureUnit(Unit, Texture)

 gl:bindTextureUnit/2 binds an existing texture object
to the texture unit numbered Unit.

 bindTransformFeedback(Target, Id)

 gl:bindTransformFeedback/2 binds the transform
feedback object with name Id to the current GL state. Id must be a name
previously returned from a call to
gl:genTransformFeedbacks/1. If Id has not
previously been bound, a new transform feedback object with name Id and
initialized with the default transform state vector is created.

 bindVertexArray(Array)

 gl:bindVertexArray/1 binds the vertex array object with
name Array. Array is the name of a vertex array object previously returned
from a call to gl:genVertexArrays/1, or zero to break
the existing vertex array object binding.

 bindVertexBuffer(Bindingindex, Buffer, Offset, Stride)

 Equivalent to vertexArrayVertexBuffer/5.

 bindVertexBuffers(First, Buffers, Offsets, Strides)

 Equivalent to vertexArrayVertexBuffers/5.

 bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap)

 A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1's in the
bitmap are written using the current raster color or index. Frame buffer pixels
corresponding to 0's in the bitmap are not modified.

 blendColor(Red, Green, Blue, Alpha)

 The ?GL_BLEND_COLOR may be used to calculate the source and destination
blending factors. The color components are clamped to the range [0 1] before
being stored. See gl:blendFunc/2 for a complete description
of the blending operations. Initially the ?GL_BLEND_COLOR is set to (0, 0, 0,
0).

 blendEquation(Mode)

 Equivalent to blendEquationi/2.

 blendEquationi(Buf, Mode)

 The blend equations determine how a new pixel (the ''source'' color) is combined
with a pixel already in the framebuffer (the ''destination'' color). This
function sets both the RGB blend equation and the alpha blend equation to a
single equation. gl:blendEquationi/2 specifies the blend
equation for a single draw buffer whereas
gl:blendEquation/1 sets the blend equation for all draw
buffers.

 blendEquationSeparate(ModeRGB, ModeAlpha)

 Equivalent to blendEquationSeparatei/3.

 blendEquationSeparatei(Buf, ModeRGB, ModeAlpha)

 The blend equations determines how a new pixel (the ''source'' color) is
combined with a pixel already in the framebuffer (the ''destination'' color).
These functions specify one blend equation for the RGB-color components and one
blend equation for the alpha component.
gl:blendEquationSeparatei/3 specifies the blend
equations for a single draw buffer whereas
gl:blendEquationSeparate/2 sets the blend
equations for all draw buffers.

 blendFunc(Sfactor, Dfactor)

 Equivalent to blendFunci/3.

 blendFunci(Buf, Src, Dst)

 Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.

 blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha)

 Equivalent to blendFuncSeparatei/5.

 blendFuncSeparatei(Buf, SrcRGB, DstRGB, SrcAlpha, DstAlpha)

 Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.

 blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter)

 gl:blitFramebuffer/10 and glBlitNamedFramebuffer
transfer a rectangle of pixel values from one region of a read framebuffer to
another region of a draw framebuffer.

 bufferData(Target, Size, Data, Usage)

 gl:bufferData/4 and glNamedBufferData create a new data
store for a buffer object. In case of gl:bufferData/4, the
buffer object currently bound to Target is used. For glNamedBufferData, a
buffer object associated with ID specified by the caller in Buffer will be
used instead.

 bufferStorage(Target, Size, Data, Flags)

 gl:bufferStorage/4 and glNamedBufferStorage create a
new immutable data store. For gl:bufferStorage/4, the
buffer object currently bound to Target will be initialized. For
glNamedBufferStorage, Buffer is the name of the buffer object that will be
configured. The size of the data store is specified by Size. If an initial
data is available, its address may be supplied in Data. Otherwise, to create
an uninitialized data store, Data should be ?NULL.

 bufferSubData(Target, Offset, Size, Data)

 gl:bufferSubData/4 and glNamedBufferSubData redefine
some or all of the data store for the specified buffer object. Data starting at
byte offset Offset and extending for Size bytes is copied to the data store
from the memory pointed to by Data. Offset and Size must define a range
lying entirely within the buffer object's data store.

 callList(List)

 gl:callList/1 causes the named display list to be executed.
The commands saved in the display list are executed in order, just as if they
were called without using a display list. If List has not been defined as a
display list, gl:callList/1 is ignored.

 callLists(Lists)

 gl:callLists/1 causes each display list in the list of names
passed as Lists to be executed. As a result, the commands saved in each
display list are executed in order, just as if they were called without using a
display list. Names of display lists that have not been defined are ignored.

 checkFramebufferStatus(Target)

 gl:checkFramebufferStatus/1 and
glCheckNamedFramebufferStatus return the completeness status of a framebuffer
object when treated as a read or draw framebuffer, depending on the value of
Target.

 clampColor(Target, Clamp)

 gl:clampColor/2 controls color clamping that is performed
during gl:readPixels/7. Target must be
?GL_CLAMP_READ_COLOR. If Clamp is ?GL_TRUE, read color clamping is
enabled; if Clamp is ?GL_FALSE, read color clamping is disabled. If Clamp
is ?GL_FIXED_ONLY, read color clamping is enabled only if the selected read
buffer has fixed point components and disabled otherwise.

 clear(Mask)

 gl:clear/1 sets the bitplane area of the window to values
previously selected by gl:clearColor/4,
gl:clearDepth/1, and
gl:clearStencil/1. Multiple color buffers can be cleared
simultaneously by selecting more than one buffer at a time using
gl:drawBuffer/1.

 clearAccum(Red, Green, Blue, Alpha)

 gl:clearAccum/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the accumulation buffer.

 clearBufferData(Target, Internalformat, Format, Type, Data)

 Equivalent to clearBufferuiv/3.

 clearBufferfi(Buffer, Drawbuffer, Depth, Stencil)

 Equivalent to clearBufferuiv/3.

 clearBufferfv(Buffer, Drawbuffer, Value)

 Equivalent to clearBufferuiv/3.

 clearBufferiv(Buffer, Drawbuffer, Value)

 Equivalent to clearBufferuiv/3.

 clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data)

 Equivalent to clearBufferuiv/3.

 clearBufferuiv(Buffer, Drawbuffer, Value)

 These commands clear a specified buffer of a framebuffer to specified value(s).
For gl:clearBuffer*(), the framebuffer is the currently
bound draw framebuffer object. For glClearNamedFramebuffer*, Framebuffer is
zero, indicating the default draw framebuffer, or the name of a framebuffer
object.

 clearColor(Red, Green, Blue, Alpha)

 gl:clearColor/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the color buffers. Values
specified by gl:clearColor/4 are clamped to the range [0
1].

 clearDepth(Depth)

 Equivalent to clearDepthf/1.

 clearDepthf(D)

 gl:clearDepth/1 specifies the depth value used by
gl:clear/1 to clear the depth buffer. Values specified by
gl:clearDepth/1 are clamped to the range [0 1].

 clearIndex(C)

 gl:clearIndex/1 specifies the index used by
gl:clear/1 to clear the color index buffers. C is not clamped.
Rather, C is converted to a fixed-point value with unspecified precision to
the right of the binary point. The integer part of this value is then masked
with 2 m-1, where m is the number of bits in a color index stored in the frame
buffer.

 clearStencil(S)

 gl:clearStencil/1 specifies the index used by
gl:clear/1 to clear the stencil buffer. S is masked with 2 m-1,
where m is the number of bits in the stencil buffer.

 clearTexImage(Texture, Level, Format, Type, Data)

 gl:clearTexImage/5 fills all an image contained in a
texture with an application supplied value. Texture must be the name of an
existing texture. Further, Texture may not be the name of a buffer texture,
nor may its internal format be compressed.

 clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Data)

 gl:clearTexSubImage/11 fills all or part of an image
contained in a texture with an application supplied value. Texture must be the
name of an existing texture. Further, Texture may not be the name of a buffer
texture, nor may its internal format be compressed.

 clientActiveTexture(Texture)

 gl:clientActiveTexture/1 selects the vertex array
client state parameters to be modified by
gl:texCoordPointer/4, and enabled or disabled with
gl:enableClientState/1 or
gl:disableClientState/1, respectively, when called
with a parameter of ?GL_TEXTURE_COORD_ARRAY.

 clientWaitSync(Sync, Flags, Timeout)

 gl:clientWaitSync/3 causes the client to block and wait
for the sync object specified by Sync to become signaled. If Sync is
signaled when gl:clientWaitSync/3 is called,
gl:clientWaitSync/3 returns immediately, otherwise it
will block and wait for up to Timeout nanoseconds for Sync to become
signaled.

 clipControl(Origin, Depth)

 gl:clipControl/2 controls the clipping volume behavior and
the clip coordinate to window coordinate transformation behavior.

 clipPlane(Plane, Equation)

 Geometry is always clipped against the boundaries of a six-plane frustum in x,
y, and z. gl:clipPlane/2 allows the specification of
additional planes, not necessarily perpendicular to the x, y, or z axis,
against which all geometry is clipped. To determine the maximum number of
additional clipping planes, call gl:getIntegerv/1 with
argument ?GL_MAX_CLIP_PLANES. All implementations support at least six such
clipping planes. Because the resulting clipping region is the intersection of
the defined half-spaces, it is always convex.

 color3b(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3bv/1

 Equivalent to color4usv/1.

 color3d(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3dv/1

 Equivalent to color4usv/1.

 color3f(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3fv/1

 Equivalent to color4usv/1.

 color3i(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3iv/1

 Equivalent to color4usv/1.

 color3s(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3sv/1

 Equivalent to color4usv/1.

 color3ub(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3ubv/1

 Equivalent to color4usv/1.

 color3ui(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3uiv/1

 Equivalent to color4usv/1.

 color3us(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3usv/1

 Equivalent to color4usv/1.

 color4b(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4bv/1

 Equivalent to color4usv/1.

 color4d(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4dv/1

 Equivalent to color4usv/1.

 color4f(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4fv/1

 Equivalent to color4usv/1.

 color4i(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4iv/1

 Equivalent to color4usv/1.

 color4s(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4sv/1

 Equivalent to color4usv/1.

 color4ub(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4ubv/1

 Equivalent to color4usv/1.

 color4ui(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4uiv/1

 Equivalent to color4usv/1.

 color4us(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4usv/1

 The GL stores both a current single-valued color index and a current four-valued
RGBA color. gl:color() sets a new four-valued RGBA color.
gl:color() has two major variants: gl:color3()
and gl:color4(). gl:color3() variants specify
new red, green, and blue values explicitly and set the current alpha value to
1.0 (full intensity) implicitly. gl:color4() variants specify
all four color components explicitly.

 colorMask(Red, Green, Blue, Alpha)

 Equivalent to colorMaski/5.

 colorMaski(Index, R, G, B, A)

 gl:colorMask/4 and gl:colorMaski/5 specify
whether the individual color components in the frame buffer can or cannot be
written. gl:colorMaski/5 sets the mask for a specific draw
buffer, whereas gl:colorMask/4 sets the mask for all draw
buffers. If Red is ?GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing
operation attempted.

 colorMaterial(Face, Mode)

 gl:colorMaterial/2 specifies which material parameters
track the current color. When ?GL_COLOR_MATERIAL is enabled, the material
parameter or parameters specified by Mode, of the material or materials
specified by Face, track the current color at all times.

 colorPointer(Size, Type, Stride, Ptr)

 gl:colorPointer/4 specifies the location and data format
of an array of color components to use when rendering. Size specifies the
number of components per color, and must be 3 or 4. Type specifies the data
type of each color component, and Stride specifies the byte stride from one
color to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)

 colorSubTable(Target, Start, Count, Format, Type, Data)

 gl:colorSubTable/6 is used to respecify a contiguous
portion of a color table previously defined using
gl:colorTable/6. The pixels referenced by Data replace the
portion of the existing table from indices Start to start+count-1, inclusive.
This region may not include any entries outside the range of the color table as
it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.

 colorTable(Target, Internalformat, Width, Format, Type, Table)

 gl:colorTable/6 may be used in two ways: to test the actual
size and color resolution of a lookup table given a particular set of
parameters, or to load the contents of a color lookup table. Use the targets
?GL_PROXY_* for the first case and the other targets for the second case.

 colorTableParameterfv(Target, Pname, Params)

 Equivalent to colorTableParameteriv/3.

 colorTableParameteriv(Target, Pname, Params)

 gl:colorTableParameter() is used to specify the
scale factors and bias terms applied to color components when they are loaded
into a color table. Target indicates which color table the scale and bias
terms apply to; it must be set to ?GL_COLOR_TABLE,
?GL_POST_CONVOLUTION_COLOR_TABLE, or ?GL_POST_COLOR_MATRIX_COLOR_TABLE.

 compileShader(Shader)

 gl:compileShader/1 compiles the source code strings that
have been stored in the shader object specified by Shader.

 compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage1D/7.

 compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage2D/9.

 compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage3D/11.

 compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image)

 gl:convolutionFilter1D/6 builds a one-dimensional
convolution filter kernel from an array of pixels.

 convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image)

 gl:convolutionFilter2D/7 builds a two-dimensional
convolution filter kernel from an array of pixels.

 convolutionParameterf(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameterfv(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameteri(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameteriv(Target, Pname, Params)

 gl:convolutionParameter() sets the value of a
convolution parameter.

 copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size)

 gl:copyBufferSubData/5 and glCopyNamedBufferSubData
copy part of the data store attached to a source buffer object to the data store
attached to a destination buffer object. The number of basic machine units
indicated by Size is copied from the source at offset ReadOffset to the
destination at WriteOffset. ReadOffset, WriteOffset and Size are in
terms of basic machine units.

 copyColorSubTable(Target, Start, X, Y, Width)

 gl:copyColorSubTable/5 is used to respecify a
contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels copied from the framebuffer
replace the portion of the existing table from indices Start to start+x-1,
inclusive. This region may not include any entries outside the range of the
color table, as was originally specified. It is not an error to specify a
subtexture with width of 0, but such a specification has no effect.

 copyColorTable(Target, Internalformat, X, Y, Width)

 gl:copyColorTable/5 loads a color table with pixels from
the current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:colorTable/6).

 copyConvolutionFilter1D(Target, Internalformat, X, Y, Width)

 gl:copyConvolutionFilter1D/5 defines a
one-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter1D/6).

 copyConvolutionFilter2D(Target, Internalformat, X, Y, Width, Height)

 gl:copyConvolutionFilter2D/6 defines a
two-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter2D/7).

 copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel, DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth)

 gl:copyImageSubData/15 may be used to copy data from
one image (i.e. texture or renderbuffer) to another.
gl:copyImageSubData/15 does not perform
general-purpose conversions such as scaling, resizing, blending, color-space, or
format conversions. It should be considered to operate in a manner similar to a
CPU memcpy. CopyImageSubData can copy between images with different internal
formats, provided the formats are compatible.

 copyPixels(X, Y, Width, Height, Type)

 gl:copyPixels/5 copies a screen-aligned rectangle of pixels
from the specified frame buffer location to a region relative to the current
raster position. Its operation is well defined only if the entire pixel source
region is within the exposed portion of the window. Results of copies from
outside the window, or from regions of the window that are not exposed, are
hardware dependent and undefined.

 copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border)

 gl:copyTexImage1D/7 defines a one-dimensional texture
image with pixels from the current ?GL_READ_BUFFER.

 copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border)

 gl:copyTexImage2D/8 defines a two-dimensional texture
image, or cube-map texture image with pixels from the current ?GL_READ_BUFFER.

 copyTexSubImage1D(Target, Level, Xoffset, X, Y, Width)

 gl:copyTexSubImage1D/6 and glCopyTextureSubImage1D
replace a portion of a one-dimensional texture image with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage1D/7). For
gl:copyTexSubImage1D/6, the texture object that is
bound to Target will be used for the process. For glCopyTextureSubImage1D,
Texture tells which texture object should be used for the purpose of the call.

 copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height)

 gl:copyTexSubImage2D/8 and glCopyTextureSubImage2D
replace a rectangular portion of a two-dimensional texture image, cube-map
texture image, rectangular image, or a linear portion of a number of slices of a
one-dimensional array texture with pixels from the current ?GL_READ_BUFFER
(rather than from main memory, as is the case for
gl:texSubImage2D/9).

 copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height)

 gl:copyTexSubImage3D/9 and glCopyTextureSubImage3D
functions replace a rectangular portion of a three-dimensional or
two-dimensional array texture image with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage3D/11).

 createBuffers(N)

 gl:createBuffers/1 returns N previously unused buffer
names in Buffers, each representing a new buffer object initialized as if it
had been bound to an unspecified target.

 createFramebuffers(N)

 gl:createFramebuffers/1 returns N previously
unused framebuffer names in Framebuffers, each representing a new framebuffer
object initialized to the default state.

 createProgram()

 gl:createProgram/0 creates an empty program object and
returns a non-zero value by which it can be referenced. A program object is an
object to which shader objects can be attached. This provides a mechanism to
specify the shader objects that will be linked to create a program. It also
provides a means for checking the compatibility of the shaders that will be used
to create a program (for instance, checking the compatibility between a vertex
shader and a fragment shader). When no longer needed as part of a program
object, shader objects can be detached.

 createProgramPipelines(N)

 gl:createProgramPipelines/1 returns N
previously unused program pipeline names in Pipelines, each representing a new
program pipeline object initialized to the default state.

 createQueries(Target, N)

 gl:createQueries/2 returns N previously unused query
object names in Ids, each representing a new query object with the specified
Target.

 createRenderbuffers(N)

 gl:createRenderbuffers/1 returns N previously
unused renderbuffer object names in Renderbuffers, each representing a new
renderbuffer object initialized to the default state.

 createSamplers(N)

 gl:createSamplers/1 returns N previously unused
sampler names in Samplers, each representing a new sampler object initialized
to the default state.

 createShader(Type)

 gl:createShader/1 creates an empty shader object and
returns a non-zero value by which it can be referenced. A shader object is used
to maintain the source code strings that define a shader. ShaderType indicates
the type of shader to be created. Five types of shader are supported. A shader
of type ?GL_COMPUTE_SHADER is a shader that is intended to run on the
programmable compute processor. A shader of type ?GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor. A shader of type
?GL_TESS_CONTROL_SHADER is a shader that is intended to run on the
programmable tessellation processor in the control stage. A shader of type
?GL_TESS_EVALUATION_SHADER is a shader that is intended to run on the
programmable tessellation processor in the evaluation stage. A shader of type
?GL_GEOMETRY_SHADER is a shader that is intended to run on the programmable
geometry processor. A shader of type ?GL_FRAGMENT_SHADER is a shader that is
intended to run on the programmable fragment processor.

 createShaderProgramv(Type, Strings)

 gl:createShaderProgram() creates a program object
containing compiled and linked shaders for a single stage specified by Type.
Strings refers to an array of Count strings from which to create the shader
executables.

 createTextures(Target, N)

 gl:createTextures/2 returns N previously unused
texture names in Textures, each representing a new texture object of the
dimensionality and type specified by Target and initialized to the default
values for that texture type.

 createTransformFeedbacks(N)

 gl:createTransformFeedbacks/1 returns N
previously unused transform feedback object names in Ids, each representing a
new transform feedback object initialized to the default state.

 createVertexArrays(N)

 gl:createVertexArrays/1 returns N previously
unused vertex array object names in Arrays, each representing a new vertex
array object initialized to the default state.

 cullFace(Mode)

 gl:cullFace/1 specifies whether front- or back-facing facets
are culled (as specified by mode) when facet culling is enabled. Facet culling
is initially disabled. To enable and disable facet culling, call the
gl:enable/1 and gl:disable/1 commands with the
argument ?GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons,
and rectangles.

 debugMessageControl(Source, Type, Severity, Ids, Enabled)

 gl:debugMessageControl/5 controls the reporting of
debug messages generated by a debug context. The parameters Source, Type and
Severity form a filter to select messages from the pool of potential messages
generated by the GL.

 debugMessageInsert(Source, Type, Id, Severity, Buf)

 gl:debugMessageInsert/5 inserts a user-supplied
message into the debug output queue. Source specifies the source that will be
used to classify the message and must be ?GL_DEBUG_SOURCE_APPLICATION or
?GL_DEBUG_SOURCE_THIRD_PARTY. All other sources are reserved for use by the GL
implementation. Type indicates the type of the message to be inserted and may
be one of ?GL_DEBUG_TYPE_ERROR, ?GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR,
?GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, ?GL_DEBUG_TYPE_PORTABILITY,
?GL_DEBUG_TYPE_PERFORMANCE, ?GL_DEBUG_TYPE_MARKER,
?GL_DEBUG_TYPE_PUSH_GROUP, ?GL_DEBUG_TYPE_POP_GROUP, or
?GL_DEBUG_TYPE_OTHER. Severity indicates the severity of the message and may
be ?GL_DEBUG_SEVERITY_LOW, ?GL_DEBUG_SEVERITY_MEDIUM,
?GL_DEBUG_SEVERITY_HIGH or ?GL_DEBUG_SEVERITY_NOTIFICATION. Id is
available for application defined use and may be any value. This value will be
recorded and used to identify the message.

 deleteBuffers(Buffers)

 gl:deleteBuffers/1 deletes N buffer objects named by
the elements of the array Buffers. After a buffer object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genBuffers/1). If a buffer object that is currently bound
is deleted, the binding reverts to 0 (the absence of any buffer object).

 deleteFramebuffers(Framebuffers)

 gl:deleteFramebuffers/1 deletes the N framebuffer
objects whose names are stored in the array addressed by Framebuffers. The
name zero is reserved by the GL and is silently ignored, should it occur in
Framebuffers, as are other unused names. Once a framebuffer object is deleted,
its name is again unused and it has no attachments. If a framebuffer that is
currently bound to one or more of the targets ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER is deleted, it is as though
gl:bindFramebuffer/2 had been executed with the
corresponding Target and Framebuffer zero.

 deleteLists(List, Range)

 gl:deleteLists/2 causes a contiguous group of display lists
to be deleted. List is the name of the first display list to be deleted, and
Range is the number of display lists to delete. All display lists d with
list<= d<= list+range-1 are deleted.

 deleteProgram(Program)

 gl:deleteProgram/1 frees the memory and invalidates the
name associated with the program object specified by Program. This command
effectively undoes the effects of a call to
gl:createProgram/0.

 deleteProgramPipelines(Pipelines)

 gl:deleteProgramPipelines/1 deletes the N
program pipeline objects whose names are stored in the array Pipelines. Unused
names in Pipelines are ignored, as is the name zero. After a program pipeline
object is deleted, its name is again unused and it has no contents. If program
pipeline object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current.

 deleteQueries(Ids)

 gl:deleteQueries/1 deletes N query objects named by the
elements of the array Ids. After a query object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genQueries/1).

 deleteRenderbuffers(Renderbuffers)

 gl:deleteRenderbuffers/1 deletes the N
renderbuffer objects whose names are stored in the array addressed by
Renderbuffers. The name zero is reserved by the GL and is silently ignored,
should it occur in Renderbuffers, as are other unused names. Once a
renderbuffer object is deleted, its name is again unused and it has no contents.
If a renderbuffer that is currently bound to the target ?GL_RENDERBUFFER is
deleted, it is as though gl:bindRenderbuffer/2 had
been executed with a Target of ?GL_RENDERBUFFER and a Name of zero.

 deleteSamplers(Samplers)

 gl:deleteSamplers/1 deletes N sampler objects named by
the elements of the array Samplers. After a sampler object is deleted, its
name is again unused. If a sampler object that is currently bound to a sampler
unit is deleted, it is as though gl:bindSampler/2 is called
with unit set to the unit the sampler is bound to and sampler zero. Unused names
in samplers are silently ignored, as is the reserved name zero.

 deleteShader(Shader)

 gl:deleteShader/1 frees the memory and invalidates the
name associated with the shader object specified by Shader. This command
effectively undoes the effects of a call to
gl:createShader/1.

 deleteSync(Sync)

 gl:deleteSync/1 deletes the sync object specified by Sync.
If the fence command corresponding to the specified sync object has completed,
or if no gl:waitSync/3 or
gl:clientWaitSync/3 commands are blocking on Sync, the
object is deleted immediately. Otherwise, Sync is flagged for deletion and
will be deleted when it is no longer associated with any fence command and is no
longer blocking any gl:waitSync/3 or
gl:clientWaitSync/3 command. In either case, after
gl:deleteSync/1 returns, the name Sync is invalid and can
no longer be used to refer to the sync object.

 deleteTextures(Textures)

 gl:deleteTextures/1 deletes N textures named by the
elements of the array Textures. After a texture is deleted, it has no contents
or dimensionality, and its name is free for reuse (for example by
gl:genTextures/1). If a texture that is currently bound is
deleted, the binding reverts to 0 (the default texture).

 deleteTransformFeedbacks(Ids)

 gl:deleteTransformFeedbacks/1 deletes the N
transform feedback objects whose names are stored in the array Ids. Unused
names in Ids are ignored, as is the name zero. After a transform feedback
object is deleted, its name is again unused and it has no contents. If an active
transform feedback object is deleted, its name immediately becomes unused, but
the underlying object is not deleted until it is no longer active.

 deleteVertexArrays(Arrays)

 gl:deleteVertexArrays/1 deletes N vertex array
objects whose names are stored in the array addressed by Arrays. Once a vertex
array object is deleted it has no contents and its name is again unused. If a
vertex array object that is currently bound is deleted, the binding for that
object reverts to zero and the default vertex array becomes current. Unused
names in Arrays are silently ignored, as is the value zero.

 depthFunc(Func)

 gl:depthFunc/1 specifies the function used to compare each
incoming pixel depth value with the depth value present in the depth buffer. The
comparison is performed only if depth testing is enabled. (See
gl:enable/1 and gl:disable/1 of
?GL_DEPTH_TEST.)

 depthMask(Flag)

 gl:depthMask/1 specifies whether the depth buffer is enabled
for writing. If Flag is ?GL_FALSE, depth buffer writing is disabled.
Otherwise, it is enabled. Initially, depth buffer writing is enabled.

 depthRange(Near_val, Far_val)

 Equivalent to depthRangef/2.

 depthRangeArrayv(First, V)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeArray() specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates for each
viewport in the range [First, First + Count). Thus, the values accepted
by gl:depthRangeArray() are both clamped to this range
before they are accepted.

 depthRangef(N, F)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes.
gl:depthRange/2 specifies a linear mapping of the normalized
depth coordinates in this range to window depth coordinates. Regardless of the
actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values
accepted by gl:depthRange/2 are both clamped to this range
before they are accepted.

 depthRangeIndexed(Index, N, F)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeIndexed/3 specifies a linear mapping of
the normalized depth coordinates in this range to window depth coordinates for a
specified viewport. Thus, the values accepted by
gl:depthRangeIndexed/3 are both clamped to this range
before they are accepted.

 detachShader(Program, Shader)

 gl:detachShader/2 detaches the shader object specified by
Shader from the program object specified by Program. This command can be
used to undo the effect of the command gl:attachShader/2.

 disable(Cap)

 Equivalent to enablei/2.

 disableClientState(Cap)

 Equivalent to enableClientState/1.

 disablei(Target, Index)

 Equivalent to enablei/2.

 disableVertexArrayAttrib(Vaobj, Index)

 Equivalent to enableVertexAttribArray/1.

 disableVertexAttribArray(Index)

 Equivalent to enableVertexAttribArray/1.

 dispatchCompute(Num_groups_x, Num_groups_y, Num_groups_z)

 gl:dispatchCompute/3 launches one or more compute work
groups. Each work group is processed by the active program object for the
compute shader stage. While the individual shader invocations within a work
group are executed as a unit, work groups are executed completely independently
and in unspecified order. Num_groups_x, Num_groups_y and Num_groups_z
specify the number of local work groups that will be dispatched in the X, Y and
Z dimensions, respectively.

 dispatchComputeIndirect(Indirect)

 gl:dispatchComputeIndirect/1 launches one or
more compute work groups using parameters stored in the buffer object currently
bound to the ?GL_DISPATCH_INDIRECT_BUFFER target. Each work group is processed
by the active program object for the compute shader stage. While the individual
shader invocations within a work group are executed as a unit, work groups are
executed completely independently and in unspecified order. Indirect contains
the offset into the data store of the buffer object bound to the
?GL_DISPATCH_INDIRECT_BUFFER target at which the parameters are stored.

 drawArrays(Mode, First, Count)

 gl:drawArrays/3 specifies multiple geometric primitives with
very few subroutine calls. Instead of calling a GL procedure to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to
gl:drawArrays/3.

 drawArraysIndirect(Mode, Indirect)

 gl:drawArraysIndirect/2 specifies multiple geometric
primitives with very few subroutine calls.
gl:drawArraysIndirect/2 behaves similarly to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to
gl:drawArraysInstancedBaseInstance/5
are stored in memory at the address given by Indirect.

 drawArraysInstanced(Mode, First, Count, Instancecount)

 gl:drawArraysInstanced/4 behaves identically to
gl:drawArrays/3 except that Instancecount instances of the
range of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.

 drawArraysInstancedBaseInstance(Mode, First, Count, Instancecount, Baseinstance)

 gl:drawArraysInstancedBaseInstance/5
behaves identically to gl:drawArrays/3 except that
Instancecount instances of the range of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.

 drawBuffer(Mode)

 When colors are written to the frame buffer, they are written into the color
buffers specified by gl:drawBuffer/1. One of the following
values can be used for default framebuffer

 drawBuffers(Bufs)

 gl:drawBuffers/1 and glNamedFramebufferDrawBuffers define
an array of buffers into which outputs from the fragment shader data will be
written. If a fragment shader writes a value to one or more user defined output
variables, then the value of each variable will be written into the buffer
specified at a location within Bufs corresponding to the location assigned to
that user defined output. The draw buffer used for user defined outputs assigned
to locations greater than or equal to N is implicitly set to ?GL_NONE and
any data written to such an output is discarded.

 drawElements(Mode, Count, Type, Indices)

 gl:drawElements/4 specifies multiple geometric primitives
with very few subroutine calls. Instead of calling a GL function to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to
gl:drawElements/4.

 drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex)

 gl:drawElementsBaseVertex/5 behaves identically
to gl:drawElements/4 except that the ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.

 drawElementsIndirect(Mode, Type, Indirect)

 gl:drawElementsIndirect/3 specifies multiple
indexed geometric primitives with very few subroutine calls.
gl:drawElementsIndirect/3 behaves similarly to
gl:drawElementsInstancedBaseVertexBaseInstance/7,
execpt that the parameters to
gl:drawElementsInstancedBaseVertexBaseInstance/7
are stored in memory at the address given by Indirect.

 drawElementsInstanced(Mode, Count, Type, Indices, Instancecount)

 gl:drawElementsInstanced/5 behaves identically to
gl:drawElements/4 except that Instancecount instances of
the set of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.

 drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance)

 gl:drawElementsInstancedBaseInstance/6
behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.

 drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex)

 gl:drawElementsInstancedBaseVertex/6
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.

 drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex, Baseinstance)

 gl:drawElementsInstancedBaseVertexBaseInstance/7
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.

 drawPixels(Width, Height, Format, Type, Pixels)

 gl:drawPixels/5 reads pixel data from memory and writes it
into the frame buffer relative to the current raster position, provided that the
raster position is valid. Use gl:rasterPos() or
gl:windowPos() to set the current raster position; use
gl:get() with argument ?GL_CURRENT_RASTER_POSITION_VALID
to determine if the specified raster position is valid, and
gl:get() with argument ?GL_CURRENT_RASTER_POSITION to
query the raster position.

 drawRangeElements(Mode, Start, End, Count, Type, Indices)

 gl:drawRangeElements/6 is a restricted form of
gl:drawElements/4. Mode, and Count match the
corresponding arguments to gl:drawElements/4, with the
additional constraint that all values in the arrays Count must lie between
Start and End, inclusive.

 drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex)

 gl:drawRangeElementsBaseVertex/7 is a
restricted form of gl:drawElementsBaseVertex/5.
Mode, Count and Basevertex match the corresponding arguments to
gl:drawElementsBaseVertex/5, with the additional
constraint that all values in the array Indices must lie between Start and
End, inclusive, prior to adding Basevertex. Index values lying outside the
range [Start, End] are treated in the same way as
gl:drawElementsBaseVertex/5. The ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.

 drawTransformFeedback(Mode, Id)

 gl:drawTransformFeedback/2 draws primitives of a
type specified by Mode using a count retrieved from the transform feedback
specified by Id. Calling
gl:drawTransformFeedback/2 is equivalent to
calling gl:drawArrays/3 with Mode as specified, First
set to zero, and Count set to the number of vertices captured on vertex stream
zero the last time transform feedback was active on the transform feedback
object named by Id.

 drawTransformFeedbackInstanced(Mode, Id, Instancecount)

 gl:drawTransformFeedbackInstanced/3
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackInstanced/3 is
equivalent to calling gl:drawArraysInstanced/4 with
Mode and Instancecount as specified, First set to zero, and Count set to
the number of vertices captured on vertex stream zero the last time transform
feedback was active on the transform feedback object named by Id.

 drawTransformFeedbackStream(Mode, Id, Stream)

 gl:drawTransformFeedbackStream/3 draws
primitives of a type specified by Mode using a count retrieved from the
transform feedback stream specified by Stream of the transform feedback object
specified by Id. Calling
gl:drawTransformFeedbackStream/3 is
equivalent to calling gl:drawArrays/3 with Mode as
specified, First set to zero, and Count set to the number of vertices
captured on vertex stream Stream the last time transform feedback was active
on the transform feedback object named by Id.

 drawTransformFeedbackStreamInstanced(Mode, Id, Stream, Instancecount)

 gl:drawTransformFeedbackStreamInstanced/4
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackStreamInstanced/4
is equivalent to calling gl:drawArraysInstanced/4
with Mode and Instancecount as specified, First set to zero, and Count
set to the number of vertices captured on vertex stream Stream the last time
transform feedback was active on the transform feedback object named by Id.

 edgeFlag(Flag)

 Equivalent to edgeFlagv/1.

 edgeFlagPointer(Stride, Ptr)

 gl:edgeFlagPointer/2 specifies the location and data
format of an array of boolean edge flags to use when rendering. Stride
specifies the byte stride from one edge flag to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.

 edgeFlagv/1

 Each vertex of a polygon, separate triangle, or separate quadrilateral specified
between a gl:'begin'/1/gl:'end'/0 pair is
marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the
start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. gl:edgeFlag/1 sets the edge flag bit to
?GL_TRUE if Flag is ?GL_TRUE and to ?GL_FALSE otherwise.

 enable(Cap)

 Equivalent to enablei/2.

 enableClientState(Cap)

 gl:enableClientState/1 and
gl:disableClientState/1 enable or disable individual
client-side capabilities. By default, all client-side capabilities are disabled.
Both gl:enableClientState/1 and
gl:disableClientState/1 take a single argument,
Cap, which can assume one of the following values

 enablei(Target, Index)

 gl:enable/1 and gl:disable/1 enable and disable
various capabilities. Use gl:isEnabled/1 or
gl:get() to determine the current setting of any
capability. The initial value for each capability with the exception of
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_FALSE. The initial value for
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_TRUE.

 enableVertexArrayAttrib(Vaobj, Index)

 Equivalent to enableVertexAttribArray/1.

 enableVertexAttribArray(Index)

 gl:enableVertexAttribArray/1 and
gl:enableVertexArrayAttrib/2 enable the
generic vertex attribute array specified by Index.
gl:enableVertexAttribArray/1 uses currently
bound vertex array object for the operation, whereas
gl:enableVertexArrayAttrib/2 updates state of
the vertex array object with ID Vaobj.

 'end'()

 gl:'begin'/1 and gl:'end'/0 delimit the
vertices that define a primitive or a group of like primitives.
gl:'begin'/1 accepts a single argument that specifies in which
of ten ways the vertices are interpreted. Taking n as an integer count starting
at one, and N as the total number of vertices specified, the interpretations are
as follows

 endConditionalRender()

 Conditional rendering is started using
gl:beginConditionalRender/2 and ended using
gl:endConditionalRender/0. During conditional
rendering, all vertex array commands, as well as gl:clear/1 and
gl:clearBuffer() have no effect if the
(?GL_SAMPLES_PASSED) result of the query object Id is zero, or if the
(?GL_ANY_SAMPLES_PASSED) result is ?GL_FALSE. The results of commands
setting the current vertex state, such as
gl:vertexAttrib() are undefined. If the
(?GL_SAMPLES_PASSED) result is non-zero or if the (?GL_ANY_SAMPLES_PASSED)
result is ?GL_TRUE, such commands are not discarded. The Id parameter to
gl:beginConditionalRender/2 must be the name of
a query object previously returned from a call to
gl:genQueries/1. Mode specifies how the results of the
query object are to be interpreted. If Mode is ?GL_QUERY_WAIT, the GL waits
for the results of the query to be available and then uses the results to
determine if subsequent rendering commands are discarded. If Mode is
?GL_QUERY_NO_WAIT, the GL may choose to unconditionally execute the subsequent
rendering commands without waiting for the query to complete.

 endList()

 Equivalent to newList/2.

 endQuery(Target)

 gl:beginQuery/2 and gl:endQuery/1
delimit the boundaries of a query object. Query must be a name previously
returned from a call to gl:genQueries/1. If a query object
with name Id does not yet exist it is created with the type determined by
Target. Target must be one of ?GL_SAMPLES_PASSED,
?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED,
?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior
of the query object depends on its type and is as follows.

 endQueryIndexed(Target, Index)

 gl:beginQueryIndexed/3 and
gl:endQueryIndexed/2 delimit the boundaries of a
query object. Query must be a name previously returned from a call to
gl:genQueries/1. If a query object with name Id does not
yet exist it is created with the type determined by Target. Target must be
one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED,
?GL_PRIMITIVES_GENERATED, ?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or
?GL_TIME_ELAPSED. The behavior of the query object depends on its type and is
as follows.

 endTransformFeedback()

 Transform feedback mode captures the values of varying variables written by the
vertex shader (or, if active, the geometry shader). Transform feedback is said
to be active after a call to
gl:beginTransformFeedback/1 until a subsequent
call to gl:endTransformFeedback/0. Transform
feedback commands must be paired.

 evalCoord1d(U)

 Equivalent to evalCoord2fv/1.

 evalCoord1dv/1

 Equivalent to evalCoord2fv/1.

 evalCoord1f(U)

 Equivalent to evalCoord2fv/1.

 evalCoord1fv/1

 Equivalent to evalCoord2fv/1.

 evalCoord2d(U, V)

 Equivalent to evalCoord2fv/1.

 evalCoord2dv/1

 Equivalent to evalCoord2fv/1.

 evalCoord2f(U, V)

 Equivalent to evalCoord2fv/1.

 evalCoord2fv/1

 gl:evalCoord1() evaluates enabled one-dimensional maps at
argument U. gl:evalCoord2() does the same for
two-dimensional maps using two domain values, U and V. To define a map, call
glMap1 and glMap2; to enable and disable it, call
gl:enable/1 and gl:disable/1.

 evalMesh1(Mode, I1, I2)

 Equivalent to evalMesh2/5.

 evalMesh2(Mode, I1, I2, J1, J2)

 gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly-spaced map domain
values. gl:evalMesh() steps through the integer domain of a
one- or two-dimensional grid, whose range is the domain of the evaluation maps
specified by glMap1 and glMap2. Mode determines whether the resulting
vertices are connected as points, lines, or filled polygons.

 evalPoint1(I)

 Equivalent to evalPoint2/2.

 evalPoint2(I, J)

 gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly spaced map domain
values. gl:evalPoint() can be used to evaluate a single grid
point in the same gridspace that is traversed by
gl:evalMesh(). Calling gl:evalPoint1/1 is
equivalent to calling glEvalCoord1(i.ð u+u 1); where ð u=(u 2-u 1)/n

 feedbackBuffer(Size, Type, Buffer)

 The gl:feedbackBuffer/3 function controls feedback.
Feedback, like selection, is a GL mode. The mode is selected by calling
gl:renderMode/1 with ?GL_FEEDBACK. When the GL is in
feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application
using the GL.

 fenceSync(Condition, Flags)

 gl:fenceSync/2 creates a new fence sync object, inserts a
fence command into the GL command stream and associates it with that sync
object, and returns a non-zero name corresponding to the sync object.

 finish()

 gl:finish/0 does not return until the effects of all previously
called GL commands are complete. Such effects include all changes to GL state,
all changes to connection state, and all changes to the frame buffer contents.

 flush()

 Different GL implementations buffer commands in several different locations,
including network buffers and the graphics accelerator itself.
gl:flush/0 empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering
engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.

 flushMappedBufferRange(Target, Offset, Length)

 Equivalent to flushMappedNamedBufferRange/3.

 flushMappedNamedBufferRange(Buffer, Offset, Length)

 gl:flushMappedBufferRange/3 indicates that
modifications have been made to a range of a mapped buffer object. The buffer
object must previously have been mapped with the ?GL_MAP_FLUSH_EXPLICIT_BIT
flag.

 fogCoordd(Coord)

 Equivalent to fogCoordfv/1.

 fogCoorddv/1

 Equivalent to fogCoordfv/1.

 fogCoordf(Coord)

 Equivalent to fogCoordfv/1.

 fogCoordfv/1

 gl:fogCoord() specifies the fog coordinate that is associated
with each vertex and the current raster position. The value specified is
interpolated and used in computing the fog color (see gl:fog()).

 fogCoordPointer(Type, Stride, Pointer)

 gl:fogCoordPointer/3 specifies the location and data
format of an array of fog coordinates to use when rendering. Type specifies
the data type of each fog coordinate, and Stride specifies the byte stride
from one fog coordinate to the next, allowing vertices and attributes to be
packed into a single array or stored in separate arrays.

 fogf(Pname, Param)

 Equivalent to fogiv/2.

 fogfv(Pname, Params)

 Equivalent to fogiv/2.

 fogi(Pname, Param)

 Equivalent to fogiv/2.

 fogiv(Pname, Params)

 Fog is initially disabled. While enabled, fog affects rasterized geometry,
bitmaps, and pixel blocks, but not buffer clear operations. To enable and
disable fog, call gl:enable/1 and gl:disable/1
with argument ?GL_FOG.

 framebufferParameteri(Target, Pname, Param)

 gl:framebufferParameteri/3 and
glNamedFramebufferParameteri modify the value of the parameter named Pname
in the specified framebuffer object. There are no modifiable parameters of the
default draw and read framebuffer, so they are not valid targets of these
commands.

 framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer)

 gl:framebufferRenderbuffer/4 and
glNamedFramebufferRenderbuffer attaches a renderbuffer as one of the logical
buffers of the specified framebuffer object. Renderbuffers cannot be attached to
the default draw and read framebuffer, so they are not valid targets of these
commands.

 framebufferTexture1D(Target, Attachment, Textarget, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture2D(Target, Attachment, Textarget, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture(Target, Attachment, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTextureFaceARB(Target, Attachment, Texture, Level, Face)

 Equivalent to framebufferTextureLayer/5.

 framebufferTextureLayer(Target, Attachment, Texture, Level, Layer)

 These commands attach a selected mipmap level or image of a texture object as
one of the logical buffers of the specified framebuffer object. Textures cannot
be attached to the default draw and read framebuffer, so they are not valid
targets of these commands.

 frontFace(Mode)

 In a scene composed entirely of opaque closed surfaces, back-facing polygons are
never visible. Eliminating these invisible polygons has the obvious benefit of
speeding up the rendering of the image. To enable and disable elimination of
back-facing polygons, call gl:enable/1 and
gl:disable/1 with argument ?GL_CULL_FACE.

 frustum(Left, Right, Bottom, Top, Near_val, Far_val)

 gl:frustum/6 describes a perspective matrix that produces a
perspective projection. The current matrix (see
gl:matrixMode/1) is multiplied by this matrix and the result
replaces the current matrix, as if gl:multMatrix() were
called with the following matrix as its argument

 genBuffers(N)

 gl:genBuffers/1 returns N buffer object names in
Buffers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genBuffers/1.

 generateMipmap(Target)

 Equivalent to generateTextureMipmap/1.

 generateTextureMipmap(Texture)

 gl:generateMipmap/1 and
gl:generateTextureMipmap/1 generates mipmaps for the
specified texture object. For gl:generateMipmap/1, the
texture object that is bound to Target. For
gl:generateTextureMipmap/1, Texture is the name of the
texture object.

 genFramebuffers(N)

 gl:genFramebuffers/1 returns N framebuffer object
names in Ids. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genFramebuffers/1.

 genLists(Range)

 gl:genLists/1 has one argument, Range. It returns an integer
n such that Range contiguous empty display lists, named n, n+1, ...,
n+range-1, are created. If Range is 0, if there is no group of Range
contiguous names available, or if any error is generated, no display lists are
generated, and 0 is returned.

 genProgramPipelines(N)

 gl:genProgramPipelines/1 returns N previously
unused program pipeline object names in Pipelines. These names are marked as
used, for the purposes of gl:genProgramPipelines/1
only, but they acquire program pipeline state only when they are first bound.

 genQueries(N)

 gl:genQueries/1 returns N query object names in Ids.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genQueries/1.

 genRenderbuffers(N)

 gl:genRenderbuffers/1 returns N renderbuffer object
names in Renderbuffers. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was
in use immediately before the call to
gl:genRenderbuffers/1.

 genSamplers(Count)

 gl:genSamplers/1 returns N sampler object names in
Samplers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genSamplers/1.

 genTextures(N)

 gl:genTextures/1 returns N texture names in Textures.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genTextures/1.

 genTransformFeedbacks(N)

 gl:genTransformFeedbacks/1 returns N previously
unused transform feedback object names in Ids. These names are marked as used,
for the purposes of gl:genTransformFeedbacks/1
only, but they acquire transform feedback state only when they are first bound.

 genVertexArrays(N)

 gl:genVertexArrays/1 returns N vertex array object
names in Arrays. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genVertexArrays/1.

 getActiveAttrib(Program, Index, BufSize)

 gl:getActiveAttrib/3 returns information about an
active attribute variable in the program object specified by Program. The
number of active attributes can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_ATTRIBUTES. A
value of 0 for Index selects the first active attribute variable. Permissible
values for Index range from zero to the number of active attribute variables
minus one.

 getActiveSubroutineName(Program, Shadertype, Index, Bufsize)

 gl:getActiveSubroutineName/4 queries the name
of an active shader subroutine uniform from the program object given in
Program. Index specifies the index of the shader subroutine uniform within
the shader stage given by Stage, and must between zero and the value of
?GL_ACTIVE_SUBROUTINES minus one for the shader stage.

 getActiveSubroutineUniformName(Program, Shadertype, Index, Bufsize)

 gl:getActiveSubroutineUniformName/4
retrieves the name of an active shader subroutine uniform. Program contains
the name of the program containing the uniform. Shadertype specifies the stage
for which the uniform location, given by Index, is valid. Index must be
between zero and the value of ?GL_ACTIVE_SUBROUTINE_UNIFORMS minus one for the
shader stage.

 getActiveUniform(Program, Index, BufSize)

 gl:getActiveUniform/3 returns information about an
active uniform variable in the program object specified by Program. The number
of active uniform variables can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_UNIFORMS. A
value of 0 for Index selects the first active uniform variable. Permissible
values for Index range from zero to the number of active uniform variables
minus one.

 getActiveUniformBlockiv(Program, UniformBlockIndex, Pname, Params)

 gl:getActiveUniformBlockiv/4 retrieves
information about an active uniform block within Program.

 getActiveUniformBlockName(Program, UniformBlockIndex, BufSize)

 gl:getActiveUniformBlockName/3 retrieves the
name of the active uniform block at UniformBlockIndex within Program.

 getActiveUniformName(Program, UniformIndex, BufSize)

 gl:getActiveUniformName/3 returns the name of the
active uniform at UniformIndex within Program. If UniformName is not NULL,
up to BufSize characters (including a nul-terminator) will be written into the
array whose address is specified by UniformName. If Length is not NULL, the
number of characters that were (or would have been) written into UniformName
(not including the nul-terminator) will be placed in the variable whose address
is specified in Length. If Length is NULL, no length is returned. The length
of the longest uniform name in Program is given by the value of
?GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with
gl:getProgram().

 getActiveUniformsiv(Program, UniformIndices, Pname)

 gl:getActiveUniformsiv/3 queries the value of the
parameter named Pname for each of the uniforms within Program whose indices
are specified in the array of UniformCount unsigned integers UniformIndices.
Upon success, the value of the parameter for each uniform is written into the
corresponding entry in the array whose address is given in Params. If an error
is generated, nothing is written into Params.

 getAttachedShaders(Program, MaxCount)

 gl:getAttachedShaders/2 returns the names of the
shader objects attached to Program. The names of shader objects that are
attached to Program will be returned in Shaders. The actual number of shader
names written into Shaders is returned in Count. If no shader objects are
attached to Program, Count is set to 0. The maximum number of shader names
that may be returned in Shaders is specified by MaxCount.

 getAttribLocation(Program, Name)

 gl:getAttribLocation/2 queries the previously linked
program object specified by Program for the attribute variable specified by
Name and returns the index of the generic vertex attribute that is bound to
that attribute variable. If Name is a matrix attribute variable, the index of
the first column of the matrix is returned. If the named attribute variable is
not an active attribute in the specified program object or if Name starts with
the reserved prefix "gl_", a value of -1 is returned.

 getBooleani_v(Target, Index)

 Equivalent to getIntegerv/1.

 getBooleanv(Pname)

 Equivalent to getIntegerv/1.

 getBufferParameteri64v(Target, Pname)

 Equivalent to getBufferParameterivARB/2.

 getBufferParameteriv(Target, Pname)

 gl:getBufferParameteriv/2 returns in Data a
selected parameter of the buffer object specified by Target.

 getBufferParameterivARB(Target, Pname)

 These functions return in Data a selected parameter of the specified buffer
object.

 getBufferSubData(Target, Offset, Size, Data)

 gl:getBufferSubData/4 and glGetNamedBufferSubData
return some or all of the data contents of the data store of the specified
buffer object. Data starting at byte offset Offset and extending for Size
bytes is copied from the buffer object's data store to the memory pointed to by
Data. An error is thrown if the buffer object is currently mapped, or if
Offset and Size together define a range beyond the bounds of the buffer
object's data store.

 getClipPlane(Plane)

 gl:getClipPlane/1 returns in Equation the four
coefficients of the plane equation for Plane.

 getColorTable(Target, Format, Type, Table)

 gl:getColorTable/4 returns in Table the contents of the
color table specified by Target. No pixel transfer operations are performed,
but pixel storage modes that are applicable to
gl:readPixels/7 are performed.

 getColorTableParameterfv(Target, Pname)

 Equivalent to getColorTableParameteriv/2.

 getColorTableParameteriv(Target, Pname)

 Returns parameters specific to color table Target.

 getCompressedTexImage(Target, Lod, Img)

 gl:getCompressedTexImage/3 and
glGetnCompressedTexImage return the compressed texture image associated with
Target and Lod into Pixels. glGetCompressedTextureImage serves the same
purpose, but instead of taking a texture target, it takes the ID of the texture
object. Pixels should be an array of BufSize bytes for
glGetnCompresedTexImage and glGetCompressedTextureImage functions, and of
?GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes in case of
gl:getCompressedTexImage/3. If the actual data
takes less space than BufSize, the remaining bytes will not be touched.
Target specifies the texture target, to which the texture the data the
function should extract the data from is bound to. Lod specifies the
level-of-detail number of the desired image.

 getConvolutionFilter(Target, Format, Type, Image)

 gl:getConvolutionFilter/4 returns the current 1D
or 2D convolution filter kernel as an image. The one- or two-dimensional image
is placed in Image according to the specifications in Format and Type. No
pixel transfer operations are performed on this image, but the relevant pixel
storage modes are applied.

 getConvolutionParameterfv(Target, Pname)

 Equivalent to getConvolutionParameteriv/2.

 getConvolutionParameteriv(Target, Pname)

 gl:getConvolutionParameter() retrieves
convolution parameters. Target determines which convolution filter is queried.
Pname determines which parameter is returned

 getDebugMessageLog(Count, BufSize)

 gl:getDebugMessageLog/2 retrieves messages from the
debug message log. A maximum of Count messages are retrieved from the log. If
Sources is not NULL then the source of each message is written into up to
Count elements of the array. If Types is not NULL then the type of each
message is written into up to Count elements of the array. If Id is not NULL
then the identifier of each message is written into up to Count elements of
the array. If Severities is not NULL then the severity of each message is
written into up to Count elements of the array. If Lengths is not NULL then
the length of each message is written into up to Count elements of the array.

 getDoublei_v(Target, Index)

 Equivalent to getIntegerv/1.

 getDoublev(Pname)

 Equivalent to getIntegerv/1.

 getError()

 gl:getError/0 returns the value of the error flag. Each
detectable error is assigned a numeric code and symbolic name. When an error
occurs, the error flag is set to the appropriate error code value. No other
errors are recorded until gl:getError/0 is called, the error
code is returned, and the flag is reset to ?GL_NO_ERROR. If a call to
gl:getError/0 returns ?GL_NO_ERROR, there has been no
detectable error since the last call to gl:getError/0, or
since the GL was initialized.

 getFloati_v(Target, Index)

 Equivalent to getIntegerv/1.

 getFloatv(Pname)

 Equivalent to getIntegerv/1.

 getFragDataIndex(Program, Name)

 gl:getFragDataIndex/2 returns the index of the
fragment color to which the variable Name was bound when the program object
Program was last linked. If Name is not a varying out variable of Program,
or if an error occurs, -1 will be returned.

 getFragDataLocation(Program, Name)

 gl:getFragDataLocation/2 retrieves the assigned
color number binding for the user-defined varying out variable Name for
program Program. Program must have previously been linked. Name must be a
null-terminated string. If Name is not the name of an active user-defined
varying out fragment shader variable within Program, -1 will be returned.

 getFramebufferAttachmentParameteriv(Target, Attachment, Pname)

 gl:getFramebufferAttachmentParameteriv/3
and glGetNamedFramebufferAttachmentParameteriv return parameters of
attachments of a specified framebuffer object.

 getFramebufferParameteriv(Target, Pname)

 gl:getFramebufferParameteriv/2 and
glGetNamedFramebufferParameteriv query parameters of a specified framebuffer
object.

 getGraphicsResetStatus()

 Certain events can result in a reset of the GL context. Such a reset causes all
context state to be lost and requires the application to recreate all objects in
the affected context.

 getHistogram(Target, Reset, Format, Type, Values)

 gl:getHistogram/5 returns the current histogram table as a
one-dimensional image with the same width as the histogram. No pixel transfer
operations are performed on this image, but pixel storage modes that are
applicable to 1D images are honored.

 getHistogramParameterfv(Target, Pname)

 Equivalent to getHistogramParameteriv/2.

 getHistogramParameteriv(Target, Pname)

 gl:getHistogramParameter() is used to query
parameter values for the current histogram or for a proxy. The histogram state
information may be queried by calling
gl:getHistogramParameter() with a Target of
?GL_HISTOGRAM (to obtain information for the current histogram table) or
?GL_PROXY_HISTOGRAM (to obtain information from the most recent proxy request)
and one of the following values for the Pname argument

 getInteger64i_v(Target, Index)

 Equivalent to getIntegerv/1.

 getInteger64v(Pname)

 Equivalent to getIntegerv/1.

 getIntegeri_v(Target, Index)

 Equivalent to getIntegerv/1.

 getIntegerv(Pname)

 These commands return values for simple state variables in GL. Pname is a
symbolic constant indicating the state variable to be returned, and Data is a
pointer to an array of the indicated type in which to place the returned data.

 getInternalformati64v(Target, Internalformat, Pname, BufSize)

 Equivalent to getInternalformativ/4.

 getInternalformativ(Target, Internalformat, Pname, BufSize)

 No documentation available.

 getLightfv(Light, Pname)

 Equivalent to getLightiv/2.

 getLightiv(Light, Pname)

 gl:getLight() returns in Params the value or values of a
light source parameter. Light names the light and is a symbolic name of the
form ?GL_LIGHT i where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
?GL_MAX_LIGHTS is an implementation dependent constant that is greater than or
equal to eight. Pname specifies one of ten light source parameters, again by
symbolic name.

 getMapdv(Target, Query, V)

 Equivalent to getMapiv/3.

 getMapfv(Target, Query, V)

 Equivalent to getMapiv/3.

 getMapiv(Target, Query, V)

 glMap1 and glMap2 define evaluators. gl:getMap() returns
evaluator parameters. Target chooses a map, Query selects a specific
parameter, and V points to storage where the values will be returned.

 getMaterialfv(Face, Pname)

 Equivalent to getMaterialiv/2.

 getMaterialiv(Face, Pname)

 gl:getMaterial() returns in Params the value or values
of parameter Pname of material Face. Six parameters are defined

 getMinmax(Target, Reset, Format, Types, Values)

 gl:getMinmax/5 returns the accumulated minimum and maximum
pixel values (computed on a per-component basis) in a one-dimensional image of
width 2. The first set of return values are the minima, and the second set of
return values are the maxima. The format of the return values is determined by
Format, and their type is determined by Types.

 getMinmaxParameterfv(Target, Pname)

 Equivalent to getMinmaxParameteriv/2.

 getMinmaxParameteriv(Target, Pname)

 gl:getMinmaxParameter() retrieves parameters for
the current minmax table by setting Pname to one of the following values

 getMultisamplefv(Pname, Index)

 gl:getMultisamplefv/2 queries the location of a given
sample. Pname specifies the sample parameter to retrieve and must be
?GL_SAMPLE_POSITION. Index corresponds to the sample for which the location
should be returned. The sample location is returned as two floating-point values
in Val[0] and Val[1], each between 0 and 1, corresponding to the X and Y
locations respectively in the GL pixel space of that sample. (0.5, 0.5) this
corresponds to the pixel center. Index must be between zero and the value of
?GL_SAMPLES minus one.

 getPixelMapfv(Map, Values)

 Equivalent to getPixelMapusv/2.

 getPixelMapuiv(Map, Values)

 Equivalent to getPixelMapusv/2.

 getPixelMapusv(Map, Values)

 See the gl:pixelMap() reference page for a description of
the acceptable values for the Map parameter.
gl:getPixelMap() returns in Data the contents of the
pixel map specified in Map. Pixel maps are used during the execution of
gl:readPixels/7, gl:drawPixels/5,
gl:copyPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9. to map color indices, stencil
indices, color components, and depth components to other values.

 getPolygonStipple()

 gl:getPolygonStipple/0 returns to Pattern a 32×32
polygon stipple pattern. The pattern is packed into memory as if
gl:readPixels/7 with both height and width of 32, type
of ?GL_BITMAP, and format of ?GL_COLOR_INDEX were called, and the stipple
pattern were stored in an internal 32×32 color index buffer. Unlike
gl:readPixels/7, however, pixel transfer operations (shift,
offset, pixel map) are not applied to the returned stipple image.

 getProgramBinary(Program, BufSize)

 gl:getProgramBinary/2 returns a binary representation
of the compiled and linked executable for Program into the array of bytes
whose address is specified in Binary. The maximum number of bytes that may be
written into Binary is specified by BufSize. If the program binary is
greater in size than BufSize bytes, then an error is generated, otherwise the
actual number of bytes written into Binary is returned in the variable whose
address is given by Length. If Length is ?NULL, then no length is
returned.

 getProgramInfoLog(Program, BufSize)

 gl:getProgramInfoLog/2 returns the information log
for the specified program object. The information log for a program object is
modified when the program object is linked or validated. The string that is
returned will be null terminated.

 getProgramInterfaceiv(Program, ProgramInterface, Pname)

 gl:getProgramInterfaceiv/3 queries the property
of the interface identifed by ProgramInterface in Program, the property name
of which is given by Pname.

 getProgramiv(Program, Pname)

 gl:getProgram() returns in Params the value of a
parameter for a specific program object. The following parameters are defined

 getProgramPipelineInfoLog(Pipeline, BufSize)

 gl:getProgramPipelineInfoLog/2 retrieves the
info log for the program pipeline object Pipeline. The info log, including its
null terminator, is written into the array of characters whose address is given
by InfoLog. The maximum number of characters that may be written into
InfoLog is given by BufSize, and the actual number of characters written
into InfoLog is returned in the integer whose address is given by Length. If
Length is ?NULL, no length is returned.

 getProgramPipelineiv(Pipeline, Pname)

 gl:getProgramPipelineiv/2 retrieves the value of a
property of the program pipeline object Pipeline. Pname specifies the name
of the parameter whose value to retrieve. The value of the parameter is written
to the variable whose address is given by Params.

 getProgramResourceIndex(Program, ProgramInterface, Name)

 gl:getProgramResourceIndex/3 returns the
unsigned integer index assigned to a resource named Name in the interface type
ProgramInterface of program object Program.

 getProgramResourceLocation(Program, ProgramInterface, Name)

 gl:getProgramResourceLocation/3 returns the
location assigned to the variable named Name in interface ProgramInterface
of program object Program. Program must be the name of a program that has
been linked successfully. ProgramInterface must be one of ?GL_UNIFORM,
?GL_PROGRAM_INPUT, ?GL_PROGRAM_OUTPUT, ?GL_VERTEX_SUBROUTINE_UNIFORM,
?GL_TESS_CONTROL_SUBROUTINE_UNIFORM, ?GL_TESS_EVALUATION_SUBROUTINE_UNIFORM,
?GL_GEOMETRY_SUBROUTINE_UNIFORM, ?GL_FRAGMENT_SUBROUTINE_UNIFORM,
?GL_COMPUTE_SUBROUTINE_UNIFORM, or ?GL_TRANSFORM_FEEDBACK_BUFFER.

 getProgramResourceLocationIndex(Program, ProgramInterface, Name)

 gl:getProgramResourceLocationIndex/3
returns the fragment color index assigned to the variable named Name in
interface ProgramInterface of program object Program. Program must be the
name of a program that has been linked successfully. ProgramInterface must be
?GL_PROGRAM_OUTPUT.

 getProgramResourceName(Program, ProgramInterface, Index, BufSize)

 gl:getProgramResourceName/4 retrieves the name
string assigned to the single active resource with an index of Index in the
interface ProgramInterface of program object Program. Index must be less
than the number of entries in the active resource list for ProgramInterface.

 getProgramStageiv(Program, Shadertype, Pname)

 gl:getProgramStage() queries a parameter of a shader
stage attached to a program object. Program contains the name of the program
to which the shader is attached. Shadertype specifies the stage from which to
query the parameter. Pname specifies which parameter should be queried. The
value or values of the parameter to be queried is returned in the variable whose
address is given in Values.

 getQueryBufferObjecti64v(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectiv(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectui64v(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectuiv(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryIndexediv(Target, Index, Pname)

 gl:getQueryIndexediv/3 returns in Params a selected
parameter of the indexed query object target specified by Target and Index.
Index specifies the index of the query object target and must be between zero
and a target-specific maxiumum.

 getQueryiv(Target, Pname)

 gl:getQueryiv/2 returns in Params a selected parameter of
the query object target specified by Target.

 getQueryObjecti64v(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectiv(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectui64v(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectuiv(Id, Pname)

 These commands return a selected parameter of the query object specified by
Id. gl:getQueryObject() returns in Params a
selected parameter of the query object specified by Id.
gl:getQueryBufferObject() returns in Buffer a
selected parameter of the query object specified by Id, by writing it to
Buffer's data store at the byte offset specified by Offset.

 getRenderbufferParameteriv(Target, Pname)

 gl:getRenderbufferParameteriv/2 and
glGetNamedRenderbufferParameteriv query parameters of a specified renderbuffer
object.

 getSamplerParameterfv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIiv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIuiv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameteriv(Sampler, Pname)

 gl:getSamplerParameter() returns in Params the
value or values of the sampler parameter specified as Pname. Sampler defines
the target sampler, and must be the name of an existing sampler object, returned
from a previous call to gl:genSamplers/1. Pname accepts
the same symbols as gl:samplerParameter(), with the
same interpretations

 getShaderInfoLog(Shader, BufSize)

 gl:getShaderInfoLog/2 returns the information log for
the specified shader object. The information log for a shader object is modified
when the shader is compiled. The string that is returned will be null
terminated.

 getShaderiv(Shader, Pname)

 gl:getShader() returns in Params the value of a parameter
for a specific shader object. The following parameters are defined

 getShaderPrecisionFormat(Shadertype, Precisiontype)

 gl:getShaderPrecisionFormat/2 retrieves the
numeric range and precision for the implementation's representation of
quantities in different numeric formats in specified shader type. ShaderType
specifies the type of shader for which the numeric precision and range is to be
retrieved and must be one of ?GL_VERTEX_SHADER or ?GL_FRAGMENT_SHADER.
PrecisionType specifies the numeric format to query and must be one of
?GL_LOW_FLOAT, ?GL_MEDIUM_FLOAT``?GL_HIGH_FLOAT, ?GL_LOW_INT,
?GL_MEDIUM_INT, or ?GL_HIGH_INT.

 getShaderSource(Shader, BufSize)

 gl:getShaderSource/2 returns the concatenation of the
source code strings from the shader object specified by Shader. The source
code strings for a shader object are the result of a previous call to
gl:shaderSource/2. The string returned by the function
will be null terminated.

 getString(Name)

 Equivalent to getStringi/2.

 getStringi(Name, Index)

 gl:getString/1 returns a pointer to a static string
describing some aspect of the current GL connection. Name can be one of the
following

 getSubroutineIndex(Program, Shadertype, Name)

 gl:getSubroutineIndex/3 returns the index of a
subroutine uniform within a shader stage attached to a program object. Program
contains the name of the program to which the shader is attached. Shadertype
specifies the stage from which to query shader subroutine index. Name contains
the null-terminated name of the subroutine uniform whose name to query.

 getSubroutineUniformLocation(Program, Shadertype, Name)

 gl:getSubroutineUniformLocation/3 returns
the location of the subroutine uniform variable Name in the shader stage of
type Shadertype attached to Program, with behavior otherwise identical to
gl:getUniformLocation/2.

 getSynciv(Sync, Pname, BufSize)

 gl:getSynciv/3 retrieves properties of a sync object. Sync
specifies the name of the sync object whose properties to retrieve.

 getTexEnvfv(Target, Pname)

 Equivalent to getTexEnviv/2.

 getTexEnviv(Target, Pname)

 gl:getTexEnv() returns in Params selected values of a
texture environment that was specified with gl:texEnv().
Target specifies a texture environment.

 getTexGendv(Coord, Pname)

 Equivalent to getTexGeniv/2.

 getTexGenfv(Coord, Pname)

 Equivalent to getTexGeniv/2.

 getTexGeniv(Coord, Pname)

 gl:getTexGen() returns in Params selected parameters of a
texture coordinate generation function that was specified using
gl:texGen(). Coord names one of the (s, t, r, q)
texture coordinates, using the symbolic constant ?GL_S, ?GL_T, ?GL_R, or
?GL_Q.

 getTexImage(Target, Level, Format, Type, Pixels)

 gl:getTexImage/5, glGetnTexImage and glGetTextureImage
functions return a texture image into Pixels. For
gl:getTexImage/5 and glGetnTexImage, Target specifies
whether the desired texture image is one specified by
gl:texImage1D/8 (?GL_TEXTURE_1D),
gl:texImage2D/9 (?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_2D or any of ?GL_TEXTURE_CUBE_MAP_*),
or gl:texImage3D/10 (?GL_TEXTURE_2D_ARRAY,
?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_ARRAY). For glGetTextureImage,
Texture specifies the texture object name. In addition to types of textures
accepted by gl:getTexImage/5 and glGetnTexImage, the
function also accepts cube map texture objects (with effective target
?GL_TEXTURE_CUBE_MAP). Level specifies the level-of-detail number of the
desired image. Format and Type specify the format and type of the desired
image array. See the reference page for gl:texImage1D/8 for
a description of the acceptable values for the Format and Type parameters,
respectively. For glGetnTexImage and glGetTextureImage functions, bufSize tells
the size of the buffer to receive the retrieved pixel data. glGetnTexImage and
glGetTextureImage do not write more than BufSize bytes into Pixels.

 getTexLevelParameterfv(Target, Level, Pname)

 Equivalent to getTexLevelParameteriv/3.

 getTexLevelParameteriv(Target, Level, Pname)

 gl:getTexLevelParameterfv/3,
gl:getTexLevelParameteriv/3,
glGetTextureLevelParameterfv and glGetTextureLevelParameteriv return in
Params texture parameter values for a specific level-of-detail value,
specified as Level. For the first two functions, Target defines the target
texture, either ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D,
?GL_PROXY_TEXTURE_1D, ?GL_PROXY_TEXTURE_2D, ?GL_PROXY_TEXTURE_3D,
?GL_TEXTURE_CUBE_MAP_POSITIVE_X, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
?GL_PROXY_TEXTURE_CUBE_MAP. The remaining two take a Texture argument which
specifies the name of the texture object.

 getTexParameterfv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameterIiv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameterIuiv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameteriv(Target, Pname)

 gl:getTexParameter() and glGetTextureParameter
return in Params the value or values of the texture parameter specified as
Pname. Target defines the target texture. ?GL_TEXTURE_1D,
?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE, or
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY specify one-, two-, or three-dimensional,
one-dimensional array, two-dimensional array, rectangle, cube-mapped or
cube-mapped array, two-dimensional multisample, or two-dimensional multisample
array texturing, respectively. Pname accepts the same symbols as
gl:texParameter(), with the same interpretations

 getTransformFeedbackVarying(Program, Index, BufSize)

 Information about the set of varying variables in a linked program that will be
captured during transform feedback may be retrieved by calling
gl:getTransformFeedbackVarying/3.
gl:getTransformFeedbackVarying/3 provides
information about the varying variable selected by Index. An Index of 0
selects the first varying variable specified in the Varyings array passed to
gl:transformFeedbackVaryings/3, and an
Index of the value of ?GL_TRANSFORM_FEEDBACK_VARYINGS minus one selects the
last such variable.

 getUniformBlockIndex(Program, UniformBlockName)

 gl:getUniformBlockIndex/2 retrieves the index of a
uniform block within Program.

 getUniformdv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformfv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformIndices(Program, UniformNames)

 gl:getUniformIndices/2 retrieves the indices of a
number of uniforms within Program.

 getUniformiv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformLocation(Program, Name)

 glGetUniformLocationreturns an integer that represents the location of a
specific uniform variable within a program object. Name must be a null
terminated string that contains no white space. Name must be an active uniform
variable name in Program that is not a structure, an array of structures, or a
subcomponent of a vector or a matrix. This function returns -1 if Name does
not correspond to an active uniform variable in Program, if Name starts with
the reserved prefix "gl_", or if Name is associated with an atomic counter or
a named uniform block.

 getUniformSubroutineuiv(Shadertype, Location)

 gl:getUniformSubroutine() retrieves the value
of the subroutine uniform at location Location for shader stage Shadertype
of the current program. Location must be less than the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader currently in use at
shader stage Shadertype. The value of the subroutine uniform is returned in
Values.

 getUniformuiv(Program, Location)

 gl:getUniform() and glGetnUniform return in Params the
value(s) of the specified uniform variable. The type of the uniform variable
specified by Location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value
will be returned. If it is defined as a vec2, ivec2, or bvec2, two values will
be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be
returned, and so on. To query values stored in uniform variables declared as
arrays, call gl:getUniform() for each element of the
array. To query values stored in uniform variables declared as structures, call
gl:getUniform() for each field in the structure. The
values for uniform variables declared as a matrix will be returned in column
major order.

 getVertexAttribdv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribfv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribIiv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribIuiv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribiv(Index, Pname)

 gl:getVertexAttrib() returns in Params the value of
a generic vertex attribute parameter. The generic vertex attribute to be queried
is specified by Index, and the parameter to be queried is specified by
Pname.

 getVertexAttribLdv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 hint(Target, Mode)

 Certain aspects of GL behavior, when there is room for interpretation, can be
controlled with hints. A hint is specified with two arguments. Target is a
symbolic constant indicating the behavior to be controlled, and Mode is
another symbolic constant indicating the desired behavior. The initial value for
each Target is ?GL_DONT_CARE. Mode can be one of the following

 histogram(Target, Width, Internalformat, Sink)

 When ?GL_HISTOGRAM is enabled, RGBA color components are converted to
histogram table indices by clamping to the range [0,1], multiplying by the
width of the histogram table, and rounding to the nearest integer. The table
entries selected by the RGBA indices are then incremented. (If the internal
format of the histogram table includes luminance, then the index derived from
the R color component determines the luminance table entry to be incremented.)
If a histogram table entry is incremented beyond its maximum value, then its
value becomes undefined. (This is not an error.)

 indexd(C)

 Equivalent to indexubv/1.

 indexdv/1

 Equivalent to indexubv/1.

 indexf(C)

 Equivalent to indexubv/1.

 indexfv/1

 Equivalent to indexubv/1.

 indexi(C)

 Equivalent to indexubv/1.

 indexiv/1

 Equivalent to indexubv/1.

 indexMask(Mask)

 gl:indexMask/1 controls the writing of individual bits in the
color index buffers. The least significant n bits of Mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 (one) appears
in the mask, it's possible to write to the corresponding bit in the color index
buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is
write-protected.

 indexPointer(Type, Stride, Ptr)

 gl:indexPointer/3 specifies the location and data format
of an array of color indexes to use when rendering. Type specifies the data
type of each color index and Stride specifies the byte stride from one color
index to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays.

 indexs(C)

 Equivalent to indexubv/1.

 indexsv/1

 Equivalent to indexubv/1.

 indexub(C)

 Equivalent to indexubv/1.

 indexubv/1

 gl:index() updates the current (single-valued) color index. It
takes one argument, the new value for the current color index.

 initNames()

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers.
gl:initNames/0 causes the name stack to be initialized to its
default empty state.

 interleavedArrays(Format, Stride, Pointer)

 gl:interleavedArrays/3 lets you specify and enable
individual color, normal, texture and vertex arrays whose elements are part of a
larger aggregate array element. For some implementations, this is more efficient
than specifying the arrays separately.

 invalidateBufferData(Buffer)

 gl:invalidateBufferData/1 invalidates all of the
content of the data store of a buffer object. After invalidation, the content of
the buffer's data store becomes undefined.

 invalidateBufferSubData(Buffer, Offset, Length)

 gl:invalidateBufferSubData/3 invalidates all or
part of the content of the data store of a buffer object. After invalidation,
the content of the specified range of the buffer's data store becomes undefined.
The start of the range is given by Offset and its size is given by Length,
both measured in basic machine units.

 invalidateFramebuffer(Target, Attachments)

 gl:invalidateFramebuffer/2 and
glInvalidateNamedFramebufferData invalidate the entire contents of a specified
set of attachments of a framebuffer.

 invalidateSubFramebuffer(Target, Attachments, X, Y, Width, Height)

 gl:invalidateSubFramebuffer/6 and
glInvalidateNamedFramebufferSubData invalidate the contents of a specified
region of a specified set of attachments of a framebuffer.

 invalidateTexImage(Texture, Level)

 gl:invalidateTexSubImage/8 invalidates all of a
texture image. Texture and Level indicated which texture image is being
invalidated. After this command, data in the texture image has undefined values.

 invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth)

 gl:invalidateTexSubImage/8 invalidates all or
part of a texture image. Texture and Level indicated which texture image is
being invalidated. After this command, data in that subregion have undefined
values. Xoffset, Yoffset, Zoffset, Width, Height, and Depth are
interpreted as they are in gl:texSubImage3D/11. For
texture targets that don't have certain dimensions, this command treats those
dimensions as having a size of 1. For example, to invalidate a portion of a two-
dimensional texture, the application would use Zoffset equal to zero and
Depth equal to one. Cube map textures are treated as an array of six slices in
the z-dimension, where a value of Zoffset is interpreted as specifying face
?GL_TEXTURE_CUBE_MAP_POSITIVE_X + Zoffset.

 isBuffer(Buffer)

 gl:isBuffer/1 returns ?GL_TRUE if Buffer is currently the
name of a buffer object. If Buffer is zero, or is a non-zero value that is not
currently the name of a buffer object, or if an error occurs,
gl:isBuffer/1 returns ?GL_FALSE.

 isEnabled(Cap)

 Equivalent to isEnabledi/2.

 isEnabledi(Target, Index)

 gl:isEnabled/1 returns ?GL_TRUE if Cap is an enabled
capability and returns ?GL_FALSE otherwise. Boolean states that are indexed
may be tested with gl:isEnabledi/2. For
gl:isEnabledi/2, Index specifies the index of the
capability to test. Index must be between zero and the count of indexed
capabilities for Cap. Initially all capabilities except ?GL_DITHER are
disabled; ?GL_DITHER is initially enabled.

 isFramebuffer(Framebuffer)

 gl:isFramebuffer/1 returns ?GL_TRUE if Framebuffer is
currently the name of a framebuffer object. If Framebuffer is zero, or if
?framebuffer is not the name of a framebuffer object, or if an error occurs,
gl:isFramebuffer/1 returns ?GL_FALSE. If Framebuffer
is a name returned by gl:genFramebuffers/1, by that has
not yet been bound through a call to
gl:bindFramebuffer/2, then the name is not a
framebuffer object and gl:isFramebuffer/1 returns
?GL_FALSE.

 isList(List)

 gl:isList/1 returns ?GL_TRUE if List is the name of a
display list and returns ?GL_FALSE if it is not, or if an error occurs.

 isProgram(Program)

 gl:isProgram/1 returns ?GL_TRUE if Program is the name of
a program object previously created with
gl:createProgram/0 and not yet deleted with
gl:deleteProgram/1. If Program is zero or a non-zero
value that is not the name of a program object, or if an error occurs,
gl:isProgram/1 returns ?GL_FALSE.

 isProgramPipeline(Pipeline)

 gl:isProgramPipeline/1 returns ?GL_TRUE if
Pipeline is currently the name of a program pipeline object. If Pipeline is
zero, or if ?pipeline is not the name of a program pipeline object, or if an
error occurs, gl:isProgramPipeline/1 returns
?GL_FALSE. If Pipeline is a name returned by
gl:genProgramPipelines/1, but that has not yet been
bound through a call to gl:bindProgramPipeline/1,
then the name is not a program pipeline object and
gl:isProgramPipeline/1 returns ?GL_FALSE.

 isQuery(Id)

 gl:isQuery/1 returns ?GL_TRUE if Id is currently the name
of a query object. If Id is zero, or is a non-zero value that is not currently
the name of a query object, or if an error occurs, gl:isQuery/1
returns ?GL_FALSE.

 isRenderbuffer(Renderbuffer)

 gl:isRenderbuffer/1 returns ?GL_TRUE if Renderbuffer
is currently the name of a renderbuffer object. If Renderbuffer is zero, or if
Renderbuffer is not the name of a renderbuffer object, or if an error occurs,
gl:isRenderbuffer/1 returns ?GL_FALSE. If
Renderbuffer is a name returned by
gl:genRenderbuffers/1, by that has not yet been bound
through a call to gl:bindRenderbuffer/2 or
gl:framebufferRenderbuffer/4, then the name is
not a renderbuffer object and gl:isRenderbuffer/1
returns ?GL_FALSE.

 isSampler(Sampler)

 gl:isSampler/1 returns ?GL_TRUE if Id is currently the
name of a sampler object. If Id is zero, or is a non-zero value that is not
currently the name of a sampler object, or if an error occurs,
gl:isSampler/1 returns ?GL_FALSE.

 isShader(Shader)

 gl:isShader/1 returns ?GL_TRUE if Shader is the name of a
shader object previously created with gl:createShader/1
and not yet deleted with gl:deleteShader/1. If Shader is
zero or a non-zero value that is not the name of a shader object, or if an error
occurs, glIsShaderreturns ?GL_FALSE.

 isSync(Sync)

 gl:isSync/1 returns ?GL_TRUE if Sync is currently the name
of a sync object. If Sync is not the name of a sync object, or if an error
occurs, gl:isSync/1 returns ?GL_FALSE. Note that zero is not
the name of a sync object.

 isTexture(Texture)

 gl:isTexture/1 returns ?GL_TRUE if Texture is currently
the name of a texture. If Texture is zero, or is a non-zero value that is not
currently the name of a texture, or if an error occurs,
gl:isTexture/1 returns ?GL_FALSE.

 isTransformFeedback(Id)

 gl:isTransformFeedback/1 returns ?GL_TRUE if Id
is currently the name of a transform feedback object. If Id is zero, or if
?id is not the name of a transform feedback object, or if an error occurs,
gl:isTransformFeedback/1 returns ?GL_FALSE. If
Id is a name returned by
gl:genTransformFeedbacks/1, but that has not yet
been bound through a call to
gl:bindTransformFeedback/2, then the name is not
a transform feedback object and
gl:isTransformFeedback/1 returns ?GL_FALSE.

 isVertexArray(Array)

 gl:isVertexArray/1 returns ?GL_TRUE if Array is
currently the name of a vertex array object. If Array is zero, or if Array
is not the name of a vertex array object, or if an error occurs,
gl:isVertexArray/1 returns ?GL_FALSE. If Array is a
name returned by gl:genVertexArrays/1, by that has not
yet been bound through a call to gl:bindVertexArray/1,
then the name is not a vertex array object and
gl:isVertexArray/1 returns ?GL_FALSE.

 lightf(Light, Pname, Param)

 Equivalent to lightiv/3.

 lightfv(Light, Pname, Params)

 Equivalent to lightiv/3.

 lighti(Light, Pname, Param)

 Equivalent to lightiv/3.

 lightiv(Light, Pname, Params)

 gl:light() sets the values of individual light source
parameters. Light names the light and is a symbolic name of the form
?GL_LIGHT i, where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
Pname specifies one of ten light source parameters, again by symbolic name.
Params is either a single value or a pointer to an array that contains the new
values.

 lightModelf(Pname, Param)

 Equivalent to lightModeliv/2.

 lightModelfv(Pname, Params)

 Equivalent to lightModeliv/2.

 lightModeli(Pname, Param)

 Equivalent to lightModeliv/2.

 lightModeliv(Pname, Params)

 gl:lightModel() sets the lighting model parameter. Pname
names a parameter and Params gives the new value. There are three lighting
model parameters

 lineStipple(Factor, Pattern)

 Line stippling masks out certain fragments produced by rasterization; those
fragments will not be drawn. The masking is achieved by using three parameters:
the 16-bit line stipple pattern Pattern, the repeat count Factor, and an
integer stipple counter s.

 lineWidth(Width)

 gl:lineWidth/1 specifies the rasterized width of both aliased
and antialiased lines. Using a line width other than 1 has different effects,
depending on whether line antialiasing is enabled. To enable and disable line
antialiasing, call gl:enable/1 and gl:disable/1
with argument ?GL_LINE_SMOOTH. Line antialiasing is initially disabled.

 linkProgram(Program)

 gl:linkProgram/1 links the program object specified by
Program. If any shader objects of type ?GL_VERTEX_SHADER are attached to
Program, they will be used to create an executable that will run on the
programmable vertex processor. If any shader objects of type
?GL_GEOMETRY_SHADER are attached to Program, they will be used to create an
executable that will run on the programmable geometry processor. If any shader
objects of type ?GL_FRAGMENT_SHADER are attached to Program, they will be
used to create an executable that will run on the programmable fragment
processor.

 listBase(Base)

 gl:callLists/1 specifies an array of offsets. Display-list
names are generated by adding Base to each offset. Names that reference valid
display lists are executed; the others are ignored.

 loadIdentity()

 gl:loadIdentity/0 replaces the current matrix with the
identity matrix. It is semantically equivalent to calling
gl:loadMatrix() with the identity matrix

 loadMatrixd(M)

 Equivalent to loadMatrixf/1.

 loadMatrixf(M)

 gl:loadMatrix() replaces the current matrix with the one
whose elements are specified by M. The current matrix is the projection
matrix, modelview matrix, or texture matrix, depending on the current matrix
mode (see gl:matrixMode/1).

 loadName(Name)

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.

 loadTransposeMatrixd(M)

 Equivalent to loadTransposeMatrixf/1.

 loadTransposeMatrixf(M)

 gl:loadTransposeMatrix() replaces the current
matrix with the one whose elements are specified by M. The current matrix is
the projection matrix, modelview matrix, or texture matrix, depending on the
current matrix mode (see gl:matrixMode/1).

 logicOp(Opcode)

 gl:logicOp/1 specifies a logical operation that, when enabled,
is applied between the incoming RGBA color and the RGBA color at the
corresponding location in the frame buffer. To enable or disable the logical
operation, call gl:enable/1 and gl:disable/1
using the symbolic constant ?GL_COLOR_LOGIC_OP. The initial value is disabled.

 map1d(Target, U1, U2, Stride, Order, Points)

 Equivalent to map1f/6.

 map1f(Target, U1, U2, Stride, Order, Points)

 Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent to further stages of GL processing just as if they had
been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.

 map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 Equivalent to map2f/10.

 map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent on to further stages of GL processing just as if they
had been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.

 mapGrid1d(Un, U1, U2)

 Equivalent to mapGrid2f/6.

 mapGrid1f(Un, U1, U2)

 Equivalent to mapGrid2f/6.

 mapGrid2d(Un, U1, U2, Vn, V1, V2)

 Equivalent to mapGrid2f/6.

 mapGrid2f(Un, U1, U2, Vn, V1, V2)

 gl:mapGrid() and gl:evalMesh() are used
together to efficiently generate and evaluate a series of evenly-spaced map
domain values. gl:evalMesh() steps through the integer domain
of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.

 materialf(Face, Pname, Param)

 Equivalent to materialiv/3.

 materialfv(Face, Pname, Params)

 Equivalent to materialiv/3.

 materiali(Face, Pname, Param)

 Equivalent to materialiv/3.

 materialiv(Face, Pname, Params)

 gl:material() assigns values to material parameters. There
are two matched sets of material parameters. One, the front-facing set, is
used to shade points, lines, bitmaps, and all polygons (when two-sided lighting
is disabled), or just front-facing polygons (when two-sided lighting is
enabled). The other set, back-facing, is used to shade back-facing polygons
only when two-sided lighting is enabled. Refer to the
gl:lightModel() reference page for details concerning one-
and two-sided lighting calculations.

 matrixMode(Mode)

 gl:matrixMode/1 sets the current matrix mode. Mode can
assume one of four values

 memoryBarrier(Barriers)

 Equivalent to memoryBarrierByRegion/1.

 memoryBarrierByRegion(Barriers)

 gl:memoryBarrier/1 defines a barrier ordering the memory
transactions issued prior to the command relative to those issued after the
barrier. For the purposes of this ordering, memory transactions performed by
shaders are considered to be issued by the rendering command that triggered the
execution of the shader. Barriers is a bitfield indicating the set of
operations that are synchronized with shader stores; the bits used in Barriers
are as follows

 minmax(Target, Internalformat, Sink)

 When ?GL_MINMAX is enabled, the RGBA components of incoming pixels are
compared to the minimum and maximum values for each component, which are stored
in the two-element minmax table. (The first element stores the minima, and the
second element stores the maxima.) If a pixel component is greater than the
corresponding component in the maximum element, then the maximum element is
updated with the pixel component value. If a pixel component is less than the
corresponding component in the minimum element, then the minimum element is
updated with the pixel component value. (In both cases, if the internal format
of the minmax table includes luminance, then the R color component of incoming
pixels is used for comparison.) The contents of the minmax table may be
retrieved at a later time by calling gl:getMinmax/5. The
minmax operation is enabled or disabled by calling gl:enable/1
or gl:disable/1, respectively, with an argument of ?GL_MINMAX.

 minSampleShading(Value)

 gl:minSampleShading/1 specifies the rate at which
samples are shaded within a covered pixel. Sample-rate shading is enabled by
calling gl:enable/1 with the parameter ?GL_SAMPLE_SHADING. If
?GL_MULTISAMPLE or ?GL_SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide at least as many unique color
values for each covered fragment as specified by Value times Samples where
Samples is the value of ?GL_SAMPLES for the current framebuffer. At least 1
sample for each covered fragment is generated.

 multiDrawArrays(Mode, First, Count)

 gl:multiDrawArrays/3 specifies multiple sets of
geometric primitives with very few subroutine calls. Instead of calling a GL
procedure to pass each individual vertex, normal, texture coordinate, edge flag,
or color, you can prespecify separate arrays of vertices, normals, and colors
and use them to construct a sequence of primitives with a single call to
gl:multiDrawArrays/3.

 multiDrawArraysIndirect(Mode, Indirect, Drawcount, Stride)

 gl:multiDrawArraysIndirect/4 specifies multiple
geometric primitives with very few subroutine calls.
gl:multiDrawArraysIndirect/4 behaves similarly
to a multitude of calls to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to each call to
gl:drawArraysInstancedBaseInstance/5
are stored in an array in memory at the address given by Indirect, separated
by the stride, in basic machine units, specified by Stride. If Stride is
zero, then the array is assumed to be tightly packed in memory.

 multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride)

 No documentation available.

 multiTexCoord1d(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1f(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1i(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1s(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2d(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2f(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2i(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2s(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3d(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3f(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3i(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3s(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4d(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4f(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4i(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4s(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4sv/2

 gl:multiTexCoord() specifies texture coordinates in
one, two, three, or four dimensions.
gl:multiTexCoord1() sets the current texture
coordinates to (s 0 0 1); a call to gl:multiTexCoord2()
sets them to (s t 0 1). Similarly, gl:multiTexCoord3()
specifies the texture coordinates as (s t r 1), and
gl:multiTexCoord4() defines all four components
explicitly as (s t r q).

 multMatrixd(M)

 Equivalent to multMatrixf/1.

 multMatrixf(M)

 gl:multMatrix() multiplies the current matrix with the one
specified using M, and replaces the current matrix with the product.

 multTransposeMatrixd(M)

 Equivalent to multTransposeMatrixf/1.

 multTransposeMatrixf(M)

 gl:multTransposeMatrix() multiplies the current
matrix with the one specified using M, and replaces the current matrix with
the product.

 newList(List, Mode)

 Display lists are groups of GL commands that have been stored for subsequent
execution. Display lists are created with gl:newList/2. All
subsequent commands are placed in the display list, in the order issued, until
gl:endList/0 is called.

 normal3b(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3bv/1

 Equivalent to normal3sv/1.

 normal3d(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3dv/1

 Equivalent to normal3sv/1.

 normal3f(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3fv/1

 Equivalent to normal3sv/1.

 normal3i(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3iv/1

 Equivalent to normal3sv/1.

 normal3s(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3sv/1

 The current normal is set to the given coordinates whenever
gl:normal() is issued. Byte, short, or integer arguments are
converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0 and the most negative representable
integer value to -1.0.

 normalPointer(Type, Stride, Ptr)

 gl:normalPointer/3 specifies the location and data format
of an array of normals to use when rendering. Type specifies the data type of
each normal coordinate, and Stride specifies the byte stride from one normal
to the next, allowing vertices and attributes to be packed into a single array
or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see gl:interleavedArrays/3.)

 objectPtrLabel(Ptr, Length, Label)

 gl:objectPtrLabel/3 labels the sync object identified by
Ptr.

 ortho(Left, Right, Bottom, Top, Near_val, Far_val)

 gl:ortho/6 describes a transformation that produces a parallel
projection. The current matrix (see gl:matrixMode/1) is
multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as
its argument

 passThrough(Token)

 External documentation.

 patchParameterfv(Pname, Values)

 Equivalent to patchParameteri/2.

 patchParameteri(Pname, Value)

 gl:patchParameter() specifies the parameters that will
be used for patch primitives. Pname specifies the parameter to modify and must
be either ?GL_PATCH_VERTICES, ?GL_PATCH_DEFAULT_OUTER_LEVEL or
?GL_PATCH_DEFAULT_INNER_LEVEL. For
gl:patchParameteri/2, Value specifies the new value
for the parameter specified by Pname. For
gl:patchParameterfv/2, Values specifies the address
of an array containing the new values for the parameter specified by Pname.

 pauseTransformFeedback()

 gl:pauseTransformFeedback/0 pauses transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.

 pixelMapfv(Map, Mapsize, Values)

 Equivalent to pixelMapusv/3.

 pixelMapuiv(Map, Mapsize, Values)

 Equivalent to pixelMapusv/3.

 pixelMapusv(Map, Mapsize, Values)

 gl:pixelMap() sets up translation tables, or maps, used by
gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11. Additionally, if the ARB_imaging
subset is supported, the routines gl:colorTable/6,
gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8. Use of these maps is
described completely in the gl:pixelTransfer() reference
page, and partly in the reference pages for the pixel and texture image
commands. Only the specification of the maps is described in this reference
page.

 pixelStoref(Pname, Param)

 Equivalent to pixelStorei/2.

 pixelStorei(Pname, Param)

 gl:pixelStore() sets pixel storage modes that affect the
operation of subsequent gl:readPixels/7 as well as the
unpacking of texture patterns (see gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11),
gl:compressedTexImage1D/7,
gl:compressedTexImage2D/8,
gl:compressedTexImage3D/9,
gl:compressedTexSubImage1D/7,
gl:compressedTexSubImage2D/9 or
gl:compressedTexSubImage1D/7.

 pixelTransferf(Pname, Param)

 Equivalent to pixelTransferi/2.

 pixelTransferi(Pname, Param)

 gl:pixelTransfer() sets pixel transfer modes that affect
the operation of subsequent gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11 commands. Additionally, if the
ARB_imaging subset is supported, the routines
gl:colorTable/6, gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8 are also affected. The
algorithms that are specified by pixel transfer modes operate on pixels after
they are read from the frame buffer
(gl:copyPixels/5gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9, and
gl:readPixels/7), or unpacked from client memory
(gl:drawPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11). Pixel transfer operations happen
in the same order, and in the same manner, regardless of the command that
resulted in the pixel operation. Pixel storage modes (see
gl:pixelStore()) control the unpacking of pixels being read
from client memory and the packing of pixels being written back into client
memory.

 pixelZoom(Xfactor, Yfactor)

 gl:pixelZoom/2 specifies values for the x and y zoom factors.
During the execution of gl:drawPixels/5 or
gl:copyPixels/5, if (xr, yr) is the current raster
position, and a given element is in the mth row and nth column of the pixel
rectangle, then pixels whose centers are in the rectangle with corners at

 pointParameterf(Pname, Param)

 Equivalent to pointParameteriv/2.

 pointParameterfv(Pname, Params)

 Equivalent to pointParameteriv/2.

 pointParameteri(Pname, Param)

 Equivalent to pointParameteriv/2.

 pointParameteriv(Pname, Params)

 The following values are accepted for Pname

 pointSize(Size)

 gl:pointSize/1 specifies the rasterized diameter of points.
If point size mode is disabled (see gl:enable/1 with parameter
?GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points.
Otherwise, the value written to the shading language built-in variable
gl_PointSize will be used.

 polygonMode(Face, Mode)

 gl:polygonMode/2 controls the interpretation of polygons
for rasterization. Face describes which polygons Mode applies to: both front
and back-facing polygons (?GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon's vertices are lit
and the polygon is clipped and possibly culled before these modes are applied.

 polygonOffset(Factor, Units)

 When ?GL_POLYGON_OFFSET_FILL, ?GL_POLYGON_OFFSET_LINE, or
?GL_POLYGON_OFFSET_POINT is enabled, each fragment's depth value will be
offset after it is interpolated from the depth values of the appropriate
vertices. The value of the offset is factor×DZ+r×units, where DZ is a
measurement of the change in depth relative to the screen area of the polygon,
and r is the smallest value that is guaranteed to produce a resolvable offset
for a given implementation. The offset is added before the depth test is
performed and before the value is written into the depth buffer.

 polygonOffsetClamp(Factor, Units, Clamp)

 No documentation available.

 polygonStipple(Mask)

 Polygon stippling, like line stippling (see
gl:lineStipple/2), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon
antialiasing.

 popAttrib()

 Equivalent to pushAttrib/1.

 popClientAttrib()

 Equivalent to pushClientAttrib/1.

 popDebugGroup()

 Equivalent to pushDebugGroup/4.

 popMatrix()

 Equivalent to pushMatrix/0.

 popName()

 Equivalent to pushName/1.

 primitiveRestartIndex(Index)

 gl:primitiveRestartIndex/1 specifies a vertex
array element that is treated specially when primitive restarting is enabled.
This is known as the primitive restart index.

 prioritizeTextures(Textures, Priorities)

 gl:prioritizeTextures/2 assigns the N texture
priorities given in Priorities to the N textures named in Textures.

 programBinary(Program, BinaryFormat, Binary)

 gl:programBinary/3 loads a program object with a program
binary previously returned from gl:getProgramBinary/2.
BinaryFormat and Binary must be those returned by a previous call to
gl:getProgramBinary/2, and Length must be the length
returned by gl:getProgramBinary/2, or by
gl:getProgram() when called with Pname set to
?GL_PROGRAM_BINARY_LENGTH. If these conditions are not met, loading the
program binary will fail and Program's ?GL_LINK_STATUS will be set to
?GL_FALSE.

 programParameteri(Program, Pname, Value)

 gl:programParameter() specifies a new value for the
parameter nameed by Pname for the program object Program.

 programUniform1d(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1f(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1i(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1ui(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2d(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2f(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2i(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2ui(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3d(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3f(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3i(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3ui(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4d(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4f(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4i(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4ui(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3fv(Program, Location, Transpose, Value)

 gl:programUniform() modifies the value of a uniform
variable or a uniform variable array. The location of the uniform variable to be
modified is specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:programUniform() operates on the program object
specified by Program.

 provokingVertex(Mode)

 Flatshading a vertex shader varying output means to assign all vetices of the
primitive the same value for that output. The vertex from which these values is
derived is known as the provoking vertex and
gl:provokingVertex/1 specifies which vertex is to be
used as the source of data for flat shaded varyings.

 pushAttrib(Mask)

 gl:pushAttrib/1 takes one argument, a mask that indicates
which groups of state variables to save on the attribute stack. Symbolic
constants are used to set bits in the mask. Mask is typically constructed by
specifying the bitwise-or of several of these constants together. The special
mask ?GL_ALL_ATTRIB_BITS can be used to save all stackable states.

 pushClientAttrib(Mask)

 gl:pushClientAttrib/1 takes one argument, a mask that
indicates which groups of client-state variables to save on the client attribute
stack. Symbolic constants are used to set bits in the mask. Mask is typically
constructed by specifying the bitwise-or of several of these constants together.
The special mask ?GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable
client state.

 pushDebugGroup(Source, Id, Length, Message)

 gl:pushDebugGroup/4 pushes a debug group described by
the string Message into the command stream. The value of Id specifies the ID
of messages generated. The parameter Length contains the number of characters
in Message. If Length is negative, it is implied that Message contains a
null terminated string. The message has the specified Source and Id, the
Type``?GL_DEBUG_TYPE_PUSH_GROUP, and
Severity``?GL_DEBUG_SEVERITY_NOTIFICATION. The GL will put a new debug group
on top of the debug group stack which inherits the control of the volume of
debug output of the debug group previously residing on the top of the debug
group stack. Because debug groups are strictly hierarchical, any additional
control of the debug output volume will only apply within the active debug group
and the debug groups pushed on top of the active debug group.

 pushMatrix()

 There is a stack of matrices for each of the matrix modes. In ?GL_MODELVIEW
mode, the stack depth is at least 32. In the other modes, ?GL_COLOR,
?GL_PROJECTION, and ?GL_TEXTURE, the depth is at least 2. The current matrix
in any mode is the matrix on the top of the stack for that mode.

 pushName(Name)

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.

 queryCounter(Id, Target)

 gl:queryCounter/2 causes the GL to record the current time
into the query object named Id. Target must be ?GL_TIMESTAMP. The time is
recorded after all previous commands on the GL client and server state and the
framebuffer have been fully realized. When the time is recorded, the query
result for that object is marked available.
gl:queryCounter/2 timer queries can be used within a
gl:beginQuery/2 / gl:endQuery/1 block
where the target is ?GL_TIME_ELAPSED and it does not affect the result of that
query object.

 rasterPos2d(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2f(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2i(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2s(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2sv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3d(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3f(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3i(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3s(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3sv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4d(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4f(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4i(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4s(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4sv/1

 The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.

 readBuffer(Mode)

 gl:readBuffer/1 specifies a color buffer as the source for
subsequent gl:readPixels/7,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9 commands. Mode accepts one
of twelve or more predefined values. In a fully configured system, ?GL_FRONT,
?GL_LEFT, and ?GL_FRONT_LEFT all name the front left buffer,
?GL_FRONT_RIGHT and ?GL_RIGHT name the front right buffer, and
?GL_BACK_LEFT and ?GL_BACK name the back left buffer. Further more, the
constants ?GL_COLOR_ATTACHMENT``i may be used to indicate the ith color
attachment where i ranges from zero to the value of
?GL_MAX_COLOR_ATTACHMENTS minus one.

 readPixels(X, Y, Width, Height, Format, Type, Pixels)

 gl:readPixels/7 and glReadnPixels return pixel data from
the frame buffer, starting with the pixel whose lower left corner is at location
(X, Y), into client memory starting at location Data. Several parameters
control the processing of the pixel data before it is placed into client memory.
These parameters are set with gl:pixelStore(). This
reference page describes the effects on gl:readPixels/7 and
glReadnPixels of most, but not all of the parameters specified by these three
commands.

 rectd(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectdv(V1, V2)

 Equivalent to rectsv/2.

 rectf(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectfv(V1, V2)

 Equivalent to rectsv/2.

 recti(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectiv(V1, V2)

 Equivalent to rectsv/2.

 rects(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectsv(V1, V2)

 gl:rect() supports efficient specification of rectangles as two
corner points. Each rectangle command takes four arguments, organized either as
two consecutive pairs of (x y) coordinates or as two pointers to arrays, each
containing an (x y) pair. The resulting rectangle is defined in the z=0 plane.

 releaseShaderCompiler()

 gl:releaseShaderCompiler/0 provides a hint to the
implementation that it may free internal resources associated with its shader
compiler. gl:compileShader/1 may subsequently be called
and the implementation may at that time reallocate resources previously freed by
the call to gl:releaseShaderCompiler/0.

 renderbufferStorage(Target, Internalformat, Width, Height)

 gl:renderbufferStorage/4 is equivalent to calling
gl:renderbufferStorageMultisample/5 with
the Samples set to zero, and glNamedRenderbufferStorage is equivalent to
calling glNamedRenderbufferStorageMultisample with the samples set to zero.

 renderbufferStorageMultisample(Target, Samples, Internalformat, Width, Height)

 gl:renderbufferStorageMultisample/5 and
glNamedRenderbufferStorageMultisample establish the data storage, format,
dimensions and number of samples of a renderbuffer object's image.

 renderMode(Mode)

 gl:renderMode/1 sets the rasterization mode. It takes one
argument, Mode, which can assume one of three predefined values

 resetHistogram(Target)

 gl:resetHistogram/1 resets all the elements of the
current histogram table to zero.

 resetMinmax(Target)

 gl:resetMinmax/1 resets the elements of the current minmax
table to their initial values: the ``maximum'' element receives the minimum
possible component values, and the ``minimum'' element receives the maximum
possible component values.

 resumeTransformFeedback()

 gl:resumeTransformFeedback/0 resumes transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.

 rotated(Angle, X, Y, Z)

 Equivalent to rotatef/4.

 rotatef(Angle, X, Y, Z)

 gl:rotate() produces a rotation of Angle degrees around the
vector (x y z). The current matrix (see gl:matrixMode/1) is
multiplied by a rotation matrix with the product replacing the current matrix,
as if gl:multMatrix() were called with the following matrix
as its argument

 sampleCoverage(Value, Invert)

 Multisampling samples a pixel multiple times at various implementation-dependent
subpixel locations to generate antialiasing effects. Multisampling transparently
antialiases points, lines, polygons, and images if it is enabled.

 sampleMaski(MaskNumber, Mask)

 gl:sampleMaski/2 sets one 32-bit sub-word of the multi-word
sample mask, ?GL_SAMPLE_MASK_VALUE.

 samplerParameterf(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterfv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterIiv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterIuiv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameteri(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameteriv(Sampler, Pname, Param)

 gl:samplerParameter() assigns the value or values in
Params to the sampler parameter specified as Pname. Sampler specifies the
sampler object to be modified, and must be the name of a sampler object
previously returned from a call to gl:genSamplers/1. The
following symbols are accepted in Pname

 scaled(X, Y, Z)

 Equivalent to scalef/3.

 scalef(X, Y, Z)

 gl:scale() produces a nonuniform scaling along the x, y, and
z axes. The three parameters indicate the desired scale factor along each of
the three axes.

 scissor(X, Y, Width, Height)

 gl:scissor/4 defines a rectangle, called the scissor box, in
window coordinates. The first two arguments, X and Y, specify the lower left
corner of the box. Width and Height specify the width and height of the box.

 scissorArrayv(First, V)

 gl:scissorArrayv/2 defines rectangles, called scissor
boxes, in window coordinates for each viewport. First specifies the index of
the first scissor box to modify and Count specifies the number of scissor
boxes to modify. First must be less than the value of ?GL_MAX_VIEWPORTS, and
First + Count must be less than or equal to the value of
?GL_MAX_VIEWPORTS. V specifies the address of an array containing integers
specifying the lower left corner of the scissor boxes, and the width and height
of the scissor boxes, in that order.

 scissorIndexed(Index, Left, Bottom, Width, Height)

 Equivalent to scissorIndexedv/2.

 scissorIndexedv(Index, V)

 gl:scissorIndexed/5 defines the scissor box for a
specified viewport. Index specifies the index of scissor box to modify.
Index must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:scissorIndexed/5, Left, Bottom, Width and
Height specify the left, bottom, width and height of the scissor box, in
pixels, respectively. For gl:scissorIndexedv/2, V
specifies the address of an array containing integers specifying the lower left
corner of the scissor box, and the width and height of the scissor box, in that
order.

 secondaryColor3b(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3bv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3d(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3dv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3f(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3fv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3i(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3iv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3s(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3sv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ub(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ubv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ui(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3uiv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3us(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3usv/1

 The GL stores both a primary four-valued RGBA color and a secondary four-valued
RGBA color (where alpha is always set to 0.0) that is associated with every
vertex.

 secondaryColorPointer(Size, Type, Stride, Pointer)

 gl:secondaryColorPointer/4 specifies the location
and data format of an array of color components to use when rendering. Size
specifies the number of components per color, and must be 3. Type specifies
the data type of each color component, and Stride specifies the byte stride
from one color to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays.

 selectBuffer(Size, Buffer)

 gl:selectBuffer/2 has two arguments: Buffer is a pointer
to an array of unsigned integers, and Size indicates the size of the array.
Buffer returns values from the name stack (see
gl:initNames/0, gl:loadName/1,
gl:pushName/1) when the rendering mode is ?GL_SELECT (see
gl:renderMode/1). gl:selectBuffer/2
must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is ?GL_SELECT.

 separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column)

 gl:separableFilter2D/8 builds a two-dimensional
separable convolution filter kernel from two arrays of pixels.

 shadeModel(Mode)

 GL primitives can have either flat or smooth shading. Smooth shading, the
default, causes the computed colors of vertices to be interpolated as the
primitive is rasterized, typically assigning different colors to each resulting
pixel fragment. Flat shading selects the computed color of just one vertex and
assigns it to all the pixel fragments generated by rasterizing a single
primitive. In either case, the computed color of a vertex is the result of
lighting if lighting is enabled, or it is the current color at the time the
vertex was specified if lighting is disabled.

 shaderBinary(Shaders, Binaryformat, Binary)

 gl:shaderBinary/3 loads pre-compiled shader binary code
into the Count shader objects whose handles are given in Shaders. Binary
points to Length bytes of binary shader code stored in client memory.
BinaryFormat specifies the format of the pre-compiled code.

 shaderSource(Shader, String)

 gl:shaderSource/2 sets the source code in Shader to the
source code in the array of strings specified by String. Any source code
previously stored in the shader object is completely replaced. The number of
strings in the array is specified by Count. If Length is ?NULL, each
string is assumed to be null terminated. If Length is a value other than
?NULL, it points to an array containing a string length for each of the
corresponding elements of String. Each element in the Length array may
contain the length of the corresponding string (the null character is not
counted as part of the string length) or a value less than 0 to indicate that
the string is null terminated. The source code strings are not scanned or parsed
at this time; they are simply copied into the specified shader object.

 shaderStorageBlockBinding(Program, StorageBlockIndex, StorageBlockBinding)

 gl:shaderStorageBlockBinding/3, changes the
active shader storage block with an assigned index of StorageBlockIndex in
program object Program. StorageBlockIndex must be an active shader storage
block index in Program. StorageBlockBinding must be less than the value of
?GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS. If successful,
gl:shaderStorageBlockBinding/3 specifies that
Program will use the data store of the buffer object bound to the binding
point StorageBlockBinding to read and write the values of the buffer variables
in the shader storage block identified by StorageBlockIndex.

 stencilFunc(Func, Ref, Mask)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. Stencil planes are first drawn into using GL drawing primitives, then
geometry and images are rendered using the stencil planes to mask out portions
of the screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilFuncSeparate(Face, Func, Ref, Mask)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilMask(Mask)

 gl:stencilMask/1 controls the writing of individual bits in
the stencil planes. The least significant n bits of Mask, where n is the
number of bits in the stencil buffer, specify a mask. Where a 1 appears in the
mask, it's possible to write to the corresponding bit in the stencil buffer.
Where a 0 appears, the corresponding bit is write-protected. Initially, all bits
are enabled for writing.

 stencilMaskSeparate(Face, Mask)

 gl:stencilMaskSeparate/2 controls the writing of
individual bits in the stencil planes. The least significant n bits of Mask,
where n is the number of bits in the stencil buffer, specify a mask. Where a 1
appears in the mask, it's possible to write to the corresponding bit in the
stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.

 stencilOp(Fail, Zfail, Zpass)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilOpSeparate(Face, Sfail, Dpfail, Dppass)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 texBuffer(Target, Internalformat, Buffer)

 Equivalent to textureBuffer/3.

 texBufferRange(Target, Internalformat, Buffer, Offset, Size)

 Equivalent to textureBufferRange/5.

 texCoord1d(S)

 Equivalent to texCoord4sv/1.

 texCoord1dv/1

 Equivalent to texCoord4sv/1.

 texCoord1f(S)

 Equivalent to texCoord4sv/1.

 texCoord1fv/1

 Equivalent to texCoord4sv/1.

 texCoord1i(S)

 Equivalent to texCoord4sv/1.

 texCoord1iv/1

 Equivalent to texCoord4sv/1.

 texCoord1s(S)

 Equivalent to texCoord4sv/1.

 texCoord1sv/1

 Equivalent to texCoord4sv/1.

 texCoord2d(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2dv/1

 Equivalent to texCoord4sv/1.

 texCoord2f(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2fv/1

 Equivalent to texCoord4sv/1.

 texCoord2i(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2iv/1

 Equivalent to texCoord4sv/1.

 texCoord2s(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2sv/1

 Equivalent to texCoord4sv/1.

 texCoord3d(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3dv/1

 Equivalent to texCoord4sv/1.

 texCoord3f(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3fv/1

 Equivalent to texCoord4sv/1.

 texCoord3i(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3iv/1

 Equivalent to texCoord4sv/1.

 texCoord3s(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3sv/1

 Equivalent to texCoord4sv/1.

 texCoord4d(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4dv/1

 Equivalent to texCoord4sv/1.

 texCoord4f(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4fv/1

 Equivalent to texCoord4sv/1.

 texCoord4i(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4iv/1

 Equivalent to texCoord4sv/1.

 texCoord4s(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4sv/1

 gl:texCoord() specifies texture coordinates in one, two,
three, or four dimensions. gl:texCoord1() sets the current
texture coordinates to (s 0 0 1); a call to gl:texCoord2()
sets them to (s t 0 1). Similarly, gl:texCoord3() specifies
the texture coordinates as (s t r 1), and gl:texCoord4()
defines all four components explicitly as (s t r q).

 texCoordPointer(Size, Type, Stride, Ptr)

 gl:texCoordPointer/4 specifies the location and data
format of an array of texture coordinates to use when rendering. Size
specifies the number of coordinates per texture coordinate set, and must be 1,
2, 3, or 4. Type specifies the data type of each texture coordinate, and
Stride specifies the byte stride from one texture coordinate set to the next,
allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)

 texEnvf(Target, Pname, Param)

 Equivalent to texEnviv/3.

 texEnvfv(Target, Pname, Params)

 Equivalent to texEnviv/3.

 texEnvi(Target, Pname, Param)

 Equivalent to texEnviv/3.

 texEnviv(Target, Pname, Params)

 A texture environment specifies how texture values are interpreted when a
fragment is textured. When Target is ?GL_TEXTURE_FILTER_CONTROL, Pname
must be ?GL_TEXTURE_LOD_BIAS. When Target is ?GL_TEXTURE_ENV, Pname can
be ?GL_TEXTURE_ENV_MODE, ?GL_TEXTURE_ENV_COLOR, ?GL_COMBINE_RGB,
?GL_COMBINE_ALPHA, ?GL_RGB_SCALE, ?GL_ALPHA_SCALE, ?GL_SRC0_RGB,
?GL_SRC1_RGB, ?GL_SRC2_RGB, ?GL_SRC0_ALPHA, ?GL_SRC1_ALPHA, or
?GL_SRC2_ALPHA.

 texGend(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGendv(Coord, Pname, Params)

 Equivalent to texGeniv/3.

 texGenf(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGenfv(Coord, Pname, Params)

 Equivalent to texGeniv/3.

 texGeni(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGeniv(Coord, Pname, Params)

 gl:texGen() selects a texture-coordinate generation function or
supplies coefficients for one of the functions. Coord names one of the (s,
t, r, q) texture coordinates; it must be one of the symbols ?GL_S,
?GL_T, ?GL_R, or ?GL_Q. Pname must be one of three symbolic constants:
?GL_TEXTURE_GEN_MODE, ?GL_OBJECT_PLANE, or ?GL_EYE_PLANE. If Pname is
?GL_TEXTURE_GEN_MODE, then Params chooses a mode, one of
?GL_OBJECT_LINEAR, ?GL_EYE_LINEAR, ?GL_SPHERE_MAP, ?GL_NORMAL_MAP, or
?GL_REFLECTION_MAP. If Pname is either ?GL_OBJECT_PLANE or
?GL_EYE_PLANE, Params contains coefficients for the corresponding texture
generation function.

 texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.

 texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels)

 Texturing allows elements of an image array to be read by shaders.

 texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 gl:texImage2DMultisample/6 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.

 texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable
three-dimensional texturing, call gl:enable/1 and
gl:disable/1 with argument ?GL_TEXTURE_3D.

 texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 gl:texImage3DMultisample/7 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.

 texParameterf(Target, Pname, Param)

 Equivalent to texParameteriv/3.

 texParameterfv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameterIiv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameterIuiv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameteri(Target, Pname, Param)

 Equivalent to texParameteriv/3.

 texParameteriv(Target, Pname, Params)

 gl:texParameter() and
gl:textureParameter() assign the value or values in
Params to the texture parameter specified as Pname. For
gl:texParameter(), Target defines the target texture,
either ?GL_TEXTURE_1D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE,
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY, ?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, or ?GL_TEXTURE_RECTANGLE. The following symbols
are accepted in Pname

 texStorage1D(Target, Levels, Internalformat, Width)

 gl:texStorage1D/4 and
gl:textureStorage1D() specify the storage requirements for
all levels of a one-dimensional texture simultaneously. Once a texture is
specified with this command, the format and dimensions of all levels become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.

 texStorage2D(Target, Levels, Internalformat, Width, Height)

 gl:texStorage2D/5 and
gl:textureStorage2D() specify the storage requirements for
all levels of a two-dimensional texture or one-dimensional texture array
simultaneously. Once a texture is specified with this command, the format and
dimensions of all levels become immutable unless it is a proxy texture. The
contents of the image may still be modified, however, its storage requirements
may not change. Such a texture is referred to as an immutable-format texture.

 texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 gl:texStorage2DMultisample/6 and
gl:textureStorage2DMultisample() specify the
storage requirements for a two-dimensional multisample texture. Once a texture
is specified with this command, its format and dimensions become immutable
unless it is a proxy texture. The contents of the image may still be modified,
however, its storage requirements may not change. Such a texture is referred to
as an immutable-format texture.

 texStorage3D(Target, Levels, Internalformat, Width, Height, Depth)

 gl:texStorage3D/6 and
gl:textureStorage3D() specify the storage requirements for
all levels of a three-dimensional, two-dimensional array or cube-map array
texture simultaneously. Once a texture is specified with this command, the
format and dimensions of all levels become immutable unless it is a proxy
texture. The contents of the image may still be modified, however, its storage
requirements may not change. Such a texture is referred to as an
immutable-format texture.

 texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 gl:texStorage3DMultisample/7 and
gl:textureStorage3DMultisample() specify the
storage requirements for a two-dimensional multisample array texture. Once a
texture is specified with this command, its format and dimensions become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.

 texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable or disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.

 texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.

 texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.

 textureBarrier()

 The values of rendered fragments are undefined when a shader stage fetches
texels and the same texels are written via fragment shader outputs, even if the
reads and writes are not in the same drawing command. To safely read the result
of a written texel via a texel fetch in a subsequent drawing command, call
gl:textureBarrier/0 between the two drawing commands to
guarantee that writes have completed and caches have been invalidated before
subsequent drawing commands are executed.

 textureBuffer(Texture, Internalformat, Buffer)

 gl:texBuffer/3 and gl:textureBuffer/3
attaches the data store of a specified buffer object to a specified texture
object, and specify the storage format for the texture image found in the buffer
object. The texture object must be a buffer texture.

 textureBufferRange(Texture, Internalformat, Buffer, Offset, Size)

 gl:texBufferRange/5 and
gl:textureBufferRange/5 attach a range of the data store
of a specified buffer object to a specified texture object, and specify the
storage format for the texture image found in the buffer object. The texture
object must be a buffer texture.

 textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer, Numlayers)

 gl:textureView/8 initializes a texture object as an alias,
or view of another texture object, sharing some or all of the parent texture's
data store with the initialized texture. Texture specifies a name previously
reserved by a successful call to gl:genTextures/1 but that
has not yet been bound or given a target. Target specifies the target for the
newly initialized texture and must be compatible with the target of the parent
texture, given in Origtexture as specified in the following table

 transformFeedbackBufferBase(Xfb, Index, Buffer)

 gl:transformFeedbackBufferBase/3 binds the
buffer object Buffer to the binding point at index Index of the transform
feedback object Xfb.

 transformFeedbackBufferRange(Xfb, Index, Buffer, Offset, Size)

 gl:transformFeedbackBufferRange/5 binds a
range of the buffer object Buffer represented by Offset and Size to the
binding point at index Index of the transform feedback object Xfb.

 transformFeedbackVaryings(Program, Varyings, BufferMode)

 The names of the vertex or geometry shader outputs to be recorded in transform
feedback mode are specified using
gl:transformFeedbackVaryings/3. When a
geometry shader is active, transform feedback records the values of selected
geometry shader output variables from the emitted vertices. Otherwise, the
values of the selected vertex shader outputs are recorded.

 translated(X, Y, Z)

 Equivalent to translatef/3.

 translatef(X, Y, Z)

 gl:translate() produces a translation by (x y z). The
current matrix (see gl:matrixMode/1) is multiplied by this
translation matrix, with the product replacing the current matrix, as if
gl:multMatrix() were called with the following matrix for
its argument

 uniform1d(Location, X)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1f(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1i(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1ui(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2d(Location, X, Y)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2f(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2i(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2ui(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3d(Location, X, Y, Z)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3f(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3i(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3ui(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4d(Location, X, Y, Z, W)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4f(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4i(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4ui(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformBlockBinding(Program, UniformBlockIndex, UniformBlockBinding)

 Binding points for active uniform blocks are assigned using
gl:uniformBlockBinding/3. Each of a program's
active uniform blocks has a corresponding uniform buffer binding point.
Program is the name of a program object for which the command
gl:linkProgram/1 has been issued in the past.

 uniformMatrix2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3fv(Location, Transpose, Value)

 gl:uniform() modifies the value of a uniform variable or a
uniform variable array. The location of the uniform variable to be modified is
specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:uniform() operates on the program object that was made
part of current state by calling gl:useProgram/1.

 uniformSubroutinesuiv(Shadertype, Indices)

 gl:uniformSubroutines() loads all active
subroutine uniforms for shader stage Shadertype of the current program with
subroutine indices from Indices, storing Indices[i] into the uniform at
location I. Count must be equal to the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program currently in use at
shader stage Shadertype. Furthermore, all values in Indices must be less
than the value of ?GL_ACTIVE_SUBROUTINES for the shader stage.

 useProgram(Program)

 gl:useProgram/1 installs the program object specified by
Program as part of current rendering state. One or more executables are
created in a program object by successfully attaching shader objects to it with
gl:attachShader/2, successfully compiling the shader
objects with gl:compileShader/1, and successfully linking
the program object with gl:linkProgram/1.

 useProgramStages(Pipeline, Stages, Program)

 gl:useProgramStages/3 binds executables from a program
object associated with a specified set of shader stages to the program pipeline
object given by Pipeline. Pipeline specifies the program pipeline object to
which to bind the executables. Stages contains a logical combination of bits
indicating the shader stages to use within Program with the program pipeline
object Pipeline. Stages must be a logical combination of
?GL_VERTEX_SHADER_BIT, ?GL_TESS_CONTROL_SHADER_BIT,
?GL_TESS_EVALUATION_SHADER_BIT, ?GL_GEOMETRY_SHADER_BIT,
?GL_FRAGMENT_SHADER_BIT and ?GL_COMPUTE_SHADER_BIT. Additionally, the
special value ?GL_ALL_SHADER_BITS may be specified to indicate that all
executables contained in Program should be installed in Pipeline.

 validateProgram(Program)

 gl:validateProgram/1 checks to see whether the
executables contained in Program can execute given the current OpenGL state.
The information generated by the validation process will be stored in
Program's information log. The validation information may consist of an empty
string, or it may be a string containing information about how the current
program object interacts with the rest of current OpenGL state. This provides a
way for OpenGL implementers to convey more information about why the current
program is inefficient, suboptimal, failing to execute, and so on.

 validateProgramPipeline(Pipeline)

 gl:validateProgramPipeline/1 instructs the
implementation to validate the shader executables contained in Pipeline
against the current GL state. The implementation may use this as an opportunity
to perform any internal shader modifications that may be required to ensure
correct operation of the installed shaders given the current GL state.

 vertex2d(X, Y)

 Equivalent to vertex4sv/1.

 vertex2dv/1

 Equivalent to vertex4sv/1.

 vertex2f(X, Y)

 Equivalent to vertex4sv/1.

 vertex2fv/1

 Equivalent to vertex4sv/1.

 vertex2i(X, Y)

 Equivalent to vertex4sv/1.

 vertex2iv/1

 Equivalent to vertex4sv/1.

 vertex2s(X, Y)

 Equivalent to vertex4sv/1.

 vertex2sv/1

 Equivalent to vertex4sv/1.

 vertex3d(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3dv/1

 Equivalent to vertex4sv/1.

 vertex3f(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3fv/1

 Equivalent to vertex4sv/1.

 vertex3i(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3iv/1

 Equivalent to vertex4sv/1.

 vertex3s(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3sv/1

 Equivalent to vertex4sv/1.

 vertex4d(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4dv/1

 Equivalent to vertex4sv/1.

 vertex4f(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4fv/1

 Equivalent to vertex4sv/1.

 vertex4i(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4iv/1

 Equivalent to vertex4sv/1.

 vertex4s(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4sv/1

 gl:vertex() commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
point, line, and polygon vertices. The current color, normal, texture
coordinates, and fog coordinate are associated with the vertex when
gl:vertex() is called.

 vertexArrayAttribBinding(Vaobj, Attribindex, Bindingindex)

 Equivalent to vertexAttribBinding/2.

 vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribIFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribLFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayBindingDivisor(Vaobj, Bindingindex, Divisor)

 Equivalent to vertexBindingDivisor/2.

 vertexArrayElementBuffer(Vaobj, Buffer)

 gl:vertexArrayElementBuffer/2 binds a buffer
object with id Buffer to the element array buffer bind point of a vertex array
object with id Vaobj. If Buffer is zero, any existing element array buffer
binding to Vaobj is removed.

 vertexArrayVertexBuffer(Vaobj, Bindingindex, Buffer, Offset, Stride)

 gl:bindVertexBuffer/4 and
gl:vertexArrayVertexBuffer/5 bind the buffer named
Buffer to the vertex buffer binding point whose index is given by
Bindingindex. gl:bindVertexBuffer/4 modifies the
binding of the currently bound vertex array object, whereas
gl:vertexArrayVertexBuffer/5 allows the caller to
specify ID of the vertex array object with an argument named Vaobj, for which
the binding should be modified. Offset and Stride specify the offset of the
first element within the buffer and the distance between elements within the
buffer, respectively, and are both measured in basic machine units.
Bindingindex must be less than the value of ?GL_MAX_VERTEX_ATTRIB_BINDINGS.
Offset and Stride must be greater than or equal to zero. If Buffer is
zero, then any buffer currently bound to the specified binding point is unbound.

 vertexArrayVertexBuffers(Vaobj, First, Buffers, Offsets, Strides)

 gl:bindVertexBuffers/4 and
gl:vertexArrayVertexBuffers/5 bind storage from an
array of existing buffer objects to a specified number of consecutive vertex
buffer binding points units in a vertex array object. For
gl:bindVertexBuffers/4, the vertex array object is
the currently bound vertex array object. For
gl:vertexArrayVertexBuffers/5, Vaobj is the name of
the vertex array object.

 vertexAttrib1d(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1f(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1s(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2d(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2f(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2s(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3d(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3f(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3s(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4bv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4d(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4f(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4iv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nbv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Niv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nsv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nub(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nubv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nuiv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nusv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4s(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4ubv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4uiv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4usv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribBinding(Attribindex, Bindingindex)

 gl:vertexAttribBinding/2 and
gl:vertexArrayAttribBinding/3 establishes an
association between the generic vertex attribute of a vertex array object whose
index is given by Attribindex, and a vertex buffer binding whose index is
given by Bindingindex. For
gl:vertexAttribBinding/2, the vertex array object
affected is that currently bound. For
gl:vertexArrayAttribBinding/3, Vaobj is the name
of the vertex array object.

 vertexAttribDivisor(Index, Divisor)

 gl:vertexAttribDivisor/2 modifies the rate at which
generic vertex attributes advance when rendering multiple instances of
primitives in a single draw call. If Divisor is zero, the attribute at slot
Index advances once per vertex. If Divisor is non-zero, the attribute
advances once per Divisor instances of the set(s) of vertices being rendered.
An attribute is referred to as instanced if its
?GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.

 vertexAttribFormat(Attribindex, Size, Type, Normalized, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribI1i(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1ui(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2i(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2ui(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3i(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3ui(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4bv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4i(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4sv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ubv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ui(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4usv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribIFormat(Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribIPointer(Index, Size, Type, Stride, Pointer)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribL1d(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL1dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL2d(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL2dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL3d(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL3dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL4d(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL4dv/2

 The gl:vertexAttrib() family of entry points allows an
application to pass generic vertex attributes in numbered locations.

 vertexAttribLFormat(Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribLPointer(Index, Size, Type, Stride, Pointer)

 gl:vertexAttribFormat/5,
gl:vertexAttribIFormat/4 and
gl:vertexAttribLFormat/4, as well as
gl:vertexArrayAttribFormat/6,
gl:vertexArrayAttribIFormat/5 and
gl:vertexArrayAttribLFormat/5 specify the
organization of data in vertex arrays. The first three calls operate on the
bound vertex array object, whereas the last three ones modify the state of a
vertex array object with ID Vaobj. Attribindex specifies the index of the
generic vertex attribute array whose data layout is being described, and must be
less than the value of ?GL_MAX_VERTEX_ATTRIBS.

 vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer)

 gl:vertexAttribPointer/6,
gl:vertexAttribIPointer/5 and
gl:vertexAttribLPointer/5 specify the location and
data format of the array of generic vertex attributes at index Index to use
when rendering. Size specifies the number of components per attribute and must
be 1, 2, 3, 4, or ?GL_BGRA. Type specifies the data type of each component,
and Stride specifies the byte stride from one attribute to the next, allowing
vertices and attributes to be packed into a single array or stored in separate
arrays.

 vertexBindingDivisor(Bindingindex, Divisor)

 gl:vertexBindingDivisor/2 and
gl:vertexArrayBindingDivisor/3 modify the rate at
which generic vertex attributes advance when rendering multiple instances of
primitives in a single draw command. If Divisor is zero, the attributes using
the buffer bound to Bindingindex advance once per vertex. If Divisor is
non-zero, the attributes advance once per Divisor instances of the set(s) of
vertices being rendered. An attribute is referred to as instanced if the
corresponding Divisor value is non-zero.

 vertexPointer(Size, Type, Stride, Ptr)

 gl:vertexPointer/4 specifies the location and data format
of an array of vertex coordinates to use when rendering. Size specifies the
number of coordinates per vertex, and must be 2, 3, or 4. Type specifies the
data type of each coordinate, and Stride specifies the byte stride from one
vertex to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)

 viewport(X, Y, Width, Height)

 gl:viewport/4 specifies the affine transformation of x and y
from normalized device coordinates to window coordinates. Let (x nd y nd) be
normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows

 viewportArrayv(First, V)

 gl:viewportArrayv/2 specifies the parameters for
multiple viewports simulataneously. First specifies the index of the first
viewport to modify and Count specifies the number of viewports to modify.
First must be less than the value of ?GL_MAX_VIEWPORTS, and First +
Count must be less than or equal to the value of ?GL_MAX_VIEWPORTS.
Viewports whose indices lie outside the range [First, First + Count) are
not modified. V contains the address of an array of floating point values
specifying the left (x), bottom (y), width (w), and height (h) of each
viewport, in that order. x and y give the location of the viewport's lower left
corner, and w and h give the width and height of the viewport, respectively. The
viewport specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (x nd y nd) be normalized device
coordinates. Then the window coordinates (x w y w) are computed as follows

 viewportIndexedf(Index, X, Y, W, H)

 Equivalent to viewportIndexedfv/2.

 viewportIndexedfv(Index, V)

 gl:viewportIndexedf/5 and
gl:viewportIndexedfv/2 specify the parameters for a
single viewport. Index specifies the index of the viewport to modify. Index
must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:viewportIndexedf/5, X, Y, W, and H specify
the left, bottom, width and height of the viewport in pixels, respectively. For
gl:viewportIndexedfv/2, V contains the address of an
array of floating point values specifying the left (x), bottom (y), width (
w), and height (h) of each viewport, in that order. x and y give the location
of the viewport's lower left corner, and w and h give the width and height of
the viewport, respectively. The viewport specifies the affine transformation of
x and y from normalized device coordinates to window coordinates. Let (x nd y
nd) be normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows

 waitSync(Sync, Flags, Timeout)

 gl:waitSync/3 causes the GL server to block and wait until
Sync becomes signaled. Sync is the name of an existing sync object upon
which to wait. Flags and Timeout are currently not used and must be set to
zero and the special value ?GL_TIMEOUT_IGNORED, respectively

 windowPos2d(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2dv/1

 Equivalent to windowPos3sv/1.

 windowPos2f(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2fv/1

 Equivalent to windowPos3sv/1.

 windowPos2i(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2iv/1

 Equivalent to windowPos3sv/1.

 windowPos2s(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2sv/1

 Equivalent to windowPos3sv/1.

 windowPos3d(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3dv/1

 Equivalent to windowPos3sv/1.

 windowPos3f(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3fv/1

 Equivalent to windowPos3sv/1.

 windowPos3i(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3iv/1

 Equivalent to windowPos3sv/1.

 windowPos3s(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3sv/1

 The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.

 Types

 Link to this type

 clamp()

 View Source

 (not exported)

 -type clamp() :: float().

 Link to this type

 enum()

 View Source

 (not exported)

 -type enum() :: non_neg_integer().

 Link to this type

 f()

 View Source

 (not exported)

 -type f() :: float().

 Link to this type

 i()

 View Source

 (not exported)

 -type i() :: integer().

 Link to this type

 m12()

 View Source

 (not exported)

 -type m12() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 Link to this type

 m16()

 View Source

 (not exported)

 -type m16() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 Link to this type

 matrix()

 View Source

 (not exported)

 -type matrix() :: m12() | m16().

 Link to this type

 mem()

 View Source

 (not exported)

 -type mem() :: binary() | tuple().

 Link to this type

 offset()

 View Source

 (not exported)

 -type offset() :: non_neg_integer().

 Functions

 Link to this function

 accum(Op, Value)

 View Source

 -spec accum(Op :: enum(), Value :: f()) -> ok.

The accumulation buffer is an extended-range color buffer. Images are not
rendered into it. Rather, images rendered into one of the color buffers are
added to the contents of the accumulation buffer after rendering. Effects such
as antialiasing (of points, lines, and polygons), motion blur, and depth of
field can be created by accumulating images generated with different
transformation matrices.
External documentation.

 Link to this function

 activeShaderProgram(Pipeline, Program)

 View Source

 -spec activeShaderProgram(Pipeline :: i(), Program :: i()) -> ok.

gl:activeShaderProgram/2 sets the linked program
named by Program to be the active program for the program pipeline object
Pipeline. The active program in the active program pipeline object is the
target of calls to gl:uniform() when no program has been made
current through a call to gl:useProgram/1.
External documentation.

 Link to this function

 activeTexture(Texture)

 View Source

 -spec activeTexture(Texture :: enum()) -> ok.

gl:activeTexture/1 selects which texture unit subsequent
texture state calls will affect. The number of texture units an implementation
supports is implementation dependent, but must be at least 80.
External documentation.

 Link to this function

 alphaFunc(Func, Ref)

 View Source

 -spec alphaFunc(Func :: enum(), Ref :: clamp()) -> ok.

The alpha test discards fragments depending on the outcome of a comparison
between an incoming fragment's alpha value and a constant reference value.
gl:alphaFunc/2 specifies the reference value and the
comparison function. The comparison is performed only if alpha testing is
enabled. By default, it is not enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_ALPHA_TEST.)
External documentation.

 Link to this function

 areTexturesResident(Textures)

 View Source

 -spec areTexturesResident(Textures :: [i()]) -> {0 | 1, Residences :: [0 | 1]}.

GL establishes a ``working set'' of textures that are resident in texture
memory. These textures can be bound to a texture target much more efficiently
than textures that are not resident.
External documentation.

 Link to this function

 arrayElement(I)

 View Source

 -spec arrayElement(I :: i()) -> ok.

gl:arrayElement/1 commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
vertex and attribute data for point, line, and polygon primitives. If
?GL_VERTEX_ARRAY is enabled when gl:arrayElement/1 is
called, a single vertex is drawn, using vertex and attribute data taken from
location I of the enabled arrays. If ?GL_VERTEX_ARRAY is not enabled, no
drawing occurs but the attributes corresponding to the enabled arrays are
modified.
External documentation.

 Link to this function

 attachShader(Program, Shader)

 View Source

 -spec attachShader(Program :: i(), Shader :: i()) -> ok.

In order to create a complete shader program, there must be a way to specify the
list of things that will be linked together. Program objects provide this
mechanism. Shaders that are to be linked together in a program object must first
be attached to that program object. gl:attachShader/2
attaches the shader object specified by Shader to the program object specified
by Program. This indicates that Shader will be included in link operations
that will be performed on Program.
External documentation.

 Link to this function

 'begin'(Mode)

 View Source

 -spec 'begin'(Mode :: enum()) -> ok.

Equivalent to '\'end\''/0.

 Link to this function

 beginConditionalRender(Id, Mode)

 View Source

 -spec beginConditionalRender(Id :: i(), Mode :: enum()) -> ok.

Equivalent to endConditionalRender/0.

 Link to this function

 beginQuery(Target, Id)

 View Source

 -spec beginQuery(Target :: enum(), Id :: i()) -> ok.

Equivalent to endQuery/1.

 Link to this function

 beginQueryIndexed(Target, Index, Id)

 View Source

 -spec beginQueryIndexed(Target :: enum(), Index :: i(), Id :: i()) -> ok.

Equivalent to endQueryIndexed/2.

 Link to this function

 beginTransformFeedback(PrimitiveMode)

 View Source

 -spec beginTransformFeedback(PrimitiveMode :: enum()) -> ok.

Equivalent to endTransformFeedback/0.

 Link to this function

 bindAttribLocation(Program, Index, Name)

 View Source

 -spec bindAttribLocation(Program :: i(), Index :: i(), Name :: string()) -> ok.

gl:bindAttribLocation/3 is used to associate a
user-defined attribute variable in the program object specified by Program
with a generic vertex attribute index. The name of the user-defined attribute
variable is passed as a null terminated string in Name. The generic vertex
attribute index to be bound to this variable is specified by Index. When
Program is made part of current state, values provided via the generic vertex
attribute Index will modify the value of the user-defined attribute variable
specified by Name.
External documentation.

 Link to this function

 bindBuffer(Target, Buffer)

 View Source

 -spec bindBuffer(Target :: enum(), Buffer :: i()) -> ok.

gl:bindBuffer/2 binds a buffer object to the specified
buffer binding point. Calling gl:bindBuffer/2 with Target
set to one of the accepted symbolic constants and Buffer set to the name of a
buffer object binds that buffer object name to the target. If no buffer object
with name Buffer exists, one is created with that name. When a buffer object
is bound to a target, the previous binding for that target is automatically
broken.
External documentation.

 Link to this function

 bindBufferBase(Target, Index, Buffer)

 View Source

 -spec bindBufferBase(Target :: enum(), Index :: i(), Buffer :: i()) -> ok.

gl:bindBufferBase/3 binds the buffer object Buffer to
the binding point at index Index of the array of targets specified by
Target. Each Target represents an indexed array of buffer binding points, as
well as a single general binding point that can be used by other buffer
manipulation functions such as gl:bindBuffer/2 or
glMapBuffer. In addition to binding Buffer to the indexed buffer binding
target, gl:bindBufferBase/3 also binds Buffer to the
generic buffer binding point specified by Target.
External documentation.

 Link to this function

 bindBufferRange(Target, Index, Buffer, Offset, Size)

 View Source

 -spec bindBufferRange(Target :: enum(), Index :: i(), Buffer :: i(), Offset :: i(), Size :: i()) -> ok.

gl:bindBufferRange/5 binds a range the buffer object
Buffer represented by Offset and Size to the binding point at index
Index of the array of targets specified by Target. Each Target represents
an indexed array of buffer binding points, as well as a single general binding
point that can be used by other buffer manipulation functions such as
gl:bindBuffer/2 or glMapBuffer. In addition to binding a
range of Buffer to the indexed buffer binding target,
gl:bindBufferRange/5 also binds the range to the
generic buffer binding point specified by Target.
External documentation.

 Link to this function

 bindBuffersBase(Target, First, Buffers)

 View Source

 -spec bindBuffersBase(Target :: enum(), First :: i(), Buffers :: [i()]) -> ok.

gl:bindBuffersBase/3 binds a set of Count buffer
objects whose names are given in the array Buffers to the Count consecutive
binding points starting from index First of the array of targets specified by
Target. If Buffers is ?NULL then
gl:bindBuffersBase/3 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferBase/3, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersBase/3:
External documentation.

 Link to this function

 bindBuffersRange(Target, First, Buffers, Offsets, Sizes)

 View Source

 -spec bindBuffersRange(Target :: enum(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Sizes :: [i()]) ->
 ok.

gl:bindBuffersRange/5 binds a set of Count ranges
from buffer objects whose names are given in the array Buffers to the Count
consecutive binding points starting from index First of the array of targets
specified by Target. Offsets specifies the address of an array containing
Count starting offsets within the buffers, and Sizes specifies the address
of an array of Count sizes of the ranges. If Buffers is ?NULL then
Offsets and Sizes are ignored and
gl:bindBuffersRange/5 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferRange/5, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersRange/5:
External documentation.

 Link to this function

 bindFragDataLocation(Program, Color, Name)

 View Source

 -spec bindFragDataLocation(Program :: i(), Color :: i(), Name :: string()) -> ok.

gl:bindFragDataLocation/3 explicitly specifies the
binding of the user-defined varying out variable Name to fragment shader color
number ColorNumber for program Program. If Name was bound previously, its
assigned binding is replaced with ColorNumber. Name must be a
null-terminated string. ColorNumber must be less than ?GL_MAX_DRAW_BUFFERS.
External documentation.

 Link to this function

 bindFragDataLocationIndexed(Program, ColorNumber, Index, Name)

 View Source

 -spec bindFragDataLocationIndexed(Program :: i(), ColorNumber :: i(), Index :: i(), Name :: string()) ->
 ok.

gl:bindFragDataLocationIndexed/4 specifies
that the varying out variable Name in Program should be bound to fragment
color ColorNumber when the program is next linked. Index may be zero or one
to specify that the color be used as either the first or second color input to
the blend equation, respectively.
External documentation.

 Link to this function

 bindFramebuffer(Target, Framebuffer)

 View Source

 -spec bindFramebuffer(Target :: enum(), Framebuffer :: i()) -> ok.

gl:bindFramebuffer/2 binds the framebuffer object with
name Framebuffer to the framebuffer target specified by Target. Target
must be either ?GL_DRAW_FRAMEBUFFER, ?GL_READ_FRAMEBUFFER or
?GL_FRAMEBUFFER. If a framebuffer object is bound to ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback
operations, respectively, until it is deleted or another framebuffer is bound to
the corresponding bind point. Calling
gl:bindFramebuffer/2 with Target set to
?GL_FRAMEBUFFER binds Framebuffer to both the read and draw framebuffer
targets. Framebuffer is the name of a framebuffer object previously returned
from a call to gl:genFramebuffers/1, or zero to break
the existing binding of a framebuffer object to Target.
External documentation.

 Link to this function

 bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format)

 View Source

 -spec bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format) -> ok
 when
 Unit :: i(),
 Texture :: i(),
 Level :: i(),
 Layered :: 0 | 1,
 Layer :: i(),
 Access :: enum(),
 Format :: enum().

gl:bindImageTexture/7 binds a single level of a
texture to an image unit for the purpose of reading and writing it from shaders.
Unit specifies the zero-based index of the image unit to which to bind the
texture level. Texture specifies the name of an existing texture object to
bind to the image unit. If Texture is zero, then any existing binding to the
image unit is broken. Level specifies the level of the texture to bind to the
image unit.
External documentation.

 Link to this function

 bindImageTextures(First, Textures)

 View Source

 -spec bindImageTextures(First :: i(), Textures :: [i()]) -> ok.

gl:bindImageTextures/2 binds images from an array of
existing texture objects to a specified number of consecutive image units.
Count specifies the number of texture objects whose names are stored in the
array Textures. That number of texture names are read from the array and bound
to the Count consecutive texture units starting from First. If the name zero
appears in the Textures array, any existing binding to the image unit is
reset. Any non-zero entry in Textures must be the name of an existing texture
object. When a non-zero entry in Textures is present, the image at level zero
is bound, the binding is considered layered, with the first layer set to zero,
and the image is bound for read-write access. The image unit format parameter is
taken from the internal format of the image at level zero of the texture object.
For cube map textures, the internal format of the positive X image of level zero
is used. If Textures is ?NULL then it is as if an appropriately sized array
containing only zeros had been specified.
External documentation.

 Link to this function

 bindProgramPipeline(Pipeline)

 View Source

 -spec bindProgramPipeline(Pipeline :: i()) -> ok.

gl:bindProgramPipeline/1 binds a program pipeline
object to the current context. Pipeline must be a name previously returned
from a call to gl:genProgramPipelines/1. If no
program pipeline exists with name Pipeline then a new pipeline object is
created with that name and initialized to the default state vector.
External documentation.

 Link to this function

 bindRenderbuffer(Target, Renderbuffer)

 View Source

 -spec bindRenderbuffer(Target :: enum(), Renderbuffer :: i()) -> ok.

gl:bindRenderbuffer/2 binds the renderbuffer object
with name Renderbuffer to the renderbuffer target specified by Target.
Target must be ?GL_RENDERBUFFER. Renderbuffer is the name of a
renderbuffer object previously returned from a call to
gl:genRenderbuffers/1, or zero to break the existing
binding of a renderbuffer object to Target.
External documentation.

 Link to this function

 bindSampler(Unit, Sampler)

 View Source

 -spec bindSampler(Unit :: i(), Sampler :: i()) -> ok.

gl:bindSampler/2 binds Sampler to the texture unit at
index Unit. Sampler must be zero or the name of a sampler object previously
returned from a call to gl:genSamplers/1. Unit must be
less than the value of ?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.
External documentation.

 Link to this function

 bindSamplers(First, Samplers)

 View Source

 -spec bindSamplers(First :: i(), Samplers :: [i()]) -> ok.

gl:bindSamplers/2 binds samplers from an array of existing
sampler objects to a specified number of consecutive sampler units. Count
specifies the number of sampler objects whose names are stored in the array
Samplers. That number of sampler names is read from the array and bound to the
Count consecutive sampler units starting from First.
External documentation.

 Link to this function

 bindTexture(Target, Texture)

 View Source

 -spec bindTexture(Target :: enum(), Texture :: i()) -> ok.

gl:bindTexture/2 lets you create or use a named texture.
Calling gl:bindTexture/2 with Target set to
?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_BUFFER, ?GL_TEXTURE_2D_MULTISAMPLE
or ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY and Texture set to the name of the new
texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.
External documentation.

 Link to this function

 bindTextures(First, Textures)

 View Source

 -spec bindTextures(First :: i(), Textures :: [i()]) -> ok.

gl:bindTextures/2 binds an array of existing texture
objects to a specified number of consecutive texture units. Count specifies
the number of texture objects whose names are stored in the array Textures.
That number of texture names are read from the array and bound to the Count
consecutive texture units starting from First. The target, or type of texture
is deduced from the texture object and each texture is bound to the
corresponding target of the texture unit. If the name zero appears in the
Textures array, any existing binding to any target of the texture unit is
reset and the default texture for that target is bound in its place. Any
non-zero entry in Textures must be the name of an existing texture object. If
Textures is ?NULL then it is as if an appropriately sized array containing
only zeros had been specified.
External documentation.

 Link to this function

 bindTextureUnit(Unit, Texture)

 View Source

 -spec bindTextureUnit(Unit :: i(), Texture :: i()) -> ok.

gl:bindTextureUnit/2 binds an existing texture object
to the texture unit numbered Unit.
External documentation.

 Link to this function

 bindTransformFeedback(Target, Id)

 View Source

 -spec bindTransformFeedback(Target :: enum(), Id :: i()) -> ok.

gl:bindTransformFeedback/2 binds the transform
feedback object with name Id to the current GL state. Id must be a name
previously returned from a call to
gl:genTransformFeedbacks/1. If Id has not
previously been bound, a new transform feedback object with name Id and
initialized with the default transform state vector is created.
External documentation.

 Link to this function

 bindVertexArray(Array)

 View Source

 -spec bindVertexArray(Array :: i()) -> ok.

gl:bindVertexArray/1 binds the vertex array object with
name Array. Array is the name of a vertex array object previously returned
from a call to gl:genVertexArrays/1, or zero to break
the existing vertex array object binding.
External documentation.

 Link to this function

 bindVertexBuffer(Bindingindex, Buffer, Offset, Stride)

 View Source

 -spec bindVertexBuffer(Bindingindex :: i(), Buffer :: i(), Offset :: i(), Stride :: i()) -> ok.

Equivalent to vertexArrayVertexBuffer/5.

 Link to this function

 bindVertexBuffers(First, Buffers, Offsets, Strides)

 View Source

 -spec bindVertexBuffers(First :: i(), Buffers :: [i()], Offsets :: [i()], Strides :: [i()]) -> ok.

Equivalent to vertexArrayVertexBuffers/5.

 Link to this function

 bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap)

 View Source

 -spec bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap) -> ok
 when
 Width :: i(),
 Height :: i(),
 Xorig :: f(),
 Yorig :: f(),
 Xmove :: f(),
 Ymove :: f(),
 Bitmap :: offset() | mem().

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1's in the
bitmap are written using the current raster color or index. Frame buffer pixels
corresponding to 0's in the bitmap are not modified.
External documentation.

 Link to this function

 blendColor(Red, Green, Blue, Alpha)

 View Source

 -spec blendColor(Red :: clamp(), Green :: clamp(), Blue :: clamp(), Alpha :: clamp()) -> ok.

The ?GL_BLEND_COLOR may be used to calculate the source and destination
blending factors. The color components are clamped to the range [0 1] before
being stored. See gl:blendFunc/2 for a complete description
of the blending operations. Initially the ?GL_BLEND_COLOR is set to (0, 0, 0,
0).
External documentation.

 Link to this function

 blendEquation(Mode)

 View Source

 -spec blendEquation(Mode :: enum()) -> ok.

Equivalent to blendEquationi/2.

 Link to this function

 blendEquationi(Buf, Mode)

 View Source

 -spec blendEquationi(Buf :: i(), Mode :: enum()) -> ok.

The blend equations determine how a new pixel (the ''source'' color) is combined
with a pixel already in the framebuffer (the ''destination'' color). This
function sets both the RGB blend equation and the alpha blend equation to a
single equation. gl:blendEquationi/2 specifies the blend
equation for a single draw buffer whereas
gl:blendEquation/1 sets the blend equation for all draw
buffers.
External documentation.

 Link to this function

 blendEquationSeparate(ModeRGB, ModeAlpha)

 View Source

 -spec blendEquationSeparate(ModeRGB :: enum(), ModeAlpha :: enum()) -> ok.

Equivalent to blendEquationSeparatei/3.

 Link to this function

 blendEquationSeparatei(Buf, ModeRGB, ModeAlpha)

 View Source

 -spec blendEquationSeparatei(Buf :: i(), ModeRGB :: enum(), ModeAlpha :: enum()) -> ok.

The blend equations determines how a new pixel (the ''source'' color) is
combined with a pixel already in the framebuffer (the ''destination'' color).
These functions specify one blend equation for the RGB-color components and one
blend equation for the alpha component.
gl:blendEquationSeparatei/3 specifies the blend
equations for a single draw buffer whereas
gl:blendEquationSeparate/2 sets the blend
equations for all draw buffers.
External documentation.

 Link to this function

 blendFunc(Sfactor, Dfactor)

 View Source

 -spec blendFunc(Sfactor :: enum(), Dfactor :: enum()) -> ok.

Equivalent to blendFunci/3.

 Link to this function

 blendFunci(Buf, Src, Dst)

 View Source

 -spec blendFunci(Buf :: i(), Src :: enum(), Dst :: enum()) -> ok.

Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.
External documentation.

 Link to this function

 blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha)

 View Source

 -spec blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha) -> ok
 when
 SfactorRGB :: enum(),
 DfactorRGB :: enum(),
 SfactorAlpha :: enum(),
 DfactorAlpha :: enum().

Equivalent to blendFuncSeparatei/5.

 Link to this function

 blendFuncSeparatei(Buf, SrcRGB, DstRGB, SrcAlpha, DstAlpha)

 View Source

 -spec blendFuncSeparatei(Buf :: i(),
 SrcRGB :: enum(),
 DstRGB :: enum(),
 SrcAlpha :: enum(),
 DstAlpha :: enum()) ->
 ok.

Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.
External documentation.

 Link to this function

 blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter)

 View Source

 -spec blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter) -> ok
 when
 SrcX0 :: i(),
 SrcY0 :: i(),
 SrcX1 :: i(),
 SrcY1 :: i(),
 DstX0 :: i(),
 DstY0 :: i(),
 DstX1 :: i(),
 DstY1 :: i(),
 Mask :: i(),
 Filter :: enum().

gl:blitFramebuffer/10 and glBlitNamedFramebuffer
transfer a rectangle of pixel values from one region of a read framebuffer to
another region of a draw framebuffer.
External documentation.

 Link to this function

 bufferData(Target, Size, Data, Usage)

 View Source

 -spec bufferData(Target :: enum(), Size :: i(), Data :: offset() | mem(), Usage :: enum()) -> ok.

gl:bufferData/4 and glNamedBufferData create a new data
store for a buffer object. In case of gl:bufferData/4, the
buffer object currently bound to Target is used. For glNamedBufferData, a
buffer object associated with ID specified by the caller in Buffer will be
used instead.
External documentation.

 Link to this function

 bufferStorage(Target, Size, Data, Flags)

 View Source

 -spec bufferStorage(Target :: enum(), Size :: i(), Data :: offset() | mem(), Flags :: i()) -> ok.

gl:bufferStorage/4 and glNamedBufferStorage create a
new immutable data store. For gl:bufferStorage/4, the
buffer object currently bound to Target will be initialized. For
glNamedBufferStorage, Buffer is the name of the buffer object that will be
configured. The size of the data store is specified by Size. If an initial
data is available, its address may be supplied in Data. Otherwise, to create
an uninitialized data store, Data should be ?NULL.
External documentation.

 Link to this function

 bufferSubData(Target, Offset, Size, Data)

 View Source

 -spec bufferSubData(Target :: enum(), Offset :: i(), Size :: i(), Data :: offset() | mem()) -> ok.

gl:bufferSubData/4 and glNamedBufferSubData redefine
some or all of the data store for the specified buffer object. Data starting at
byte offset Offset and extending for Size bytes is copied to the data store
from the memory pointed to by Data. Offset and Size must define a range
lying entirely within the buffer object's data store.
External documentation.

 Link to this function

 callList(List)

 View Source

 -spec callList(List :: i()) -> ok.

gl:callList/1 causes the named display list to be executed.
The commands saved in the display list are executed in order, just as if they
were called without using a display list. If List has not been defined as a
display list, gl:callList/1 is ignored.
External documentation.

 Link to this function

 callLists(Lists)

 View Source

 -spec callLists(Lists :: [i()]) -> ok.

gl:callLists/1 causes each display list in the list of names
passed as Lists to be executed. As a result, the commands saved in each
display list are executed in order, just as if they were called without using a
display list. Names of display lists that have not been defined are ignored.
External documentation.

 Link to this function

 checkFramebufferStatus(Target)

 View Source

 -spec checkFramebufferStatus(Target :: enum()) -> enum().

gl:checkFramebufferStatus/1 and
glCheckNamedFramebufferStatus return the completeness status of a framebuffer
object when treated as a read or draw framebuffer, depending on the value of
Target.
External documentation.

 Link to this function

 clampColor(Target, Clamp)

 View Source

 -spec clampColor(Target :: enum(), Clamp :: enum()) -> ok.

gl:clampColor/2 controls color clamping that is performed
during gl:readPixels/7. Target must be
?GL_CLAMP_READ_COLOR. If Clamp is ?GL_TRUE, read color clamping is
enabled; if Clamp is ?GL_FALSE, read color clamping is disabled. If Clamp
is ?GL_FIXED_ONLY, read color clamping is enabled only if the selected read
buffer has fixed point components and disabled otherwise.
External documentation.

 Link to this function

 clear(Mask)

 View Source

 -spec clear(Mask :: i()) -> ok.

gl:clear/1 sets the bitplane area of the window to values
previously selected by gl:clearColor/4,
gl:clearDepth/1, and
gl:clearStencil/1. Multiple color buffers can be cleared
simultaneously by selecting more than one buffer at a time using
gl:drawBuffer/1.
External documentation.

 Link to this function

 clearAccum(Red, Green, Blue, Alpha)

 View Source

 -spec clearAccum(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

gl:clearAccum/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the accumulation buffer.
External documentation.

 Link to this function

 clearBufferData(Target, Internalformat, Format, Type, Data)

 View Source

 -spec clearBufferData(Target, Internalformat, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

Equivalent to clearBufferuiv/3.

 Link to this function

 clearBufferfi(Buffer, Drawbuffer, Depth, Stencil)

 View Source

 -spec clearBufferfi(Buffer :: enum(), Drawbuffer :: i(), Depth :: f(), Stencil :: i()) -> ok.

Equivalent to clearBufferuiv/3.

 Link to this function

 clearBufferfv(Buffer, Drawbuffer, Value)

 View Source

 -spec clearBufferfv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

Equivalent to clearBufferuiv/3.

 Link to this function

 clearBufferiv(Buffer, Drawbuffer, Value)

 View Source

 -spec clearBufferiv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

Equivalent to clearBufferuiv/3.

 Link to this function

 clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data)

 View Source

 -spec clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Offset :: i(),
 Size :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

Equivalent to clearBufferuiv/3.

 Link to this function

 clearBufferuiv(Buffer, Drawbuffer, Value)

 View Source

 -spec clearBufferuiv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

These commands clear a specified buffer of a framebuffer to specified value(s).
For gl:clearBuffer*(), the framebuffer is the currently
bound draw framebuffer object. For glClearNamedFramebuffer*, Framebuffer is
zero, indicating the default draw framebuffer, or the name of a framebuffer
object.
External documentation.

 Link to this function

 clearColor(Red, Green, Blue, Alpha)

 View Source

 -spec clearColor(Red :: clamp(), Green :: clamp(), Blue :: clamp(), Alpha :: clamp()) -> ok.

gl:clearColor/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the color buffers. Values
specified by gl:clearColor/4 are clamped to the range [0
1].
External documentation.

 Link to this function

 clearDepth(Depth)

 View Source

 -spec clearDepth(Depth :: clamp()) -> ok.

Equivalent to clearDepthf/1.

 Link to this function

 clearDepthf(D)

 View Source

 -spec clearDepthf(D :: f()) -> ok.

gl:clearDepth/1 specifies the depth value used by
gl:clear/1 to clear the depth buffer. Values specified by
gl:clearDepth/1 are clamped to the range [0 1].
External documentation.

 Link to this function

 clearIndex(C)

 View Source

 -spec clearIndex(C :: f()) -> ok.

gl:clearIndex/1 specifies the index used by
gl:clear/1 to clear the color index buffers. C is not clamped.
Rather, C is converted to a fixed-point value with unspecified precision to
the right of the binary point. The integer part of this value is then masked
with 2 m-1, where m is the number of bits in a color index stored in the frame
buffer.
External documentation.

 Link to this function

 clearStencil(S)

 View Source

 -spec clearStencil(S :: i()) -> ok.

gl:clearStencil/1 specifies the index used by
gl:clear/1 to clear the stencil buffer. S is masked with 2 m-1,
where m is the number of bits in the stencil buffer.
External documentation.

 Link to this function

 clearTexImage(Texture, Level, Format, Type, Data)

 View Source

 -spec clearTexImage(Texture :: i(),
 Level :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem()) ->
 ok.

gl:clearTexImage/5 fills all an image contained in a
texture with an application supplied value. Texture must be the name of an
existing texture. Further, Texture may not be the name of a buffer texture,
nor may its internal format be compressed.
External documentation.

 Link to this function

 clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Data)

 View Source

 -spec clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type,
 Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

gl:clearTexSubImage/11 fills all or part of an image
contained in a texture with an application supplied value. Texture must be the
name of an existing texture. Further, Texture may not be the name of a buffer
texture, nor may its internal format be compressed.
External documentation.

 Link to this function

 clientActiveTexture(Texture)

 View Source

 -spec clientActiveTexture(Texture :: enum()) -> ok.

gl:clientActiveTexture/1 selects the vertex array
client state parameters to be modified by
gl:texCoordPointer/4, and enabled or disabled with
gl:enableClientState/1 or
gl:disableClientState/1, respectively, when called
with a parameter of ?GL_TEXTURE_COORD_ARRAY.
External documentation.

 Link to this function

 clientWaitSync(Sync, Flags, Timeout)

 View Source

 -spec clientWaitSync(Sync :: i(), Flags :: i(), Timeout :: i()) -> enum().

gl:clientWaitSync/3 causes the client to block and wait
for the sync object specified by Sync to become signaled. If Sync is
signaled when gl:clientWaitSync/3 is called,
gl:clientWaitSync/3 returns immediately, otherwise it
will block and wait for up to Timeout nanoseconds for Sync to become
signaled.
External documentation.

 Link to this function

 clipControl(Origin, Depth)

 View Source

 -spec clipControl(Origin :: enum(), Depth :: enum()) -> ok.

gl:clipControl/2 controls the clipping volume behavior and
the clip coordinate to window coordinate transformation behavior.
External documentation.

 Link to this function

 clipPlane(Plane, Equation)

 View Source

 -spec clipPlane(Plane :: enum(), Equation :: {f(), f(), f(), f()}) -> ok.

Geometry is always clipped against the boundaries of a six-plane frustum in x,
y, and z. gl:clipPlane/2 allows the specification of
additional planes, not necessarily perpendicular to the x, y, or z axis,
against which all geometry is clipped. To determine the maximum number of
additional clipping planes, call gl:getIntegerv/1 with
argument ?GL_MAX_CLIP_PLANES. All implementations support at least six such
clipping planes. Because the resulting clipping region is the intersection of
the defined half-spaces, it is always convex.
External documentation.

 Link to this function

 color3b(Red, Green, Blue)

 View Source

 -spec color3b(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3bv/1

 View Source

 -spec color3bv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3d(Red, Green, Blue)

 View Source

 -spec color3d(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3dv/1

 View Source

 -spec color3dv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3f(Red, Green, Blue)

 View Source

 -spec color3f(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3fv/1

 View Source

 -spec color3fv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3i(Red, Green, Blue)

 View Source

 -spec color3i(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3iv/1

 View Source

 -spec color3iv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3s(Red, Green, Blue)

 View Source

 -spec color3s(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3sv/1

 View Source

 -spec color3sv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3ub(Red, Green, Blue)

 View Source

 -spec color3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3ubv/1

 View Source

 -spec color3ubv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3ui(Red, Green, Blue)

 View Source

 -spec color3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3uiv/1

 View Source

 -spec color3uiv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3us(Red, Green, Blue)

 View Source

 -spec color3us(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color3usv/1

 View Source

 -spec color3usv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4b(Red, Green, Blue, Alpha)

 View Source

 -spec color4b(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4bv/1

 View Source

 -spec color4bv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4d(Red, Green, Blue, Alpha)

 View Source

 -spec color4d(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4dv/1

 View Source

 -spec color4dv({Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4f(Red, Green, Blue, Alpha)

 View Source

 -spec color4f(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4fv/1

 View Source

 -spec color4fv({Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4i(Red, Green, Blue, Alpha)

 View Source

 -spec color4i(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4iv/1

 View Source

 -spec color4iv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4s(Red, Green, Blue, Alpha)

 View Source

 -spec color4s(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4sv/1

 View Source

 -spec color4sv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4ub(Red, Green, Blue, Alpha)

 View Source

 -spec color4ub(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4ubv/1

 View Source

 -spec color4ubv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4ui(Red, Green, Blue, Alpha)

 View Source

 -spec color4ui(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4uiv/1

 View Source

 -spec color4uiv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4us(Red, Green, Blue, Alpha)

 View Source

 -spec color4us(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 Link to this function

 color4usv/1

 View Source

 -spec color4usv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

The GL stores both a current single-valued color index and a current four-valued
RGBA color. gl:color() sets a new four-valued RGBA color.
gl:color() has two major variants: gl:color3()
and gl:color4(). gl:color3() variants specify
new red, green, and blue values explicitly and set the current alpha value to
1.0 (full intensity) implicitly. gl:color4() variants specify
all four color components explicitly.
External documentation.

 Link to this function

 colorMask(Red, Green, Blue, Alpha)

 View Source

 -spec colorMask(Red :: 0 | 1, Green :: 0 | 1, Blue :: 0 | 1, Alpha :: 0 | 1) -> ok.

Equivalent to colorMaski/5.

 Link to this function

 colorMaski(Index, R, G, B, A)

 View Source

 -spec colorMaski(Index :: i(), R :: 0 | 1, G :: 0 | 1, B :: 0 | 1, A :: 0 | 1) -> ok.

gl:colorMask/4 and gl:colorMaski/5 specify
whether the individual color components in the frame buffer can or cannot be
written. gl:colorMaski/5 sets the mask for a specific draw
buffer, whereas gl:colorMask/4 sets the mask for all draw
buffers. If Red is ?GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing
operation attempted.
External documentation.

 Link to this function

 colorMaterial(Face, Mode)

 View Source

 -spec colorMaterial(Face :: enum(), Mode :: enum()) -> ok.

gl:colorMaterial/2 specifies which material parameters
track the current color. When ?GL_COLOR_MATERIAL is enabled, the material
parameter or parameters specified by Mode, of the material or materials
specified by Face, track the current color at all times.
External documentation.

 Link to this function

 colorPointer(Size, Type, Stride, Ptr)

 View Source

 -spec colorPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:colorPointer/4 specifies the location and data format
of an array of color components to use when rendering. Size specifies the
number of components per color, and must be 3 or 4. Type specifies the data
type of each color component, and Stride specifies the byte stride from one
color to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)
External documentation.

 Link to this function

 colorSubTable(Target, Start, Count, Format, Type, Data)

 View Source

 -spec colorSubTable(Target, Start, Count, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Start :: i(),
 Count :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

gl:colorSubTable/6 is used to respecify a contiguous
portion of a color table previously defined using
gl:colorTable/6. The pixels referenced by Data replace the
portion of the existing table from indices Start to start+count-1, inclusive.
This region may not include any entries outside the range of the color table as
it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.
External documentation.

 Link to this function

 colorTable(Target, Internalformat, Width, Format, Type, Table)

 View Source

 -spec colorTable(Target, Internalformat, Width, Format, Type, Table) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Table :: offset() | mem().

gl:colorTable/6 may be used in two ways: to test the actual
size and color resolution of a lookup table given a particular set of
parameters, or to load the contents of a color lookup table. Use the targets
?GL_PROXY_* for the first case and the other targets for the second case.
External documentation.

 Link to this function

 colorTableParameterfv(Target, Pname, Params)

 View Source

 -spec colorTableParameterfv(Target :: enum(), Pname :: enum(), Params :: {f(), f(), f(), f()}) -> ok.

Equivalent to colorTableParameteriv/3.

 Link to this function

 colorTableParameteriv(Target, Pname, Params)

 View Source

 -spec colorTableParameteriv(Target :: enum(), Pname :: enum(), Params :: {i(), i(), i(), i()}) -> ok.

gl:colorTableParameter() is used to specify the
scale factors and bias terms applied to color components when they are loaded
into a color table. Target indicates which color table the scale and bias
terms apply to; it must be set to ?GL_COLOR_TABLE,
?GL_POST_CONVOLUTION_COLOR_TABLE, or ?GL_POST_COLOR_MATRIX_COLOR_TABLE.
External documentation.

 Link to this function

 compileShader(Shader)

 View Source

 -spec compileShader(Shader :: i()) -> ok.

gl:compileShader/1 compiles the source code strings that
have been stored in the shader object specified by Shader.
External documentation.

 Link to this function

 compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data)

 View Source

 -spec compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data)

 View Source

 -spec compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data)

 View Source

 -spec compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data)

 View Source

 -spec compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage1D/7.

 Link to this function

 compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 View Source

 -spec compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage2D/9.

 Link to this function

 compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 View Source

 -spec compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format,
 ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage3D/11.

 Link to this function

 compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data)

 View Source

 -spec compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data) -> ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 View Source

 -spec compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize,
 Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 View Source

 -spec compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth,
 Format, ImageSize, Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image)

 View Source

 -spec convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Image :: offset() | mem().

gl:convolutionFilter1D/6 builds a one-dimensional
convolution filter kernel from an array of pixels.
External documentation.

 Link to this function

 convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image)

 View Source

 -spec convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Image :: offset() | mem().

gl:convolutionFilter2D/7 builds a two-dimensional
convolution filter kernel from an array of pixels.
External documentation.

 Link to this function

 convolutionParameterf(Target, Pname, Params)

 View Source

 -spec convolutionParameterf(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 Link to this function

 convolutionParameterfv(Target, Pname, Params)

 View Source

 -spec convolutionParameterfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 Link to this function

 convolutionParameteri(Target, Pname, Params)

 View Source

 -spec convolutionParameteri(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 Link to this function

 convolutionParameteriv(Target, Pname, Params)

 View Source

 -spec convolutionParameteriv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:convolutionParameter() sets the value of a
convolution parameter.
External documentation.

 Link to this function

 copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size)

 View Source

 -spec copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size) -> ok
 when
 ReadTarget :: enum(),
 WriteTarget :: enum(),
 ReadOffset :: i(),
 WriteOffset :: i(),
 Size :: i().

gl:copyBufferSubData/5 and glCopyNamedBufferSubData
copy part of the data store attached to a source buffer object to the data store
attached to a destination buffer object. The number of basic machine units
indicated by Size is copied from the source at offset ReadOffset to the
destination at WriteOffset. ReadOffset, WriteOffset and Size are in
terms of basic machine units.
External documentation.

 Link to this function

 copyColorSubTable(Target, Start, X, Y, Width)

 View Source

 -spec copyColorSubTable(Target :: enum(), Start :: i(), X :: i(), Y :: i(), Width :: i()) -> ok.

gl:copyColorSubTable/5 is used to respecify a
contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels copied from the framebuffer
replace the portion of the existing table from indices Start to start+x-1,
inclusive. This region may not include any entries outside the range of the
color table, as was originally specified. It is not an error to specify a
subtexture with width of 0, but such a specification has no effect.
External documentation.

 Link to this function

 copyColorTable(Target, Internalformat, X, Y, Width)

 View Source

 -spec copyColorTable(Target :: enum(), Internalformat :: enum(), X :: i(), Y :: i(), Width :: i()) -> ok.

gl:copyColorTable/5 loads a color table with pixels from
the current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:colorTable/6).
External documentation.

 Link to this function

 copyConvolutionFilter1D(Target, Internalformat, X, Y, Width)

 View Source

 -spec copyConvolutionFilter1D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok.

gl:copyConvolutionFilter1D/5 defines a
one-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter1D/6).
External documentation.

 Link to this function

 copyConvolutionFilter2D(Target, Internalformat, X, Y, Width, Height)

 View Source

 -spec copyConvolutionFilter2D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:copyConvolutionFilter2D/6 defines a
two-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter2D/7).
External documentation.

 Link to this function

 copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel, DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth)

 View Source

 -spec copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel,
 DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth) ->
 ok
 when
 SrcName :: i(),
 SrcTarget :: enum(),
 SrcLevel :: i(),
 SrcX :: i(),
 SrcY :: i(),
 SrcZ :: i(),
 DstName :: i(),
 DstTarget :: enum(),
 DstLevel :: i(),
 DstX :: i(),
 DstY :: i(),
 DstZ :: i(),
 SrcWidth :: i(),
 SrcHeight :: i(),
 SrcDepth :: i().

gl:copyImageSubData/15 may be used to copy data from
one image (i.e. texture or renderbuffer) to another.
gl:copyImageSubData/15 does not perform
general-purpose conversions such as scaling, resizing, blending, color-space, or
format conversions. It should be considered to operate in a manner similar to a
CPU memcpy. CopyImageSubData can copy between images with different internal
formats, provided the formats are compatible.
External documentation.

 Link to this function

 copyPixels(X, Y, Width, Height, Type)

 View Source

 -spec copyPixels(X :: i(), Y :: i(), Width :: i(), Height :: i(), Type :: enum()) -> ok.

gl:copyPixels/5 copies a screen-aligned rectangle of pixels
from the specified frame buffer location to a region relative to the current
raster position. Its operation is well defined only if the entire pixel source
region is within the exposed portion of the window. Results of copies from
outside the window, or from regions of the window that are not exposed, are
hardware dependent and undefined.
External documentation.

 Link to this function

 copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border)

 View Source

 -spec copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Border :: i().

gl:copyTexImage1D/7 defines a one-dimensional texture
image with pixels from the current ?GL_READ_BUFFER.
External documentation.

 Link to this function

 copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border)

 View Source

 -spec copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i(),
 Border :: i().

gl:copyTexImage2D/8 defines a two-dimensional texture
image, or cube-map texture image with pixels from the current ?GL_READ_BUFFER.
External documentation.

 Link to this function

 copyTexSubImage1D(Target, Level, Xoffset, X, Y, Width)

 View Source

 -spec copyTexSubImage1D(Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok.

gl:copyTexSubImage1D/6 and glCopyTextureSubImage1D
replace a portion of a one-dimensional texture image with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage1D/7). For
gl:copyTexSubImage1D/6, the texture object that is
bound to Target will be used for the process. For glCopyTextureSubImage1D,
Texture tells which texture object should be used for the purpose of the call.
External documentation.

 Link to this function

 copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height)

 View Source

 -spec copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i().

gl:copyTexSubImage2D/8 and glCopyTextureSubImage2D
replace a rectangular portion of a two-dimensional texture image, cube-map
texture image, rectangular image, or a linear portion of a number of slices of a
one-dimensional array texture with pixels from the current ?GL_READ_BUFFER
(rather than from main memory, as is the case for
gl:texSubImage2D/9).
External documentation.

 Link to this function

 copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height)

 View Source

 -spec copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i().

gl:copyTexSubImage3D/9 and glCopyTextureSubImage3D
functions replace a rectangular portion of a three-dimensional or
two-dimensional array texture image with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage3D/11).
External documentation.

 Link to this function

 createBuffers(N)

 View Source

 -spec createBuffers(N :: i()) -> [i()].

gl:createBuffers/1 returns N previously unused buffer
names in Buffers, each representing a new buffer object initialized as if it
had been bound to an unspecified target.
External documentation.

 Link to this function

 createFramebuffers(N)

 View Source

 -spec createFramebuffers(N :: i()) -> [i()].

gl:createFramebuffers/1 returns N previously
unused framebuffer names in Framebuffers, each representing a new framebuffer
object initialized to the default state.
External documentation.

 Link to this function

 createProgram()

 View Source

 -spec createProgram() -> i().

gl:createProgram/0 creates an empty program object and
returns a non-zero value by which it can be referenced. A program object is an
object to which shader objects can be attached. This provides a mechanism to
specify the shader objects that will be linked to create a program. It also
provides a means for checking the compatibility of the shaders that will be used
to create a program (for instance, checking the compatibility between a vertex
shader and a fragment shader). When no longer needed as part of a program
object, shader objects can be detached.
External documentation.

 Link to this function

 createProgramPipelines(N)

 View Source

 -spec createProgramPipelines(N :: i()) -> [i()].

gl:createProgramPipelines/1 returns N
previously unused program pipeline names in Pipelines, each representing a new
program pipeline object initialized to the default state.
External documentation.

 Link to this function

 createQueries(Target, N)

 View Source

 -spec createQueries(Target :: enum(), N :: i()) -> [i()].

gl:createQueries/2 returns N previously unused query
object names in Ids, each representing a new query object with the specified
Target.
External documentation.

 Link to this function

 createRenderbuffers(N)

 View Source

 -spec createRenderbuffers(N :: i()) -> [i()].

gl:createRenderbuffers/1 returns N previously
unused renderbuffer object names in Renderbuffers, each representing a new
renderbuffer object initialized to the default state.
External documentation.

 Link to this function

 createSamplers(N)

 View Source

 -spec createSamplers(N :: i()) -> [i()].

gl:createSamplers/1 returns N previously unused
sampler names in Samplers, each representing a new sampler object initialized
to the default state.
External documentation.

 Link to this function

 createShader(Type)

 View Source

 -spec createShader(Type :: enum()) -> i().

gl:createShader/1 creates an empty shader object and
returns a non-zero value by which it can be referenced. A shader object is used
to maintain the source code strings that define a shader. ShaderType indicates
the type of shader to be created. Five types of shader are supported. A shader
of type ?GL_COMPUTE_SHADER is a shader that is intended to run on the
programmable compute processor. A shader of type ?GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor. A shader of type
?GL_TESS_CONTROL_SHADER is a shader that is intended to run on the
programmable tessellation processor in the control stage. A shader of type
?GL_TESS_EVALUATION_SHADER is a shader that is intended to run on the
programmable tessellation processor in the evaluation stage. A shader of type
?GL_GEOMETRY_SHADER is a shader that is intended to run on the programmable
geometry processor. A shader of type ?GL_FRAGMENT_SHADER is a shader that is
intended to run on the programmable fragment processor.
External documentation.

 Link to this function

 createShaderProgramv(Type, Strings)

 View Source

 -spec createShaderProgramv(Type :: enum(), Strings :: [unicode:chardata()]) -> i().

gl:createShaderProgram() creates a program object
containing compiled and linked shaders for a single stage specified by Type.
Strings refers to an array of Count strings from which to create the shader
executables.
External documentation.

 Link to this function

 createTextures(Target, N)

 View Source

 -spec createTextures(Target :: enum(), N :: i()) -> [i()].

gl:createTextures/2 returns N previously unused
texture names in Textures, each representing a new texture object of the
dimensionality and type specified by Target and initialized to the default
values for that texture type.
External documentation.

 Link to this function

 createTransformFeedbacks(N)

 View Source

 -spec createTransformFeedbacks(N :: i()) -> [i()].

gl:createTransformFeedbacks/1 returns N
previously unused transform feedback object names in Ids, each representing a
new transform feedback object initialized to the default state.
External documentation.

 Link to this function

 createVertexArrays(N)

 View Source

 -spec createVertexArrays(N :: i()) -> [i()].

gl:createVertexArrays/1 returns N previously
unused vertex array object names in Arrays, each representing a new vertex
array object initialized to the default state.
External documentation.

 Link to this function

 cullFace(Mode)

 View Source

 -spec cullFace(Mode :: enum()) -> ok.

gl:cullFace/1 specifies whether front- or back-facing facets
are culled (as specified by mode) when facet culling is enabled. Facet culling
is initially disabled. To enable and disable facet culling, call the
gl:enable/1 and gl:disable/1 commands with the
argument ?GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons,
and rectangles.
External documentation.

 Link to this function

 debugMessageControl(Source, Type, Severity, Ids, Enabled)

 View Source

 -spec debugMessageControl(Source :: enum(),
 Type :: enum(),
 Severity :: enum(),
 Ids :: [i()],
 Enabled :: 0 | 1) ->
 ok.

gl:debugMessageControl/5 controls the reporting of
debug messages generated by a debug context. The parameters Source, Type and
Severity form a filter to select messages from the pool of potential messages
generated by the GL.
External documentation.

 Link to this function

 debugMessageInsert(Source, Type, Id, Severity, Buf)

 View Source

 -spec debugMessageInsert(Source :: enum(),
 Type :: enum(),
 Id :: i(),
 Severity :: enum(),
 Buf :: string()) ->
 ok.

gl:debugMessageInsert/5 inserts a user-supplied
message into the debug output queue. Source specifies the source that will be
used to classify the message and must be ?GL_DEBUG_SOURCE_APPLICATION or
?GL_DEBUG_SOURCE_THIRD_PARTY. All other sources are reserved for use by the GL
implementation. Type indicates the type of the message to be inserted and may
be one of ?GL_DEBUG_TYPE_ERROR, ?GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR,
?GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, ?GL_DEBUG_TYPE_PORTABILITY,
?GL_DEBUG_TYPE_PERFORMANCE, ?GL_DEBUG_TYPE_MARKER,
?GL_DEBUG_TYPE_PUSH_GROUP, ?GL_DEBUG_TYPE_POP_GROUP, or
?GL_DEBUG_TYPE_OTHER. Severity indicates the severity of the message and may
be ?GL_DEBUG_SEVERITY_LOW, ?GL_DEBUG_SEVERITY_MEDIUM,
?GL_DEBUG_SEVERITY_HIGH or ?GL_DEBUG_SEVERITY_NOTIFICATION. Id is
available for application defined use and may be any value. This value will be
recorded and used to identify the message.
External documentation.

 Link to this function

 deleteBuffers(Buffers)

 View Source

 -spec deleteBuffers(Buffers :: [i()]) -> ok.

gl:deleteBuffers/1 deletes N buffer objects named by
the elements of the array Buffers. After a buffer object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genBuffers/1). If a buffer object that is currently bound
is deleted, the binding reverts to 0 (the absence of any buffer object).
External documentation.

 Link to this function

 deleteFramebuffers(Framebuffers)

 View Source

 -spec deleteFramebuffers(Framebuffers :: [i()]) -> ok.

gl:deleteFramebuffers/1 deletes the N framebuffer
objects whose names are stored in the array addressed by Framebuffers. The
name zero is reserved by the GL and is silently ignored, should it occur in
Framebuffers, as are other unused names. Once a framebuffer object is deleted,
its name is again unused and it has no attachments. If a framebuffer that is
currently bound to one or more of the targets ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER is deleted, it is as though
gl:bindFramebuffer/2 had been executed with the
corresponding Target and Framebuffer zero.
External documentation.

 Link to this function

 deleteLists(List, Range)

 View Source

 -spec deleteLists(List :: i(), Range :: i()) -> ok.

gl:deleteLists/2 causes a contiguous group of display lists
to be deleted. List is the name of the first display list to be deleted, and
Range is the number of display lists to delete. All display lists d with
list<= d<= list+range-1 are deleted.
External documentation.

 Link to this function

 deleteProgram(Program)

 View Source

 -spec deleteProgram(Program :: i()) -> ok.

gl:deleteProgram/1 frees the memory and invalidates the
name associated with the program object specified by Program. This command
effectively undoes the effects of a call to
gl:createProgram/0.
External documentation.

 Link to this function

 deleteProgramPipelines(Pipelines)

 View Source

 -spec deleteProgramPipelines(Pipelines :: [i()]) -> ok.

gl:deleteProgramPipelines/1 deletes the N
program pipeline objects whose names are stored in the array Pipelines. Unused
names in Pipelines are ignored, as is the name zero. After a program pipeline
object is deleted, its name is again unused and it has no contents. If program
pipeline object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current.
External documentation.

 Link to this function

 deleteQueries(Ids)

 View Source

 -spec deleteQueries(Ids :: [i()]) -> ok.

gl:deleteQueries/1 deletes N query objects named by the
elements of the array Ids. After a query object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genQueries/1).
External documentation.

 Link to this function

 deleteRenderbuffers(Renderbuffers)

 View Source

 -spec deleteRenderbuffers(Renderbuffers :: [i()]) -> ok.

gl:deleteRenderbuffers/1 deletes the N
renderbuffer objects whose names are stored in the array addressed by
Renderbuffers. The name zero is reserved by the GL and is silently ignored,
should it occur in Renderbuffers, as are other unused names. Once a
renderbuffer object is deleted, its name is again unused and it has no contents.
If a renderbuffer that is currently bound to the target ?GL_RENDERBUFFER is
deleted, it is as though gl:bindRenderbuffer/2 had
been executed with a Target of ?GL_RENDERBUFFER and a Name of zero.
External documentation.

 Link to this function

 deleteSamplers(Samplers)

 View Source

 -spec deleteSamplers(Samplers :: [i()]) -> ok.

gl:deleteSamplers/1 deletes N sampler objects named by
the elements of the array Samplers. After a sampler object is deleted, its
name is again unused. If a sampler object that is currently bound to a sampler
unit is deleted, it is as though gl:bindSampler/2 is called
with unit set to the unit the sampler is bound to and sampler zero. Unused names
in samplers are silently ignored, as is the reserved name zero.
External documentation.

 Link to this function

 deleteShader(Shader)

 View Source

 -spec deleteShader(Shader :: i()) -> ok.

gl:deleteShader/1 frees the memory and invalidates the
name associated with the shader object specified by Shader. This command
effectively undoes the effects of a call to
gl:createShader/1.
External documentation.

 Link to this function

 deleteSync(Sync)

 View Source

 -spec deleteSync(Sync :: i()) -> ok.

gl:deleteSync/1 deletes the sync object specified by Sync.
If the fence command corresponding to the specified sync object has completed,
or if no gl:waitSync/3 or
gl:clientWaitSync/3 commands are blocking on Sync, the
object is deleted immediately. Otherwise, Sync is flagged for deletion and
will be deleted when it is no longer associated with any fence command and is no
longer blocking any gl:waitSync/3 or
gl:clientWaitSync/3 command. In either case, after
gl:deleteSync/1 returns, the name Sync is invalid and can
no longer be used to refer to the sync object.
External documentation.

 Link to this function

 deleteTextures(Textures)

 View Source

 -spec deleteTextures(Textures :: [i()]) -> ok.

gl:deleteTextures/1 deletes N textures named by the
elements of the array Textures. After a texture is deleted, it has no contents
or dimensionality, and its name is free for reuse (for example by
gl:genTextures/1). If a texture that is currently bound is
deleted, the binding reverts to 0 (the default texture).
External documentation.

 Link to this function

 deleteTransformFeedbacks(Ids)

 View Source

 -spec deleteTransformFeedbacks(Ids :: [i()]) -> ok.

gl:deleteTransformFeedbacks/1 deletes the N
transform feedback objects whose names are stored in the array Ids. Unused
names in Ids are ignored, as is the name zero. After a transform feedback
object is deleted, its name is again unused and it has no contents. If an active
transform feedback object is deleted, its name immediately becomes unused, but
the underlying object is not deleted until it is no longer active.
External documentation.

 Link to this function

 deleteVertexArrays(Arrays)

 View Source

 -spec deleteVertexArrays(Arrays :: [i()]) -> ok.

gl:deleteVertexArrays/1 deletes N vertex array
objects whose names are stored in the array addressed by Arrays. Once a vertex
array object is deleted it has no contents and its name is again unused. If a
vertex array object that is currently bound is deleted, the binding for that
object reverts to zero and the default vertex array becomes current. Unused
names in Arrays are silently ignored, as is the value zero.
External documentation.

 Link to this function

 depthFunc(Func)

 View Source

 -spec depthFunc(Func :: enum()) -> ok.

gl:depthFunc/1 specifies the function used to compare each
incoming pixel depth value with the depth value present in the depth buffer. The
comparison is performed only if depth testing is enabled. (See
gl:enable/1 and gl:disable/1 of
?GL_DEPTH_TEST.)
External documentation.

 Link to this function

 depthMask(Flag)

 View Source

 -spec depthMask(Flag :: 0 | 1) -> ok.

gl:depthMask/1 specifies whether the depth buffer is enabled
for writing. If Flag is ?GL_FALSE, depth buffer writing is disabled.
Otherwise, it is enabled. Initially, depth buffer writing is enabled.
External documentation.

 Link to this function

 depthRange(Near_val, Far_val)

 View Source

 -spec depthRange(Near_val :: clamp(), Far_val :: clamp()) -> ok.

Equivalent to depthRangef/2.

 Link to this function

 depthRangeArrayv(First, V)

 View Source

 -spec depthRangeArrayv(First :: i(), V :: [{f(), f()}]) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeArray() specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates for each
viewport in the range [First, First + Count). Thus, the values accepted
by gl:depthRangeArray() are both clamped to this range
before they are accepted.
External documentation.

 Link to this function

 depthRangef(N, F)

 View Source

 -spec depthRangef(N :: f(), F :: f()) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes.
gl:depthRange/2 specifies a linear mapping of the normalized
depth coordinates in this range to window depth coordinates. Regardless of the
actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values
accepted by gl:depthRange/2 are both clamped to this range
before they are accepted.
External documentation.

 Link to this function

 depthRangeIndexed(Index, N, F)

 View Source

 -spec depthRangeIndexed(Index :: i(), N :: f(), F :: f()) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeIndexed/3 specifies a linear mapping of
the normalized depth coordinates in this range to window depth coordinates for a
specified viewport. Thus, the values accepted by
gl:depthRangeIndexed/3 are both clamped to this range
before they are accepted.
External documentation.

 Link to this function

 detachShader(Program, Shader)

 View Source

 -spec detachShader(Program :: i(), Shader :: i()) -> ok.

gl:detachShader/2 detaches the shader object specified by
Shader from the program object specified by Program. This command can be
used to undo the effect of the command gl:attachShader/2.
External documentation.

 Link to this function

 disable(Cap)

 View Source

 -spec disable(Cap :: enum()) -> ok.

Equivalent to enablei/2.

 Link to this function

 disableClientState(Cap)

 View Source

 -spec disableClientState(Cap :: enum()) -> ok.

Equivalent to enableClientState/1.

 Link to this function

 disablei(Target, Index)

 View Source

 -spec disablei(Target :: enum(), Index :: i()) -> ok.

Equivalent to enablei/2.

 Link to this function

 disableVertexArrayAttrib(Vaobj, Index)

 View Source

 -spec disableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 Link to this function

 disableVertexAttribArray(Index)

 View Source

 -spec disableVertexAttribArray(Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 Link to this function

 dispatchCompute(Num_groups_x, Num_groups_y, Num_groups_z)

 View Source

 -spec dispatchCompute(Num_groups_x :: i(), Num_groups_y :: i(), Num_groups_z :: i()) -> ok.

gl:dispatchCompute/3 launches one or more compute work
groups. Each work group is processed by the active program object for the
compute shader stage. While the individual shader invocations within a work
group are executed as a unit, work groups are executed completely independently
and in unspecified order. Num_groups_x, Num_groups_y and Num_groups_z
specify the number of local work groups that will be dispatched in the X, Y and
Z dimensions, respectively.
External documentation.

 Link to this function

 dispatchComputeIndirect(Indirect)

 View Source

 -spec dispatchComputeIndirect(Indirect :: i()) -> ok.

gl:dispatchComputeIndirect/1 launches one or
more compute work groups using parameters stored in the buffer object currently
bound to the ?GL_DISPATCH_INDIRECT_BUFFER target. Each work group is processed
by the active program object for the compute shader stage. While the individual
shader invocations within a work group are executed as a unit, work groups are
executed completely independently and in unspecified order. Indirect contains
the offset into the data store of the buffer object bound to the
?GL_DISPATCH_INDIRECT_BUFFER target at which the parameters are stored.
External documentation.

 Link to this function

 drawArrays(Mode, First, Count)

 View Source

 -spec drawArrays(Mode :: enum(), First :: i(), Count :: i()) -> ok.

gl:drawArrays/3 specifies multiple geometric primitives with
very few subroutine calls. Instead of calling a GL procedure to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to
gl:drawArrays/3.
External documentation.

 Link to this function

 drawArraysIndirect(Mode, Indirect)

 View Source

 -spec drawArraysIndirect(Mode :: enum(), Indirect :: offset() | mem()) -> ok.

gl:drawArraysIndirect/2 specifies multiple geometric
primitives with very few subroutine calls.
gl:drawArraysIndirect/2 behaves similarly to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to
gl:drawArraysInstancedBaseInstance/5
are stored in memory at the address given by Indirect.
External documentation.

 Link to this function

 drawArraysInstanced(Mode, First, Count, Instancecount)

 View Source

 -spec drawArraysInstanced(Mode :: enum(), First :: i(), Count :: i(), Instancecount :: i()) -> ok.

gl:drawArraysInstanced/4 behaves identically to
gl:drawArrays/3 except that Instancecount instances of the
range of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.
External documentation.

 Link to this function

 drawArraysInstancedBaseInstance(Mode, First, Count, Instancecount, Baseinstance)

 View Source

 -spec drawArraysInstancedBaseInstance(Mode :: enum(),
 First :: i(),
 Count :: i(),
 Instancecount :: i(),
 Baseinstance :: i()) ->
 ok.

gl:drawArraysInstancedBaseInstance/5
behaves identically to gl:drawArrays/3 except that
Instancecount instances of the range of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.
External documentation.

 Link to this function

 drawBuffer(Mode)

 View Source

 -spec drawBuffer(Mode :: enum()) -> ok.

When colors are written to the frame buffer, they are written into the color
buffers specified by gl:drawBuffer/1. One of the following
values can be used for default framebuffer:
External documentation.

 Link to this function

 drawBuffers(Bufs)

 View Source

 -spec drawBuffers(Bufs :: [enum()]) -> ok.

gl:drawBuffers/1 and glNamedFramebufferDrawBuffers define
an array of buffers into which outputs from the fragment shader data will be
written. If a fragment shader writes a value to one or more user defined output
variables, then the value of each variable will be written into the buffer
specified at a location within Bufs corresponding to the location assigned to
that user defined output. The draw buffer used for user defined outputs assigned
to locations greater than or equal to N is implicitly set to ?GL_NONE and
any data written to such an output is discarded.
External documentation.

 Link to this function

 drawElements(Mode, Count, Type, Indices)

 View Source

 -spec drawElements(Mode :: enum(), Count :: i(), Type :: enum(), Indices :: offset() | mem()) -> ok.

gl:drawElements/4 specifies multiple geometric primitives
with very few subroutine calls. Instead of calling a GL function to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to
gl:drawElements/4.
External documentation.

 Link to this function

 drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex)

 View Source

 -spec drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Basevertex :: i().

gl:drawElementsBaseVertex/5 behaves identically
to gl:drawElements/4 except that the ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.
External documentation.

 Link to this function

 drawElementsIndirect(Mode, Type, Indirect)

 View Source

 -spec drawElementsIndirect(Mode :: enum(), Type :: enum(), Indirect :: offset() | mem()) -> ok.

gl:drawElementsIndirect/3 specifies multiple
indexed geometric primitives with very few subroutine calls.
gl:drawElementsIndirect/3 behaves similarly to
gl:drawElementsInstancedBaseVertexBaseInstance/7,
execpt that the parameters to
gl:drawElementsInstancedBaseVertexBaseInstance/7
are stored in memory at the address given by Indirect.
External documentation.

 Link to this function

 drawElementsInstanced(Mode, Count, Type, Indices, Instancecount)

 View Source

 -spec drawElementsInstanced(Mode, Count, Type, Indices, Instancecount) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i().

gl:drawElementsInstanced/5 behaves identically to
gl:drawElements/4 except that Instancecount instances of
the set of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.
External documentation.

 Link to this function

 drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance)

 View Source

 -spec drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Baseinstance :: i().

gl:drawElementsInstancedBaseInstance/6
behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.
External documentation.

 Link to this function

 drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex)

 View Source

 -spec drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Basevertex :: i().

gl:drawElementsInstancedBaseVertex/6
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.
External documentation.

 Link to this function

 drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex, Baseinstance)

 View Source

 -spec drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex,
 Baseinstance) ->
 ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Basevertex :: i(),
 Baseinstance :: i().

gl:drawElementsInstancedBaseVertexBaseInstance/7
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.
External documentation.

 Link to this function

 drawPixels(Width, Height, Format, Type, Pixels)

 View Source

 -spec drawPixels(Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem()) ->
 ok.

gl:drawPixels/5 reads pixel data from memory and writes it
into the frame buffer relative to the current raster position, provided that the
raster position is valid. Use gl:rasterPos() or
gl:windowPos() to set the current raster position; use
gl:get() with argument ?GL_CURRENT_RASTER_POSITION_VALID
to determine if the specified raster position is valid, and
gl:get() with argument ?GL_CURRENT_RASTER_POSITION to
query the raster position.
External documentation.

 Link to this function

 drawRangeElements(Mode, Start, End, Count, Type, Indices)

 View Source

 -spec drawRangeElements(Mode, Start, End, Count, Type, Indices) -> ok
 when
 Mode :: enum(),
 Start :: i(),
 End :: i(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem().

gl:drawRangeElements/6 is a restricted form of
gl:drawElements/4. Mode, and Count match the
corresponding arguments to gl:drawElements/4, with the
additional constraint that all values in the arrays Count must lie between
Start and End, inclusive.
External documentation.

 Link to this function

 drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex)

 View Source

 -spec drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex) -> ok
 when
 Mode :: enum(),
 Start :: i(),
 End :: i(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Basevertex :: i().

gl:drawRangeElementsBaseVertex/7 is a
restricted form of gl:drawElementsBaseVertex/5.
Mode, Count and Basevertex match the corresponding arguments to
gl:drawElementsBaseVertex/5, with the additional
constraint that all values in the array Indices must lie between Start and
End, inclusive, prior to adding Basevertex. Index values lying outside the
range [Start, End] are treated in the same way as
gl:drawElementsBaseVertex/5. The ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.
External documentation.

 Link to this function

 drawTransformFeedback(Mode, Id)

 View Source

 -spec drawTransformFeedback(Mode :: enum(), Id :: i()) -> ok.

gl:drawTransformFeedback/2 draws primitives of a
type specified by Mode using a count retrieved from the transform feedback
specified by Id. Calling
gl:drawTransformFeedback/2 is equivalent to
calling gl:drawArrays/3 with Mode as specified, First
set to zero, and Count set to the number of vertices captured on vertex stream
zero the last time transform feedback was active on the transform feedback
object named by Id.
External documentation.

 Link to this function

 drawTransformFeedbackInstanced(Mode, Id, Instancecount)

 View Source

 -spec drawTransformFeedbackInstanced(Mode :: enum(), Id :: i(), Instancecount :: i()) -> ok.

gl:drawTransformFeedbackInstanced/3
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackInstanced/3 is
equivalent to calling gl:drawArraysInstanced/4 with
Mode and Instancecount as specified, First set to zero, and Count set to
the number of vertices captured on vertex stream zero the last time transform
feedback was active on the transform feedback object named by Id.
External documentation.

 Link to this function

 drawTransformFeedbackStream(Mode, Id, Stream)

 View Source

 -spec drawTransformFeedbackStream(Mode :: enum(), Id :: i(), Stream :: i()) -> ok.

gl:drawTransformFeedbackStream/3 draws
primitives of a type specified by Mode using a count retrieved from the
transform feedback stream specified by Stream of the transform feedback object
specified by Id. Calling
gl:drawTransformFeedbackStream/3 is
equivalent to calling gl:drawArrays/3 with Mode as
specified, First set to zero, and Count set to the number of vertices
captured on vertex stream Stream the last time transform feedback was active
on the transform feedback object named by Id.
External documentation.

 Link to this function

 drawTransformFeedbackStreamInstanced(Mode, Id, Stream, Instancecount)

 View Source

 -spec drawTransformFeedbackStreamInstanced(Mode :: enum(),
 Id :: i(),
 Stream :: i(),
 Instancecount :: i()) ->
 ok.

gl:drawTransformFeedbackStreamInstanced/4
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackStreamInstanced/4
is equivalent to calling gl:drawArraysInstanced/4
with Mode and Instancecount as specified, First set to zero, and Count
set to the number of vertices captured on vertex stream Stream the last time
transform feedback was active on the transform feedback object named by Id.
External documentation.

 Link to this function

 edgeFlag(Flag)

 View Source

 -spec edgeFlag(Flag :: 0 | 1) -> ok.

Equivalent to edgeFlagv/1.

 Link to this function

 edgeFlagPointer(Stride, Ptr)

 View Source

 -spec edgeFlagPointer(Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:edgeFlagPointer/2 specifies the location and data
format of an array of boolean edge flags to use when rendering. Stride
specifies the byte stride from one edge flag to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.
External documentation.

 Link to this function

 edgeFlagv/1

 View Source

 -spec edgeFlagv({Flag :: 0 | 1}) -> ok.

Each vertex of a polygon, separate triangle, or separate quadrilateral specified
between a gl:'begin'/1/gl:'end'/0 pair is
marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the
start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. gl:edgeFlag/1 sets the edge flag bit to
?GL_TRUE if Flag is ?GL_TRUE and to ?GL_FALSE otherwise.
External documentation.

 Link to this function

 enable(Cap)

 View Source

 -spec enable(Cap :: enum()) -> ok.

Equivalent to enablei/2.

 Link to this function

 enableClientState(Cap)

 View Source

 -spec enableClientState(Cap :: enum()) -> ok.

gl:enableClientState/1 and
gl:disableClientState/1 enable or disable individual
client-side capabilities. By default, all client-side capabilities are disabled.
Both gl:enableClientState/1 and
gl:disableClientState/1 take a single argument,
Cap, which can assume one of the following values:
External documentation.

 Link to this function

 enablei(Target, Index)

 View Source

 -spec enablei(Target :: enum(), Index :: i()) -> ok.

gl:enable/1 and gl:disable/1 enable and disable
various capabilities. Use gl:isEnabled/1 or
gl:get() to determine the current setting of any
capability. The initial value for each capability with the exception of
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_FALSE. The initial value for
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_TRUE.
External documentation.

 Link to this function

 enableVertexArrayAttrib(Vaobj, Index)

 View Source

 -spec enableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 Link to this function

 enableVertexAttribArray(Index)

 View Source

 -spec enableVertexAttribArray(Index :: i()) -> ok.

gl:enableVertexAttribArray/1 and
gl:enableVertexArrayAttrib/2 enable the
generic vertex attribute array specified by Index.
gl:enableVertexAttribArray/1 uses currently
bound vertex array object for the operation, whereas
gl:enableVertexArrayAttrib/2 updates state of
the vertex array object with ID Vaobj.
External documentation.

 Link to this function

 'end'()

 View Source

 -spec 'end'() -> ok.

gl:'begin'/1 and gl:'end'/0 delimit the
vertices that define a primitive or a group of like primitives.
gl:'begin'/1 accepts a single argument that specifies in which
of ten ways the vertices are interpreted. Taking n as an integer count starting
at one, and N as the total number of vertices specified, the interpretations are
as follows:
External documentation.

 Link to this function

 endConditionalRender()

 View Source

 -spec endConditionalRender() -> ok.

Conditional rendering is started using
gl:beginConditionalRender/2 and ended using
gl:endConditionalRender/0. During conditional
rendering, all vertex array commands, as well as gl:clear/1 and
gl:clearBuffer() have no effect if the
(?GL_SAMPLES_PASSED) result of the query object Id is zero, or if the
(?GL_ANY_SAMPLES_PASSED) result is ?GL_FALSE. The results of commands
setting the current vertex state, such as
gl:vertexAttrib() are undefined. If the
(?GL_SAMPLES_PASSED) result is non-zero or if the (?GL_ANY_SAMPLES_PASSED)
result is ?GL_TRUE, such commands are not discarded. The Id parameter to
gl:beginConditionalRender/2 must be the name of
a query object previously returned from a call to
gl:genQueries/1. Mode specifies how the results of the
query object are to be interpreted. If Mode is ?GL_QUERY_WAIT, the GL waits
for the results of the query to be available and then uses the results to
determine if subsequent rendering commands are discarded. If Mode is
?GL_QUERY_NO_WAIT, the GL may choose to unconditionally execute the subsequent
rendering commands without waiting for the query to complete.
External documentation.

 Link to this function

 endList()

 View Source

 -spec endList() -> ok.

Equivalent to newList/2.

 Link to this function

 endQuery(Target)

 View Source

 -spec endQuery(Target :: enum()) -> ok.

gl:beginQuery/2 and gl:endQuery/1
delimit the boundaries of a query object. Query must be a name previously
returned from a call to gl:genQueries/1. If a query object
with name Id does not yet exist it is created with the type determined by
Target. Target must be one of ?GL_SAMPLES_PASSED,
?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED,
?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior
of the query object depends on its type and is as follows.
External documentation.

 Link to this function

 endQueryIndexed(Target, Index)

 View Source

 -spec endQueryIndexed(Target :: enum(), Index :: i()) -> ok.

gl:beginQueryIndexed/3 and
gl:endQueryIndexed/2 delimit the boundaries of a
query object. Query must be a name previously returned from a call to
gl:genQueries/1. If a query object with name Id does not
yet exist it is created with the type determined by Target. Target must be
one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED,
?GL_PRIMITIVES_GENERATED, ?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or
?GL_TIME_ELAPSED. The behavior of the query object depends on its type and is
as follows.
External documentation.

 Link to this function

 endTransformFeedback()

 View Source

 -spec endTransformFeedback() -> ok.

Transform feedback mode captures the values of varying variables written by the
vertex shader (or, if active, the geometry shader). Transform feedback is said
to be active after a call to
gl:beginTransformFeedback/1 until a subsequent
call to gl:endTransformFeedback/0. Transform
feedback commands must be paired.
External documentation.

 Link to this function

 evalCoord1d(U)

 View Source

 -spec evalCoord1d(U :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord1dv/1

 View Source

 -spec evalCoord1dv({U :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord1f(U)

 View Source

 -spec evalCoord1f(U :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord1fv/1

 View Source

 -spec evalCoord1fv({U :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord2d(U, V)

 View Source

 -spec evalCoord2d(U :: f(), V :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord2dv/1

 View Source

 -spec evalCoord2dv({U :: f(), V :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord2f(U, V)

 View Source

 -spec evalCoord2f(U :: f(), V :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 Link to this function

 evalCoord2fv/1

 View Source

 -spec evalCoord2fv({U :: f(), V :: f()}) -> ok.

gl:evalCoord1() evaluates enabled one-dimensional maps at
argument U. gl:evalCoord2() does the same for
two-dimensional maps using two domain values, U and V. To define a map, call
glMap1 and glMap2; to enable and disable it, call
gl:enable/1 and gl:disable/1.
External documentation.

 Link to this function

 evalMesh1(Mode, I1, I2)

 View Source

 -spec evalMesh1(Mode :: enum(), I1 :: i(), I2 :: i()) -> ok.

Equivalent to evalMesh2/5.

 Link to this function

 evalMesh2(Mode, I1, I2, J1, J2)

 View Source

 -spec evalMesh2(Mode :: enum(), I1 :: i(), I2 :: i(), J1 :: i(), J2 :: i()) -> ok.

gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly-spaced map domain
values. gl:evalMesh() steps through the integer domain of a
one- or two-dimensional grid, whose range is the domain of the evaluation maps
specified by glMap1 and glMap2. Mode determines whether the resulting
vertices are connected as points, lines, or filled polygons.
External documentation.

 Link to this function

 evalPoint1(I)

 View Source

 -spec evalPoint1(I :: i()) -> ok.

Equivalent to evalPoint2/2.

 Link to this function

 evalPoint2(I, J)

 View Source

 -spec evalPoint2(I :: i(), J :: i()) -> ok.

gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly spaced map domain
values. gl:evalPoint() can be used to evaluate a single grid
point in the same gridspace that is traversed by
gl:evalMesh(). Calling gl:evalPoint1/1 is
equivalent to calling glEvalCoord1(i.ð u+u 1); where ð u=(u 2-u 1)/n
External documentation.

 Link to this function

 feedbackBuffer(Size, Type, Buffer)

 View Source

 -spec feedbackBuffer(Size :: i(), Type :: enum(), Buffer :: mem()) -> ok.

The gl:feedbackBuffer/3 function controls feedback.
Feedback, like selection, is a GL mode. The mode is selected by calling
gl:renderMode/1 with ?GL_FEEDBACK. When the GL is in
feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application
using the GL.
External documentation.

 Link to this function

 fenceSync(Condition, Flags)

 View Source

 -spec fenceSync(Condition :: enum(), Flags :: i()) -> i().

gl:fenceSync/2 creates a new fence sync object, inserts a
fence command into the GL command stream and associates it with that sync
object, and returns a non-zero name corresponding to the sync object.
External documentation.

 Link to this function

 finish()

 View Source

 -spec finish() -> ok.

gl:finish/0 does not return until the effects of all previously
called GL commands are complete. Such effects include all changes to GL state,
all changes to connection state, and all changes to the frame buffer contents.
External documentation.

 Link to this function

 flush()

 View Source

 -spec flush() -> ok.

Different GL implementations buffer commands in several different locations,
including network buffers and the graphics accelerator itself.
gl:flush/0 empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering
engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.
External documentation.

 Link to this function

 flushMappedBufferRange(Target, Offset, Length)

 View Source

 -spec flushMappedBufferRange(Target :: enum(), Offset :: i(), Length :: i()) -> ok.

Equivalent to flushMappedNamedBufferRange/3.

 Link to this function

 flushMappedNamedBufferRange(Buffer, Offset, Length)

 View Source

 -spec flushMappedNamedBufferRange(Buffer :: i(), Offset :: i(), Length :: i()) -> ok.

gl:flushMappedBufferRange/3 indicates that
modifications have been made to a range of a mapped buffer object. The buffer
object must previously have been mapped with the ?GL_MAP_FLUSH_EXPLICIT_BIT
flag.
External documentation.

 Link to this function

 fogCoordd(Coord)

 View Source

 -spec fogCoordd(Coord :: f()) -> ok.

Equivalent to fogCoordfv/1.

 Link to this function

 fogCoorddv/1

 View Source

 -spec fogCoorddv({Coord :: f()}) -> ok.

Equivalent to fogCoordfv/1.

 Link to this function

 fogCoordf(Coord)

 View Source

 -spec fogCoordf(Coord :: f()) -> ok.

Equivalent to fogCoordfv/1.

 Link to this function

 fogCoordfv/1

 View Source

 -spec fogCoordfv({Coord :: f()}) -> ok.

gl:fogCoord() specifies the fog coordinate that is associated
with each vertex and the current raster position. The value specified is
interpolated and used in computing the fog color (see gl:fog()).
External documentation.

 Link to this function

 fogCoordPointer(Type, Stride, Pointer)

 View Source

 -spec fogCoordPointer(Type :: enum(), Stride :: i(), Pointer :: offset() | mem()) -> ok.

gl:fogCoordPointer/3 specifies the location and data
format of an array of fog coordinates to use when rendering. Type specifies
the data type of each fog coordinate, and Stride specifies the byte stride
from one fog coordinate to the next, allowing vertices and attributes to be
packed into a single array or stored in separate arrays.
External documentation.

 Link to this function

 fogf(Pname, Param)

 View Source

 -spec fogf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to fogiv/2.

 Link to this function

 fogfv(Pname, Params)

 View Source

 -spec fogfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to fogiv/2.

 Link to this function

 fogi(Pname, Param)

 View Source

 -spec fogi(Pname :: enum(), Param :: i()) -> ok.

Equivalent to fogiv/2.

 Link to this function

 fogiv(Pname, Params)

 View Source

 -spec fogiv(Pname :: enum(), Params :: tuple()) -> ok.

Fog is initially disabled. While enabled, fog affects rasterized geometry,
bitmaps, and pixel blocks, but not buffer clear operations. To enable and
disable fog, call gl:enable/1 and gl:disable/1
with argument ?GL_FOG.
External documentation.

 Link to this function

 framebufferParameteri(Target, Pname, Param)

 View Source

 -spec framebufferParameteri(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

gl:framebufferParameteri/3 and
glNamedFramebufferParameteri modify the value of the parameter named Pname
in the specified framebuffer object. There are no modifiable parameters of the
default draw and read framebuffer, so they are not valid targets of these
commands.
External documentation.

 Link to this function

 framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer)

 View Source

 -spec framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer) -> ok
 when
 Target :: enum(),
 Attachment :: enum(),
 Renderbuffertarget :: enum(),
 Renderbuffer :: i().

gl:framebufferRenderbuffer/4 and
glNamedFramebufferRenderbuffer attaches a renderbuffer as one of the logical
buffers of the specified framebuffer object. Renderbuffers cannot be attached to
the default draw and read framebuffer, so they are not valid targets of these
commands.
External documentation.

 Link to this function

 framebufferTexture1D(Target, Attachment, Textarget, Texture, Level)

 View Source

 -spec framebufferTexture1D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 Link to this function

 framebufferTexture2D(Target, Attachment, Textarget, Texture, Level)

 View Source

 -spec framebufferTexture2D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 Link to this function

 framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset)

 View Source

 -spec framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset) -> ok
 when
 Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i(),
 Zoffset :: i().

Equivalent to framebufferTextureLayer/5.

 Link to this function

 framebufferTexture(Target, Attachment, Texture, Level)

 View Source

 -spec framebufferTexture(Target :: enum(), Attachment :: enum(), Texture :: i(), Level :: i()) -> ok.

Equivalent to framebufferTextureLayer/5.

 Link to this function

 framebufferTextureFaceARB(Target, Attachment, Texture, Level, Face)

 View Source

 -spec framebufferTextureFaceARB(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Face :: enum()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 Link to this function

 framebufferTextureLayer(Target, Attachment, Texture, Level, Layer)

 View Source

 -spec framebufferTextureLayer(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Layer :: i()) ->
 ok.

These commands attach a selected mipmap level or image of a texture object as
one of the logical buffers of the specified framebuffer object. Textures cannot
be attached to the default draw and read framebuffer, so they are not valid
targets of these commands.
External documentation.

 Link to this function

 frontFace(Mode)

 View Source

 -spec frontFace(Mode :: enum()) -> ok.

In a scene composed entirely of opaque closed surfaces, back-facing polygons are
never visible. Eliminating these invisible polygons has the obvious benefit of
speeding up the rendering of the image. To enable and disable elimination of
back-facing polygons, call gl:enable/1 and
gl:disable/1 with argument ?GL_CULL_FACE.
External documentation.

 Link to this function

 frustum(Left, Right, Bottom, Top, Near_val, Far_val)

 View Source

 -spec frustum(Left :: f(), Right :: f(), Bottom :: f(), Top :: f(), Near_val :: f(), Far_val :: f()) ->
 ok.

gl:frustum/6 describes a perspective matrix that produces a
perspective projection. The current matrix (see
gl:matrixMode/1) is multiplied by this matrix and the result
replaces the current matrix, as if gl:multMatrix() were
called with the following matrix as its argument:
External documentation.

 Link to this function

 genBuffers(N)

 View Source

 -spec genBuffers(N :: i()) -> [i()].

gl:genBuffers/1 returns N buffer object names in
Buffers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genBuffers/1.
External documentation.

 Link to this function

 generateMipmap(Target)

 View Source

 -spec generateMipmap(Target :: enum()) -> ok.

Equivalent to generateTextureMipmap/1.

 Link to this function

 generateTextureMipmap(Texture)

 View Source

 -spec generateTextureMipmap(Texture :: i()) -> ok.

gl:generateMipmap/1 and
gl:generateTextureMipmap/1 generates mipmaps for the
specified texture object. For gl:generateMipmap/1, the
texture object that is bound to Target. For
gl:generateTextureMipmap/1, Texture is the name of the
texture object.
External documentation.

 Link to this function

 genFramebuffers(N)

 View Source

 -spec genFramebuffers(N :: i()) -> [i()].

gl:genFramebuffers/1 returns N framebuffer object
names in Ids. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genFramebuffers/1.
External documentation.

 Link to this function

 genLists(Range)

 View Source

 -spec genLists(Range :: i()) -> i().

gl:genLists/1 has one argument, Range. It returns an integer
n such that Range contiguous empty display lists, named n, n+1, ...,
n+range-1, are created. If Range is 0, if there is no group of Range
contiguous names available, or if any error is generated, no display lists are
generated, and 0 is returned.
External documentation.

 Link to this function

 genProgramPipelines(N)

 View Source

 -spec genProgramPipelines(N :: i()) -> [i()].

gl:genProgramPipelines/1 returns N previously
unused program pipeline object names in Pipelines. These names are marked as
used, for the purposes of gl:genProgramPipelines/1
only, but they acquire program pipeline state only when they are first bound.
External documentation.

 Link to this function

 genQueries(N)

 View Source

 -spec genQueries(N :: i()) -> [i()].

gl:genQueries/1 returns N query object names in Ids.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genQueries/1.
External documentation.

 Link to this function

 genRenderbuffers(N)

 View Source

 -spec genRenderbuffers(N :: i()) -> [i()].

gl:genRenderbuffers/1 returns N renderbuffer object
names in Renderbuffers. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was
in use immediately before the call to
gl:genRenderbuffers/1.
External documentation.

 Link to this function

 genSamplers(Count)

 View Source

 -spec genSamplers(Count :: i()) -> [i()].

gl:genSamplers/1 returns N sampler object names in
Samplers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genSamplers/1.
External documentation.

 Link to this function

 genTextures(N)

 View Source

 -spec genTextures(N :: i()) -> [i()].

gl:genTextures/1 returns N texture names in Textures.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genTextures/1.
External documentation.

 Link to this function

 genTransformFeedbacks(N)

 View Source

 -spec genTransformFeedbacks(N :: i()) -> [i()].

gl:genTransformFeedbacks/1 returns N previously
unused transform feedback object names in Ids. These names are marked as used,
for the purposes of gl:genTransformFeedbacks/1
only, but they acquire transform feedback state only when they are first bound.
External documentation.

 Link to this function

 genVertexArrays(N)

 View Source

 -spec genVertexArrays(N :: i()) -> [i()].

gl:genVertexArrays/1 returns N vertex array object
names in Arrays. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genVertexArrays/1.
External documentation.

 Link to this function

 getActiveAttrib(Program, Index, BufSize)

 View Source

 -spec getActiveAttrib(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

gl:getActiveAttrib/3 returns information about an
active attribute variable in the program object specified by Program. The
number of active attributes can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_ATTRIBUTES. A
value of 0 for Index selects the first active attribute variable. Permissible
values for Index range from zero to the number of active attribute variables
minus one.
External documentation.

 Link to this function

 getActiveSubroutineName(Program, Shadertype, Index, Bufsize)

 View Source

 -spec getActiveSubroutineName(Program :: i(), Shadertype :: enum(), Index :: i(), Bufsize :: i()) ->
 string().

gl:getActiveSubroutineName/4 queries the name
of an active shader subroutine uniform from the program object given in
Program. Index specifies the index of the shader subroutine uniform within
the shader stage given by Stage, and must between zero and the value of
?GL_ACTIVE_SUBROUTINES minus one for the shader stage.
External documentation.

 Link to this function

 getActiveSubroutineUniformName(Program, Shadertype, Index, Bufsize)

 View Source

 -spec getActiveSubroutineUniformName(Program :: i(), Shadertype :: enum(), Index :: i(), Bufsize :: i()) ->
 string().

gl:getActiveSubroutineUniformName/4
retrieves the name of an active shader subroutine uniform. Program contains
the name of the program containing the uniform. Shadertype specifies the stage
for which the uniform location, given by Index, is valid. Index must be
between zero and the value of ?GL_ACTIVE_SUBROUTINE_UNIFORMS minus one for the
shader stage.
External documentation.

 Link to this function

 getActiveUniform(Program, Index, BufSize)

 View Source

 -spec getActiveUniform(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

gl:getActiveUniform/3 returns information about an
active uniform variable in the program object specified by Program. The number
of active uniform variables can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_UNIFORMS. A
value of 0 for Index selects the first active uniform variable. Permissible
values for Index range from zero to the number of active uniform variables
minus one.
External documentation.

 Link to this function

 getActiveUniformBlockiv(Program, UniformBlockIndex, Pname, Params)

 View Source

 -spec getActiveUniformBlockiv(Program :: i(),
 UniformBlockIndex :: i(),
 Pname :: enum(),
 Params :: mem()) ->
 ok.

gl:getActiveUniformBlockiv/4 retrieves
information about an active uniform block within Program.
External documentation.

 Link to this function

 getActiveUniformBlockName(Program, UniformBlockIndex, BufSize)

 View Source

 -spec getActiveUniformBlockName(Program :: i(), UniformBlockIndex :: i(), BufSize :: i()) -> string().

gl:getActiveUniformBlockName/3 retrieves the
name of the active uniform block at UniformBlockIndex within Program.
External documentation.

 Link to this function

 getActiveUniformName(Program, UniformIndex, BufSize)

 View Source

 -spec getActiveUniformName(Program :: i(), UniformIndex :: i(), BufSize :: i()) -> string().

gl:getActiveUniformName/3 returns the name of the
active uniform at UniformIndex within Program. If UniformName is not NULL,
up to BufSize characters (including a nul-terminator) will be written into the
array whose address is specified by UniformName. If Length is not NULL, the
number of characters that were (or would have been) written into UniformName
(not including the nul-terminator) will be placed in the variable whose address
is specified in Length. If Length is NULL, no length is returned. The length
of the longest uniform name in Program is given by the value of
?GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with
gl:getProgram().
External documentation.

 Link to this function

 getActiveUniformsiv(Program, UniformIndices, Pname)

 View Source

 -spec getActiveUniformsiv(Program :: i(), UniformIndices :: [i()], Pname :: enum()) -> [i()].

gl:getActiveUniformsiv/3 queries the value of the
parameter named Pname for each of the uniforms within Program whose indices
are specified in the array of UniformCount unsigned integers UniformIndices.
Upon success, the value of the parameter for each uniform is written into the
corresponding entry in the array whose address is given in Params. If an error
is generated, nothing is written into Params.
External documentation.

 Link to this function

 getAttachedShaders(Program, MaxCount)

 View Source

 -spec getAttachedShaders(Program :: i(), MaxCount :: i()) -> [i()].

gl:getAttachedShaders/2 returns the names of the
shader objects attached to Program. The names of shader objects that are
attached to Program will be returned in Shaders. The actual number of shader
names written into Shaders is returned in Count. If no shader objects are
attached to Program, Count is set to 0. The maximum number of shader names
that may be returned in Shaders is specified by MaxCount.
External documentation.

 Link to this function

 getAttribLocation(Program, Name)

 View Source

 -spec getAttribLocation(Program :: i(), Name :: string()) -> i().

gl:getAttribLocation/2 queries the previously linked
program object specified by Program for the attribute variable specified by
Name and returns the index of the generic vertex attribute that is bound to
that attribute variable. If Name is a matrix attribute variable, the index of
the first column of the matrix is returned. If the named attribute variable is
not an active attribute in the specified program object or if Name starts with
the reserved prefix "gl_", a value of -1 is returned.
External documentation.

 Link to this function

 getBooleani_v(Target, Index)

 View Source

 -spec getBooleani_v(Target :: enum(), Index :: i()) -> [0 | 1].

Equivalent to getIntegerv/1.

 Link to this function

 getBooleanv(Pname)

 View Source

 -spec getBooleanv(Pname :: enum()) -> [0 | 1].

Equivalent to getIntegerv/1.

 Link to this function

 getBufferParameteri64v(Target, Pname)

 View Source

 -spec getBufferParameteri64v(Target :: enum(), Pname :: enum()) -> [i()].

Equivalent to getBufferParameterivARB/2.

 Link to this function

 getBufferParameteriv(Target, Pname)

 View Source

 -spec getBufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getBufferParameteriv/2 returns in Data a
selected parameter of the buffer object specified by Target.
External documentation.

 Link to this function

 getBufferParameterivARB(Target, Pname)

 View Source

 -spec getBufferParameterivARB(Target :: enum(), Pname :: enum()) -> [i()].

These functions return in Data a selected parameter of the specified buffer
object.
External documentation.

 Link to this function

 getBufferSubData(Target, Offset, Size, Data)

 View Source

 -spec getBufferSubData(Target :: enum(), Offset :: i(), Size :: i(), Data :: mem()) -> ok.

gl:getBufferSubData/4 and glGetNamedBufferSubData
return some or all of the data contents of the data store of the specified
buffer object. Data starting at byte offset Offset and extending for Size
bytes is copied from the buffer object's data store to the memory pointed to by
Data. An error is thrown if the buffer object is currently mapped, or if
Offset and Size together define a range beyond the bounds of the buffer
object's data store.
External documentation.

 Link to this function

 getClipPlane(Plane)

 View Source

 -spec getClipPlane(Plane :: enum()) -> {f(), f(), f(), f()}.

gl:getClipPlane/1 returns in Equation the four
coefficients of the plane equation for Plane.
External documentation.

 Link to this function

 getColorTable(Target, Format, Type, Table)

 View Source

 -spec getColorTable(Target :: enum(), Format :: enum(), Type :: enum(), Table :: mem()) -> ok.

gl:getColorTable/4 returns in Table the contents of the
color table specified by Target. No pixel transfer operations are performed,
but pixel storage modes that are applicable to
gl:readPixels/7 are performed.
External documentation.

 Link to this function

 getColorTableParameterfv(Target, Pname)

 View Source

 -spec getColorTableParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getColorTableParameteriv/2.

 Link to this function

 getColorTableParameteriv(Target, Pname)

 View Source

 -spec getColorTableParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Returns parameters specific to color table Target.
External documentation.

 Link to this function

 getCompressedTexImage(Target, Lod, Img)

 View Source

 -spec getCompressedTexImage(Target :: enum(), Lod :: i(), Img :: mem()) -> ok.

gl:getCompressedTexImage/3 and
glGetnCompressedTexImage return the compressed texture image associated with
Target and Lod into Pixels. glGetCompressedTextureImage serves the same
purpose, but instead of taking a texture target, it takes the ID of the texture
object. Pixels should be an array of BufSize bytes for
glGetnCompresedTexImage and glGetCompressedTextureImage functions, and of
?GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes in case of
gl:getCompressedTexImage/3. If the actual data
takes less space than BufSize, the remaining bytes will not be touched.
Target specifies the texture target, to which the texture the data the
function should extract the data from is bound to. Lod specifies the
level-of-detail number of the desired image.
External documentation.

 Link to this function

 getConvolutionFilter(Target, Format, Type, Image)

 View Source

 -spec getConvolutionFilter(Target :: enum(), Format :: enum(), Type :: enum(), Image :: mem()) -> ok.

gl:getConvolutionFilter/4 returns the current 1D
or 2D convolution filter kernel as an image. The one- or two-dimensional image
is placed in Image according to the specifications in Format and Type. No
pixel transfer operations are performed on this image, but the relevant pixel
storage modes are applied.
External documentation.

 Link to this function

 getConvolutionParameterfv(Target, Pname)

 View Source

 -spec getConvolutionParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getConvolutionParameteriv/2.

 Link to this function

 getConvolutionParameteriv(Target, Pname)

 View Source

 -spec getConvolutionParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getConvolutionParameter() retrieves
convolution parameters. Target determines which convolution filter is queried.
Pname determines which parameter is returned:
External documentation.

 Link to this function

 getDebugMessageLog(Count, BufSize)

 View Source

 -spec getDebugMessageLog(Count :: i(), BufSize :: i()) ->
 {i(),
 Sources :: [enum()],
 Types :: [enum()],
 Ids :: [i()],
 Severities :: [enum()],
 MessageLog :: [string()]}.

gl:getDebugMessageLog/2 retrieves messages from the
debug message log. A maximum of Count messages are retrieved from the log. If
Sources is not NULL then the source of each message is written into up to
Count elements of the array. If Types is not NULL then the type of each
message is written into up to Count elements of the array. If Id is not NULL
then the identifier of each message is written into up to Count elements of
the array. If Severities is not NULL then the severity of each message is
written into up to Count elements of the array. If Lengths is not NULL then
the length of each message is written into up to Count elements of the array.
External documentation.

 Link to this function

 getDoublei_v(Target, Index)

 View Source

 -spec getDoublei_v(Target :: enum(), Index :: i()) -> [f()].

Equivalent to getIntegerv/1.

 Link to this function

 getDoublev(Pname)

 View Source

 -spec getDoublev(Pname :: enum()) -> [f()].

Equivalent to getIntegerv/1.

 Link to this function

 getError()

 View Source

 -spec getError() -> enum().

gl:getError/0 returns the value of the error flag. Each
detectable error is assigned a numeric code and symbolic name. When an error
occurs, the error flag is set to the appropriate error code value. No other
errors are recorded until gl:getError/0 is called, the error
code is returned, and the flag is reset to ?GL_NO_ERROR. If a call to
gl:getError/0 returns ?GL_NO_ERROR, there has been no
detectable error since the last call to gl:getError/0, or
since the GL was initialized.
External documentation.

 Link to this function

 getFloati_v(Target, Index)

 View Source

 -spec getFloati_v(Target :: enum(), Index :: i()) -> [f()].

Equivalent to getIntegerv/1.

 Link to this function

 getFloatv(Pname)

 View Source

 -spec getFloatv(Pname :: enum()) -> [f()].

Equivalent to getIntegerv/1.

 Link to this function

 getFragDataIndex(Program, Name)

 View Source

 -spec getFragDataIndex(Program :: i(), Name :: string()) -> i().

gl:getFragDataIndex/2 returns the index of the
fragment color to which the variable Name was bound when the program object
Program was last linked. If Name is not a varying out variable of Program,
or if an error occurs, -1 will be returned.
External documentation.

 Link to this function

 getFragDataLocation(Program, Name)

 View Source

 -spec getFragDataLocation(Program :: i(), Name :: string()) -> i().

gl:getFragDataLocation/2 retrieves the assigned
color number binding for the user-defined varying out variable Name for
program Program. Program must have previously been linked. Name must be a
null-terminated string. If Name is not the name of an active user-defined
varying out fragment shader variable within Program, -1 will be returned.
External documentation.

 Link to this function

 getFramebufferAttachmentParameteriv(Target, Attachment, Pname)

 View Source

 -spec getFramebufferAttachmentParameteriv(Target :: enum(), Attachment :: enum(), Pname :: enum()) ->
 i().

gl:getFramebufferAttachmentParameteriv/3
and glGetNamedFramebufferAttachmentParameteriv return parameters of
attachments of a specified framebuffer object.
External documentation.

 Link to this function

 getFramebufferParameteriv(Target, Pname)

 View Source

 -spec getFramebufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getFramebufferParameteriv/2 and
glGetNamedFramebufferParameteriv query parameters of a specified framebuffer
object.
External documentation.

 Link to this function

 getGraphicsResetStatus()

 View Source

 -spec getGraphicsResetStatus() -> enum().

Certain events can result in a reset of the GL context. Such a reset causes all
context state to be lost and requires the application to recreate all objects in
the affected context.
External documentation.

 Link to this function

 getHistogram(Target, Reset, Format, Type, Values)

 View Source

 -spec getHistogram(Target :: enum(), Reset :: 0 | 1, Format :: enum(), Type :: enum(), Values :: mem()) ->
 ok.

gl:getHistogram/5 returns the current histogram table as a
one-dimensional image with the same width as the histogram. No pixel transfer
operations are performed on this image, but pixel storage modes that are
applicable to 1D images are honored.
External documentation.

 Link to this function

 getHistogramParameterfv(Target, Pname)

 View Source

 -spec getHistogramParameterfv(Target :: enum(), Pname :: enum()) -> {f()}.

Equivalent to getHistogramParameteriv/2.

 Link to this function

 getHistogramParameteriv(Target, Pname)

 View Source

 -spec getHistogramParameteriv(Target :: enum(), Pname :: enum()) -> {i()}.

gl:getHistogramParameter() is used to query
parameter values for the current histogram or for a proxy. The histogram state
information may be queried by calling
gl:getHistogramParameter() with a Target of
?GL_HISTOGRAM (to obtain information for the current histogram table) or
?GL_PROXY_HISTOGRAM (to obtain information from the most recent proxy request)
and one of the following values for the Pname argument:
External documentation.

 Link to this function

 getInteger64i_v(Target, Index)

 View Source

 -spec getInteger64i_v(Target :: enum(), Index :: i()) -> [i()].

Equivalent to getIntegerv/1.

 Link to this function

 getInteger64v(Pname)

 View Source

 -spec getInteger64v(Pname :: enum()) -> [i()].

Equivalent to getIntegerv/1.

 Link to this function

 getIntegeri_v(Target, Index)

 View Source

 -spec getIntegeri_v(Target :: enum(), Index :: i()) -> [i()].

Equivalent to getIntegerv/1.

 Link to this function

 getIntegerv(Pname)

 View Source

 -spec getIntegerv(Pname :: enum()) -> [i()].

These commands return values for simple state variables in GL. Pname is a
symbolic constant indicating the state variable to be returned, and Data is a
pointer to an array of the indicated type in which to place the returned data.
External documentation.

 Link to this function

 getInternalformati64v(Target, Internalformat, Pname, BufSize)

 View Source

 -spec getInternalformati64v(Target :: enum(), Internalformat :: enum(), Pname :: enum(), BufSize :: i()) ->
 [i()].

Equivalent to getInternalformativ/4.

 Link to this function

 getInternalformativ(Target, Internalformat, Pname, BufSize)

 View Source

 -spec getInternalformativ(Target :: enum(), Internalformat :: enum(), Pname :: enum(), BufSize :: i()) ->
 [i()].

No documentation available.

 Link to this function

 getLightfv(Light, Pname)

 View Source

 -spec getLightfv(Light :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getLightiv/2.

 Link to this function

 getLightiv(Light, Pname)

 View Source

 -spec getLightiv(Light :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getLight() returns in Params the value or values of a
light source parameter. Light names the light and is a symbolic name of the
form ?GL_LIGHT i where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
?GL_MAX_LIGHTS is an implementation dependent constant that is greater than or
equal to eight. Pname specifies one of ten light source parameters, again by
symbolic name.
External documentation.

 Link to this function

 getMapdv(Target, Query, V)

 View Source

 -spec getMapdv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

Equivalent to getMapiv/3.

 Link to this function

 getMapfv(Target, Query, V)

 View Source

 -spec getMapfv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

Equivalent to getMapiv/3.

 Link to this function

 getMapiv(Target, Query, V)

 View Source

 -spec getMapiv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

glMap1 and glMap2 define evaluators. gl:getMap() returns
evaluator parameters. Target chooses a map, Query selects a specific
parameter, and V points to storage where the values will be returned.
External documentation.

 Link to this function

 getMaterialfv(Face, Pname)

 View Source

 -spec getMaterialfv(Face :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getMaterialiv/2.

 Link to this function

 getMaterialiv(Face, Pname)

 View Source

 -spec getMaterialiv(Face :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getMaterial() returns in Params the value or values
of parameter Pname of material Face. Six parameters are defined:
External documentation.

 Link to this function

 getMinmax(Target, Reset, Format, Types, Values)

 View Source

 -spec getMinmax(Target :: enum(), Reset :: 0 | 1, Format :: enum(), Types :: enum(), Values :: mem()) ->
 ok.

gl:getMinmax/5 returns the accumulated minimum and maximum
pixel values (computed on a per-component basis) in a one-dimensional image of
width 2. The first set of return values are the minima, and the second set of
return values are the maxima. The format of the return values is determined by
Format, and their type is determined by Types.
External documentation.

 Link to this function

 getMinmaxParameterfv(Target, Pname)

 View Source

 -spec getMinmaxParameterfv(Target :: enum(), Pname :: enum()) -> {f()}.

Equivalent to getMinmaxParameteriv/2.

 Link to this function

 getMinmaxParameteriv(Target, Pname)

 View Source

 -spec getMinmaxParameteriv(Target :: enum(), Pname :: enum()) -> {i()}.

gl:getMinmaxParameter() retrieves parameters for
the current minmax table by setting Pname to one of the following values:
External documentation.

 Link to this function

 getMultisamplefv(Pname, Index)

 View Source

 -spec getMultisamplefv(Pname :: enum(), Index :: i()) -> {f(), f()}.

gl:getMultisamplefv/2 queries the location of a given
sample. Pname specifies the sample parameter to retrieve and must be
?GL_SAMPLE_POSITION. Index corresponds to the sample for which the location
should be returned. The sample location is returned as two floating-point values
in Val[0] and Val[1], each between 0 and 1, corresponding to the X and Y
locations respectively in the GL pixel space of that sample. (0.5, 0.5) this
corresponds to the pixel center. Index must be between zero and the value of
?GL_SAMPLES minus one.
External documentation.

 Link to this function

 getPixelMapfv(Map, Values)

 View Source

 -spec getPixelMapfv(Map :: enum(), Values :: mem()) -> ok.

Equivalent to getPixelMapusv/2.

 Link to this function

 getPixelMapuiv(Map, Values)

 View Source

 -spec getPixelMapuiv(Map :: enum(), Values :: mem()) -> ok.

Equivalent to getPixelMapusv/2.

 Link to this function

 getPixelMapusv(Map, Values)

 View Source

 -spec getPixelMapusv(Map :: enum(), Values :: mem()) -> ok.

See the gl:pixelMap() reference page for a description of
the acceptable values for the Map parameter.
gl:getPixelMap() returns in Data the contents of the
pixel map specified in Map. Pixel maps are used during the execution of
gl:readPixels/7, gl:drawPixels/5,
gl:copyPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9. to map color indices, stencil
indices, color components, and depth components to other values.
External documentation.

 Link to this function

 getPolygonStipple()

 View Source

 -spec getPolygonStipple() -> binary().

gl:getPolygonStipple/0 returns to Pattern a 32×32
polygon stipple pattern. The pattern is packed into memory as if
gl:readPixels/7 with both height and width of 32, type
of ?GL_BITMAP, and format of ?GL_COLOR_INDEX were called, and the stipple
pattern were stored in an internal 32×32 color index buffer. Unlike
gl:readPixels/7, however, pixel transfer operations (shift,
offset, pixel map) are not applied to the returned stipple image.
External documentation.

 Link to this function

 getProgramBinary(Program, BufSize)

 View Source

 -spec getProgramBinary(Program :: i(), BufSize :: i()) -> {BinaryFormat :: enum(), Binary :: binary()}.

gl:getProgramBinary/2 returns a binary representation
of the compiled and linked executable for Program into the array of bytes
whose address is specified in Binary. The maximum number of bytes that may be
written into Binary is specified by BufSize. If the program binary is
greater in size than BufSize bytes, then an error is generated, otherwise the
actual number of bytes written into Binary is returned in the variable whose
address is given by Length. If Length is ?NULL, then no length is
returned.
External documentation.

 Link to this function

 getProgramInfoLog(Program, BufSize)

 View Source

 -spec getProgramInfoLog(Program :: i(), BufSize :: i()) -> string().

gl:getProgramInfoLog/2 returns the information log
for the specified program object. The information log for a program object is
modified when the program object is linked or validated. The string that is
returned will be null terminated.
External documentation.

 Link to this function

 getProgramInterfaceiv(Program, ProgramInterface, Pname)

 View Source

 -spec getProgramInterfaceiv(Program :: i(), ProgramInterface :: enum(), Pname :: enum()) -> i().

gl:getProgramInterfaceiv/3 queries the property
of the interface identifed by ProgramInterface in Program, the property name
of which is given by Pname.
External documentation.

 Link to this function

 getProgramiv(Program, Pname)

 View Source

 -spec getProgramiv(Program :: i(), Pname :: enum()) -> i().

gl:getProgram() returns in Params the value of a
parameter for a specific program object. The following parameters are defined:
External documentation.

 Link to this function

 getProgramPipelineInfoLog(Pipeline, BufSize)

 View Source

 -spec getProgramPipelineInfoLog(Pipeline :: i(), BufSize :: i()) -> string().

gl:getProgramPipelineInfoLog/2 retrieves the
info log for the program pipeline object Pipeline. The info log, including its
null terminator, is written into the array of characters whose address is given
by InfoLog. The maximum number of characters that may be written into
InfoLog is given by BufSize, and the actual number of characters written
into InfoLog is returned in the integer whose address is given by Length. If
Length is ?NULL, no length is returned.
External documentation.

 Link to this function

 getProgramPipelineiv(Pipeline, Pname)

 View Source

 -spec getProgramPipelineiv(Pipeline :: i(), Pname :: enum()) -> i().

gl:getProgramPipelineiv/2 retrieves the value of a
property of the program pipeline object Pipeline. Pname specifies the name
of the parameter whose value to retrieve. The value of the parameter is written
to the variable whose address is given by Params.
External documentation.

 Link to this function

 getProgramResourceIndex(Program, ProgramInterface, Name)

 View Source

 -spec getProgramResourceIndex(Program :: i(), ProgramInterface :: enum(), Name :: string()) -> i().

gl:getProgramResourceIndex/3 returns the
unsigned integer index assigned to a resource named Name in the interface type
ProgramInterface of program object Program.
External documentation.

 Link to this function

 getProgramResourceLocation(Program, ProgramInterface, Name)

 View Source

 -spec getProgramResourceLocation(Program :: i(), ProgramInterface :: enum(), Name :: string()) -> i().

gl:getProgramResourceLocation/3 returns the
location assigned to the variable named Name in interface ProgramInterface
of program object Program. Program must be the name of a program that has
been linked successfully. ProgramInterface must be one of ?GL_UNIFORM,
?GL_PROGRAM_INPUT, ?GL_PROGRAM_OUTPUT, ?GL_VERTEX_SUBROUTINE_UNIFORM,
?GL_TESS_CONTROL_SUBROUTINE_UNIFORM, ?GL_TESS_EVALUATION_SUBROUTINE_UNIFORM,
?GL_GEOMETRY_SUBROUTINE_UNIFORM, ?GL_FRAGMENT_SUBROUTINE_UNIFORM,
?GL_COMPUTE_SUBROUTINE_UNIFORM, or ?GL_TRANSFORM_FEEDBACK_BUFFER.
External documentation.

 Link to this function

 getProgramResourceLocationIndex(Program, ProgramInterface, Name)

 View Source

 -spec getProgramResourceLocationIndex(Program :: i(), ProgramInterface :: enum(), Name :: string()) ->
 i().

gl:getProgramResourceLocationIndex/3
returns the fragment color index assigned to the variable named Name in
interface ProgramInterface of program object Program. Program must be the
name of a program that has been linked successfully. ProgramInterface must be
?GL_PROGRAM_OUTPUT.
External documentation.

 Link to this function

 getProgramResourceName(Program, ProgramInterface, Index, BufSize)

 View Source

 -spec getProgramResourceName(Program :: i(), ProgramInterface :: enum(), Index :: i(), BufSize :: i()) ->
 string().

gl:getProgramResourceName/4 retrieves the name
string assigned to the single active resource with an index of Index in the
interface ProgramInterface of program object Program. Index must be less
than the number of entries in the active resource list for ProgramInterface.
External documentation.

 Link to this function

 getProgramStageiv(Program, Shadertype, Pname)

 View Source

 -spec getProgramStageiv(Program :: i(), Shadertype :: enum(), Pname :: enum()) -> i().

gl:getProgramStage() queries a parameter of a shader
stage attached to a program object. Program contains the name of the program
to which the shader is attached. Shadertype specifies the stage from which to
query the parameter. Pname specifies which parameter should be queried. The
value or values of the parameter to be queried is returned in the variable whose
address is given in Values.
External documentation.

 Link to this function

 getQueryBufferObjecti64v(Id, Buffer, Pname, Offset)

 View Source

 -spec getQueryBufferObjecti64v(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryBufferObjectiv(Id, Buffer, Pname, Offset)

 View Source

 -spec getQueryBufferObjectiv(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryBufferObjectui64v(Id, Buffer, Pname, Offset)

 View Source

 -spec getQueryBufferObjectui64v(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryBufferObjectuiv(Id, Buffer, Pname, Offset)

 View Source

 -spec getQueryBufferObjectuiv(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryIndexediv(Target, Index, Pname)

 View Source

 -spec getQueryIndexediv(Target :: enum(), Index :: i(), Pname :: enum()) -> i().

gl:getQueryIndexediv/3 returns in Params a selected
parameter of the indexed query object target specified by Target and Index.
Index specifies the index of the query object target and must be between zero
and a target-specific maxiumum.
External documentation.

 Link to this function

 getQueryiv(Target, Pname)

 View Source

 -spec getQueryiv(Target :: enum(), Pname :: enum()) -> i().

gl:getQueryiv/2 returns in Params a selected parameter of
the query object target specified by Target.
External documentation.

 Link to this function

 getQueryObjecti64v(Id, Pname)

 View Source

 -spec getQueryObjecti64v(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryObjectiv(Id, Pname)

 View Source

 -spec getQueryObjectiv(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryObjectui64v(Id, Pname)

 View Source

 -spec getQueryObjectui64v(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 Link to this function

 getQueryObjectuiv(Id, Pname)

 View Source

 -spec getQueryObjectuiv(Id :: i(), Pname :: enum()) -> i().

These commands return a selected parameter of the query object specified by
Id. gl:getQueryObject() returns in Params a
selected parameter of the query object specified by Id.
gl:getQueryBufferObject() returns in Buffer a
selected parameter of the query object specified by Id, by writing it to
Buffer's data store at the byte offset specified by Offset.
External documentation.

 Link to this function

 getRenderbufferParameteriv(Target, Pname)

 View Source

 -spec getRenderbufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getRenderbufferParameteriv/2 and
glGetNamedRenderbufferParameteriv query parameters of a specified renderbuffer
object.
External documentation.

 Link to this function

 getSamplerParameterfv(Sampler, Pname)

 View Source

 -spec getSamplerParameterfv(Sampler :: i(), Pname :: enum()) -> [f()].

Equivalent to getSamplerParameteriv/2.

 Link to this function

 getSamplerParameterIiv(Sampler, Pname)

 View Source

 -spec getSamplerParameterIiv(Sampler :: i(), Pname :: enum()) -> [i()].

Equivalent to getSamplerParameteriv/2.

 Link to this function

 getSamplerParameterIuiv(Sampler, Pname)

 View Source

 -spec getSamplerParameterIuiv(Sampler :: i(), Pname :: enum()) -> [i()].

Equivalent to getSamplerParameteriv/2.

 Link to this function

 getSamplerParameteriv(Sampler, Pname)

 View Source

 -spec getSamplerParameteriv(Sampler :: i(), Pname :: enum()) -> [i()].

gl:getSamplerParameter() returns in Params the
value or values of the sampler parameter specified as Pname. Sampler defines
the target sampler, and must be the name of an existing sampler object, returned
from a previous call to gl:genSamplers/1. Pname accepts
the same symbols as gl:samplerParameter(), with the
same interpretations:
External documentation.

 Link to this function

 getShaderInfoLog(Shader, BufSize)

 View Source

 -spec getShaderInfoLog(Shader :: i(), BufSize :: i()) -> string().

gl:getShaderInfoLog/2 returns the information log for
the specified shader object. The information log for a shader object is modified
when the shader is compiled. The string that is returned will be null
terminated.
External documentation.

 Link to this function

 getShaderiv(Shader, Pname)

 View Source

 -spec getShaderiv(Shader :: i(), Pname :: enum()) -> i().

gl:getShader() returns in Params the value of a parameter
for a specific shader object. The following parameters are defined:
External documentation.

 Link to this function

 getShaderPrecisionFormat(Shadertype, Precisiontype)

 View Source

 -spec getShaderPrecisionFormat(Shadertype :: enum(), Precisiontype :: enum()) ->
 {Range :: {i(), i()}, Precision :: i()}.

gl:getShaderPrecisionFormat/2 retrieves the
numeric range and precision for the implementation's representation of
quantities in different numeric formats in specified shader type. ShaderType
specifies the type of shader for which the numeric precision and range is to be
retrieved and must be one of ?GL_VERTEX_SHADER or ?GL_FRAGMENT_SHADER.
PrecisionType specifies the numeric format to query and must be one of
?GL_LOW_FLOAT, ?GL_MEDIUM_FLOAT``?GL_HIGH_FLOAT, ?GL_LOW_INT,
?GL_MEDIUM_INT, or ?GL_HIGH_INT.
External documentation.

 Link to this function

 getShaderSource(Shader, BufSize)

 View Source

 -spec getShaderSource(Shader :: i(), BufSize :: i()) -> string().

gl:getShaderSource/2 returns the concatenation of the
source code strings from the shader object specified by Shader. The source
code strings for a shader object are the result of a previous call to
gl:shaderSource/2. The string returned by the function
will be null terminated.
External documentation.

 Link to this function

 getString(Name)

 View Source

 -spec getString(Name :: enum()) -> string().

Equivalent to getStringi/2.

 Link to this function

 getStringi(Name, Index)

 View Source

 -spec getStringi(Name :: enum(), Index :: i()) -> string().

gl:getString/1 returns a pointer to a static string
describing some aspect of the current GL connection. Name can be one of the
following:
External documentation.

 Link to this function

 getSubroutineIndex(Program, Shadertype, Name)

 View Source

 -spec getSubroutineIndex(Program :: i(), Shadertype :: enum(), Name :: string()) -> i().

gl:getSubroutineIndex/3 returns the index of a
subroutine uniform within a shader stage attached to a program object. Program
contains the name of the program to which the shader is attached. Shadertype
specifies the stage from which to query shader subroutine index. Name contains
the null-terminated name of the subroutine uniform whose name to query.
External documentation.

 Link to this function

 getSubroutineUniformLocation(Program, Shadertype, Name)

 View Source

 -spec getSubroutineUniformLocation(Program :: i(), Shadertype :: enum(), Name :: string()) -> i().

gl:getSubroutineUniformLocation/3 returns
the location of the subroutine uniform variable Name in the shader stage of
type Shadertype attached to Program, with behavior otherwise identical to
gl:getUniformLocation/2.
External documentation.

 Link to this function

 getSynciv(Sync, Pname, BufSize)

 View Source

 -spec getSynciv(Sync :: i(), Pname :: enum(), BufSize :: i()) -> [i()].

gl:getSynciv/3 retrieves properties of a sync object. Sync
specifies the name of the sync object whose properties to retrieve.
External documentation.

 Link to this function

 getTexEnvfv(Target, Pname)

 View Source

 -spec getTexEnvfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexEnviv/2.

 Link to this function

 getTexEnviv(Target, Pname)

 View Source

 -spec getTexEnviv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexEnv() returns in Params selected values of a
texture environment that was specified with gl:texEnv().
Target specifies a texture environment.
External documentation.

 Link to this function

 getTexGendv(Coord, Pname)

 View Source

 -spec getTexGendv(Coord :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexGeniv/2.

 Link to this function

 getTexGenfv(Coord, Pname)

 View Source

 -spec getTexGenfv(Coord :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexGeniv/2.

 Link to this function

 getTexGeniv(Coord, Pname)

 View Source

 -spec getTexGeniv(Coord :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexGen() returns in Params selected parameters of a
texture coordinate generation function that was specified using
gl:texGen(). Coord names one of the (s, t, r, q)
texture coordinates, using the symbolic constant ?GL_S, ?GL_T, ?GL_R, or
?GL_Q.
External documentation.

 Link to this function

 getTexImage(Target, Level, Format, Type, Pixels)

 View Source

 -spec getTexImage(Target :: enum(), Level :: i(), Format :: enum(), Type :: enum(), Pixels :: mem()) ->
 ok.

gl:getTexImage/5, glGetnTexImage and glGetTextureImage
functions return a texture image into Pixels. For
gl:getTexImage/5 and glGetnTexImage, Target specifies
whether the desired texture image is one specified by
gl:texImage1D/8 (?GL_TEXTURE_1D),
gl:texImage2D/9 (?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_2D or any of ?GL_TEXTURE_CUBE_MAP_*),
or gl:texImage3D/10 (?GL_TEXTURE_2D_ARRAY,
?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_ARRAY). For glGetTextureImage,
Texture specifies the texture object name. In addition to types of textures
accepted by gl:getTexImage/5 and glGetnTexImage, the
function also accepts cube map texture objects (with effective target
?GL_TEXTURE_CUBE_MAP). Level specifies the level-of-detail number of the
desired image. Format and Type specify the format and type of the desired
image array. See the reference page for gl:texImage1D/8 for
a description of the acceptable values for the Format and Type parameters,
respectively. For glGetnTexImage and glGetTextureImage functions, bufSize tells
the size of the buffer to receive the retrieved pixel data. glGetnTexImage and
glGetTextureImage do not write more than BufSize bytes into Pixels.
External documentation.

 Link to this function

 getTexLevelParameterfv(Target, Level, Pname)

 View Source

 -spec getTexLevelParameterfv(Target :: enum(), Level :: i(), Pname :: enum()) -> {f()}.

Equivalent to getTexLevelParameteriv/3.

 Link to this function

 getTexLevelParameteriv(Target, Level, Pname)

 View Source

 -spec getTexLevelParameteriv(Target :: enum(), Level :: i(), Pname :: enum()) -> {i()}.

gl:getTexLevelParameterfv/3,
gl:getTexLevelParameteriv/3,
glGetTextureLevelParameterfv and glGetTextureLevelParameteriv return in
Params texture parameter values for a specific level-of-detail value,
specified as Level. For the first two functions, Target defines the target
texture, either ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D,
?GL_PROXY_TEXTURE_1D, ?GL_PROXY_TEXTURE_2D, ?GL_PROXY_TEXTURE_3D,
?GL_TEXTURE_CUBE_MAP_POSITIVE_X, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
?GL_PROXY_TEXTURE_CUBE_MAP. The remaining two take a Texture argument which
specifies the name of the texture object.
External documentation.

 Link to this function

 getTexParameterfv(Target, Pname)

 View Source

 -spec getTexParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexParameteriv/2.

 Link to this function

 getTexParameterIiv(Target, Pname)

 View Source

 -spec getTexParameterIiv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getTexParameteriv/2.

 Link to this function

 getTexParameterIuiv(Target, Pname)

 View Source

 -spec getTexParameterIuiv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getTexParameteriv/2.

 Link to this function

 getTexParameteriv(Target, Pname)

 View Source

 -spec getTexParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexParameter() and glGetTextureParameter
return in Params the value or values of the texture parameter specified as
Pname. Target defines the target texture. ?GL_TEXTURE_1D,
?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE, or
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY specify one-, two-, or three-dimensional,
one-dimensional array, two-dimensional array, rectangle, cube-mapped or
cube-mapped array, two-dimensional multisample, or two-dimensional multisample
array texturing, respectively. Pname accepts the same symbols as
gl:texParameter(), with the same interpretations:
External documentation.

 Link to this function

 getTransformFeedbackVarying(Program, Index, BufSize)

 View Source

 -spec getTransformFeedbackVarying(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

Information about the set of varying variables in a linked program that will be
captured during transform feedback may be retrieved by calling
gl:getTransformFeedbackVarying/3.
gl:getTransformFeedbackVarying/3 provides
information about the varying variable selected by Index. An Index of 0
selects the first varying variable specified in the Varyings array passed to
gl:transformFeedbackVaryings/3, and an
Index of the value of ?GL_TRANSFORM_FEEDBACK_VARYINGS minus one selects the
last such variable.
External documentation.

 Link to this function

 getUniformBlockIndex(Program, UniformBlockName)

 View Source

 -spec getUniformBlockIndex(Program :: i(), UniformBlockName :: string()) -> i().

gl:getUniformBlockIndex/2 retrieves the index of a
uniform block within Program.
External documentation.

 Link to this function

 getUniformdv(Program, Location)

 View Source

 -spec getUniformdv(Program :: i(), Location :: i()) -> matrix().

Equivalent to getUniformuiv/2.

 Link to this function

 getUniformfv(Program, Location)

 View Source

 -spec getUniformfv(Program :: i(), Location :: i()) -> matrix().

Equivalent to getUniformuiv/2.

 Link to this function

 getUniformIndices(Program, UniformNames)

 View Source

 -spec getUniformIndices(Program :: i(), UniformNames :: [unicode:chardata()]) -> [i()].

gl:getUniformIndices/2 retrieves the indices of a
number of uniforms within Program.
External documentation.

 Link to this function

 getUniformiv(Program, Location)

 View Source

 -spec getUniformiv(Program :: i(), Location :: i()) ->
 {i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i()}.

Equivalent to getUniformuiv/2.

 Link to this function

 getUniformLocation(Program, Name)

 View Source

 -spec getUniformLocation(Program :: i(), Name :: string()) -> i().

glGetUniformLocationreturns an integer that represents the location of a
specific uniform variable within a program object. Name must be a null
terminated string that contains no white space. Name must be an active uniform
variable name in Program that is not a structure, an array of structures, or a
subcomponent of a vector or a matrix. This function returns -1 if Name does
not correspond to an active uniform variable in Program, if Name starts with
the reserved prefix "gl_", or if Name is associated with an atomic counter or
a named uniform block.
External documentation.

 Link to this function

 getUniformSubroutineuiv(Shadertype, Location)

 View Source

 -spec getUniformSubroutineuiv(Shadertype :: enum(), Location :: i()) ->
 {i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i()}.

gl:getUniformSubroutine() retrieves the value
of the subroutine uniform at location Location for shader stage Shadertype
of the current program. Location must be less than the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader currently in use at
shader stage Shadertype. The value of the subroutine uniform is returned in
Values.
External documentation.

 Link to this function

 getUniformuiv(Program, Location)

 View Source

 -spec getUniformuiv(Program :: i(), Location :: i()) ->
 {i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i()}.

gl:getUniform() and glGetnUniform return in Params the
value(s) of the specified uniform variable. The type of the uniform variable
specified by Location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value
will be returned. If it is defined as a vec2, ivec2, or bvec2, two values will
be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be
returned, and so on. To query values stored in uniform variables declared as
arrays, call gl:getUniform() for each element of the
array. To query values stored in uniform variables declared as structures, call
gl:getUniform() for each field in the structure. The
values for uniform variables declared as a matrix will be returned in column
major order.
External documentation.

 Link to this function

 getVertexAttribdv(Index, Pname)

 View Source

 -spec getVertexAttribdv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 Link to this function

 getVertexAttribfv(Index, Pname)

 View Source

 -spec getVertexAttribfv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 Link to this function

 getVertexAttribIiv(Index, Pname)

 View Source

 -spec getVertexAttribIiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getVertexAttribiv/2.

 Link to this function

 getVertexAttribIuiv(Index, Pname)

 View Source

 -spec getVertexAttribIuiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getVertexAttribiv/2.

 Link to this function

 getVertexAttribiv(Index, Pname)

 View Source

 -spec getVertexAttribiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getVertexAttrib() returns in Params the value of
a generic vertex attribute parameter. The generic vertex attribute to be queried
is specified by Index, and the parameter to be queried is specified by
Pname.
External documentation.

 Link to this function

 getVertexAttribLdv(Index, Pname)

 View Source

 -spec getVertexAttribLdv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 Link to this function

 hint(Target, Mode)

 View Source

 -spec hint(Target :: enum(), Mode :: enum()) -> ok.

Certain aspects of GL behavior, when there is room for interpretation, can be
controlled with hints. A hint is specified with two arguments. Target is a
symbolic constant indicating the behavior to be controlled, and Mode is
another symbolic constant indicating the desired behavior. The initial value for
each Target is ?GL_DONT_CARE. Mode can be one of the following:
External documentation.

 Link to this function

 histogram(Target, Width, Internalformat, Sink)

 View Source

 -spec histogram(Target :: enum(), Width :: i(), Internalformat :: enum(), Sink :: 0 | 1) -> ok.

When ?GL_HISTOGRAM is enabled, RGBA color components are converted to
histogram table indices by clamping to the range [0,1], multiplying by the
width of the histogram table, and rounding to the nearest integer. The table
entries selected by the RGBA indices are then incremented. (If the internal
format of the histogram table includes luminance, then the index derived from
the R color component determines the luminance table entry to be incremented.)
If a histogram table entry is incremented beyond its maximum value, then its
value becomes undefined. (This is not an error.)
External documentation.

 Link to this function

 indexd(C)

 View Source

 -spec indexd(C :: f()) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexdv/1

 View Source

 -spec indexdv({C :: f()}) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexf(C)

 View Source

 -spec indexf(C :: f()) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexfv/1

 View Source

 -spec indexfv({C :: f()}) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexi(C)

 View Source

 -spec indexi(C :: i()) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexiv/1

 View Source

 -spec indexiv({C :: i()}) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexMask(Mask)

 View Source

 -spec indexMask(Mask :: i()) -> ok.

gl:indexMask/1 controls the writing of individual bits in the
color index buffers. The least significant n bits of Mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 (one) appears
in the mask, it's possible to write to the corresponding bit in the color index
buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is
write-protected.
External documentation.

 Link to this function

 indexPointer(Type, Stride, Ptr)

 View Source

 -spec indexPointer(Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:indexPointer/3 specifies the location and data format
of an array of color indexes to use when rendering. Type specifies the data
type of each color index and Stride specifies the byte stride from one color
index to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays.
External documentation.

 Link to this function

 indexs(C)

 View Source

 -spec indexs(C :: i()) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexsv/1

 View Source

 -spec indexsv({C :: i()}) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexub(C)

 View Source

 -spec indexub(C :: i()) -> ok.

Equivalent to indexubv/1.

 Link to this function

 indexubv/1

 View Source

 -spec indexubv({C :: i()}) -> ok.

gl:index() updates the current (single-valued) color index. It
takes one argument, the new value for the current color index.
External documentation.

 Link to this function

 initNames()

 View Source

 -spec initNames() -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers.
gl:initNames/0 causes the name stack to be initialized to its
default empty state.
External documentation.

 Link to this function

 interleavedArrays(Format, Stride, Pointer)

 View Source

 -spec interleavedArrays(Format :: enum(), Stride :: i(), Pointer :: offset() | mem()) -> ok.

gl:interleavedArrays/3 lets you specify and enable
individual color, normal, texture and vertex arrays whose elements are part of a
larger aggregate array element. For some implementations, this is more efficient
than specifying the arrays separately.
External documentation.

 Link to this function

 invalidateBufferData(Buffer)

 View Source

 -spec invalidateBufferData(Buffer :: i()) -> ok.

gl:invalidateBufferData/1 invalidates all of the
content of the data store of a buffer object. After invalidation, the content of
the buffer's data store becomes undefined.
External documentation.

 Link to this function

 invalidateBufferSubData(Buffer, Offset, Length)

 View Source

 -spec invalidateBufferSubData(Buffer :: i(), Offset :: i(), Length :: i()) -> ok.

gl:invalidateBufferSubData/3 invalidates all or
part of the content of the data store of a buffer object. After invalidation,
the content of the specified range of the buffer's data store becomes undefined.
The start of the range is given by Offset and its size is given by Length,
both measured in basic machine units.
External documentation.

 Link to this function

 invalidateFramebuffer(Target, Attachments)

 View Source

 -spec invalidateFramebuffer(Target :: enum(), Attachments :: [enum()]) -> ok.

gl:invalidateFramebuffer/2 and
glInvalidateNamedFramebufferData invalidate the entire contents of a specified
set of attachments of a framebuffer.
External documentation.

 Link to this function

 invalidateSubFramebuffer(Target, Attachments, X, Y, Width, Height)

 View Source

 -spec invalidateSubFramebuffer(Target :: enum(),
 Attachments :: [enum()],
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:invalidateSubFramebuffer/6 and
glInvalidateNamedFramebufferSubData invalidate the contents of a specified
region of a specified set of attachments of a framebuffer.
External documentation.

 Link to this function

 invalidateTexImage(Texture, Level)

 View Source

 -spec invalidateTexImage(Texture :: i(), Level :: i()) -> ok.

gl:invalidateTexSubImage/8 invalidates all of a
texture image. Texture and Level indicated which texture image is being
invalidated. After this command, data in the texture image has undefined values.
External documentation.

 Link to this function

 invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth)

 View Source

 -spec invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth) -> ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i().

gl:invalidateTexSubImage/8 invalidates all or
part of a texture image. Texture and Level indicated which texture image is
being invalidated. After this command, data in that subregion have undefined
values. Xoffset, Yoffset, Zoffset, Width, Height, and Depth are
interpreted as they are in gl:texSubImage3D/11. For
texture targets that don't have certain dimensions, this command treats those
dimensions as having a size of 1. For example, to invalidate a portion of a two-
dimensional texture, the application would use Zoffset equal to zero and
Depth equal to one. Cube map textures are treated as an array of six slices in
the z-dimension, where a value of Zoffset is interpreted as specifying face
?GL_TEXTURE_CUBE_MAP_POSITIVE_X + Zoffset.
External documentation.

 Link to this function

 isBuffer(Buffer)

 View Source

 -spec isBuffer(Buffer :: i()) -> 0 | 1.

gl:isBuffer/1 returns ?GL_TRUE if Buffer is currently the
name of a buffer object. If Buffer is zero, or is a non-zero value that is not
currently the name of a buffer object, or if an error occurs,
gl:isBuffer/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isEnabled(Cap)

 View Source

 -spec isEnabled(Cap :: enum()) -> 0 | 1.

Equivalent to isEnabledi/2.

 Link to this function

 isEnabledi(Target, Index)

 View Source

 -spec isEnabledi(Target :: enum(), Index :: i()) -> 0 | 1.

gl:isEnabled/1 returns ?GL_TRUE if Cap is an enabled
capability and returns ?GL_FALSE otherwise. Boolean states that are indexed
may be tested with gl:isEnabledi/2. For
gl:isEnabledi/2, Index specifies the index of the
capability to test. Index must be between zero and the count of indexed
capabilities for Cap. Initially all capabilities except ?GL_DITHER are
disabled; ?GL_DITHER is initially enabled.
External documentation.

 Link to this function

 isFramebuffer(Framebuffer)

 View Source

 -spec isFramebuffer(Framebuffer :: i()) -> 0 | 1.

gl:isFramebuffer/1 returns ?GL_TRUE if Framebuffer is
currently the name of a framebuffer object. If Framebuffer is zero, or if
?framebuffer is not the name of a framebuffer object, or if an error occurs,
gl:isFramebuffer/1 returns ?GL_FALSE. If Framebuffer
is a name returned by gl:genFramebuffers/1, by that has
not yet been bound through a call to
gl:bindFramebuffer/2, then the name is not a
framebuffer object and gl:isFramebuffer/1 returns
?GL_FALSE.
External documentation.

 Link to this function

 isList(List)

 View Source

 -spec isList(List :: i()) -> 0 | 1.

gl:isList/1 returns ?GL_TRUE if List is the name of a
display list and returns ?GL_FALSE if it is not, or if an error occurs.
External documentation.

 Link to this function

 isProgram(Program)

 View Source

 -spec isProgram(Program :: i()) -> 0 | 1.

gl:isProgram/1 returns ?GL_TRUE if Program is the name of
a program object previously created with
gl:createProgram/0 and not yet deleted with
gl:deleteProgram/1. If Program is zero or a non-zero
value that is not the name of a program object, or if an error occurs,
gl:isProgram/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isProgramPipeline(Pipeline)

 View Source

 -spec isProgramPipeline(Pipeline :: i()) -> 0 | 1.

gl:isProgramPipeline/1 returns ?GL_TRUE if
Pipeline is currently the name of a program pipeline object. If Pipeline is
zero, or if ?pipeline is not the name of a program pipeline object, or if an
error occurs, gl:isProgramPipeline/1 returns
?GL_FALSE. If Pipeline is a name returned by
gl:genProgramPipelines/1, but that has not yet been
bound through a call to gl:bindProgramPipeline/1,
then the name is not a program pipeline object and
gl:isProgramPipeline/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isQuery(Id)

 View Source

 -spec isQuery(Id :: i()) -> 0 | 1.

gl:isQuery/1 returns ?GL_TRUE if Id is currently the name
of a query object. If Id is zero, or is a non-zero value that is not currently
the name of a query object, or if an error occurs, gl:isQuery/1
returns ?GL_FALSE.
External documentation.

 Link to this function

 isRenderbuffer(Renderbuffer)

 View Source

 -spec isRenderbuffer(Renderbuffer :: i()) -> 0 | 1.

gl:isRenderbuffer/1 returns ?GL_TRUE if Renderbuffer
is currently the name of a renderbuffer object. If Renderbuffer is zero, or if
Renderbuffer is not the name of a renderbuffer object, or if an error occurs,
gl:isRenderbuffer/1 returns ?GL_FALSE. If
Renderbuffer is a name returned by
gl:genRenderbuffers/1, by that has not yet been bound
through a call to gl:bindRenderbuffer/2 or
gl:framebufferRenderbuffer/4, then the name is
not a renderbuffer object and gl:isRenderbuffer/1
returns ?GL_FALSE.
External documentation.

 Link to this function

 isSampler(Sampler)

 View Source

 -spec isSampler(Sampler :: i()) -> 0 | 1.

gl:isSampler/1 returns ?GL_TRUE if Id is currently the
name of a sampler object. If Id is zero, or is a non-zero value that is not
currently the name of a sampler object, or if an error occurs,
gl:isSampler/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isShader(Shader)

 View Source

 -spec isShader(Shader :: i()) -> 0 | 1.

gl:isShader/1 returns ?GL_TRUE if Shader is the name of a
shader object previously created with gl:createShader/1
and not yet deleted with gl:deleteShader/1. If Shader is
zero or a non-zero value that is not the name of a shader object, or if an error
occurs, glIsShaderreturns ?GL_FALSE.
External documentation.

 Link to this function

 isSync(Sync)

 View Source

 -spec isSync(Sync :: i()) -> 0 | 1.

gl:isSync/1 returns ?GL_TRUE if Sync is currently the name
of a sync object. If Sync is not the name of a sync object, or if an error
occurs, gl:isSync/1 returns ?GL_FALSE. Note that zero is not
the name of a sync object.
External documentation.

 Link to this function

 isTexture(Texture)

 View Source

 -spec isTexture(Texture :: i()) -> 0 | 1.

gl:isTexture/1 returns ?GL_TRUE if Texture is currently
the name of a texture. If Texture is zero, or is a non-zero value that is not
currently the name of a texture, or if an error occurs,
gl:isTexture/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isTransformFeedback(Id)

 View Source

 -spec isTransformFeedback(Id :: i()) -> 0 | 1.

gl:isTransformFeedback/1 returns ?GL_TRUE if Id
is currently the name of a transform feedback object. If Id is zero, or if
?id is not the name of a transform feedback object, or if an error occurs,
gl:isTransformFeedback/1 returns ?GL_FALSE. If
Id is a name returned by
gl:genTransformFeedbacks/1, but that has not yet
been bound through a call to
gl:bindTransformFeedback/2, then the name is not
a transform feedback object and
gl:isTransformFeedback/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 isVertexArray(Array)

 View Source

 -spec isVertexArray(Array :: i()) -> 0 | 1.

gl:isVertexArray/1 returns ?GL_TRUE if Array is
currently the name of a vertex array object. If Array is zero, or if Array
is not the name of a vertex array object, or if an error occurs,
gl:isVertexArray/1 returns ?GL_FALSE. If Array is a
name returned by gl:genVertexArrays/1, by that has not
yet been bound through a call to gl:bindVertexArray/1,
then the name is not a vertex array object and
gl:isVertexArray/1 returns ?GL_FALSE.
External documentation.

 Link to this function

 lightf(Light, Pname, Param)

 View Source

 -spec lightf(Light :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to lightiv/3.

 Link to this function

 lightfv(Light, Pname, Params)

 View Source

 -spec lightfv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to lightiv/3.

 Link to this function

 lighti(Light, Pname, Param)

 View Source

 -spec lighti(Light :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to lightiv/3.

 Link to this function

 lightiv(Light, Pname, Params)

 View Source

 -spec lightiv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:light() sets the values of individual light source
parameters. Light names the light and is a symbolic name of the form
?GL_LIGHT i, where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
Pname specifies one of ten light source parameters, again by symbolic name.
Params is either a single value or a pointer to an array that contains the new
values.
External documentation.

 Link to this function

 lightModelf(Pname, Param)

 View Source

 -spec lightModelf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to lightModeliv/2.

 Link to this function

 lightModelfv(Pname, Params)

 View Source

 -spec lightModelfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to lightModeliv/2.

 Link to this function

 lightModeli(Pname, Param)

 View Source

 -spec lightModeli(Pname :: enum(), Param :: i()) -> ok.

Equivalent to lightModeliv/2.

 Link to this function

 lightModeliv(Pname, Params)

 View Source

 -spec lightModeliv(Pname :: enum(), Params :: tuple()) -> ok.

gl:lightModel() sets the lighting model parameter. Pname
names a parameter and Params gives the new value. There are three lighting
model parameters:
External documentation.

 Link to this function

 lineStipple(Factor, Pattern)

 View Source

 -spec lineStipple(Factor :: i(), Pattern :: i()) -> ok.

Line stippling masks out certain fragments produced by rasterization; those
fragments will not be drawn. The masking is achieved by using three parameters:
the 16-bit line stipple pattern Pattern, the repeat count Factor, and an
integer stipple counter s.
External documentation.

 Link to this function

 lineWidth(Width)

 View Source

 -spec lineWidth(Width :: f()) -> ok.

gl:lineWidth/1 specifies the rasterized width of both aliased
and antialiased lines. Using a line width other than 1 has different effects,
depending on whether line antialiasing is enabled. To enable and disable line
antialiasing, call gl:enable/1 and gl:disable/1
with argument ?GL_LINE_SMOOTH. Line antialiasing is initially disabled.
External documentation.

 Link to this function

 linkProgram(Program)

 View Source

 -spec linkProgram(Program :: i()) -> ok.

gl:linkProgram/1 links the program object specified by
Program. If any shader objects of type ?GL_VERTEX_SHADER are attached to
Program, they will be used to create an executable that will run on the
programmable vertex processor. If any shader objects of type
?GL_GEOMETRY_SHADER are attached to Program, they will be used to create an
executable that will run on the programmable geometry processor. If any shader
objects of type ?GL_FRAGMENT_SHADER are attached to Program, they will be
used to create an executable that will run on the programmable fragment
processor.
External documentation.

 Link to this function

 listBase(Base)

 View Source

 -spec listBase(Base :: i()) -> ok.

gl:callLists/1 specifies an array of offsets. Display-list
names are generated by adding Base to each offset. Names that reference valid
display lists are executed; the others are ignored.
External documentation.

 Link to this function

 loadIdentity()

 View Source

 -spec loadIdentity() -> ok.

gl:loadIdentity/0 replaces the current matrix with the
identity matrix. It is semantically equivalent to calling
gl:loadMatrix() with the identity matrix
External documentation.

 Link to this function

 loadMatrixd(M)

 View Source

 -spec loadMatrixd(M :: matrix()) -> ok.

Equivalent to loadMatrixf/1.

 Link to this function

 loadMatrixf(M)

 View Source

 -spec loadMatrixf(M :: matrix()) -> ok.

gl:loadMatrix() replaces the current matrix with the one
whose elements are specified by M. The current matrix is the projection
matrix, modelview matrix, or texture matrix, depending on the current matrix
mode (see gl:matrixMode/1).
External documentation.

 Link to this function

 loadName(Name)

 View Source

 -spec loadName(Name :: i()) -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.
External documentation.

 Link to this function

 loadTransposeMatrixd(M)

 View Source

 -spec loadTransposeMatrixd(M :: matrix()) -> ok.

Equivalent to loadTransposeMatrixf/1.

 Link to this function

 loadTransposeMatrixf(M)

 View Source

 -spec loadTransposeMatrixf(M :: matrix()) -> ok.

gl:loadTransposeMatrix() replaces the current
matrix with the one whose elements are specified by M. The current matrix is
the projection matrix, modelview matrix, or texture matrix, depending on the
current matrix mode (see gl:matrixMode/1).
External documentation.

 Link to this function

 logicOp(Opcode)

 View Source

 -spec logicOp(Opcode :: enum()) -> ok.

gl:logicOp/1 specifies a logical operation that, when enabled,
is applied between the incoming RGBA color and the RGBA color at the
corresponding location in the frame buffer. To enable or disable the logical
operation, call gl:enable/1 and gl:disable/1
using the symbolic constant ?GL_COLOR_LOGIC_OP. The initial value is disabled.
External documentation.

 Link to this function

 map1d(Target, U1, U2, Stride, Order, Points)

 View Source

 -spec map1d(Target :: enum(), U1 :: f(), U2 :: f(), Stride :: i(), Order :: i(), Points :: binary()) ->
 ok.

Equivalent to map1f/6.

 Link to this function

 map1f(Target, U1, U2, Stride, Order, Points)

 View Source

 -spec map1f(Target :: enum(), U1 :: f(), U2 :: f(), Stride :: i(), Order :: i(), Points :: binary()) ->
 ok.

Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent to further stages of GL processing just as if they had
been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.
External documentation.

 Link to this function

 map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 View Source

 -spec map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> ok
 when
 Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Ustride :: i(),
 Uorder :: i(),
 V1 :: f(),
 V2 :: f(),
 Vstride :: i(),
 Vorder :: i(),
 Points :: binary().

Equivalent to map2f/10.

 Link to this function

 map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 View Source

 -spec map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> ok
 when
 Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Ustride :: i(),
 Uorder :: i(),
 V1 :: f(),
 V2 :: f(),
 Vstride :: i(),
 Vorder :: i(),
 Points :: binary().

Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent on to further stages of GL processing just as if they
had been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.
External documentation.

 Link to this function

 mapGrid1d(Un, U1, U2)

 View Source

 -spec mapGrid1d(Un :: i(), U1 :: f(), U2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 Link to this function

 mapGrid1f(Un, U1, U2)

 View Source

 -spec mapGrid1f(Un :: i(), U1 :: f(), U2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 Link to this function

 mapGrid2d(Un, U1, U2, Vn, V1, V2)

 View Source

 -spec mapGrid2d(Un :: i(), U1 :: f(), U2 :: f(), Vn :: i(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 Link to this function

 mapGrid2f(Un, U1, U2, Vn, V1, V2)

 View Source

 -spec mapGrid2f(Un :: i(), U1 :: f(), U2 :: f(), Vn :: i(), V1 :: f(), V2 :: f()) -> ok.

gl:mapGrid() and gl:evalMesh() are used
together to efficiently generate and evaluate a series of evenly-spaced map
domain values. gl:evalMesh() steps through the integer domain
of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.
External documentation.

 Link to this function

 materialf(Face, Pname, Param)

 View Source

 -spec materialf(Face :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to materialiv/3.

 Link to this function

 materialfv(Face, Pname, Params)

 View Source

 -spec materialfv(Face :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to materialiv/3.

 Link to this function

 materiali(Face, Pname, Param)

 View Source

 -spec materiali(Face :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to materialiv/3.

 Link to this function

 materialiv(Face, Pname, Params)

 View Source

 -spec materialiv(Face :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:material() assigns values to material parameters. There
are two matched sets of material parameters. One, the front-facing set, is
used to shade points, lines, bitmaps, and all polygons (when two-sided lighting
is disabled), or just front-facing polygons (when two-sided lighting is
enabled). The other set, back-facing, is used to shade back-facing polygons
only when two-sided lighting is enabled. Refer to the
gl:lightModel() reference page for details concerning one-
and two-sided lighting calculations.
External documentation.

 Link to this function

 matrixMode(Mode)

 View Source

 -spec matrixMode(Mode :: enum()) -> ok.

gl:matrixMode/1 sets the current matrix mode. Mode can
assume one of four values:
External documentation.

 Link to this function

 memoryBarrier(Barriers)

 View Source

 -spec memoryBarrier(Barriers :: i()) -> ok.

Equivalent to memoryBarrierByRegion/1.

 Link to this function

 memoryBarrierByRegion(Barriers)

 View Source

 -spec memoryBarrierByRegion(Barriers :: i()) -> ok.

gl:memoryBarrier/1 defines a barrier ordering the memory
transactions issued prior to the command relative to those issued after the
barrier. For the purposes of this ordering, memory transactions performed by
shaders are considered to be issued by the rendering command that triggered the
execution of the shader. Barriers is a bitfield indicating the set of
operations that are synchronized with shader stores; the bits used in Barriers
are as follows:
External documentation.

 Link to this function

 minmax(Target, Internalformat, Sink)

 View Source

 -spec minmax(Target :: enum(), Internalformat :: enum(), Sink :: 0 | 1) -> ok.

When ?GL_MINMAX is enabled, the RGBA components of incoming pixels are
compared to the minimum and maximum values for each component, which are stored
in the two-element minmax table. (The first element stores the minima, and the
second element stores the maxima.) If a pixel component is greater than the
corresponding component in the maximum element, then the maximum element is
updated with the pixel component value. If a pixel component is less than the
corresponding component in the minimum element, then the minimum element is
updated with the pixel component value. (In both cases, if the internal format
of the minmax table includes luminance, then the R color component of incoming
pixels is used for comparison.) The contents of the minmax table may be
retrieved at a later time by calling gl:getMinmax/5. The
minmax operation is enabled or disabled by calling gl:enable/1
or gl:disable/1, respectively, with an argument of ?GL_MINMAX.
External documentation.

 Link to this function

 minSampleShading(Value)

 View Source

 -spec minSampleShading(Value :: f()) -> ok.

gl:minSampleShading/1 specifies the rate at which
samples are shaded within a covered pixel. Sample-rate shading is enabled by
calling gl:enable/1 with the parameter ?GL_SAMPLE_SHADING. If
?GL_MULTISAMPLE or ?GL_SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide at least as many unique color
values for each covered fragment as specified by Value times Samples where
Samples is the value of ?GL_SAMPLES for the current framebuffer. At least 1
sample for each covered fragment is generated.
External documentation.

 Link to this function

 multiDrawArrays(Mode, First, Count)

 View Source

 -spec multiDrawArrays(Mode :: enum(), First :: [integer()] | mem(), Count :: [integer()] | mem()) -> ok.

gl:multiDrawArrays/3 specifies multiple sets of
geometric primitives with very few subroutine calls. Instead of calling a GL
procedure to pass each individual vertex, normal, texture coordinate, edge flag,
or color, you can prespecify separate arrays of vertices, normals, and colors
and use them to construct a sequence of primitives with a single call to
gl:multiDrawArrays/3.
External documentation.

 Link to this function

 multiDrawArraysIndirect(Mode, Indirect, Drawcount, Stride)

 View Source

 -spec multiDrawArraysIndirect(Mode :: enum(),
 Indirect :: offset() | mem(),
 Drawcount :: i(),
 Stride :: i()) ->
 ok.

gl:multiDrawArraysIndirect/4 specifies multiple
geometric primitives with very few subroutine calls.
gl:multiDrawArraysIndirect/4 behaves similarly
to a multitude of calls to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to each call to
gl:drawArraysInstancedBaseInstance/5
are stored in an array in memory at the address given by Indirect, separated
by the stride, in basic machine units, specified by Stride. If Stride is
zero, then the array is assumed to be tightly packed in memory.
External documentation.

 Link to this function

 multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride)

 View Source

 -spec multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride) -> ok
 when
 Mode :: enum(),
 Indirect :: offset() | mem(),
 Drawcount :: i(),
 Maxdrawcount :: i(),
 Stride :: i().

No documentation available.

 Link to this function

 multiTexCoord1d(Target, S)

 View Source

 -spec multiTexCoord1d(Target :: enum(), S :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1dv/2

 View Source

 -spec multiTexCoord1dv(Target :: enum(), {S :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1f(Target, S)

 View Source

 -spec multiTexCoord1f(Target :: enum(), S :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1fv/2

 View Source

 -spec multiTexCoord1fv(Target :: enum(), {S :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1i(Target, S)

 View Source

 -spec multiTexCoord1i(Target :: enum(), S :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1iv/2

 View Source

 -spec multiTexCoord1iv(Target :: enum(), {S :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1s(Target, S)

 View Source

 -spec multiTexCoord1s(Target :: enum(), S :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord1sv/2

 View Source

 -spec multiTexCoord1sv(Target :: enum(), {S :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2d(Target, S, T)

 View Source

 -spec multiTexCoord2d(Target :: enum(), S :: f(), T :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2dv/2

 View Source

 -spec multiTexCoord2dv(Target :: enum(), {S :: f(), T :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2f(Target, S, T)

 View Source

 -spec multiTexCoord2f(Target :: enum(), S :: f(), T :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2fv/2

 View Source

 -spec multiTexCoord2fv(Target :: enum(), {S :: f(), T :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2i(Target, S, T)

 View Source

 -spec multiTexCoord2i(Target :: enum(), S :: i(), T :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2iv/2

 View Source

 -spec multiTexCoord2iv(Target :: enum(), {S :: i(), T :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2s(Target, S, T)

 View Source

 -spec multiTexCoord2s(Target :: enum(), S :: i(), T :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord2sv/2

 View Source

 -spec multiTexCoord2sv(Target :: enum(), {S :: i(), T :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3d(Target, S, T, R)

 View Source

 -spec multiTexCoord3d(Target :: enum(), S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3dv/2

 View Source

 -spec multiTexCoord3dv(Target :: enum(), {S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3f(Target, S, T, R)

 View Source

 -spec multiTexCoord3f(Target :: enum(), S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3fv/2

 View Source

 -spec multiTexCoord3fv(Target :: enum(), {S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3i(Target, S, T, R)

 View Source

 -spec multiTexCoord3i(Target :: enum(), S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3iv/2

 View Source

 -spec multiTexCoord3iv(Target :: enum(), {S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3s(Target, S, T, R)

 View Source

 -spec multiTexCoord3s(Target :: enum(), S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord3sv/2

 View Source

 -spec multiTexCoord3sv(Target :: enum(), {S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4d(Target, S, T, R, Q)

 View Source

 -spec multiTexCoord4d(Target :: enum(), S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4dv/2

 View Source

 -spec multiTexCoord4dv(Target :: enum(), {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4f(Target, S, T, R, Q)

 View Source

 -spec multiTexCoord4f(Target :: enum(), S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4fv/2

 View Source

 -spec multiTexCoord4fv(Target :: enum(), {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4i(Target, S, T, R, Q)

 View Source

 -spec multiTexCoord4i(Target :: enum(), S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4iv/2

 View Source

 -spec multiTexCoord4iv(Target :: enum(), {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4s(Target, S, T, R, Q)

 View Source

 -spec multiTexCoord4s(Target :: enum(), S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 Link to this function

 multiTexCoord4sv/2

 View Source

 -spec multiTexCoord4sv(Target :: enum(), {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

gl:multiTexCoord() specifies texture coordinates in
one, two, three, or four dimensions.
gl:multiTexCoord1() sets the current texture
coordinates to (s 0 0 1); a call to gl:multiTexCoord2()
sets them to (s t 0 1). Similarly, gl:multiTexCoord3()
specifies the texture coordinates as (s t r 1), and
gl:multiTexCoord4() defines all four components
explicitly as (s t r q).
External documentation.

 Link to this function

 multMatrixd(M)

 View Source

 -spec multMatrixd(M :: matrix()) -> ok.

Equivalent to multMatrixf/1.

 Link to this function

 multMatrixf(M)

 View Source

 -spec multMatrixf(M :: matrix()) -> ok.

gl:multMatrix() multiplies the current matrix with the one
specified using M, and replaces the current matrix with the product.
External documentation.

 Link to this function

 multTransposeMatrixd(M)

 View Source

 -spec multTransposeMatrixd(M :: matrix()) -> ok.

Equivalent to multTransposeMatrixf/1.

 Link to this function

 multTransposeMatrixf(M)

 View Source

 -spec multTransposeMatrixf(M :: matrix()) -> ok.

gl:multTransposeMatrix() multiplies the current
matrix with the one specified using M, and replaces the current matrix with
the product.
External documentation.

 Link to this function

 newList(List, Mode)

 View Source

 -spec newList(List :: i(), Mode :: enum()) -> ok.

Display lists are groups of GL commands that have been stored for subsequent
execution. Display lists are created with gl:newList/2. All
subsequent commands are placed in the display list, in the order issued, until
gl:endList/0 is called.
External documentation.

 Link to this function

 normal3b(Nx, Ny, Nz)

 View Source

 -spec normal3b(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3bv/1

 View Source

 -spec normal3bv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3d(Nx, Ny, Nz)

 View Source

 -spec normal3d(Nx :: f(), Ny :: f(), Nz :: f()) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3dv/1

 View Source

 -spec normal3dv({Nx :: f(), Ny :: f(), Nz :: f()}) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3f(Nx, Ny, Nz)

 View Source

 -spec normal3f(Nx :: f(), Ny :: f(), Nz :: f()) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3fv/1

 View Source

 -spec normal3fv({Nx :: f(), Ny :: f(), Nz :: f()}) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3i(Nx, Ny, Nz)

 View Source

 -spec normal3i(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3iv/1

 View Source

 -spec normal3iv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3s(Nx, Ny, Nz)

 View Source

 -spec normal3s(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 Link to this function

 normal3sv/1

 View Source

 -spec normal3sv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

The current normal is set to the given coordinates whenever
gl:normal() is issued. Byte, short, or integer arguments are
converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0 and the most negative representable
integer value to -1.0.
External documentation.

 Link to this function

 normalPointer(Type, Stride, Ptr)

 View Source

 -spec normalPointer(Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:normalPointer/3 specifies the location and data format
of an array of normals to use when rendering. Type specifies the data type of
each normal coordinate, and Stride specifies the byte stride from one normal
to the next, allowing vertices and attributes to be packed into a single array
or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see gl:interleavedArrays/3.)
External documentation.

 Link to this function

 objectPtrLabel(Ptr, Length, Label)

 View Source

 -spec objectPtrLabel(Ptr :: offset() | mem(), Length :: i(), Label :: string()) -> ok.

gl:objectPtrLabel/3 labels the sync object identified by
Ptr.
External documentation.

 Link to this function

 ortho(Left, Right, Bottom, Top, Near_val, Far_val)

 View Source

 -spec ortho(Left :: f(), Right :: f(), Bottom :: f(), Top :: f(), Near_val :: f(), Far_val :: f()) -> ok.

gl:ortho/6 describes a transformation that produces a parallel
projection. The current matrix (see gl:matrixMode/1) is
multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as
its argument:
External documentation.

 Link to this function

 passThrough(Token)

 View Source

 -spec passThrough(Token :: f()) -> ok.

External documentation.

 Link to this function

 patchParameterfv(Pname, Values)

 View Source

 -spec patchParameterfv(Pname :: enum(), Values :: [f()]) -> ok.

Equivalent to patchParameteri/2.

 Link to this function

 patchParameteri(Pname, Value)

 View Source

 -spec patchParameteri(Pname :: enum(), Value :: i()) -> ok.

gl:patchParameter() specifies the parameters that will
be used for patch primitives. Pname specifies the parameter to modify and must
be either ?GL_PATCH_VERTICES, ?GL_PATCH_DEFAULT_OUTER_LEVEL or
?GL_PATCH_DEFAULT_INNER_LEVEL. For
gl:patchParameteri/2, Value specifies the new value
for the parameter specified by Pname. For
gl:patchParameterfv/2, Values specifies the address
of an array containing the new values for the parameter specified by Pname.
External documentation.

 Link to this function

 pauseTransformFeedback()

 View Source

 -spec pauseTransformFeedback() -> ok.

gl:pauseTransformFeedback/0 pauses transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.
External documentation.

 Link to this function

 pixelMapfv(Map, Mapsize, Values)

 View Source

 -spec pixelMapfv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

Equivalent to pixelMapusv/3.

 Link to this function

 pixelMapuiv(Map, Mapsize, Values)

 View Source

 -spec pixelMapuiv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

Equivalent to pixelMapusv/3.

 Link to this function

 pixelMapusv(Map, Mapsize, Values)

 View Source

 -spec pixelMapusv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

gl:pixelMap() sets up translation tables, or maps, used by
gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11. Additionally, if the ARB_imaging
subset is supported, the routines gl:colorTable/6,
gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8. Use of these maps is
described completely in the gl:pixelTransfer() reference
page, and partly in the reference pages for the pixel and texture image
commands. Only the specification of the maps is described in this reference
page.
External documentation.

 Link to this function

 pixelStoref(Pname, Param)

 View Source

 -spec pixelStoref(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pixelStorei/2.

 Link to this function

 pixelStorei(Pname, Param)

 View Source

 -spec pixelStorei(Pname :: enum(), Param :: i()) -> ok.

gl:pixelStore() sets pixel storage modes that affect the
operation of subsequent gl:readPixels/7 as well as the
unpacking of texture patterns (see gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11),
gl:compressedTexImage1D/7,
gl:compressedTexImage2D/8,
gl:compressedTexImage3D/9,
gl:compressedTexSubImage1D/7,
gl:compressedTexSubImage2D/9 or
gl:compressedTexSubImage1D/7.
External documentation.

 Link to this function

 pixelTransferf(Pname, Param)

 View Source

 -spec pixelTransferf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pixelTransferi/2.

 Link to this function

 pixelTransferi(Pname, Param)

 View Source

 -spec pixelTransferi(Pname :: enum(), Param :: i()) -> ok.

gl:pixelTransfer() sets pixel transfer modes that affect
the operation of subsequent gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11 commands. Additionally, if the
ARB_imaging subset is supported, the routines
gl:colorTable/6, gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8 are also affected. The
algorithms that are specified by pixel transfer modes operate on pixels after
they are read from the frame buffer
(gl:copyPixels/5gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9, and
gl:readPixels/7), or unpacked from client memory
(gl:drawPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11). Pixel transfer operations happen
in the same order, and in the same manner, regardless of the command that
resulted in the pixel operation. Pixel storage modes (see
gl:pixelStore()) control the unpacking of pixels being read
from client memory and the packing of pixels being written back into client
memory.
External documentation.

 Link to this function

 pixelZoom(Xfactor, Yfactor)

 View Source

 -spec pixelZoom(Xfactor :: f(), Yfactor :: f()) -> ok.

gl:pixelZoom/2 specifies values for the x and y zoom factors.
During the execution of gl:drawPixels/5 or
gl:copyPixels/5, if (xr, yr) is the current raster
position, and a given element is in the mth row and nth column of the pixel
rectangle, then pixels whose centers are in the rectangle with corners at
External documentation.

 Link to this function

 pointParameterf(Pname, Param)

 View Source

 -spec pointParameterf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pointParameteriv/2.

 Link to this function

 pointParameterfv(Pname, Params)

 View Source

 -spec pointParameterfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to pointParameteriv/2.

 Link to this function

 pointParameteri(Pname, Param)

 View Source

 -spec pointParameteri(Pname :: enum(), Param :: i()) -> ok.

Equivalent to pointParameteriv/2.

 Link to this function

 pointParameteriv(Pname, Params)

 View Source

 -spec pointParameteriv(Pname :: enum(), Params :: tuple()) -> ok.

The following values are accepted for Pname:
External documentation.

 Link to this function

 pointSize(Size)

 View Source

 -spec pointSize(Size :: f()) -> ok.

gl:pointSize/1 specifies the rasterized diameter of points.
If point size mode is disabled (see gl:enable/1 with parameter
?GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points.
Otherwise, the value written to the shading language built-in variable
gl_PointSize will be used.
External documentation.

 Link to this function

 polygonMode(Face, Mode)

 View Source

 -spec polygonMode(Face :: enum(), Mode :: enum()) -> ok.

gl:polygonMode/2 controls the interpretation of polygons
for rasterization. Face describes which polygons Mode applies to: both front
and back-facing polygons (?GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon's vertices are lit
and the polygon is clipped and possibly culled before these modes are applied.
External documentation.

 Link to this function

 polygonOffset(Factor, Units)

 View Source

 -spec polygonOffset(Factor :: f(), Units :: f()) -> ok.

When ?GL_POLYGON_OFFSET_FILL, ?GL_POLYGON_OFFSET_LINE, or
?GL_POLYGON_OFFSET_POINT is enabled, each fragment's depth value will be
offset after it is interpolated from the depth values of the appropriate
vertices. The value of the offset is factor×DZ+r×units, where DZ is a
measurement of the change in depth relative to the screen area of the polygon,
and r is the smallest value that is guaranteed to produce a resolvable offset
for a given implementation. The offset is added before the depth test is
performed and before the value is written into the depth buffer.
External documentation.

 Link to this function

 polygonOffsetClamp(Factor, Units, Clamp)

 View Source

 -spec polygonOffsetClamp(Factor :: f(), Units :: f(), Clamp :: f()) -> ok.

No documentation available.

 Link to this function

 polygonStipple(Mask)

 View Source

 -spec polygonStipple(Mask :: binary()) -> ok.

Polygon stippling, like line stippling (see
gl:lineStipple/2), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon
antialiasing.
External documentation.

 Link to this function

 popAttrib()

 View Source

 -spec popAttrib() -> ok.

Equivalent to pushAttrib/1.

 Link to this function

 popClientAttrib()

 View Source

 -spec popClientAttrib() -> ok.

Equivalent to pushClientAttrib/1.

 Link to this function

 popDebugGroup()

 View Source

 -spec popDebugGroup() -> ok.

Equivalent to pushDebugGroup/4.

 Link to this function

 popMatrix()

 View Source

 -spec popMatrix() -> ok.

Equivalent to pushMatrix/0.

 Link to this function

 popName()

 View Source

 -spec popName() -> ok.

Equivalent to pushName/1.

 Link to this function

 primitiveRestartIndex(Index)

 View Source

 -spec primitiveRestartIndex(Index :: i()) -> ok.

gl:primitiveRestartIndex/1 specifies a vertex
array element that is treated specially when primitive restarting is enabled.
This is known as the primitive restart index.
External documentation.

 Link to this function

 prioritizeTextures(Textures, Priorities)

 View Source

 -spec prioritizeTextures(Textures :: [i()], Priorities :: [clamp()]) -> ok.

gl:prioritizeTextures/2 assigns the N texture
priorities given in Priorities to the N textures named in Textures.
External documentation.

 Link to this function

 programBinary(Program, BinaryFormat, Binary)

 View Source

 -spec programBinary(Program :: i(), BinaryFormat :: enum(), Binary :: binary()) -> ok.

gl:programBinary/3 loads a program object with a program
binary previously returned from gl:getProgramBinary/2.
BinaryFormat and Binary must be those returned by a previous call to
gl:getProgramBinary/2, and Length must be the length
returned by gl:getProgramBinary/2, or by
gl:getProgram() when called with Pname set to
?GL_PROGRAM_BINARY_LENGTH. If these conditions are not met, loading the
program binary will fail and Program's ?GL_LINK_STATUS will be set to
?GL_FALSE.
External documentation.

 Link to this function

 programParameteri(Program, Pname, Value)

 View Source

 -spec programParameteri(Program :: i(), Pname :: enum(), Value :: i()) -> ok.

gl:programParameter() specifies a new value for the
parameter nameed by Pname for the program object Program.
External documentation.

 Link to this function

 programUniform1d(Program, Location, V0)

 View Source

 -spec programUniform1d(Program :: i(), Location :: i(), V0 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1dv(Program, Location, Value)

 View Source

 -spec programUniform1dv(Program :: i(), Location :: i(), Value :: [f()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1f(Program, Location, V0)

 View Source

 -spec programUniform1f(Program :: i(), Location :: i(), V0 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1fv(Program, Location, Value)

 View Source

 -spec programUniform1fv(Program :: i(), Location :: i(), Value :: [f()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1i(Program, Location, V0)

 View Source

 -spec programUniform1i(Program :: i(), Location :: i(), V0 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1iv(Program, Location, Value)

 View Source

 -spec programUniform1iv(Program :: i(), Location :: i(), Value :: [i()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1ui(Program, Location, V0)

 View Source

 -spec programUniform1ui(Program :: i(), Location :: i(), V0 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform1uiv(Program, Location, Value)

 View Source

 -spec programUniform1uiv(Program :: i(), Location :: i(), Value :: [i()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2d(Program, Location, V0, V1)

 View Source

 -spec programUniform2d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2dv(Program, Location, Value)

 View Source

 -spec programUniform2dv(Program :: i(), Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2f(Program, Location, V0, V1)

 View Source

 -spec programUniform2f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2fv(Program, Location, Value)

 View Source

 -spec programUniform2fv(Program :: i(), Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2i(Program, Location, V0, V1)

 View Source

 -spec programUniform2i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2iv(Program, Location, Value)

 View Source

 -spec programUniform2iv(Program :: i(), Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2ui(Program, Location, V0, V1)

 View Source

 -spec programUniform2ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform2uiv(Program, Location, Value)

 View Source

 -spec programUniform2uiv(Program :: i(), Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3d(Program, Location, V0, V1, V2)

 View Source

 -spec programUniform3d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3dv(Program, Location, Value)

 View Source

 -spec programUniform3dv(Program :: i(), Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3f(Program, Location, V0, V1, V2)

 View Source

 -spec programUniform3f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3fv(Program, Location, Value)

 View Source

 -spec programUniform3fv(Program :: i(), Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3i(Program, Location, V0, V1, V2)

 View Source

 -spec programUniform3i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3iv(Program, Location, Value)

 View Source

 -spec programUniform3iv(Program :: i(), Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3ui(Program, Location, V0, V1, V2)

 View Source

 -spec programUniform3ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform3uiv(Program, Location, Value)

 View Source

 -spec programUniform3uiv(Program :: i(), Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4d(Program, Location, V0, V1, V2, V3)

 View Source

 -spec programUniform4d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4dv(Program, Location, Value)

 View Source

 -spec programUniform4dv(Program :: i(), Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4f(Program, Location, V0, V1, V2, V3)

 View Source

 -spec programUniform4f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4fv(Program, Location, Value)

 View Source

 -spec programUniform4fv(Program :: i(), Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4i(Program, Location, V0, V1, V2, V3)

 View Source

 -spec programUniform4i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4iv(Program, Location, Value)

 View Source

 -spec programUniform4iv(Program :: i(), Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4ui(Program, Location, V0, V1, V2, V3)

 View Source

 -spec programUniform4ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniform4uiv(Program, Location, Value)

 View Source

 -spec programUniform4uiv(Program :: i(), Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2x3dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2x3dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2x3fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2x3fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2x4dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2x4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix2x4fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix2x4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3x2dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3x2dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3x2fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3x2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3x4dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3x4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix3x4fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix3x4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4x2dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4x2dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4x2fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4x2fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4x3dv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4x3dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 Link to this function

 programUniformMatrix4x3fv(Program, Location, Transpose, Value)

 View Source

 -spec programUniformMatrix4x3fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

gl:programUniform() modifies the value of a uniform
variable or a uniform variable array. The location of the uniform variable to be
modified is specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:programUniform() operates on the program object
specified by Program.
External documentation.

 Link to this function

 provokingVertex(Mode)

 View Source

 -spec provokingVertex(Mode :: enum()) -> ok.

Flatshading a vertex shader varying output means to assign all vetices of the
primitive the same value for that output. The vertex from which these values is
derived is known as the provoking vertex and
gl:provokingVertex/1 specifies which vertex is to be
used as the source of data for flat shaded varyings.
External documentation.

 Link to this function

 pushAttrib(Mask)

 View Source

 -spec pushAttrib(Mask :: i()) -> ok.

gl:pushAttrib/1 takes one argument, a mask that indicates
which groups of state variables to save on the attribute stack. Symbolic
constants are used to set bits in the mask. Mask is typically constructed by
specifying the bitwise-or of several of these constants together. The special
mask ?GL_ALL_ATTRIB_BITS can be used to save all stackable states.
External documentation.

 Link to this function

 pushClientAttrib(Mask)

 View Source

 -spec pushClientAttrib(Mask :: i()) -> ok.

gl:pushClientAttrib/1 takes one argument, a mask that
indicates which groups of client-state variables to save on the client attribute
stack. Symbolic constants are used to set bits in the mask. Mask is typically
constructed by specifying the bitwise-or of several of these constants together.
The special mask ?GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable
client state.
External documentation.

 Link to this function

 pushDebugGroup(Source, Id, Length, Message)

 View Source

 -spec pushDebugGroup(Source :: enum(), Id :: i(), Length :: i(), Message :: string()) -> ok.

gl:pushDebugGroup/4 pushes a debug group described by
the string Message into the command stream. The value of Id specifies the ID
of messages generated. The parameter Length contains the number of characters
in Message. If Length is negative, it is implied that Message contains a
null terminated string. The message has the specified Source and Id, the
Type``?GL_DEBUG_TYPE_PUSH_GROUP, and
Severity``?GL_DEBUG_SEVERITY_NOTIFICATION. The GL will put a new debug group
on top of the debug group stack which inherits the control of the volume of
debug output of the debug group previously residing on the top of the debug
group stack. Because debug groups are strictly hierarchical, any additional
control of the debug output volume will only apply within the active debug group
and the debug groups pushed on top of the active debug group.
External documentation.

 Link to this function

 pushMatrix()

 View Source

 -spec pushMatrix() -> ok.

There is a stack of matrices for each of the matrix modes. In ?GL_MODELVIEW
mode, the stack depth is at least 32. In the other modes, ?GL_COLOR,
?GL_PROJECTION, and ?GL_TEXTURE, the depth is at least 2. The current matrix
in any mode is the matrix on the top of the stack for that mode.
External documentation.

 Link to this function

 pushName(Name)

 View Source

 -spec pushName(Name :: i()) -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.
External documentation.

 Link to this function

 queryCounter(Id, Target)

 View Source

 -spec queryCounter(Id :: i(), Target :: enum()) -> ok.

gl:queryCounter/2 causes the GL to record the current time
into the query object named Id. Target must be ?GL_TIMESTAMP. The time is
recorded after all previous commands on the GL client and server state and the
framebuffer have been fully realized. When the time is recorded, the query
result for that object is marked available.
gl:queryCounter/2 timer queries can be used within a
gl:beginQuery/2 / gl:endQuery/1 block
where the target is ?GL_TIME_ELAPSED and it does not affect the result of that
query object.
External documentation.

 Link to this function

 rasterPos2d(X, Y)

 View Source

 -spec rasterPos2d(X :: f(), Y :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2dv/1

 View Source

 -spec rasterPos2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2f(X, Y)

 View Source

 -spec rasterPos2f(X :: f(), Y :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2fv/1

 View Source

 -spec rasterPos2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2i(X, Y)

 View Source

 -spec rasterPos2i(X :: i(), Y :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2iv/1

 View Source

 -spec rasterPos2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2s(X, Y)

 View Source

 -spec rasterPos2s(X :: i(), Y :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos2sv/1

 View Source

 -spec rasterPos2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3d(X, Y, Z)

 View Source

 -spec rasterPos3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3dv/1

 View Source

 -spec rasterPos3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3f(X, Y, Z)

 View Source

 -spec rasterPos3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3fv/1

 View Source

 -spec rasterPos3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3i(X, Y, Z)

 View Source

 -spec rasterPos3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3iv/1

 View Source

 -spec rasterPos3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3s(X, Y, Z)

 View Source

 -spec rasterPos3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos3sv/1

 View Source

 -spec rasterPos3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4d(X, Y, Z, W)

 View Source

 -spec rasterPos4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4dv/1

 View Source

 -spec rasterPos4dv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4f(X, Y, Z, W)

 View Source

 -spec rasterPos4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4fv/1

 View Source

 -spec rasterPos4fv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4i(X, Y, Z, W)

 View Source

 -spec rasterPos4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4iv/1

 View Source

 -spec rasterPos4iv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4s(X, Y, Z, W)

 View Source

 -spec rasterPos4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 Link to this function

 rasterPos4sv/1

 View Source

 -spec rasterPos4sv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.
External documentation.

 Link to this function

 readBuffer(Mode)

 View Source

 -spec readBuffer(Mode :: enum()) -> ok.

gl:readBuffer/1 specifies a color buffer as the source for
subsequent gl:readPixels/7,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9 commands. Mode accepts one
of twelve or more predefined values. In a fully configured system, ?GL_FRONT,
?GL_LEFT, and ?GL_FRONT_LEFT all name the front left buffer,
?GL_FRONT_RIGHT and ?GL_RIGHT name the front right buffer, and
?GL_BACK_LEFT and ?GL_BACK name the back left buffer. Further more, the
constants ?GL_COLOR_ATTACHMENT``i may be used to indicate the ith color
attachment where i ranges from zero to the value of
?GL_MAX_COLOR_ATTACHMENTS minus one.
External documentation.

 Link to this function

 readPixels(X, Y, Width, Height, Format, Type, Pixels)

 View Source

 -spec readPixels(X, Y, Width, Height, Format, Type, Pixels) -> ok
 when
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: mem().

gl:readPixels/7 and glReadnPixels return pixel data from
the frame buffer, starting with the pixel whose lower left corner is at location
(X, Y), into client memory starting at location Data. Several parameters
control the processing of the pixel data before it is placed into client memory.
These parameters are set with gl:pixelStore(). This
reference page describes the effects on gl:readPixels/7 and
glReadnPixels of most, but not all of the parameters specified by these three
commands.
External documentation.

 Link to this function

 rectd(X1, Y1, X2, Y2)

 View Source

 -spec rectd(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rectdv(V1, V2)

 View Source

 -spec rectdv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rectf(X1, Y1, X2, Y2)

 View Source

 -spec rectf(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rectfv(V1, V2)

 View Source

 -spec rectfv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok.

Equivalent to rectsv/2.

 Link to this function

 recti(X1, Y1, X2, Y2)

 View Source

 -spec recti(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rectiv(V1, V2)

 View Source

 -spec rectiv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rects(X1, Y1, X2, Y2)

 View Source

 -spec rects(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok.

Equivalent to rectsv/2.

 Link to this function

 rectsv(V1, V2)

 View Source

 -spec rectsv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok.

gl:rect() supports efficient specification of rectangles as two
corner points. Each rectangle command takes four arguments, organized either as
two consecutive pairs of (x y) coordinates or as two pointers to arrays, each
containing an (x y) pair. The resulting rectangle is defined in the z=0 plane.
External documentation.

 Link to this function

 releaseShaderCompiler()

 View Source

 -spec releaseShaderCompiler() -> ok.

gl:releaseShaderCompiler/0 provides a hint to the
implementation that it may free internal resources associated with its shader
compiler. gl:compileShader/1 may subsequently be called
and the implementation may at that time reallocate resources previously freed by
the call to gl:releaseShaderCompiler/0.
External documentation.

 Link to this function

 renderbufferStorage(Target, Internalformat, Width, Height)

 View Source

 -spec renderbufferStorage(Target :: enum(), Internalformat :: enum(), Width :: i(), Height :: i()) -> ok.

gl:renderbufferStorage/4 is equivalent to calling
gl:renderbufferStorageMultisample/5 with
the Samples set to zero, and glNamedRenderbufferStorage is equivalent to
calling glNamedRenderbufferStorageMultisample with the samples set to zero.
External documentation.

 Link to this function

 renderbufferStorageMultisample(Target, Samples, Internalformat, Width, Height)

 View Source

 -spec renderbufferStorageMultisample(Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:renderbufferStorageMultisample/5 and
glNamedRenderbufferStorageMultisample establish the data storage, format,
dimensions and number of samples of a renderbuffer object's image.
External documentation.

 Link to this function

 renderMode(Mode)

 View Source

 -spec renderMode(Mode :: enum()) -> i().

gl:renderMode/1 sets the rasterization mode. It takes one
argument, Mode, which can assume one of three predefined values:
External documentation.

 Link to this function

 resetHistogram(Target)

 View Source

 -spec resetHistogram(Target :: enum()) -> ok.

gl:resetHistogram/1 resets all the elements of the
current histogram table to zero.
External documentation.

 Link to this function

 resetMinmax(Target)

 View Source

 -spec resetMinmax(Target :: enum()) -> ok.

gl:resetMinmax/1 resets the elements of the current minmax
table to their initial values: the ``maximum'' element receives the minimum
possible component values, and the ``minimum'' element receives the maximum
possible component values.
External documentation.

 Link to this function

 resumeTransformFeedback()

 View Source

 -spec resumeTransformFeedback() -> ok.

gl:resumeTransformFeedback/0 resumes transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.
External documentation.

 Link to this function

 rotated(Angle, X, Y, Z)

 View Source

 -spec rotated(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rotatef/4.

 Link to this function

 rotatef(Angle, X, Y, Z)

 View Source

 -spec rotatef(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok.

gl:rotate() produces a rotation of Angle degrees around the
vector (x y z). The current matrix (see gl:matrixMode/1) is
multiplied by a rotation matrix with the product replacing the current matrix,
as if gl:multMatrix() were called with the following matrix
as its argument:
External documentation.

 Link to this function

 sampleCoverage(Value, Invert)

 View Source

 -spec sampleCoverage(Value :: clamp(), Invert :: 0 | 1) -> ok.

Multisampling samples a pixel multiple times at various implementation-dependent
subpixel locations to generate antialiasing effects. Multisampling transparently
antialiases points, lines, polygons, and images if it is enabled.
External documentation.

 Link to this function

 sampleMaski(MaskNumber, Mask)

 View Source

 -spec sampleMaski(MaskNumber :: i(), Mask :: i()) -> ok.

gl:sampleMaski/2 sets one 32-bit sub-word of the multi-word
sample mask, ?GL_SAMPLE_MASK_VALUE.
External documentation.

 Link to this function

 samplerParameterf(Sampler, Pname, Param)

 View Source

 -spec samplerParameterf(Sampler :: i(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to samplerParameteriv/3.

 Link to this function

 samplerParameterfv(Sampler, Pname, Param)

 View Source

 -spec samplerParameterfv(Sampler :: i(), Pname :: enum(), Param :: [f()]) -> ok.

Equivalent to samplerParameteriv/3.

 Link to this function

 samplerParameterIiv(Sampler, Pname, Param)

 View Source

 -spec samplerParameterIiv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

Equivalent to samplerParameteriv/3.

 Link to this function

 samplerParameterIuiv(Sampler, Pname, Param)

 View Source

 -spec samplerParameterIuiv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

Equivalent to samplerParameteriv/3.

 Link to this function

 samplerParameteri(Sampler, Pname, Param)

 View Source

 -spec samplerParameteri(Sampler :: i(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to samplerParameteriv/3.

 Link to this function

 samplerParameteriv(Sampler, Pname, Param)

 View Source

 -spec samplerParameteriv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

gl:samplerParameter() assigns the value or values in
Params to the sampler parameter specified as Pname. Sampler specifies the
sampler object to be modified, and must be the name of a sampler object
previously returned from a call to gl:genSamplers/1. The
following symbols are accepted in Pname:
External documentation.

 Link to this function

 scaled(X, Y, Z)

 View Source

 -spec scaled(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to scalef/3.

 Link to this function

 scalef(X, Y, Z)

 View Source

 -spec scalef(X :: f(), Y :: f(), Z :: f()) -> ok.

gl:scale() produces a nonuniform scaling along the x, y, and
z axes. The three parameters indicate the desired scale factor along each of
the three axes.
External documentation.

 Link to this function

 scissor(X, Y, Width, Height)

 View Source

 -spec scissor(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok.

gl:scissor/4 defines a rectangle, called the scissor box, in
window coordinates. The first two arguments, X and Y, specify the lower left
corner of the box. Width and Height specify the width and height of the box.
External documentation.

 Link to this function

 scissorArrayv(First, V)

 View Source

 -spec scissorArrayv(First :: i(), V :: [{i(), i(), i(), i()}]) -> ok.

gl:scissorArrayv/2 defines rectangles, called scissor
boxes, in window coordinates for each viewport. First specifies the index of
the first scissor box to modify and Count specifies the number of scissor
boxes to modify. First must be less than the value of ?GL_MAX_VIEWPORTS, and
First + Count must be less than or equal to the value of
?GL_MAX_VIEWPORTS. V specifies the address of an array containing integers
specifying the lower left corner of the scissor boxes, and the width and height
of the scissor boxes, in that order.
External documentation.

 Link to this function

 scissorIndexed(Index, Left, Bottom, Width, Height)

 View Source

 -spec scissorIndexed(Index :: i(), Left :: i(), Bottom :: i(), Width :: i(), Height :: i()) -> ok.

Equivalent to scissorIndexedv/2.

 Link to this function

 scissorIndexedv(Index, V)

 View Source

 -spec scissorIndexedv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

gl:scissorIndexed/5 defines the scissor box for a
specified viewport. Index specifies the index of scissor box to modify.
Index must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:scissorIndexed/5, Left, Bottom, Width and
Height specify the left, bottom, width and height of the scissor box, in
pixels, respectively. For gl:scissorIndexedv/2, V
specifies the address of an array containing integers specifying the lower left
corner of the scissor box, and the width and height of the scissor box, in that
order.
External documentation.

 Link to this function

 secondaryColor3b(Red, Green, Blue)

 View Source

 -spec secondaryColor3b(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3bv/1

 View Source

 -spec secondaryColor3bv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3d(Red, Green, Blue)

 View Source

 -spec secondaryColor3d(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3dv/1

 View Source

 -spec secondaryColor3dv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3f(Red, Green, Blue)

 View Source

 -spec secondaryColor3f(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3fv/1

 View Source

 -spec secondaryColor3fv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3i(Red, Green, Blue)

 View Source

 -spec secondaryColor3i(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3iv/1

 View Source

 -spec secondaryColor3iv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3s(Red, Green, Blue)

 View Source

 -spec secondaryColor3s(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3sv/1

 View Source

 -spec secondaryColor3sv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3ub(Red, Green, Blue)

 View Source

 -spec secondaryColor3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3ubv/1

 View Source

 -spec secondaryColor3ubv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3ui(Red, Green, Blue)

 View Source

 -spec secondaryColor3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3uiv/1

 View Source

 -spec secondaryColor3uiv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3us(Red, Green, Blue)

 View Source

 -spec secondaryColor3us(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 Link to this function

 secondaryColor3usv/1

 View Source

 -spec secondaryColor3usv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

The GL stores both a primary four-valued RGBA color and a secondary four-valued
RGBA color (where alpha is always set to 0.0) that is associated with every
vertex.
External documentation.

 Link to this function

 secondaryColorPointer(Size, Type, Stride, Pointer)

 View Source

 -spec secondaryColorPointer(Size :: i(), Type :: enum(), Stride :: i(), Pointer :: offset() | mem()) ->
 ok.

gl:secondaryColorPointer/4 specifies the location
and data format of an array of color components to use when rendering. Size
specifies the number of components per color, and must be 3. Type specifies
the data type of each color component, and Stride specifies the byte stride
from one color to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays.
External documentation.

 Link to this function

 selectBuffer(Size, Buffer)

 View Source

 -spec selectBuffer(Size :: i(), Buffer :: mem()) -> ok.

gl:selectBuffer/2 has two arguments: Buffer is a pointer
to an array of unsigned integers, and Size indicates the size of the array.
Buffer returns values from the name stack (see
gl:initNames/0, gl:loadName/1,
gl:pushName/1) when the rendering mode is ?GL_SELECT (see
gl:renderMode/1). gl:selectBuffer/2
must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is ?GL_SELECT.
External documentation.

 Link to this function

 separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column)

 View Source

 -spec separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Row :: offset() | mem(),
 Column :: offset() | mem().

gl:separableFilter2D/8 builds a two-dimensional
separable convolution filter kernel from two arrays of pixels.
External documentation.

 Link to this function

 shadeModel(Mode)

 View Source

 -spec shadeModel(Mode :: enum()) -> ok.

GL primitives can have either flat or smooth shading. Smooth shading, the
default, causes the computed colors of vertices to be interpolated as the
primitive is rasterized, typically assigning different colors to each resulting
pixel fragment. Flat shading selects the computed color of just one vertex and
assigns it to all the pixel fragments generated by rasterizing a single
primitive. In either case, the computed color of a vertex is the result of
lighting if lighting is enabled, or it is the current color at the time the
vertex was specified if lighting is disabled.
External documentation.

 Link to this function

 shaderBinary(Shaders, Binaryformat, Binary)

 View Source

 -spec shaderBinary(Shaders :: [i()], Binaryformat :: enum(), Binary :: binary()) -> ok.

gl:shaderBinary/3 loads pre-compiled shader binary code
into the Count shader objects whose handles are given in Shaders. Binary
points to Length bytes of binary shader code stored in client memory.
BinaryFormat specifies the format of the pre-compiled code.
External documentation.

 Link to this function

 shaderSource(Shader, String)

 View Source

 -spec shaderSource(Shader :: i(), String :: [unicode:chardata()]) -> ok.

gl:shaderSource/2 sets the source code in Shader to the
source code in the array of strings specified by String. Any source code
previously stored in the shader object is completely replaced. The number of
strings in the array is specified by Count. If Length is ?NULL, each
string is assumed to be null terminated. If Length is a value other than
?NULL, it points to an array containing a string length for each of the
corresponding elements of String. Each element in the Length array may
contain the length of the corresponding string (the null character is not
counted as part of the string length) or a value less than 0 to indicate that
the string is null terminated. The source code strings are not scanned or parsed
at this time; they are simply copied into the specified shader object.
External documentation.

 Link to this function

 shaderStorageBlockBinding(Program, StorageBlockIndex, StorageBlockBinding)

 View Source

 -spec shaderStorageBlockBinding(Program :: i(), StorageBlockIndex :: i(), StorageBlockBinding :: i()) ->
 ok.

gl:shaderStorageBlockBinding/3, changes the
active shader storage block with an assigned index of StorageBlockIndex in
program object Program. StorageBlockIndex must be an active shader storage
block index in Program. StorageBlockBinding must be less than the value of
?GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS. If successful,
gl:shaderStorageBlockBinding/3 specifies that
Program will use the data store of the buffer object bound to the binding
point StorageBlockBinding to read and write the values of the buffer variables
in the shader storage block identified by StorageBlockIndex.
External documentation.

 Link to this function

 stencilFunc(Func, Ref, Mask)

 View Source

 -spec stencilFunc(Func :: enum(), Ref :: i(), Mask :: i()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. Stencil planes are first drawn into using GL drawing primitives, then
geometry and images are rendered using the stencil planes to mask out portions
of the screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 Link to this function

 stencilFuncSeparate(Face, Func, Ref, Mask)

 View Source

 -spec stencilFuncSeparate(Face :: enum(), Func :: enum(), Ref :: i(), Mask :: i()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 Link to this function

 stencilMask(Mask)

 View Source

 -spec stencilMask(Mask :: i()) -> ok.

gl:stencilMask/1 controls the writing of individual bits in
the stencil planes. The least significant n bits of Mask, where n is the
number of bits in the stencil buffer, specify a mask. Where a 1 appears in the
mask, it's possible to write to the corresponding bit in the stencil buffer.
Where a 0 appears, the corresponding bit is write-protected. Initially, all bits
are enabled for writing.
External documentation.

 Link to this function

 stencilMaskSeparate(Face, Mask)

 View Source

 -spec stencilMaskSeparate(Face :: enum(), Mask :: i()) -> ok.

gl:stencilMaskSeparate/2 controls the writing of
individual bits in the stencil planes. The least significant n bits of Mask,
where n is the number of bits in the stencil buffer, specify a mask. Where a 1
appears in the mask, it's possible to write to the corresponding bit in the
stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.
External documentation.

 Link to this function

 stencilOp(Fail, Zfail, Zpass)

 View Source

 -spec stencilOp(Fail :: enum(), Zfail :: enum(), Zpass :: enum()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 Link to this function

 stencilOpSeparate(Face, Sfail, Dpfail, Dppass)

 View Source

 -spec stencilOpSeparate(Face :: enum(), Sfail :: enum(), Dpfail :: enum(), Dppass :: enum()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 Link to this function

 texBuffer(Target, Internalformat, Buffer)

 View Source

 -spec texBuffer(Target :: enum(), Internalformat :: enum(), Buffer :: i()) -> ok.

Equivalent to textureBuffer/3.

 Link to this function

 texBufferRange(Target, Internalformat, Buffer, Offset, Size)

 View Source

 -spec texBufferRange(Target :: enum(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok.

Equivalent to textureBufferRange/5.

 Link to this function

 texCoord1d(S)

 View Source

 -spec texCoord1d(S :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1dv/1

 View Source

 -spec texCoord1dv({S :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1f(S)

 View Source

 -spec texCoord1f(S :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1fv/1

 View Source

 -spec texCoord1fv({S :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1i(S)

 View Source

 -spec texCoord1i(S :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1iv/1

 View Source

 -spec texCoord1iv({S :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1s(S)

 View Source

 -spec texCoord1s(S :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord1sv/1

 View Source

 -spec texCoord1sv({S :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2d(S, T)

 View Source

 -spec texCoord2d(S :: f(), T :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2dv/1

 View Source

 -spec texCoord2dv({S :: f(), T :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2f(S, T)

 View Source

 -spec texCoord2f(S :: f(), T :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2fv/1

 View Source

 -spec texCoord2fv({S :: f(), T :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2i(S, T)

 View Source

 -spec texCoord2i(S :: i(), T :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2iv/1

 View Source

 -spec texCoord2iv({S :: i(), T :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2s(S, T)

 View Source

 -spec texCoord2s(S :: i(), T :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord2sv/1

 View Source

 -spec texCoord2sv({S :: i(), T :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3d(S, T, R)

 View Source

 -spec texCoord3d(S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3dv/1

 View Source

 -spec texCoord3dv({S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3f(S, T, R)

 View Source

 -spec texCoord3f(S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3fv/1

 View Source

 -spec texCoord3fv({S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3i(S, T, R)

 View Source

 -spec texCoord3i(S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3iv/1

 View Source

 -spec texCoord3iv({S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3s(S, T, R)

 View Source

 -spec texCoord3s(S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord3sv/1

 View Source

 -spec texCoord3sv({S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4d(S, T, R, Q)

 View Source

 -spec texCoord4d(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4dv/1

 View Source

 -spec texCoord4dv({S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4f(S, T, R, Q)

 View Source

 -spec texCoord4f(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4fv/1

 View Source

 -spec texCoord4fv({S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4i(S, T, R, Q)

 View Source

 -spec texCoord4i(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4iv/1

 View Source

 -spec texCoord4iv({S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4s(S, T, R, Q)

 View Source

 -spec texCoord4s(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to texCoord4sv/1.

 Link to this function

 texCoord4sv/1

 View Source

 -spec texCoord4sv({S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

gl:texCoord() specifies texture coordinates in one, two,
three, or four dimensions. gl:texCoord1() sets the current
texture coordinates to (s 0 0 1); a call to gl:texCoord2()
sets them to (s t 0 1). Similarly, gl:texCoord3() specifies
the texture coordinates as (s t r 1), and gl:texCoord4()
defines all four components explicitly as (s t r q).
External documentation.

 Link to this function

 texCoordPointer(Size, Type, Stride, Ptr)

 View Source

 -spec texCoordPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:texCoordPointer/4 specifies the location and data
format of an array of texture coordinates to use when rendering. Size
specifies the number of coordinates per texture coordinate set, and must be 1,
2, 3, or 4. Type specifies the data type of each texture coordinate, and
Stride specifies the byte stride from one texture coordinate set to the next,
allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)
External documentation.

 Link to this function

 texEnvf(Target, Pname, Param)

 View Source

 -spec texEnvf(Target :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texEnviv/3.

 Link to this function

 texEnvfv(Target, Pname, Params)

 View Source

 -spec texEnvfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texEnviv/3.

 Link to this function

 texEnvi(Target, Pname, Param)

 View Source

 -spec texEnvi(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texEnviv/3.

 Link to this function

 texEnviv(Target, Pname, Params)

 View Source

 -spec texEnviv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

A texture environment specifies how texture values are interpreted when a
fragment is textured. When Target is ?GL_TEXTURE_FILTER_CONTROL, Pname
must be ?GL_TEXTURE_LOD_BIAS. When Target is ?GL_TEXTURE_ENV, Pname can
be ?GL_TEXTURE_ENV_MODE, ?GL_TEXTURE_ENV_COLOR, ?GL_COMBINE_RGB,
?GL_COMBINE_ALPHA, ?GL_RGB_SCALE, ?GL_ALPHA_SCALE, ?GL_SRC0_RGB,
?GL_SRC1_RGB, ?GL_SRC2_RGB, ?GL_SRC0_ALPHA, ?GL_SRC1_ALPHA, or
?GL_SRC2_ALPHA.
External documentation.

 Link to this function

 texGend(Coord, Pname, Param)

 View Source

 -spec texGend(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texGeniv/3.

 Link to this function

 texGendv(Coord, Pname, Params)

 View Source

 -spec texGendv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texGeniv/3.

 Link to this function

 texGenf(Coord, Pname, Param)

 View Source

 -spec texGenf(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texGeniv/3.

 Link to this function

 texGenfv(Coord, Pname, Params)

 View Source

 -spec texGenfv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texGeniv/3.

 Link to this function

 texGeni(Coord, Pname, Param)

 View Source

 -spec texGeni(Coord :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texGeniv/3.

 Link to this function

 texGeniv(Coord, Pname, Params)

 View Source

 -spec texGeniv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:texGen() selects a texture-coordinate generation function or
supplies coefficients for one of the functions. Coord names one of the (s,
t, r, q) texture coordinates; it must be one of the symbols ?GL_S,
?GL_T, ?GL_R, or ?GL_Q. Pname must be one of three symbolic constants:
?GL_TEXTURE_GEN_MODE, ?GL_OBJECT_PLANE, or ?GL_EYE_PLANE. If Pname is
?GL_TEXTURE_GEN_MODE, then Params chooses a mode, one of
?GL_OBJECT_LINEAR, ?GL_EYE_LINEAR, ?GL_SPHERE_MAP, ?GL_NORMAL_MAP, or
?GL_REFLECTION_MAP. If Pname is either ?GL_OBJECT_PLANE or
?GL_EYE_PLANE, Params contains coefficients for the corresponding texture
generation function.
External documentation.

 Link to this function

 texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels)

 View Source

 -spec texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.
External documentation.

 Link to this function

 texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels)

 View Source

 -spec texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 Link to this function

 texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 View Source

 -spec texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations) -> ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texImage2DMultisample/6 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.
External documentation.

 Link to this function

 texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels)

 View Source

 -spec texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable
three-dimensional texturing, call gl:enable/1 and
gl:disable/1 with argument ?GL_TEXTURE_3D.
External documentation.

 Link to this function

 texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 View Source

 -spec texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texImage3DMultisample/7 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.
External documentation.

 Link to this function

 texParameterf(Target, Pname, Param)

 View Source

 -spec texParameterf(Target :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texParameteriv/3.

 Link to this function

 texParameterfv(Target, Pname, Params)

 View Source

 -spec texParameterfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 Link to this function

 texParameterIiv(Target, Pname, Params)

 View Source

 -spec texParameterIiv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 Link to this function

 texParameterIuiv(Target, Pname, Params)

 View Source

 -spec texParameterIuiv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 Link to this function

 texParameteri(Target, Pname, Param)

 View Source

 -spec texParameteri(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texParameteriv/3.

 Link to this function

 texParameteriv(Target, Pname, Params)

 View Source

 -spec texParameteriv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:texParameter() and
gl:textureParameter() assign the value or values in
Params to the texture parameter specified as Pname. For
gl:texParameter(), Target defines the target texture,
either ?GL_TEXTURE_1D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE,
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY, ?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, or ?GL_TEXTURE_RECTANGLE. The following symbols
are accepted in Pname:
External documentation.

 Link to this function

 texStorage1D(Target, Levels, Internalformat, Width)

 View Source

 -spec texStorage1D(Target :: enum(), Levels :: i(), Internalformat :: enum(), Width :: i()) -> ok.

gl:texStorage1D/4 and
gl:textureStorage1D() specify the storage requirements for
all levels of a one-dimensional texture simultaneously. Once a texture is
specified with this command, the format and dimensions of all levels become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.
External documentation.

 Link to this function

 texStorage2D(Target, Levels, Internalformat, Width, Height)

 View Source

 -spec texStorage2D(Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:texStorage2D/5 and
gl:textureStorage2D() specify the storage requirements for
all levels of a two-dimensional texture or one-dimensional texture array
simultaneously. Once a texture is specified with this command, the format and
dimensions of all levels become immutable unless it is a proxy texture. The
contents of the image may still be modified, however, its storage requirements
may not change. Such a texture is referred to as an immutable-format texture.
External documentation.

 Link to this function

 texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 View Source

 -spec texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texStorage2DMultisample/6 and
gl:textureStorage2DMultisample() specify the
storage requirements for a two-dimensional multisample texture. Once a texture
is specified with this command, its format and dimensions become immutable
unless it is a proxy texture. The contents of the image may still be modified,
however, its storage requirements may not change. Such a texture is referred to
as an immutable-format texture.
External documentation.

 Link to this function

 texStorage3D(Target, Levels, Internalformat, Width, Height, Depth)

 View Source

 -spec texStorage3D(Target, Levels, Internalformat, Width, Height, Depth) -> ok
 when
 Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i().

gl:texStorage3D/6 and
gl:textureStorage3D() specify the storage requirements for
all levels of a three-dimensional, two-dimensional array or cube-map array
texture simultaneously. Once a texture is specified with this command, the
format and dimensions of all levels become immutable unless it is a proxy
texture. The contents of the image may still be modified, however, its storage
requirements may not change. Such a texture is referred to as an
immutable-format texture.
External documentation.

 Link to this function

 texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 View Source

 -spec texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth,
 Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texStorage3DMultisample/7 and
gl:textureStorage3DMultisample() specify the
storage requirements for a two-dimensional multisample array texture. Once a
texture is specified with this command, its format and dimensions become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.
External documentation.

 Link to this function

 texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels)

 View Source

 -spec texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable or disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.
External documentation.

 Link to this function

 texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels)

 View Source

 -spec texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.
External documentation.

 Link to this function

 texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Pixels)

 View Source

 -spec texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type,
 Pixels) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.
External documentation.

 Link to this function

 textureBarrier()

 View Source

 -spec textureBarrier() -> ok.

The values of rendered fragments are undefined when a shader stage fetches
texels and the same texels are written via fragment shader outputs, even if the
reads and writes are not in the same drawing command. To safely read the result
of a written texel via a texel fetch in a subsequent drawing command, call
gl:textureBarrier/0 between the two drawing commands to
guarantee that writes have completed and caches have been invalidated before
subsequent drawing commands are executed.
External documentation.

 Link to this function

 textureBuffer(Texture, Internalformat, Buffer)

 View Source

 -spec textureBuffer(Texture :: i(), Internalformat :: enum(), Buffer :: i()) -> ok.

gl:texBuffer/3 and gl:textureBuffer/3
attaches the data store of a specified buffer object to a specified texture
object, and specify the storage format for the texture image found in the buffer
object. The texture object must be a buffer texture.
External documentation.

 Link to this function

 textureBufferRange(Texture, Internalformat, Buffer, Offset, Size)

 View Source

 -spec textureBufferRange(Texture :: i(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok.

gl:texBufferRange/5 and
gl:textureBufferRange/5 attach a range of the data store
of a specified buffer object to a specified texture object, and specify the
storage format for the texture image found in the buffer object. The texture
object must be a buffer texture.
External documentation.

 Link to this function

 textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer, Numlayers)

 View Source

 -spec textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer,
 Numlayers) ->
 ok
 when
 Texture :: i(),
 Target :: enum(),
 Origtexture :: i(),
 Internalformat :: enum(),
 Minlevel :: i(),
 Numlevels :: i(),
 Minlayer :: i(),
 Numlayers :: i().

gl:textureView/8 initializes a texture object as an alias,
or view of another texture object, sharing some or all of the parent texture's
data store with the initialized texture. Texture specifies a name previously
reserved by a successful call to gl:genTextures/1 but that
has not yet been bound or given a target. Target specifies the target for the
newly initialized texture and must be compatible with the target of the parent
texture, given in Origtexture as specified in the following table:
External documentation.

 Link to this function

 transformFeedbackBufferBase(Xfb, Index, Buffer)

 View Source

 -spec transformFeedbackBufferBase(Xfb :: i(), Index :: i(), Buffer :: i()) -> ok.

gl:transformFeedbackBufferBase/3 binds the
buffer object Buffer to the binding point at index Index of the transform
feedback object Xfb.
External documentation.

 Link to this function

 transformFeedbackBufferRange(Xfb, Index, Buffer, Offset, Size)

 View Source

 -spec transformFeedbackBufferRange(Xfb :: i(), Index :: i(), Buffer :: i(), Offset :: i(), Size :: i()) ->
 ok.

gl:transformFeedbackBufferRange/5 binds a
range of the buffer object Buffer represented by Offset and Size to the
binding point at index Index of the transform feedback object Xfb.
External documentation.

 Link to this function

 transformFeedbackVaryings(Program, Varyings, BufferMode)

 View Source

 -spec transformFeedbackVaryings(Program :: i(), Varyings :: [unicode:chardata()], BufferMode :: enum()) ->
 ok.

The names of the vertex or geometry shader outputs to be recorded in transform
feedback mode are specified using
gl:transformFeedbackVaryings/3. When a
geometry shader is active, transform feedback records the values of selected
geometry shader output variables from the emitted vertices. Otherwise, the
values of the selected vertex shader outputs are recorded.
External documentation.

 Link to this function

 translated(X, Y, Z)

 View Source

 -spec translated(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to translatef/3.

 Link to this function

 translatef(X, Y, Z)

 View Source

 -spec translatef(X :: f(), Y :: f(), Z :: f()) -> ok.

gl:translate() produces a translation by (x y z). The
current matrix (see gl:matrixMode/1) is multiplied by this
translation matrix, with the product replacing the current matrix, as if
gl:multMatrix() were called with the following matrix for
its argument:
External documentation.

 Link to this function

 uniform1d(Location, X)

 View Source

 -spec uniform1d(Location :: i(), X :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1dv(Location, Value)

 View Source

 -spec uniform1dv(Location :: i(), Value :: [f()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1f(Location, V0)

 View Source

 -spec uniform1f(Location :: i(), V0 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1fv(Location, Value)

 View Source

 -spec uniform1fv(Location :: i(), Value :: [f()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1i(Location, V0)

 View Source

 -spec uniform1i(Location :: i(), V0 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1iv(Location, Value)

 View Source

 -spec uniform1iv(Location :: i(), Value :: [i()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1ui(Location, V0)

 View Source

 -spec uniform1ui(Location :: i(), V0 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform1uiv(Location, Value)

 View Source

 -spec uniform1uiv(Location :: i(), Value :: [i()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2d(Location, X, Y)

 View Source

 -spec uniform2d(Location :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2dv(Location, Value)

 View Source

 -spec uniform2dv(Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2f(Location, V0, V1)

 View Source

 -spec uniform2f(Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2fv(Location, Value)

 View Source

 -spec uniform2fv(Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2i(Location, V0, V1)

 View Source

 -spec uniform2i(Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2iv(Location, Value)

 View Source

 -spec uniform2iv(Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2ui(Location, V0, V1)

 View Source

 -spec uniform2ui(Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform2uiv(Location, Value)

 View Source

 -spec uniform2uiv(Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3d(Location, X, Y, Z)

 View Source

 -spec uniform3d(Location :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3dv(Location, Value)

 View Source

 -spec uniform3dv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3f(Location, V0, V1, V2)

 View Source

 -spec uniform3f(Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3fv(Location, Value)

 View Source

 -spec uniform3fv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3i(Location, V0, V1, V2)

 View Source

 -spec uniform3i(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3iv(Location, Value)

 View Source

 -spec uniform3iv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3ui(Location, V0, V1, V2)

 View Source

 -spec uniform3ui(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform3uiv(Location, Value)

 View Source

 -spec uniform3uiv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4d(Location, X, Y, Z, W)

 View Source

 -spec uniform4d(Location :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4dv(Location, Value)

 View Source

 -spec uniform4dv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4f(Location, V0, V1, V2, V3)

 View Source

 -spec uniform4f(Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4fv(Location, Value)

 View Source

 -spec uniform4fv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4i(Location, V0, V1, V2, V3)

 View Source

 -spec uniform4i(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4iv(Location, Value)

 View Source

 -spec uniform4iv(Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4ui(Location, V0, V1, V2, V3)

 View Source

 -spec uniform4ui(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniform4uiv(Location, Value)

 View Source

 -spec uniform4uiv(Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformBlockBinding(Program, UniformBlockIndex, UniformBlockBinding)

 View Source

 -spec uniformBlockBinding(Program :: i(), UniformBlockIndex :: i(), UniformBlockBinding :: i()) -> ok.

Binding points for active uniform blocks are assigned using
gl:uniformBlockBinding/3. Each of a program's
active uniform blocks has a corresponding uniform buffer binding point.
Program is the name of a program object for which the command
gl:linkProgram/1 has been issued in the past.
External documentation.

 Link to this function

 uniformMatrix2dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix2fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix2x3dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2x3dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix2x3fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2x3fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix2x4dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2x4dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix2x4fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix2x4fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3x2dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3x2dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3x2fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3x2fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3x4dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3x4dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix3x4fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix3x4fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4x2dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4x2dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4x2fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4x2fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4x3dv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4x3dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 Link to this function

 uniformMatrix4x3fv(Location, Transpose, Value)

 View Source

 -spec uniformMatrix4x3fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

gl:uniform() modifies the value of a uniform variable or a
uniform variable array. The location of the uniform variable to be modified is
specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:uniform() operates on the program object that was made
part of current state by calling gl:useProgram/1.
External documentation.

 Link to this function

 uniformSubroutinesuiv(Shadertype, Indices)

 View Source

 -spec uniformSubroutinesuiv(Shadertype :: enum(), Indices :: [i()]) -> ok.

gl:uniformSubroutines() loads all active
subroutine uniforms for shader stage Shadertype of the current program with
subroutine indices from Indices, storing Indices[i] into the uniform at
location I. Count must be equal to the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program currently in use at
shader stage Shadertype. Furthermore, all values in Indices must be less
than the value of ?GL_ACTIVE_SUBROUTINES for the shader stage.
External documentation.

 Link to this function

 useProgram(Program)

 View Source

 -spec useProgram(Program :: i()) -> ok.

gl:useProgram/1 installs the program object specified by
Program as part of current rendering state. One or more executables are
created in a program object by successfully attaching shader objects to it with
gl:attachShader/2, successfully compiling the shader
objects with gl:compileShader/1, and successfully linking
the program object with gl:linkProgram/1.
External documentation.

 Link to this function

 useProgramStages(Pipeline, Stages, Program)

 View Source

 -spec useProgramStages(Pipeline :: i(), Stages :: i(), Program :: i()) -> ok.

gl:useProgramStages/3 binds executables from a program
object associated with a specified set of shader stages to the program pipeline
object given by Pipeline. Pipeline specifies the program pipeline object to
which to bind the executables. Stages contains a logical combination of bits
indicating the shader stages to use within Program with the program pipeline
object Pipeline. Stages must be a logical combination of
?GL_VERTEX_SHADER_BIT, ?GL_TESS_CONTROL_SHADER_BIT,
?GL_TESS_EVALUATION_SHADER_BIT, ?GL_GEOMETRY_SHADER_BIT,
?GL_FRAGMENT_SHADER_BIT and ?GL_COMPUTE_SHADER_BIT. Additionally, the
special value ?GL_ALL_SHADER_BITS may be specified to indicate that all
executables contained in Program should be installed in Pipeline.
External documentation.

 Link to this function

 validateProgram(Program)

 View Source

 -spec validateProgram(Program :: i()) -> ok.

gl:validateProgram/1 checks to see whether the
executables contained in Program can execute given the current OpenGL state.
The information generated by the validation process will be stored in
Program's information log. The validation information may consist of an empty
string, or it may be a string containing information about how the current
program object interacts with the rest of current OpenGL state. This provides a
way for OpenGL implementers to convey more information about why the current
program is inefficient, suboptimal, failing to execute, and so on.
External documentation.

 Link to this function

 validateProgramPipeline(Pipeline)

 View Source

 -spec validateProgramPipeline(Pipeline :: i()) -> ok.

gl:validateProgramPipeline/1 instructs the
implementation to validate the shader executables contained in Pipeline
against the current GL state. The implementation may use this as an opportunity
to perform any internal shader modifications that may be required to ensure
correct operation of the installed shaders given the current GL state.
External documentation.

 Link to this function

 vertex2d(X, Y)

 View Source

 -spec vertex2d(X :: f(), Y :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2dv/1

 View Source

 -spec vertex2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2f(X, Y)

 View Source

 -spec vertex2f(X :: f(), Y :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2fv/1

 View Source

 -spec vertex2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2i(X, Y)

 View Source

 -spec vertex2i(X :: i(), Y :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2iv/1

 View Source

 -spec vertex2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2s(X, Y)

 View Source

 -spec vertex2s(X :: i(), Y :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex2sv/1

 View Source

 -spec vertex2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3d(X, Y, Z)

 View Source

 -spec vertex3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3dv/1

 View Source

 -spec vertex3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3f(X, Y, Z)

 View Source

 -spec vertex3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3fv/1

 View Source

 -spec vertex3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3i(X, Y, Z)

 View Source

 -spec vertex3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3iv/1

 View Source

 -spec vertex3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3s(X, Y, Z)

 View Source

 -spec vertex3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex3sv/1

 View Source

 -spec vertex3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4d(X, Y, Z, W)

 View Source

 -spec vertex4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4dv/1

 View Source

 -spec vertex4dv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4f(X, Y, Z, W)

 View Source

 -spec vertex4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4fv/1

 View Source

 -spec vertex4fv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4i(X, Y, Z, W)

 View Source

 -spec vertex4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4iv/1

 View Source

 -spec vertex4iv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4s(X, Y, Z, W)

 View Source

 -spec vertex4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertex4sv/1.

 Link to this function

 vertex4sv/1

 View Source

 -spec vertex4sv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

gl:vertex() commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
point, line, and polygon vertices. The current color, normal, texture
coordinates, and fog coordinate are associated with the vertex when
gl:vertex() is called.
External documentation.

 Link to this function

 vertexArrayAttribBinding(Vaobj, Attribindex, Bindingindex)

 View Source

 -spec vertexArrayAttribBinding(Vaobj :: i(), Attribindex :: i(), Bindingindex :: i()) -> ok.

Equivalent to vertexAttribBinding/2.

 Link to this function

 vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset)

 View Source

 -spec vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset) -> ok
 when
 Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Relativeoffset :: i().

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexArrayAttribIFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 View Source

 -spec vertexArrayAttribIFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexArrayAttribLFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 View Source

 -spec vertexArrayAttribLFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexArrayBindingDivisor(Vaobj, Bindingindex, Divisor)

 View Source

 -spec vertexArrayBindingDivisor(Vaobj :: i(), Bindingindex :: i(), Divisor :: i()) -> ok.

Equivalent to vertexBindingDivisor/2.

 Link to this function

 vertexArrayElementBuffer(Vaobj, Buffer)

 View Source

 -spec vertexArrayElementBuffer(Vaobj :: i(), Buffer :: i()) -> ok.

gl:vertexArrayElementBuffer/2 binds a buffer
object with id Buffer to the element array buffer bind point of a vertex array
object with id Vaobj. If Buffer is zero, any existing element array buffer
binding to Vaobj is removed.
External documentation.

 Link to this function

 vertexArrayVertexBuffer(Vaobj, Bindingindex, Buffer, Offset, Stride)

 View Source

 -spec vertexArrayVertexBuffer(Vaobj :: i(),
 Bindingindex :: i(),
 Buffer :: i(),
 Offset :: i(),
 Stride :: i()) ->
 ok.

gl:bindVertexBuffer/4 and
gl:vertexArrayVertexBuffer/5 bind the buffer named
Buffer to the vertex buffer binding point whose index is given by
Bindingindex. gl:bindVertexBuffer/4 modifies the
binding of the currently bound vertex array object, whereas
gl:vertexArrayVertexBuffer/5 allows the caller to
specify ID of the vertex array object with an argument named Vaobj, for which
the binding should be modified. Offset and Stride specify the offset of the
first element within the buffer and the distance between elements within the
buffer, respectively, and are both measured in basic machine units.
Bindingindex must be less than the value of ?GL_MAX_VERTEX_ATTRIB_BINDINGS.
Offset and Stride must be greater than or equal to zero. If Buffer is
zero, then any buffer currently bound to the specified binding point is unbound.
External documentation.

 Link to this function

 vertexArrayVertexBuffers(Vaobj, First, Buffers, Offsets, Strides)

 View Source

 -spec vertexArrayVertexBuffers(Vaobj :: i(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Strides :: [i()]) ->
 ok.

gl:bindVertexBuffers/4 and
gl:vertexArrayVertexBuffers/5 bind storage from an
array of existing buffer objects to a specified number of consecutive vertex
buffer binding points units in a vertex array object. For
gl:bindVertexBuffers/4, the vertex array object is
the currently bound vertex array object. For
gl:vertexArrayVertexBuffers/5, Vaobj is the name of
the vertex array object.
External documentation.

 Link to this function

 vertexAttrib1d(Index, X)

 View Source

 -spec vertexAttrib1d(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib1dv/2

 View Source

 -spec vertexAttrib1dv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib1f(Index, X)

 View Source

 -spec vertexAttrib1f(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib1fv/2

 View Source

 -spec vertexAttrib1fv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib1s(Index, X)

 View Source

 -spec vertexAttrib1s(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib1sv/2

 View Source

 -spec vertexAttrib1sv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2d(Index, X, Y)

 View Source

 -spec vertexAttrib2d(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2dv/2

 View Source

 -spec vertexAttrib2dv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2f(Index, X, Y)

 View Source

 -spec vertexAttrib2f(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2fv/2

 View Source

 -spec vertexAttrib2fv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2s(Index, X, Y)

 View Source

 -spec vertexAttrib2s(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib2sv/2

 View Source

 -spec vertexAttrib2sv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3d(Index, X, Y, Z)

 View Source

 -spec vertexAttrib3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3dv/2

 View Source

 -spec vertexAttrib3dv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3f(Index, X, Y, Z)

 View Source

 -spec vertexAttrib3f(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3fv/2

 View Source

 -spec vertexAttrib3fv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3s(Index, X, Y, Z)

 View Source

 -spec vertexAttrib3s(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib3sv/2

 View Source

 -spec vertexAttrib3sv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4bv(Index, V)

 View Source

 -spec vertexAttrib4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4d(Index, X, Y, Z, W)

 View Source

 -spec vertexAttrib4d(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4dv/2

 View Source

 -spec vertexAttrib4dv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4f(Index, X, Y, Z, W)

 View Source

 -spec vertexAttrib4f(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4fv/2

 View Source

 -spec vertexAttrib4fv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4iv(Index, V)

 View Source

 -spec vertexAttrib4iv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nbv(Index, V)

 View Source

 -spec vertexAttrib4Nbv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Niv(Index, V)

 View Source

 -spec vertexAttrib4Niv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nsv(Index, V)

 View Source

 -spec vertexAttrib4Nsv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nub(Index, X, Y, Z, W)

 View Source

 -spec vertexAttrib4Nub(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nubv/2

 View Source

 -spec vertexAttrib4Nubv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nuiv(Index, V)

 View Source

 -spec vertexAttrib4Nuiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4Nusv(Index, V)

 View Source

 -spec vertexAttrib4Nusv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4s(Index, X, Y, Z, W)

 View Source

 -spec vertexAttrib4s(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4sv/2

 View Source

 -spec vertexAttrib4sv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4ubv(Index, V)

 View Source

 -spec vertexAttrib4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4uiv(Index, V)

 View Source

 -spec vertexAttrib4uiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttrib4usv(Index, V)

 View Source

 -spec vertexAttrib4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribBinding(Attribindex, Bindingindex)

 View Source

 -spec vertexAttribBinding(Attribindex :: i(), Bindingindex :: i()) -> ok.

gl:vertexAttribBinding/2 and
gl:vertexArrayAttribBinding/3 establishes an
association between the generic vertex attribute of a vertex array object whose
index is given by Attribindex, and a vertex buffer binding whose index is
given by Bindingindex. For
gl:vertexAttribBinding/2, the vertex array object
affected is that currently bound. For
gl:vertexArrayAttribBinding/3, Vaobj is the name
of the vertex array object.
External documentation.

 Link to this function

 vertexAttribDivisor(Index, Divisor)

 View Source

 -spec vertexAttribDivisor(Index :: i(), Divisor :: i()) -> ok.

gl:vertexAttribDivisor/2 modifies the rate at which
generic vertex attributes advance when rendering multiple instances of
primitives in a single draw call. If Divisor is zero, the attribute at slot
Index advances once per vertex. If Divisor is non-zero, the attribute
advances once per Divisor instances of the set(s) of vertices being rendered.
An attribute is referred to as instanced if its
?GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.
External documentation.

 Link to this function

 vertexAttribFormat(Attribindex, Size, Type, Normalized, Relativeoffset)

 View Source

 -spec vertexAttribFormat(Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexAttribI1i(Index, X)

 View Source

 -spec vertexAttribI1i(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI1iv/2

 View Source

 -spec vertexAttribI1iv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI1ui(Index, X)

 View Source

 -spec vertexAttribI1ui(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI1uiv/2

 View Source

 -spec vertexAttribI1uiv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI2i(Index, X, Y)

 View Source

 -spec vertexAttribI2i(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI2iv/2

 View Source

 -spec vertexAttribI2iv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI2ui(Index, X, Y)

 View Source

 -spec vertexAttribI2ui(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI2uiv/2

 View Source

 -spec vertexAttribI2uiv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI3i(Index, X, Y, Z)

 View Source

 -spec vertexAttribI3i(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI3iv/2

 View Source

 -spec vertexAttribI3iv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI3ui(Index, X, Y, Z)

 View Source

 -spec vertexAttribI3ui(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI3uiv/2

 View Source

 -spec vertexAttribI3uiv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4bv(Index, V)

 View Source

 -spec vertexAttribI4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4i(Index, X, Y, Z, W)

 View Source

 -spec vertexAttribI4i(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4iv/2

 View Source

 -spec vertexAttribI4iv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4sv(Index, V)

 View Source

 -spec vertexAttribI4sv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4ubv(Index, V)

 View Source

 -spec vertexAttribI4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4ui(Index, X, Y, Z, W)

 View Source

 -spec vertexAttribI4ui(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4uiv/2

 View Source

 -spec vertexAttribI4uiv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribI4usv(Index, V)

 View Source

 -spec vertexAttribI4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribIFormat(Attribindex, Size, Type, Relativeoffset)

 View Source

 -spec vertexAttribIFormat(Attribindex :: i(), Size :: i(), Type :: enum(), Relativeoffset :: i()) -> ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexAttribIPointer(Index, Size, Type, Stride, Pointer)

 View Source

 -spec vertexAttribIPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexAttribL1d(Index, X)

 View Source

 -spec vertexAttribL1d(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL1dv/2

 View Source

 -spec vertexAttribL1dv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL2d(Index, X, Y)

 View Source

 -spec vertexAttribL2d(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL2dv/2

 View Source

 -spec vertexAttribL2dv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL3d(Index, X, Y, Z)

 View Source

 -spec vertexAttribL3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL3dv/2

 View Source

 -spec vertexAttribL3dv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL4d(Index, X, Y, Z, W)

 View Source

 -spec vertexAttribL4d(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 Link to this function

 vertexAttribL4dv/2

 View Source

 -spec vertexAttribL4dv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

The gl:vertexAttrib() family of entry points allows an
application to pass generic vertex attributes in numbered locations.
External documentation.

 Link to this function

 vertexAttribLFormat(Attribindex, Size, Type, Relativeoffset)

 View Source

 -spec vertexAttribLFormat(Attribindex :: i(), Size :: i(), Type :: enum(), Relativeoffset :: i()) -> ok.

Equivalent to vertexAttribLPointer/5.

 Link to this function

 vertexAttribLPointer(Index, Size, Type, Stride, Pointer)

 View Source

 -spec vertexAttribLPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok.

gl:vertexAttribFormat/5,
gl:vertexAttribIFormat/4 and
gl:vertexAttribLFormat/4, as well as
gl:vertexArrayAttribFormat/6,
gl:vertexArrayAttribIFormat/5 and
gl:vertexArrayAttribLFormat/5 specify the
organization of data in vertex arrays. The first three calls operate on the
bound vertex array object, whereas the last three ones modify the state of a
vertex array object with ID Vaobj. Attribindex specifies the index of the
generic vertex attribute array whose data layout is being described, and must be
less than the value of ?GL_MAX_VERTEX_ATTRIBS.
External documentation.

 Link to this function

 vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer)

 View Source

 -spec vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer) -> ok
 when
 Index :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Stride :: i(),
 Pointer :: offset() | mem().

gl:vertexAttribPointer/6,
gl:vertexAttribIPointer/5 and
gl:vertexAttribLPointer/5 specify the location and
data format of the array of generic vertex attributes at index Index to use
when rendering. Size specifies the number of components per attribute and must
be 1, 2, 3, 4, or ?GL_BGRA. Type specifies the data type of each component,
and Stride specifies the byte stride from one attribute to the next, allowing
vertices and attributes to be packed into a single array or stored in separate
arrays.
External documentation.

 Link to this function

 vertexBindingDivisor(Bindingindex, Divisor)

 View Source

 -spec vertexBindingDivisor(Bindingindex :: i(), Divisor :: i()) -> ok.

gl:vertexBindingDivisor/2 and
gl:vertexArrayBindingDivisor/3 modify the rate at
which generic vertex attributes advance when rendering multiple instances of
primitives in a single draw command. If Divisor is zero, the attributes using
the buffer bound to Bindingindex advance once per vertex. If Divisor is
non-zero, the attributes advance once per Divisor instances of the set(s) of
vertices being rendered. An attribute is referred to as instanced if the
corresponding Divisor value is non-zero.
External documentation.

 Link to this function

 vertexPointer(Size, Type, Stride, Ptr)

 View Source

 -spec vertexPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:vertexPointer/4 specifies the location and data format
of an array of vertex coordinates to use when rendering. Size specifies the
number of coordinates per vertex, and must be 2, 3, or 4. Type specifies the
data type of each coordinate, and Stride specifies the byte stride from one
vertex to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)
External documentation.

 Link to this function

 viewport(X, Y, Width, Height)

 View Source

 -spec viewport(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok.

gl:viewport/4 specifies the affine transformation of x and y
from normalized device coordinates to window coordinates. Let (x nd y nd) be
normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows:
External documentation.

 Link to this function

 viewportArrayv(First, V)

 View Source

 -spec viewportArrayv(First :: i(), V :: [{f(), f(), f(), f()}]) -> ok.

gl:viewportArrayv/2 specifies the parameters for
multiple viewports simulataneously. First specifies the index of the first
viewport to modify and Count specifies the number of viewports to modify.
First must be less than the value of ?GL_MAX_VIEWPORTS, and First +
Count must be less than or equal to the value of ?GL_MAX_VIEWPORTS.
Viewports whose indices lie outside the range [First, First + Count) are
not modified. V contains the address of an array of floating point values
specifying the left (x), bottom (y), width (w), and height (h) of each
viewport, in that order. x and y give the location of the viewport's lower left
corner, and w and h give the width and height of the viewport, respectively. The
viewport specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (x nd y nd) be normalized device
coordinates. Then the window coordinates (x w y w) are computed as follows:
External documentation.

 Link to this function

 viewportIndexedf(Index, X, Y, W, H)

 View Source

 -spec viewportIndexedf(Index :: i(), X :: f(), Y :: f(), W :: f(), H :: f()) -> ok.

Equivalent to viewportIndexedfv/2.

 Link to this function

 viewportIndexedfv(Index, V)

 View Source

 -spec viewportIndexedfv(Index :: i(), V :: {f(), f(), f(), f()}) -> ok.

gl:viewportIndexedf/5 and
gl:viewportIndexedfv/2 specify the parameters for a
single viewport. Index specifies the index of the viewport to modify. Index
must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:viewportIndexedf/5, X, Y, W, and H specify
the left, bottom, width and height of the viewport in pixels, respectively. For
gl:viewportIndexedfv/2, V contains the address of an
array of floating point values specifying the left (x), bottom (y), width (
w), and height (h) of each viewport, in that order. x and y give the location
of the viewport's lower left corner, and w and h give the width and height of
the viewport, respectively. The viewport specifies the affine transformation of
x and y from normalized device coordinates to window coordinates. Let (x nd y
nd) be normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows:
External documentation.

 Link to this function

 waitSync(Sync, Flags, Timeout)

 View Source

 -spec waitSync(Sync :: i(), Flags :: i(), Timeout :: i()) -> ok.

gl:waitSync/3 causes the GL server to block and wait until
Sync becomes signaled. Sync is the name of an existing sync object upon
which to wait. Flags and Timeout are currently not used and must be set to
zero and the special value ?GL_TIMEOUT_IGNORED, respectively
Flags and Timeout are placeholders for anticipated future extensions of sync
object capabilities. They must have these reserved values in order that existing
code calling gl:waitSync/3 operate properly in the presence of
such extensions.
External documentation.

 Link to this function

 windowPos2d(X, Y)

 View Source

 -spec windowPos2d(X :: f(), Y :: f()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2dv/1

 View Source

 -spec windowPos2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2f(X, Y)

 View Source

 -spec windowPos2f(X :: f(), Y :: f()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2fv/1

 View Source

 -spec windowPos2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2i(X, Y)

 View Source

 -spec windowPos2i(X :: i(), Y :: i()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2iv/1

 View Source

 -spec windowPos2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2s(X, Y)

 View Source

 -spec windowPos2s(X :: i(), Y :: i()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos2sv/1

 View Source

 -spec windowPos2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3d(X, Y, Z)

 View Source

 -spec windowPos3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3dv/1

 View Source

 -spec windowPos3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3f(X, Y, Z)

 View Source

 -spec windowPos3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3fv/1

 View Source

 -spec windowPos3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3i(X, Y, Z)

 View Source

 -spec windowPos3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3iv/1

 View Source

 -spec windowPos3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3s(X, Y, Z)

 View Source

 -spec windowPos3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to windowPos3sv/1.

 Link to this function

 windowPos3sv/1

 View Source

 -spec windowPos3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.
External documentation.

glu

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 enum()

 f()

 i()

 m12()

 m16()

 matrix()

 mem()

 vertex()

 Functions

 build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data)

 glu:build1DMipmapLevels/9 builds a subset of
prefiltered one-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data)

 glu:build1DMipmaps/6 builds a series of prefiltered
one-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture mapped primitives.

 build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data)

 glu:build2DMipmapLevels/10 builds a subset of
prefiltered two-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data)

 glu:build2DMipmaps/7 builds a series of prefiltered
two-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture-mapped primitives.

 build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max, Data)

 glu:build3DMipmapLevels/11 builds a subset of
prefiltered three-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data)

 glu:build3DMipmaps/8 builds a series of prefiltered
three-dimensional texture maps of decreasing resolutions called a mipmap. This
is used for the antialiasing of texture-mapped primitives.

 checkExtension(ExtName, ExtString)

 glu:checkExtension/2 returns ?GLU_TRUE if ExtName is
supported otherwise ?GLU_FALSE is returned.

 cylinder(Quad, Base, Top, Height, Slices, Stacks)

 glu:cylinder/6 draws a cylinder oriented along the z axis.
The base of the cylinder is placed at z = 0 and the top at z=height. Like a
sphere, a cylinder is subdivided around the z axis into slices and along the
z axis into stacks.

 deleteQuadric(Quad)

 glu:deleteQuadric/1 destroys the quadrics object (created
with glu:newQuadric/0) and frees any memory it uses. Once
glu:deleteQuadric/1 has been called, Quad cannot be
used again.

 disk(Quad, Inner, Outer, Slices, Loops)

 glu:disk/5 renders a disk on the z = 0 plane. The disk has a
radius of Outer and contains a concentric circular hole with a radius of
Inner. If Inner is 0, then no hole is generated. The disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis
into rings (as specified by Slices and Loops, respectively).

 errorString(Error)

 glu:errorString/1 produces an error string from a GL or GLU
error code. The string is in ISO Latin 1 format. For example,
glu:errorString/1(?GLU_OUT_OF_MEMORY) returns the string
out of memory.

 getString(Name)

 glu:getString/1 returns a pointer to a static string
describing the GLU version or the GLU extensions that are supported.

 lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ)

 glu:lookAt/9 creates a viewing matrix derived from an eye point,
a reference point indicating the center of the scene, and an UP vector.

 newQuadric()

 glu:newQuadric/0 creates and returns a pointer to a new
quadrics object. This object must be referred to when calling quadrics rendering
and control functions. A return value of 0 means that there is not enough memory
to allocate the object.

 ortho2D(Left, Right, Bottom, Top)

 glu:ortho2D/4 sets up a two-dimensional orthographic viewing
region. This is equivalent to calling gl:ortho/6 with near=-1 and far=1.

 partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep)

 glu:partialDisk/7 renders a partial disk on the z=0 plane.
A partial disk is similar to a full disk, except that only the subset of the
disk from Start through Start + Sweep is included (where 0 degrees is
along the +f2yf axis, 90 degrees along the +x axis, 180 degrees along the -y
axis, and 270 degrees along the -x axis).

 perspective(Fovy, Aspect, ZNear, ZFar)

 glu:perspective/4 specifies a viewing frustum into the
world coordinate system. In general, the aspect ratio in
glu:perspective/4 should match the aspect ratio of the
associated viewport. For example, aspect=2.0 means the viewer's angle of view is
twice as wide in x as it is in y. If the viewport is twice as wide as it is
tall, it displays the image without distortion.

 pickMatrix(X, Y, DelX, DelY, Viewport)

 glu:pickMatrix/5 creates a projection matrix that can be
used to restrict drawing to a small region of the viewport. This is typically
useful to determine what objects are being drawn near the cursor. Use
glu:pickMatrix/5 to restrict drawing to a small region
around the cursor. Then, enter selection mode (with gl:renderMode/1) and
rerender the scene. All primitives that would have been drawn near the cursor
are identified and stored in the selection buffer.

 project(ObjX, ObjY, ObjZ, Model, Proj, View)

 glu:project/6 transforms the specified object coordinates into
window coordinates using Model, Proj, and View. The result is stored in
WinX, WinY, and WinZ. A return value of ?GLU_TRUE indicates success, a
return value of ?GLU_FALSE indicates failure.

 quadricDrawStyle(Quad, Draw)

 glu:quadricDrawStyle/2 specifies the draw style for
quadrics rendered with Quad. The legal values are as follows

 quadricNormals(Quad, Normal)

 glu:quadricNormals/2 specifies what kind of normals are
desired for quadrics rendered with Quad. The legal values are as follows

 quadricOrientation(Quad, Orientation)

 glu:quadricOrientation/2 specifies what kind of
orientation is desired for quadrics rendered with Quad. The Orientation
values are as follows

 quadricTexture(Quad, Texture)

 glu:quadricTexture/2 specifies if texture coordinates
should be generated for quadrics rendered with Quad. If the value of Texture
is ?GLU_TRUE, then texture coordinates are generated, and if Texture is
?GLU_FALSE, they are not. The initial value is ?GLU_FALSE.

 scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut)

 glu:scaleImage/9 scales a pixel image using the appropriate
pixel store modes to unpack data from the source image and pack data into the
destination image.

 sphere(Quad, Radius, Slices, Stacks)

 glu:sphere/4 draws a sphere of the given radius centered around
the origin. The sphere is subdivided around the z axis into slices and along
the z axis into stacks (similar to lines of longitude and latitude).

 tesselate(Normal, Vs)

 Triangulates a polygon, the polygon is specified by a Normal and Vs a list
of vertex positions.

 unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal)

 glu:unProject/6 maps the specified window coordinates into
object coordinates using Model, Proj, and View. The result is stored in
ObjX, ObjY, and ObjZ. A return value of ?GLU_TRUE indicates success; a
return value of ?GLU_FALSE indicates failure.

 unProject(WinX, WinY, WinZ, Model, Proj, View)

 Equivalent to unProject4/9.

 Types

 Link to this type

 enum()

 View Source

 (not exported)

 -type enum() :: non_neg_integer().

 Link to this type

 f()

 View Source

 (not exported)

 -type f() :: float().

 Link to this type

 i()

 View Source

 (not exported)

 -type i() :: integer().

 Link to this type

 m12()

 View Source

 (not exported)

 -type m12() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 Link to this type

 m16()

 View Source

 (not exported)

 -type m16() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 Link to this type

 matrix()

 View Source

 (not exported)

 -type matrix() :: m12() | m16().

 Link to this type

 mem()

 View Source

 (not exported)

 -type mem() :: binary() | tuple().

 Link to this type

 vertex()

 View Source

 (not exported)

 -type vertex() :: {float(), float(), float()}.

 Functions

 Link to this function

 build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data)

 View Source

 -spec build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build1DMipmapLevels/9 builds a subset of
prefiltered one-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 Link to this function

 build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data)

 View Source

 -spec build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build1DMipmaps/6 builds a series of prefiltered
one-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture mapped primitives.
External documentation.

 Link to this function

 build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data)

 View Source

 -spec build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data) ->
 i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build2DMipmapLevels/10 builds a subset of
prefiltered two-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 Link to this function

 build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data)

 View Source

 -spec build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build2DMipmaps/7 builds a series of prefiltered
two-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture-mapped primitives.
External documentation.

 Link to this function

 build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max, Data)

 View Source

 -spec build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max,
 Data) ->
 i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build3DMipmapLevels/11 builds a subset of
prefiltered three-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 Link to this function

 build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data)

 View Source

 -spec build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build3DMipmaps/8 builds a series of prefiltered
three-dimensional texture maps of decreasing resolutions called a mipmap. This
is used for the antialiasing of texture-mapped primitives.
External documentation.

 Link to this function

 checkExtension(ExtName, ExtString)

 View Source

 -spec checkExtension(ExtName :: string(), ExtString :: string()) -> 0 | 1.

glu:checkExtension/2 returns ?GLU_TRUE if ExtName is
supported otherwise ?GLU_FALSE is returned.
External documentation.

 Link to this function

 cylinder(Quad, Base, Top, Height, Slices, Stacks)

 View Source

 -spec cylinder(Quad :: i(), Base :: f(), Top :: f(), Height :: f(), Slices :: i(), Stacks :: i()) -> ok.

glu:cylinder/6 draws a cylinder oriented along the z axis.
The base of the cylinder is placed at z = 0 and the top at z=height. Like a
sphere, a cylinder is subdivided around the z axis into slices and along the
z axis into stacks.
External documentation.

 Link to this function

 deleteQuadric(Quad)

 View Source

 -spec deleteQuadric(Quad :: i()) -> ok.

glu:deleteQuadric/1 destroys the quadrics object (created
with glu:newQuadric/0) and frees any memory it uses. Once
glu:deleteQuadric/1 has been called, Quad cannot be
used again.
External documentation.

 Link to this function

 disk(Quad, Inner, Outer, Slices, Loops)

 View Source

 -spec disk(Quad :: i(), Inner :: f(), Outer :: f(), Slices :: i(), Loops :: i()) -> ok.

glu:disk/5 renders a disk on the z = 0 plane. The disk has a
radius of Outer and contains a concentric circular hole with a radius of
Inner. If Inner is 0, then no hole is generated. The disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis
into rings (as specified by Slices and Loops, respectively).
External documentation.

 Link to this function

 errorString(Error)

 View Source

 -spec errorString(Error :: enum()) -> string().

glu:errorString/1 produces an error string from a GL or GLU
error code. The string is in ISO Latin 1 format. For example,
glu:errorString/1(?GLU_OUT_OF_MEMORY) returns the string
out of memory.
External documentation.

 Link to this function

 getString(Name)

 View Source

 -spec getString(Name :: enum()) -> string().

glu:getString/1 returns a pointer to a static string
describing the GLU version or the GLU extensions that are supported.
External documentation.

 Link to this function

 lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ)

 View Source

 -spec lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ) -> ok
 when
 EyeX :: f(),
 EyeY :: f(),
 EyeZ :: f(),
 CenterX :: f(),
 CenterY :: f(),
 CenterZ :: f(),
 UpX :: f(),
 UpY :: f(),
 UpZ :: f().

glu:lookAt/9 creates a viewing matrix derived from an eye point,
a reference point indicating the center of the scene, and an UP vector.
External documentation.

 Link to this function

 newQuadric()

 View Source

 -spec newQuadric() -> i().

glu:newQuadric/0 creates and returns a pointer to a new
quadrics object. This object must be referred to when calling quadrics rendering
and control functions. A return value of 0 means that there is not enough memory
to allocate the object.
External documentation.

 Link to this function

 ortho2D(Left, Right, Bottom, Top)

 View Source

 -spec ortho2D(Left :: f(), Right :: f(), Bottom :: f(), Top :: f()) -> ok.

glu:ortho2D/4 sets up a two-dimensional orthographic viewing
region. This is equivalent to calling gl:ortho/6 with near=-1 and far=1.
External documentation.

 Link to this function

 partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep)

 View Source

 -spec partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep) -> ok
 when
 Quad :: i(),
 Inner :: f(),
 Outer :: f(),
 Slices :: i(),
 Loops :: i(),
 Start :: f(),
 Sweep :: f().

glu:partialDisk/7 renders a partial disk on the z=0 plane.
A partial disk is similar to a full disk, except that only the subset of the
disk from Start through Start + Sweep is included (where 0 degrees is
along the +f2yf axis, 90 degrees along the +x axis, 180 degrees along the -y
axis, and 270 degrees along the -x axis).
External documentation.

 Link to this function

 perspective(Fovy, Aspect, ZNear, ZFar)

 View Source

 -spec perspective(Fovy :: f(), Aspect :: f(), ZNear :: f(), ZFar :: f()) -> ok.

glu:perspective/4 specifies a viewing frustum into the
world coordinate system. In general, the aspect ratio in
glu:perspective/4 should match the aspect ratio of the
associated viewport. For example, aspect=2.0 means the viewer's angle of view is
twice as wide in x as it is in y. If the viewport is twice as wide as it is
tall, it displays the image without distortion.
External documentation.

 Link to this function

 pickMatrix(X, Y, DelX, DelY, Viewport)

 View Source

 -spec pickMatrix(X :: f(), Y :: f(), DelX :: f(), DelY :: f(), Viewport :: {i(), i(), i(), i()}) -> ok.

glu:pickMatrix/5 creates a projection matrix that can be
used to restrict drawing to a small region of the viewport. This is typically
useful to determine what objects are being drawn near the cursor. Use
glu:pickMatrix/5 to restrict drawing to a small region
around the cursor. Then, enter selection mode (with gl:renderMode/1) and
rerender the scene. All primitives that would have been drawn near the cursor
are identified and stored in the selection buffer.
External documentation.

 Link to this function

 project(ObjX, ObjY, ObjZ, Model, Proj, View)

 View Source

 -spec project(ObjX, ObjY, ObjZ, Model, Proj, View) -> {i(), WinX :: f(), WinY :: f(), WinZ :: f()}
 when
 ObjX :: f(),
 ObjY :: f(),
 ObjZ :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()}.

glu:project/6 transforms the specified object coordinates into
window coordinates using Model, Proj, and View. The result is stored in
WinX, WinY, and WinZ. A return value of ?GLU_TRUE indicates success, a
return value of ?GLU_FALSE indicates failure.
External documentation.

 Link to this function

 quadricDrawStyle(Quad, Draw)

 View Source

 -spec quadricDrawStyle(Quad :: i(), Draw :: enum()) -> ok.

glu:quadricDrawStyle/2 specifies the draw style for
quadrics rendered with Quad. The legal values are as follows:
External documentation.

 Link to this function

 quadricNormals(Quad, Normal)

 View Source

 -spec quadricNormals(Quad :: i(), Normal :: enum()) -> ok.

glu:quadricNormals/2 specifies what kind of normals are
desired for quadrics rendered with Quad. The legal values are as follows:
External documentation.

 Link to this function

 quadricOrientation(Quad, Orientation)

 View Source

 -spec quadricOrientation(Quad :: i(), Orientation :: enum()) -> ok.

glu:quadricOrientation/2 specifies what kind of
orientation is desired for quadrics rendered with Quad. The Orientation
values are as follows:
External documentation.

 Link to this function

 quadricTexture(Quad, Texture)

 View Source

 -spec quadricTexture(Quad :: i(), Texture :: 0 | 1) -> ok.

glu:quadricTexture/2 specifies if texture coordinates
should be generated for quadrics rendered with Quad. If the value of Texture
is ?GLU_TRUE, then texture coordinates are generated, and if Texture is
?GLU_FALSE, they are not. The initial value is ?GLU_FALSE.
External documentation.

 Link to this function

 scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut)

 View Source

 -spec scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut) -> i()
 when
 Format :: enum(),
 WIn :: i(),
 HIn :: i(),
 TypeIn :: enum(),
 DataIn :: binary(),
 WOut :: i(),
 HOut :: i(),
 TypeOut :: enum(),
 DataOut :: mem().

glu:scaleImage/9 scales a pixel image using the appropriate
pixel store modes to unpack data from the source image and pack data into the
destination image.
External documentation.

 Link to this function

 sphere(Quad, Radius, Slices, Stacks)

 View Source

 -spec sphere(Quad :: i(), Radius :: f(), Slices :: i(), Stacks :: i()) -> ok.

glu:sphere/4 draws a sphere of the given radius centered around
the origin. The sphere is subdivided around the z axis into slices and along
the z axis into stacks (similar to lines of longitude and latitude).
External documentation.

 Link to this function

 tesselate(Normal, Vs)

 View Source

 -spec tesselate(Normal, [Vs]) -> {Triangles, VertexPos}
 when
 Normal :: vertex(),
 Vs :: vertex(),
 Triangles :: [integer()],
 VertexPos :: binary().

Triangulates a polygon, the polygon is specified by a Normal and Vs a list
of vertex positions.
The function returns a list of indices of the vertices and a binary (64bit
native float) containing an array of vertex positions, it starts with the
vertices in Vs and may contain newly created vertices in the end.

 Link to this function

 unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal)

 View Source

 -spec unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal) ->
 {i(), ObjX :: f(), ObjY :: f(), ObjZ :: f(), ObjW :: f()}
 when
 WinX :: f(),
 WinY :: f(),
 WinZ :: f(),
 ClipW :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()},
 NearVal :: f(),
 FarVal :: f().

glu:unProject/6 maps the specified window coordinates into
object coordinates using Model, Proj, and View. The result is stored in
ObjX, ObjY, and ObjZ. A return value of ?GLU_TRUE indicates success; a
return value of ?GLU_FALSE indicates failure.
External documentation.

 Link to this function

 unProject(WinX, WinY, WinZ, Model, Proj, View)

 View Source

 -spec unProject(WinX, WinY, WinZ, Model, Proj, View) -> {i(), ObjX :: f(), ObjY :: f(), ObjZ :: f()}
 when
 WinX :: f(),
 WinY :: f(),
 WinZ :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()}.

Equivalent to unProject4/9.

wx

A port of wxWidgets.
A port of wxWidgets.
This is the base api of wxWidgets. This module
contains functions for starting and stopping the wx-server, as well as other
utility functions.
wxWidgets is object oriented, and not functional. Thus, in wxErlang a module
represents a class, and the object created by this class has an own type,
wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.
Objects of a class are created with wxCLASS:new(...) and destroyed with
wxCLASS:destroy(). Member functions are called with wxCLASS:member(Object, ...)
instead of as in C++ Object.member(...).
Sub class modules inherit (non static) functions from their parents. The
inherited functions are not documented in the sub-classes.
This erlang port of wxWidgets tries to be a one-to-one mapping with the original
wxWidgets library. Some things are different though, as the optional arguments
use property lists and can be in any order. The main difference is the event
handling which is different from the original library. See wxEvtHandler.
The following classes are implemented directly as erlang types:
wxPoint={x,y},wxSize={w,h},wxRect={x,y,w,h},wxColour={r,g,b [,a]},
wxString=unicode:chardata(),
wxGBPosition={r,c},wxGBSpan={rs,cs},wxGridCellCoords={r,c}.
wxWidgets uses a process specific environment, which is created by
wx:new/0. To be able to use the environment from other processes,
call get_env/0 to retrieve the environment and set_env/1 to assign the
environment in the other process.
Global (classless) functions are located in the wx_misc module.

 DATA TYPES

	 wx_colour() = {R::byte(), G::byte(), B::byte()} |
wx_colour4()

	 wx_colour4() = {R::byte(), G::byte(), B::byte(),
A::byte()}

	 wx_datetime() = {{Year::integer(),
Month::integer(), Day::integer()}, {Hour::integer(), Minute::integer(),
Second::integer()}}
In Local Timezone

	 wx_enum() = integer()
Constant defined in wx.hrl

	 wx_env() = #wx_env{}
Opaque process environment

	 wx_memory() = binary() | #wx_mem{}
Opaque memory reference

	 wx_object() = #wx_ref{}
Opaque object reference

	 wx_wxHtmlLinkInfo() =
#wxHtmlLinkInfo{href=unicode:chardata(),
target=unicode:chardata()}

	 wx_wxMouseState() =
#wxMouseState{x=integer(), y=integer(), leftDown=boolean(),
middleDown=boolean(), rightDown=boolean(), controlDown=boolean(),
shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}
See #wxMouseState{} defined in wx.hrl

 Summary

 Types

 wx_colour4()

 wx_colour()

 wx_datetime()

 wx_enum()

 wx_env()

 wx_memory()

 wx_object()

 wx_wxHtmlLinkInfo()

 wx_wxMouseState()

 Functions

 batch(Fun)

 batch(Fun::function()) -> term()

 create_memory/1

 create_memory(Size::integer()) -> wx_memory()

 debug(Debug)

 debug(Debug::Level | [Level]) -> ok

 demo()

 demo() -> ok | {error, atom()}

 destroy()

 destroy() -> ok

 equal/2

 equal(Wx_ref::wx_object(), X2::wx_object()) -> boolean()

 foldl(Fun, Acc, List)

 foldl(Fun::function(), Acc::term(), List::list()) -> term()

 foldr(Fun, Acc, List)

 foldr(Fun::function(), Acc::term(), List::list()) -> term()

 foreach(Fun, List)

 foreach(Fun::function(), List::list()) -> ok

 get_env()

 get_env() -> wx_env()

 get_memory_bin/1

 get_memory_bin(Wx_mem::wx_memory()) -> binary()

 getObjectType/1

 getObjectType(Wx_ref::wx_object()) -> atom()

 is_null/1

 is_null(Wx_ref::wx_object()) -> boolean()

 map(Fun, List)

 map(Fun::function(), List::list()) -> list()

 new()

 new() -> wx_object()

 new(Options)

 new(Options::[Option]) -> wx_object()

 null()

 null() -> wx_object()

 parent_class/1

 parent_class(X1) -> term()

 release_memory/1

 release_memory(Wx_mem::wx_memory()) -> ok

 retain_memory/1

 retain_memory(Wx_mem::wx_memory()) -> ok

 set_env/1

 set_env(Wx_env::wx_env()) -> ok

 subscribe_events()

 subscribe_events() -> ok

 typeCast/2

 typeCast(Old::wx_object(), NewType::atom()) -> wx_object()

 Types

 Link to this type

 wx_colour4()

 View Source

 -type wx_colour4() :: {R :: byte(), G :: byte(), B :: byte(), A :: byte()}.

 Link to this type

 wx_colour()

 View Source

 -type wx_colour() :: {R :: byte(), G :: byte(), B :: byte()} | wx_colour4().

 Link to this type

 wx_datetime()

 View Source

 -type wx_datetime() ::
 {{Year :: integer(), Month :: integer(), Day :: integer()},
 {Hour :: integer(), Minute :: integer(), Second :: integer()}}.

 Link to this type

 wx_enum()

 View Source

 -type wx_enum() :: integer().

 Link to this type

 wx_env()

 View Source

 -type wx_env() :: #wx_env{ref :: term(), sv :: term(), debug :: term()}.

 Link to this type

 wx_memory()

 View Source

 -type wx_memory() :: binary() | #wx_mem{bin :: term(), size :: term()}.

 Link to this type

 wx_object()

 View Source

 -type wx_object() :: #wx_ref{ref :: term(), type :: term(), state :: term()}.

 Link to this type

 wx_wxHtmlLinkInfo()

 View Source

 -type wx_wxHtmlLinkInfo() :: #wxHtmlLinkInfo{href :: unicode:chardata(), target :: unicode:chardata()}.

 Link to this type

 wx_wxMouseState()

 View Source

 -type wx_wxMouseState() ::
 #wxMouseState{x :: integer(),
 y :: integer(),
 leftDown :: boolean(),
 middleDown :: boolean(),
 rightDown :: boolean(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 cmdDown :: boolean(),
 aux1Down :: boolean(),
 aux2Down :: boolean()}.

 Functions

 Link to this function

 batch(Fun)

 View Source

 -spec batch(function()) -> term().

batch(Fun::function()) -> term()
Batches all wx commands used in the fun. Improves performance of the command
processing by grabbing the wxWidgets thread so that no event processing will be
done before the complete batch of commands is invoked.
See also: foldl/3, foldr/3, foreach/2, map/2.

 Link to this function

 create_memory/1

 View Source

 -spec create_memory(integer()) -> wx_memory().

create_memory(Size::integer()) -> wx_memory()
Creates a memory area (of Size in bytes) which can be used by an external
library (i.e. opengl). It is up to the client to keep a reference to this object
so it does not get garbage collected by erlang while still in use by the
external library.
This is far from erlang's intentional usage and can crash the erlang emulator.
Use it carefully.

 Link to this function

 debug(Debug)

 View Source

 -spec debug(Level | [Level]) -> ok when Level :: none | verbose | trace | driver | integer().

debug(Debug::Level | [Level]) -> ok
Sets debug level. If debug level is 'verbose' or 'trace' each call is printed on
console. If Level is 'driver' each allocated object and deletion is printed on
the console.

 Link to this function

 demo()

 View Source

 -spec demo() -> ok | {error, atom()}.

demo() -> ok | {error, atom()}
Starts a wxErlang demo if examples directory exists and is compiled

 Link to this function

 destroy()

 View Source

 -spec destroy() -> ok.

destroy() -> ok
Stops a wx server.

 Link to this function

 equal/2

 View Source

 -spec equal(wx_object(), wx_object()) -> boolean().

equal(Wx_ref::wx_object(), X2::wx_object()) -> boolean()
Returns true if both arguments references the same object, false otherwise

 Link to this function

 foldl(Fun, Acc, List)

 View Source

 -spec foldl(function(), term(), list()) -> term().

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

 Link to this function

 foldr(Fun, Acc, List)

 View Source

 -spec foldr(function(), term(), list()) -> term().

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

 Link to this function

 foreach(Fun, List)

 View Source

 -spec foreach(function(), list()) -> ok.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

 Link to this function

 get_env()

 View Source

 -spec get_env() -> wx_env().

get_env() -> wx_env()
Gets this process's current wx environment. Can be sent to other processes to
allow them use this process wx environment.
See also: set_env/1.

 Link to this function

 get_memory_bin/1

 View Source

 -spec get_memory_bin(wx_memory()) -> binary().

get_memory_bin(Wx_mem::wx_memory()) -> binary()
Returns the memory area as a binary.

 Link to this function

 getObjectType/1

 View Source

 -spec getObjectType(wx_object()) -> atom().

getObjectType(Wx_ref::wx_object()) -> atom()
Returns the object type

 Link to this function

 is_null/1

 View Source

 -spec is_null(wx_object()) -> boolean().

is_null(Wx_ref::wx_object()) -> boolean()
Returns true if object is null, false otherwise

 Link to this function

 map(Fun, List)

 View Source

 -spec map(function(), list()) -> list().

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

 Link to this function

 new()

 View Source

 -spec new() -> wx_object().

new() -> wx_object()
Starts a wx server.

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wx_object() when Option :: {debug, list() | atom()} | {silent_start, boolean()}.

new(Options::[Option]) -> wx_object()
Starts a wx server. Option may be {debug, Level}, see debug/1. Or
{silent_start, Bool}, which causes error messages at startup to be suppressed.
The latter can be used as a silent test of whether wx is properly installed or
not.

 Link to this function

 null()

 View Source

 -spec null() -> wx_object().

null() -> wx_object()
Returns the null object

 Link to this function

 parent_class/1

 View Source

 -spec parent_class(wx_object()) -> boolean().

parent_class(X1) -> term()

 Link to this function

 release_memory/1

 View Source

 -spec release_memory(wx_memory()) -> ok.

release_memory(Wx_mem::wx_memory()) -> ok

 Link to this function

 retain_memory/1

 View Source

 -spec retain_memory(wx_memory()) -> ok.

retain_memory(Wx_mem::wx_memory()) -> ok
Saves the memory from deletion until release_memory/1 is called. If
release_memory/1 is not called the memory will not be garbage collected.

 Link to this function

 set_env/1

 View Source

 -spec set_env(wx_env()) -> ok.

set_env(Wx_env::wx_env()) -> ok
Sets the process wx environment, allows this process to use another process wx
environment.

 Link to this function

 subscribe_events()

 View Source

 -spec subscribe_events() -> ok.

subscribe_events() -> ok
Adds the calling process to the list of of processes that are listening to wx
application events.
At the moment these are all MacOSX specific events corresponding to
MacNewFile() and friends from wxWidgets
wxApp:
	{new_file, ""}
	{open_file, Filename}
	{print_file, Filename}
	{open_url, Url}
	{reopen_app, ""}

The call always returns ok but will have sent any already received events to the
calling process.

 Link to this function

 typeCast/2

 View Source

 -spec typeCast(wx_object(), atom()) -> wx_object().

typeCast(Old::wx_object(), NewType::atom()) -> wx_object()
Casts the object to class NewType. It is needed when using functions like
wxWindow:findWindow/2, which returns a generic wxObject type.

wxAcceleratorEntry

Functions for wxAcceleratorEntry class
An object used by an application wishing to create an accelerator table (see
wxAcceleratorTable).
See: wxAcceleratorTable, wxWindow:setAcceleratorTable/2
wxWidgets docs:
wxAcceleratorEntry

 Summary

 Types

 wxAcceleratorEntry()

 Functions

 destroy(This)

 Destroys the object.

 getCommand(This)

 Returns the command identifier for the accelerator table entry.

 getFlags(This)

 Returns the flags for the accelerator table entry.

 getKeyCode(This)

 Returns the keycode for the accelerator table entry.

 new()

 new/1

 Copy ctor.

 set(This, Flags, KeyCode, Cmd)

 set/5

 Sets the accelerator entry parameters.

 Types

 Link to this type

 wxAcceleratorEntry()

 View Source

 -type wxAcceleratorEntry() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAcceleratorEntry()) -> ok.

Destroys the object.

 Link to this function

 getCommand(This)

 View Source

 -spec getCommand(This) -> integer() when This :: wxAcceleratorEntry().

Returns the command identifier for the accelerator table entry.

 Link to this function

 getFlags(This)

 View Source

 -spec getFlags(This) -> integer() when This :: wxAcceleratorEntry().

Returns the flags for the accelerator table entry.

 Link to this function

 getKeyCode(This)

 View Source

 -spec getKeyCode(This) -> integer() when This :: wxAcceleratorEntry().

Returns the keycode for the accelerator table entry.

 Link to this function

 new()

 View Source

 -spec new() -> wxAcceleratorEntry().

 Link to this function

 new/1

 View Source

 -spec new([Option]) -> wxAcceleratorEntry()
 when
 Option ::
 {flags, integer()} |
 {keyCode, integer()} |
 {cmd, integer()} |
 {item, wxMenuItem:wxMenuItem()};
 (Entry) -> wxAcceleratorEntry() when Entry :: wxAcceleratorEntry().

Copy ctor.

 Link to this function

 set(This, Flags, KeyCode, Cmd)

 View Source

 -spec set(This, Flags, KeyCode, Cmd) -> ok
 when
 This :: wxAcceleratorEntry(),
 Flags :: integer(),
 KeyCode :: integer(),
 Cmd :: integer().

 Link to this function

 set/5

 View Source

 -spec set(This, Flags, KeyCode, Cmd, [Option]) -> ok
 when
 This :: wxAcceleratorEntry(),
 Flags :: integer(),
 KeyCode :: integer(),
 Cmd :: integer(),
 Option :: {item, wxMenuItem:wxMenuItem()}.

Sets the accelerator entry parameters.

wxAcceleratorTable

Functions for wxAcceleratorTable class
An accelerator table allows the application to specify a table of keyboard
shortcuts for menu or button commands.
The object ?wxNullAcceleratorTable is defined to be a table with no data, and is
the initial accelerator table for a window.
Example:
Remark: An accelerator takes precedence over normal processing and can be a
convenient way to program some event handling. For example, you can use an
accelerator table to enable a dialog with a multi-line text control to accept
CTRL-Enter as meaning 'OK'.
Predefined objects (include wx.hrl): ?wxNullAcceleratorTable
See: wxAcceleratorEntry, wxWindow:setAcceleratorTable/2
wxWidgets docs:
wxAcceleratorTable

 Summary

 Types

 wxAcceleratorTable()

 Functions

 destroy(This)

 Destroys the wxAcceleratorTable object.

 isOk(This)

 Returns true if the accelerator table is valid.

 new()

 Default ctor.

 new(N, Entries)

 Initializes the accelerator table from an array of wxAcceleratorEntry.

 ok(This)

 See: isOk/1.

 Types

 Link to this type

 wxAcceleratorTable()

 View Source

 -type wxAcceleratorTable() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAcceleratorTable()) -> ok.

Destroys the wxAcceleratorTable object.
See overview_refcount_destruct for more info.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxAcceleratorTable().

Returns true if the accelerator table is valid.

 Link to this function

 new()

 View Source

 -spec new() -> wxAcceleratorTable().

Default ctor.

 Link to this function

 new(N, Entries)

 View Source

 -spec new(N, Entries) -> wxAcceleratorTable()
 when N :: integer(), Entries :: [wxAcceleratorEntry:wxAcceleratorEntry()].

Initializes the accelerator table from an array of wxAcceleratorEntry.

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxAcceleratorTable().

See: isOk/1.

wxActivateEvent

Functions for wxActivateEvent class
An activate event is sent when a window or application is being activated or
deactivated.
Note: Until wxWidgets 3.1.0 activation events could be sent by wxMSW when the
window was minimized. This reflected the native MSW behaviour but was often
surprising and unexpected, so starting from 3.1.0 such events are not sent any
more when the window is in the minimized state.
See:
Overview events,
wxApp::IsActive (not implemented in wx)
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxActivateEvent

 Events

Use wxEvtHandler:connect/3 with
wxActivateEventType to subscribe to events of
this type.

 Summary

 Types

 wxActivate()

 wxActivateEvent()

 wxActivateEventType()

 Functions

 getActive(This)

 Returns true if the application or window is being activated, false otherwise.

 Types

 Link to this type

 wxActivate()

 View Source

 -type wxActivate() :: #wxActivate{type :: wxActivateEvent:wxActivateEventType(), active :: boolean()}.

 Link to this type

 wxActivateEvent()

 View Source

 -type wxActivateEvent() :: wx:wx_object().

 Link to this type

 wxActivateEventType()

 View Source

 -type wxActivateEventType() :: activate | activate_app | hibernate.

 Functions

 Link to this function

 getActive(This)

 View Source

 -spec getActive(This) -> boolean() when This :: wxActivateEvent().

Returns true if the application or window is being activated, false otherwise.

wxArtProvider

Functions for wxArtProvider class
wxArtProvider class is used to customize the look of wxWidgets application.
When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file
dialog), it does not use a hard-coded resource but asks wxArtProvider for it
instead. This way users can plug in their own wxArtProvider class and easily
replace standard art with their own version.
All that is needed is to derive a class from wxArtProvider, override either
its wxArtProvider::CreateBitmap() (not implemented in wx) and/or its
wxArtProvider::CreateIconBundle() (not implemented in wx) methods and register
the provider with wxArtProvider::Push() (not implemented in wx):
If you need bitmap images (of the same artwork) that should be displayed at
different sizes you should probably consider overriding
wxArtProvider::CreateIconBundle (not implemented in wx) and supplying icon
bundles that contain different bitmap sizes.
There's another way of taking advantage of this class: you can use it in your
code and use platform native icons as provided by getBitmap/2 or getIcon/2.
Identifying art resources
Every bitmap and icon bundle are known to wxArtProvider under an unique ID
that is used when requesting a resource from it. The ID is represented by the
?wxArtID type and can have one of these predefined values (you can see bitmaps
represented by these constants in the page_samples_artprov):
Additionally, any string recognized by custom art providers registered using
wxArtProvider::Push (not implemented in wx) may be used.
Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be
used as well: For a list of the GTK+ stock items please refer to the
GTK+ documentation page.
It is also possible to load icons from the current icon theme by specifying
their name (without extension and directory components). Icon themes recognized
by GTK+ follow the freedesktop.org
Icon Themes specification.
Note that themes are not guaranteed to contain all icons, so wxArtProvider
may return ?wxNullBitmap or ?wxNullIcon. The default theme is typically
installed in /usr/share/icons/hicolor.
Clients
The client is the entity that calls wxArtProvider's getBitmap/2 or
getIcon/2 function. It is represented by wxClientID type and can have one of
these values:
Client ID serve as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use
slightly different icons in menus and toolbars even though they represent the
same action (e.g. wxART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider - it is common that getBitmap/2 returns identical bitmap
for different client values!
See:
Examples, wxArtProvider, usage; stock ID list
wxWidgets docs:
wxArtProvider

 Summary

 Types

 wxArtProvider()

 Functions

 getBitmap(Id)

 getBitmap(Id, Options)

 Query registered providers for bitmap with given ID.

 getIcon(Id)

 getIcon(Id, Options)

 Same as getBitmap/2, but return a wxIcon object (or ?wxNullIcon on
failure).

 Types

 Link to this type

 wxArtProvider()

 View Source

 -type wxArtProvider() :: wx:wx_object().

 Functions

 Link to this function

 getBitmap(Id)

 View Source

 -spec getBitmap(Id) -> wxBitmap:wxBitmap() when Id :: unicode:chardata().

 Link to this function

 getBitmap(Id, Options)

 View Source

 -spec getBitmap(Id, [Option]) -> wxBitmap:wxBitmap()
 when
 Id :: unicode:chardata(),
 Option :: {client, unicode:chardata()} | {size, {W :: integer(), H :: integer()}}.

Query registered providers for bitmap with given ID.
Return: The bitmap if one of registered providers recognizes the ID or
wxNullBitmap otherwise.

 Link to this function

 getIcon(Id)

 View Source

 -spec getIcon(Id) -> wxIcon:wxIcon() when Id :: unicode:chardata().

 Link to this function

 getIcon(Id, Options)

 View Source

 -spec getIcon(Id, [Option]) -> wxIcon:wxIcon()
 when
 Id :: unicode:chardata(),
 Option :: {client, unicode:chardata()} | {size, {W :: integer(), H :: integer()}}.

Same as getBitmap/2, but return a wxIcon object (or ?wxNullIcon on
failure).

wxAuiDockArt

Functions for wxAuiDockArt class
wxAuiDockArt is part of the wxAUI class framework. See also overview_aui.
wxAuiDockArt is the art provider: provides all drawing functionality to the
wxAui dock manager. This allows the dock manager to have a pluggable
look-and-feel.
By default, a wxAuiManager uses an instance of this class called
wxAuiDefaultDockArt (not implemented in wx) which provides bitmap art and a
colour scheme that is adapted to the major platforms' look. You can either
derive from that class to alter its behaviour or write a completely new dock art
class. Call wxAuiManager:setArtProvider/2 to force wxAUI to use your new dock
art provider.
See: wxAuiManager, wxAuiPaneInfo
wxWidgets docs:
wxAuiDockArt

 Summary

 Types

 wxAuiDockArt()

 Functions

 getColour(This, Id)

 Get the colour of a certain setting.

 getFont(This, Id)

 Get a font setting.

 getMetric(This, Id)

 Get the value of a certain setting.

 setColour(This, Id, Colour)

 Set a certain setting with the value colour.

 setFont(This, Id, Font)

 Set a font setting.

 setMetric(This, Id, New_val)

 Set a certain setting with the value new_val.

 Types

 Link to this type

 wxAuiDockArt()

 View Source

 -type wxAuiDockArt() :: wx:wx_object().

 Functions

 Link to this function

 getColour(This, Id)

 View Source

 -spec getColour(This, Id) -> wx:wx_colour4() when This :: wxAuiDockArt(), Id :: integer().

Get the colour of a certain setting.
id can be one of the colour values of wxAuiPaneDockArtSetting.

 Link to this function

 getFont(This, Id)

 View Source

 -spec getFont(This, Id) -> wxFont:wxFont() when This :: wxAuiDockArt(), Id :: integer().

Get a font setting.

 Link to this function

 getMetric(This, Id)

 View Source

 -spec getMetric(This, Id) -> integer() when This :: wxAuiDockArt(), Id :: integer().

Get the value of a certain setting.
id can be one of the size values of wxAuiPaneDockArtSetting.

 Link to this function

 setColour(This, Id, Colour)

 View Source

 -spec setColour(This, Id, Colour) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), Colour :: wx:wx_colour().

Set a certain setting with the value colour.
id can be one of the colour values of wxAuiPaneDockArtSetting.

 Link to this function

 setFont(This, Id, Font)

 View Source

 -spec setFont(This, Id, Font) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), Font :: wxFont:wxFont().

Set a font setting.

 Link to this function

 setMetric(This, Id, New_val)

 View Source

 -spec setMetric(This, Id, New_val) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), New_val :: integer().

Set a certain setting with the value new_val.
id can be one of the size values of wxAuiPaneDockArtSetting.

wxAuiManager

Functions for wxAuiManager class
wxAuiManager is the central class of the wxAUI class framework.
wxAuiManager manages the panes associated with it for a particular
wxFrame, using a pane's wxAuiPaneInfo information to determine each
pane's docking and floating behaviour.
wxAuiManager uses wxWidgets' sizer mechanism to plan the layout of each
frame. It uses a replaceable dock art class to do all drawing, so all drawing is
localized in one area, and may be customized depending on an application's
specific needs.
wxAuiManager works as follows: the programmer adds panes to the class, or
makes changes to existing pane properties (dock position, floating state, show
state, etc.). To apply these changes, wxAuiManager's update/1 function is
called. This batch processing can be used to avoid flicker, by modifying more
than one pane at a time, and then "committing" all of the changes at once by
calling update/1.
Panes can be added quite easily:
Later on, the positions can be modified easily. The following will float an
existing pane in a tool window:
Layers, Rows and Directions, Positions
Inside wxAUI, the docking layout is figured out by checking several pane
parameters. Four of these are important for determining where a pane will end
up:
Styles
This class supports the following styles:
See:
Overview aui,
wxAuiNotebook, wxAuiDockArt, wxAuiPaneInfo
This class is derived (and can use functions) from: wxEvtHandler
wxWidgets docs:
wxAuiManager

 Events

Event types emitted from this class: aui_pane_button,
aui_pane_close,
aui_pane_maximize,
aui_pane_restore,
aui_pane_activated,
aui_render

 Summary

 Types

 wxAuiManager()

 Functions

 addPane(This, Window)

 addPane/3

 addPane/4 tells the frame manager to start managing a child window.

 addPane(This, Window, Pane_info, Drop_pos)

 destroy(This)

 Dtor.

 detachPane(This, Window)

 Tells the wxAuiManager to stop managing the pane specified by window.

 getAllPanes(This)

 Returns an array of all panes managed by the frame manager.

 getArtProvider(This)

 Returns the current art provider being used.

 getDockSizeConstraint(This)

 Returns the current dock constraint values.

 getFlags(This)

 Returns the current ?wxAuiManagerOption's flags.

 getManagedWindow(This)

 Returns the frame currently being managed by wxAuiManager.

 getManager(Window)

 Calling this method will return the wxAuiManager for a given window.

 getPane/2

 getPane/2 is used to lookup a wxAuiPaneInfo object either by window
pointer or by pane name, which acts as a unique id for a window pane.

 hideHint(This)

 hideHint/1 hides any docking hint that may be visible.

 insertPane(This, Window, Insert_location)

 insertPane/4

 This method is used to insert either a previously unmanaged pane window into the
frame manager, or to insert a currently managed pane somewhere else.

 loadPaneInfo(This, Pane_part, Pane)

 loadPaneInfo/3 is similar to LoadPerspective, with the exception that it only
loads information about a single pane.

 loadPerspective(This, Perspective)

 loadPerspective/3

 Loads a saved perspective.

 new()

 new(Options)

 Constructor.

 savePaneInfo(This, Pane)

 savePaneInfo/2 is similar to SavePerspective, with the exception that it only
saves information about a single pane.

 savePerspective(This)

 Saves the entire user interface layout into an encoded wxString (not
implemented in wx), which can then be stored by the application (probably using
wxConfig).

 setArtProvider(This, Art_provider)

 Instructs wxAuiManager to use art provider specified by parameter
art_provider for all drawing calls.

 setDockSizeConstraint(This, Widthpct, Heightpct)

 When a user creates a new dock by dragging a window into a docked position,
often times the large size of the window will create a dock that is unwieldy
large.

 setFlags(This, Flags)

 This method is used to specify ?wxAuiManagerOption's flags.

 setManagedWindow(This, Managed_wnd)

 Called to specify the frame or window which is to be managed by
wxAuiManager.

 showHint(This, Rect)

 This function is used by controls to explicitly show a hint window at the
specified rectangle.

 unInit(This)

 Dissociate the managed window from the manager.

 update(This)

 This method is called after any number of changes are made to any of the managed
panes.

 Types

 Link to this type

 wxAuiManager()

 View Source

 -type wxAuiManager() :: wx:wx_object().

 Functions

 Link to this function

 addPane(This, Window)

 View Source

 -spec addPane(This, Window) -> boolean() when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

 Link to this function

 addPane/3

 View Source

 -spec addPane(This, Window, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Option :: {direction, integer()} | {caption, unicode:chardata()};
 (This, Window, Pane_info) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Pane_info :: wxAuiPaneInfo:wxAuiPaneInfo().

addPane/4 tells the frame manager to start managing a child window.
There are several versions of this function. The first version allows the full
spectrum of pane parameter possibilities. The second version is used for simpler
user interfaces which do not require as much configuration. The last version
allows a drop position to be specified, which will determine where the pane will
be added.

 Link to this function

 addPane(This, Window, Pane_info, Drop_pos)

 View Source

 -spec addPane(This, Window, Pane_info, Drop_pos) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Pane_info :: wxAuiPaneInfo:wxAuiPaneInfo(),
 Drop_pos :: {X :: integer(), Y :: integer()}.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAuiManager()) -> ok.

Dtor.

 Link to this function

 detachPane(This, Window)

 View Source

 -spec detachPane(This, Window) -> boolean() when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

Tells the wxAuiManager to stop managing the pane specified by window.
The window, if in a floated frame, is reparented to the frame managed by
wxAuiManager.

 Link to this function

 getAllPanes(This)

 View Source

 -spec getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()] when This :: wxAuiManager().

Returns an array of all panes managed by the frame manager.

 Link to this function

 getArtProvider(This)

 View Source

 -spec getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt() when This :: wxAuiManager().

Returns the current art provider being used.
See: wxAuiDockArt

 Link to this function

 getDockSizeConstraint(This)

 View Source

 -spec getDockSizeConstraint(This) -> {Widthpct :: number(), Heightpct :: number()}
 when This :: wxAuiManager().

Returns the current dock constraint values.
See setDockSizeConstraint/3 for more information.

 Link to this function

 getFlags(This)

 View Source

 -spec getFlags(This) -> integer() when This :: wxAuiManager().

Returns the current ?wxAuiManagerOption's flags.

 Link to this function

 getManagedWindow(This)

 View Source

 -spec getManagedWindow(This) -> wxWindow:wxWindow() when This :: wxAuiManager().

Returns the frame currently being managed by wxAuiManager.

 Link to this function

 getManager(Window)

 View Source

 -spec getManager(Window) -> wxAuiManager() when Window :: wxWindow:wxWindow().

Calling this method will return the wxAuiManager for a given window.
The window parameter should specify any child window or sub-child window of
the frame or window managed by wxAuiManager.
The window parameter need not be managed by the manager itself, nor does it
even need to be a child or sub-child of a managed window. It must however be
inside the window hierarchy underneath the managed window.

 Link to this function

 getPane/2

 View Source

 -spec getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
 when This :: wxAuiManager(), Name :: unicode:chardata();
 (This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
 when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

getPane/2 is used to lookup a wxAuiPaneInfo object either by window
pointer or by pane name, which acts as a unique id for a window pane.
The returned wxAuiPaneInfo object may then be modified to change a pane's
look, state or position. After one or more modifications to wxAuiPaneInfo,
update/1 should be called to commit the changes to the user interface. If the
lookup failed (meaning the pane could not be found in the manager), a call to
the returned wxAuiPaneInfo's IsOk() method will return false.

 Link to this function

 hideHint(This)

 View Source

 -spec hideHint(This) -> ok when This :: wxAuiManager().

hideHint/1 hides any docking hint that may be visible.

 Link to this function

 insertPane(This, Window, Insert_location)

 View Source

 -spec insertPane(This, Window, Insert_location) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Insert_location :: wxAuiPaneInfo:wxAuiPaneInfo().

 Link to this function

 insertPane/4

 View Source

 -spec insertPane(This, Window, Insert_location, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Insert_location :: wxAuiPaneInfo:wxAuiPaneInfo(),
 Option :: {insert_level, integer()}.

This method is used to insert either a previously unmanaged pane window into the
frame manager, or to insert a currently managed pane somewhere else.
insertPane/4 will push all panes, rows, or docks aside and insert the window
into the position specified by insert_location.
Because insert_location can specify either a pane, dock row, or dock layer,
the insert_level parameter is used to disambiguate this. The parameter
insert_level can take a value of wxAUI_INSERT_PANE, wxAUI_INSERT_ROW or
wxAUI_INSERT_DOCK.

 Link to this function

 loadPaneInfo(This, Pane_part, Pane)

 View Source

 -spec loadPaneInfo(This, Pane_part, Pane) -> ok
 when
 This :: wxAuiManager(),
 Pane_part :: unicode:chardata(),
 Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

loadPaneInfo/3 is similar to LoadPerspective, with the exception that it only
loads information about a single pane.
This method writes the serialized data into the passed pane. Pointers to UI
elements are not modified.
Note: This operation also changes the name in the pane information!
See: loadPerspective/3
See: savePaneInfo/2
See: savePerspective/1

 Link to this function

 loadPerspective(This, Perspective)

 View Source

 -spec loadPerspective(This, Perspective) -> boolean()
 when This :: wxAuiManager(), Perspective :: unicode:chardata().

 Link to this function

 loadPerspective/3

 View Source

 -spec loadPerspective(This, Perspective, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Perspective :: unicode:chardata(),
 Option :: {update, boolean()}.

Loads a saved perspective.
A perspective is the layout state of an AUI managed window.
All currently existing panes that have an object in "perspective" with the same
name ("equivalent") will receive the layout parameters of the object in
"perspective". Existing panes that do not have an equivalent in "perspective"
remain unchanged, objects in "perspective" having no equivalent in the manager
are ignored.
See: loadPaneInfo/3
See: loadPerspective/3
See: savePerspective/1

 Link to this function

 new()

 View Source

 -spec new() -> wxAuiManager().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxAuiManager()
 when Option :: {managed_wnd, wxWindow:wxWindow()} | {flags, integer()}.

Constructor.

 Link to this function

 savePaneInfo(This, Pane)

 View Source

 -spec savePaneInfo(This, Pane) -> unicode:charlist()
 when This :: wxAuiManager(), Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

savePaneInfo/2 is similar to SavePerspective, with the exception that it only
saves information about a single pane.
Return: The serialized layout parameters of the pane are returned within the
string. Information about the pointers to UI elements stored in the pane are not
serialized.
See: loadPaneInfo/3
See: loadPerspective/3
See: savePerspective/1

 Link to this function

 savePerspective(This)

 View Source

 -spec savePerspective(This) -> unicode:charlist() when This :: wxAuiManager().

Saves the entire user interface layout into an encoded wxString (not
implemented in wx), which can then be stored by the application (probably using
wxConfig).
See: loadPerspective/3
See: loadPaneInfo/3
See: savePaneInfo/2

 Link to this function

 setArtProvider(This, Art_provider)

 View Source

 -spec setArtProvider(This, Art_provider) -> ok
 when This :: wxAuiManager(), Art_provider :: wxAuiDockArt:wxAuiDockArt().

Instructs wxAuiManager to use art provider specified by parameter
art_provider for all drawing calls.
This allows pluggable look-and-feel features. The previous art provider object,
if any, will be deleted by wxAuiManager.
See: wxAuiDockArt

 Link to this function

 setDockSizeConstraint(This, Widthpct, Heightpct)

 View Source

 -spec setDockSizeConstraint(This, Widthpct, Heightpct) -> ok
 when This :: wxAuiManager(), Widthpct :: number(), Heightpct :: number().

When a user creates a new dock by dragging a window into a docked position,
often times the large size of the window will create a dock that is unwieldy
large.
wxAuiManager by default limits the size of any new dock to 1/3 of the window
size. For horizontal docks, this would be 1/3 of the window height. For vertical
docks, 1/3 of the width.
Calling this function will adjust this constraint value. The numbers must be
between 0.0 and 1.0. For instance, calling SetDockSizeContraint with 0.5, 0.5
will cause new docks to be limited to half of the size of the entire managed
window.

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxAuiManager(), Flags :: integer().

This method is used to specify ?wxAuiManagerOption's flags.
flags specifies options which allow the frame management behaviour to be
modified.

 Link to this function

 setManagedWindow(This, Managed_wnd)

 View Source

 -spec setManagedWindow(This, Managed_wnd) -> ok
 when This :: wxAuiManager(), Managed_wnd :: wxWindow:wxWindow().

Called to specify the frame or window which is to be managed by
wxAuiManager.
Frame management is not restricted to just frames. Child windows or custom
controls are also allowed.

 Link to this function

 showHint(This, Rect)

 View Source

 -spec showHint(This, Rect) -> ok
 when
 This :: wxAuiManager(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This function is used by controls to explicitly show a hint window at the
specified rectangle.
It is rarely called, and is mostly used by controls implementing custom pane
drag/drop behaviour. The specified rectangle should be in screen coordinates.

 Link to this function

 unInit(This)

 View Source

 -spec unInit(This) -> ok when This :: wxAuiManager().

Dissociate the managed window from the manager.
This function may be called before the managed frame or window is destroyed,
but, since wxWidgets 3.1.4, it's unnecessary to call it explicitly, as it will
be called automatically when this window is destroyed, as well as when the
manager itself is.

 Link to this function

 update(This)

 View Source

 -spec update(This) -> ok when This :: wxAuiManager().

This method is called after any number of changes are made to any of the managed
panes.
update/1 must be invoked after addPane/4 or insertPane/4 are called in
order to "realize" or "commit" the changes. In addition, any number of changes
may be made to wxAuiPaneInfo structures (retrieved with getPane/2), but to
realize the changes, update/1 must be called. This construction allows pane
flicker to be avoided by updating the whole layout at one time.

wxAuiManagerEvent

Functions for wxAuiManagerEvent class
Event used to indicate various actions taken with wxAuiManager.
See wxAuiManager for available event types.
See: wxAuiManager, wxAuiPaneInfo
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxAuiManagerEvent

 Events

Use wxEvtHandler:connect/3 with
wxAuiManagerEventType to subscribe to events of
this type.

 Summary

 Types

 wxAuiManager()

 wxAuiManagerEvent()

 wxAuiManagerEventType()

 Functions

 canVeto(This)

 Return: true if this event can be vetoed.

 getButton(This)

 Return: The ID of the button that was clicked.

 getDC(This)

 getManager(This)

 Return: The wxAuiManager this event is associated with.

 getPane(This)

 Return: The pane this event is associated with.

 getVeto(This)

 Return: true if this event was vetoed.

 setButton(This, Button)

 Sets the ID of the button clicked that triggered this event.

 setCanVeto(This, Can_veto)

 Sets whether or not this event can be vetoed.

 setDC(This, Pdc)

 setManager(This, Manager)

 Sets the wxAuiManager this event is associated with.

 setPane(This, Pane)

 Sets the pane this event is associated with.

 veto(This)

 veto/2

 Cancels the action indicated by this event if canVeto/1 is true.

 Types

 Link to this type

 wxAuiManager()

 View Source

 -type wxAuiManager() ::
 #wxAuiManager{type :: wxAuiManagerEvent:wxAuiManagerEventType(),
 manager :: wxAuiManager:wxAuiManager(),
 pane :: wxAuiPaneInfo:wxAuiPaneInfo(),
 button :: integer(),
 veto_flag :: boolean(),
 canveto_flag :: boolean(),
 dc :: wxDC:wxDC()}.

 Link to this type

 wxAuiManagerEvent()

 View Source

 -type wxAuiManagerEvent() :: wx:wx_object().

 Link to this type

 wxAuiManagerEventType()

 View Source

 -type wxAuiManagerEventType() ::
 aui_pane_button | aui_pane_close | aui_pane_maximize | aui_pane_restore | aui_pane_activated |
 aui_render | aui_find_manager.

 Functions

 Link to this function

 canVeto(This)

 View Source

 -spec canVeto(This) -> boolean() when This :: wxAuiManagerEvent().

Return: true if this event can be vetoed.
See: veto/2

 Link to this function

 getButton(This)

 View Source

 -spec getButton(This) -> integer() when This :: wxAuiManagerEvent().

Return: The ID of the button that was clicked.

 Link to this function

 getDC(This)

 View Source

 -spec getDC(This) -> wxDC:wxDC() when This :: wxAuiManagerEvent().

 Link to this function

 getManager(This)

 View Source

 -spec getManager(This) -> wxAuiManager:wxAuiManager() when This :: wxAuiManagerEvent().

Return: The wxAuiManager this event is associated with.

 Link to this function

 getPane(This)

 View Source

 -spec getPane(This) -> wxAuiPaneInfo:wxAuiPaneInfo() when This :: wxAuiManagerEvent().

Return: The pane this event is associated with.

 Link to this function

 getVeto(This)

 View Source

 -spec getVeto(This) -> boolean() when This :: wxAuiManagerEvent().

Return: true if this event was vetoed.
See: veto/2

 Link to this function

 setButton(This, Button)

 View Source

 -spec setButton(This, Button) -> ok when This :: wxAuiManagerEvent(), Button :: integer().

Sets the ID of the button clicked that triggered this event.

 Link to this function

 setCanVeto(This, Can_veto)

 View Source

 -spec setCanVeto(This, Can_veto) -> ok when This :: wxAuiManagerEvent(), Can_veto :: boolean().

Sets whether or not this event can be vetoed.

 Link to this function

 setDC(This, Pdc)

 View Source

 -spec setDC(This, Pdc) -> ok when This :: wxAuiManagerEvent(), Pdc :: wxDC:wxDC().

 Link to this function

 setManager(This, Manager)

 View Source

 -spec setManager(This, Manager) -> ok
 when This :: wxAuiManagerEvent(), Manager :: wxAuiManager:wxAuiManager().

Sets the wxAuiManager this event is associated with.

 Link to this function

 setPane(This, Pane)

 View Source

 -spec setPane(This, Pane) -> ok when This :: wxAuiManagerEvent(), Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

Sets the pane this event is associated with.

 Link to this function

 veto(This)

 View Source

 -spec veto(This) -> ok when This :: wxAuiManagerEvent().

 Link to this function

 veto/2

 View Source

 -spec veto(This, [Option]) -> ok when This :: wxAuiManagerEvent(), Option :: {veto, boolean()}.

Cancels the action indicated by this event if canVeto/1 is true.

wxAuiNotebook

Functions for wxAuiNotebook class
wxAuiNotebook is part of the wxAUI class framework, which represents a
notebook control, managing multiple windows with associated tabs.
See also overview_aui.
wxAuiNotebook is a notebook control which implements many features common in
applications with dockable panes. Specifically, wxAuiNotebook implements
functionality which allows the user to rearrange tab order via drag-and-drop,
split the tab window into many different splitter configurations, and toggle
through different themes to customize the control's look and feel.
The default theme that is used is wxAuiDefaultTabArt (not implemented in wx),
which provides a modern, glossy look and feel. The theme can be changed by
calling setArtProvider/2.
Styles
This class supports the following styles:
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxAuiNotebook

 Events

Event types emitted from this class:
command_auinotebook_page_close,
command_auinotebook_page_closed,
command_auinotebook_page_changed,
command_auinotebook_page_changing,
command_auinotebook_button,
command_auinotebook_begin_drag,
command_auinotebook_end_drag,
command_auinotebook_drag_motion,
command_auinotebook_allow_dnd,
command_auinotebook_drag_done,
command_auinotebook_tab_middle_down,
command_auinotebook_tab_middle_up,
command_auinotebook_tab_right_down,
command_auinotebook_tab_right_up,
command_auinotebook_bg_dclick

 Summary

 Types

 wxAuiNotebook()

 Functions

 addPage(This, Page, Caption)

 addPage/4

 Adds a page.

 addPage(This, Page, Text, Select, ImageId)

 Adds a new page.

 create(This, Parent)

 create/3

 Creates the notebook window.

 create/4

 Constructs the book control with the given parameters.

 deletePage(This, Page)

 Deletes a page at the given index.

 destroy(This)

 Destroys the object.

 getArtProvider(This)

 Returns the associated art provider.

 getPage(This, Page_idx)

 Returns the page specified by the given index.

 getPageBitmap(This, Page)

 Returns the tab bitmap for the page.

 getPageCount(This)

 Returns the number of pages in the notebook.

 getPageIndex(This, Page_wnd)

 Returns the page index for the specified window.

 getPageText(This, Page)

 Returns the tab label for the page.

 getSelection(This)

 Returns the currently selected page.

 insertPage(This, Page_idx, Page, Caption)

 insertPage/5

 insertPage/6 is similar to AddPage, but allows the ability to specify the
insert location.

 insertPage(This, Index, Page, Text, Select, ImageId)

 Inserts a new page at the specified position.

 new()

 Default ctor.

 new(Parent)

 new/2

 Constructor.

 removePage(This, Page)

 Removes a page, without deleting the window pointer.

 setArtProvider(This, Art)

 Sets the art provider to be used by the notebook.

 setFont(This, Font)

 Sets the font for drawing the tab labels, using a bold version of the font for
selected tab labels.

 setPageBitmap(This, Page, Bitmap)

 Sets the bitmap for the page.

 setPageText(This, Page, Text)

 Sets the tab label for the page.

 setSelection(This, New_page)

 Sets the page selection.

 setTabCtrlHeight(This, Height)

 Sets the tab height.

 setUniformBitmapSize(This, Size)

 Ensure that all tabs have the same height, even if some of them don't have
bitmaps.

 Types

 Link to this type

 wxAuiNotebook()

 View Source

 -type wxAuiNotebook() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Caption)

 View Source

 -spec addPage(This, Page, Caption) -> boolean()
 when
 This :: wxAuiNotebook(), Page :: wxWindow:wxWindow(), Caption :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Caption, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata(),
 Option :: {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}.

Adds a page.
If the select parameter is true, calling this will generate a page change
event.

 Link to this function

 addPage(This, Page, Text, Select, ImageId)

 View Source

 -spec addPage(This, Page, Text, Select, ImageId) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Select :: boolean(),
 ImageId :: integer().

Adds a new page.
The page must have the book control itself as the parent and must not have been
added to this control previously.
The call to this function may generate the page changing events.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/6
Since: 2.9.3

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxAuiNotebook(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, Winid) -> boolean()
 when This :: wxAuiNotebook(), Parent :: wxWindow:wxWindow(), Winid :: integer();
 (This, Parent, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the notebook window.

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Winid, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Parent :: wxWindow:wxWindow(),
 Winid :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs the book control with the given parameters.

 Link to this function

 deletePage(This, Page)

 View Source

 -spec deletePage(This, Page) -> boolean() when This :: wxAuiNotebook(), Page :: integer().

Deletes a page at the given index.
Calling this method will generate a page change event.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAuiNotebook()) -> ok.

Destroys the object.

 Link to this function

 getArtProvider(This)

 View Source

 -spec getArtProvider(This) -> wxAuiTabArt:wxAuiTabArt() when This :: wxAuiNotebook().

Returns the associated art provider.

 Link to this function

 getPage(This, Page_idx)

 View Source

 -spec getPage(This, Page_idx) -> wxWindow:wxWindow() when This :: wxAuiNotebook(), Page_idx :: integer().

Returns the page specified by the given index.

 Link to this function

 getPageBitmap(This, Page)

 View Source

 -spec getPageBitmap(This, Page) -> wxBitmap:wxBitmap() when This :: wxAuiNotebook(), Page :: integer().

Returns the tab bitmap for the page.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxAuiNotebook().

Returns the number of pages in the notebook.

 Link to this function

 getPageIndex(This, Page_wnd)

 View Source

 -spec getPageIndex(This, Page_wnd) -> integer()
 when This :: wxAuiNotebook(), Page_wnd :: wxWindow:wxWindow().

Returns the page index for the specified window.
If the window is not found in the notebook, wxNOT_FOUND is returned.

 Link to this function

 getPageText(This, Page)

 View Source

 -spec getPageText(This, Page) -> unicode:charlist() when This :: wxAuiNotebook(), Page :: integer().

Returns the tab label for the page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxAuiNotebook().

Returns the currently selected page.

 Link to this function

 insertPage(This, Page_idx, Page, Caption)

 View Source

 -spec insertPage(This, Page_idx, Page, Caption) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page_idx :: integer(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, Page_idx, Page, Caption, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page_idx :: integer(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata(),
 Option :: {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}.

insertPage/6 is similar to AddPage, but allows the ability to specify the
insert location.
If the select parameter is true, calling this will generate a page change
event.

 Link to this function

 insertPage(This, Index, Page, Text, Select, ImageId)

 View Source

 -spec insertPage(This, Index, Page, Text, Select, ImageId) -> boolean()
 when
 This :: wxAuiNotebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Select :: boolean(),
 ImageId :: integer().

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/5
Since: 2.9.3

 Link to this function

 new()

 View Source

 -spec new() -> wxAuiNotebook().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxAuiNotebook() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxAuiNotebook()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Creates a wxAuiNotebok control.

 Link to this function

 removePage(This, Page)

 View Source

 -spec removePage(This, Page) -> boolean() when This :: wxAuiNotebook(), Page :: integer().

Removes a page, without deleting the window pointer.

 Link to this function

 setArtProvider(This, Art)

 View Source

 -spec setArtProvider(This, Art) -> ok when This :: wxAuiNotebook(), Art :: wxAuiTabArt:wxAuiTabArt().

Sets the art provider to be used by the notebook.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> boolean() when This :: wxAuiNotebook(), Font :: wxFont:wxFont().

Sets the font for drawing the tab labels, using a bold version of the font for
selected tab labels.

 Link to this function

 setPageBitmap(This, Page, Bitmap)

 View Source

 -spec setPageBitmap(This, Page, Bitmap) -> boolean()
 when This :: wxAuiNotebook(), Page :: integer(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the page.
To remove a bitmap from the tab caption, pass wxNullBitmap.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxAuiNotebook(), Page :: integer(), Text :: unicode:chardata().

Sets the tab label for the page.

 Link to this function

 setSelection(This, New_page)

 View Source

 -spec setSelection(This, New_page) -> integer() when This :: wxAuiNotebook(), New_page :: integer().

Sets the page selection.
Calling this method will generate a page change event.

 Link to this function

 setTabCtrlHeight(This, Height)

 View Source

 -spec setTabCtrlHeight(This, Height) -> ok when This :: wxAuiNotebook(), Height :: integer().

Sets the tab height.
By default, the tab control height is calculated by measuring the text height
and bitmap sizes on the tab captions. Calling this method will override that
calculation and set the tab control to the specified height parameter. A call to
this method will override any call to setUniformBitmapSize/2.
Specifying -1 as the height will return the control to its default auto-sizing
behaviour.

 Link to this function

 setUniformBitmapSize(This, Size)

 View Source

 -spec setUniformBitmapSize(This, Size) -> ok
 when This :: wxAuiNotebook(), Size :: {W :: integer(), H :: integer()}.

Ensure that all tabs have the same height, even if some of them don't have
bitmaps.
Passing ?wxDefaultSize as size undoes the effect of a previous call to this
function and instructs the control to use dynamic tab height.

wxAuiNotebookEvent

Functions for wxAuiNotebookEvent class
This class is used by the events generated by wxAuiNotebook.
See: wxAuiNotebook, wxBookCtrlEvent
This class is derived (and can use functions) from: wxBookCtrlEvent
wxNotifyEvent wxCommandEvent wxEvent
wxWidgets docs:
wxAuiNotebookEvent

 Events

Use wxEvtHandler:connect/3 with
wxAuiNotebookEventType to subscribe to events
of this type.

 Summary

 Types

 wxAuiNotebook()

 wxAuiNotebookEvent()

 wxAuiNotebookEventType()

 Functions

 getDragSource(This)

 getOldSelection(This)

 Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 setDragSource(This, S)

 setOldSelection(This, Page)

 Sets the id of the page selected before the change.

 setSelection(This, Page)

 Sets the selection member variable.

 Types

 Link to this type

 wxAuiNotebook()

 View Source

 -type wxAuiNotebook() ::
 #wxAuiNotebook{type :: wxAuiNotebookEvent:wxAuiNotebookEventType(),
 old_selection :: integer(),
 selection :: integer(),
 drag_source :: wxAuiNotebook:wxAuiNotebook()}.

 Link to this type

 wxAuiNotebookEvent()

 View Source

 -type wxAuiNotebookEvent() :: wx:wx_object().

 Link to this type

 wxAuiNotebookEventType()

 View Source

 -type wxAuiNotebookEventType() ::
 command_auinotebook_page_close | command_auinotebook_page_changed |
 command_auinotebook_page_changing | command_auinotebook_button |
 command_auinotebook_begin_drag | command_auinotebook_end_drag |
 command_auinotebook_drag_motion | command_auinotebook_allow_dnd |
 command_auinotebook_tab_middle_down | command_auinotebook_tab_middle_up |
 command_auinotebook_tab_right_down | command_auinotebook_tab_right_up |
 command_auinotebook_page_closed | command_auinotebook_drag_done |
 command_auinotebook_bg_dclick.

 Functions

 Link to this function

 getDragSource(This)

 View Source

 -spec getDragSource(This) -> wxAuiNotebook:wxAuiNotebook() when This :: wxAuiNotebookEvent().

 Link to this function

 getOldSelection(This)

 View Source

 -spec getOldSelection(This) -> integer() when This :: wxAuiNotebookEvent().

Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxAuiNotebookEvent().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: under Windows, getSelection/1 will return the same value as
getOldSelection/1 when called from the EVT_BOOKCTRL_PAGE_CHANGING handler
and not the page which is going to be selected.

 Link to this function

 setDragSource(This, S)

 View Source

 -spec setDragSource(This, S) -> ok when This :: wxAuiNotebookEvent(), S :: wxAuiNotebook:wxAuiNotebook().

 Link to this function

 setOldSelection(This, Page)

 View Source

 -spec setOldSelection(This, Page) -> ok when This :: wxAuiNotebookEvent(), Page :: integer().

Sets the id of the page selected before the change.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> ok when This :: wxAuiNotebookEvent(), Page :: integer().

Sets the selection member variable.

wxAuiPaneInfo

Functions for wxAuiPaneInfo class
wxAuiPaneInfo is part of the wxAUI class framework. See also overview_aui.
wxAuiPaneInfo specifies all the parameters for a pane. These parameters
specify where the pane is on the screen, whether it is docked or floating, or
hidden. In addition, these parameters specify the pane's docked position,
floating position, preferred size, minimum size, caption text among many other
parameters.
See: wxAuiManager, wxAuiDockArt
wxWidgets docs:
wxAuiPaneInfo

 Summary

 Types

 wxAuiPaneInfo()

 Functions

 bestSize(This, Size)

 bestSize/3 sets the ideal size for the pane.

 bestSize(This, X, Y)

 bottom(This)

 bottom/1 sets the pane dock position to the bottom side of the frame.

 bottomDockable(This)

 bottomDockable/2

 bottomDockable/2 indicates whether a pane can be docked at the bottom of the
frame.

 caption(This, C)

 caption/2 sets the caption of the pane.

 captionVisible(This)

 captionVisible/2

 CaptionVisible indicates that a pane caption should be visible.

 centre(This)

 Center() (not implemented in wx) sets the pane dock position to the left side
of the frame.

 centrePane(This)

 centrePane/1 specifies that the pane should adopt the default center pane
settings.

 closeButton(This)

 closeButton/2

 closeButton/2 indicates that a close button should be drawn for the pane.

 defaultPane(This)

 defaultPane/1 specifies that the pane should adopt the default pane settings.

 destroy(This)

 Destroys the object.

 destroyOnClose(This)

 destroyOnClose/2

 destroyOnClose/2 indicates whether a pane should be destroyed when it is
closed.

 direction(This, Direction)

 direction/2 determines the direction of the docked pane.

 dock(This)

 dock/1 indicates that a pane should be docked.

 dockable(This)

 dockable/2

 dockable/2 specifies whether a frame can be docked or not.

 fixed(This)

 fixed/1 forces a pane to be fixed size so that it cannot be resized.

 float(This)

 float/1 indicates that a pane should be floated.

 floatable(This)

 floatable/2

 floatable/2 sets whether the user will be able to undock a pane and turn it
into a floating window.

 floatingPosition(This, Pos)

 floatingPosition/3 sets the position of the floating pane.

 floatingPosition(This, X, Y)

 floatingSize(This, Size)

 floatingSize/3 sets the size of the floating pane.

 floatingSize(This, X, Y)

 getDirection(This)

 getFloatingPosition(This)

 getFloatingSize(This)

 getFrame(This)

 getLayer(This)

 getPosition(This)

 getRow(This)

 getWindow(This)

 gripper(This)

 gripper/2

 gripper/2 indicates that a gripper should be drawn for the pane.

 gripperTop(This)

 gripperTop/2

 gripperTop/2 indicates that a gripper should be drawn at the top of the pane.

 hasBorder(This)

 hasBorder/1 returns true if the pane displays a border.

 hasCaption(This)

 hasCaption/1 returns true if the pane displays a caption.

 hasCloseButton(This)

 hasCloseButton/1 returns true if the pane displays a button to close the pane.

 hasFlag(This, Flag)

 hasFlag/2 returns true if the property specified by flag is active for the
pane.

 hasGripper(This)

 hasGripper/1 returns true if the pane displays a gripper.

 hasGripperTop(This)

 hasGripper/1 returns true if the pane displays a gripper at the top.

 hasMaximizeButton(This)

 hasMaximizeButton/1 returns true if the pane displays a button to maximize the
pane.

 hasMinimizeButton(This)

 hasMinimizeButton/1 returns true if the pane displays a button to minimize the
pane.

 hasPinButton(This)

 hasPinButton/1 returns true if the pane displays a button to float the pane.

 hide(This)

 hide/1 indicates that a pane should be hidden.

 isBottomDockable(This)

 isBottomDockable/1 returns true if the pane can be docked at the bottom of the
managed frame.

 isDocked(This)

 isDocked/1 returns true if the pane is currently docked.

 isFixed(This)

 isFixed/1 returns true if the pane cannot be resized.

 isFloatable(This)

 isFloatable/1 returns true if the pane can be undocked and displayed as a
floating window.

 isFloating(This)

 isFloating/1 returns true if the pane is floating.

 isLeftDockable(This)

 isLeftDockable/1 returns true if the pane can be docked on the left of the
managed frame.

 isMovable(This)

 IsMoveable() returns true if the docked frame can be undocked or moved to
another dock position.

 isOk(This)

 isOk/1 returns true if the wxAuiPaneInfo structure is valid.

 isResizable(This)

 isResizable/1 returns true if the pane can be resized.

 isRightDockable(This)

 isRightDockable/1 returns true if the pane can be docked on the right of the
managed frame.

 isShown(This)

 isShown/1 returns true if the pane is currently shown.

 isToolbar(This)

 isToolbar/1 returns true if the pane contains a toolbar.

 isTopDockable(This)

 isTopDockable/1 returns true if the pane can be docked at the top of the
managed frame.

 layer(This, Layer)

 layer/2 determines the layer of the docked pane.

 left(This)

 left/1 sets the pane dock position to the left side of the frame.

 leftDockable(This)

 leftDockable/2

 leftDockable/2 indicates whether a pane can be docked on the left of the
frame.

 maximizeButton(This)

 maximizeButton/2

 maximizeButton/2 indicates that a maximize button should be drawn for the
pane.

 maxSize(This, Size)

 maxSize/3 sets the maximum size of the pane.

 maxSize(This, X, Y)

 minimizeButton(This)

 minimizeButton/2

 minimizeButton/2 indicates that a minimize button should be drawn for the
pane.

 minSize(This, Size)

 minSize/3 sets the minimum size of the pane.

 minSize(This, X, Y)

 movable(This)

 movable/2

 Movable indicates whether a frame can be moved.

 name(This, N)

 name/2 sets the name of the pane so it can be referenced in lookup functions.

 new()

 new(C)

 Copy constructor.

 paneBorder(This)

 paneBorder/2

 PaneBorder indicates that a border should be drawn for the pane.

 pinButton(This)

 pinButton/2

 pinButton/2 indicates that a pin button should be drawn for the pane.

 position(This, Pos)

 position/2 determines the position of the docked pane.

 resizable(This)

 resizable/2

 resizable/2 allows a pane to be resized if the parameter is true, and forces
it to be a fixed size if the parameter is false.

 right(This)

 right/1 sets the pane dock position to the right side of the frame.

 rightDockable(This)

 rightDockable/2

 rightDockable/2 indicates whether a pane can be docked on the right of the
frame.

 row(This, Row)

 row/2 determines the row of the docked pane.

 safeSet(This, Source)

 Write the safe parts of a PaneInfo object "source" into "this".

 setFlag(This, Flag, Option_state)

 setFlag/3 turns the property given by flag on or off with the option_state
parameter.

 show(This)

 show/2

 show/2 indicates that a pane should be shown.

 toolbarPane(This)

 toolbarPane/1 specifies that the pane should adopt the default toolbar pane
settings.

 top(This)

 top/1 sets the pane dock position to the top of the frame.

 topDockable(This)

 topDockable/2

 topDockable/2 indicates whether a pane can be docked at the top of the frame.

 window(This, W)

 window/2 assigns the window pointer that the wxAuiPaneInfo should use.

 Types

 Link to this type

 wxAuiPaneInfo()

 View Source

 -type wxAuiPaneInfo() :: wx:wx_object().

 Functions

 Link to this function

 bestSize(This, Size)

 View Source

 -spec bestSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

bestSize/3 sets the ideal size for the pane.
The docking manager will attempt to use this size as much as possible when
docking or floating the pane.

 Link to this function

 bestSize(This, X, Y)

 View Source

 -spec bestSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 Link to this function

 bottom(This)

 View Source

 -spec bottom(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

bottom/1 sets the pane dock position to the bottom side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_BOTTOM).

 Link to this function

 bottomDockable(This)

 View Source

 -spec bottomDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 bottomDockable/2

 View Source

 -spec bottomDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

bottomDockable/2 indicates whether a pane can be docked at the bottom of the
frame.

 Link to this function

 caption(This, C)

 View Source

 -spec caption(This, C) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), C :: unicode:chardata().

caption/2 sets the caption of the pane.

 Link to this function

 captionVisible(This)

 View Source

 -spec captionVisible(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 captionVisible/2

 View Source

 -spec captionVisible(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

CaptionVisible indicates that a pane caption should be visible.
If false, no pane caption is drawn.

 Link to this function

 centre(This)

 View Source

 -spec centre(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Center() (not implemented in wx) sets the pane dock position to the left side
of the frame.
The centre pane is the space in the middle after all border panes (left, top,
right, bottom) are subtracted from the layout. This is the same thing as calling
Direction(wxAUI_DOCK_CENTRE).

 Link to this function

 centrePane(This)

 View Source

 -spec centrePane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

centrePane/1 specifies that the pane should adopt the default center pane
settings.
Centre panes usually do not have caption bars. This function provides an easy
way of preparing a pane to be displayed in the center dock position.

 Link to this function

 closeButton(This)

 View Source

 -spec closeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 closeButton/2

 View Source

 -spec closeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

closeButton/2 indicates that a close button should be drawn for the pane.

 Link to this function

 defaultPane(This)

 View Source

 -spec defaultPane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

defaultPane/1 specifies that the pane should adopt the default pane settings.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAuiPaneInfo()) -> ok.

Destroys the object.

 Link to this function

 destroyOnClose(This)

 View Source

 -spec destroyOnClose(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 destroyOnClose/2

 View Source

 -spec destroyOnClose(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

destroyOnClose/2 indicates whether a pane should be destroyed when it is
closed.
Normally a pane is simply hidden when the close button is clicked. Setting
DestroyOnClose to true will cause the window to be destroyed when the user
clicks the pane's close button.

 Link to this function

 direction(This, Direction)

 View Source

 -spec direction(This, Direction) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Direction :: integer().

direction/2 determines the direction of the docked pane.
It is functionally the same as calling left/1, right/1, top/1 or
bottom/1, except that docking direction may be specified programmatically via
the parameter.

 Link to this function

 dock(This)

 View Source

 -spec dock(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

dock/1 indicates that a pane should be docked.
It is the opposite of float/1.

 Link to this function

 dockable(This)

 View Source

 -spec dockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 dockable/2

 View Source

 -spec dockable(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

dockable/2 specifies whether a frame can be docked or not.
It is the same as specifying
TopDockable(b).BottomDockable(b).LeftDockable(b).RightDockable(b).

 Link to this function

 fixed(This)

 View Source

 -spec fixed(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

fixed/1 forces a pane to be fixed size so that it cannot be resized.
After calling fixed/1, isFixed/1 will return true.

 Link to this function

 float(This)

 View Source

 -spec float(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

float/1 indicates that a pane should be floated.
It is the opposite of dock/1.

 Link to this function

 floatable(This)

 View Source

 -spec floatable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 floatable/2

 View Source

 -spec floatable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

floatable/2 sets whether the user will be able to undock a pane and turn it
into a floating window.

 Link to this function

 floatingPosition(This, Pos)

 View Source

 -spec floatingPosition(This, Pos) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Pos :: {X :: integer(), Y :: integer()}.

floatingPosition/3 sets the position of the floating pane.

 Link to this function

 floatingPosition(This, X, Y)

 View Source

 -spec floatingPosition(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 Link to this function

 floatingSize(This, Size)

 View Source

 -spec floatingSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

floatingSize/3 sets the size of the floating pane.

 Link to this function

 floatingSize(This, X, Y)

 View Source

 -spec floatingSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 Link to this function

 getDirection(This)

 View Source

 -spec getDirection(This) -> integer() when This :: wxAuiPaneInfo().

 Link to this function

 getFloatingPosition(This)

 View Source

 -spec getFloatingPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxAuiPaneInfo().

 Link to this function

 getFloatingSize(This)

 View Source

 -spec getFloatingSize(This) -> {W :: integer(), H :: integer()} when This :: wxAuiPaneInfo().

 Link to this function

 getFrame(This)

 View Source

 -spec getFrame(This) -> wxFrame:wxFrame() when This :: wxAuiPaneInfo().

 Link to this function

 getLayer(This)

 View Source

 -spec getLayer(This) -> integer() when This :: wxAuiPaneInfo().

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> integer() when This :: wxAuiPaneInfo().

 Link to this function

 getRow(This)

 View Source

 -spec getRow(This) -> integer() when This :: wxAuiPaneInfo().

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxAuiPaneInfo().

 Link to this function

 gripper(This)

 View Source

 -spec gripper(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 gripper/2

 View Source

 -spec gripper(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

gripper/2 indicates that a gripper should be drawn for the pane.

 Link to this function

 gripperTop(This)

 View Source

 -spec gripperTop(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 gripperTop/2

 View Source

 -spec gripperTop(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {attop, boolean()}.

gripperTop/2 indicates that a gripper should be drawn at the top of the pane.

 Link to this function

 hasBorder(This)

 View Source

 -spec hasBorder(This) -> boolean() when This :: wxAuiPaneInfo().

hasBorder/1 returns true if the pane displays a border.

 Link to this function

 hasCaption(This)

 View Source

 -spec hasCaption(This) -> boolean() when This :: wxAuiPaneInfo().

hasCaption/1 returns true if the pane displays a caption.

 Link to this function

 hasCloseButton(This)

 View Source

 -spec hasCloseButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasCloseButton/1 returns true if the pane displays a button to close the pane.

 Link to this function

 hasFlag(This, Flag)

 View Source

 -spec hasFlag(This, Flag) -> boolean() when This :: wxAuiPaneInfo(), Flag :: integer().

hasFlag/2 returns true if the property specified by flag is active for the
pane.

 Link to this function

 hasGripper(This)

 View Source

 -spec hasGripper(This) -> boolean() when This :: wxAuiPaneInfo().

hasGripper/1 returns true if the pane displays a gripper.

 Link to this function

 hasGripperTop(This)

 View Source

 -spec hasGripperTop(This) -> boolean() when This :: wxAuiPaneInfo().

hasGripper/1 returns true if the pane displays a gripper at the top.

 Link to this function

 hasMaximizeButton(This)

 View Source

 -spec hasMaximizeButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasMaximizeButton/1 returns true if the pane displays a button to maximize the
pane.

 Link to this function

 hasMinimizeButton(This)

 View Source

 -spec hasMinimizeButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasMinimizeButton/1 returns true if the pane displays a button to minimize the
pane.

 Link to this function

 hasPinButton(This)

 View Source

 -spec hasPinButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasPinButton/1 returns true if the pane displays a button to float the pane.

 Link to this function

 hide(This)

 View Source

 -spec hide(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

hide/1 indicates that a pane should be hidden.

 Link to this function

 isBottomDockable(This)

 View Source

 -spec isBottomDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isBottomDockable/1 returns true if the pane can be docked at the bottom of the
managed frame.
See: IsDockable() (not implemented in wx)

 Link to this function

 isDocked(This)

 View Source

 -spec isDocked(This) -> boolean() when This :: wxAuiPaneInfo().

isDocked/1 returns true if the pane is currently docked.

 Link to this function

 isFixed(This)

 View Source

 -spec isFixed(This) -> boolean() when This :: wxAuiPaneInfo().

isFixed/1 returns true if the pane cannot be resized.

 Link to this function

 isFloatable(This)

 View Source

 -spec isFloatable(This) -> boolean() when This :: wxAuiPaneInfo().

isFloatable/1 returns true if the pane can be undocked and displayed as a
floating window.

 Link to this function

 isFloating(This)

 View Source

 -spec isFloating(This) -> boolean() when This :: wxAuiPaneInfo().

isFloating/1 returns true if the pane is floating.

 Link to this function

 isLeftDockable(This)

 View Source

 -spec isLeftDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isLeftDockable/1 returns true if the pane can be docked on the left of the
managed frame.
See: IsDockable() (not implemented in wx)

 Link to this function

 isMovable(This)

 View Source

 -spec isMovable(This) -> boolean() when This :: wxAuiPaneInfo().

IsMoveable() returns true if the docked frame can be undocked or moved to
another dock position.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxAuiPaneInfo().

isOk/1 returns true if the wxAuiPaneInfo structure is valid.
A pane structure is valid if it has an associated window.

 Link to this function

 isResizable(This)

 View Source

 -spec isResizable(This) -> boolean() when This :: wxAuiPaneInfo().

isResizable/1 returns true if the pane can be resized.

 Link to this function

 isRightDockable(This)

 View Source

 -spec isRightDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isRightDockable/1 returns true if the pane can be docked on the right of the
managed frame.
See: IsDockable() (not implemented in wx)

 Link to this function

 isShown(This)

 View Source

 -spec isShown(This) -> boolean() when This :: wxAuiPaneInfo().

isShown/1 returns true if the pane is currently shown.

 Link to this function

 isToolbar(This)

 View Source

 -spec isToolbar(This) -> boolean() when This :: wxAuiPaneInfo().

isToolbar/1 returns true if the pane contains a toolbar.

 Link to this function

 isTopDockable(This)

 View Source

 -spec isTopDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isTopDockable/1 returns true if the pane can be docked at the top of the
managed frame.
See: IsDockable() (not implemented in wx)

 Link to this function

 layer(This, Layer)

 View Source

 -spec layer(This, Layer) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Layer :: integer().

layer/2 determines the layer of the docked pane.
The dock layer is similar to an onion, the inner-most layer being layer 0. Each
shell moving in the outward direction has a higher layer number. This allows for
more complex docking layout formation.

 Link to this function

 left(This)

 View Source

 -spec left(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

left/1 sets the pane dock position to the left side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_LEFT).

 Link to this function

 leftDockable(This)

 View Source

 -spec leftDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 leftDockable/2

 View Source

 -spec leftDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

leftDockable/2 indicates whether a pane can be docked on the left of the
frame.

 Link to this function

 maximizeButton(This)

 View Source

 -spec maximizeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 maximizeButton/2

 View Source

 -spec maximizeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

maximizeButton/2 indicates that a maximize button should be drawn for the
pane.

 Link to this function

 maxSize(This, Size)

 View Source

 -spec maxSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

maxSize/3 sets the maximum size of the pane.

 Link to this function

 maxSize(This, X, Y)

 View Source

 -spec maxSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 Link to this function

 minimizeButton(This)

 View Source

 -spec minimizeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 minimizeButton/2

 View Source

 -spec minimizeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

minimizeButton/2 indicates that a minimize button should be drawn for the
pane.

 Link to this function

 minSize(This, Size)

 View Source

 -spec minSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

minSize/3 sets the minimum size of the pane.
Please note that this is only partially supported as of this writing.

 Link to this function

 minSize(This, X, Y)

 View Source

 -spec minSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 Link to this function

 movable(This)

 View Source

 -spec movable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 movable/2

 View Source

 -spec movable(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

Movable indicates whether a frame can be moved.

 Link to this function

 name(This, N)

 View Source

 -spec name(This, N) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), N :: unicode:chardata().

name/2 sets the name of the pane so it can be referenced in lookup functions.
If a name is not specified by the user, a random name is assigned to the pane
when it is added to the manager.

 Link to this function

 new()

 View Source

 -spec new() -> wxAuiPaneInfo().

 Link to this function

 new(C)

 View Source

 -spec new(C) -> wxAuiPaneInfo() when C :: wxAuiPaneInfo().

Copy constructor.

 Link to this function

 paneBorder(This)

 View Source

 -spec paneBorder(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 paneBorder/2

 View Source

 -spec paneBorder(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

PaneBorder indicates that a border should be drawn for the pane.

 Link to this function

 pinButton(This)

 View Source

 -spec pinButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 pinButton/2

 View Source

 -spec pinButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

pinButton/2 indicates that a pin button should be drawn for the pane.

 Link to this function

 position(This, Pos)

 View Source

 -spec position(This, Pos) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Pos :: integer().

position/2 determines the position of the docked pane.

 Link to this function

 resizable(This)

 View Source

 -spec resizable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 resizable/2

 View Source

 -spec resizable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {resizable, boolean()}.

resizable/2 allows a pane to be resized if the parameter is true, and forces
it to be a fixed size if the parameter is false.
This is simply an antonym for fixed/1.

 Link to this function

 right(This)

 View Source

 -spec right(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

right/1 sets the pane dock position to the right side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_RIGHT).

 Link to this function

 rightDockable(This)

 View Source

 -spec rightDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 rightDockable/2

 View Source

 -spec rightDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

rightDockable/2 indicates whether a pane can be docked on the right of the
frame.

 Link to this function

 row(This, Row)

 View Source

 -spec row(This, Row) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Row :: integer().

row/2 determines the row of the docked pane.

 Link to this function

 safeSet(This, Source)

 View Source

 -spec safeSet(This, Source) -> ok when This :: wxAuiPaneInfo(), Source :: wxAuiPaneInfo().

Write the safe parts of a PaneInfo object "source" into "this".
"Safe parts" are all non-UI elements (e.g. all layout determining parameters
like the size, position etc.). "Unsafe parts" (pointers to button, frame and
window) are not modified by this write operation.
Remark: This method is used when loading perspectives.

 Link to this function

 setFlag(This, Flag, Option_state)

 View Source

 -spec setFlag(This, Flag, Option_state) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Flag :: integer(), Option_state :: boolean().

setFlag/3 turns the property given by flag on or off with the option_state
parameter.

 Link to this function

 show(This)

 View Source

 -spec show(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 show/2

 View Source

 -spec show(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {show, boolean()}.

show/2 indicates that a pane should be shown.

 Link to this function

 toolbarPane(This)

 View Source

 -spec toolbarPane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

toolbarPane/1 specifies that the pane should adopt the default toolbar pane
settings.

 Link to this function

 top(This)

 View Source

 -spec top(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

top/1 sets the pane dock position to the top of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_TOP).

 Link to this function

 topDockable(This)

 View Source

 -spec topDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

 Link to this function

 topDockable/2

 View Source

 -spec topDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

topDockable/2 indicates whether a pane can be docked at the top of the frame.

 Link to this function

 window(This, W)

 View Source

 -spec window(This, W) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), W :: wxWindow:wxWindow().

window/2 assigns the window pointer that the wxAuiPaneInfo should use.
This normally does not need to be specified, as the window pointer is
automatically assigned to the wxAuiPaneInfo structure as soon as it is added
to the manager.

wxAuiSimpleTabArt

Functions for wxAuiSimpleTabArt class
Another standard tab art provider for wxAuiNotebook.
wxAuiSimpleTabArt is derived from wxAuiTabArt demonstrating how to write
a completely new tab art class. It can also be used as alternative to
wxAuiDefaultTabArt (not implemented in wx).
This class is derived (and can use functions) from: wxAuiTabArt
wxWidgets docs:
wxAuiSimpleTabArt

 Summary

 Types

 wxAuiSimpleTabArt()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Types

 Link to this type

 wxAuiSimpleTabArt()

 View Source

 -type wxAuiSimpleTabArt() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxAuiSimpleTabArt()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxAuiSimpleTabArt().

wxAuiTabArt

Functions for wxAuiTabArt class
Tab art provider defines all the drawing functions used by wxAuiNotebook.
This allows the wxAuiNotebook to have a pluggable look-and-feel.
By default, a wxAuiNotebook uses an instance of this class called
wxAuiDefaultTabArt (not implemented in wx) which provides bitmap art and a
colour scheme that is adapted to the major platforms' look. You can either
derive from that class to alter its behaviour or write a completely new tab art
class.
Another example of creating a new wxAuiNotebook tab bar is
wxAuiSimpleTabArt.
Call wxAuiNotebook:setArtProvider/2 to make use of this new tab art.
wxWidgets docs:
wxAuiTabArt

 Summary

 Types

 wxAuiTabArt()

 Functions

 setActiveColour(This, Colour)

 Sets the colour of the selected tab.

 setColour(This, Colour)

 Sets the colour of the inactive tabs.

 setFlags(This, Flags)

 Sets flags.

 setMeasuringFont(This, Font)

 Sets the font used for calculating measurements.

 setNormalFont(This, Font)

 Sets the normal font for drawing labels.

 setSelectedFont(This, Font)

 Sets the font for drawing text for selected UI elements.

 Types

 Link to this type

 wxAuiTabArt()

 View Source

 -type wxAuiTabArt() :: wx:wx_object().

 Functions

 Link to this function

 setActiveColour(This, Colour)

 View Source

 -spec setActiveColour(This, Colour) -> ok when This :: wxAuiTabArt(), Colour :: wx:wx_colour().

Sets the colour of the selected tab.
Since: 2.9.2

 Link to this function

 setColour(This, Colour)

 View Source

 -spec setColour(This, Colour) -> ok when This :: wxAuiTabArt(), Colour :: wx:wx_colour().

Sets the colour of the inactive tabs.
Since: 2.9.2

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxAuiTabArt(), Flags :: integer().

Sets flags.

 Link to this function

 setMeasuringFont(This, Font)

 View Source

 -spec setMeasuringFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the font used for calculating measurements.

 Link to this function

 setNormalFont(This, Font)

 View Source

 -spec setNormalFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the normal font for drawing labels.

 Link to this function

 setSelectedFont(This, Font)

 View Source

 -spec setSelectedFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the font for drawing text for selected UI elements.

wxBitmap

Functions for wxBitmap class
This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour or colour with alpha channel support.
If you need direct access the bitmap data instead going through drawing to it
using wxMemoryDC you need to use the wxPixelData (not implemented in wx)
class (either wxNativePixelData for RGB bitmaps or wxAlphaPixelData for bitmaps
with an additionally alpha channel).
Note that many wxBitmap functions take a type parameter, which is a value
of the ?wxBitmapType enumeration. The validity of those values depends however
on the platform where your program is running and from the wxWidgets
configuration. If all possible wxWidgets settings are used:
In addition, wxBitmap can load and save all formats that wxImage can;
see wxImage for more info. Of course, you must have loaded the wxImage
handlers (see ?wxInitAllImageHandlers() and wxImage::AddHandler (not
implemented in wx)). Note that all available wxBitmapHandlers for a given
wxWidgets port are automatically loaded at startup so you won't need to use
wxBitmap::AddHandler (not implemented in wx).
More on the difference between wxImage and wxBitmap: wxImage is just
a buffer of RGB bytes with an optional buffer for the alpha bytes. It is all
generic, platform independent and image file format independent code. It
includes generic code for scaling, resizing, clipping, and other manipulations
of the image data. OTOH, wxBitmap is intended to be a wrapper of whatever is
the native image format that is quickest/easiest to draw to a DC or to be the
target of the drawing operations performed on a wxMemoryDC. By splitting the
responsibilities between wxImage/wxBitmap like this then it's easier to use
generic code shared by all platforms and image types for generic operations and
platform specific code where performance or compatibility is needed.
Predefined objects (include wx.hrl): ?wxNullBitmap
See:
Overview bitmap,
Overview bitmap,
wxDC:blit/6, wxIcon, wxCursor, wxMemoryDC, wxImage,
wxPixelData (not implemented in wx)
wxWidgets docs: wxBitmap

 Summary

 Types

 wxBitmap()

 Functions

 convertToImage(This)

 Creates an image from a platform-dependent bitmap.

 copyFromIcon(This, Icon)

 Creates the bitmap from an icon.

 create(This, Sz)

 create/3

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 create/4

 Create a bitmap compatible with the given DC, inheriting its magnification
factor.

 destroy(This)

 Creates bitmap corresponding to the given cursor.

 getDepth(This)

 Gets the colour depth of the bitmap.

 getHeight(This)

 Gets the height of the bitmap in pixels.

 getMask(This)

 Gets the associated mask (if any) which may have been loaded from a file or set
for the bitmap.

 getPalette(This)

 Gets the associated palette (if any) which may have been loaded from a file or
set for the bitmap.

 getSubBitmap(This, Rect)

 Returns a sub bitmap of the current one as long as the rect belongs entirely to
the bitmap.

 getWidth(This)

 Gets the width of the bitmap in pixels.

 isOk(This)

 Returns true if bitmap data is present.

 loadFile(This, Name)

 loadFile/3

 Loads a bitmap from a file or resource.

 new()

 Default constructor.

 new/1

 new/2

 Creates this bitmap object from the given image.

 new/3

 Creates a new bitmap.

 new(Bits, Width, Height, Options)

 Creates a bitmap from the given array bits.

 ok(This)

 See: isOk/1.

 saveFile(This, Name, Type)

 saveFile/4

 Saves a bitmap in the named file.

 setDepth(This, Depth)

 Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.

 setHeight(This, Height)

 Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.

 setMask(This, Mask)

 Sets the mask for this bitmap.

 setPalette(This, Palette)

 Sets the associated palette.

 setWidth(This, Width)

 Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.

 Types

 Link to this type

 wxBitmap()

 View Source

 -type wxBitmap() :: wx:wx_object().

 Functions

 Link to this function

 convertToImage(This)

 View Source

 -spec convertToImage(This) -> wxImage:wxImage() when This :: wxBitmap().

Creates an image from a platform-dependent bitmap.
This preserves mask information so that bitmaps and images can be converted back
and forth without loss in that respect.

 Link to this function

 copyFromIcon(This, Icon)

 View Source

 -spec copyFromIcon(This, Icon) -> boolean() when This :: wxBitmap(), Icon :: wxIcon:wxIcon().

Creates the bitmap from an icon.

 Link to this function

 create(This, Sz)

 View Source

 -spec create(This, Sz) -> boolean() when This :: wxBitmap(), Sz :: {W :: integer(), H :: integer()}.

 Link to this function

 create/3

 View Source

 -spec create(This, Width, Height) -> boolean()
 when This :: wxBitmap(), Width :: integer(), Height :: integer();
 (This, Sz, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Sz :: {W :: integer(), H :: integer()},
 Option :: {depth, integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 create/4

 View Source

 -spec create(This, Width, Height, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Width :: integer(),
 Height :: integer(),
 Option :: {depth, integer()};
 (This, Width, Height, Dc) -> boolean()
 when This :: wxBitmap(), Width :: integer(), Height :: integer(), Dc :: wxDC:wxDC().

Create a bitmap compatible with the given DC, inheriting its magnification
factor.
Return: true if the creation was successful.
Since: 3.1.0

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBitmap()) -> ok.

Creates bitmap corresponding to the given cursor.
This can be useful to display a cursor as it cannot be drawn directly on a
window.
This constructor only exists in wxMSW and wxGTK (where it is implemented for
GTK+ 2.8 or later) only.
Since: 3.1.0 Destructor. See overview_refcount_destruct for more info.
If the application omits to delete the bitmap explicitly, the bitmap will be
destroyed automatically by wxWidgets when the application exits.
Warning: Do not delete a bitmap that is selected into a memory device context.

 Link to this function

 getDepth(This)

 View Source

 -spec getDepth(This) -> integer() when This :: wxBitmap().

Gets the colour depth of the bitmap.
A value of 1 indicates a monochrome bitmap.

 Link to this function

 getHeight(This)

 View Source

 -spec getHeight(This) -> integer() when This :: wxBitmap().

Gets the height of the bitmap in pixels.
See: getWidth/1, GetSize() (not implemented in wx)

 Link to this function

 getMask(This)

 View Source

 -spec getMask(This) -> wxMask:wxMask() when This :: wxBitmap().

Gets the associated mask (if any) which may have been loaded from a file or set
for the bitmap.
See: setMask/2, wxMask

 Link to this function

 getPalette(This)

 View Source

 -spec getPalette(This) -> wxPalette:wxPalette() when This :: wxBitmap().

Gets the associated palette (if any) which may have been loaded from a file or
set for the bitmap.
See: wxPalette

 Link to this function

 getSubBitmap(This, Rect)

 View Source

 -spec getSubBitmap(This, Rect) -> wxBitmap()
 when
 This :: wxBitmap(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a sub bitmap of the current one as long as the rect belongs entirely to
the bitmap.
This function preserves bit depth and mask information.

 Link to this function

 getWidth(This)

 View Source

 -spec getWidth(This) -> integer() when This :: wxBitmap().

Gets the width of the bitmap in pixels.
See: getHeight/1, GetSize() (not implemented in wx)

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxBitmap().

Returns true if bitmap data is present.

 Link to this function

 loadFile(This, Name)

 View Source

 -spec loadFile(This, Name) -> boolean() when This :: wxBitmap(), Name :: unicode:chardata().

 Link to this function

 loadFile/3

 View Source

 -spec loadFile(This, Name, [Option]) -> boolean()
 when This :: wxBitmap(), Name :: unicode:chardata(), Option :: {type, wx:wx_enum()}.

Loads a bitmap from a file or resource.
Return: true if the operation succeeded, false otherwise.
Remark: A palette may be associated with the bitmap if one exists (especially
for colour Windows bitmaps), and if the code supports it. You can check if one
has been created by using the getPalette/1 member.
See: saveFile/4

 Link to this function

 new()

 View Source

 -spec new() -> wxBitmap().

Default constructor.
Constructs a bitmap object with no data; an assignment or another member
function such as create/4 or loadFile/3 must be called subsequently.

 Link to this function

 new/1

 View Source

 -spec new(Name) -> wxBitmap() when Name :: unicode:chardata();
 (Sz) -> wxBitmap() when Sz :: {W :: integer(), H :: integer()};
 (Img) -> wxBitmap() when Img :: wxImage:wxImage() | wxBitmap:wxBitmap().

 Link to this function

 new/2

 View Source

 -spec new(Width, Height) -> wxBitmap() when Width :: integer(), Height :: integer();
 (Name, [Option]) -> wxBitmap() when Name :: unicode:chardata(), Option :: {type, wx:wx_enum()};
 (Sz, [Option]) -> wxBitmap()
 when Sz :: {W :: integer(), H :: integer()}, Option :: {depth, integer()};
 (Img, [Option]) -> wxBitmap() when Img :: wxImage:wxImage(), Option :: {depth, integer()}.

Creates this bitmap object from the given image.
This has to be done to actually display an image as you cannot draw an image
directly on a window.
The resulting bitmap will use the provided colour depth (or that of the current
system if depth is ?wxBITMAP_SCREEN_DEPTH) which entails that a colour reduction
may take place.
On Windows, if there is a palette present (set with SetPalette), it will be used
when creating the wxBitmap (most useful in 8-bit display mode). On other
platforms, the palette is currently ignored.

 Link to this function

 new/3

 View Source

 -spec new(Bits, Width, Height) -> wxBitmap()
 when Bits :: binary(), Width :: integer(), Height :: integer();
 (Width, Height, [Option]) -> wxBitmap()
 when Width :: integer(), Height :: integer(), Option :: {depth, integer()}.

Creates a new bitmap.
A depth of ?wxBITMAP_SCREEN_DEPTH indicates the depth of the current screen or
visual.
Some platforms only support 1 for monochrome and ?wxBITMAP_SCREEN_DEPTH for the
current colour setting.
A depth of 32 including an alpha channel is supported under MSW, Mac and GTK+.

 Link to this function

 new(Bits, Width, Height, Options)

 View Source

 -spec new(Bits, Width, Height, [Option]) -> wxBitmap()
 when
 Bits :: binary(), Width :: integer(), Height :: integer(), Option :: {depth, integer()}.

Creates a bitmap from the given array bits.
You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.
For other bit depths, the behaviour is platform dependent: under Windows, the
data is passed without any changes to the underlying CreateBitmap() API. Under
other platforms, only monochrome bitmaps may be created using this constructor
and wxImage should be used for creating colour bitmaps from static data.

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxBitmap().

See: isOk/1.

 Link to this function

 saveFile(This, Name, Type)

 View Source

 -spec saveFile(This, Name, Type) -> boolean()
 when This :: wxBitmap(), Name :: unicode:chardata(), Type :: wx:wx_enum().

 Link to this function

 saveFile/4

 View Source

 -spec saveFile(This, Name, Type, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Name :: unicode:chardata(),
 Type :: wx:wx_enum(),
 Option :: {palette, wxPalette:wxPalette()}.

Saves a bitmap in the named file.
Return: true if the operation succeeded, false otherwise.
Remark: Depending on how wxWidgets has been configured, not all formats may be
available.
See: loadFile/3

 Link to this function

 setDepth(This, Depth)

 View Source

 -spec setDepth(This, Depth) -> ok when This :: wxBitmap(), Depth :: integer().

Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.
Sets the depth member (does not affect the bitmap data).

 Link to this function

 setHeight(This, Height)

 View Source

 -spec setHeight(This, Height) -> ok when This :: wxBitmap(), Height :: integer().

Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.
Sets the height member (does not affect the bitmap data).

 Link to this function

 setMask(This, Mask)

 View Source

 -spec setMask(This, Mask) -> ok when This :: wxBitmap(), Mask :: wxMask:wxMask().

Sets the mask for this bitmap.
Remark: The bitmap object owns the mask once this has been called.
Note: A mask can be set also for bitmap with an alpha channel but doing so under
wxMSW is not recommended because performance of drawing such bitmap is not very
good.
See: getMask/1, wxMask

 Link to this function

 setPalette(This, Palette)

 View Source

 -spec setPalette(This, Palette) -> ok when This :: wxBitmap(), Palette :: wxPalette:wxPalette().

Sets the associated palette.
(Not implemented under GTK+).
See: wxPalette

 Link to this function

 setWidth(This, Width)

 View Source

 -spec setWidth(This, Width) -> ok when This :: wxBitmap(), Width :: integer().

Deprecated: This function is deprecated since version 3.1.2, dimensions and
depth can only be set at construction time.
Sets the width member (does not affect the bitmap data).

wxBitmapButton

Functions for wxBitmapButton class
A bitmap button is a control that contains a bitmap.
Notice that since wxWidgets 2.9.1 bitmap display is supported by the base
wxButton class itself and the only tiny advantage of using this class is
that it allows specifying the bitmap in its constructor, unlike wxButton.
Please see the base class documentation for more information about images
support in wxButton.
Styles
This class supports the following styles:
See: wxButton
This class is derived (and can use functions) from: wxButton wxControl
wxWindow wxEvtHandler
wxWidgets docs:
wxBitmapButton

 Events

Event types emitted from this class:
command_button_clicked

 Summary

 Types

 wxBitmapButton()

 Functions

 create(This, Parent, Id, Bitmap)

 create/5

 Button creation function for two-step creation.

 destroy(This)

 Destroys the object.

 new()

 Default ctor.

 new(Parent, Id, Bitmap)

 new/4

 Constructor, creating and showing a button.

 newCloseButton(Parent, Winid)

 Helper function creating a standard-looking "Close" button.

 Types

 Link to this type

 wxBitmapButton()

 View Source

 -type wxBitmapButton() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Bitmap)

 View Source

 -spec create(This, Parent, Id, Bitmap) -> boolean()
 when
 This :: wxBitmapButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Bitmap, [Option]) -> boolean()
 when
 This :: wxBitmapButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Button creation function for two-step creation.
For more details, see new/4.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBitmapButton()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxBitmapButton().

Default ctor.

 Link to this function

 new(Parent, Id, Bitmap)

 View Source

 -spec new(Parent, Id, Bitmap) -> wxBitmapButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Bitmap :: wxBitmap:wxBitmap().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Bitmap, [Option]) -> wxBitmapButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a button.
Remark: The bitmap parameter is normally the only bitmap you need to provide,
and wxWidgets will draw the button correctly in its different states. If you
want more control, call any of the functions SetBitmapPressed() (not
implemented in wx), wxButton:setBitmapFocus/2, wxButton:setBitmapDisabled/2.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 newCloseButton(Parent, Winid)

 View Source

 -spec newCloseButton(Parent, Winid) -> wxBitmapButton()
 when Parent :: wxWindow:wxWindow(), Winid :: integer().

Helper function creating a standard-looking "Close" button.
To get the best results, platform-specific code may need to be used to create a
small, title bar-like "Close" button. This function is provided to avoid the
need to test for the current platform and creates the button with as native look
as possible.
Return: The new button.
Since: 2.9.5

wxBitmapDataObject

Functions for wxBitmapDataObject class
wxBitmapDataObject is a specialization of wxDataObject for bitmap data.
It can be used without change to paste data into the wxClipboard or a
wxDropSource (not implemented in wx). A user may wish to derive a new class
from this class for providing a bitmap on-demand in order to minimize memory
consumption when offering data in several formats, such as a bitmap and GIF.
This class may be used as is, but getBitmap/1 may be overridden to increase
efficiency.
See:
Overview dnd,
wxDataObject, wxDataObjectSimple (not implemented in wx),
wxFileDataObject, wxTextDataObject, wxDataObject
This class is derived (and can use functions) from: wxDataObject
wxWidgets docs:
wxBitmapDataObject

 Summary

 Types

 wxBitmapDataObject()

 Functions

 destroy(This)

 Destroys the object.

 getBitmap(This)

 Returns the bitmap associated with the data object.

 new()

 new/1

 Constructor, optionally passing a bitmap (otherwise use setBitmap/2 later).

 setBitmap(This, Bitmap)

 Sets the bitmap associated with the data object.

 Types

 Link to this type

 wxBitmapDataObject()

 View Source

 -type wxBitmapDataObject() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBitmapDataObject()) -> ok.

Destroys the object.

 Link to this function

 getBitmap(This)

 View Source

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxBitmapDataObject().

Returns the bitmap associated with the data object.
You may wish to override this method when offering data on-demand, but this is
not required by wxWidgets' internals. Use this method to get data in bitmap form
from the wxClipboard.

 Link to this function

 new()

 View Source

 -spec new() -> wxBitmapDataObject().

 Link to this function

 new/1

 View Source

 -spec new([Option]) -> wxBitmapDataObject() when Option :: {bitmap, wxBitmap:wxBitmap()};
 (Bitmap) -> wxBitmapDataObject() when Bitmap :: wxBitmap:wxBitmap().

Constructor, optionally passing a bitmap (otherwise use setBitmap/2 later).

 Link to this function

 setBitmap(This, Bitmap)

 View Source

 -spec setBitmap(This, Bitmap) -> ok when This :: wxBitmapDataObject(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap associated with the data object.
This method is called when the data object receives data. Usually there will be
no reason to override this function.

wxBookCtrlBase

Functions for wxBookCtrlBase class
A book control is a convenient way of displaying multiple pages of information,
displayed one page at a time. wxWidgets has five variants of this control:
This abstract class is the parent of all these book controls, and provides their
basic interface. This is a pure virtual class so you cannot allocate it
directly.
See:
Overview bookctrl
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxBookCtrlBase

 Summary

 Types

 wxBookCtrlBase()

 Functions

 addPage(This, Page, Text)

 addPage/4

 Adds a new page.

 advanceSelection(This)

 advanceSelection/2

 Cycles through the tabs.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 deleteAllPages(This)

 Deletes all pages.

 deletePage(This, Page)

 Deletes the specified page, and the associated window.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 insertPage/5

 Inserts a new page at the specified position.

 removePage(This, Page)

 Deletes the specified page, without deleting the associated window.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 Link to this type

 wxBookCtrlBase()

 View Source

 -type wxBookCtrlBase() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Text)

 View Source

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxBookCtrlBase(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been
added to this control previously.
The call to this function will generate the page changing and page changed
events if select is true, but not when inserting the very first page (as there
is no previous page selection to switch from in this case and so it wouldn't
make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 Link to this function

 advanceSelection(This)

 View Source

 -spec advanceSelection(This) -> ok when This :: wxBookCtrlBase().

 Link to this function

 advanceSelection/2

 View Source

 -spec advanceSelection(This, [Option]) -> ok
 when This :: wxBookCtrlBase(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 Link to this function

 changeSelection(This, Page)

 View Source

 -spec changeSelection(This, Page) -> integer() when This :: wxBookCtrlBase(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page
changing events.
See overview_events_prog for more information.

 Link to this function

 deleteAllPages(This)

 View Source

 -spec deleteAllPages(This) -> boolean() when This :: wxBookCtrlBase().

Deletes all pages.

 Link to this function

 deletePage(This, Page)

 View Source

 -spec deletePage(This, Page) -> boolean() when This :: wxBookCtrlBase(), Page :: integer().

Deletes the specified page, and the associated window.
The call to this function generates the page changing events when deleting the
currently selected page or a page preceding it in the index order, but it does
not send any events when deleting the last page: while in this case the
selection also changes, it becomes invalid and for compatibility reasons the
control never generates events with the invalid selection index.

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxBookCtrlBase().

Returns the currently selected page or NULL.

 Link to this function

 getPage(This, Page)

 View Source

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxBookCtrlBase(), Page :: integer().

Returns the window at the given page position.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxBookCtrlBase().

Returns the number of pages in the control.

 Link to this function

 getPageText(This, NPage)

 View Source

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxBookCtrlBase(), NPage :: integer().

Returns the string for the given page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxBookCtrlBase().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page
when called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the
platform and so wxBookCtrlEvent:getSelection/1 should be used instead in this
case.

 Link to this function

 hitTest(This, Pt)

 View Source

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxBookCtrlBase(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is
returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at
the specified position.

 Link to this function

 insertPage(This, Index, Page, Text)

 View Source

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 Link to this function

 removePage(This, Page)

 View Source

 -spec removePage(This, Page) -> boolean() when This :: wxBookCtrlBase(), Page :: integer().

Deletes the specified page, without deleting the associated window.
See deletePage/2 for a note about the events generated by this function.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxBookCtrlBase(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> integer() when This :: wxBookCtrlBase(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use
the changeSelection/2 function if you don't want these events to be generated.
See: getSelection/1

wxBookCtrlEvent

Functions for wxBookCtrlEvent class
This class represents the events generated by book controls (wxNotebook,
wxListbook, wxChoicebook, wxTreebook, wxAuiNotebook).
The PAGE_CHANGING events are sent before the current page is changed. It allows
the program to examine the current page (which can be retrieved with
getOldSelection/1) and to veto the page change by calling
wxNotifyEvent:veto/1 if, for example, the current values in the controls of
the old page are invalid.
The PAGE_CHANGED events are sent after the page has been changed and the program
cannot veto it any more, it just informs it about the page change.
To summarize, if the program is interested in validating the page values before
allowing the user to change it, it should process the PAGE_CHANGING event,
otherwise PAGE_CHANGED is probably enough. In any case, it is probably
unnecessary to process both events at once.
See: wxNotebook, wxListbook, wxChoicebook, wxTreebook,
wxToolbook, wxAuiNotebook
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxBookCtrlEvent

 Summary

 Types

 wxBookCtrl()

 wxBookCtrlEvent()

 wxBookCtrlEventType()

 Functions

 getOldSelection(This)

 Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 setOldSelection(This, Page)

 Sets the id of the page selected before the change.

 setSelection(This, Page)

 Sets the selection member variable.

 Types

 Link to this type

 wxBookCtrl()

 View Source

 -type wxBookCtrl() ::
 #wxBookCtrl{type :: wxBookCtrlEvent:wxBookCtrlEventType(),
 nSel :: integer(),
 nOldSel :: integer()}.

 Link to this type

 wxBookCtrlEvent()

 View Source

 -type wxBookCtrlEvent() :: wx:wx_object().

 Link to this type

 wxBookCtrlEventType()

 View Source

 -type wxBookCtrlEventType() ::
 command_notebook_page_changed | command_notebook_page_changing | choicebook_page_changed |
 choicebook_page_changing | treebook_page_changed | treebook_page_changing |
 toolbook_page_changed | toolbook_page_changing | listbook_page_changed |
 listbook_page_changing.

 Functions

 Link to this function

 getOldSelection(This)

 View Source

 -spec getOldSelection(This) -> integer() when This :: wxBookCtrlEvent().

Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxBookCtrlEvent().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: under Windows, getSelection/1 will return the same value as
getOldSelection/1 when called from the EVT_BOOKCTRL_PAGE_CHANGING handler
and not the page which is going to be selected.

 Link to this function

 setOldSelection(This, Page)

 View Source

 -spec setOldSelection(This, Page) -> ok when This :: wxBookCtrlEvent(), Page :: integer().

Sets the id of the page selected before the change.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> ok when This :: wxBookCtrlEvent(), Page :: integer().

Sets the selection member variable.

wxBoxSizer

Functions for wxBoxSizer class
The basic idea behind a box sizer is that windows will most often be laid out in
rather simple basic geometry, typically in a row or a column or several
hierarchies of either.
For more information, please see overview_sizer_box.
See: wxSizer,
Overview sizer
This class is derived (and can use functions) from: wxSizer
wxWidgets docs:
wxBoxSizer

 Summary

 Types

 wxBoxSizer()

 Functions

 destroy(This)

 Destroys the object.

 getOrientation(This)

 Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

 new(Orient)

 Constructor for a wxBoxSizer.

 Types

 Link to this type

 wxBoxSizer()

 View Source

 -type wxBoxSizer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBoxSizer()) -> ok.

Destroys the object.

 Link to this function

 getOrientation(This)

 View Source

 -spec getOrientation(This) -> integer() when This :: wxBoxSizer().

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

 Link to this function

 new(Orient)

 View Source

 -spec new(Orient) -> wxBoxSizer() when Orient :: integer().

Constructor for a wxBoxSizer.
orient may be either of wxVERTICAL or wxHORIZONTAL for creating either a
column sizer or a row sizer.

wxBrush

Functions for wxBrush class
A brush is a drawing tool for filling in areas. It is used for painting the
background of rectangles, ellipses, etc. It has a colour and a style.
On a monochrome display, wxWidgets shows all brushes as white unless the colour
is really black.
Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global
pointers to objects and create them in wxApp::OnInit (not implemented in wx)
or when required.
An application may wish to create brushes with different characteristics
dynamically, and there is the consequent danger that a large number of duplicate
brushes will be created. Therefore an application may wish to get a pointer to a
brush by using the global list of brushes ?wxTheBrushList, and calling the
member function wxBrushList::FindOrCreateBrush() (not implemented in wx).
This class uses reference counting and copy-on-write internally so that
assignments between two instances of this class are very cheap. You can
therefore use actual objects instead of pointers without efficiency problems. If
an instance of this class is changed it will create its own data internally so
that other instances, which previously shared the data using the reference
counting, are not affected.
Predefined objects (include wx.hrl):
See: wxBrushList (not implemented in wx), wxDC, wxDC:setBrush/2
wxWidgets docs: wxBrush

 Summary

 Types

 wxBrush()

 Functions

 destroy(This)

 Destructor.

 getColour(This)

 Returns a reference to the brush colour.

 getStipple(This)

 Gets a pointer to the stipple bitmap.

 getStyle(This)

 Returns the brush style, one of the ?wxBrushStyle values.

 isHatch(This)

 Returns true if the style of the brush is any of hatched fills.

 isOk(This)

 Returns true if the brush is initialised.

 new()

 Default constructor.

 new/1

 Copy constructor, uses reference counting.

 new(Colour, Options)

 Constructs a brush from a colour object and style.

 setColour(This, Colour)

 Sets the brush colour using red, green and blue values.

 setColour(This, Red, Green, Blue)

 setStipple(This, Bitmap)

 Sets the stipple bitmap.

 setStyle(This, Style)

 Sets the brush style.

 Types

 Link to this type

 wxBrush()

 View Source

 -type wxBrush() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBrush()) -> ok.

Destructor.
See overview_refcount_destruct for more info.
Remark: Although all remaining brushes are deleted when the application exits,
the application should try to clean up all brushes itself. This is because
wxWidgets cannot know if a pointer to the brush object is stored in an
application data structure, and there is a risk of double deletion.

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxBrush().

Returns a reference to the brush colour.
See: setColour/4

 Link to this function

 getStipple(This)

 View Source

 -spec getStipple(This) -> wxBitmap:wxBitmap() when This :: wxBrush().

Gets a pointer to the stipple bitmap.
If the brush does not have a wxBRUSHSTYLE_STIPPLE style, this bitmap may be
non-NULL but uninitialised (i.e. wxBitmap:isOk/1 returns false).
See: setStipple/2

 Link to this function

 getStyle(This)

 View Source

 -spec getStyle(This) -> wx:wx_enum() when This :: wxBrush().

Returns the brush style, one of the ?wxBrushStyle values.
See: setStyle/2, setColour/4, setStipple/2

 Link to this function

 isHatch(This)

 View Source

 -spec isHatch(This) -> boolean() when This :: wxBrush().

Returns true if the style of the brush is any of hatched fills.
See: getStyle/1

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxBrush().

Returns true if the brush is initialised.
Notice that an uninitialized brush object can't be queried for any brush
properties and all calls to the accessor methods on it will result in an assert
failure.

 Link to this function

 new()

 View Source

 -spec new() -> wxBrush().

Default constructor.
The brush will be uninitialised, and wxBrush:isOk/1 will return false.

 Link to this function

 new/1

 View Source

 -spec new(Colour) -> wxBrush() when Colour :: wx:wx_colour();
 (Brush) -> wxBrush() when Brush :: wxBrush:wxBrush() | wxBitmap:wxBitmap().

Copy constructor, uses reference counting.

 Link to this function

 new(Colour, Options)

 View Source

 -spec new(Colour, [Option]) -> wxBrush() when Colour :: wx:wx_colour(), Option :: {style, wx:wx_enum()}.

Constructs a brush from a colour object and style.

 Link to this function

 setColour(This, Colour)

 View Source

 -spec setColour(This, Colour) -> ok when This :: wxBrush(), Colour :: wx:wx_colour().

Sets the brush colour using red, green and blue values.
See: getColour/1

 Link to this function

 setColour(This, Red, Green, Blue)

 View Source

 -spec setColour(This, Red, Green, Blue) -> ok
 when This :: wxBrush(), Red :: integer(), Green :: integer(), Blue :: integer().

 Link to this function

 setStipple(This, Bitmap)

 View Source

 -spec setStipple(This, Bitmap) -> ok when This :: wxBrush(), Bitmap :: wxBitmap:wxBitmap().

Sets the stipple bitmap.
Remark: The style will be set to wxBRUSHSTYLE_STIPPLE, unless the bitmap has a
mask associated to it, in which case the style will be set to
wxBRUSHSTYLE_STIPPLE_MASK_OPAQUE.
See: wxBitmap

 Link to this function

 setStyle(This, Style)

 View Source

 -spec setStyle(This, Style) -> ok when This :: wxBrush(), Style :: wx:wx_enum().

Sets the brush style.
See: getStyle/1

wxBufferedDC

Functions for wxBufferedDC class
This class provides a simple way to avoid flicker: when drawing on it,
everything is in fact first drawn on an in-memory buffer (a wxBitmap) and
then copied to the screen, using the associated wxDC, only once, when this
object is destroyed. wxBufferedDC itself is typically associated with
wxClientDC, if you want to use it in your EVT_PAINT handler, you should
look at wxBufferedPaintDC instead.
When used like this, a valid DC must be specified in the constructor while the
buffer bitmap doesn't have to be explicitly provided, by default this class
will allocate the bitmap of required size itself. However using a dedicated
bitmap can speed up the redrawing process by eliminating the repeated creation
and destruction of a possibly big bitmap. Otherwise, wxBufferedDC can be
used in the same way as any other device context.
Another possible use for wxBufferedDC is to use it to maintain a backing
store for the window contents. In this case, the associated DC may be NULL but
a valid backing store bitmap should be specified.
Finally, please note that GTK+ 2.0 as well as macOS provide double buffering
themselves natively. You can either use wxWindow:isDoubleBuffered/1 to
determine whether you need to use buffering or not, or use
wxAutoBufferedPaintDC (not implemented in wx) to avoid needless double
buffering on the systems which already do it automatically.
See: wxDC, wxMemoryDC, wxBufferedPaintDC, wxAutoBufferedPaintDC
(not implemented in wx)
This class is derived (and can use functions) from: wxMemoryDC wxDC
wxWidgets docs:
wxBufferedDC

 Summary

 Types

 wxBufferedDC()

 Functions

 destroy(This)

 Copies everything drawn on the DC so far to the underlying DC associated with
this object, if any.

 init(This, Dc)

 init/3

 init/4

 Initializes the object created using the default constructor.

 new()

 Default constructor.

 new(Dc)

 new/2

 Creates a buffer for the provided dc.

 new/3

 Creates a buffer for the provided dc.

 Types

 Link to this type

 wxBufferedDC()

 View Source

 -type wxBufferedDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBufferedDC()) -> ok.

Copies everything drawn on the DC so far to the underlying DC associated with
this object, if any.

 Link to this function

 init(This, Dc)

 View Source

 -spec init(This, Dc) -> ok when This :: wxBufferedDC(), Dc :: wxDC:wxDC().

 Link to this function

 init/3

 View Source

 -spec init(This, Dc, Area) -> ok
 when This :: wxBufferedDC(), Dc :: wxDC:wxDC(), Area :: {W :: integer(), H :: integer()};
 (This, Dc, [Option]) -> ok
 when
 This :: wxBufferedDC(),
 Dc :: wxDC:wxDC(),
 Option :: {buffer, wxBitmap:wxBitmap()} | {style, integer()}.

 Link to this function

 init/4

 View Source

 -spec init(This, Dc, Area, [Option]) -> ok
 when
 This :: wxBufferedDC(),
 Dc :: wxDC:wxDC(),
 Area :: {W :: integer(), H :: integer()},
 Option :: {style, integer()}.

Initializes the object created using the default constructor.
Please see the constructors for parameter details.

 Link to this function

 new()

 View Source

 -spec new() -> wxBufferedDC().

Default constructor.
You must call one of the init/4 methods later in order to use the device
context.

 Link to this function

 new(Dc)

 View Source

 -spec new(Dc) -> wxBufferedDC() when Dc :: wxDC:wxDC().

 Link to this function

 new/2

 View Source

 -spec new(Dc, Area) -> wxBufferedDC() when Dc :: wxDC:wxDC(), Area :: {W :: integer(), H :: integer()};
 (Dc, [Option]) -> wxBufferedDC()
 when Dc :: wxDC:wxDC(), Option :: {buffer, wxBitmap:wxBitmap()} | {style, integer()}.

Creates a buffer for the provided dc.
init/4 must not be called when using this constructor.

 Link to this function

 new/3

 View Source

 -spec new(Dc, Area, [Option]) -> wxBufferedDC()
 when
 Dc :: wxDC:wxDC(),
 Area :: {W :: integer(), H :: integer()},
 Option :: {style, integer()}.

Creates a buffer for the provided dc.
init/4 must not be called when using this constructor.

wxBufferedPaintDC

Functions for wxBufferedPaintDC class
This is a subclass of wxBufferedDC which can be used inside of an
EVT_PAINT() event handler to achieve double-buffered drawing. Just use this
class instead of wxPaintDC and make sure wxWindow:setBackgroundStyle/2 is
called with wxBG_STYLE_PAINT somewhere in the class initialization code, and
that's all you have to do to (mostly) avoid flicker. The only thing to watch out
for is that if you are using this class together with wxScrolled (not
implemented in wx), you probably do not want to call
wxScrolledWindow:prepareDC/2 on it as it already does this internally for the
real underlying wxPaintDC.
See: wxDC, wxBufferedDC, wxAutoBufferedPaintDC (not implemented in
wx), wxPaintDC
This class is derived (and can use functions) from: wxBufferedDC
wxMemoryDC wxDC
wxWidgets docs:
wxBufferedPaintDC

 Summary

 Types

 wxBufferedPaintDC()

 Functions

 destroy(This)

 Copies everything drawn on the DC so far to the window associated with this
object, using a wxPaintDC.

 new(Window)

 new/2

 new/3

 As with wxBufferedDC, you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size
of the client part of the window is used).

 Types

 Link to this type

 wxBufferedPaintDC()

 View Source

 -type wxBufferedPaintDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxBufferedPaintDC()) -> ok.

Copies everything drawn on the DC so far to the window associated with this
object, using a wxPaintDC.

 Link to this function

 new(Window)

 View Source

 -spec new(Window) -> wxBufferedPaintDC() when Window :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Window, Buffer) -> wxBufferedPaintDC()
 when Window :: wxWindow:wxWindow(), Buffer :: wxBitmap:wxBitmap();
 (Window, [Option]) -> wxBufferedPaintDC()
 when Window :: wxWindow:wxWindow(), Option :: {style, integer()}.

 Link to this function

 new/3

 View Source

 -spec new(Window, Buffer, [Option]) -> wxBufferedPaintDC()
 when
 Window :: wxWindow:wxWindow(),
 Buffer :: wxBitmap:wxBitmap(),
 Option :: {style, integer()}.

As with wxBufferedDC, you may either provide the bitmap to be used for
buffering or let this object create one internally (in the latter case, the size
of the client part of the window is used).
Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the
client area of the window is buffered, or wxBUFFER_VIRTUAL_AREA to indicate that
the buffer bitmap covers the virtual area.

wxButton

Functions for wxButton class
A button is a control that contains a text string, and is one of the most common
elements of a GUI.
It may be placed on a wxDialog or on a wxPanel panel, or indeed on
almost any other window.
By default, i.e. if none of the alignment styles are specified, the label is
centered both horizontally and vertically. If the button has both a label and a
bitmap, the alignment styles above specify the location of the rectangle
combining both the label and the bitmap and the bitmap position set with
wxButton::SetBitmapPosition() (not implemented in wx) defines the relative
position of the bitmap with respect to the label (however currently non-default
alignment combinations are not implemented on all platforms).
Since version 2.9.1 wxButton supports showing both text and an image
(currently only when using wxMSW, wxGTK or wxOSX/Cocoa ports), see SetBitmap()
(not implemented in wx) and setBitmapLabel/2, setBitmapDisabled/2 &c
methods. In the previous wxWidgets versions this functionality was only
available in (the now trivial) wxBitmapButton class which was only capable
of showing an image without text.
A button may have either a single image for all states or different images for
the following states (different images are not currently supported under macOS
where the normal image is used for all states):
All of the bitmaps must be of the same size and the normal bitmap must be set
first (to a valid bitmap), before setting any other ones. Also, if the size of
the bitmaps is changed later, you need to change the size of the normal bitmap
before setting any other bitmaps with the new size (and you do need to reset all
of them as their original values can be lost when the normal bitmap size
changes).
The position of the image inside the button be configured using
SetBitmapPosition() (not implemented in wx). By default the image is on the
left of the text.
Please also notice that GTK+ uses a global setting called gtk-button-images to
determine if the images should be shown in the buttons at all. If it is off
(which is the case in e.g. Gnome 2.28 by default), no images will be shown,
consistently with the native behaviour.
Styles
This class supports the following styles:
See: wxBitmapButton
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs: wxButton

 Events

Event types emitted from this class:
command_button_clicked

 Summary

 Types

 wxButton()

 Functions

 create(This, Parent, Id)

 create/4

 Button creation function for two-step creation.

 destroy(This)

 Destroys the object.

 getBitmapDisabled(This)

 Returns the bitmap for the disabled state, which may be invalid.

 getBitmapFocus(This)

 Returns the bitmap for the focused state, which may be invalid.

 getBitmapLabel(This)

 Returns the bitmap for the normal state.

 getDefaultSize()

 Returns the default size for the buttons.

 getDefaultSize(Win)

 new()

 Default ctor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a button.

 setBitmapDisabled(This, Bitmap)

 Sets the bitmap for the disabled button appearance.

 setBitmapFocus(This, Bitmap)

 Sets the bitmap for the button appearance when it has the keyboard focus.

 setBitmapLabel(This, Bitmap)

 Sets the bitmap label for the button.

 setDefault(This)

 This sets the button to be the default item in its top-level window (e.g.

 setLabel(This, Label)

 Sets the string label for the button.

 Types

 Link to this type

 wxButton()

 View Source

 -type wxButton() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxButton(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Button creation function for two-step creation.
For more details, see new/3.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxButton()) -> ok.

Destroys the object.

 Link to this function

 getBitmapDisabled(This)

 View Source

 -spec getBitmapDisabled(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the disabled state, which may be invalid.
See: setBitmapDisabled/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 getBitmapFocus(This)

 View Source

 -spec getBitmapFocus(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the focused state, which may be invalid.
See: setBitmapFocus/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 getBitmapLabel(This)

 View Source

 -spec getBitmapLabel(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the normal state.
This is exactly the same as GetBitmap() (not implemented in wx) but uses a
name backwards-compatible with wxBitmapButton.
See: SetBitmap() (not implemented in wx), setBitmapLabel/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 getDefaultSize()

 View Source

 -spec getDefaultSize() -> {W :: integer(), H :: integer()}.

Returns the default size for the buttons.
It is advised to make all the dialog buttons of the same size and this function
allows retrieving the (platform, and current font dependent) size which should
be the best suited for this.
The optional win argument is new since wxWidgets 3.1.3 and allows to get a
per-monitor DPI specific size.

 Link to this function

 getDefaultSize(Win)

 View Source

 -spec getDefaultSize(Win) -> {W :: integer(), H :: integer()} when Win :: wxWindow:wxWindow().

 Link to this function

 new()

 View Source

 -spec new() -> wxButton().

Default ctor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxButton() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a button.
The preferred way to create standard buttons is to use default value of label.
If no label is supplied and id is one of standard IDs from this list, a
standard label will be used. In other words, if you use a predefined wxID_XXX
constant, just omit the label completely rather than specifying it. In
particular, help buttons (the ones with id of wxID_HELP) under macOS can't
display any label at all and while wxButton will detect if the standard
"Help" label is used and ignore it, using any other label will prevent the
button from correctly appearing as a help button and so should be avoided.
In addition to that, the button will be decorated with stock icons under GTK+ 2.
See: create/4, wxValidator (not implemented in wx)

 Link to this function

 setBitmapDisabled(This, Bitmap)

 View Source

 -spec setBitmapDisabled(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the disabled button appearance.
If bitmap is invalid, the disabled bitmap is set to the automatically
generated greyed out version of the normal bitmap, i.e. the same bitmap as is
used by default if this method is not called at all. Use SetBitmap() (not
implemented in wx) with an invalid bitmap to remove the bitmap completely (for
all states).
See: getBitmapDisabled/1, setBitmapLabel/2, SetBitmapPressed() (not
implemented in wx), setBitmapFocus/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 setBitmapFocus(This, Bitmap)

 View Source

 -spec setBitmapFocus(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the button appearance when it has the keyboard focus.
If bitmap is invalid, the normal bitmap will be used in the focused state.
See: getBitmapFocus/1, setBitmapLabel/2, SetBitmapPressed() (not
implemented in wx), setBitmapDisabled/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 setBitmapLabel(This, Bitmap)

 View Source

 -spec setBitmapLabel(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap label for the button.
Remark: This is the bitmap used for the unselected state, and for all other
states if no other bitmaps are provided.
See: SetBitmap() (not implemented in wx), getBitmapLabel/1
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 Link to this function

 setDefault(This)

 View Source

 -spec setDefault(This) -> wxWindow:wxWindow() when This :: wxButton().

This sets the button to be the default item in its top-level window (e.g.
the panel or the dialog box containing it).
As normal, pressing return causes the default button to be depressed when the
return key is pressed.
See also wxWindow:setFocus/1 which sets the keyboard focus for windows and
text panel items, and wxTopLevelWindow::SetDefaultItem() (not implemented in
wx).
Remark: Under Windows, only dialog box buttons respond to this function.
Return: the old default item (possibly NULL)

 Link to this function

 setLabel(This, Label)

 View Source

 -spec setLabel(This, Label) -> ok when This :: wxButton(), Label :: unicode:chardata().

Sets the string label for the button.

wxCalendarCtrl

Functions for wxCalendarCtrl class
The calendar control allows the user to pick a date. The user can move the
current selection using the keyboard and select the date (generating
EVT_CALENDAR event) by pressing <Return> or double clicking it.
Generic calendar has advanced possibilities for the customization of its
display, described below. If you want to use these possibilities on every
platform, use wxGenericCalendarCtrl instead of wxCalendarCtrl.
All global settings (such as colours and fonts used) can, of course, be changed.
But also, the display style for each day in the month can be set independently
using wxCalendarDateAttr class.
An item without custom attributes is drawn with the default colours and font and
without border, but setting custom attributes with setAttr/3 allows modifying
its appearance. Just create a custom attribute object and set it for the day you
want to be displayed specially (note that the control will take ownership of the
pointer, i.e. it will delete it itself). A day may be marked as being a holiday,
even if it is not recognized as one by wx_datetime()
using the wxCalendarDateAttr:setHoliday/2 method.
As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_PAGE_CHANGED
event handler.
If neither the wxCAL_SUNDAY_FIRST or wxCAL_MONDAY_FIRST style is given, the
first day of the week is determined from operating system's settings, if
possible. The native wxGTK calendar chooses the first weekday based on locale,
and these styles have no effect on it.
Styles
This class supports the following styles:
Note: Changing the selected date will trigger an EVT_CALENDAR_DAY, MONTH or YEAR
event as well as an EVT_CALENDAR_SEL_CHANGED event.
See:
Examples,
wxCalendarDateAttr, wxCalendarEvent, wxDatePickerCtrl
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxCalendarCtrl

 Events

Event types emitted from this class:
calendar_sel_changed,
calendar_weekday_clicked

 Summary

 Types

 wxCalendarCtrl()

 Functions

 create(This, Parent, Id)

 create/4

 Creates the control.

 destroy(This)

 Destroys the control.

 enableHolidayDisplay(This)

 enableHolidayDisplay/2

 This function should be used instead of changing wxCAL_SHOW_HOLIDAYS style bit
directly.

 enableMonthChange(This)

 enableMonthChange/2

 This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style
bit.

 enableYearChange(This)

 deprecated

 enableYearChange/2

 deprecated

 Deprecated

 getAttr(This, Day)

 Returns the attribute for the given date (should be in the range 1...31).

 getDate(This)

 Gets the currently selected date.

 getHeaderColourBg(This)

 Gets the background colour of the header part of the calendar window.

 getHeaderColourFg(This)

 Gets the foreground colour of the header part of the calendar window.

 getHighlightColourBg(This)

 Gets the background highlight colour.

 getHighlightColourFg(This)

 Gets the foreground highlight colour.

 getHolidayColourBg(This)

 Return the background colour currently used for holiday highlighting.

 getHolidayColourFg(This)

 Return the foreground colour currently used for holiday highlighting.

 hitTest(This, Pos)

 Returns one of wxCalendarHitTestResult constants and fills either date or wd
pointer with the corresponding value depending on the hit test code.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Does the same as create/4 method.

 resetAttr(This, Day)

 Clears any attributes associated with the given day (in the range 1...31).

 setAttr(This, Day, Attr)

 Associates the attribute with the specified date (in the range 1...31).

 setDate(This, Date)

 Sets the current date.

 setHeaderColours(This, ColFg, ColBg)

 Set the colours used for painting the weekdays at the top of the control.

 setHighlightColours(This, ColFg, ColBg)

 Set the colours to be used for highlighting the currently selected date.

 setHoliday(This, Day)

 Marks the specified day as being a holiday in the current month.

 setHolidayColours(This, ColFg, ColBg)

 Sets the colours to be used for the holidays highlighting.

 Types

 Link to this type

 wxCalendarCtrl()

 View Source

 -type wxCalendarCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxCalendarCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxCalendarCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the control.
See wxWindow:new/3 for the meaning of the parameters and the control overview
for the possible styles.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCalendarCtrl()) -> ok.

Destroys the control.

 Link to this function

 enableHolidayDisplay(This)

 View Source

 -spec enableHolidayDisplay(This) -> ok when This :: wxCalendarCtrl().

 Link to this function

 enableHolidayDisplay/2

 View Source

 -spec enableHolidayDisplay(This, [Option]) -> ok
 when This :: wxCalendarCtrl(), Option :: {display, boolean()}.

This function should be used instead of changing wxCAL_SHOW_HOLIDAYS style bit
directly.
It enables or disables the special highlighting of the holidays.

 Link to this function

 enableMonthChange(This)

 View Source

 -spec enableMonthChange(This) -> boolean() when This :: wxCalendarCtrl().

 Link to this function

 enableMonthChange/2

 View Source

 -spec enableMonthChange(This, [Option]) -> boolean()
 when This :: wxCalendarCtrl(), Option :: {enable, boolean()}.

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style
bit.
It allows or disallows the user to change the month interactively. Note that if
the month cannot be changed, the year cannot be changed neither.
Return: true if the value of this option really changed or false if it was
already set to the requested value.

 Link to this function

 enableYearChange(This)

 View Source

 This function is deprecated. wxCalendarCtrl:enableYearChange/1 is deprecated; not available in wxWidgets-2.9 and later.

 -spec enableYearChange(This) -> ok when This :: wxCalendarCtrl().

 Link to this function

 enableYearChange/2

 View Source

 This function is deprecated. wxCalendarCtrl:enableYearChange/2 is deprecated; not available in wxWidgets-2.9 and later.

 -spec enableYearChange(This, [Option]) -> ok
 when This :: wxCalendarCtrl(), Option :: {enable, boolean()}.

Deprecated:
This function should be used instead of changing wxCAL_NO_YEAR_CHANGE style
bit directly. It allows or disallows the user to change the year interactively.
Only in generic wxCalendarCtrl.

 Link to this function

 getAttr(This, Day)

 View Source

 -spec getAttr(This, Day) -> wxCalendarDateAttr:wxCalendarDateAttr()
 when This :: wxCalendarCtrl(), Day :: integer().

Returns the attribute for the given date (should be in the range 1...31).
The returned pointer may be NULL. Only in generic wxCalendarCtrl.

 Link to this function

 getDate(This)

 View Source

 -spec getDate(This) -> wx:wx_datetime() when This :: wxCalendarCtrl().

Gets the currently selected date.

 Link to this function

 getHeaderColourBg(This)

 View Source

 -spec getHeaderColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the background colour of the header part of the calendar window.
This method is currently only implemented in generic wxCalendarCtrl and
always returns wxNullColour in the native versions.
See: setHeaderColours/3

 Link to this function

 getHeaderColourFg(This)

 View Source

 -spec getHeaderColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the foreground colour of the header part of the calendar window.
This method is currently only implemented in generic wxCalendarCtrl and
always returns wxNullColour in the native versions.
See: setHeaderColours/3

 Link to this function

 getHighlightColourBg(This)

 View Source

 -spec getHighlightColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the background highlight colour.
Only in generic wxCalendarCtrl.
This method is currently only implemented in generic wxCalendarCtrl and
always returns wxNullColour in the native versions.
See: setHighlightColours/3

 Link to this function

 getHighlightColourFg(This)

 View Source

 -spec getHighlightColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the foreground highlight colour.
Only in generic wxCalendarCtrl.
This method is currently only implemented in generic wxCalendarCtrl and
always returns wxNullColour in the native versions.
See: setHighlightColours/3

 Link to this function

 getHolidayColourBg(This)

 View Source

 -spec getHolidayColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Return the background colour currently used for holiday highlighting.
Only useful with generic wxCalendarCtrl as native versions currently don't
support holidays display at all and always return wxNullColour.
See: setHolidayColours/3

 Link to this function

 getHolidayColourFg(This)

 View Source

 -spec getHolidayColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Return the foreground colour currently used for holiday highlighting.
Only useful with generic wxCalendarCtrl as native versions currently don't
support holidays display at all and always return wxNullColour.
See: setHolidayColours/3

 Link to this function

 hitTest(This, Pos)

 View Source

 -spec hitTest(This, Pos) -> Result
 when
 Result :: {Res :: wx:wx_enum(), Date :: wx:wx_datetime(), Wd :: wx:wx_enum()},
 This :: wxCalendarCtrl(),
 Pos :: {X :: integer(), Y :: integer()}.

Returns one of wxCalendarHitTestResult constants and fills either date or wd
pointer with the corresponding value depending on the hit test code.
Not implemented in wxGTK currently.

 Link to this function

 new()

 View Source

 -spec new() -> wxCalendarCtrl().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxCalendarCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxCalendarCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Does the same as create/4 method.

 Link to this function

 resetAttr(This, Day)

 View Source

 -spec resetAttr(This, Day) -> ok when This :: wxCalendarCtrl(), Day :: integer().

Clears any attributes associated with the given day (in the range 1...31).
Only in generic wxCalendarCtrl.

 Link to this function

 setAttr(This, Day, Attr)

 View Source

 -spec setAttr(This, Day, Attr) -> ok
 when
 This :: wxCalendarCtrl(),
 Day :: integer(),
 Attr :: wxCalendarDateAttr:wxCalendarDateAttr().

Associates the attribute with the specified date (in the range 1...31).
If the pointer is NULL, the items attribute is cleared. Only in generic
wxCalendarCtrl.

 Link to this function

 setDate(This, Date)

 View Source

 -spec setDate(This, Date) -> boolean() when This :: wxCalendarCtrl(), Date :: wx:wx_datetime().

Sets the current date.
The date parameter must be valid and in the currently valid range as set by
SetDateRange() (not implemented in wx), otherwise the current date is not
changed and the function returns false and, additionally, triggers an assertion
failure if the date is invalid.

 Link to this function

 setHeaderColours(This, ColFg, ColBg)

 View Source

 -spec setHeaderColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(), ColFg :: wx:wx_colour(), ColBg :: wx:wx_colour().

Set the colours used for painting the weekdays at the top of the control.
This method is currently only implemented in generic wxCalendarCtrl and does
nothing in the native versions.

 Link to this function

 setHighlightColours(This, ColFg, ColBg)

 View Source

 -spec setHighlightColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(),
 ColFg :: wx:wx_colour(),
 ColBg :: wx:wx_colour().

Set the colours to be used for highlighting the currently selected date.
This method is currently only implemented in generic wxCalendarCtrl and does
nothing in the native versions.

 Link to this function

 setHoliday(This, Day)

 View Source

 -spec setHoliday(This, Day) -> ok when This :: wxCalendarCtrl(), Day :: integer().

Marks the specified day as being a holiday in the current month.
This method is only implemented in the generic version of the control and does
nothing in the native ones.

 Link to this function

 setHolidayColours(This, ColFg, ColBg)

 View Source

 -spec setHolidayColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(),
 ColFg :: wx:wx_colour(),
 ColBg :: wx:wx_colour().

Sets the colours to be used for the holidays highlighting.
This method is only implemented in the generic version of the control and does
nothing in the native ones. It should also only be called if the window style
includes wxCAL_SHOW_HOLIDAYS flag or enableHolidayDisplay/2 had been called.

wxCalendarDateAttr

Functions for wxCalendarDateAttr class
wxCalendarDateAttr is a custom attributes for a calendar date. The objects
of this class are used with wxCalendarCtrl.
See: wxCalendarCtrl
wxWidgets docs:
wxCalendarDateAttr

 Summary

 Types

 wxCalendarDateAttr()

 Functions

 destroy(This)

 Destroys the object.

 getBackgroundColour(This)

 Returns the background colour set for the calendar date.

 getBorder(This)

 Returns the border set for the calendar date.

 getBorderColour(This)

 Returns the border colour set for the calendar date.

 getFont(This)

 Returns the font set for the calendar date.

 getTextColour(This)

 Returns the text colour set for the calendar date.

 hasBackgroundColour(This)

 Returns true if a non-default text background colour is set.

 hasBorder(This)

 Returns true if a non-default (i.e. any) border is set.

 hasBorderColour(This)

 Returns true if a non-default border colour is set.

 hasFont(This)

 Returns true if a non-default font is set.

 hasTextColour(This)

 Returns true if a non-default text foreground colour is set.

 isHoliday(This)

 Returns true if this calendar day is displayed as a holiday.

 new()

 new/1

 Constructor for specifying all wxCalendarDateAttr properties.

 new(Border, Options)

 Constructor using default properties except the given border.

 setBackgroundColour(This, ColBack)

 Sets the text background colour to use.

 setBorder(This, Border)

 Sets the border to use.

 setBorderColour(This, Col)

 Sets the border colour to use.

 setFont(This, Font)

 Sets the font to use.

 setHoliday(This, Holiday)

 If holiday is true, this calendar day will be displayed as a holiday.

 setTextColour(This, ColText)

 Sets the text (foreground) colour to use.

 Types

 Link to this type

 wxCalendarDateAttr()

 View Source

 -type wxCalendarDateAttr() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCalendarDateAttr()) -> ok.

Destroys the object.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the background colour set for the calendar date.

 Link to this function

 getBorder(This)

 View Source

 -spec getBorder(This) -> wx:wx_enum() when This :: wxCalendarDateAttr().

Returns the border set for the calendar date.

 Link to this function

 getBorderColour(This)

 View Source

 -spec getBorderColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the border colour set for the calendar date.

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxCalendarDateAttr().

Returns the font set for the calendar date.

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the text colour set for the calendar date.

 Link to this function

 hasBackgroundColour(This)

 View Source

 -spec hasBackgroundColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default text background colour is set.

 Link to this function

 hasBorder(This)

 View Source

 -spec hasBorder(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default (i.e. any) border is set.

 Link to this function

 hasBorderColour(This)

 View Source

 -spec hasBorderColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default border colour is set.

 Link to this function

 hasFont(This)

 View Source

 -spec hasFont(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default font is set.

 Link to this function

 hasTextColour(This)

 View Source

 -spec hasTextColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default text foreground colour is set.

 Link to this function

 isHoliday(This)

 View Source

 -spec isHoliday(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if this calendar day is displayed as a holiday.

 Link to this function

 new()

 View Source

 -spec new() -> wxCalendarDateAttr().

 Link to this function

 new/1

 View Source

 -spec new(Border) -> wxCalendarDateAttr() when Border :: wx:wx_enum();
 ([Option]) -> wxCalendarDateAttr()
 when
 Option ::
 {colText, wx:wx_colour()} |
 {colBack, wx:wx_colour()} |
 {colBorder, wx:wx_colour()} |
 {font, wxFont:wxFont()} |
 {border, wx:wx_enum()}.

Constructor for specifying all wxCalendarDateAttr properties.

 Link to this function

 new(Border, Options)

 View Source

 -spec new(Border, [Option]) -> wxCalendarDateAttr()
 when Border :: wx:wx_enum(), Option :: {colBorder, wx:wx_colour()}.

Constructor using default properties except the given border.

 Link to this function

 setBackgroundColour(This, ColBack)

 View Source

 -spec setBackgroundColour(This, ColBack) -> ok
 when This :: wxCalendarDateAttr(), ColBack :: wx:wx_colour().

Sets the text background colour to use.

 Link to this function

 setBorder(This, Border)

 View Source

 -spec setBorder(This, Border) -> ok when This :: wxCalendarDateAttr(), Border :: wx:wx_enum().

Sets the border to use.

 Link to this function

 setBorderColour(This, Col)

 View Source

 -spec setBorderColour(This, Col) -> ok when This :: wxCalendarDateAttr(), Col :: wx:wx_colour().

Sets the border colour to use.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxCalendarDateAttr(), Font :: wxFont:wxFont().

Sets the font to use.

 Link to this function

 setHoliday(This, Holiday)

 View Source

 -spec setHoliday(This, Holiday) -> ok when This :: wxCalendarDateAttr(), Holiday :: boolean().

If holiday is true, this calendar day will be displayed as a holiday.

 Link to this function

 setTextColour(This, ColText)

 View Source

 -spec setTextColour(This, ColText) -> ok when This :: wxCalendarDateAttr(), ColText :: wx:wx_colour().

Sets the text (foreground) colour to use.

wxCalendarEvent

Functions for wxCalendarEvent class
The wxCalendarEvent class is used together with wxCalendarCtrl.
See: wxCalendarCtrl
This class is derived (and can use functions) from: wxDateEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxCalendarEvent

 Summary

 Types

 wxCalendar()

 wxCalendarEvent()

 wxCalendarEventType()

 Functions

 getDate(This)

 Returns the date.

 getWeekDay(This)

 Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler.

 Types

 Link to this type

 wxCalendar()

 View Source

 -type wxCalendar() ::
 #wxCalendar{type :: wxCalendarEvent:wxCalendarEventType(),
 wday :: wx:wx_enum(),
 date :: wx:wx_datetime()}.

 Link to this type

 wxCalendarEvent()

 View Source

 -type wxCalendarEvent() :: wx:wx_object().

 Link to this type

 wxCalendarEventType()

 View Source

 -type wxCalendarEventType() ::
 calendar_sel_changed | calendar_day_changed | calendar_month_changed | calendar_year_changed |
 calendar_doubleclicked | calendar_weekday_clicked.

 Functions

 Link to this function

 getDate(This)

 View Source

 -spec getDate(This) -> wx:wx_datetime() when This :: wxCalendarEvent().

Returns the date.

 Link to this function

 getWeekDay(This)

 View Source

 -spec getWeekDay(This) -> wx:wx_enum() when This :: wxCalendarEvent().

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler.
It doesn't make sense to call this function in other handlers.

wxCaret

Functions for wxCaret class
A caret is a blinking cursor showing the position where the typed text will
appear. Text controls usually have their own caret but wxCaret provides a
way to use a caret in other windows.
Currently, the caret appears as a rectangle of the given size. In the future, it
will be possible to specify a bitmap to be used for the caret shape.
A caret is always associated with a window and the current caret can be
retrieved using wxWindow:getCaret/1. The same caret can't be reused in two
different windows.
wxWidgets docs: wxCaret

 Summary

 Types

 wxCaret()

 Functions

 create(This, Window, Size)

 create(This, Window, Width, Height)

 Creates a caret with the given size (in pixels) and associates it with the
window (same as the equivalent constructors).

 destroy(This)

 Destroys the object.

 getBlinkTime()

 Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all
carets, so this functions is static).

 getPosition(This)

 getSize(This)

 getWindow(This)

 Get the window the caret is associated with.

 hide(This)

 Hides the caret, same as Show(false).

 isOk(This)

 Returns true if the caret was created successfully.

 isVisible(This)

 Returns true if the caret is visible and false if it is permanently hidden (if
it is blinking and not shown currently but will be after the next blink, this
method still returns true).

 move(This, Pt)

 move(This, X, Y)

 Move the caret to given position (in logical coordinates).

 new(Window, Size)

 new(Window, Width, Height)

 Creates a caret with the given size (in pixels) and associates it with the
window.

 setBlinkTime(Milliseconds)

 Sets the blink time for all the carets.

 setSize(This, Size)

 setSize(This, Width, Height)

 Changes the size of the caret.

 show(This)

 show/2

 Shows or hides the caret.

 Types

 Link to this type

 wxCaret()

 View Source

 -type wxCaret() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Window, Size)

 View Source

 -spec create(This, Window, Size) -> boolean()
 when
 This :: wxCaret(),
 Window :: wxWindow:wxWindow(),
 Size :: {W :: integer(), H :: integer()}.

 Link to this function

 create(This, Window, Width, Height)

 View Source

 -spec create(This, Window, Width, Height) -> boolean()
 when
 This :: wxCaret(),
 Window :: wxWindow:wxWindow(),
 Width :: integer(),
 Height :: integer().

Creates a caret with the given size (in pixels) and associates it with the
window (same as the equivalent constructors).

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCaret()) -> ok.

Destroys the object.

 Link to this function

 getBlinkTime()

 View Source

 -spec getBlinkTime() -> integer().

Returns the blink time which is measured in milliseconds and is the time elapsed
between 2 inversions of the caret (blink time of the caret is the same for all
carets, so this functions is static).

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxCaret().

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxCaret().

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxCaret().

Get the window the caret is associated with.

 Link to this function

 hide(This)

 View Source

 -spec hide(This) -> ok when This :: wxCaret().

Hides the caret, same as Show(false).

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxCaret().

Returns true if the caret was created successfully.

 Link to this function

 isVisible(This)

 View Source

 -spec isVisible(This) -> boolean() when This :: wxCaret().

Returns true if the caret is visible and false if it is permanently hidden (if
it is blinking and not shown currently but will be after the next blink, this
method still returns true).

 Link to this function

 move(This, Pt)

 View Source

 -spec move(This, Pt) -> ok when This :: wxCaret(), Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 move(This, X, Y)

 View Source

 -spec move(This, X, Y) -> ok when This :: wxCaret(), X :: integer(), Y :: integer().

Move the caret to given position (in logical coordinates).

 Link to this function

 new(Window, Size)

 View Source

 -spec new(Window, Size) -> wxCaret()
 when Window :: wxWindow:wxWindow(), Size :: {W :: integer(), H :: integer()}.

 Link to this function

 new(Window, Width, Height)

 View Source

 -spec new(Window, Width, Height) -> wxCaret()
 when Window :: wxWindow:wxWindow(), Width :: integer(), Height :: integer().

Creates a caret with the given size (in pixels) and associates it with the
window.

 Link to this function

 setBlinkTime(Milliseconds)

 View Source

 -spec setBlinkTime(Milliseconds) -> ok when Milliseconds :: integer().

Sets the blink time for all the carets.
Warning: Under Windows, this function will change the blink time for all carets
permanently (until the next time it is called), even for carets in other
applications.
See: getBlinkTime/0

 Link to this function

 setSize(This, Size)

 View Source

 -spec setSize(This, Size) -> ok when This :: wxCaret(), Size :: {W :: integer(), H :: integer()}.

 Link to this function

 setSize(This, Width, Height)

 View Source

 -spec setSize(This, Width, Height) -> ok when This :: wxCaret(), Width :: integer(), Height :: integer().

Changes the size of the caret.

 Link to this function

 show(This)

 View Source

 -spec show(This) -> ok when This :: wxCaret().

 Link to this function

 show/2

 View Source

 -spec show(This, [Option]) -> ok when This :: wxCaret(), Option :: {show, boolean()}.

Shows or hides the caret.
Notice that if the caret was hidden N times, it must be shown N times as well to
reappear on the screen.

wxCheckBox

Functions for wxCheckBox class
A checkbox is a labelled box which by default is either on (checkmark is
visible) or off (no checkmark). Optionally (when the wxCHK_3STATE style flag is
set) it can have a third state, called the mixed or undetermined state. Often
this is used as a "Does Not Apply" state.
Styles
This class supports the following styles:
See: wxRadioButton, wxCommandEvent
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxCheckBox

 Events

Event types emitted from this class:
command_checkbox_clicked

 Summary

 Types

 wxCheckBox()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creates the checkbox for two-step construction.

 destroy(This)

 Destructor, destroying the checkbox.

 get3StateValue(This)

 Gets the state of a 3-state checkbox.

 getValue(This)

 Gets the state of a 2-state checkbox.

 is3rdStateAllowedForUser(This)

 Returns whether or not the user can set the checkbox to the third state.

 is3State(This)

 Returns whether or not the checkbox is a 3-state checkbox.

 isChecked(This)

 This is just a maybe more readable synonym for getValue/1: just as the latter,
it returns true if the checkbox is checked and false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a checkbox.

 set3StateValue(This, State)

 Sets the checkbox to the given state.

 setValue(This, State)

 Sets the checkbox to the given state.

 Types

 Link to this type

 wxCheckBox()

 View Source

 -type wxCheckBox() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxCheckBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxCheckBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the checkbox for two-step construction.
See new/4 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCheckBox()) -> ok.

Destructor, destroying the checkbox.

 Link to this function

 get3StateValue(This)

 View Source

 -spec get3StateValue(This) -> wx:wx_enum() when This :: wxCheckBox().

Gets the state of a 3-state checkbox.
Asserts when the function is used with a 2-state checkbox.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> boolean() when This :: wxCheckBox().

Gets the state of a 2-state checkbox.
Return: Returns true if it is checked, false otherwise.

 Link to this function

 is3rdStateAllowedForUser(This)

 View Source

 -spec is3rdStateAllowedForUser(This) -> boolean() when This :: wxCheckBox().

Returns whether or not the user can set the checkbox to the third state.
Return: true if the user can set the third state of this checkbox, false if it
can only be set programmatically or if it's a 2-state checkbox.

 Link to this function

 is3State(This)

 View Source

 -spec is3State(This) -> boolean() when This :: wxCheckBox().

Returns whether or not the checkbox is a 3-state checkbox.
Return: true if this checkbox is a 3-state checkbox, false if it's a 2-state
checkbox.

 Link to this function

 isChecked(This)

 View Source

 -spec isChecked(This) -> boolean() when This :: wxCheckBox().

This is just a maybe more readable synonym for getValue/1: just as the latter,
it returns true if the checkbox is checked and false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxCheckBox().

Default constructor.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxCheckBox()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxCheckBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a checkbox.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 set3StateValue(This, State)

 View Source

 -spec set3StateValue(This, State) -> ok when This :: wxCheckBox(), State :: wx:wx_enum().

Sets the checkbox to the given state.
This does not cause a wxEVT_CHECKBOX event to get emitted.
Asserts when the checkbox is a 2-state checkbox and setting the state to
wxCHK_UNDETERMINED.

 Link to this function

 setValue(This, State)

 View Source

 -spec setValue(This, State) -> ok when This :: wxCheckBox(), State :: boolean().

Sets the checkbox to the given state.
This does not cause a wxEVT_CHECKBOX event to get emitted.

wxCheckListBox

Functions for wxCheckListBox class
A wxCheckListBox is like a wxListBox, but allows items to be checked or
unchecked.
When using this class under Windows wxWidgets must be compiled with
wxUSE_OWNER_DRAWN set to 1.
See: wxListBox, wxChoice, wxComboBox, wxListCtrl,
wxCommandEvent
This class is derived (and can use functions) from: wxListBox
wxControlWithItems wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxCheckListBox

 Events

Event types emitted from this class:
command_checklistbox_toggled

 Summary

 Types

 wxCheckListBox()

 Functions

 check(This, Item)

 check/3

 Checks the given item.

 destroy(This)

 Destructor, destroying the list box.

 isChecked(This, Item)

 Returns true if the given item is checked, false otherwise.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a list box.

 Types

 Link to this type

 wxCheckListBox()

 View Source

 -type wxCheckListBox() :: wx:wx_object().

 Functions

 Link to this function

 check(This, Item)

 View Source

 -spec check(This, Item) -> ok when This :: wxCheckListBox(), Item :: integer().

 Link to this function

 check/3

 View Source

 -spec check(This, Item, [Option]) -> ok
 when This :: wxCheckListBox(), Item :: integer(), Option :: {check, boolean()}.

Checks the given item.
Note that calling this method does not result in a wxEVT_CHECKLISTBOX event
being emitted.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCheckListBox()) -> ok.

Destructor, destroying the list box.

 Link to this function

 isChecked(This, Item)

 View Source

 -spec isChecked(This, Item) -> boolean() when This :: wxCheckListBox(), Item :: integer().

Returns true if the given item is checked, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxCheckListBox().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxCheckListBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxCheckListBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a list box.

wxChildFocusEvent

Functions for wxChildFocusEvent class
A child focus event is sent to a (parent-)window when one of its child windows
gains focus, so that the window could restore the focus back to its
corresponding child if it loses it now and regains later.
Notice that child window is the direct child of the window receiving event. Use
wxWindow:findFocus/0 to retrieve the window which is actually getting focus.
See:
Overview events
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxChildFocusEvent

 Events

Use wxEvtHandler:connect/3 with
wxChildFocusEventType to subscribe to events of
this type.

 Summary

 Types

 wxChildFocus()

 wxChildFocusEvent()

 wxChildFocusEventType()

 Functions

 getWindow(This)

 Returns the direct child which receives the focus, or a (grand-)parent of the
control receiving the focus.

 Types

 Link to this type

 wxChildFocus()

 View Source

 -type wxChildFocus() :: #wxChildFocus{type :: wxChildFocusEvent:wxChildFocusEventType()}.

 Link to this type

 wxChildFocusEvent()

 View Source

 -type wxChildFocusEvent() :: wx:wx_object().

 Link to this type

 wxChildFocusEventType()

 View Source

 -type wxChildFocusEventType() :: child_focus.

 Functions

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxChildFocusEvent().

Returns the direct child which receives the focus, or a (grand-)parent of the
control receiving the focus.
To get the actually focused control use wxWindow:findFocus/0.

wxChoice

Functions for wxChoice class
A choice item is used to select one of a list of strings. Unlike a
wxListBox, only the selection is visible until the user pulls down the menu
of choices.
Styles
This class supports the following styles:
See: wxListBox, wxComboBox, wxCommandEvent
This class is derived (and can use functions) from: wxControlWithItems
wxControl wxWindow wxEvtHandler
wxWidgets docs: wxChoice

 Events

Event types emitted from this class:
command_choice_selected

 Summary

 Types

 wxChoice()

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 create/7

 delete(This, N)

 Deletes an item from the control.

 destroy(This)

 Destructor, destroying the choice item.

 getColumns(This)

 Gets the number of columns in this choice item.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a choice.

 setColumns(This)

 setColumns/2

 Sets the number of columns in this choice item.

 Types

 Link to this type

 wxChoice()

 View Source

 -type wxChoice() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Pos, Size, Choices)

 View Source

 -spec create(This, Parent, Id, Pos, Size, Choices) -> boolean()
 when
 This :: wxChoice(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

 Link to this function

 create/7

 View Source

 -spec create(This, Parent, Id, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxChoice(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 Link to this function

 delete(This, N)

 View Source

 -spec delete(This, N) -> ok when This :: wxChoice(), N :: integer().

Deletes an item from the control.
The client data associated with the item will be also deleted if it is owned by
the control. Note that it is an error (signalled by an assert failure in debug
builds) to remove an item with the index negative or greater or equal than the
number of items in the control.
If there is a currently selected item below the item being deleted, i.e. if
wxControlWithItems:getSelection/1 returns a valid index greater than or equal
to n, the selection is invalidated when this function is called. However if
the selected item appears before the item being deleted, the selection is
preserved unchanged.
See: wxControlWithItems:clear/1

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxChoice()) -> ok.

Destructor, destroying the choice item.

 Link to this function

 getColumns(This)

 View Source

 -spec getColumns(This) -> integer() when This :: wxChoice().

Gets the number of columns in this choice item.
Remark: This is implemented for GTK and Motif only and always returns 1 for the
other platforms.

 Link to this function

 new()

 View Source

 -spec new() -> wxChoice().

Default constructor.
See: create/7, wxValidator (not implemented in wx)

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxChoice() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxChoice()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a choice.
See: create/7, wxValidator (not implemented in wx)

 Link to this function

 setColumns(This)

 View Source

 -spec setColumns(This) -> ok when This :: wxChoice().

 Link to this function

 setColumns/2

 View Source

 -spec setColumns(This, [Option]) -> ok when This :: wxChoice(), Option :: {n, integer()}.

Sets the number of columns in this choice item.
Remark: This is implemented for GTK and Motif only and doesn’t do anything under
other platforms.

wxChoicebook

Functions for wxChoicebook class
wxChoicebook is a class similar to wxNotebook, but uses a wxChoice
control to show the labels instead of the tabs.
For usage documentation of this class, please refer to the base abstract class
wxBookCtrl. You can also use the page_samples_notebook to see wxChoicebook
in action.
wxChoicebook allows the use of wxBookCtrlBase::GetControlSizer(), allowing a
program to add other controls next to the choice control. This is particularly
useful when screen space is restricted, as it often is when wxChoicebook is
being employed.
Styles
This class supports the following styles:
See:
Overview bookctrl,
wxNotebook,
Examples
This class is derived (and can use functions) from: wxBookCtrlBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxChoicebook

 Events

Event types emitted from this class:
choicebook_page_changed,
choicebook_page_changing

 Summary

 Types

 wxChoicebook()

 Functions

 addPage(This, Page, Text)

 addPage/4

 Adds a new page.

 advanceSelection(This)

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 create/4

 Create the choicebook control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Constructs a choicebook control.

 new(Parent, Id)

 new/3

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 Link to this type

 wxChoicebook()

 View Source

 -type wxChoicebook() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Text)

 View Source

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxChoicebook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been
added to this control previously.
The call to this function will generate the page changing and page changed
events if select is true, but not when inserting the very first page (as there
is no previous page selection to switch from in this case and so it wouldn't
make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 Link to this function

 advanceSelection(This)

 View Source

 -spec advanceSelection(This) -> ok when This :: wxChoicebook().

 Link to this function

 advanceSelection/2

 View Source

 -spec advanceSelection(This, [Option]) -> ok when This :: wxChoicebook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxChoicebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See: wxImageList, setImageList/2

 Link to this function

 changeSelection(This, Page)

 View Source

 -spec changeSelection(This, Page) -> integer() when This :: wxChoicebook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page
changing events.
See overview_events_prog for more information.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxChoicebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the choicebook control that has already been constructed with the default
constructor.

 Link to this function

 deleteAllPages(This)

 View Source

 -spec deleteAllPages(This) -> boolean() when This :: wxChoicebook().

Deletes all pages.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxChoicebook()) -> ok.

Destroys the object.

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxChoicebook().

Returns the currently selected page or NULL.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxChoicebook().

Returns the associated image list, may be NULL.
See: wxImageList, setImageList/2

 Link to this function

 getPage(This, Page)

 View Source

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxChoicebook(), Page :: integer().

Returns the window at the given page position.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxChoicebook().

Returns the number of pages in the control.

 Link to this function

 getPageImage(This, NPage)

 View Source

 -spec getPageImage(This, NPage) -> integer() when This :: wxChoicebook(), NPage :: integer().

Returns the image index for the given page.

 Link to this function

 getPageText(This, NPage)

 View Source

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxChoicebook(), NPage :: integer().

Returns the string for the given page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxChoicebook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page
when called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the
platform and so wxBookCtrlEvent:getSelection/1 should be used instead in this
case.

 Link to this function

 hitTest(This, Pt)

 View Source

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxChoicebook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is
returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at
the specified position.

 Link to this function

 insertPage(This, Index, Page, Text)

 View Source

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxChoicebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 Link to this function

 new()

 View Source

 -spec new() -> wxChoicebook().

Constructs a choicebook control.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxChoicebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxChoicebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxChoicebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See: wxImageList, assignImageList/2

 Link to this function

 setPageImage(This, Page, Image)

 View Source

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxChoicebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 Link to this function

 setPageSize(This, Size)

 View Source

 -spec setPageSize(This, Size) -> ok
 when This :: wxChoicebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxChoicebook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> integer() when This :: wxChoicebook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use
the changeSelection/2 function if you don't want these events to be generated.
See: getSelection/1

wxClientDC

Functions for wxClientDC class
wxClientDC is primarily useful for obtaining information about the window
from outside EVT_PAINT() handler.
Typical use of this class is to obtain the extent of some text string in order
to allocate enough size for a window, e.g.
Note: While wxClientDC may also be used for drawing on the client area of a
window from outside an EVT_PAINT() handler in some ports, this does not work
on all platforms (neither wxOSX nor wxGTK with GTK 3 Wayland backend support
this, so drawing using wxClientDC simply doesn't have any effect there) and
the only portable way of drawing is via wxPaintDC. To redraw a small part of
the window, use wxWindow:refreshRect/3 to invalidate just this part and check
wxWindow:getUpdateRegion/1 in the paint event handler to redraw this part
only.
wxClientDC objects should normally be constructed as temporary stack
objects, i.e. don't store a wxClientDC object.
A wxClientDC object is initialized to use the same font and colours as the
window it is associated with.
See: wxDC, wxMemoryDC, wxPaintDC, wxWindowDC, wxScreenDC
This class is derived (and can use functions) from: wxWindowDC wxDC
wxWidgets docs:
wxClientDC

 Summary

 Types

 wxClientDC()

 Functions

 destroy(This)

 Destroys the object.

 new(Window)

 Constructor.

 Types

 Link to this type

 wxClientDC()

 View Source

 -type wxClientDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxClientDC()) -> ok.

Destroys the object.

 Link to this function

 new(Window)

 View Source

 -spec new(Window) -> wxClientDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxClipboard

Functions for wxClipboard class
A class for manipulating the clipboard.
To use the clipboard, you call member functions of the global ?wxTheClipboard
object.
See the overview_dataobject for further information.
Call open/1 to get ownership of the clipboard. If this operation returns true,
you now own the clipboard. Call setData/2 to put data on the clipboard, or
getData/2 to retrieve data from the clipboard. Call close/1 to close the
clipboard and relinquish ownership. You should keep the clipboard open only
momentarily.
For example:
Note: On GTK, the clipboard behavior can vary depending on the configuration of
the end-user's machine. In order for the clipboard data to persist after the
window closes, a clipboard manager must be installed. Some clipboard managers
will automatically flush the clipboard after each new piece of data is added,
while others will not. The @Flush() function will force the clipboard manager to
flush the data.
See:
Overview dnd,
Overview dataobject,
wxDataObject
wxWidgets docs:
wxClipboard

 Summary

 Types

 wxClipboard()

 Functions

 addData(This, Data)

 Call this function to add the data object to the clipboard.

 clear(This)

 Clears the global clipboard object and the system's clipboard if possible.

 close(This)

 Call this function to close the clipboard, having opened it with open/1.

 destroy(This)

 Destructor.

 flush(This)

 Flushes the clipboard: this means that the data which is currently on clipboard
will stay available even after the application exits (possibly eating memory),
otherwise the clipboard will be emptied on exit.

 get()

 Returns the global instance (wxTheClipboard) of the clipboard object.

 getData(This, Data)

 Call this function to fill data with data on the clipboard, if available in
the required format.

 isOpened(This)

 Returns true if the clipboard has been opened.

 isSupported(This, Format)

 Returns true if there is data which matches the data format of the given data
object currently available on the clipboard.

 new()

 Default constructor.

 open(This)

 Call this function to open the clipboard before calling setData/2 and
getData/2.

 setData(This, Data)

 Call this function to set the data object to the clipboard.

 usePrimarySelection(This)

 usePrimarySelection/2

 On platforms supporting it (all X11-based ports), wxClipboard uses the
CLIPBOARD X11 selection by default.

 Types

 Link to this type

 wxClipboard()

 View Source

 -type wxClipboard() :: wx:wx_object().

 Functions

 Link to this function

 addData(This, Data)

 View Source

 -spec addData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to add the data object to the clipboard.
This is an obsolete synonym for setData/2.

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxClipboard().

Clears the global clipboard object and the system's clipboard if possible.

 Link to this function

 close(This)

 View Source

 -spec close(This) -> ok when This :: wxClipboard().

Call this function to close the clipboard, having opened it with open/1.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxClipboard()) -> ok.

Destructor.

 Link to this function

 flush(This)

 View Source

 -spec flush(This) -> boolean() when This :: wxClipboard().

Flushes the clipboard: this means that the data which is currently on clipboard
will stay available even after the application exits (possibly eating memory),
otherwise the clipboard will be emptied on exit.
Currently this method is implemented in MSW and GTK and always returns false
otherwise.
Note: On GTK, only the non-primary selection can be flushed. Calling this
function when the clipboard is using the primary selection will return false and
not make any data available after the program exits.
Return: false if the operation is unsuccessful for any reason.

 Link to this function

 get()

 View Source

 -spec get() -> wxClipboard().

Returns the global instance (wxTheClipboard) of the clipboard object.

 Link to this function

 getData(This, Data)

 View Source

 -spec getData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to fill data with data on the clipboard, if available in
the required format.
Returns true on success.

 Link to this function

 isOpened(This)

 View Source

 -spec isOpened(This) -> boolean() when This :: wxClipboard().

Returns true if the clipboard has been opened.

 Link to this function

 isSupported(This, Format)

 View Source

 -spec isSupported(This, Format) -> boolean() when This :: wxClipboard(), Format :: wx:wx_enum().

Returns true if there is data which matches the data format of the given data
object currently available on the clipboard.

 Link to this function

 new()

 View Source

 -spec new() -> wxClipboard().

Default constructor.

 Link to this function

 open(This)

 View Source

 -spec open(This) -> boolean() when This :: wxClipboard().

Call this function to open the clipboard before calling setData/2 and
getData/2.
Call close/1 when you have finished with the clipboard. You should keep the
clipboard open for only a very short time.
Return: true on success. This should be tested (as in the sample shown above).

 Link to this function

 setData(This, Data)

 View Source

 -spec setData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to set the data object to the clipboard.
The new data object replaces any previously set one, so if the application wants
to provide clipboard data in several different formats, it must use a composite
data object supporting all of the formats instead of calling this function
several times with different data objects as this would only leave data from the
last one in the clipboard.
After this function has been called, the clipboard owns the data, so do not
delete the data explicitly.

 Link to this function

 usePrimarySelection(This)

 View Source

 -spec usePrimarySelection(This) -> ok when This :: wxClipboard().

 Link to this function

 usePrimarySelection/2

 View Source

 -spec usePrimarySelection(This, [Option]) -> ok
 when This :: wxClipboard(), Option :: {primary, boolean()}.

On platforms supporting it (all X11-based ports), wxClipboard uses the
CLIPBOARD X11 selection by default.
When this function is called with true, all subsequent clipboard operations will
use PRIMARY selection until this function is called again with false.
On the other platforms, there is no PRIMARY selection and so all clipboard
operations will fail. This allows implementing the standard X11 handling of the
clipboard which consists in copying data to the CLIPBOARD selection only when
the user explicitly requests it (i.e. by selecting the "Copy" menu command) but
putting the currently selected text into the PRIMARY selection automatically,
without overwriting the normal clipboard contents with the currently selected
text on the other platforms.

wxClipboardTextEvent

Functions for wxClipboardTextEvent class
This class represents the events generated by a control (typically a
wxTextCtrl but other windows can generate these events as well) when its
content gets copied or cut to, or pasted from the clipboard.
There are three types of corresponding events wxEVT_TEXT_COPY,
wxEVT_TEXT_CUT and wxEVT_TEXT_PASTE.
If any of these events is processed (without being skipped) by an event handler,
the corresponding operation doesn't take place which allows preventing the text
from being copied from or pasted to a control. It is also possible to examine
the clipboard contents in the PASTE event handler and transform it in some way
before inserting in a control - for example, changing its case or removing
invalid characters.
Finally notice that a CUT event is always preceded by the COPY event which makes
it possible to only process the latter if it doesn't matter if the text was
copied or cut.
Note: These events are currently only generated by wxTextCtrl in wxGTK and
wxOSX but are also generated by wxComboBox without wxCB_READONLY style in
wxMSW.
See: wxClipboard
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxClipboardTextEvent

 Events

Use wxEvtHandler:connect/3 with
wxClipboardTextEventType to subscribe to
events of this type.

 Summary

 Types

 wxClipboardText()

 wxClipboardTextEvent()

 wxClipboardTextEventType()

 Types

 Link to this type

 wxClipboardText()

 View Source

 -type wxClipboardText() :: #wxClipboardText{type :: wxClipboardTextEvent:wxClipboardTextEventType()}.

 Link to this type

 wxClipboardTextEvent()

 View Source

 -type wxClipboardTextEvent() :: wx:wx_object().

 Link to this type

 wxClipboardTextEventType()

 View Source

 -type wxClipboardTextEventType() :: command_text_copy | command_text_cut | command_text_paste.

wxCloseEvent

Functions for wxCloseEvent class
This event class contains information about window and session close events.
The handler function for EVT_CLOSE is called when the user has tried to close a
a frame or dialog box using the window manager (X) or system menu (Windows). It
can also be invoked by the application itself programmatically, for example by
calling the wxWindow:close/2 function.
You should check whether the application is forcing the deletion of the window
using canVeto/1. If this is false, you must destroy the window using
wxWindow:'Destroy'/1.
If the return value is true, it is up to you whether you respond by destroying
the window.
If you don't destroy the window, you should call veto/2 to let the calling
code know that you did not destroy the window. This allows the
wxWindow:close/2 function to return true or false depending on whether the
close instruction was honoured or not.
Example of a wxCloseEvent handler:
The EVT_END_SESSION event is slightly different as it is sent by the system when
the user session is ending (e.g. because of log out or shutdown) and so all
windows are being forcefully closed. At least under MSW, after the handler for
this event is executed the program is simply killed by the system. Because of
this, the default handler for this event provided by wxWidgets calls all the
usual cleanup code (including wxApp::OnExit() (not implemented in wx)) so that
it could still be executed and exit()s the process itself, without waiting for
being killed. If this behaviour is for some reason undesirable, make sure that
you define a handler for this event in your wxApp-derived class and do not call
event.Skip() in it (but be aware that the system will still kill your
application).
See: wxWindow:close/2,
Overview windowdeletion
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxCloseEvent

 Events

Use wxEvtHandler:connect/3 with wxCloseEventType
to subscribe to events of this type.

 Summary

 Types

 wxClose()

 wxCloseEvent()

 wxCloseEventType()

 Functions

 canVeto(This)

 Returns true if you can veto a system shutdown or a window close event.

 getLoggingOff(This)

 Returns true if the user is just logging off or false if the system is shutting
down.

 setCanVeto(This, CanVeto)

 Sets the 'can veto' flag.

 setLoggingOff(This, LoggingOff)

 Sets the 'logging off' flag.

 veto(This)

 veto/2

 Call this from your event handler to veto a system shutdown or to signal to the
calling application that a window close did not happen.

 Types

 Link to this type

 wxClose()

 View Source

 -type wxClose() :: #wxClose{type :: wxCloseEvent:wxCloseEventType()}.

 Link to this type

 wxCloseEvent()

 View Source

 -type wxCloseEvent() :: wx:wx_object().

 Link to this type

 wxCloseEventType()

 View Source

 -type wxCloseEventType() :: close_window | end_session | query_end_session.

 Functions

 Link to this function

 canVeto(This)

 View Source

 -spec canVeto(This) -> boolean() when This :: wxCloseEvent().

Returns true if you can veto a system shutdown or a window close event.
Vetoing a window close event is not possible if the calling code wishes to force
the application to exit, and so this function must be called to check this.

 Link to this function

 getLoggingOff(This)

 View Source

 -spec getLoggingOff(This) -> boolean() when This :: wxCloseEvent().

Returns true if the user is just logging off or false if the system is shutting
down.
This method can only be called for end session and query end session events, it
doesn't make sense for close window event.

 Link to this function

 setCanVeto(This, CanVeto)

 View Source

 -spec setCanVeto(This, CanVeto) -> ok when This :: wxCloseEvent(), CanVeto :: boolean().

Sets the 'can veto' flag.

 Link to this function

 setLoggingOff(This, LoggingOff)

 View Source

 -spec setLoggingOff(This, LoggingOff) -> ok when This :: wxCloseEvent(), LoggingOff :: boolean().

Sets the 'logging off' flag.

 Link to this function

 veto(This)

 View Source

 -spec veto(This) -> ok when This :: wxCloseEvent().

 Link to this function

 veto/2

 View Source

 -spec veto(This, [Option]) -> ok when This :: wxCloseEvent(), Option :: {veto, boolean()}.

Call this from your event handler to veto a system shutdown or to signal to the
calling application that a window close did not happen.
You can only veto a shutdown if canVeto/1 returns true.

wxColourData

Functions for wxColourData class
This class holds a variety of information related to colour dialogs.
See: wx_color(), wxColourDialog,
Overview cmndlg
wxWidgets docs:
wxColourData

 Summary

 Types

 wxColourData()

 Functions

 destroy(This)

 Destructor.

 getChooseFull(This)

 Under Windows, determines whether the Windows colour dialog will display the
full dialog with custom colour selection controls.

 getColour(This)

 Gets the current colour associated with the colour dialog.

 getCustomColour(This, I)

 Returns custom colours associated with the colour dialog.

 new()

 Constructor.

 setChooseFull(This, Flag)

 Under Windows, tells the Windows colour dialog to display the full dialog with
custom colour selection controls.

 setColour(This, Colour)

 Sets the default colour for the colour dialog.

 setCustomColour(This, I, Colour)

 Sets custom colours for the colour dialog.

 Types

 Link to this type

 wxColourData()

 View Source

 -type wxColourData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxColourData()) -> ok.

Destructor.

 Link to this function

 getChooseFull(This)

 View Source

 -spec getChooseFull(This) -> boolean() when This :: wxColourData().

Under Windows, determines whether the Windows colour dialog will display the
full dialog with custom colour selection controls.
Has no meaning under other platforms.
The default value is true.

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourData().

Gets the current colour associated with the colour dialog.
The default colour is black.

 Link to this function

 getCustomColour(This, I)

 View Source

 -spec getCustomColour(This, I) -> wx:wx_colour4() when This :: wxColourData(), I :: integer().

Returns custom colours associated with the colour dialog.

 Link to this function

 new()

 View Source

 -spec new() -> wxColourData().

Constructor.
Initializes the custom colours to wxNullColour, the data colour setting to
black, and the choose full setting to true.

 Link to this function

 setChooseFull(This, Flag)

 View Source

 -spec setChooseFull(This, Flag) -> ok when This :: wxColourData(), Flag :: boolean().

Under Windows, tells the Windows colour dialog to display the full dialog with
custom colour selection controls.
Under other platforms, has no effect.
The default value is true.

 Link to this function

 setColour(This, Colour)

 View Source

 -spec setColour(This, Colour) -> ok when This :: wxColourData(), Colour :: wx:wx_colour().

Sets the default colour for the colour dialog.
The default colour is black.

 Link to this function

 setCustomColour(This, I, Colour)

 View Source

 -spec setCustomColour(This, I, Colour) -> ok
 when This :: wxColourData(), I :: integer(), Colour :: wx:wx_colour().

Sets custom colours for the colour dialog.

wxColourDialog

Functions for wxColourDialog class
This class represents the colour chooser dialog.
Starting from wxWidgets 3.1.3 and currently in the MSW port only, this dialog
generates wxEVT_COLOUR_CHANGED events while it is being shown, i.e. from inside
its wxDialog:showModal/1 method, that notify the program about the change of
the currently selected colour and allow it to e.g. preview the effect of
selecting this colour. Note that if you react to this event, you should also
correctly revert to the previously selected colour if the dialog is cancelled by
the user.
Example of using this class with dynamic feedback for the selected colour:
See:
Overview cmndlg,
wx_color(), wxColourData, wxColourDialogEvent (not
implemented in wx), ?wxGetColourFromUser()
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxColourDialog

 Summary

 Types

 wxColourDialog()

 Functions

 create(This, Parent)

 create/3

 Same as new/2.

 destroy(This)

 Destructor.

 getColourData(This)

 Returns the colour data associated with the colour dialog.

 new()

 new(Parent)

 new/2

 Constructor.

 Types

 Link to this type

 wxColourDialog()

 View Source

 -type wxColourDialog() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxColourDialog(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxColourDialog(),
 Parent :: wxWindow:wxWindow(),
 Option :: {data, wxColourData:wxColourData()}.

Same as new/2.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxColourDialog()) -> ok.

Destructor.

 Link to this function

 getColourData(This)

 View Source

 -spec getColourData(This) -> wxColourData:wxColourData() when This :: wxColourDialog().

Returns the colour data associated with the colour dialog.

 Link to this function

 new()

 View Source

 -spec new() -> wxColourDialog().

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxColourDialog() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxColourDialog()
 when Parent :: wxWindow:wxWindow(), Option :: {data, wxColourData:wxColourData()}.

Constructor.
Pass a parent window, and optionally a pointer to a block of colour data, which
will be copied to the colour dialog's colour data.
Custom colours from colour data object will be used in the dialog's colour
palette. Invalid entries in custom colours list will be ignored on some
platforms(GTK) or replaced with white colour on platforms where custom colours
palette has fixed size (MSW).
See: wxColourData

wxColourPickerCtrl

Functions for wxColourPickerCtrl class
This control allows the user to select a colour. The generic implementation is a
button which brings up a wxColourDialog when clicked. Native implementation
may differ but this is usually a (small) widget which give access to the
colour-chooser dialog. It is only available if wxUSE_COLOURPICKERCTRL is set
to 1 (the default).
Styles
This class supports the following styles:
See: wxColourDialog, wxColourPickerEvent
This class is derived (and can use functions) from: wxPickerBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxColourPickerCtrl

 Events

Event types emitted from this class:
command_colourpicker_changed

 Summary

 Types

 wxColourPickerCtrl()

 Functions

 create(This, Parent, Id)

 create/4

 Creates a colour picker with the given arguments.

 destroy(This)

 Destroys the object.

 getColour(This)

 Returns the currently selected colour.

 new()

 new(Parent, Id)

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setColour/2

 Sets the currently selected colour.

 Types

 Link to this type

 wxColourPickerCtrl()

 View Source

 -type wxColourPickerCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxColourPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxColourPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates a colour picker with the given arguments.
Return: true if the control was successfully created or false if creation
failed.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxColourPickerCtrl()) -> ok.

Destroys the object.

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourPickerCtrl().

Returns the currently selected colour.

 Link to this function

 new()

 View Source

 -spec new() -> wxColourPickerCtrl().

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxColourPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxColourPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 Link to this function

 setColour/2

 View Source

 -spec setColour(This, Colname) -> ok when This :: wxColourPickerCtrl(), Colname :: unicode:chardata();
 (This, Col) -> ok when This :: wxColourPickerCtrl(), Col :: wx:wx_colour().

Sets the currently selected colour.
See wxColour::Set() (not implemented in wx).

wxColourPickerEvent

Functions for wxColourPickerEvent class
This event class is used for the events generated by wxColourPickerCtrl.
See: wxColourPickerCtrl
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxColourPickerEvent

 Events

Use wxEvtHandler:connect/3 with
wxColourPickerEventType to subscribe to
events of this type.

 Summary

 Types

 wxColourPicker()

 wxColourPickerEvent()

 wxColourPickerEventType()

 Functions

 getColour(This)

 Retrieve the colour the user has just selected.

 Types

 Link to this type

 wxColourPicker()

 View Source

 -type wxColourPicker() ::
 #wxColourPicker{type :: wxColourPickerEvent:wxColourPickerEventType(),
 colour :: wx:wx_colour()}.

 Link to this type

 wxColourPickerEvent()

 View Source

 -type wxColourPickerEvent() :: wx:wx_object().

 Link to this type

 wxColourPickerEventType()

 View Source

 -type wxColourPickerEventType() :: command_colourpicker_changed.

 Functions

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourPickerEvent().

Retrieve the colour the user has just selected.

wxComboBox

Functions for wxComboBox class
A combobox is like a combination of an edit control and a listbox.
It can be displayed as static list with editable or read-only text field; or a
drop-down list with text field; or a drop-down list without a text field
depending on the platform and presence of wxCB_READONLY style.
A combobox permits a single selection only. Combobox items are numbered from
zero.
If you need a customized combobox, have a look at wxComboCtrl (not implemented
in wx), wxOwnerDrawnComboBox (not implemented in wx), wxComboPopup (not
implemented in wx) and the ready-to-use wxBitmapComboBox (not implemented in
wx).
Please refer to wxTextEntry (not implemented in wx) documentation for the
description of methods operating with the text entry part of the combobox and to
wxItemContainer (not implemented in wx) for the methods operating with the
list of strings. Notice that at least under MSW wxComboBox doesn't behave
correctly if it contains strings differing in case only so portable programs
should avoid adding such strings to this control.
Styles
This class supports the following styles:
See: wxListBox, wxTextCtrl, wxChoice, wxCommandEvent
This class is derived (and can use functions) from: wxControlWithItems
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxComboBox

 Events

Event types emitted from this class:
command_combobox_selected,
command_text_updated,
command_text_enter,
combobox_dropdown,
combobox_closeup

 Summary

 Types

 wxComboBox()

 Functions

 canCopy(This)

 Returns true if the selection can be copied to the clipboard.

 canCut(This)

 Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 Returns true if the contents of the clipboard can be pasted into the text
control.

 canRedo(This)

 Returns true if there is a redo facility available and the last operation can be
redone.

 canUndo(This)

 Returns true if there is an undo facility available and the last operation can
be undone.

 copy(This)

 Copies the selected text to the clipboard.

 create(This, Parent, Id, Value, Pos, Size, Choices)

 create/8

 cut(This)

 Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 Destructor, destroying the combobox.

 getInsertionPoint(This)

 Same as wxTextCtrl:getInsertionPoint/1.

 getLastPosition(This)

 Returns the zero based index of the last position in the text control, which is
equal to the number of characters in the control.

 getValue(This)

 Gets the contents of the control.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a combobox.

 paste(This)

 Pastes text from the clipboard to the text item.

 redo(This)

 If there is a redo facility and the last operation can be redone, redoes the
last operation.

 remove(This, From, To)

 Removes the text starting at the first given position up to (but not including)
the character at the last position.

 replace(This, From, To, Value)

 Replaces the text starting at the first position up to (but not including) the
character at the last position with the given text.

 setInsertionPoint(This, Pos)

 Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 Sets the insertion point at the end of the text control.

 setSelection(This, N)

 Sets the selection to the given item n or removes the selection entirely if
n == wxNOT_FOUND.

 setSelection(This, From, To)

 Same as wxTextCtrl:setSelection/3.

 setValue(This, Text)

 Sets the text for the combobox text field.

 undo(This)

 If there is an undo facility and the last operation can be undone, undoes the
last operation.

 Types

 Link to this type

 wxComboBox()

 View Source

 -type wxComboBox() :: wx:wx_object().

 Functions

 Link to this function

 canCopy(This)

 View Source

 -spec canCopy(This) -> boolean() when This :: wxComboBox().

Returns true if the selection can be copied to the clipboard.

 Link to this function

 canCut(This)

 View Source

 -spec canCut(This) -> boolean() when This :: wxComboBox().

Returns true if the selection can be cut to the clipboard.

 Link to this function

 canPaste(This)

 View Source

 -spec canPaste(This) -> boolean() when This :: wxComboBox().

Returns true if the contents of the clipboard can be pasted into the text
control.
On some platforms (Motif, GTK) this is an approximation and returns true if the
control is editable, false otherwise.

 Link to this function

 canRedo(This)

 View Source

 -spec canRedo(This) -> boolean() when This :: wxComboBox().

Returns true if there is a redo facility available and the last operation can be
redone.

 Link to this function

 canUndo(This)

 View Source

 -spec canUndo(This) -> boolean() when This :: wxComboBox().

Returns true if there is an undo facility available and the last operation can
be undone.

 Link to this function

 copy(This)

 View Source

 -spec copy(This) -> ok when This :: wxComboBox().

Copies the selected text to the clipboard.

 Link to this function

 create(This, Parent, Id, Value, Pos, Size, Choices)

 View Source

 -spec create(This, Parent, Id, Value, Pos, Size, Choices) -> boolean()
 when
 This :: wxComboBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

 Link to this function

 create/8

 View Source

 -spec create(This, Parent, Id, Value, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxComboBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 Link to this function

 cut(This)

 View Source

 -spec cut(This) -> ok when This :: wxComboBox().

Copies the selected text to the clipboard and removes it from the control.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxComboBox()) -> ok.

Destructor, destroying the combobox.

 Link to this function

 getInsertionPoint(This)

 View Source

 -spec getInsertionPoint(This) -> integer() when This :: wxComboBox().

Same as wxTextCtrl:getInsertionPoint/1.
Note: Under wxMSW, this function always returns 0 if the combobox doesn't have
the focus.

 Link to this function

 getLastPosition(This)

 View Source

 -spec getLastPosition(This) -> integer() when This :: wxComboBox().

Returns the zero based index of the last position in the text control, which is
equal to the number of characters in the control.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> unicode:charlist() when This :: wxComboBox().

Gets the contents of the control.
Notice that for a multiline text control, the lines will be separated by
(Unix-style) \n characters, even under Windows where they are separated by a
\r\n sequence in the native control.

 Link to this function

 new()

 View Source

 -spec new() -> wxComboBox().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxComboBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxComboBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a combobox.
See: create/8, wxValidator (not implemented in wx)

 Link to this function

 paste(This)

 View Source

 -spec paste(This) -> ok when This :: wxComboBox().

Pastes text from the clipboard to the text item.

 Link to this function

 redo(This)

 View Source

 -spec redo(This) -> ok when This :: wxComboBox().

If there is a redo facility and the last operation can be redone, redoes the
last operation.
Does nothing if there is no redo facility.

 Link to this function

 remove(This, From, To)

 View Source

 -spec remove(This, From, To) -> ok when This :: wxComboBox(), From :: integer(), To :: integer().

Removes the text starting at the first given position up to (but not including)
the character at the last position.
This function puts the current insertion point position at to as a side
effect.

 Link to this function

 replace(This, From, To, Value)

 View Source

 -spec replace(This, From, To, Value) -> ok
 when
 This :: wxComboBox(),
 From :: integer(),
 To :: integer(),
 Value :: unicode:chardata().

Replaces the text starting at the first position up to (but not including) the
character at the last position with the given text.
This function puts the current insertion point position at to as a side
effect.

 Link to this function

 setInsertionPoint(This, Pos)

 View Source

 -spec setInsertionPoint(This, Pos) -> ok when This :: wxComboBox(), Pos :: integer().

Sets the insertion point at the given position.

 Link to this function

 setInsertionPointEnd(This)

 View Source

 -spec setInsertionPointEnd(This) -> ok when This :: wxComboBox().

Sets the insertion point at the end of the text control.
This is equivalent to calling setInsertionPoint/2 with getLastPosition/1
argument.

 Link to this function

 setSelection(This, N)

 View Source

 -spec setSelection(This, N) -> ok when This :: wxComboBox(), N :: integer().

Sets the selection to the given item n or removes the selection entirely if
n == wxNOT_FOUND.
Note that this does not cause any command events to be emitted nor does it
deselect any other items in the controls which support multiple selections.
See: wxControlWithItems:setString/3, wxControlWithItems:setStringSelection/2

 Link to this function

 setSelection(This, From, To)

 View Source

 -spec setSelection(This, From, To) -> ok when This :: wxComboBox(), From :: integer(), To :: integer().

Same as wxTextCtrl:setSelection/3.

 Link to this function

 setValue(This, Text)

 View Source

 -spec setValue(This, Text) -> ok when This :: wxComboBox(), Text :: unicode:chardata().

Sets the text for the combobox text field.
For normal, editable comboboxes with a text entry field calling this method will
generate a wxEVT_TEXT event, consistently with wxTextCtrl:setValue/2
behaviour, use wxTextCtrl:changeValue/2 if this is undesirable.
For controls with wxCB_READONLY style the method behaves somewhat differently:
the string must be in the combobox choices list (the check for this is
case-insensitive) and wxEVT_TEXT is not generated in this case.

 Link to this function

 undo(This)

 View Source

 -spec undo(This) -> ok when This :: wxComboBox().

If there is an undo facility and the last operation can be undone, undoes the
last operation.
Does nothing if there is no undo facility.

wxCommandEvent

Functions for wxCommandEvent class
This event class contains information about command events, which originate from
a variety of simple controls.
Note that wxCommandEvents and wxCommandEvent-derived event classes by default
and unlike other wxEvent-derived classes propagate upward from the source window
(the window which emits the event) up to the first parent which processes the
event. Be sure to read overview_events_propagation.
More complex controls, such as wxTreeCtrl, have separate command event
classes.
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxCommandEvent

 Events

Use wxEvtHandler:connect/3 with
wxCommandEventType to subscribe to events of this
type.

 Summary

 Types

 wxCommand()

 wxCommandEvent()

 wxCommandEventType()

 Functions

 getClientData(This)

 Returns client object pointer for a listbox or choice selection event (not valid
for a deselection).

 getExtraLong(This)

 Returns extra information dependent on the event objects type.

 getInt(This)

 Returns the integer identifier corresponding to a listbox, choice or radiobox
selection (only if the event was a selection, not a deselection), or a boolean
value representing the value of a checkbox.

 getSelection(This)

 Returns item index for a listbox or choice selection event (not valid for a
deselection).

 getString(This)

 Returns item string for a listbox or choice selection event.

 isChecked(This)

 This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one.

 isSelection(This)

 For a listbox or similar event, returns true if it is a selection, false if it
is a deselection.

 setInt(This, IntCommand)

 Sets the m_commandInt member.

 setString(This, String)

 Sets the m_commandString member.

 Types

 Link to this type

 wxCommand()

 View Source

 -type wxCommand() ::
 #wxCommand{type :: wxCommandEvent:wxCommandEventType(),
 cmdString :: unicode:chardata(),
 commandInt :: integer(),
 extraLong :: integer()}.

 Link to this type

 wxCommandEvent()

 View Source

 -type wxCommandEvent() :: wx:wx_object().

 Link to this type

 wxCommandEventType()

 View Source

 -type wxCommandEventType() ::
 command_button_clicked | command_checkbox_clicked | command_choice_selected |
 command_listbox_selected | command_listbox_doubleclicked | command_text_updated |
 command_text_enter | text_maxlen | command_menu_selected | command_slider_updated |
 command_radiobox_selected | command_radiobutton_selected | command_scrollbar_updated |
 command_vlbox_selected | command_combobox_selected | combobox_dropdown | combobox_closeup |
 command_tool_rclicked | command_tool_enter | tool_dropdown | command_checklistbox_toggled |
 command_togglebutton_clicked | command_left_click | command_left_dclick |
 command_right_click | command_set_focus | command_kill_focus | command_enter |
 notification_message_click | notification_message_dismissed | notification_message_action.

 Functions

 Link to this function

 getClientData(This)

 View Source

 -spec getClientData(This) -> term() when This :: wxCommandEvent().

Returns client object pointer for a listbox or choice selection event (not valid
for a deselection).

 Link to this function

 getExtraLong(This)

 View Source

 -spec getExtraLong(This) -> integer() when This :: wxCommandEvent().

Returns extra information dependent on the event objects type.
If the event comes from a listbox selection, it is a boolean determining whether
the event was a selection (true) or a deselection (false). A listbox deselection
only occurs for multiple-selection boxes, and in this case the index and string
values are indeterminate and the listbox must be examined by the application.

 Link to this function

 getInt(This)

 View Source

 -spec getInt(This) -> integer() when This :: wxCommandEvent().

Returns the integer identifier corresponding to a listbox, choice or radiobox
selection (only if the event was a selection, not a deselection), or a boolean
value representing the value of a checkbox.
For a menu item, this method returns -1 if the item is not checkable or a
boolean value (true or false) for checkable items indicating the new state of
the item.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxCommandEvent().

Returns item index for a listbox or choice selection event (not valid for a
deselection).

 Link to this function

 getString(This)

 View Source

 -spec getString(This) -> unicode:charlist() when This :: wxCommandEvent().

Returns item string for a listbox or choice selection event.
If one or several items have been deselected, returns the index of the first
deselected item. If some items have been selected and others deselected at the
same time, it will return the index of the first selected item.

 Link to this function

 isChecked(This)

 View Source

 -spec isChecked(This) -> boolean() when This :: wxCommandEvent().

This method can be used with checkbox and menu events: for the checkboxes, the
method returns true for a selection event and false for a deselection one.
For the menu events, this method indicates if the menu item just has become
checked or unchecked (and thus only makes sense for checkable menu items).
Notice that this method cannot be used with wxCheckListBox currently.

 Link to this function

 isSelection(This)

 View Source

 -spec isSelection(This) -> boolean() when This :: wxCommandEvent().

For a listbox or similar event, returns true if it is a selection, false if it
is a deselection.
If some items have been selected and others deselected at the same time, it will
return true.

 Link to this function

 setInt(This, IntCommand)

 View Source

 -spec setInt(This, IntCommand) -> ok when This :: wxCommandEvent(), IntCommand :: integer().

Sets the m_commandInt member.

 Link to this function

 setString(This, String)

 View Source

 -spec setString(This, String) -> ok when This :: wxCommandEvent(), String :: unicode:chardata().

Sets the m_commandString member.

wxContextMenuEvent

Functions for wxContextMenuEvent class
This class is used for context menu events, sent to give the application a
chance to show a context (popup) menu for a wxWindow.
Note that if getPosition/1 returns wxDefaultPosition, this means that the
event originated from a keyboard context button event, and you should compute a
suitable position yourself, for example by calling wx_misc:getMousePosition/0.
Notice that the exact sequence of mouse events is different across the
platforms. For example, under MSW the context menu event is generated after
EVT_RIGHT_UP event and only if it was not handled but under GTK the context
menu event is generated after EVT_RIGHT_DOWN event. This is correct in the
sense that it ensures that the context menu is shown according to the current
platform UI conventions and also means that you must not handle (or call
wxEvent:skip/2 in your handler if you do have one) neither right mouse down
nor right mouse up event if you plan on handling EVT_CONTEXT_MENU event.
See: wxCommandEvent,
Overview events
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxContextMenuEvent

 Events

Use wxEvtHandler:connect/3 with
wxContextMenuEventType to subscribe to events
of this type.

 Summary

 Types

 wxContextMenu()

 wxContextMenuEvent()

 wxContextMenuEventType()

 Functions

 getPosition(This)

 Returns the position in screen coordinates at which the menu should be shown.

 setPosition(This, Point)

 Sets the position at which the menu should be shown.

 Types

 Link to this type

 wxContextMenu()

 View Source

 -type wxContextMenu() ::
 #wxContextMenu{type :: wxContextMenuEvent:wxContextMenuEventType(),
 pos :: {X :: integer(), Y :: integer()}}.

 Link to this type

 wxContextMenuEvent()

 View Source

 -type wxContextMenuEvent() :: wx:wx_object().

 Link to this type

 wxContextMenuEventType()

 View Source

 -type wxContextMenuEventType() :: context_menu.

 Functions

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxContextMenuEvent().

Returns the position in screen coordinates at which the menu should be shown.
Use wxWindow:screenToClient/2 to convert to client coordinates.
You can also omit a position from wxWindow:popupMenu/4 in order to use the
current mouse pointer position.
If the event originated from a keyboard event, the value returned from this
function will be wxDefaultPosition.

 Link to this function

 setPosition(This, Point)

 View Source

 -spec setPosition(This, Point) -> ok
 when This :: wxContextMenuEvent(), Point :: {X :: integer(), Y :: integer()}.

Sets the position at which the menu should be shown.

wxControl

Functions for wxControl class
This is the base class for a control or "widget".
A control is generally a small window which processes user input and/or displays
one or more item of data.
See: wxValidator (not implemented in wx)
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs: wxControl

 Events

Event types emitted from this class:
command_text_copy,
command_text_cut,
command_text_paste

 Summary

 Types

 wxControl()

 Functions

 getLabel(This)

 Returns the control's label, as it was passed to setLabel/2.

 setLabel(This, Label)

 Sets the control's label.

 Types

 Link to this type

 wxControl()

 View Source

 -type wxControl() :: wx:wx_object().

 Functions

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxControl().

Returns the control's label, as it was passed to setLabel/2.
Note that the returned string may contains mnemonics ("&" characters) if they
were passed to the setLabel/2 function; use GetLabelText() (not implemented
in wx) if they are undesired.
Also note that the returned string is always the string which was passed to
setLabel/2 but may be different from the string passed to SetLabelText()
(not implemented in wx) (since this last one escapes mnemonic characters).

 Link to this function

 setLabel(This, Label)

 View Source

 -spec setLabel(This, Label) -> ok when This :: wxControl(), Label :: unicode:chardata().

Sets the control's label.
All "&" characters in the label are special and indicate that the following
character is a mnemonic for this control and can be used to activate it from
the keyboard (typically by using Alt key in combination with it). To insert a
literal ampersand character, you need to double it, i.e. use "&&". If this
behaviour is undesirable, use SetLabelText() (not implemented in wx) instead.

wxControlWithItems

Functions for wxControlWithItems class
This is convenience class that derives from both wxControl and
wxItemContainer (not implemented in wx). It is used as basis for some
wxWidgets controls (wxChoice and wxListBox).
See: wxItemContainer (not implemented in wx), wxItemContainerImmutable (not
implemented in wx)
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxControlWithItems

 Summary

 Types

 wxControlWithItems()

 Functions

 append(This, Item)

 Appends item into the control.

 append(This, Item, ClientData)

 Appends item into the control.

 appendStrings(This, Items)

 Appends several items at once into the control.

 appendStrings(This, Items, ClientsData)

 Appends several items at once into the control.

 clear(This)

 Removes all items from the control.

 delete(This, N)

 Deletes an item from the control.

 findString(This, String)

 findString/3

 Finds an item whose label matches the given string.

 getClientData(This, N)

 Returns a pointer to the client data associated with the given item (if any).

 getCount(This)

 Returns the number of items in the control.

 getSelection(This)

 Returns the index of the selected item or wxNOT_FOUND if no item is selected.

 getString(This, N)

 Returns the label of the item with the given index.

 getStringSelection(This)

 Returns the label of the selected item or an empty string if no item is
selected.

 insert(This, Item, Pos)

 Inserts item into the control.

 insert(This, Item, Pos, ClientData)

 Inserts item into the control.

 insertStrings(This, Items, Pos)

 Inserts several items at once into the control.

 insertStrings(This, Items, Pos, ClientsData)

 Inserts several items at once into the control.

 isEmpty(This)

 Returns true if the control is empty or false if it has some items.

 select(This, N)

 This is the same as setSelection/2 and exists only because it is slightly more
natural for controls which support multiple selection.

 setClientData(This, N, Data)

 Associates the given typed client data pointer with the given item: the data
object will be deleted when the item is deleted (either explicitly by using
delete/2 or implicitly when the control itself is destroyed).

 setSelection(This, N)

 Sets the selection to the given item n or removes the selection entirely if
n == wxNOT_FOUND.

 setString(This, N, String)

 Sets the label for the given item.

 setStringSelection(This, String)

 Selects the item with the specified string in the control.

 Types

 Link to this type

 wxControlWithItems()

 View Source

 -type wxControlWithItems() :: wx:wx_object().

 Functions

 Link to this function

 append(This, Item)

 View Source

 -spec append(This, Item) -> integer() when This :: wxControlWithItems(), Item :: unicode:chardata().

Appends item into the control.
Return: The return value is the index of the newly inserted item. Note that this
may be different from the last one if the control is sorted (e.g. has
wxLB_SORT or wxCB_SORT style).

 Link to this function

 append(This, Item, ClientData)

 View Source

 -spec append(This, Item, ClientData) -> integer()
 when This :: wxControlWithItems(), Item :: unicode:chardata(), ClientData :: term().

Appends item into the control.
Return: The return value is the index of the newly inserted item. Note that this
may be different from the last one if the control is sorted (e.g. has
wxLB_SORT or wxCB_SORT style).

 Link to this function

 appendStrings(This, Items)

 View Source

 -spec appendStrings(This, Items) -> integer()
 when This :: wxControlWithItems(), Items :: [unicode:chardata()].

Appends several items at once into the control.
Notice that calling this method is usually much faster than appending them one
by one if you need to add a lot of items.

 Link to this function

 appendStrings(This, Items, ClientsData)

 View Source

 -spec appendStrings(This, Items, ClientsData) -> integer()
 when
 This :: wxControlWithItems(),
 Items :: [unicode:chardata()],
 ClientsData :: [term()].

Appends several items at once into the control.
Notice that calling this method is usually much faster than appending them one
by one if you need to add a lot of items.

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxControlWithItems().

Removes all items from the control.
clear/1 also deletes the client data of the existing items if it is owned by
the control.

 Link to this function

 delete(This, N)

 View Source

 -spec delete(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

Deletes an item from the control.
The client data associated with the item will be also deleted if it is owned by
the control. Note that it is an error (signalled by an assert failure in debug
builds) to remove an item with the index negative or greater or equal than the
number of items in the control.
If there is a currently selected item below the item being deleted, i.e. if
getSelection/1 returns a valid index greater than or equal to n, the
selection is invalidated when this function is called. However if the selected
item appears before the item being deleted, the selection is preserved
unchanged.
See: clear/1

 Link to this function

 findString(This, String)

 View Source

 -spec findString(This, String) -> integer()
 when This :: wxControlWithItems(), String :: unicode:chardata().

 Link to this function

 findString/3

 View Source

 -spec findString(This, String, [Option]) -> integer()
 when
 This :: wxControlWithItems(),
 String :: unicode:chardata(),
 Option :: {bCase, boolean()}.

Finds an item whose label matches the given string.
Return: The zero-based position of the item, or wxNOT_FOUND if the string was
not found.

 Link to this function

 getClientData(This, N)

 View Source

 -spec getClientData(This, N) -> term() when This :: wxControlWithItems(), N :: integer().

Returns a pointer to the client data associated with the given item (if any).
It is an error to call this function for a control which doesn't have typed
client data at all although it is OK to call it even if the given item doesn't
have any client data associated with it (but other items do).
Notice that the returned pointer is still owned by the control and will be
deleted by it, use DetachClientObject() (not implemented in wx) if you want to
remove the pointer from the control.
Return: A pointer to the client data, or NULL if not present.

 Link to this function

 getCount(This)

 View Source

 -spec getCount(This) -> integer() when This :: wxControlWithItems().

Returns the number of items in the control.
See: isEmpty/1

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxControlWithItems().

Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return: The position of the current selection.
Remark: This method can be used with single selection list boxes only, you
should use wxListBox:getSelections/1 for the list boxes with wxLB_MULTIPLE
style.
See: setSelection/2, getStringSelection/1

 Link to this function

 getString(This, N)

 View Source

 -spec getString(This, N) -> unicode:charlist() when This :: wxControlWithItems(), N :: integer().

Returns the label of the item with the given index.
Return: The label of the item or an empty string if the position was invalid.

 Link to this function

 getStringSelection(This)

 View Source

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxControlWithItems().

Returns the label of the selected item or an empty string if no item is
selected.
See: getSelection/1

 Link to this function

 insert(This, Item, Pos)

 View Source

 -spec insert(This, Item, Pos) -> integer()
 when This :: wxControlWithItems(), Item :: unicode:chardata(), Pos :: integer().

Inserts item into the control.
Return: The return value is the index of the newly inserted item. If the
insertion failed for some reason, -1 is returned.

 Link to this function

 insert(This, Item, Pos, ClientData)

 View Source

 -spec insert(This, Item, Pos, ClientData) -> integer()
 when
 This :: wxControlWithItems(),
 Item :: unicode:chardata(),
 Pos :: integer(),
 ClientData :: term().

Inserts item into the control.
Return: The return value is the index of the newly inserted item. If the
insertion failed for some reason, -1 is returned.

 Link to this function

 insertStrings(This, Items, Pos)

 View Source

 -spec insertStrings(This, Items, Pos) -> integer()
 when
 This :: wxControlWithItems(), Items :: [unicode:chardata()], Pos :: integer().

Inserts several items at once into the control.
Notice that calling this method is usually much faster than inserting them one
by one if you need to insert a lot of items.
Return: The return value is the index of the last inserted item. If the
insertion failed for some reason, -1 is returned.

 Link to this function

 insertStrings(This, Items, Pos, ClientsData)

 View Source

 -spec insertStrings(This, Items, Pos, ClientsData) -> integer()
 when
 This :: wxControlWithItems(),
 Items :: [unicode:chardata()],
 Pos :: integer(),
 ClientsData :: [term()].

Inserts several items at once into the control.
Notice that calling this method is usually much faster than inserting them one
by one if you need to insert a lot of items.
Return: The return value is the index of the last inserted item. If the
insertion failed for some reason, -1 is returned.

 Link to this function

 isEmpty(This)

 View Source

 -spec isEmpty(This) -> boolean() when This :: wxControlWithItems().

Returns true if the control is empty or false if it has some items.
See: getCount/1

 Link to this function

 select(This, N)

 View Source

 -spec select(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

This is the same as setSelection/2 and exists only because it is slightly more
natural for controls which support multiple selection.

 Link to this function

 setClientData(This, N, Data)

 View Source

 -spec setClientData(This, N, Data) -> ok
 when This :: wxControlWithItems(), N :: integer(), Data :: term().

Associates the given typed client data pointer with the given item: the data
object will be deleted when the item is deleted (either explicitly by using
delete/2 or implicitly when the control itself is destroyed).
Note that it is an error to call this function if any untyped client data
pointers had been associated with the control items before.

 Link to this function

 setSelection(This, N)

 View Source

 -spec setSelection(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

Sets the selection to the given item n or removes the selection entirely if
n == wxNOT_FOUND.
Note that this does not cause any command events to be emitted nor does it
deselect any other items in the controls which support multiple selections.
See: setString/3, setStringSelection/2

 Link to this function

 setString(This, N, String)

 View Source

 -spec setString(This, N, String) -> ok
 when This :: wxControlWithItems(), N :: integer(), String :: unicode:chardata().

Sets the label for the given item.

 Link to this function

 setStringSelection(This, String)

 View Source

 -spec setStringSelection(This, String) -> boolean()
 when This :: wxControlWithItems(), String :: unicode:chardata().

Selects the item with the specified string in the control.
This method doesn't cause any command events to be emitted.
Notice that this method is case-insensitive, i.e. the string is compared with
all the elements of the control case-insensitively and the first matching entry
is selected, even if it doesn't have exactly the same case as this string and
there is an exact match afterwards.
Return: true if the specified string has been selected, false if it wasn't found
in the control.

wxCursor

Functions for wxCursor class
A cursor is a small bitmap usually used for denoting where the mouse pointer is,
with a picture that might indicate the interpretation of a mouse click. As with
icons, cursors in X and MS Windows are created in a different manner. Therefore,
separate cursors will be created for the different environments.
Platform-specific methods for creating a wxCursor object are catered for,
and this is an occasion where conditional compilation will probably be required
(see wxIcon for an example).
A single cursor object may be used in many windows (any subwindow type). The
wxWidgets convention is to set the cursor for a window, as in X, rather than to
set it globally as in MS Windows, although a global wx_misc:setCursor/1
function is also available for MS Windows use.
Creating a Custom Cursor
The following is an example of creating a cursor from 32x32 bitmap data
(down_bits) and a mask (down_mask) where 1 is black and 0 is white for the bits,
and 1 is opaque and 0 is transparent for the mask. It works on Windows and GTK+.
Predefined objects (include wx.hrl):
See: wxBitmap, wxIcon, wxWindow:setCursor/2, wx_misc:setCursor/1,
?wxStockCursor
This class is derived (and can use functions) from: wxBitmap
wxWidgets docs: wxCursor

 Summary

 Types

 wxCursor()

 Functions

 destroy(This)

 Destroys the cursor.

 isOk(This)

 Returns true if cursor data is present.

 new()

 Default constructor.

 new/1

 Constructs a cursor using a cursor identifier.

 new(CursorName, Options)

 Constructs a cursor by passing a string resource name or filename.

 ok(This)

 See: isOk/1.

 Types

 Link to this type

 wxCursor()

 View Source

 -type wxCursor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxCursor()) -> ok.

Destroys the cursor.
See reference-counted object destruction for more info.
A cursor can be reused for more than one window, and does not get destroyed when
the window is destroyed. wxWidgets destroys all cursors on application exit,
although it is best to clean them up explicitly.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxCursor().

Returns true if cursor data is present.

 Link to this function

 new()

 View Source

 -spec new() -> wxCursor().

Default constructor.

 Link to this function

 new/1

 View Source

 -spec new(CursorName) -> wxCursor() when CursorName :: unicode:chardata();
 (Image) -> wxCursor() when Image :: wxImage:wxImage() | wxCursor:wxCursor();
 (CursorId) -> wxCursor() when CursorId :: wx:wx_enum().

Constructs a cursor using a cursor identifier.

 Link to this function

 new(CursorName, Options)

 View Source

 -spec new(CursorName, [Option]) -> wxCursor()
 when
 CursorName :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {hotSpotX, integer()} | {hotSpotY, integer()}.

Constructs a cursor by passing a string resource name or filename.
The arguments hotSpotX and hotSpotY are only used when there's no hotspot
info in the resource/image-file to load (e.g. when using wxBITMAP_TYPE_ICO
under wxMSW or wxBITMAP_TYPE_XPM under wxGTK).

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxCursor().

See: isOk/1.

wxDC

Functions for wxDC class
A wxDC is a "device context" onto which graphics and text can be drawn. It
is intended to represent different output devices and offers a common abstract
API for drawing on any of them.
wxWidgets offers an alternative drawing API based on the modern drawing backends
GDI+, CoreGraphics, Cairo and Direct2D. See wxGraphicsContext,
wxGraphicsRenderer and related classes. There is also a wxGCDC linking
the APIs by offering the wxDC API on top of a wxGraphicsContext.
wxDC is an abstract base class and cannot be created directly. Use
wxPaintDC, wxClientDC, wxWindowDC, wxScreenDC, wxMemoryDC or
wxPrinterDC (not implemented in wx). Notice that device contexts which are
associated with windows (i.e. wxClientDC, wxWindowDC and wxPaintDC)
use the window font and colours by default (starting with wxWidgets 2.9.0) but
the other device context classes use system-default values so you always must
set the appropriate fonts and colours before using them.
In addition to the versions of the methods documented below, there are also
versions which accept single {X,Y} parameter instead of the two wxCoord ones
or {X,Y} and {Width,Height} instead of the four wxCoord parameters.
Beginning with wxWidgets 2.9.0 the entire wxDC code has been reorganized.
All platform dependent code (actually all drawing code) has been moved into
backend classes which derive from a common wxDCImpl class. The user-visible
classes such as wxClientDC and wxPaintDC merely forward all calls to the
backend implementation.
Device and logical units
In the wxDC context there is a distinction between logical units and
device units.
Device units are the units native to the particular device; e.g. for a screen,
a device unit is a pixel. For a printer, the device unit is defined by the
resolution of the printer (usually given in DPI: dot-per-inch).
All wxDC functions use instead logical units, unless where explicitly
stated. Logical units are arbitrary units mapped to device units using the
current mapping mode (see setMapMode/2).
This mechanism allows reusing the same code which prints on e.g. a window on the
screen to print on e.g. a paper.
Support for Transparency / Alpha Channel
In general wxDC methods don't support alpha transparency and the alpha
component of wx_color() is simply ignored and you need
to use wxGraphicsContext for full transparency support. There are, however,
a few exceptions: first, under macOS and GTK+ 3 colours with alpha channel are
supported in all the normal wxDC-derived classes as they use
wxGraphicsContext internally. Second, under all platforms wxSVGFileDC (not
implemented in wx) also fully supports alpha channel. In both of these cases the
instances of wxPen or wxBrush that are built from
wx_color() use the colour's alpha values when stroking
or filling.
Support for Transformation Matrix
On some platforms (currently under MSW, GTK+ 3, macOS) wxDC has support for
applying an arbitrary affine transformation matrix to its coordinate system
(since 3.1.1 this feature is also supported by wxGCDC in all ports). Call
CanUseTransformMatrix() (not implemented in wx) to check if this support is
available and then call SetTransformMatrix() (not implemented in wx) if it is.
If the transformation matrix is not supported, SetTransformMatrix() (not
implemented in wx) always simply returns false and doesn't do anything.
This feature is only available when wxUSE_DC_TRANSFORM_MATRIX build option is
enabled.
See: Overview dc,
wxGraphicsContext, wxDCFontChanger (not implemented in wx),
wxDCTextColourChanger (not implemented in wx), wxDCPenChanger (not
implemented in wx), wxDCBrushChanger (not implemented in wx), wxDCClipper
(not implemented in wx)
wxWidgets docs: wxDC

 Summary

 Types

 wxDC()

 Functions

 blit(This, Dest, Size, Source, Src)

 blit/6

 Copy from a source DC to this DC.

 calcBoundingBox(This, X, Y)

 Adds the specified point to the bounding box which can be retrieved with
minX/1, maxX/1 and minY/1, maxY/1 functions.

 clear(This)

 Clears the device context using the current background brush.

 crossHair(This, Pt)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 destroyClippingRegion(This)

 Destroys the current clipping region so that none of the DC is clipped.

 deviceToLogicalX(This, X)

 Convert device X coordinate to logical coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 deviceToLogicalXRel(This, X)

 Convert device X coordinate to relative logical coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.

 deviceToLogicalY(This, Y)

 Converts device Y coordinate to logical coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 deviceToLogicalYRel(This, Y)

 Convert device Y coordinate to relative logical coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.

 drawArc(This, PtStart, PtEnd, Centre)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawBitmap(This, Bmp, Pt)

 drawBitmap/4

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawCheckMark(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawCircle(This, Pt, Radius)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawEllipse(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawEllipse(This, Pt, Size)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawEllipticArc(This, Pt, Sz, Sa, Ea)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawIcon(This, Icon, Pt)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawLabel(This, Text, Rect)

 drawLabel/4

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawLine(This, Pt1, Pt2)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawLines(This, Points)

 drawLines/3

 Draws lines using an array of points of size n adding the optional offset
coordinate.

 drawPoint(This, Pt)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawPolygon(This, Points)

 drawPolygon/3

 Draws a filled polygon using an array of points of size n, adding the optional
offset coordinate.

 drawRectangle(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawRectangle(This, Pt, Sz)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawRotatedText(This, Text, Point, Angle)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Rect, Radius)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Pt, Sz, Radius)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 drawText(This, Text, Pt)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 endDoc(This)

 Ends a document (only relevant when outputting to a printer).

 endPage(This)

 Ends a document page (only relevant when outputting to a printer).

 floodFill(This, Pt, Col)

 floodFill/4

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 getBackground(This)

 Gets the brush used for painting the background.

 getBackgroundMode(This)

 Returns the current background mode: wxPENSTYLE_SOLID or
wxPENSTYLE_TRANSPARENT.

 getBrush(This)

 Gets the current brush.

 getCharHeight(This)

 Gets the character height of the currently set font.

 getCharWidth(This)

 Gets the average character width of the currently set font.

 getClippingBox(This)

 Gets the rectangle surrounding the current clipping region. If no clipping region is set this function returns the extent of the device context. @remarks Clipping region is given in logical coordinates. @param x If non-NULL, filled in with the logical horizontal coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param y If non-NULL, filled in with the logical vertical coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param width If non-NULL, filled in with the width of the clipping region if the function returns true or the device context width otherwise. @param height If non-NULL, filled in with the height of the clipping region if the function returns true or the device context height otherwise.

 getFont(This)

 Gets the current font.

 getLayoutDirection(This)

 Gets the current layout direction of the device context.

 getLogicalFunction(This)

 Gets the current logical function.

 getMapMode(This)

 Gets the current mapping mode for the device context.

 getMultiLineTextExtent(This, String)

 Gets the dimensions of the string using the currently selected font.

 getMultiLineTextExtent/3

 Gets the dimensions of the string using the currently selected font.

 getPartialTextExtents(This, Text)

 Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 getPen(This)

 Gets the current pen.

 getPixel(This, Pos)

 Gets in colour the colour at the specified location.

 getPPI(This)

 Returns the resolution of the device in pixels per inch.

 getSize(This)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 getSizeMM(This)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 getTextBackground(This)

 Gets the current text background colour.

 getTextExtent(This, String)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 getTextExtent/3

 Gets the dimensions of the string using the currently selected font.

 getTextForeground(This)

 Gets the current text foreground colour.

 getUserScale(This)

 Gets the current user scale factor.

 gradientFillConcentric(This, Rect, InitialColour, DestColour)

 Fill the area specified by rect with a radial gradient, starting from
initialColour at the centre of the circle and fading to destColour on the
circle outside.

 gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter)

 Fill the area specified by rect with a radial gradient, starting from
initialColour at the centre of the circle and fading to destColour on the
circle outside.

 gradientFillLinear(This, Rect, InitialColour, DestColour)

 gradientFillLinear/5

 Fill the area specified by rect with a linear gradient, starting from
initialColour and eventually fading to destColour.

 isOk(This)

 Returns true if the DC is ok to use.

 logicalToDeviceX(This, X)

 Converts logical X coordinate to device coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 logicalToDeviceXRel(This, X)

 Converts logical X coordinate to relative device coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.

 logicalToDeviceY(This, Y)

 Converts logical Y coordinate to device coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 logicalToDeviceYRel(This, Y)

 Converts logical Y coordinate to relative device coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.

 maxX(This)

 Gets the maximum horizontal extent used in drawing commands so far.

 maxY(This)

 Gets the maximum vertical extent used in drawing commands so far.

 minX(This)

 Gets the minimum horizontal extent used in drawing commands so far.

 minY(This)

 Gets the minimum vertical extent used in drawing commands so far.

 resetBoundingBox(This)

 Resets the bounding box: after a call to this function, the bounding box doesn't
contain anything.

 setAxisOrientation(This, XLeftRight, YBottomUp)

 Sets the x and y axis orientation (i.e. the direction from lowest to highest
values on the axis).

 setBackground(This, Brush)

 Sets the current background brush for the DC.

 setBackgroundMode(This, Mode)

 mode may be one of wxPENSTYLE_SOLID and wxPENSTYLE_TRANSPARENT.

 setBrush(This, Brush)

 Sets the current brush for the DC.

 setClippingRegion(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setClippingRegion(This, Pt, Sz)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setDeviceOrigin(This, X, Y)

 Sets the device origin (i.e. the origin in pixels after scaling has been
applied).

 setFont(This, Font)

 Sets the current font for the DC.

 setLayoutDirection(This, Dir)

 Sets the current layout direction for the device context.

 setLogicalFunction(This, Function)

 Sets the current logical function for the device context.

 setMapMode(This, Mode)

 The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units.

 setPalette(This, Palette)

 If this is a window DC or memory DC, assigns the given palette to the window or
bitmap associated with the DC.

 setPen(This, Pen)

 Sets the current pen for the DC.

 setTextBackground(This, Colour)

 Sets the current text background colour for the DC.

 setTextForeground(This, Colour)

 Sets the current text foreground colour for the DC.

 setUserScale(This, XScale, YScale)

 Sets the user scaling factor, useful for applications which require 'zooming'.

 startDoc(This, Message)

 Starts a document (only relevant when outputting to a printer).

 startPage(This)

 Starts a document page (only relevant when outputting to a printer).

 Types

 Link to this type

 wxDC()

 View Source

 -type wxDC() :: wx:wx_object().

 Functions

 Link to this function

 blit(This, Dest, Size, Source, Src)

 View Source

 -spec blit(This, Dest, Size, Source, Src) -> boolean()
 when
 This :: wxDC(),
 Dest :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Source :: wxDC(),
 Src :: {X :: integer(), Y :: integer()}.

 Link to this function

 blit/6

 View Source

 -spec blit(This, Dest, Size, Source, Src, [Option]) -> boolean()
 when
 This :: wxDC(),
 Dest :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Source :: wxDC(),
 Src :: {X :: integer(), Y :: integer()},
 Option ::
 {rop, wx:wx_enum()} |
 {useMask, boolean()} |
 {srcPtMask, {X :: integer(), Y :: integer()}}.

Copy from a source DC to this DC.
With this method you can specify the destination coordinates and the size of
area to copy which will be the same for both the source and target DCs. If you
need to apply scaling while copying, use StretchBlit() (not implemented in
wx).
Notice that source DC coordinates xsrc and ysrc are interpreted using the
current source DC coordinate system, i.e. the scale, origin position and axis
directions are taken into account when transforming them to physical (pixel)
coordinates.
Remark: There is partial support for blit/6 in wxPostScriptDC, under X.
See: StretchBlit() (not implemented in wx), wxMemoryDC, wxBitmap,
wxMask

 Link to this function

 calcBoundingBox(This, X, Y)

 View Source

 -spec calcBoundingBox(This, X, Y) -> ok when This :: wxDC(), X :: integer(), Y :: integer().

Adds the specified point to the bounding box which can be retrieved with
minX/1, maxX/1 and minY/1, maxY/1 functions.
See: resetBoundingBox/1

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxDC().

Clears the device context using the current background brush.
Note that setBackground/2 method must be used to set the brush used by
clear/1, the brush used for filling the shapes set by setBrush/2 is ignored
by it.
If no background brush was set, solid white brush is used to clear the device
context.

 Link to this function

 crossHair(This, Pt)

 View Source

 -spec crossHair(This, Pt) -> ok when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 destroyClippingRegion(This)

 View Source

 -spec destroyClippingRegion(This) -> ok when This :: wxDC().

Destroys the current clipping region so that none of the DC is clipped.
See: setClippingRegion/3

 Link to this function

 deviceToLogicalX(This, X)

 View Source

 -spec deviceToLogicalX(This, X) -> integer() when This :: wxDC(), X :: integer().

Convert device X coordinate to logical coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 Link to this function

 deviceToLogicalXRel(This, X)

 View Source

 -spec deviceToLogicalXRel(This, X) -> integer() when This :: wxDC(), X :: integer().

Convert device X coordinate to relative logical coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.
Use this for converting a width, for example.

 Link to this function

 deviceToLogicalY(This, Y)

 View Source

 -spec deviceToLogicalY(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts device Y coordinate to logical coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 Link to this function

 deviceToLogicalYRel(This, Y)

 View Source

 -spec deviceToLogicalYRel(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Convert device Y coordinate to relative logical coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.
Use this for converting a height, for example.

 Link to this function

 drawArc(This, PtStart, PtEnd, Centre)

 View Source

 -spec drawArc(This, PtStart, PtEnd, Centre) -> ok
 when
 This :: wxDC(),
 PtStart :: {X :: integer(), Y :: integer()},
 PtEnd :: {X :: integer(), Y :: integer()},
 Centre :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawBitmap(This, Bmp, Pt)

 View Source

 -spec drawBitmap(This, Bmp, Pt) -> ok
 when
 This :: wxDC(),
 Bmp :: wxBitmap:wxBitmap(),
 Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 drawBitmap/4

 View Source

 -spec drawBitmap(This, Bmp, Pt, [Option]) -> ok
 when
 This :: wxDC(),
 Bmp :: wxBitmap:wxBitmap(),
 Pt :: {X :: integer(), Y :: integer()},
 Option :: {useMask, boolean()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawCheckMark(This, Rect)

 View Source

 -spec drawCheckMark(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawCircle(This, Pt, Radius)

 View Source

 -spec drawCircle(This, Pt, Radius) -> ok
 when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}, Radius :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawEllipse(This, Rect)

 View Source

 -spec drawEllipse(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawEllipse(This, Pt, Size)

 View Source

 -spec drawEllipse(This, Pt, Size) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawEllipticArc(This, Pt, Sz, Sa, Ea)

 View Source

 -spec drawEllipticArc(This, Pt, Sz, Sa, Ea) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()},
 Sa :: number(),
 Ea :: number().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawIcon(This, Icon, Pt)

 View Source

 -spec drawIcon(This, Icon, Pt) -> ok
 when This :: wxDC(), Icon :: wxIcon:wxIcon(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawLabel(This, Text, Rect)

 View Source

 -spec drawLabel(This, Text, Rect) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

 Link to this function

 drawLabel/4

 View Source

 -spec drawLabel(This, Text, Rect, [Option]) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {alignment, integer()} | {indexAccel, integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawLine(This, Pt1, Pt2)

 View Source

 -spec drawLine(This, Pt1, Pt2) -> ok
 when
 This :: wxDC(),
 Pt1 :: {X :: integer(), Y :: integer()},
 Pt2 :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawLines(This, Points)

 View Source

 -spec drawLines(This, Points) -> ok when This :: wxDC(), Points :: [{X :: integer(), Y :: integer()}].

 Link to this function

 drawLines/3

 View Source

 -spec drawLines(This, Points, [Option]) -> ok
 when
 This :: wxDC(),
 Points :: [{X :: integer(), Y :: integer()}],
 Option :: {xoffset, integer()} | {yoffset, integer()}.

Draws lines using an array of points of size n adding the optional offset
coordinate.
The current pen is used for drawing the lines.

 Link to this function

 drawPoint(This, Pt)

 View Source

 -spec drawPoint(This, Pt) -> ok when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawPolygon(This, Points)

 View Source

 -spec drawPolygon(This, Points) -> ok when This :: wxDC(), Points :: [{X :: integer(), Y :: integer()}].

 Link to this function

 drawPolygon/3

 View Source

 -spec drawPolygon(This, Points, [Option]) -> ok
 when
 This :: wxDC(),
 Points :: [{X :: integer(), Y :: integer()}],
 Option ::
 {xoffset, integer()} | {yoffset, integer()} | {fillStyle, wx:wx_enum()}.

Draws a filled polygon using an array of points of size n, adding the optional
offset coordinate.
The first and last points are automatically closed.
The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.
The current pen is used for drawing the outline, and the current brush for
filling the shape. Using a transparent brush suppresses filling.

 Link to this function

 drawRectangle(This, Rect)

 View Source

 -spec drawRectangle(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawRectangle(This, Pt, Sz)

 View Source

 -spec drawRectangle(This, Pt, Sz) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawRotatedText(This, Text, Point, Angle)

 View Source

 -spec drawRotatedText(This, Text, Point, Angle) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Point :: {X :: integer(), Y :: integer()},
 Angle :: number().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawRoundedRectangle(This, Rect, Radius)

 View Source

 -spec drawRoundedRectangle(This, Rect, Radius) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Radius :: number().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawRoundedRectangle(This, Pt, Sz, Radius)

 View Source

 -spec drawRoundedRectangle(This, Pt, Sz, Radius) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()},
 Radius :: number().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 drawText(This, Text, Pt)

 View Source

 -spec drawText(This, Text, Pt) -> ok
 when
 This :: wxDC(), Text :: unicode:chardata(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 endDoc(This)

 View Source

 -spec endDoc(This) -> ok when This :: wxDC().

Ends a document (only relevant when outputting to a printer).

 Link to this function

 endPage(This)

 View Source

 -spec endPage(This) -> ok when This :: wxDC().

Ends a document page (only relevant when outputting to a printer).

 Link to this function

 floodFill(This, Pt, Col)

 View Source

 -spec floodFill(This, Pt, Col) -> boolean()
 when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}, Col :: wx:wx_colour().

 Link to this function

 floodFill/4

 View Source

 -spec floodFill(This, Pt, Col, [Option]) -> boolean()
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Col :: wx:wx_colour(),
 Option :: {style, wx:wx_enum()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 getBackground(This)

 View Source

 -spec getBackground(This) -> wxBrush:wxBrush() when This :: wxDC().

Gets the brush used for painting the background.
See: setBackground/2

 Link to this function

 getBackgroundMode(This)

 View Source

 -spec getBackgroundMode(This) -> integer() when This :: wxDC().

Returns the current background mode: wxPENSTYLE_SOLID or
wxPENSTYLE_TRANSPARENT.
See: setBackgroundMode/2

 Link to this function

 getBrush(This)

 View Source

 -spec getBrush(This) -> wxBrush:wxBrush() when This :: wxDC().

Gets the current brush.
See: setBrush/2

 Link to this function

 getCharHeight(This)

 View Source

 -spec getCharHeight(This) -> integer() when This :: wxDC().

Gets the character height of the currently set font.

 Link to this function

 getCharWidth(This)

 View Source

 -spec getCharWidth(This) -> integer() when This :: wxDC().

Gets the average character width of the currently set font.

 Link to this function

 getClippingBox(This)

 View Source

 -spec getClippingBox(This) -> Result
 when
 Result ::
 {X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer()},
 This :: wxDC().

Gets the rectangle surrounding the current clipping region. If no clipping region is set this function returns the extent of the device context. @remarks Clipping region is given in logical coordinates. @param x If non-NULL, filled in with the logical horizontal coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param y If non-NULL, filled in with the logical vertical coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param width If non-NULL, filled in with the width of the clipping region if the function returns true or the device context width otherwise. @param height If non-NULL, filled in with the height of the clipping region if the function returns true or the device context height otherwise.
Return: true if there is a clipping region or false if there is no active
clipping region (note that this return value is available only since wxWidgets
3.1.2, this function didn't return anything in the previous versions).

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxDC().

Gets the current font.
Notice that even although each device context object has some default font after
creation, this method would return a ?wxNullFont initially and only after
calling setFont/2 a valid font is returned.

 Link to this function

 getLayoutDirection(This)

 View Source

 -spec getLayoutDirection(This) -> wx:wx_enum() when This :: wxDC().

Gets the current layout direction of the device context.
On platforms where RTL layout is supported, the return value will either be
wxLayout_LeftToRight or wxLayout_RightToLeft. If RTL layout is not
supported, the return value will be wxLayout_Default.
See: setLayoutDirection/2

 Link to this function

 getLogicalFunction(This)

 View Source

 -spec getLogicalFunction(This) -> wx:wx_enum() when This :: wxDC().

Gets the current logical function.
See: setLogicalFunction/2

 Link to this function

 getMapMode(This)

 View Source

 -spec getMapMode(This) -> wx:wx_enum() when This :: wxDC().

Gets the current mapping mode for the device context.
See: setMapMode/2

 Link to this function

 getMultiLineTextExtent(This, String)

 View Source

 -spec getMultiLineTextExtent(This, String) -> {W :: integer(), H :: integer()}
 when This :: wxDC(), String :: unicode:chardata().

Gets the dimensions of the string using the currently selected font.
string is the text string to measure.
Return: The text extent as a {Width,Height} object.
Note: This function works with both single-line and multi-line strings.
See: wxFont, setFont/2, getPartialTextExtents/2, getTextExtent/3

 Link to this function

 getMultiLineTextExtent/3

 View Source

 -spec getMultiLineTextExtent(This, String, [Option]) ->
 {W :: integer(), H :: integer(), HeightLine :: integer()}
 when
 This :: wxDC(),
 String :: unicode:chardata(),
 Option :: {font, wxFont:wxFont()}.

Gets the dimensions of the string using the currently selected font.
string is the text string to measure, heightLine, if non NULL, is where to
store the height of a single line.
The text extent is set in the given w and h pointers.
If the optional parameter font is specified and valid, then it is used for the
text extent calculation, otherwise the currently selected font is used.
If string is empty, its horizontal extent is 0 but, for convenience when using
this function for allocating enough space for a possibly multi-line string, its
vertical extent is the same as the height of an empty line of text. Please note
that this behaviour differs from that of getTextExtent/3.
Note: This function works with both single-line and multi-line strings.
See: wxFont, setFont/2, getPartialTextExtents/2, getTextExtent/3

 Link to this function

 getPartialTextExtents(This, Text)

 View Source

 -spec getPartialTextExtents(This, Text) -> Result
 when
 Result :: {Res :: boolean(), Widths :: [integer()]},
 This :: wxDC(),
 Text :: unicode:chardata().

Fills the widths array with the widths from the beginning of text to the
corresponding character of text.
The generic version simply builds a running total of the widths of each
character using getTextExtent/3, however if the various platforms have a
native API function that is faster or more accurate than the generic
implementation then it should be used instead.
See: getMultiLineTextExtent/3, getTextExtent/3

 Link to this function

 getPen(This)

 View Source

 -spec getPen(This) -> wxPen:wxPen() when This :: wxDC().

Gets the current pen.
See: setPen/2

 Link to this function

 getPixel(This, Pos)

 View Source

 -spec getPixel(This, Pos) -> Result
 when
 Result :: {Res :: boolean(), Colour :: wx:wx_colour4()},
 This :: wxDC(),
 Pos :: {X :: integer(), Y :: integer()}.

Gets in colour the colour at the specified location.
This method isn't available for wxPostScriptDC or wxMetafileDC (not
implemented in wx) nor for any DC in wxOSX port and simply returns false there.
Note: Setting a pixel can be done using drawPoint/2.
Note: This method shouldn't be used with wxPaintDC as accessing the DC while
drawing can result in unexpected results, notably in wxGTK.

 Link to this function

 getPPI(This)

 View Source

 -spec getPPI(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

Returns the resolution of the device in pixels per inch.

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 getSizeMM(This)

 View Source

 -spec getSizeMM(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 getTextBackground(This)

 View Source

 -spec getTextBackground(This) -> wx:wx_colour4() when This :: wxDC().

Gets the current text background colour.
See: setTextBackground/2

 Link to this function

 getTextExtent(This, String)

 View Source

 -spec getTextExtent(This, String) -> {W :: integer(), H :: integer()}
 when This :: wxDC(), String :: unicode:chardata().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 getTextExtent/3

 View Source

 -spec getTextExtent(This, String, [Option]) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxDC(),
 String :: unicode:chardata(),
 Option :: {theFont, wxFont:wxFont()}.

Gets the dimensions of the string using the currently selected font.
string is the text string to measure, descent is the dimension from the
baseline of the font to the bottom of the descender, and externalLeading is
any extra vertical space added to the font by the font designer (usually is
zero).
The text extent is returned in w and h pointers or as a {Width,Height}
object depending on which version of this function is used.
If the optional parameter font is specified and valid, then it is used for the
text extent calculation. Otherwise the currently selected font is.
If string is empty, its extent is 0 in both directions, as expected.
Note: This function only works with single-line strings.
See: wxFont, setFont/2, getPartialTextExtents/2,
getMultiLineTextExtent/3

 Link to this function

 getTextForeground(This)

 View Source

 -spec getTextForeground(This) -> wx:wx_colour4() when This :: wxDC().

Gets the current text foreground colour.
See: setTextForeground/2

 Link to this function

 getUserScale(This)

 View Source

 -spec getUserScale(This) -> {X :: number(), Y :: number()} when This :: wxDC().

Gets the current user scale factor.
See: setUserScale/3

 Link to this function

 gradientFillConcentric(This, Rect, InitialColour, DestColour)

 View Source

 -spec gradientFillConcentric(This, Rect, InitialColour, DestColour) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour().

Fill the area specified by rect with a radial gradient, starting from
initialColour at the centre of the circle and fading to destColour on the
circle outside.
The circle is placed at the centre of rect.
Note: Currently this function is very slow, don't use it for real-time drawing.

 Link to this function

 gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter)

 View Source

 -spec gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour(),
 CircleCenter :: {X :: integer(), Y :: integer()}.

Fill the area specified by rect with a radial gradient, starting from
initialColour at the centre of the circle and fading to destColour on the
circle outside.
circleCenter are the relative coordinates of centre of the circle in the
specified rect.
Note: Currently this function is very slow, don't use it for real-time drawing.

 Link to this function

 gradientFillLinear(This, Rect, InitialColour, DestColour)

 View Source

 -spec gradientFillLinear(This, Rect, InitialColour, DestColour) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour().

 Link to this function

 gradientFillLinear/5

 View Source

 -spec gradientFillLinear(This, Rect, InitialColour, DestColour, [Option]) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour(),
 Option :: {nDirection, wx:wx_enum()}.

Fill the area specified by rect with a linear gradient, starting from
initialColour and eventually fading to destColour.
The nDirection specifies the direction of the colour change, default is to use
initialColour on the left part of the rectangle and destColour on the right
one.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxDC().

Returns true if the DC is ok to use.

 Link to this function

 logicalToDeviceX(This, X)

 View Source

 -spec logicalToDeviceX(This, X) -> integer() when This :: wxDC(), X :: integer().

Converts logical X coordinate to device coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 Link to this function

 logicalToDeviceXRel(This, X)

 View Source

 -spec logicalToDeviceXRel(This, X) -> integer() when This :: wxDC(), X :: integer().

Converts logical X coordinate to relative device coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.
Use this for converting a width, for example.

 Link to this function

 logicalToDeviceY(This, Y)

 View Source

 -spec logicalToDeviceY(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts logical Y coordinate to device coordinate, using the current mapping
mode, user scale factor, device origin and axis orientation.

 Link to this function

 logicalToDeviceYRel(This, Y)

 View Source

 -spec logicalToDeviceYRel(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts logical Y coordinate to relative device coordinate, using the current
mapping mode and user scale factor but ignoring the axis orientation.
Use this for converting a height, for example.

 Link to this function

 maxX(This)

 View Source

 -spec maxX(This) -> integer() when This :: wxDC().

Gets the maximum horizontal extent used in drawing commands so far.

 Link to this function

 maxY(This)

 View Source

 -spec maxY(This) -> integer() when This :: wxDC().

Gets the maximum vertical extent used in drawing commands so far.

 Link to this function

 minX(This)

 View Source

 -spec minX(This) -> integer() when This :: wxDC().

Gets the minimum horizontal extent used in drawing commands so far.

 Link to this function

 minY(This)

 View Source

 -spec minY(This) -> integer() when This :: wxDC().

Gets the minimum vertical extent used in drawing commands so far.

 Link to this function

 resetBoundingBox(This)

 View Source

 -spec resetBoundingBox(This) -> ok when This :: wxDC().

Resets the bounding box: after a call to this function, the bounding box doesn't
contain anything.
See: calcBoundingBox/3

 Link to this function

 setAxisOrientation(This, XLeftRight, YBottomUp)

 View Source

 -spec setAxisOrientation(This, XLeftRight, YBottomUp) -> ok
 when This :: wxDC(), XLeftRight :: boolean(), YBottomUp :: boolean().

Sets the x and y axis orientation (i.e. the direction from lowest to highest
values on the axis).
The default orientation is x axis from left to right and y axis from top down.

 Link to this function

 setBackground(This, Brush)

 View Source

 -spec setBackground(This, Brush) -> ok when This :: wxDC(), Brush :: wxBrush:wxBrush().

Sets the current background brush for the DC.

 Link to this function

 setBackgroundMode(This, Mode)

 View Source

 -spec setBackgroundMode(This, Mode) -> ok when This :: wxDC(), Mode :: integer().

mode may be one of wxPENSTYLE_SOLID and wxPENSTYLE_TRANSPARENT.
This setting determines whether text will be drawn with a background colour or
not.

 Link to this function

 setBrush(This, Brush)

 View Source

 -spec setBrush(This, Brush) -> ok when This :: wxDC(), Brush :: wxBrush:wxBrush().

Sets the current brush for the DC.
If the argument is ?wxNullBrush (or another invalid brush; see
wxBrush:isOk/1), the current brush is selected out of the device context
(leaving wxDC without any valid brush), allowing the current brush to be
destroyed safely.
See: wxBrush, wxMemoryDC, (for the interpretation of colours when
drawing into a monochrome bitmap)

 Link to this function

 setClippingRegion(This, Rect)

 View Source

 -spec setClippingRegion(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setClippingRegion(This, Pt, Sz)

 View Source

 -spec setClippingRegion(This, Pt, Sz) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setDeviceOrigin(This, X, Y)

 View Source

 -spec setDeviceOrigin(This, X, Y) -> ok when This :: wxDC(), X :: integer(), Y :: integer().

Sets the device origin (i.e. the origin in pixels after scaling has been
applied).
This function may be useful in Windows printing operations for placing a graphic
on a page.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxDC(), Font :: wxFont:wxFont().

Sets the current font for the DC.
If the argument is ?wxNullFont (or another invalid font; see wxFont:isOk/1),
the current font is selected out of the device context (leaving wxDC without
any valid font), allowing the current font to be destroyed safely.
See: wxFont

 Link to this function

 setLayoutDirection(This, Dir)

 View Source

 -spec setLayoutDirection(This, Dir) -> ok when This :: wxDC(), Dir :: wx:wx_enum().

Sets the current layout direction for the device context.
See: getLayoutDirection/1

 Link to this function

 setLogicalFunction(This, Function)

 View Source

 -spec setLogicalFunction(This, Function) -> ok when This :: wxDC(), Function :: wx:wx_enum().

Sets the current logical function for the device context.
Note: This function is not fully supported in all ports, due to the limitations
of the underlying drawing model. Notably, wxINVERT which was commonly used for
drawing rubber bands or other moving outlines in the past, is not, and will not,
be supported by wxGTK3 and wxMac. The suggested alternative is to draw
temporarily objects normally and refresh the (affected part of the) window to
remove them later.
It determines how a source pixel (from a pen or brush colour, or source device
context if using blit/6) combines with a destination pixel in the current
device context. Text drawing is not affected by this function.
See ?wxRasterOperationMode enumeration values for more info.
The default is wxCOPY, which simply draws with the current colour. The others
combine the current colour and the background using a logical operation.

 Link to this function

 setMapMode(This, Mode)

 View Source

 -spec setMapMode(This, Mode) -> ok when This :: wxDC(), Mode :: wx:wx_enum().

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units.
Note that in X, text drawing isn't handled consistently with the mapping mode; a
font is always specified in point size. However, setting the user scale (see
setUserScale/3) scales the text appropriately. In Windows, scalable TrueType
fonts are always used; in X, results depend on availability of fonts, but
usually a reasonable match is found.
The coordinate origin is always at the top left of the screen/printer.
Drawing to a Windows printer device context uses the current mapping mode, but
mapping mode is currently ignored for PostScript output.

 Link to this function

 setPalette(This, Palette)

 View Source

 -spec setPalette(This, Palette) -> ok when This :: wxDC(), Palette :: wxPalette:wxPalette().

If this is a window DC or memory DC, assigns the given palette to the window or
bitmap associated with the DC.
If the argument is ?wxNullPalette, the current palette is selected out of the
device context, and the original palette restored.
See: wxPalette

 Link to this function

 setPen(This, Pen)

 View Source

 -spec setPen(This, Pen) -> ok when This :: wxDC(), Pen :: wxPen:wxPen().

Sets the current pen for the DC.
If the argument is ?wxNullPen (or another invalid pen; see wxPen:isOk/1), the
current pen is selected out of the device context (leaving wxDC without any
valid pen), allowing the current pen to be destroyed safely.
See: wxMemoryDC, for the interpretation of colours when drawing into a
monochrome bitmap

 Link to this function

 setTextBackground(This, Colour)

 View Source

 -spec setTextBackground(This, Colour) -> ok when This :: wxDC(), Colour :: wx:wx_colour().

Sets the current text background colour for the DC.

 Link to this function

 setTextForeground(This, Colour)

 View Source

 -spec setTextForeground(This, Colour) -> ok when This :: wxDC(), Colour :: wx:wx_colour().

Sets the current text foreground colour for the DC.
See: wxMemoryDC, for the interpretation of colours when drawing into a
monochrome bitmap

 Link to this function

 setUserScale(This, XScale, YScale)

 View Source

 -spec setUserScale(This, XScale, YScale) -> ok
 when This :: wxDC(), XScale :: number(), YScale :: number().

Sets the user scaling factor, useful for applications which require 'zooming'.

 Link to this function

 startDoc(This, Message)

 View Source

 -spec startDoc(This, Message) -> boolean() when This :: wxDC(), Message :: unicode:chardata().

Starts a document (only relevant when outputting to a printer).
message is a message to show while printing.

 Link to this function

 startPage(This)

 View Source

 -spec startPage(This) -> ok when This :: wxDC().

Starts a document page (only relevant when outputting to a printer).

wxDCOverlay

Functions for wxDCOverlay class
Connects an overlay with a drawing DC.
See: wxOverlay, wxDC
wxWidgets docs:
wxDCOverlay

 Summary

 Types

 wxDCOverlay()

 Functions

 clear(This)

 Clears the layer, restoring the state at the last init.

 destroy(This)

 Removes the connection between the overlay and the dc.

 new(Overlay, Dc)

 Convenience wrapper that behaves the same using the entire area of the dc.

 new(Overlay, Dc, X, Y, Width, Height)

 Connects this overlay to the corresponding drawing dc, if the overlay is not
initialized yet this call will do so.

 Types

 Link to this type

 wxDCOverlay()

 View Source

 -type wxDCOverlay() :: wx:wx_object().

 Functions

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxDCOverlay().

Clears the layer, restoring the state at the last init.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDCOverlay()) -> ok.

Removes the connection between the overlay and the dc.

 Link to this function

 new(Overlay, Dc)

 View Source

 -spec new(Overlay, Dc) -> wxDCOverlay() when Overlay :: wxOverlay:wxOverlay(), Dc :: wxDC:wxDC().

Convenience wrapper that behaves the same using the entire area of the dc.

 Link to this function

 new(Overlay, Dc, X, Y, Width, Height)

 View Source

 -spec new(Overlay, Dc, X, Y, Width, Height) -> wxDCOverlay()
 when
 Overlay :: wxOverlay:wxOverlay(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Connects this overlay to the corresponding drawing dc, if the overlay is not
initialized yet this call will do so.

wxDataObject

Functions for wxDataObject class
A wxDataObject represents data that can be copied to or from the clipboard,
or dragged and dropped. The important thing about wxDataObject is that this
is a 'smart' piece of data unlike 'dumb' data containers such as memory buffers
or files. Being 'smart' here means that the data object itself should know what
data formats it supports and how to render itself in each of its supported
formats.
A supported format, incidentally, is exactly the format in which the data can be
requested from a data object or from which the data object may be set. In the
general case, an object may support different formats on 'input' and 'output',
i.e. it may be able to render itself in a given format but not be created from
data on this format or vice versa. wxDataObject defines the
wxDataObject::Direction (not implemented in wx) enumeration type which
distinguishes between them.
See wxDataFormat (not implemented in wx) documentation for more about formats.
Not surprisingly, being 'smart' comes at a price of added complexity. This is
reasonable for the situations when you really need to support multiple formats,
but may be annoying if you only want to do something simple like cut and paste
text.
To provide a solution for both cases, wxWidgets has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (not implemented in wx) and
wxDataObjectComposite (not implemented in wx). wxDataObjectSimple (not
implemented in wx) is the simplest wxDataObject possible and only holds data
in a single format (such as HTML or text) and wxDataObjectComposite (not
implemented in wx) is the simplest way to implement a wxDataObject that does
support multiple formats because it achieves this by simply holding several
wxDataObjectSimple (not implemented in wx) objects.
So, you have several solutions when you need a wxDataObject class (and you
need one as soon as you want to transfer data via the clipboard or drag and
drop):
Please note that the easiest way to use drag and drop and the clipboard with
multiple formats is by using wxDataObjectComposite (not implemented in wx),
but it is not the most efficient one as each wxDataObjectSimple (not
implemented in wx) would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as
well as Word, RTF, HTML, Unicode and plain text to the clipboard and even
today's computers are in trouble. For this case, you will have to derive from
wxDataObject directly and make it enumerate its formats and provide the data
in the requested format on demand.
Note that neither the GTK+ data transfer mechanisms for clipboard and drag and
drop, nor OLE data transfer, copies any data until another application
actually requests the data. This is in contrast to the 'feel' offered to the
user of a program who would normally think that the data resides in the
clipboard after having pressed 'Copy' - in reality it is only declared to be
available.
You may also derive your own data object classes from wxCustomDataObject (not
implemented in wx) for user-defined types. The format of user-defined data is
given as a mime-type string literal, such as "application/word" or "image/png".
These strings are used as they are under Unix (so far only GTK+) to identify a
format and are translated into their Windows equivalent under Win32 (using the
OLE IDataObject for data exchange to and from the clipboard and for drag and
drop). Note that the format string translation under Windows is not yet
finished.
Each class derived directly from wxDataObject must override and implement
all of its functions which are pure virtual in the base class. The data objects
which only render their data or only set it (i.e. work in only one direction),
should return 0 from GetFormatCount() (not implemented in wx).
See:
Overview dnd,
Examples,
wxFileDataObject, wxTextDataObject, wxBitmapDataObject,
wxCustomDataObject (not implemented in wx), wxDropTarget (not implemented in
wx), wxDropSource (not implemented in wx), wxTextDropTarget (not implemented
in wx), wxFileDropTarget (not implemented in wx)
wxWidgets docs:
wxDataObject

 Summary

 Types

 wxDataObject()

 Types

 Link to this type

 wxDataObject()

 View Source

 -type wxDataObject() :: wx:wx_object().

wxDateEvent

Functions for wxDateEvent class
This event class holds information about a date change and is used together with
wxDatePickerCtrl. It also serves as a base class for wxCalendarEvent.
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxDateEvent

 Summary

 Types

 wxDate()

 wxDateEvent()

 wxDateEventType()

 Functions

 getDate(This)

 Returns the date.

 Types

 Link to this type

 wxDate()

 View Source

 -type wxDate() :: #wxDate{type :: wxDateEvent:wxDateEventType(), date :: wx:wx_datetime()}.

 Link to this type

 wxDateEvent()

 View Source

 -type wxDateEvent() :: wx:wx_object().

 Link to this type

 wxDateEventType()

 View Source

 -type wxDateEventType() :: date_changed.

 Functions

 Link to this function

 getDate(This)

 View Source

 -spec getDate(This) -> wx:wx_datetime() when This :: wxDateEvent().

Returns the date.

wxDatePickerCtrl

Functions for wxDatePickerCtrl class
This control allows the user to select a date. Unlike wxCalendarCtrl, which
is a relatively big control, wxDatePickerCtrl is implemented as a small
window showing the currently selected date. The control can be edited using the
keyboard, and can also display a popup window for more user-friendly date
selection, depending on the styles used and the platform.
It is only available if wxUSE_DATEPICKCTRL is set to 1.
Styles
This class supports the following styles:
See: wxTimePickerCtrl (not implemented in wx), wxCalendarCtrl,
wxDateEvent
This class is derived (and can use functions) from: wxPickerBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxDatePickerCtrl

 Events

Event types emitted from this class: date_changed

 Summary

 Types

 wxDatePickerCtrl()

 Functions

 destroy(This)

 Destroys the object.

 getRange(This, Dt1, Dt2)

 If the control had been previously limited to a range of dates using
setRange/3, returns the lower and upper bounds of this range.

 getValue(This)

 Returns the currently entered date.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Initializes the object and calls Create() (not implemented in wx) with all the
parameters.

 setRange(This, Dt1, Dt2)

 Sets the valid range for the date selection.

 setValue(This, Dt)

 Changes the current value of the control.

 Types

 Link to this type

 wxDatePickerCtrl()

 View Source

 -type wxDatePickerCtrl() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDatePickerCtrl()) -> ok.

Destroys the object.

 Link to this function

 getRange(This, Dt1, Dt2)

 View Source

 -spec getRange(This, Dt1, Dt2) -> boolean()
 when This :: wxDatePickerCtrl(), Dt1 :: wx:wx_datetime(), Dt2 :: wx:wx_datetime().

If the control had been previously limited to a range of dates using
setRange/3, returns the lower and upper bounds of this range.
If no range is set (or only one of the bounds is set), dt1 and/or dt2 are
set to be invalid.
Notice that when using a native MSW implementation of this control the lower
range is always set, even if setRange/3 hadn't been called explicitly, as the
native control only supports dates later than year 1601.
Return: false if no range limits are currently set, true if at least one bound
is set.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> wx:wx_datetime() when This :: wxDatePickerCtrl().

Returns the currently entered date.
For a control with wxDP_ALLOWNONE style the returned value may be invalid if
no date is entered, otherwise it is always valid.

 Link to this function

 new()

 View Source

 -spec new() -> wxDatePickerCtrl().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxDatePickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxDatePickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls Create() (not implemented in wx) with all the
parameters.

 Link to this function

 setRange(This, Dt1, Dt2)

 View Source

 -spec setRange(This, Dt1, Dt2) -> ok
 when This :: wxDatePickerCtrl(), Dt1 :: wx:wx_datetime(), Dt2 :: wx:wx_datetime().

Sets the valid range for the date selection.
If dt1 is valid, it becomes the earliest date (inclusive) accepted by the
control. If dt2 is valid, it becomes the latest possible date.
Notice that if the current value is not inside the new range, it will be
adjusted to lie inside it, i.e. calling this method can change the control
value, however no events are generated by it.
Remark: If the current value of the control is outside of the newly set range
bounds, the behaviour is undefined.

 Link to this function

 setValue(This, Dt)

 View Source

 -spec setValue(This, Dt) -> ok when This :: wxDatePickerCtrl(), Dt :: wx:wx_datetime().

Changes the current value of the control.
The date should be valid unless the control was created with wxDP_ALLOWNONE
style and included in the currently selected range, if any.
Calling this method does not result in a date change event.

wxDialog

Functions for wxDialog class
A dialog box is a window with a title bar and sometimes a system menu, which can
be moved around the screen. It can contain controls and other windows and is
often used to allow the user to make some choice or to answer a question.
Dialogs can be made scrollable, automatically, for computers with low resolution
screens: please see overview_dialog_autoscrolling for further details.
Dialogs usually contain either a single button allowing to close the dialog or
two buttons, one accepting the changes and the other one discarding them (such
button, if present, is automatically activated if the user presses the "Esc"
key). By default, buttons with the standard wxID_OK and wxID_CANCEL identifiers
behave as expected. Starting with wxWidgets 2.7 it is also possible to use a
button with a different identifier instead, see setAffirmativeId/2 and
SetEscapeId() (not implemented in wx).
Also notice that the createButtonSizer/2 should be used to create the buttons
appropriate for the current platform and positioned correctly (including their
order which is platform-dependent).
Modal and Modeless
There are two kinds of dialog, modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless
dialog behaves more like a frame in that program flow continues, and input in
other windows is still possible. To show a modal dialog you should use the
showModal/1 method while to show a dialog modelessly you simply use show/2,
just as with frames.
Note that the modal dialog is one of the very few examples of wxWindow-derived
objects which may be created on the stack and not on the heap. In other words,
while most windows would be created like this:
You can achieve the same result with dialogs by using simpler code:
An application can define a wxCloseEvent handler for the dialog to respond
to system close events.
Styles
This class supports the following styles:
See:
Overview dialog,
wxFrame,
Overview validator
This class is derived (and can use functions) from: wxTopLevelWindow
wxWindow wxEvtHandler
wxWidgets docs: wxDialog

 Events

Event types emitted from this class: close_window,
init_dialog

 Summary

 Types

 wxDialog()

 Functions

 create(This, Parent, Id, Title)

 create/5

 Used for two-step dialog box construction.

 createButtonSizer(This, Flags)

 Creates a sizer with standard buttons.

 createStdDialogButtonSizer(This, Flags)

 Creates a wxStdDialogButtonSizer with standard buttons.

 destroy(This)

 Destructor.

 endModal(This, RetCode)

 Ends a modal dialog, passing a value to be returned from the showModal/1
invocation.

 getAffirmativeId(This)

 Gets the identifier of the button which works like standard OK button in this
dialog.

 getReturnCode(This)

 Gets the return code for this window.

 isModal(This)

 Returns true if the dialog box is modal, false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Title)

 new/4

 Constructor.

 setAffirmativeId(This, Id)

 Sets the identifier to be used as OK button.

 setReturnCode(This, RetCode)

 Sets the return code for this window.

 show(This)

 show/2

 Hides or shows the dialog.

 showModal(This)

 Shows an application-modal dialog.

 Types

 Link to this type

 wxDialog()

 View Source

 -type wxDialog() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Title)

 View Source

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used for two-step dialog box construction.
See: new/4

 Link to this function

 createButtonSizer(This, Flags)

 View Source

 -spec createButtonSizer(This, Flags) -> wxSizer:wxSizer() when This :: wxDialog(), Flags :: integer().

Creates a sizer with standard buttons.
flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO,
wxAPPLY, wxCLOSE, wxHELP, wxNO_DEFAULT.
The sizer lays out the buttons in a manner appropriate to the platform.
This function uses createStdDialogButtonSizer/2 internally for most platforms
but doesn't create the sizer at all for the platforms with hardware buttons
(such as smartphones) for which it sets up the hardware buttons appropriately
and returns NULL, so don't forget to test that the return value is valid before
using it.

 Link to this function

 createStdDialogButtonSizer(This, Flags)

 View Source

 -spec createStdDialogButtonSizer(This, Flags) -> wxStdDialogButtonSizer:wxStdDialogButtonSizer()
 when This :: wxDialog(), Flags :: integer().

Creates a wxStdDialogButtonSizer with standard buttons.
flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO,
wxAPPLY, wxCLOSE, wxHELP, wxNO_DEFAULT.
The sizer lays out the buttons in a manner appropriate to the platform.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDialog()) -> ok.

Destructor.
Deletes any child windows before deleting the physical window.
See overview_windowdeletion for more info.

 Link to this function

 endModal(This, RetCode)

 View Source

 -spec endModal(This, RetCode) -> ok when This :: wxDialog(), RetCode :: integer().

Ends a modal dialog, passing a value to be returned from the showModal/1
invocation.
See: showModal/1, getReturnCode/1, setReturnCode/2

 Link to this function

 getAffirmativeId(This)

 View Source

 -spec getAffirmativeId(This) -> integer() when This :: wxDialog().

Gets the identifier of the button which works like standard OK button in this
dialog.
See: setAffirmativeId/2

 Link to this function

 getReturnCode(This)

 View Source

 -spec getReturnCode(This) -> integer() when This :: wxDialog().

Gets the return code for this window.
Remark: A return code is normally associated with a modal dialog, where
showModal/1 returns a code to the application.
See: setReturnCode/2, showModal/1, endModal/2

 Link to this function

 isModal(This)

 View Source

 -spec isModal(This) -> boolean() when This :: wxDialog().

Returns true if the dialog box is modal, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxDialog().

Default constructor.

 Link to this function

 new(Parent, Id, Title)

 View Source

 -spec new(Parent, Id, Title) -> wxDialog()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Title, [Option]) -> wxDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
See: create/5

 Link to this function

 setAffirmativeId(This, Id)

 View Source

 -spec setAffirmativeId(This, Id) -> ok when This :: wxDialog(), Id :: integer().

Sets the identifier to be used as OK button.
When the button with this identifier is pressed, the dialog calls
wxWindow:validate/1 and wxWindow:transferDataFromWindow/1 and, if they both
return true, closes the dialog with the affirmative id return code.
Also, when the user presses a hardware OK button on the devices having one or
the special OK button in the PocketPC title bar, an event with this id is
generated.
By default, the affirmative id is wxID_OK.
See: getAffirmativeId/1, SetEscapeId() (not implemented in wx)

 Link to this function

 setReturnCode(This, RetCode)

 View Source

 -spec setReturnCode(This, RetCode) -> ok when This :: wxDialog(), RetCode :: integer().

Sets the return code for this window.
A return code is normally associated with a modal dialog, where showModal/1
returns a code to the application. The function endModal/2 calls
setReturnCode/2.
See: getReturnCode/1, showModal/1, endModal/2

 Link to this function

 show(This)

 View Source

 -spec show(This) -> boolean() when This :: wxDialog().

 Link to this function

 show/2

 View Source

 -spec show(This, [Option]) -> boolean() when This :: wxDialog(), Option :: {show, boolean()}.

Hides or shows the dialog.
The preferred way of dismissing a modal dialog is to use endModal/2.

 Link to this function

 showModal(This)

 View Source

 -spec showModal(This) -> integer() when This :: wxDialog().

Shows an application-modal dialog.
Program flow does not return until the dialog has been dismissed with
endModal/2.
Notice that it is possible to call showModal/1 for a dialog which had been
previously shown with show/2, this allows making an existing modeless dialog
modal. However showModal/1 can't be called twice without intervening
endModal/2 calls.
Note that this function creates a temporary event loop which takes precedence
over the application's main event loop (see wxEventLoopBase (not implemented
in wx)) and which is destroyed when the dialog is dismissed. This also results
in a call to wxApp::ProcessPendingEvents() (not implemented in wx).
Return: The value set with setReturnCode/2.
See: ShowWindowModal() (not implemented in wx), ShowWindowModalThenDo() (not
implemented in wx), endModal/2, getReturnCode/1, setReturnCode/2

wxDirDialog

Functions for wxDirDialog class
This class represents the directory chooser dialog.
Styles
This class supports the following styles:
Note: This flag cannot be used with the wxDD_MULTIPLE style.
Remark: MacOS 10.11+ does not display a title bar on the dialog. Use
setMessage/2 to change the string displayed to the user at the top of the
dialog after creation. The wxTopLevelWindow:setTitle/2 method is provided for
compatibility with pre-10.11 MacOS versions that do still support displaying the
title bar.
See:
Overview cmndlg,
wxFileDialog
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxDirDialog

 Summary

 Types

 wxDirDialog()

 Functions

 destroy(This)

 Destructor.

 getMessage(This)

 Returns the message that will be displayed on the dialog.

 getPath(This)

 Returns the default or user-selected path.

 new(Parent)

 new/2

 Constructor.

 setMessage(This, Message)

 Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 Sets the default path.

 Types

 Link to this type

 wxDirDialog()

 View Source

 -type wxDirDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDirDialog()) -> ok.

Destructor.

 Link to this function

 getMessage(This)

 View Source

 -spec getMessage(This) -> unicode:charlist() when This :: wxDirDialog().

Returns the message that will be displayed on the dialog.

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxDirDialog().

Returns the default or user-selected path.
Note: This function can't be used with dialogs which have the wxDD_MULTIPLE
style, use GetPaths() (not implemented in wx) instead.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxDirDialog() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxDirDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {title, unicode:chardata()} |
 {defaultPath, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

 Link to this function

 setMessage(This, Message)

 View Source

 -spec setMessage(This, Message) -> ok when This :: wxDirDialog(), Message :: unicode:chardata().

Sets the message that will be displayed on the dialog.

 Link to this function

 setPath(This, Path)

 View Source

 -spec setPath(This, Path) -> ok when This :: wxDirDialog(), Path :: unicode:chardata().

Sets the default path.

wxDirPickerCtrl

Functions for wxDirPickerCtrl class
This control allows the user to select a directory. The generic implementation
is a button which brings up a wxDirDialog when clicked. Native
implementation may differ but this is usually a (small) widget which give access
to the dir-chooser dialog. It is only available if wxUSE_DIRPICKERCTRL is set
to 1 (the default).
Styles
This class supports the following styles:
See: wxDirDialog, wxFileDirPickerEvent
This class is derived (and can use functions) from: wxPickerBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxDirPickerCtrl

 Events

Event types emitted from this class:
command_dirpicker_changed

 Summary

 Types

 wxDirPickerCtrl()

 Functions

 create(This, Parent, Id)

 create/4

 Creates the widgets with the given parameters.

 destroy(This)

 Destroys the object.

 getPath(This)

 Returns the absolute path of the currently selected directory.

 new()

 new(Parent, Id)

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setPath(This, Dirname)

 Sets the absolute path of the currently selected directory.

 Types

 Link to this type

 wxDirPickerCtrl()

 View Source

 -type wxDirPickerCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxDirPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxDirPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the widgets with the given parameters.
Return: true if the control was successfully created or false if creation
failed.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDirPickerCtrl()) -> ok.

Destroys the object.

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxDirPickerCtrl().

Returns the absolute path of the currently selected directory.

 Link to this function

 new()

 View Source

 -spec new() -> wxDirPickerCtrl().

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxDirPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxDirPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 Link to this function

 setPath(This, Dirname)

 View Source

 -spec setPath(This, Dirname) -> ok when This :: wxDirPickerCtrl(), Dirname :: unicode:chardata().

Sets the absolute path of the currently selected directory.
If the control uses wxDIRP_DIR_MUST_EXIST and does not use
wxDIRP_USE_TEXTCTRL style, the dirname must be a name of an existing
directory and will be simply ignored by the native wxGTK implementation if this
is not the case.

wxDisplay

Functions for wxDisplay class
Determines the sizes and locations of displays connected to the system.
wxWidgets docs: wxDisplay

 Summary

 Types

 wxDisplay()

 Functions

 destroy(This)

 Destructor.

 getClientArea(This)

 Returns the client area of the display.

 getCount()

 Returns the number of connected displays.

 getFromPoint(Pt)

 Returns the index of the display on which the given point lies, or wxNOT_FOUND
if the point is not on any connected display.

 getFromWindow(Win)

 Returns the index of the display on which the given window lies.

 getGeometry(This)

 Returns the bounding rectangle of the display whose index was passed to the
constructor.

 getName(This)

 Returns the display's name.

 getPPI(This)

 Returns display resolution in pixels per inch.

 isOk(This)

 Returns true if the object was initialized successfully.

 isPrimary(This)

 Returns true if the display is the primary display.

 new()

 Default constructor creating wxDisplay object representing the primary
display.

 new/1

 Constructor creating the display object associated with the given window.

 Types

 Link to this type

 wxDisplay()

 View Source

 -type wxDisplay() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxDisplay()) -> ok.

Destructor.

 Link to this function

 getClientArea(This)

 View Source

 -spec getClientArea(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxDisplay().

Returns the client area of the display.
The client area is the part of the display available for the normal (non full
screen) windows, usually it is the same as getGeometry/1 but it could be less
if there is a taskbar (or equivalent) on this display.

 Link to this function

 getCount()

 View Source

 -spec getCount() -> integer().

Returns the number of connected displays.

 Link to this function

 getFromPoint(Pt)

 View Source

 -spec getFromPoint(Pt) -> integer() when Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the display on which the given point lies, or wxNOT_FOUND
if the point is not on any connected display.

 Link to this function

 getFromWindow(Win)

 View Source

 -spec getFromWindow(Win) -> integer() when Win :: wxWindow:wxWindow().

Returns the index of the display on which the given window lies.
If the window is on more than one display it gets the display that overlaps the
window the most.
Returns wxNOT_FOUND if the window is not on any connected display.

 Link to this function

 getGeometry(This)

 View Source

 -spec getGeometry(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxDisplay().

Returns the bounding rectangle of the display whose index was passed to the
constructor.
See: getClientArea/1, wx_misc:displaySize/0

 Link to this function

 getName(This)

 View Source

 -spec getName(This) -> unicode:charlist() when This :: wxDisplay().

Returns the display's name.
The returned value is currently an empty string under all platforms except MSW.

 Link to this function

 getPPI(This)

 View Source

 -spec getPPI(This) -> {W :: integer(), H :: integer()} when This :: wxDisplay().

Returns display resolution in pixels per inch.
Horizontal and vertical resolution are returned in x and y components of the
{Width,Height} object respectively.
If the resolution information is not available, returns.
Since: 3.1.2

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxDisplay().

Returns true if the object was initialized successfully.

 Link to this function

 isPrimary(This)

 View Source

 -spec isPrimary(This) -> boolean() when This :: wxDisplay().

Returns true if the display is the primary display.
The primary display is the one whose index is 0.

 Link to this function

 new()

 View Source

 -spec new() -> wxDisplay().

Default constructor creating wxDisplay object representing the primary
display.

 Link to this function

 new/1

 View Source

 -spec new(Index) -> wxDisplay() when Index :: integer();
 (Window) -> wxDisplay() when Window :: wxWindow:wxWindow().

Constructor creating the display object associated with the given window.
This is the most convenient way of finding the display on which the given window
is shown while falling back to the default display if it is not shown at all or
positioned outside of any display.
See: getFromWindow/1
Since: 3.1.2

wxDisplayChangedEvent

Functions for wxDisplayChangedEvent class
A display changed event is sent to top-level windows when the display resolution
has changed.
This event is currently emitted under Windows only.
Only for:wxmsw
See: wxDisplay
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxDisplayChangedEvent

 Events

Use wxEvtHandler:connect/3 with
wxDisplayChangedEventType to subscribe to
events of this type.

 Summary

 Types

 wxDisplayChanged()

 wxDisplayChangedEvent()

 wxDisplayChangedEventType()

 Types

 Link to this type

 wxDisplayChanged()

 View Source

 -type wxDisplayChanged() :: #wxDisplayChanged{type :: wxDisplayChangedEvent:wxDisplayChangedEventType()}.

 Link to this type

 wxDisplayChangedEvent()

 View Source

 -type wxDisplayChangedEvent() :: wx:wx_object().

 Link to this type

 wxDisplayChangedEventType()

 View Source

 -type wxDisplayChangedEventType() :: display_changed.

wxDropFilesEvent

Functions for wxDropFilesEvent class
This class is used for drop files events, that is, when files have been dropped
onto the window.
The window must have previously been enabled for dropping by calling
wxWindow:dragAcceptFiles/2.
Important note: this is a separate implementation to the more general drag and
drop implementation documented in the overview_dnd. It uses the older, Windows
message-based approach of dropping files.
Remark: Windows only until version 2.8.9, available on all platforms since
2.8.10.
See:
Overview events,
wxWindow:dragAcceptFiles/2
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxDropFilesEvent

 Events

Use wxEvtHandler:connect/3 with
wxDropFilesEventType to subscribe to events of
this type.

 Summary

 Types

 wxDropFiles()

 wxDropFilesEvent()

 wxDropFilesEventType()

 Functions

 getFiles(This)

 Returns an array of filenames.

 getNumberOfFiles(This)

 Returns the number of files dropped.

 getPosition(This)

 Returns the position at which the files were dropped.

 Types

 Link to this type

 wxDropFiles()

 View Source

 -type wxDropFiles() ::
 #wxDropFiles{type :: wxDropFilesEvent:wxDropFilesEventType(),
 pos :: {X :: integer(), Y :: integer()},
 files :: [unicode:chardata()]}.

 Link to this type

 wxDropFilesEvent()

 View Source

 -type wxDropFilesEvent() :: wx:wx_object().

 Link to this type

 wxDropFilesEventType()

 View Source

 -type wxDropFilesEventType() :: drop_files.

 Functions

 Link to this function

 getFiles(This)

 View Source

 -spec getFiles(This) -> [unicode:charlist()] when This :: wxDropFilesEvent().

Returns an array of filenames.

 Link to this function

 getNumberOfFiles(This)

 View Source

 -spec getNumberOfFiles(This) -> integer() when This :: wxDropFilesEvent().

Returns the number of files dropped.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxDropFilesEvent().

Returns the position at which the files were dropped.
Returns an array of filenames.

wxEraseEvent

Functions for wxEraseEvent class
An erase event is sent when a window's background needs to be repainted.
On some platforms, such as GTK+, this event is simulated (simply generated just
before the paint event) and may cause flicker. It is therefore recommended that
you set the text background colour explicitly in order to prevent flicker. The
default background colour under GTK+ is grey.
To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table
definition.
You must use the device context returned by getDC/1 to draw on, don't create a
wxPaintDC in the event handler.
See:
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxEraseEvent

 Events

Use wxEvtHandler:connect/3 with wxEraseEventType
to subscribe to events of this type.

 Summary

 Types

 wxErase()

 wxEraseEvent()

 wxEraseEventType()

 Functions

 getDC(This)

 Returns the device context associated with the erase event to draw on.

 Types

 Link to this type

 wxErase()

 View Source

 -type wxErase() :: #wxErase{type :: wxEraseEvent:wxEraseEventType(), dc :: wxDC:wxDC()}.

 Link to this type

 wxEraseEvent()

 View Source

 -type wxEraseEvent() :: wx:wx_object().

 Link to this type

 wxEraseEventType()

 View Source

 -type wxEraseEventType() :: erase_background.

 Functions

 Link to this function

 getDC(This)

 View Source

 -spec getDC(This) -> wxDC:wxDC() when This :: wxEraseEvent().

Returns the device context associated with the erase event to draw on.
The returned pointer is never NULL.

wxEvent

Functions for wxEvent class
An event is a structure holding information about an event passed to a callback
or member function.
wxEvent used to be a multipurpose event object, and is an abstract base
class for other event classes (see below).
For more information about events, see the overview_events overview.
See: wxCommandEvent, wxMouseEvent
wxWidgets docs: wxEvent

 Summary

 Types

 wxEvent()

 Functions

 getId(This)

 Returns the identifier associated with this event, such as a button command id.

 getSkipped(This)

 Returns true if the event handler should be skipped, false otherwise.

 getTimestamp(This)

 Gets the timestamp for the event.

 isCommandEvent(This)

 Returns true if the event is or is derived from wxCommandEvent else it
returns false.

 resumePropagation(This, PropagationLevel)

 Sets the propagation level to the given value (for example returned from an
earlier call to stopPropagation/1).

 shouldPropagate(This)

 Test if this event should be propagated or not, i.e. if the propagation level is
currently greater than 0.

 skip(This)

 skip/2

 This method can be used inside an event handler to control whether further event
handlers bound to this event will be called after the current one returns.

 stopPropagation(This)

 Stop the event from propagating to its parent window.

 Types

 Link to this type

 wxEvent()

 View Source

 -type wxEvent() :: wx:wx_object().

 Functions

 Link to this function

 getId(This)

 View Source

 -spec getId(This) -> integer() when This :: wxEvent().

Returns the identifier associated with this event, such as a button command id.

 Link to this function

 getSkipped(This)

 View Source

 -spec getSkipped(This) -> boolean() when This :: wxEvent().

Returns true if the event handler should be skipped, false otherwise.

 Link to this function

 getTimestamp(This)

 View Source

 -spec getTimestamp(This) -> integer() when This :: wxEvent().

Gets the timestamp for the event.
The timestamp is the time in milliseconds since some fixed moment (not
necessarily the standard Unix Epoch, so only differences between the timestamps
and not their absolute values usually make sense).
Warning: wxWidgets returns a non-NULL timestamp only for mouse and key events
(see wxMouseEvent and wxKeyEvent).

 Link to this function

 isCommandEvent(This)

 View Source

 -spec isCommandEvent(This) -> boolean() when This :: wxEvent().

Returns true if the event is or is derived from wxCommandEvent else it
returns false.
Note: exists only for optimization purposes.

 Link to this function

 resumePropagation(This, PropagationLevel)

 View Source

 -spec resumePropagation(This, PropagationLevel) -> ok
 when This :: wxEvent(), PropagationLevel :: integer().

Sets the propagation level to the given value (for example returned from an
earlier call to stopPropagation/1).

 Link to this function

 shouldPropagate(This)

 View Source

 -spec shouldPropagate(This) -> boolean() when This :: wxEvent().

Test if this event should be propagated or not, i.e. if the propagation level is
currently greater than 0.

 Link to this function

 skip(This)

 View Source

 -spec skip(This) -> ok when This :: wxEvent().

 Link to this function

 skip/2

 View Source

 -spec skip(This, [Option]) -> ok when This :: wxEvent(), Option :: {skip, boolean()}.

This method can be used inside an event handler to control whether further event
handlers bound to this event will be called after the current one returns.
Without skip/2 (or equivalently if Skip(false) is used), the event will not be
processed any more. If Skip(true) is called, the event processing system
continues searching for a further handler function for this event, even though
it has been processed already in the current handler.
In general, it is recommended to skip all non-command events to allow the
default handling to take place. The command events are, however, normally not
skipped as usually a single command such as a button click or menu item
selection must only be processed by one handler.

 Link to this function

 stopPropagation(This)

 View Source

 -spec stopPropagation(This) -> integer() when This :: wxEvent().

Stop the event from propagating to its parent window.
Returns the old propagation level value which may be later passed to
resumePropagation/2 to allow propagating the event again.

wxEvtHandler

Functions for wxEvtHandler class
A class that can handle events from the windowing system. wxWindow is (and
therefore all window classes are) derived from this class.
To get events from wxwidgets objects you subscribe to them by calling
connect/3.
If the callback option is not supplied events are sent as messages.
These messages will be #wx{} where EventRecord is a record that depends on
the wxEventType. The records are defined in: wx/include/wx.hrl.
If a callback was supplied to connect, the callback will be invoked (in another
process) to handle the event. The callback should be of arity 2.
fun Callback (EventRecord::wx(), EventObject::wxObject()).
Note: The callback will be in executed in new process each time.
See:
Overview events
wxWidgets docs:
wxEvtHandler

 Summary

 Types

 event()

 wx()

 wxEventType()

 wxEvtHandler()

 Functions

 connect(This, EventType)

 connect/3

 This function subscribes to events.

 disconnect(This)

 disconnect(This, EventType)

 disconnect/3

 This function unsubscribes the process or callback fun from the event handler.

 Types

 Link to this type

 event()

 View Source

 -type event() ::
 wxActivateEvent:wxActivate() |
 wxAuiManagerEvent:wxAuiManager() |
 wxAuiNotebookEvent:wxAuiNotebook() |
 wxBookCtrlEvent:wxBookCtrl() |
 wxCalendarEvent:wxCalendar() |
 wxChildFocusEvent:wxChildFocus() |
 wxClipboardTextEvent:wxClipboardText() |
 wxCloseEvent:wxClose() |
 wxColourPickerEvent:wxColourPicker() |
 wxCommandEvent:wxCommand() |
 wxContextMenuEvent:wxContextMenu() |
 wxDateEvent:wxDate() |
 wxDisplayChangedEvent:wxDisplayChanged() |
 wxDropFilesEvent:wxDropFiles() |
 wxEraseEvent:wxErase() |
 wxFileDirPickerEvent:wxFileDirPicker() |
 wxFocusEvent:wxFocus() |
 wxFontPickerEvent:wxFontPicker() |
 wxGridEvent:wxGrid() |
 wxHelpEvent:wxHelp() |
 wxHtmlLinkEvent:wxHtmlLink() |
 wxIconizeEvent:wxIconize() |
 wxIdleEvent:wxIdle() |
 wxInitDialogEvent:wxInitDialog() |
 wxJoystickEvent:wxJoystick() |
 wxKeyEvent:wxKey() |
 wxListEvent:wxList() |
 wxMaximizeEvent:wxMaximize() |
 wxMenuEvent:wxMenu() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
 wxMouseCaptureLostEvent:wxMouseCaptureLost() |
 wxMouseEvent:wxMouse() |
 wxMoveEvent:wxMove() |
 wxNavigationKeyEvent:wxNavigationKey() |
 wxPaintEvent:wxPaint() |
 wxPaletteChangedEvent:wxPaletteChanged() |
 wxQueryNewPaletteEvent:wxQueryNewPalette() |
 wxSashEvent:wxSash() |
 wxScrollEvent:wxScroll() |
 wxScrollWinEvent:wxScrollWin() |
 wxSetCursorEvent:wxSetCursor() |
 wxShowEvent:wxShow() |
 wxSizeEvent:wxSize() |
 wxSpinEvent:wxSpin() |
 wxSplitterEvent:wxSplitter() |
 wxStyledTextEvent:wxStyledText() |
 wxSysColourChangedEvent:wxSysColourChanged() |
 wxTaskBarIconEvent:wxTaskBarIcon() |
 wxTreeEvent:wxTree() |
 wxUpdateUIEvent:wxUpdateUI() |
 wxWebViewEvent:wxWebView() |
 wxWindowCreateEvent:wxWindowCreate() |
 wxWindowDestroyEvent:wxWindowDestroy().

 Link to this type

 wx()

 View Source

 -type wx() :: #wx{id :: integer(), obj :: wx:wx_object(), userData :: term(), event :: event()}.

 Link to this type

 wxEventType()

 View Source

 (not exported)

 -type wxEventType() ::
 wxActivateEvent:wxActivateEventType() |
 wxAuiManagerEvent:wxAuiManagerEventType() |
 wxAuiNotebookEvent:wxAuiNotebookEventType() |
 wxBookCtrlEvent:wxBookCtrlEventType() |
 wxCalendarEvent:wxCalendarEventType() |
 wxChildFocusEvent:wxChildFocusEventType() |
 wxClipboardTextEvent:wxClipboardTextEventType() |
 wxCloseEvent:wxCloseEventType() |
 wxColourPickerEvent:wxColourPickerEventType() |
 wxCommandEvent:wxCommandEventType() |
 wxContextMenuEvent:wxContextMenuEventType() |
 wxDateEvent:wxDateEventType() |
 wxDisplayChangedEvent:wxDisplayChangedEventType() |
 wxDropFilesEvent:wxDropFilesEventType() |
 wxEraseEvent:wxEraseEventType() |
 wxFileDirPickerEvent:wxFileDirPickerEventType() |
 wxFocusEvent:wxFocusEventType() |
 wxFontPickerEvent:wxFontPickerEventType() |
 wxGridEvent:wxGridEventType() |
 wxHelpEvent:wxHelpEventType() |
 wxHtmlLinkEvent:wxHtmlLinkEventType() |
 wxIconizeEvent:wxIconizeEventType() |
 wxIdleEvent:wxIdleEventType() |
 wxInitDialogEvent:wxInitDialogEventType() |
 wxJoystickEvent:wxJoystickEventType() |
 wxKeyEvent:wxKeyEventType() |
 wxListEvent:wxListEventType() |
 wxMaximizeEvent:wxMaximizeEventType() |
 wxMenuEvent:wxMenuEventType() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType() |
 wxMouseCaptureLostEvent:wxMouseCaptureLostEventType() |
 wxMouseEvent:wxMouseEventType() |
 wxMoveEvent:wxMoveEventType() |
 wxNavigationKeyEvent:wxNavigationKeyEventType() |
 wxPaintEvent:wxPaintEventType() |
 wxPaletteChangedEvent:wxPaletteChangedEventType() |
 wxQueryNewPaletteEvent:wxQueryNewPaletteEventType() |
 wxSashEvent:wxSashEventType() |
 wxScrollEvent:wxScrollEventType() |
 wxScrollWinEvent:wxScrollWinEventType() |
 wxSetCursorEvent:wxSetCursorEventType() |
 wxShowEvent:wxShowEventType() |
 wxSizeEvent:wxSizeEventType() |
 wxSpinEvent:wxSpinEventType() |
 wxSplitterEvent:wxSplitterEventType() |
 wxStyledTextEvent:wxStyledTextEventType() |
 wxSysColourChangedEvent:wxSysColourChangedEventType() |
 wxTaskBarIconEvent:wxTaskBarIconEventType() |
 wxTreeEvent:wxTreeEventType() |
 wxUpdateUIEvent:wxUpdateUIEventType() |
 wxWebViewEvent:wxWebViewEventType() |
 wxWindowCreateEvent:wxWindowCreateEventType() |
 wxWindowDestroyEvent:wxWindowDestroyEventType().

 Link to this type

 wxEvtHandler()

 View Source

 -type wxEvtHandler() :: wx:wx_object().

 Functions

 Link to this function

 connect(This, EventType)

 View Source

 -spec connect(This :: wxEvtHandler(), EventType :: wxEventType()) -> ok.

 Link to this function

 connect/3

 View Source

 -spec connect(This :: wxEvtHandler(), EventType :: wxEventType(), [Option]) -> ok
 when
 Option ::
 {id, integer()} |
 {lastId, integer()} |
 {skip, boolean()} |
 callback |
 {callback, function()} |
 {userData, term()}.

This function subscribes to events.
Subscribes to events of type EventType, in the range id, lastId.
The events will be received as messages if no callback is supplied.
Options
id:{id, integer()}The identifier (or first of the identifier range) to be
associated with this event handler. Default is ?wxID_ANY
lastid:{lastId,integer()}The second part of the identifier range. If used
'id' must be set as the starting identifier range. Default is ?wxID_ANY
skip:{skip,boolean()}If skip is true further event_handlers will be called.
This is not used if the 'callback' option is used. Default is false.
callback:{callback,function()}Use a
callbackfun(EventRecord::wx(),EventObject::wxObject())to process the event.
Default not specified i.e. a message will be delivered to the process calling
this function.
userData:{userData,term()}An erlang term that will be sent with the event.
Default: [].

 Link to this function

 disconnect(This)

 View Source

 -spec disconnect(This :: wxEvtHandler()) -> boolean().

 Link to this function

 disconnect(This, EventType)

 View Source

 -spec disconnect(This :: wxEvtHandler(), EventType :: wxEventType()) -> boolean().

 Link to this function

 disconnect/3

 View Source

 -spec disconnect(This :: wxEvtHandler(), EventType :: wxEventType(), [Option]) -> boolean()
 when Option :: {id, integer()} | {lastId, integer()} | {callback, function()}.

This function unsubscribes the process or callback fun from the event handler.
EventType may be the atom 'null' to match any eventtype. Notice that the options
skip and userdata is not used to match the eventhandler.

wxFileDataObject

Functions for wxFileDataObject class
wxFileDataObject is a specialization of wxDataObject for file names. The
program works with it just as if it were a list of absolute file names, but
internally it uses the same format as Explorer and other compatible programs
under Windows or GNOME/KDE file manager under Unix which makes it possible to
receive files from them using this class.
See: wxDataObject, wxDataObjectSimple (not implemented in wx),
wxTextDataObject, wxBitmapDataObject, wxDataObject
This class is derived (and can use functions) from: wxDataObject
wxWidgets docs:
wxFileDataObject

 Summary

 Types

 wxFileDataObject()

 Functions

 addFile(This, File)

 Adds a file to the file list represented by this data object (Windows only).

 destroy(This)

 Destroys the object.

 getFilenames(This)

 Returns the array of file names.

 new()

 Constructor.

 Types

 Link to this type

 wxFileDataObject()

 View Source

 -type wxFileDataObject() :: wx:wx_object().

 Functions

 Link to this function

 addFile(This, File)

 View Source

 -spec addFile(This, File) -> ok when This :: wxFileDataObject(), File :: unicode:chardata().

Adds a file to the file list represented by this data object (Windows only).

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFileDataObject()) -> ok.

Destroys the object.

 Link to this function

 getFilenames(This)

 View Source

 -spec getFilenames(This) -> [unicode:charlist()] when This :: wxFileDataObject().

Returns the array of file names.

 Link to this function

 new()

 View Source

 -spec new() -> wxFileDataObject().

Constructor.

wxFileDialog

Functions for wxFileDialog class
This class represents the file chooser dialog.
The path and filename are distinct elements of a full file pathname. If path is
?wxEmptyString, the current directory will be used. If filename is
?wxEmptyString, no default filename will be supplied. The wildcard determines
what files are displayed in the file selector, and file extension supplies a
type extension for the required filename.
The typical usage for the open file dialog is:
The typical usage for the save file dialog is instead somewhat simpler:
Remark: All implementations of the wxFileDialog provide a wildcard filter.
Typing a filename containing wildcards (, ?) in the filename text item, and
clicking on Ok, will result in only those files matching the pattern being
displayed. The wildcard may be a specification for multiple types of file with a
description for each, such as: It must be noted that wildcard support in the
native Motif file dialog is quite limited: only one file type is supported, and
it is displayed without the descriptive test; "BMP files (.bmp)|.bmp" is
displayed as ".bmp", and both "BMP files (.bmp)|.bmp|GIF files (.gif)|.gif"
and "Image files|.bmp;.gif" are errors. On Mac macOS in the open file dialog
the filter choice box is not shown by default. Instead all given wildcards are
appplied at the same time: So in the above example all bmp, gif and png files
are displayed. To enforce the display of the filter choice set the corresponding
wxSystemOptions before calling the file open dialog: But in contrast to
Windows and Unix, where the file type choice filters only the selected files, on
Mac macOS even in this case the dialog shows all files matching all file types.
The files which does not match the currently selected file type are greyed out
and are not selectable.
Styles
This class supports the following styles:
See:
Overview cmndlg,
?wxFileSelector()
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxFileDialog

 Summary

 Types

 wxFileDialog()

 Functions

 destroy(This)

 Destructor.

 getDirectory(This)

 Returns the default directory.

 getFilename(This)

 Returns the default filename.

 getFilenames(This)

 Fills the array filenames with the names of the files chosen.

 getFilterIndex(This)

 Returns the index into the list of filters supplied, optionally, in the wildcard
parameter.

 getMessage(This)

 Returns the message that will be displayed on the dialog.

 getPath(This)

 Returns the full path (directory and filename) of the selected file.

 getPaths(This)

 Fills the array paths with the full paths of the files chosen.

 getWildcard(This)

 Returns the file dialog wildcard.

 new(Parent)

 new/2

 Constructor.

 setDirectory(This, Directory)

 Sets the default directory.

 setFilename(This, Setfilename)

 Sets the default filename.

 setFilterIndex(This, FilterIndex)

 Sets the default filter index, starting from zero.

 setMessage(This, Message)

 Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 Sets the path (the combined directory and filename that will be returned when
the dialog is dismissed).

 setWildcard(This, WildCard)

 Sets the wildcard, which can contain multiple file types, for example: "BMP
files (.bmp)|.bmp|GIF files (.gif)|.gif".

 Types

 Link to this type

 wxFileDialog()

 View Source

 -type wxFileDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFileDialog()) -> ok.

Destructor.

 Link to this function

 getDirectory(This)

 View Source

 -spec getDirectory(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the default directory.

 Link to this function

 getFilename(This)

 View Source

 -spec getFilename(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the default filename.
Note: This function can't be used with dialogs which have the wxFD_MULTIPLE
style, use getFilenames/1 instead.

 Link to this function

 getFilenames(This)

 View Source

 -spec getFilenames(This) -> [unicode:charlist()] when This :: wxFileDialog().

Fills the array filenames with the names of the files chosen.
This function should only be used with the dialogs which have wxFD_MULTIPLE
style, use getFilename/1 for the others.
Note that under Windows, if the user selects shortcuts, the filenames include
paths, since the application cannot determine the full path of each referenced
file by appending the directory containing the shortcuts to the filename.

 Link to this function

 getFilterIndex(This)

 View Source

 -spec getFilterIndex(This) -> integer() when This :: wxFileDialog().

Returns the index into the list of filters supplied, optionally, in the wildcard
parameter.
Before the dialog is shown, this is the index which will be used when the dialog
is first displayed.
After the dialog is shown, this is the index selected by the user.

 Link to this function

 getMessage(This)

 View Source

 -spec getMessage(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the message that will be displayed on the dialog.

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the full path (directory and filename) of the selected file.
Note: This function can't be used with dialogs which have the wxFD_MULTIPLE
style, use getPaths/1 instead.

 Link to this function

 getPaths(This)

 View Source

 -spec getPaths(This) -> [unicode:charlist()] when This :: wxFileDialog().

Fills the array paths with the full paths of the files chosen.
This function should only be used with the dialogs which have wxFD_MULTIPLE
style, use getPath/1 for the others.

 Link to this function

 getWildcard(This)

 View Source

 -spec getWildcard(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the file dialog wildcard.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxFileDialog() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxFileDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {message, unicode:chardata()} |
 {defaultDir, unicode:chardata()} |
 {defaultFile, unicode:chardata()} |
 {wildCard, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

 Link to this function

 setDirectory(This, Directory)

 View Source

 -spec setDirectory(This, Directory) -> ok when This :: wxFileDialog(), Directory :: unicode:chardata().

Sets the default directory.

 Link to this function

 setFilename(This, Setfilename)

 View Source

 -spec setFilename(This, Setfilename) -> ok
 when This :: wxFileDialog(), Setfilename :: unicode:chardata().

Sets the default filename.
In wxGTK this will have little effect unless a default directory has previously
been set.

 Link to this function

 setFilterIndex(This, FilterIndex)

 View Source

 -spec setFilterIndex(This, FilterIndex) -> ok when This :: wxFileDialog(), FilterIndex :: integer().

Sets the default filter index, starting from zero.

 Link to this function

 setMessage(This, Message)

 View Source

 -spec setMessage(This, Message) -> ok when This :: wxFileDialog(), Message :: unicode:chardata().

Sets the message that will be displayed on the dialog.

 Link to this function

 setPath(This, Path)

 View Source

 -spec setPath(This, Path) -> ok when This :: wxFileDialog(), Path :: unicode:chardata().

Sets the path (the combined directory and filename that will be returned when
the dialog is dismissed).

 Link to this function

 setWildcard(This, WildCard)

 View Source

 -spec setWildcard(This, WildCard) -> ok when This :: wxFileDialog(), WildCard :: unicode:chardata().

Sets the wildcard, which can contain multiple file types, for example: "BMP
files (.bmp)|.bmp|GIF files (.gif)|.gif".
Note that the native Motif dialog has some limitations with respect to
wildcards; see the Remarks section above.

wxFileDirPickerEvent

Functions for wxFileDirPickerEvent class
This event class is used for the events generated by wxFilePickerCtrl and by
wxDirPickerCtrl.
See: wxFilePickerCtrl, wxDirPickerCtrl
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxFileDirPickerEvent

 Events

Use wxEvtHandler:connect/3 with
wxFileDirPickerEventType to subscribe to
events of this type.

 Summary

 Types

 wxFileDirPicker()

 wxFileDirPickerEvent()

 wxFileDirPickerEventType()

 Functions

 getPath(This)

 Retrieve the absolute path of the file/directory the user has just selected.

 Types

 Link to this type

 wxFileDirPicker()

 View Source

 -type wxFileDirPicker() ::
 #wxFileDirPicker{type :: wxFileDirPickerEvent:wxFileDirPickerEventType(),
 path :: unicode:chardata()}.

 Link to this type

 wxFileDirPickerEvent()

 View Source

 -type wxFileDirPickerEvent() :: wx:wx_object().

 Link to this type

 wxFileDirPickerEventType()

 View Source

 -type wxFileDirPickerEventType() :: command_filepicker_changed | command_dirpicker_changed.

 Functions

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxFileDirPickerEvent().

Retrieve the absolute path of the file/directory the user has just selected.

wxFilePickerCtrl

Functions for wxFilePickerCtrl class
This control allows the user to select a file. The generic implementation is a
button which brings up a wxFileDialog when clicked. Native implementation
may differ but this is usually a (small) widget which give access to the
file-chooser dialog. It is only available if wxUSE_FILEPICKERCTRL is set to 1
(the default).
Styles
This class supports the following styles:
See: wxFileDialog, wxFileDirPickerEvent
This class is derived (and can use functions) from: wxPickerBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxFilePickerCtrl

 Events

Event types emitted from this class:
command_filepicker_changed

 Summary

 Types

 wxFilePickerCtrl()

 Functions

 create(This, Parent, Id)

 create/4

 Creates this widget with the given parameters.

 destroy(This)

 Destroys the object.

 getPath(This)

 Returns the absolute path of the currently selected file.

 new()

 new(Parent, Id)

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setPath(This, Filename)

 Sets the absolute path of the currently selected file.

 Types

 Link to this type

 wxFilePickerCtrl()

 View Source

 -type wxFilePickerCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxFilePickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxFilePickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates this widget with the given parameters.
Return: true if the control was successfully created or false if creation
failed.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFilePickerCtrl()) -> ok.

Destroys the object.

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxFilePickerCtrl().

Returns the absolute path of the currently selected file.

 Link to this function

 new()

 View Source

 -spec new() -> wxFilePickerCtrl().

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxFilePickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxFilePickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 Link to this function

 setPath(This, Filename)

 View Source

 -spec setPath(This, Filename) -> ok when This :: wxFilePickerCtrl(), Filename :: unicode:chardata().

Sets the absolute path of the currently selected file.
If the control uses wxFLP_FILE_MUST_EXIST and does not use
wxFLP_USE_TEXTCTRL style, the filename must be a name of an existing file
and will be simply ignored by the native wxGTK implementation if this is not the
case (the generic implementation used under the other platforms accepts even
invalid file names currently, but this is subject to change in the future, don't
rely on being able to use non-existent paths with it).

wxFindReplaceData

Functions for wxFindReplaceData class
wxFindReplaceData holds the data for wxFindReplaceDialog.
It is used to initialize the dialog with the default values and will keep the
last values from the dialog when it is closed. It is also updated each time a
wxFindDialogEvent (not implemented in wx) is generated so instead of using the
wxFindDialogEvent (not implemented in wx) methods you can also directly query
this object.
Note that all SetXXX() methods may only be called before showing the dialog
and calling them has no effect later.
wxWidgets docs:
wxFindReplaceData

 Summary

 Types

 wxFindReplaceData()

 Functions

 destroy(This)

 Destroys the object.

 getFindString(This)

 Get the string to find.

 getFlags(This)

 Get the combination of wxFindReplaceFlags values.

 getReplaceString(This)

 Get the replacement string.

 new()

 new(Options)

 Constructor initializes the flags to default value (0).

 setFindString(This, Str)

 Set the string to find (used as initial value by the dialog).

 setFlags(This, Flags)

 Set the flags to use to initialize the controls of the dialog.

 setReplaceString(This, Str)

 Set the replacement string (used as initial value by the dialog).

 Types

 Link to this type

 wxFindReplaceData()

 View Source

 -type wxFindReplaceData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFindReplaceData()) -> ok.

Destroys the object.

 Link to this function

 getFindString(This)

 View Source

 -spec getFindString(This) -> unicode:charlist() when This :: wxFindReplaceData().

Get the string to find.

 Link to this function

 getFlags(This)

 View Source

 -spec getFlags(This) -> integer() when This :: wxFindReplaceData().

Get the combination of wxFindReplaceFlags values.

 Link to this function

 getReplaceString(This)

 View Source

 -spec getReplaceString(This) -> unicode:charlist() when This :: wxFindReplaceData().

Get the replacement string.

 Link to this function

 new()

 View Source

 -spec new() -> wxFindReplaceData().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxFindReplaceData() when Option :: {flags, integer()}.

Constructor initializes the flags to default value (0).

 Link to this function

 setFindString(This, Str)

 View Source

 -spec setFindString(This, Str) -> ok when This :: wxFindReplaceData(), Str :: unicode:chardata().

Set the string to find (used as initial value by the dialog).

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxFindReplaceData(), Flags :: integer().

Set the flags to use to initialize the controls of the dialog.

 Link to this function

 setReplaceString(This, Str)

 View Source

 -spec setReplaceString(This, Str) -> ok when This :: wxFindReplaceData(), Str :: unicode:chardata().

Set the replacement string (used as initial value by the dialog).

wxFindReplaceDialog

Functions for wxFindReplaceDialog class
wxFindReplaceDialog is a standard modeless dialog which is used to allow the
user to search for some text (and possibly replace it with something else).
The actual searching is supposed to be done in the owner window which is the
parent of this dialog. Note that it means that unlike for the other standard
dialogs this one must have a parent window. Also note that there is no way to
use this dialog in a modal way; it is always, by design and implementation,
modeless.
Please see the page_samples_dialogs sample for an example of using it.
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxFindReplaceDialog

 Summary

 Types

 wxFindReplaceDialog()

 Functions

 create(This, Parent, Data, Title)

 create/5

 Creates the dialog; use wxWindow:show/2 to show it on screen.

 destroy(This)

 Destructor.

 getData(This)

 Get the wxFindReplaceData object used by this dialog.

 new()

 new(Parent, Data, Title)

 new/4

 After using default constructor create/5 must be called.

 Types

 Link to this type

 wxFindReplaceDialog()

 View Source

 -type wxFindReplaceDialog() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Data, Title)

 View Source

 -spec create(This, Parent, Data, Title) -> boolean()
 when
 This :: wxFindReplaceDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Data, Title, [Option]) -> boolean()
 when
 This :: wxFindReplaceDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata(),
 Option :: {style, integer()}.

Creates the dialog; use wxWindow:show/2 to show it on screen.
The parent and data parameters must be non-NULL.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFindReplaceDialog()) -> ok.

Destructor.

 Link to this function

 getData(This)

 View Source

 -spec getData(This) -> wxFindReplaceData:wxFindReplaceData() when This :: wxFindReplaceDialog().

Get the wxFindReplaceData object used by this dialog.

 Link to this function

 new()

 View Source

 -spec new() -> wxFindReplaceDialog().

 Link to this function

 new(Parent, Data, Title)

 View Source

 -spec new(Parent, Data, Title) -> wxFindReplaceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Data, Title, [Option]) -> wxFindReplaceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata(),
 Option :: {style, integer()}.

After using default constructor create/5 must be called.
The parent and data parameters must be non-NULL.

wxFlexGridSizer

Functions for wxFlexGridSizer class
A flex grid sizer is a sizer which lays out its children in a two-dimensional
table with all table fields in one row having the same height and all fields in
one column having the same width, but all rows or all columns are not
necessarily the same height or width as in the wxGridSizer.
Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one
direction but unequally ("flexibly") in the other. If the sizer is only flexible
in one direction (this can be changed using setFlexibleDirection/2), it needs
to be decided how the sizer should grow in the other ("non-flexible") direction
in order to fill the available space. The setNonFlexibleGrowMode/2 method
serves this purpose.
See: wxSizer,
Overview sizer
This class is derived (and can use functions) from: wxGridSizer wxSizer
wxWidgets docs:
wxFlexGridSizer

 Summary

 Types

 wxFlexGridSizer()

 Functions

 addGrowableCol(This, Idx)

 addGrowableCol/3

 Specifies that column idx (starting from zero) should be grown if there is
extra space available to the sizer.

 addGrowableRow(This, Idx)

 addGrowableRow/3

 Specifies that row idx (starting from zero) should be grown if there is extra
space available to the sizer.

 destroy(This)

 Destroys the object.

 getFlexibleDirection(This)

 Returns a ?wxOrientation value that specifies whether the sizer flexibly resizes
its columns, rows, or both (default).

 getNonFlexibleGrowMode(This)

 Returns the value that specifies how the sizer grows in the "non-flexible"
direction if there is one.

 new(Cols)

 new(Cols, Options)

 new/3

 new(Rows, Cols, Vgap, Hgap)

 removeGrowableCol(This, Idx)

 Specifies that the idx column index is no longer growable.

 removeGrowableRow(This, Idx)

 Specifies that the idx row index is no longer growable.

 setFlexibleDirection(This, Direction)

 Specifies whether the sizer should flexibly resize its columns, rows, or both.

 setNonFlexibleGrowMode(This, Mode)

 Specifies how the sizer should grow in the non-flexible direction if there is
one (so setFlexibleDirection/2 must have been called previously).

 Types

 Link to this type

 wxFlexGridSizer()

 View Source

 -type wxFlexGridSizer() :: wx:wx_object().

 Functions

 Link to this function

 addGrowableCol(This, Idx)

 View Source

 -spec addGrowableCol(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

 Link to this function

 addGrowableCol/3

 View Source

 -spec addGrowableCol(This, Idx, [Option]) -> ok
 when
 This :: wxFlexGridSizer(),
 Idx :: integer(),
 Option :: {proportion, integer()}.

Specifies that column idx (starting from zero) should be grown if there is
extra space available to the sizer.
The proportion parameter has the same meaning as the stretch factor for the
sizers (see wxBoxSizer) except that if all proportions are 0, then all
columns are resized equally (instead of not being resized at all).
Notice that the column must not be already growable, if you need to change the
proportion you must call removeGrowableCol/2 first and then make it growable
(with a different proportion) again. You can use IsColGrowable() (not
implemented in wx) to check whether a column is already growable.

 Link to this function

 addGrowableRow(This, Idx)

 View Source

 -spec addGrowableRow(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

 Link to this function

 addGrowableRow/3

 View Source

 -spec addGrowableRow(This, Idx, [Option]) -> ok
 when
 This :: wxFlexGridSizer(),
 Idx :: integer(),
 Option :: {proportion, integer()}.

Specifies that row idx (starting from zero) should be grown if there is extra
space available to the sizer.
This is identical to addGrowableCol/3 except that it works with rows and not
columns.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFlexGridSizer()) -> ok.

Destroys the object.

 Link to this function

 getFlexibleDirection(This)

 View Source

 -spec getFlexibleDirection(This) -> integer() when This :: wxFlexGridSizer().

Returns a ?wxOrientation value that specifies whether the sizer flexibly resizes
its columns, rows, or both (default).
Return: One of the following values:
See: setFlexibleDirection/2

 Link to this function

 getNonFlexibleGrowMode(This)

 View Source

 -spec getNonFlexibleGrowMode(This) -> wx:wx_enum() when This :: wxFlexGridSizer().

Returns the value that specifies how the sizer grows in the "non-flexible"
direction if there is one.
The behaviour of the elements in the flexible direction (i.e. both rows and
columns by default, or rows only if getFlexibleDirection/1 is wxVERTICAL or
columns only if it is wxHORIZONTAL) is always governed by their proportion as
specified in the call to addGrowableRow/3 or addGrowableCol/3. What happens
in the other direction depends on the value of returned by this function as
described below.
Return: One of the following values:
See: setFlexibleDirection/2, setNonFlexibleGrowMode/2

 Link to this function

 new(Cols)

 View Source

 -spec new(Cols) -> wxFlexGridSizer() when Cols :: integer().

 Link to this function

 new(Cols, Options)

 View Source

 -spec new(Cols, [Option]) -> wxFlexGridSizer()
 when Cols :: integer(), Option :: {gap, {W :: integer(), H :: integer()}}.

 Link to this function

 new/3

 View Source

 -spec new(Cols, Vgap, Hgap) -> wxFlexGridSizer()
 when Cols :: integer(), Vgap :: integer(), Hgap :: integer();
 (Rows, Cols, Gap) -> wxFlexGridSizer()
 when Rows :: integer(), Cols :: integer(), Gap :: {W :: integer(), H :: integer()}.

 Link to this function

 new(Rows, Cols, Vgap, Hgap)

 View Source

 -spec new(Rows, Cols, Vgap, Hgap) -> wxFlexGridSizer()
 when Rows :: integer(), Cols :: integer(), Vgap :: integer(), Hgap :: integer().

 Link to this function

 removeGrowableCol(This, Idx)

 View Source

 -spec removeGrowableCol(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Specifies that the idx column index is no longer growable.

 Link to this function

 removeGrowableRow(This, Idx)

 View Source

 -spec removeGrowableRow(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Specifies that the idx row index is no longer growable.

 Link to this function

 setFlexibleDirection(This, Direction)

 View Source

 -spec setFlexibleDirection(This, Direction) -> ok when This :: wxFlexGridSizer(), Direction :: integer().

Specifies whether the sizer should flexibly resize its columns, rows, or both.
Argument direction can be wxVERTICAL, wxHORIZONTAL or wxBOTH (which is
the default value). Any other value is ignored.
See getFlexibleDirection/1 for the explanation of these values. Note that this
method does not trigger relayout.

 Link to this function

 setNonFlexibleGrowMode(This, Mode)

 View Source

 -spec setNonFlexibleGrowMode(This, Mode) -> ok when This :: wxFlexGridSizer(), Mode :: wx:wx_enum().

Specifies how the sizer should grow in the non-flexible direction if there is
one (so setFlexibleDirection/2 must have been called previously).
Argument mode can be one of those documented in getNonFlexibleGrowMode/1,
please see there for their explanation. Note that this method does not trigger
relayout.

wxFocusEvent

Functions for wxFocusEvent class
A focus event is sent when a window's focus changes. The window losing focus
receives a "kill focus" event while the window gaining it gets a "set focus"
one.
Notice that the set focus event happens both when the user gives focus to the
window (whether using the mouse or keyboard) and when it is done from the
program itself using wxWindow:setFocus/1.
The focus event handlers should almost invariably call wxEvent:skip/2 on their
event argument to allow the default handling to take place. Failure to do this
may result in incorrect behaviour of the native controls. Also note that
wxEVT_KILL_FOCUS handler must not call wxWindow:setFocus/1 as this, again, is
not supported by all native controls. If you need to do this, consider using the
Delayed Action Mechanism (not implemented in wx) described in wxIdleEvent
documentation.
See:
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxFocusEvent

 Events

Use wxEvtHandler:connect/3 with wxFocusEventType
to subscribe to events of this type.

 Summary

 Types

 wxFocus()

 wxFocusEvent()

 wxFocusEventType()

 Functions

 getWindow(This)

 Returns the window associated with this event, that is the window which had the
focus before for the wxEVT_SET_FOCUS event and the window which is going to
receive focus for the wxEVT_KILL_FOCUS one.

 Types

 Link to this type

 wxFocus()

 View Source

 -type wxFocus() :: #wxFocus{type :: wxFocusEvent:wxFocusEventType(), win :: wxWindow:wxWindow()}.

 Link to this type

 wxFocusEvent()

 View Source

 -type wxFocusEvent() :: wx:wx_object().

 Link to this type

 wxFocusEventType()

 View Source

 -type wxFocusEventType() :: set_focus | kill_focus.

 Functions

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxFocusEvent().

Returns the window associated with this event, that is the window which had the
focus before for the wxEVT_SET_FOCUS event and the window which is going to
receive focus for the wxEVT_KILL_FOCUS one.
Warning: the window pointer may be NULL!

wxFont

Functions for wxFont class
A font is an object which determines the appearance of text.
Fonts are used for drawing text to a device context, and setting the appearance
of a window's text, see wxDC:setFont/2 and wxWindow:setFont/2.
The easiest way to create a custom font is to use wxFontInfo (not implemented
in wx) object to specify the font attributes and then use new/5 constructor.
Alternatively, you could start with one of the pre-defined fonts or use
wxWindow:getFont/1 and modify the font, e.g. by increasing its size using
MakeLarger() (not implemented in wx) or changing its weight using MakeBold()
(not implemented in wx).
This class uses reference counting and copy-on-write internally so that
assignments between two instances of this class are very cheap. You can
therefore use actual objects instead of pointers without efficiency problems. If
an instance of this class is changed it will create its own data internally so
that other instances, which previously shared the data using the reference
counting, are not affected.
You can retrieve the current system font settings with wxSystemSettings.
Predefined objects (include wx.hrl): ?wxNullFont, ?wxNORMAL_FONT, ?wxSMALL_FONT,
?wxITALIC_FONT, ?wxSWISS_FONT
See:
Overview font,
wxDC:setFont/2, wxDC:drawText/3, wxDC:getTextExtent/3, wxFontDialog,
wxSystemSettings
wxWidgets docs: wxFont

 Summary

 Types

 wxFont()

 Functions

 destroy(This)

 Destructor.

 getDefaultEncoding()

 Returns the current application's default encoding.

 getFaceName(This)

 Returns the face name associated with the font, or the empty string if there is
no face information.

 getFamily(This)

 Gets the font family if possible.

 getNativeFontInfoDesc(This)

 Returns the platform-dependent string completely describing this font.

 getNativeFontInfoUserDesc(This)

 Returns a user-friendly string for this font object.

 getPointSize(This)

 Gets the point size as an integer number.

 getStyle(This)

 Gets the font style.

 getUnderlined(This)

 Returns true if the font is underlined, false otherwise.

 getWeight(This)

 Gets the font weight.

 isFixedWidth(This)

 Returns true if the font is a fixed width (or monospaced) font, false if it is a
proportional one or font is invalid.

 isOk(This)

 Returns true if this object is a valid font, false otherwise.

 new()

 Default ctor.

 new/1

 Copy constructor, uses reference counting.

 new/4

 new/5

 Creates a font object with the specified attributes and size in pixels.

 ok(This)

 See: isOk/1.

 setDefaultEncoding(Encoding)

 Sets the default font encoding.

 setFaceName(This, FaceName)

 Sets the facename for the font.

 setFamily(This, Family)

 Sets the font family.

 setPointSize(This, PointSize)

 Sets the font size in points to an integer value.

 setStyle(This, Style)

 Sets the font style.

 setUnderlined(This, Underlined)

 Sets underlining.

 setWeight(This, Weight)

 Sets the font weight.

 Types

 Link to this type

 wxFont()

 View Source

 -type wxFont() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFont()) -> ok.

Destructor.
See reference-counted object destruction for more info.
Remark: Although all remaining fonts are deleted when the application exits, the
application should try to clean up all fonts itself. This is because wxWidgets
cannot know if a pointer to the font object is stored in an application data
structure, and there is a risk of double deletion.

 Link to this function

 getDefaultEncoding()

 View Source

 -spec getDefaultEncoding() -> wx:wx_enum().

Returns the current application's default encoding.
See:
Overview fontencoding,
setDefaultEncoding/1

 Link to this function

 getFaceName(This)

 View Source

 -spec getFaceName(This) -> unicode:charlist() when This :: wxFont().

Returns the face name associated with the font, or the empty string if there is
no face information.
See: setFaceName/2

 Link to this function

 getFamily(This)

 View Source

 -spec getFamily(This) -> wx:wx_enum() when This :: wxFont().

Gets the font family if possible.
As described in ?wxFontFamily docs the returned value acts as a rough, basic
classification of the main font properties (look, spacing).
If the current font face name is not recognized by wxFont or by the
underlying system, wxFONTFAMILY_DEFAULT is returned.
Note that currently this function is not very precise and so not particularly
useful. Font families mostly make sense only for font creation, see
setFamily/2.
See: setFamily/2

 Link to this function

 getNativeFontInfoDesc(This)

 View Source

 -spec getNativeFontInfoDesc(This) -> unicode:charlist() when This :: wxFont().

Returns the platform-dependent string completely describing this font.
Returned string is always non-empty unless the font is invalid (in which case an
assert is triggered).
Note that the returned string is not meant to be shown or edited by the user: a
typical use of this function is for serializing in string-form a wxFont
object.
See: SetNativeFontInfo() (not implemented in wx),
getNativeFontInfoUserDesc/1

 Link to this function

 getNativeFontInfoUserDesc(This)

 View Source

 -spec getNativeFontInfoUserDesc(This) -> unicode:charlist() when This :: wxFont().

Returns a user-friendly string for this font object.
Returned string is always non-empty unless the font is invalid (in which case an
assert is triggered).
The string does not encode all wxFont infos under all platforms; e.g. under
wxMSW the font family is not present in the returned string.
Some examples of the formats of returned strings (which are platform-dependent)
are in SetNativeFontInfoUserDesc() (not implemented in wx).
See: SetNativeFontInfoUserDesc() (not implemented in wx),
getNativeFontInfoDesc/1

 Link to this function

 getPointSize(This)

 View Source

 -spec getPointSize(This) -> integer() when This :: wxFont().

Gets the point size as an integer number.
This function is kept for compatibility reasons. New code should use
GetFractionalPointSize() (not implemented in wx) and support fractional point
sizes.
See: setPointSize/2
See: GetFractionalPointSize() (not implemented in wx)

 Link to this function

 getStyle(This)

 View Source

 -spec getStyle(This) -> wx:wx_enum() when This :: wxFont().

Gets the font style.
See ?wxFontStyle for a list of valid styles.
See: setStyle/2

 Link to this function

 getUnderlined(This)

 View Source

 -spec getUnderlined(This) -> boolean() when This :: wxFont().

Returns true if the font is underlined, false otherwise.
See: setUnderlined/2

 Link to this function

 getWeight(This)

 View Source

 -spec getWeight(This) -> wx:wx_enum() when This :: wxFont().

Gets the font weight.
See ?wxFontWeight for a list of valid weight identifiers.
See: setWeight/2

 Link to this function

 isFixedWidth(This)

 View Source

 -spec isFixedWidth(This) -> boolean() when This :: wxFont().

Returns true if the font is a fixed width (or monospaced) font, false if it is a
proportional one or font is invalid.
Note that this function under some platforms is different from just testing for
the font family being equal to wxFONTFAMILY_TELETYPE because native
platform-specific functions are used for the check (resulting in a more accurate
return value).

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxFont().

Returns true if this object is a valid font, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxFont().

Default ctor.

 Link to this function

 new/1

 View Source

 -spec new(NativeInfoString) -> wxFont() when NativeInfoString :: unicode:chardata();
 (Font) -> wxFont() when Font :: wxFont().

Copy constructor, uses reference counting.

 Link to this function

 new/4

 View Source

 -spec new(PointSize, Family, Style, Weight) -> wxFont()
 when
 PointSize :: integer(),
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum();
 (PixelSize, Family, Style, Weight) -> wxFont()
 when
 PixelSize :: {W :: integer(), H :: integer()},
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum().

 Link to this function

 new/5

 View Source

 -spec new(PointSize, Family, Style, Weight, [Option]) -> wxFont()
 when
 PointSize :: integer(),
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum(),
 Option ::
 {underlined, boolean()} | {face, unicode:chardata()} | {encoding, wx:wx_enum()};
 (PixelSize, Family, Style, Weight, [Option]) -> wxFont()
 when
 PixelSize :: {W :: integer(), H :: integer()},
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum(),
 Option ::
 {underline, boolean()} | {faceName, unicode:chardata()} | {encoding, wx:wx_enum()}.

Creates a font object with the specified attributes and size in pixels.
Notice that the use of this constructor is often more verbose and less readable
than the use of constructor from wxFontInfo (not implemented in wx), consider
using that constructor instead.
Remark: If the desired font does not exist, the closest match will be chosen.
Under Windows, only scalable TrueType fonts are used.

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxFont().

See: isOk/1.

 Link to this function

 setDefaultEncoding(Encoding)

 View Source

 -spec setDefaultEncoding(Encoding) -> ok when Encoding :: wx:wx_enum().

Sets the default font encoding.
See:
Overview fontencoding,
getDefaultEncoding/0

 Link to this function

 setFaceName(This, FaceName)

 View Source

 -spec setFaceName(This, FaceName) -> boolean() when This :: wxFont(), FaceName :: unicode:chardata().

Sets the facename for the font.
Remark: To avoid portability problems, don't rely on a specific face, but
specify the font family instead (see ?wxFontFamily and setFamily/2).
Return: true if the given face name exists; if the face name doesn't exist in
the user's system then the font is invalidated (so that isOk/1 will return
false) and false is returned.
See: getFaceName/1, setFamily/2

 Link to this function

 setFamily(This, Family)

 View Source

 -spec setFamily(This, Family) -> ok when This :: wxFont(), Family :: wx:wx_enum().

Sets the font family.
As described in ?wxFontFamily docs the given family value acts as a rough,
basic indication of the main font properties (look, spacing).
Note that changing the font family results in changing the font face name.
See: getFamily/1, setFaceName/2

 Link to this function

 setPointSize(This, PointSize)

 View Source

 -spec setPointSize(This, PointSize) -> ok when This :: wxFont(), PointSize :: integer().

Sets the font size in points to an integer value.
This is a legacy version of the function only supporting integer point sizes. It
can still be used, but to avoid unnecessarily restricting the font size in
points to integer values, consider using the new (added in wxWidgets 3.1.2)
SetFractionalPointSize() (not implemented in wx) function instead.

 Link to this function

 setStyle(This, Style)

 View Source

 -spec setStyle(This, Style) -> ok when This :: wxFont(), Style :: wx:wx_enum().

Sets the font style.
See: getStyle/1

 Link to this function

 setUnderlined(This, Underlined)

 View Source

 -spec setUnderlined(This, Underlined) -> ok when This :: wxFont(), Underlined :: boolean().

Sets underlining.
See: getUnderlined/1

 Link to this function

 setWeight(This, Weight)

 View Source

 -spec setWeight(This, Weight) -> ok when This :: wxFont(), Weight :: wx:wx_enum().

Sets the font weight.
See: getWeight/1

wxFontData

Functions for wxFontData class
This class holds a variety of information related to font dialogs.
See:
Overview cmndlg,
wxFont, wxFontDialog
wxWidgets docs:
wxFontData

 Summary

 Types

 wxFontData()

 Functions

 destroy(This)

 Destroys the object.

 enableEffects(This, Enable)

 Enables or disables "effects" under Windows or generic only.

 getAllowSymbols(This)

 Under Windows, returns a flag determining whether symbol fonts can be selected.

 getChosenFont(This)

 Gets the font chosen by the user if the user pressed OK
(wxFontDialog::ShowModal() (not implemented in wx) returned wxID_OK).

 getColour(This)

 Gets the colour associated with the font dialog.

 getEnableEffects(This)

 Determines whether "effects" are enabled under Windows.

 getInitialFont(This)

 Gets the font that will be initially used by the font dialog.

 getShowHelp(This)

 Returns true if the Help button will be shown (Windows only).

 new()

 Constructor.

 new(Data)

 Copy Constructor.

 setAllowSymbols(This, AllowSymbols)

 Under Windows, determines whether symbol fonts can be selected.

 setChosenFont(This, Font)

 Sets the font that will be returned to the user (for internal use only).

 setColour(This, Colour)

 Sets the colour that will be used for the font foreground colour.

 setInitialFont(This, Font)

 Sets the font that will be initially used by the font dialog.

 setRange(This, Min, Max)

 Sets the valid range for the font point size (Windows only).

 setShowHelp(This, ShowHelp)

 Determines whether the Help button will be displayed in the font dialog (Windows
only).

 Types

 Link to this type

 wxFontData()

 View Source

 -type wxFontData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFontData()) -> ok.

Destroys the object.

 Link to this function

 enableEffects(This, Enable)

 View Source

 -spec enableEffects(This, Enable) -> ok when This :: wxFontData(), Enable :: boolean().

Enables or disables "effects" under Windows or generic only.
This refers to the controls for manipulating colour, strikeout and underline
properties.
The default value is true.

 Link to this function

 getAllowSymbols(This)

 View Source

 -spec getAllowSymbols(This) -> boolean() when This :: wxFontData().

Under Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.
The default value is true.

 Link to this function

 getChosenFont(This)

 View Source

 -spec getChosenFont(This) -> wxFont:wxFont() when This :: wxFontData().

Gets the font chosen by the user if the user pressed OK
(wxFontDialog::ShowModal() (not implemented in wx) returned wxID_OK).

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxFontData().

Gets the colour associated with the font dialog.
The default value is black.

 Link to this function

 getEnableEffects(This)

 View Source

 -spec getEnableEffects(This) -> boolean() when This :: wxFontData().

Determines whether "effects" are enabled under Windows.
This refers to the controls for manipulating colour, strikeout and underline
properties.
The default value is true.

 Link to this function

 getInitialFont(This)

 View Source

 -spec getInitialFont(This) -> wxFont:wxFont() when This :: wxFontData().

Gets the font that will be initially used by the font dialog.
This should have previously been set by the application.

 Link to this function

 getShowHelp(This)

 View Source

 -spec getShowHelp(This) -> boolean() when This :: wxFontData().

Returns true if the Help button will be shown (Windows only).
The default value is false.

 Link to this function

 new()

 View Source

 -spec new() -> wxFontData().

Constructor.
Initializes fontColour to black, showHelp to false, allowSymbols to true,
enableEffects to true, minSize to 0 and maxSize to 0.

 Link to this function

 new(Data)

 View Source

 -spec new(Data) -> wxFontData() when Data :: wxFontData().

Copy Constructor.

 Link to this function

 setAllowSymbols(This, AllowSymbols)

 View Source

 -spec setAllowSymbols(This, AllowSymbols) -> ok when This :: wxFontData(), AllowSymbols :: boolean().

Under Windows, determines whether symbol fonts can be selected.
Has no effect on other platforms.
The default value is true.

 Link to this function

 setChosenFont(This, Font)

 View Source

 -spec setChosenFont(This, Font) -> ok when This :: wxFontData(), Font :: wxFont:wxFont().

Sets the font that will be returned to the user (for internal use only).

 Link to this function

 setColour(This, Colour)

 View Source

 -spec setColour(This, Colour) -> ok when This :: wxFontData(), Colour :: wx:wx_colour().

Sets the colour that will be used for the font foreground colour.
The default colour is black.

 Link to this function

 setInitialFont(This, Font)

 View Source

 -spec setInitialFont(This, Font) -> ok when This :: wxFontData(), Font :: wxFont:wxFont().

Sets the font that will be initially used by the font dialog.

 Link to this function

 setRange(This, Min, Max)

 View Source

 -spec setRange(This, Min, Max) -> ok when This :: wxFontData(), Min :: integer(), Max :: integer().

Sets the valid range for the font point size (Windows only).
The default is 0, 0 (unrestricted range).

 Link to this function

 setShowHelp(This, ShowHelp)

 View Source

 -spec setShowHelp(This, ShowHelp) -> ok when This :: wxFontData(), ShowHelp :: boolean().

Determines whether the Help button will be displayed in the font dialog (Windows
only).
The default value is false.

wxFontDialog

Functions for wxFontDialog class
This class represents the font chooser dialog.
See:
Overview cmndlg,
wxFontData, ?wxGetFontFromUser()
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxFontDialog

 Summary

 Types

 wxFontDialog()

 Functions

 create(This, Parent, Data)

 Creates the dialog if the wxFontDialog object had been initialized using the
default constructor.

 destroy(This)

 Destroys the object.

 getFontData(This)

 Returns the wxFontData associated with the font dialog.

 new()

 Default ctor.

 new(Parent, Data)

 Constructor.

 Types

 Link to this type

 wxFontDialog()

 View Source

 -type wxFontDialog() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Data)

 View Source

 -spec create(This, Parent, Data) -> boolean()
 when
 This :: wxFontDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFontData:wxFontData().

Creates the dialog if the wxFontDialog object had been initialized using the
default constructor.
Return: true on success and false if an error occurred.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFontDialog()) -> ok.

Destroys the object.

 Link to this function

 getFontData(This)

 View Source

 -spec getFontData(This) -> wxFontData:wxFontData() when This :: wxFontDialog().

Returns the wxFontData associated with the font dialog.

 Link to this function

 new()

 View Source

 -spec new() -> wxFontDialog().

Default ctor.
create/3 must be called before the dialog can be shown.

 Link to this function

 new(Parent, Data)

 View Source

 -spec new(Parent, Data) -> wxFontDialog()
 when Parent :: wxWindow:wxWindow(), Data :: wxFontData:wxFontData().

Constructor.
Pass a parent window, and the wxFontData object to be used to initialize the
dialog controls.

wxFontPickerCtrl

Functions for wxFontPickerCtrl class
This control allows the user to select a font. The generic implementation is a
button which brings up a wxFontDialog when clicked. Native implementation
may differ but this is usually a (small) widget which give access to the
font-chooser dialog. It is only available if wxUSE_FONTPICKERCTRL is set to 1
(the default).
Styles
This class supports the following styles:
See: wxFontDialog, wxFontPickerEvent
This class is derived (and can use functions) from: wxPickerBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxFontPickerCtrl

 Events

Event types emitted from this class:
command_fontpicker_changed

 Summary

 Types

 wxFontPickerCtrl()

 Functions

 create(This, Parent, Id)

 create/4

 Creates this widget with given parameters.

 destroy(This)

 Destroys the object.

 getMaxPointSize(This)

 Returns the maximum point size value allowed for the user-chosen font.

 getSelectedFont(This)

 Returns the currently selected font.

 new()

 new(Parent, Id)

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setMaxPointSize(This, Max)

 Sets the maximum point size value allowed for the user-chosen font.

 setSelectedFont(This, Font)

 Sets the currently selected font.

 Types

 Link to this type

 wxFontPickerCtrl()

 View Source

 -type wxFontPickerCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxFontPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxFontPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates this widget with given parameters.
Return: true if the control was successfully created or false if creation
failed.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFontPickerCtrl()) -> ok.

Destroys the object.

 Link to this function

 getMaxPointSize(This)

 View Source

 -spec getMaxPointSize(This) -> integer() when This :: wxFontPickerCtrl().

Returns the maximum point size value allowed for the user-chosen font.

 Link to this function

 getSelectedFont(This)

 View Source

 -spec getSelectedFont(This) -> wxFont:wxFont() when This :: wxFontPickerCtrl().

Returns the currently selected font.
Note that this function is completely different from wxWindow:getFont/1.

 Link to this function

 new()

 View Source

 -spec new() -> wxFontPickerCtrl().

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxFontPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxFontPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 Link to this function

 setMaxPointSize(This, Max)

 View Source

 -spec setMaxPointSize(This, Max) -> ok when This :: wxFontPickerCtrl(), Max :: integer().

Sets the maximum point size value allowed for the user-chosen font.
The default value is 100. Note that big fonts can require a lot of memory and
CPU time both for creation and for rendering; thus, specially because the user
has the option to specify the fontsize through a text control (see
wxFNTP_USE_TEXTCTRL), it's a good idea to put a limit to the maximum font size
when huge fonts do not make much sense.

 Link to this function

 setSelectedFont(This, Font)

 View Source

 -spec setSelectedFont(This, Font) -> ok when This :: wxFontPickerCtrl(), Font :: wxFont:wxFont().

Sets the currently selected font.
Note that this function is completely different from wxWindow:setFont/2.

wxFontPickerEvent

Functions for wxFontPickerEvent class
This event class is used for the events generated by wxFontPickerCtrl.
See: wxFontPickerCtrl
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxFontPickerEvent

 Events

Use wxEvtHandler:connect/3 with
wxFontPickerEventType to subscribe to events of
this type.

 Summary

 Types

 wxFontPicker()

 wxFontPickerEvent()

 wxFontPickerEventType()

 Functions

 getFont(This)

 Retrieve the font the user has just selected.

 Types

 Link to this type

 wxFontPicker()

 View Source

 -type wxFontPicker() ::
 #wxFontPicker{type :: wxFontPickerEvent:wxFontPickerEventType(), font :: wxFont:wxFont()}.

 Link to this type

 wxFontPickerEvent()

 View Source

 -type wxFontPickerEvent() :: wx:wx_object().

 Link to this type

 wxFontPickerEventType()

 View Source

 -type wxFontPickerEventType() :: command_fontpicker_changed.

 Functions

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxFontPickerEvent().

Retrieve the font the user has just selected.

wxFrame

Functions for wxFrame class
A frame is a window whose size and position can (usually) be changed by the
user.
It usually has thick borders and a title bar, and can optionally contain a menu
bar, toolbar and status bar. A frame can contain any window that is not a frame
or dialog.
A frame that has a status bar and toolbar, created via the createStatusBar/2
and createToolBar/2 functions, manages these windows and adjusts the value
returned by wxWindow:getClientSize/1 to reflect the remaining size available
to application windows.
Remark: An application should normally define an wxCloseEvent handler for
the frame to respond to system close events, for example so that related data
and subwindows can be cleaned up.
Default event processing
wxFrame processes the following events:
Styles
This class supports the following styles:
See also the overview_windowstyles.
Extra Styles
This class supports the following extra styles:
See: wxMDIParentFrame, wxMDIChildFrame, wxMiniFrame, wxDialog
This class is derived (and can use functions) from: wxTopLevelWindow
wxWindow wxEvtHandler
wxWidgets docs: wxFrame

 Events

Event types emitted from this class: close_window,
iconize, menu_open,
menu_close, menu_highlight

 Summary

 Types

 wxFrame()

 Functions

 create(This, Parent, Id, Title)

 create/5

 Used in two-step frame construction.

 createStatusBar(This)

 createStatusBar/2

 Creates a status bar at the bottom of the frame.

 createToolBar(This)

 createToolBar/2

 Creates a toolbar at the top or left of the frame.

 destroy(This)

 Destructor.

 getClientAreaOrigin(This)

 Returns the origin of the frame client area (in client coordinates).

 getMenuBar(This)

 Returns a pointer to the menubar currently associated with the frame (if any).

 getStatusBar(This)

 Returns a pointer to the status bar currently associated with the frame (if
any).

 getStatusBarPane(This)

 Returns the status bar pane used to display menu and toolbar help.

 getToolBar(This)

 Returns a pointer to the toolbar currently associated with the frame (if any).

 new()

 Default constructor.

 new(Parent, Id, Title)

 new/4

 Constructor, creating the window.

 processCommand(This, Id)

 Simulate a menu command.

 sendSizeEvent(This)

 sendSizeEvent/2

 This function sends a dummy wxSizeEvent to the window allowing it to
re-layout its children positions.

 setMenuBar(This, MenuBar)

 Tells the frame to show the given menu bar.

 setStatusBar(This, StatusBar)

 Associates a status bar with the frame.

 setStatusBarPane(This, N)

 Set the status bar pane used to display menu and toolbar help.

 setStatusText(This, Text)

 setStatusText/3

 Sets the status bar text and updates the status bar display.

 setStatusWidths(This, Widths_field)

 Sets the widths of the fields in the status bar.

 setToolBar(This, ToolBar)

 Associates a toolbar with the frame.

 Types

 Link to this type

 wxFrame()

 View Source

 -type wxFrame() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Title)

 View Source

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 Link to this function

 createStatusBar(This)

 View Source

 -spec createStatusBar(This) -> wxStatusBar:wxStatusBar() when This :: wxFrame().

 Link to this function

 createStatusBar/2

 View Source

 -spec createStatusBar(This, [Option]) -> wxStatusBar:wxStatusBar()
 when
 This :: wxFrame(),
 Option :: {number, integer()} | {style, integer()} | {id, integer()}.

Creates a status bar at the bottom of the frame.
Return: A pointer to the status bar if it was created successfully, NULL
otherwise.
Remark: The width of the status bar is the whole width of the frame (adjusted
automatically when resizing), and the height and text size are chosen by the
host windowing system.
See: setStatusText/3, OnCreateStatusBar() (not implemented in wx),
getStatusBar/1

 Link to this function

 createToolBar(This)

 View Source

 -spec createToolBar(This) -> wxToolBar:wxToolBar() when This :: wxFrame().

 Link to this function

 createToolBar/2

 View Source

 -spec createToolBar(This, [Option]) -> wxToolBar:wxToolBar()
 when This :: wxFrame(), Option :: {style, integer()} | {id, integer()}.

Creates a toolbar at the top or left of the frame.
Return: A pointer to the toolbar if it was created successfully, NULL otherwise.
Remark: By default, the toolbar is an instance of wxToolBar. To use a
different class, override OnCreateToolBar() (not implemented in wx). When a
toolbar has been created with this function, or made known to the frame with
setToolBar/2, the frame will manage the toolbar position and adjust the return
value from wxWindow:getClientSize/1 to reflect the available space for
application windows. Under Pocket PC, you should always use this function for
creating the toolbar to be managed by the frame, so that wxWidgets can use a
combined menubar and toolbar. Where you manage your own toolbars, create a
wxToolBar as usual.
See: createStatusBar/2, OnCreateToolBar() (not implemented in wx),
setToolBar/2, getToolBar/1

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxFrame()) -> ok.

Destructor.
Destroys all child windows and menu bar if present.
See overview_windowdeletion for more info.

 Link to this function

 getClientAreaOrigin(This)

 View Source

 -spec getClientAreaOrigin(This) -> {X :: integer(), Y :: integer()} when This :: wxFrame().

Returns the origin of the frame client area (in client coordinates).
It may be different from (0, 0) if the frame has a toolbar.

 Link to this function

 getMenuBar(This)

 View Source

 -spec getMenuBar(This) -> wxMenuBar:wxMenuBar() when This :: wxFrame().

Returns a pointer to the menubar currently associated with the frame (if any).
See: setMenuBar/2, wxMenuBar, wxMenu

 Link to this function

 getStatusBar(This)

 View Source

 -spec getStatusBar(This) -> wxStatusBar:wxStatusBar() when This :: wxFrame().

Returns a pointer to the status bar currently associated with the frame (if
any).
See: createStatusBar/2, wxStatusBar

 Link to this function

 getStatusBarPane(This)

 View Source

 -spec getStatusBarPane(This) -> integer() when This :: wxFrame().

Returns the status bar pane used to display menu and toolbar help.
See: setStatusBarPane/2

 Link to this function

 getToolBar(This)

 View Source

 -spec getToolBar(This) -> wxToolBar:wxToolBar() when This :: wxFrame().

Returns a pointer to the toolbar currently associated with the frame (if any).
See: createToolBar/2, wxToolBar, setToolBar/2

 Link to this function

 new()

 View Source

 -spec new() -> wxFrame().

Default constructor.

 Link to this function

 new(Parent, Id, Title)

 View Source

 -spec new(Parent, Id, Title) -> wxFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Title, [Option]) -> wxFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Remark: For Motif, MWM (the Motif Window Manager) should be running for any
window styles to work (otherwise all styles take effect).
See: create/5

 Link to this function

 processCommand(This, Id)

 View Source

 -spec processCommand(This, Id) -> boolean() when This :: wxFrame(), Id :: integer().

Simulate a menu command.

 Link to this function

 sendSizeEvent(This)

 View Source

 -spec sendSizeEvent(This) -> ok when This :: wxFrame().

 Link to this function

 sendSizeEvent/2

 View Source

 -spec sendSizeEvent(This, [Option]) -> ok when This :: wxFrame(), Option :: {flags, integer()}.

This function sends a dummy wxSizeEvent to the window allowing it to
re-layout its children positions.
It is sometimes useful to call this function after adding or deleting a children
after the frame creation or if a child size changes. Note that if the frame is
using either sizers or constraints for the children layout, it is enough to call
wxWindow:layout/1 directly and this function should not be used in this case.
If flags includes wxSEND_EVENT_POST value, this function posts the event,
i.e. schedules it for later processing, instead of dispatching it directly. You
can also use PostSizeEvent() (not implemented in wx) as a more readable
equivalent of calling this function with this flag.

 Link to this function

 setMenuBar(This, MenuBar)

 View Source

 -spec setMenuBar(This, MenuBar) -> ok when This :: wxFrame(), MenuBar :: wxMenuBar:wxMenuBar().

Tells the frame to show the given menu bar.
Remark: If the frame is destroyed, the menu bar and its menus will be destroyed
also, so do not delete the menu bar explicitly (except by resetting the frame's
menu bar to another frame or NULL). Under Windows, a size event is generated, so
be sure to initialize data members properly before calling setMenuBar/2. Note
that on some platforms, it is not possible to call this function twice for the
same frame object.
See: getMenuBar/1, wxMenuBar, wxMenu

 Link to this function

 setStatusBar(This, StatusBar)

 View Source

 -spec setStatusBar(This, StatusBar) -> ok when This :: wxFrame(), StatusBar :: wxStatusBar:wxStatusBar().

Associates a status bar with the frame.
If statusBar is NULL, then the status bar, if present, is detached from the
frame, but not deleted.
See: createStatusBar/2, wxStatusBar, getStatusBar/1

 Link to this function

 setStatusBarPane(This, N)

 View Source

 -spec setStatusBarPane(This, N) -> ok when This :: wxFrame(), N :: integer().

Set the status bar pane used to display menu and toolbar help.
Using -1 disables help display.

 Link to this function

 setStatusText(This, Text)

 View Source

 -spec setStatusText(This, Text) -> ok when This :: wxFrame(), Text :: unicode:chardata().

 Link to this function

 setStatusText/3

 View Source

 -spec setStatusText(This, Text, [Option]) -> ok
 when This :: wxFrame(), Text :: unicode:chardata(), Option :: {number, integer()}.

Sets the status bar text and updates the status bar display.
This is a simple wrapper for wxStatusBar:setStatusText/3 which doesn't do
anything if the frame has no status bar, i.e. getStatusBar/1 returns NULL.
Remark: Use an empty string to clear the status bar.
See: createStatusBar/2, wxStatusBar

 Link to this function

 setStatusWidths(This, Widths_field)

 View Source

 -spec setStatusWidths(This, Widths_field) -> ok when This :: wxFrame(), Widths_field :: [integer()].

Sets the widths of the fields in the status bar.
Remark: The widths of the variable fields are calculated from the total width of
all fields, minus the sum of widths of the non-variable fields, divided by the
number of variable fields.

 Link to this function

 setToolBar(This, ToolBar)

 View Source

 -spec setToolBar(This, ToolBar) -> ok when This :: wxFrame(), ToolBar :: wxToolBar:wxToolBar().

Associates a toolbar with the frame.

wxGBSizerItem

Functions for wxGBSizerItem class
The wxGBSizerItem class is used by the wxGridBagSizer for tracking the
items in the sizer. It adds grid position and spanning information to the normal
wxSizerItem by adding wxGBPosition (not implemented in wx) and wxGBSpan
(not implemented in wx) attributes. Most of the time you will not need to use a
wxGBSizerItem directly in your code, but there are a couple of cases where
it is handy.
This class is derived (and can use functions) from: wxSizerItem
wxWidgets docs:
wxGBSizerItem

 Summary

 Types

 wxGBSizerItem()

 Types

 Link to this type

 wxGBSizerItem()

 View Source

 -type wxGBSizerItem() :: wx:wx_object().

wxGCDC

Functions for wxGCDC class
wxGCDC is a device context that draws on a wxGraphicsContext.
wxGCDC does its best to implement wxDC API, but the following features
are not (fully) implemented because wxGraphicsContext doesn't support them:
See: wxDC, wxGraphicsContext
This class is derived (and can use functions) from: wxDC
wxWidgets docs: wxGCDC

 Summary

 Types

 wxGCDC()

 Functions

 destroy(This)

 getGraphicsContext(This)

 Retrieves associated wxGraphicsContext.

 new()

 new(WindowDC)

 Constructs a wxGCDC from a wxWindowDC.

 setGraphicsContext(This, Context)

 Set the graphics context to be used for this wxGCDC.

 Types

 Link to this type

 wxGCDC()

 View Source

 -type wxGCDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGCDC()) -> ok.

 Link to this function

 getGraphicsContext(This)

 View Source

 -spec getGraphicsContext(This) -> wxGraphicsContext:wxGraphicsContext() when This :: wxGCDC().

Retrieves associated wxGraphicsContext.

 Link to this function

 new()

 View Source

 -spec new() -> wxGCDC().

 Link to this function

 new(WindowDC)

 View Source

 -spec new(WindowDC) -> wxGCDC()
 when
 WindowDC ::
 wxWindowDC:wxWindowDC() |
 wxMemoryDC:wxMemoryDC() |
 wxGraphicsContext:wxGraphicsContext().

Constructs a wxGCDC from a wxWindowDC.

 Link to this function

 setGraphicsContext(This, Context)

 View Source

 -spec setGraphicsContext(This, Context) -> ok
 when This :: wxGCDC(), Context :: wxGraphicsContext:wxGraphicsContext().

Set the graphics context to be used for this wxGCDC.
Note that this object takes ownership of context and will delete it when it is
destroyed or when setGraphicsContext/2 is called again.
Also, unlike the constructor taking wxGraphicsContext, this method will
reapply the current font, pen and brush, so that this object continues to use
them, if they had been changed before (which is never the case when constructing
wxGCDC directly from wxGraphicsContext).

wxGLCanvas

Functions for wxGLCanvas class
wxGLCanvas is a class for displaying OpenGL graphics. It is always used in
conjunction with wxGLContext as the context can only be made current (i.e.
active for the OpenGL commands) when it is associated to a wxGLCanvas.
More precisely, you first need to create a wxGLCanvas window and then create
an instance of a wxGLContext that is initialized with this wxGLCanvas
and then later use either setCurrent/2 with the instance of the
wxGLContext or wxGLContext:setCurrent/2 with the instance of the
wxGLCanvas (which might be not the same as was used for the creation of the
context) to bind the OpenGL state that is represented by the rendering context
to the canvas, and then finally call swapBuffers/1 to swap the buffers of the
OpenGL canvas and thus show your current output.
Please note that wxGLContext always uses physical pixels, even on the
platforms where wxWindow uses logical pixels, affected by the coordinate
scaling, on high DPI displays. Thus, if you want to set the OpenGL view port to
the size of entire window, you must multiply the result returned by
wxWindow:getClientSize/1 by wxWindow:getContentScaleFactor/1 before passing
it to glViewport(). Same considerations apply to other OpenGL functions and
other coordinates, notably those retrieved from wxMouseEvent in the event
handlers.
Notice that versions of wxWidgets previous to 2.9 used to implicitly create a
wxGLContext inside wxGLCanvas itself. This is still supported in the
current version but is deprecated now and will be removed in the future, please
update your code to create the rendering contexts explicitly.
To set up the attributes for the canvas (number of bits for the depth buffer,
number of bits for the stencil buffer and so on) you pass them in the
constructor using a wxGLAttributes (not implemented in wx) instance. You can
still use the way before 3.1.0 (setting up the correct values of the
attribList parameter) but it's discouraged.
Note: On those platforms which use a configure script (e.g. Linux and macOS)
OpenGL support is automatically enabled if the relative headers and libraries
are found. To switch it on under the other platforms (e.g. Windows), you need to
edit the setup.h file and set wxUSE_GLCANVAS to 1 and then also pass
USE_OPENGL=1 to the make utility. You may also need to add opengl32.lib (and
glu32.lib for old OpenGL versions) to the list of the libraries your program
is linked with.
See: wxGLContext, wxGLAttributes (not implemented in wx),
wxGLContextAttrs (not implemented in wx)
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxGLCanvas

 Summary

 Types

 wxGLCanvas()

 Functions

 createSurface(This)

 destroy(This)

 Destroys the object.

 isDisplaySupported(AttribList)

 Determines if a canvas having the specified attributes is available.

 new(Parent)

 new/2

 This constructor is still available only for compatibility reasons.

 setCurrent(This, Context)

 Makes the OpenGL state that is represented by the OpenGL rendering context
context current, i.e.

 swapBuffers(This)

 Swaps the double-buffer of this window, making the back-buffer the front-buffer
and vice versa, so that the output of the previous OpenGL commands is displayed
on the window.

 Types

 Link to this type

 wxGLCanvas()

 View Source

 -type wxGLCanvas() :: wx:wx_object().

 Functions

 Link to this function

 createSurface(This)

 View Source

 -spec createSurface(This) -> boolean() when This :: wxGLCanvas().

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGLCanvas()) -> ok.

Destroys the object.

 Link to this function

 isDisplaySupported(AttribList)

 View Source

 -spec isDisplaySupported(AttribList) -> boolean() when AttribList :: [integer()].

Determines if a canvas having the specified attributes is available.
This only applies for visual attributes, not rendering context attributes.
Please, use the new form of this method, using wxGLAttributes (not implemented
in wx).
Return: true if attributes are supported.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxGLCanvas() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxGLCanvas()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {attribList, [integer()]} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {name, unicode:chardata()} |
 {palette, wxPalette:wxPalette()}.

This constructor is still available only for compatibility reasons.
Please use the constructor with wxGLAttributes (not implemented in wx)
instead.
If attribList is not specified, wxGLAttributes::PlatformDefaults() (not
implemented in wx) is used, plus some other attributes (see below).

 Link to this function

 setCurrent(This, Context)

 View Source

 -spec setCurrent(This, Context) -> boolean()
 when This :: wxGLCanvas(), Context :: wxGLContext:wxGLContext().

Makes the OpenGL state that is represented by the OpenGL rendering context
context current, i.e.
it will be used by all subsequent OpenGL calls.
This is equivalent to wxGLContext:setCurrent/2 called with this window as
parameter.
Note: This function may only be called when the window is shown on screen, in
particular it can't usually be called from the constructor as the window isn't
yet shown at this moment.
Return: false if an error occurred.

 Link to this function

 swapBuffers(This)

 View Source

 -spec swapBuffers(This) -> boolean() when This :: wxGLCanvas().

Swaps the double-buffer of this window, making the back-buffer the front-buffer
and vice versa, so that the output of the previous OpenGL commands is displayed
on the window.
Return: false if an error occurred.

wxGLContext

Functions for wxGLContext class
An instance of a wxGLContext represents the state of an OpenGL state machine
and the connection between OpenGL and the system.
The OpenGL state includes everything that can be set with the OpenGL API:
colors, rendering variables, buffer data ids, texture objects, etc. It is
possible to have multiple rendering contexts share buffer data and textures.
This feature is specially useful when the application use multiple threads for
updating data into the memory of the graphics card.
Whether one only rendering context is used with or bound to multiple output
windows or if each window has its own bound context is a developer decision. It
is important to take into account that GPU makers may set different pointers to
the same OGL function for different contexts. The way these pointers are
retrieved from the OGL driver should be used again for each new context.
Binding (making current) a rendering context with another instance of a
wxGLCanvas however works only if the both wxGLCanvas instances were
created with the same attributes.
OpenGL version 3 introduced a new type of specification profile, the modern core
profile. The old compatibility profile maintains all legacy features. Since
wxWidgets 3.1.0 you can choose the type of context and even ask for a specified
OGL version number. However, its advised to use only core profile as the
compatibility profile may run a bit slower.
OpenGL core profile specification defines several flags at context creation that
determine not only the type of context but also some features. Some of these
flags can be set in the list of attributes used at wxGLCanvas ctor. But
since wxWidgets 3.1.0 it is strongly encouraged to use the new mechanism:
setting the context attributes with a wxGLContextAttrs (not implemented in wx)
object and the canvas attributes with a wxGLAttributes (not implemented in wx)
object.
The best way of knowing if your OpenGL environment supports a specific type of
context is creating a wxGLContext instance and checking isOK/1. If it
returns false, then simply delete that instance and create a new one with other
attributes.
wxHAS_OPENGL_ES is defined on platforms that only have this implementation
available (e.g. the iPhone) and don't support the full specification.
See: wxGLCanvas, wxGLContextAttrs (not implemented in wx),
wxGLAttributes (not implemented in wx)
wxWidgets docs:
wxGLContext

 Summary

 Types

 wxGLContext()

 Functions

 destroy(This)

 Destroys the object.

 isOK(This)

 Checks if the underlying OpenGL rendering context was correctly created by the
system with the requested attributes.

 new(Win)

 new/2

 Constructor.

 setCurrent(This, Win)

 Makes the OpenGL state that is represented by this rendering context current
with the wxGLCanvas win.

 Types

 Link to this type

 wxGLContext()

 View Source

 -type wxGLContext() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGLContext()) -> ok.

Destroys the object.

 Link to this function

 isOK(This)

 View Source

 -spec isOK(This) -> boolean() when This :: wxGLContext().

Checks if the underlying OpenGL rendering context was correctly created by the
system with the requested attributes.
If this function returns false then the wxGLContext object is useless and
should be deleted and recreated with different attributes.
Since: 3.1.0

 Link to this function

 new(Win)

 View Source

 -spec new(Win) -> wxGLContext() when Win :: wxGLCanvas:wxGLCanvas().

 Link to this function

 new/2

 View Source

 -spec new(Win, [Option]) -> wxGLContext()
 when Win :: wxGLCanvas:wxGLCanvas(), Option :: {other, wxGLContext()}.

Constructor.

 Link to this function

 setCurrent(This, Win)

 View Source

 -spec setCurrent(This, Win) -> boolean() when This :: wxGLContext(), Win :: wxGLCanvas:wxGLCanvas().

Makes the OpenGL state that is represented by this rendering context current
with the wxGLCanvas win.
Note: win can be a different wxGLCanvas window than the one that was
passed to the constructor of this rendering context. If RC is an object of
type wxGLContext, the statements "RC.SetCurrent(win);" and
"win.SetCurrent(RC);" are equivalent, see wxGLCanvas:setCurrent/2.

wxGauge

Functions for wxGauge class
A gauge is a horizontal or vertical bar which shows a quantity (often time).
wxGauge supports two working modes: determinate and indeterminate progress.
The first is the usual working mode (see setValue/2 and setRange/2) while
the second can be used when the program is doing some processing but you don't
know how much progress is being done. In this case, you can periodically call
the pulse/1 function to make the progress bar switch to indeterminate mode
(graphically it's usually a set of blocks which move or bounce in the bar
control).
wxGauge supports dynamic switch between these two work modes.
There are no user commands for the gauge.
Styles
This class supports the following styles:
See: wxSlider, wxScrollBar
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs: wxGauge

 Summary

 Types

 wxGauge()

 Functions

 create(This, Parent, Id, Range)

 create/5

 Creates the gauge for two-step construction.

 destroy(This)

 Destructor, destroying the gauge.

 getRange(This)

 Returns the maximum position of the gauge.

 getValue(This)

 Returns the current position of the gauge.

 isVertical(This)

 Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false
otherwise.

 new()

 Default constructor.

 new(Parent, Id, Range)

 new/4

 Constructor, creating and showing a gauge.

 pulse(This)

 Switch the gauge to indeterminate mode (if required) and makes the gauge move a
bit to indicate the user that some progress has been made.

 setRange(This, Range)

 Sets the range (maximum value) of the gauge.

 setValue(This, Pos)

 Sets the position of the gauge.

 Types

 Link to this type

 wxGauge()

 View Source

 -type wxGauge() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Range)

 View Source

 -spec create(This, Parent, Id, Range) -> boolean()
 when
 This :: wxGauge(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Range, [Option]) -> boolean()
 when
 This :: wxGauge(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the gauge for two-step construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGauge()) -> ok.

Destructor, destroying the gauge.

 Link to this function

 getRange(This)

 View Source

 -spec getRange(This) -> integer() when This :: wxGauge().

Returns the maximum position of the gauge.
See: setRange/2

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> integer() when This :: wxGauge().

Returns the current position of the gauge.
See: setValue/2

 Link to this function

 isVertical(This)

 View Source

 -spec isVertical(This) -> boolean() when This :: wxGauge().

Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false
otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxGauge().

Default constructor.

 Link to this function

 new(Parent, Id, Range)

 View Source

 -spec new(Parent, Id, Range) -> wxGauge()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Range :: integer().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Range, [Option]) -> wxGauge()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a gauge.
See: create/5

 Link to this function

 pulse(This)

 View Source

 -spec pulse(This) -> ok when This :: wxGauge().

Switch the gauge to indeterminate mode (if required) and makes the gauge move a
bit to indicate the user that some progress has been made.
Note: After calling this function the value returned by getValue/1 is
undefined and thus you need to explicitly call setValue/2 if you want to
restore the determinate mode.

 Link to this function

 setRange(This, Range)

 View Source

 -spec setRange(This, Range) -> ok when This :: wxGauge(), Range :: integer().

Sets the range (maximum value) of the gauge.
This function makes the gauge switch to determinate mode, if it's not already.
When the gauge is in indeterminate mode, under wxMSW the gauge repeatedly goes
from zero to range and back; under other ports when in indeterminate mode, the
range setting is ignored.
See: getRange/1

 Link to this function

 setValue(This, Pos)

 View Source

 -spec setValue(This, Pos) -> ok when This :: wxGauge(), Pos :: integer().

Sets the position of the gauge.
The pos must be between 0 and the gauge range as returned by getRange/1,
inclusive.
This function makes the gauge switch to determinate mode, if it was in
indeterminate mode before.
See: getValue/1

wxGenericDirCtrl

Functions for wxGenericDirCtrl class
This control can be used to place a directory listing (with optional files) on
an arbitrary window.
The control contains a wxTreeCtrl window representing the directory
hierarchy, and optionally, a wxChoice window containing a list of filters.
Styles
This class supports the following styles:
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxGenericDirCtrl

 Events

Event types emitted from this class:
dirctrl_selectionchanged,
dirctrl_fileactivated

 Summary

 Types

 wxGenericDirCtrl()

 Functions

 collapseTree(This)

 Collapses the entire tree.

 create(This, Parent)

 create/3

 Create function for two-step construction.

 destroy(This)

 Destructor.

 expandPath(This, Path)

 Tries to expand as much of the given path as possible, so that the filename or
directory is visible in the tree control.

 getDefaultPath(This)

 Gets the default path.

 getFilePath(This)

 Gets selected filename path only (else empty string).

 getFilter(This)

 Returns the filter string.

 getFilterIndex(This)

 Returns the current filter index (zero-based).

 getPath(This)

 Gets the currently-selected directory or filename.

 getPath(This, ItemId)

 Gets the path corresponding to the given tree control item.

 getRootId(This)

 Returns the root id for the tree control.

 getTreeCtrl(This)

 Returns a pointer to the tree control.

 init(This)

 Initializes variables.

 new()

 Default constructor.

 new(Parent)

 new/2

 Main constructor.

 reCreateTree(This)

 Collapse and expand the tree, thus re-creating it from scratch.

 setDefaultPath(This, Path)

 Sets the default path.

 setFilter(This, Filter)

 Sets the filter string.

 setFilterIndex(This, N)

 Sets the current filter index (zero-based).

 setPath(This, Path)

 Sets the current path.

 Types

 Link to this type

 wxGenericDirCtrl()

 View Source

 -type wxGenericDirCtrl() :: wx:wx_object().

 Functions

 Link to this function

 collapseTree(This)

 View Source

 -spec collapseTree(This) -> ok when This :: wxGenericDirCtrl().

Collapses the entire tree.

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxGenericDirCtrl(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxGenericDirCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}.

Create function for two-step construction.
See new/2 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGenericDirCtrl()) -> ok.

Destructor.

 Link to this function

 expandPath(This, Path)

 View Source

 -spec expandPath(This, Path) -> boolean() when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Tries to expand as much of the given path as possible, so that the filename or
directory is visible in the tree control.

 Link to this function

 getDefaultPath(This)

 View Source

 -spec getDefaultPath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets the default path.

 Link to this function

 getFilePath(This)

 View Source

 -spec getFilePath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets selected filename path only (else empty string).
This function doesn't count a directory as a selection.

 Link to this function

 getFilter(This)

 View Source

 -spec getFilter(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Returns the filter string.

 Link to this function

 getFilterIndex(This)

 View Source

 -spec getFilterIndex(This) -> integer() when This :: wxGenericDirCtrl().

Returns the current filter index (zero-based).

 Link to this function

 getPath(This)

 View Source

 -spec getPath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets the currently-selected directory or filename.

 Link to this function

 getPath(This, ItemId)

 View Source

 -spec getPath(This, ItemId) -> unicode:charlist() when This :: wxGenericDirCtrl(), ItemId :: integer().

Gets the path corresponding to the given tree control item.
Since: 2.9.5

 Link to this function

 getRootId(This)

 View Source

 -spec getRootId(This) -> integer() when This :: wxGenericDirCtrl().

Returns the root id for the tree control.

 Link to this function

 getTreeCtrl(This)

 View Source

 -spec getTreeCtrl(This) -> wxTreeCtrl:wxTreeCtrl() when This :: wxGenericDirCtrl().

Returns a pointer to the tree control.

 Link to this function

 init(This)

 View Source

 -spec init(This) -> ok when This :: wxGenericDirCtrl().

Initializes variables.

 Link to this function

 new()

 View Source

 -spec new() -> wxGenericDirCtrl().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxGenericDirCtrl() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxGenericDirCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}.

Main constructor.

 Link to this function

 reCreateTree(This)

 View Source

 -spec reCreateTree(This) -> ok when This :: wxGenericDirCtrl().

Collapse and expand the tree, thus re-creating it from scratch.
May be used to update the displayed directory content.

 Link to this function

 setDefaultPath(This, Path)

 View Source

 -spec setDefaultPath(This, Path) -> ok when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Sets the default path.

 Link to this function

 setFilter(This, Filter)

 View Source

 -spec setFilter(This, Filter) -> ok when This :: wxGenericDirCtrl(), Filter :: unicode:chardata().

Sets the filter string.

 Link to this function

 setFilterIndex(This, N)

 View Source

 -spec setFilterIndex(This, N) -> ok when This :: wxGenericDirCtrl(), N :: integer().

Sets the current filter index (zero-based).

 Link to this function

 setPath(This, Path)

 View Source

 -spec setPath(This, Path) -> ok when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Sets the current path.

wxGraphicsBrush

Functions for wxGraphicsBrush class
A wxGraphicsBrush is a native representation of a brush. The contents are
specific and private to the respective renderer. Instances are ref counted and
can therefore be assigned as usual. The only way to get a valid instance is via
wxGraphicsContext:createBrush/2 or wxGraphicsRenderer:createBrush/2.
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsBrush

 Summary

 Types

 wxGraphicsBrush()

 Types

 Link to this type

 wxGraphicsBrush()

 View Source

 -type wxGraphicsBrush() :: wx:wx_object().

wxGraphicsContext

Functions for wxGraphicsContext class
A wxGraphicsContext instance is the object that is drawn upon. It is created
by a renderer using wxGraphicsRenderer:createContext/2. This can be either
directly using a renderer instance, or indirectly using the static convenience
create/1 functions of wxGraphicsContext that always delegate the task to
the default renderer.
Remark: For some renderers (like Direct2D or Cairo) processing of drawing
operations may be deferred (Direct2D render target normally builds up a batch of
rendering commands but defers processing of these commands, Cairo operates on a
separate surface) so to make drawing results visible you need to update the
content of the context by calling wxGraphicsContext::Flush() (not implemented
in wx) or by destroying the context.
See: wxGraphicsRenderer:createContext/2, wxGCDC, wxDC
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsContext

 Summary

 Types

 wxGraphicsContext()

 Functions

 clip(This, Region)

 Sets the clipping region to the intersection of the given region and the
previously set clipping region.

 clip(This, X, Y, W, H)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 concatTransform(This, Matrix)

 Concatenates the passed in transform with the current transform of this context.

 create()

 Create a lightweight context that can be used only for measuring text.

 create(WindowDC)

 Creates a wxGraphicsContext from a wxWindowDC.

 createBrush(This, Brush)

 Creates a native brush from a wxBrush.

 createFont(This, Font)

 createFont/3

 Creates a native graphics font from a wxFont and a text colour.

 createFont/4

 Creates a font object with the specified attributes.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2)

 Creates a native brush with a linear gradient. The brush starts at (@a x1, @a y1) and ends at (@a x2, @a y2). Either just the start and end gradient colours (@a c1 and @a c2) or full set of gradient @a stops can be specified. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.

 createMatrix(This)

 createMatrix/2

 Creates a native affine transformation matrix from the passed in values.

 createPath(This)

 Creates a native graphics path which is initially empty.

 createPen(This, Pen)

 Creates a native pen from a wxPen.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor)

 Creates a native brush with a radial gradient. The brush originates at (@a startX, @a startY) and ends on a circle around (@a endX, @a endY) with the given @a radius. The gradient may be specified either by its start and end colours @a oColor and @a cColor or by a full set of gradient @a stops. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.

 destroy(This)

 Creates a wxGraphicsContext from a wxWindow.

 drawBitmap(This, Bmp, X, Y, W, H)

 Draws the bitmap.

 drawEllipse(This, X, Y, W, H)

 Draws an ellipse.

 drawIcon(This, Icon, X, Y, W, H)

 Draws the icon.

 drawLines(This, Points)

 drawLines/3

 Draws a polygon.

 drawPath(This, Path)

 drawPath/3

 Draws the path by first filling and then stroking.

 drawRectangle(This, X, Y, W, H)

 Draws a rectangle.

 drawRoundedRectangle(This, X, Y, W, H, Radius)

 Draws a rounded rectangle.

 drawText(This, Str, X, Y)

 Draws text at the defined position.

 drawText/5

 Draws text at the defined position.

 drawText(This, Str, X, Y, Angle, BackgroundBrush)

 Draws text at the defined position.

 fillPath(This, Path)

 fillPath/3

 Fills the path with the current brush.

 getPartialTextExtents(This, Text)

 Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 getTextExtent(This, Text)

 Gets the dimensions of the string using the currently selected font.

 getTransform(This)

 Gets the current transformation matrix of this context.

 resetClip(This)

 Resets the clipping to original shape.

 rotate(This, Angle)

 Rotates the current transformation matrix (in radians).

 scale(This, XScale, YScale)

 Scales the current transformation matrix.

 setBrush(This, Brush)

 Sets the brush for filling paths.

 setFont(This, Font)

 Sets the font for drawing text.

 setFont(This, Font, Colour)

 Sets the font for drawing text.

 setPen(This, Pen)

 Sets the pen used for stroking.

 setTransform(This, Matrix)

 Sets the current transformation matrix of this context.

 strokeLine(This, X1, Y1, X2, Y2)

 Strokes a single line.

 strokeLines(This, Points)

 Stroke lines connecting all the points.

 strokePath(This, Path)

 Strokes along a path with the current pen.

 translate(This, Dx, Dy)

 Translates the current transformation matrix.

 Types

 Link to this type

 wxGraphicsContext()

 View Source

 -type wxGraphicsContext() :: wx:wx_object().

 Functions

 Link to this function

 clip(This, Region)

 View Source

 -spec clip(This, Region) -> ok when This :: wxGraphicsContext(), Region :: wxRegion:wxRegion().

Sets the clipping region to the intersection of the given region and the
previously set clipping region.
The clipping region is an area to which drawing is restricted.
Remark:

 Link to this function

 clip(This, X, Y, W, H)

 View Source

 -spec clip(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 concatTransform(This, Matrix)

 View Source

 -spec concatTransform(This, Matrix) -> ok
 when This :: wxGraphicsContext(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Concatenates the passed in transform with the current transform of this context.

 Link to this function

 create()

 View Source

 -spec create() -> wxGraphicsContext().

Create a lightweight context that can be used only for measuring text.

 Link to this function

 create(WindowDC)

 View Source

 -spec create(WindowDC) -> wxGraphicsContext()
 when
 WindowDC ::
 wxWindowDC:wxWindowDC() |
 wxWindow:wxWindow() |
 wxMemoryDC:wxMemoryDC() |
 wxImage:wxImage().

Creates a wxGraphicsContext from a wxWindowDC.
See: wxGraphicsRenderer:createContext/2

 Link to this function

 createBrush(This, Brush)

 View Source

 -spec createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
 when This :: wxGraphicsContext(), Brush :: wxBrush:wxBrush().

Creates a native brush from a wxBrush.

 Link to this function

 createFont(This, Font)

 View Source

 -spec createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
 when This :: wxGraphicsContext(), Font :: wxFont:wxFont().

 Link to this function

 createFont/3

 View Source

 -spec createFont(This, SizeInPixels, Facename) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata();
 (This, Font, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 Font :: wxFont:wxFont(),
 Option :: {col, wx:wx_colour()}.

Creates a native graphics font from a wxFont and a text colour.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

 Link to this function

 createFont/4

 View Source

 -spec createFont(This, SizeInPixels, Facename, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata(),
 Option :: {flags, integer()} | {col, wx:wx_colour()}.

Creates a font object with the specified attributes.
The use of overload taking wxFont is preferred, see
wxGraphicsRenderer:createFont/4 for more details.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.
Since: 2.9.3

 Link to this function

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 View Source

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2)

 View Source

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 C1 :: wx:wx_colour(),
 C2 :: wx:wx_colour().

Creates a native brush with a linear gradient. The brush starts at (@a x1, @a y1) and ends at (@a x2, @a y2). Either just the start and end gradient colours (@a c1 and @a c2) or full set of gradient @a stops can be specified. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The matrix parameter was added in wxWidgets 3.1.3

 Link to this function

 createMatrix(This)

 View Source

 -spec createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsContext().

 Link to this function

 createMatrix/2

 View Source

 -spec createMatrix(This, [Option]) -> wxGraphicsMatrix:wxGraphicsMatrix()
 when
 This :: wxGraphicsContext(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Creates a native affine transformation matrix from the passed in values.
The default parameters result in an identity matrix.

 Link to this function

 createPath(This)

 View Source

 -spec createPath(This) -> wxGraphicsPath:wxGraphicsPath() when This :: wxGraphicsContext().

Creates a native graphics path which is initially empty.

 Link to this function

 createPen(This, Pen)

 View Source

 -spec createPen(This, Pen) -> wxGraphicsPen:wxGraphicsPen()
 when This :: wxGraphicsContext(), Pen :: wxPen:wxPen().

Creates a native pen from a wxPen.
Prefer to use the overload taking wxGraphicsPenInfo (not implemented in wx)
unless you already have a wxPen as constructing one only to pass it to this
method is wasteful.

 Link to this function

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 View Source

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor)

 View Source

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 OColor :: wx:wx_colour(),
 CColor :: wx:wx_colour().

Creates a native brush with a radial gradient. The brush originates at (@a startX, @a startY) and ends on a circle around (@a endX, @a endY) with the given @a radius. The gradient may be specified either by its start and end colours @a oColor and @a cColor or by a full set of gradient @a stops. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGraphicsContext()) -> ok.

Creates a wxGraphicsContext from a wxWindow.
See: wxGraphicsRenderer:createContext/2

 Link to this function

 drawBitmap(This, Bmp, X, Y, W, H)

 View Source

 -spec drawBitmap(This, Bmp, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 Bmp :: wxBitmap:wxBitmap(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws the bitmap.
In case of a mono bitmap, this is treated as a mask and the current brushed is
used for filling.

 Link to this function

 drawEllipse(This, X, Y, W, H)

 View Source

 -spec drawEllipse(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws an ellipse.

 Link to this function

 drawIcon(This, Icon, X, Y, W, H)

 View Source

 -spec drawIcon(This, Icon, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 Icon :: wxIcon:wxIcon(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws the icon.

 Link to this function

 drawLines(This, Points)

 View Source

 -spec drawLines(This, Points) -> ok
 when This :: wxGraphicsContext(), Points :: [{X :: float(), Y :: float()}].

 Link to this function

 drawLines/3

 View Source

 -spec drawLines(This, Points, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Points :: [{X :: float(), Y :: float()}],
 Option :: {fillStyle, wx:wx_enum()}.

Draws a polygon.

 Link to this function

 drawPath(This, Path)

 View Source

 -spec drawPath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

 Link to this function

 drawPath/3

 View Source

 -spec drawPath(This, Path, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Path :: wxGraphicsPath:wxGraphicsPath(),
 Option :: {fillStyle, wx:wx_enum()}.

Draws the path by first filling and then stroking.

 Link to this function

 drawRectangle(This, X, Y, W, H)

 View Source

 -spec drawRectangle(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws a rectangle.

 Link to this function

 drawRoundedRectangle(This, X, Y, W, H, Radius)

 View Source

 -spec drawRoundedRectangle(This, X, Y, W, H, Radius) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number(),
 Radius :: number().

Draws a rounded rectangle.

 Link to this function

 drawText(This, Str, X, Y)

 View Source

 -spec drawText(This, Str, X, Y) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number().

Draws text at the defined position.

 Link to this function

 drawText/5

 View Source

 -spec drawText(This, Str, X, Y, Angle) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 Angle :: number();
 (This, Str, X, Y, BackgroundBrush) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 BackgroundBrush :: wxGraphicsBrush:wxGraphicsBrush().

Draws text at the defined position.

 Link to this function

 drawText(This, Str, X, Y, Angle, BackgroundBrush)

 View Source

 -spec drawText(This, Str, X, Y, Angle, BackgroundBrush) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 Angle :: number(),
 BackgroundBrush :: wxGraphicsBrush:wxGraphicsBrush().

Draws text at the defined position.

 Link to this function

 fillPath(This, Path)

 View Source

 -spec fillPath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

 Link to this function

 fillPath/3

 View Source

 -spec fillPath(This, Path, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Path :: wxGraphicsPath:wxGraphicsPath(),
 Option :: {fillStyle, wx:wx_enum()}.

Fills the path with the current brush.

 Link to this function

 getPartialTextExtents(This, Text)

 View Source

 -spec getPartialTextExtents(This, Text) -> [number()]
 when This :: wxGraphicsContext(), Text :: unicode:chardata().

Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 Link to this function

 getTextExtent(This, Text)

 View Source

 -spec getTextExtent(This, Text) -> Result
 when
 Result ::
 {Width :: number(),
 Height :: number(),
 Descent :: number(),
 ExternalLeading :: number()},
 This :: wxGraphicsContext(),
 Text :: unicode:chardata().

Gets the dimensions of the string using the currently selected font.

 Link to this function

 getTransform(This)

 View Source

 -spec getTransform(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsContext().

Gets the current transformation matrix of this context.

 Link to this function

 resetClip(This)

 View Source

 -spec resetClip(This) -> ok when This :: wxGraphicsContext().

Resets the clipping to original shape.

 Link to this function

 rotate(This, Angle)

 View Source

 -spec rotate(This, Angle) -> ok when This :: wxGraphicsContext(), Angle :: number().

Rotates the current transformation matrix (in radians).

 Link to this function

 scale(This, XScale, YScale)

 View Source

 -spec scale(This, XScale, YScale) -> ok
 when This :: wxGraphicsContext(), XScale :: number(), YScale :: number().

Scales the current transformation matrix.

 Link to this function

 setBrush(This, Brush)

 View Source

 -spec setBrush(This, Brush) -> ok
 when
 This :: wxGraphicsContext(),
 Brush :: wxGraphicsBrush:wxGraphicsBrush() | wxBrush:wxBrush().

Sets the brush for filling paths.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok
 when This :: wxGraphicsContext(), Font :: wxGraphicsFont:wxGraphicsFont().

Sets the font for drawing text.

 Link to this function

 setFont(This, Font, Colour)

 View Source

 -spec setFont(This, Font, Colour) -> ok
 when This :: wxGraphicsContext(), Font :: wxFont:wxFont(), Colour :: wx:wx_colour().

Sets the font for drawing text.
Remark: For Direct2D only TrueType fonts can be used.

 Link to this function

 setPen(This, Pen)

 View Source

 -spec setPen(This, Pen) -> ok
 when This :: wxGraphicsContext(), Pen :: wxPen:wxPen() | wxGraphicsPen:wxGraphicsPen().

Sets the pen used for stroking.

 Link to this function

 setTransform(This, Matrix)

 View Source

 -spec setTransform(This, Matrix) -> ok
 when This :: wxGraphicsContext(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Sets the current transformation matrix of this context.

 Link to this function

 strokeLine(This, X1, Y1, X2, Y2)

 View Source

 -spec strokeLine(This, X1, Y1, X2, Y2) -> ok
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number().

Strokes a single line.

 Link to this function

 strokeLines(This, Points)

 View Source

 -spec strokeLines(This, Points) -> ok
 when This :: wxGraphicsContext(), Points :: [{X :: float(), Y :: float()}].

Stroke lines connecting all the points.
Unlike the other overload of this function, this method draws a single polyline
and not a number of disconnected lines.

 Link to this function

 strokePath(This, Path)

 View Source

 -spec strokePath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

Strokes along a path with the current pen.

 Link to this function

 translate(This, Dx, Dy)

 View Source

 -spec translate(This, Dx, Dy) -> ok when This :: wxGraphicsContext(), Dx :: number(), Dy :: number().

Translates the current transformation matrix.

wxGraphicsFont

Functions for wxGraphicsFont class
A wxGraphicsFont is a native representation of a font. The contents are
specific and private to the respective renderer. Instances are ref counted and
can therefore be assigned as usual. The only way to get a valid instance is via
wxGraphicsContext:createFont/4 or wxGraphicsRenderer:createFont/4.
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsFont

 Summary

 Types

 wxGraphicsFont()

 Types

 Link to this type

 wxGraphicsFont()

 View Source

 -type wxGraphicsFont() :: wx:wx_object().

wxGraphicsGradientStops

Represents a collection of wxGraphicGradientStop values for use with
CreateLinearGradientBrush and CreateRadialGradientBrush.
The stops are maintained in order of position. If two or more stops are added
with the same position then the one(s) added later come later. This can be
useful for producing discontinuities in the colour gradient.
Notice that this class is write-once, you can't modify the stops once they had
been added.
Since: 2.9.1
wxWidgets docs:
wxGraphicsGradientStops

 Summary

 Types

 wxGraphicsGradientStops()

 Functions

 add(This, Col, Pos)

 Add a new stop.

 destroy(This)

 Destroys the object.

 getCount(This)

 Returns the number of stops.

 getEndColour(This)

 Returns the end colour.

 getStartColour(This)

 Returns the start colour.

 item(This, N)

 Returns the stop at the given index.

 new()

 new(Options)

 Initializes the gradient stops with the given boundary colours.

 setEndColour(This, Col)

 Set the end colour to col.

 setStartColour(This, Col)

 Set the start colour to col.

 Types

 Link to this type

 wxGraphicsGradientStops()

 View Source

 -type wxGraphicsGradientStops() :: wx:wx_object().

 Functions

 Link to this function

 add(This, Col, Pos)

 View Source

 -spec add(This, Col, Pos) -> ok
 when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour(), Pos :: number().

Add a new stop.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGraphicsGradientStops()) -> ok.

Destroys the object.

 Link to this function

 getCount(This)

 View Source

 -spec getCount(This) -> integer() when This :: wxGraphicsGradientStops().

Returns the number of stops.

 Link to this function

 getEndColour(This)

 View Source

 -spec getEndColour(This) -> wx:wx_colour4() when This :: wxGraphicsGradientStops().

Returns the end colour.

 Link to this function

 getStartColour(This)

 View Source

 -spec getStartColour(This) -> wx:wx_colour4() when This :: wxGraphicsGradientStops().

Returns the start colour.

 Link to this function

 item(This, N)

 View Source

 -spec item(This, N) -> {wx:wx_colour4(), float()} when This :: wxGraphicsGradientStops(), N :: integer().

Returns the stop at the given index.

 Link to this function

 new()

 View Source

 -spec new() -> wxGraphicsGradientStops().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGraphicsGradientStops()
 when Option :: {startCol, wx:wx_colour()} | {endCol, wx:wx_colour()}.

Initializes the gradient stops with the given boundary colours.
Creates a wxGraphicsGradientStops instance with start colour given by
startCol and end colour given by endCol.

 Link to this function

 setEndColour(This, Col)

 View Source

 -spec setEndColour(This, Col) -> ok when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour().

Set the end colour to col.

 Link to this function

 setStartColour(This, Col)

 View Source

 -spec setStartColour(This, Col) -> ok when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour().

Set the start colour to col.

wxGraphicsMatrix

Functions for wxGraphicsMatrix class
A wxGraphicsMatrix is a native representation of an affine matrix. The
contents are specific and private to the respective renderer. Instances are ref
counted and can therefore be assigned as usual. The only way to get a valid
instance is via wxGraphicsContext:createMatrix/2 or
wxGraphicsRenderer:createMatrix/2.
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsMatrix

 Summary

 Types

 wxGraphicsMatrix()

 Functions

 concat(This, T)

 Concatenates the matrix passed with the current matrix.

 get(This)

 Returns the component values of the matrix via the argument pointers.

 invert(This)

 Inverts the matrix.

 isEqual(This, T)

 Returns true if the elements of the transformation matrix are equal.

 isIdentity(This)

 Return true if this is the identity matrix.

 rotate(This, Angle)

 Rotates this matrix clockwise (in radians).

 scale(This, XScale, YScale)

 Scales this matrix.

 set(This)

 set/2

 Sets the matrix to the respective values (default values are the identity
matrix).

 transformDistance(This)

 Applies this matrix to a distance (ie.

 transformPoint(This)

 Applies this matrix to a point.

 translate(This, Dx, Dy)

 Translates this matrix.

 Types

 Link to this type

 wxGraphicsMatrix()

 View Source

 -type wxGraphicsMatrix() :: wx:wx_object().

 Functions

 Link to this function

 concat(This, T)

 View Source

 -spec concat(This, T) -> ok when This :: wxGraphicsMatrix(), T :: wxGraphicsMatrix().

Concatenates the matrix passed with the current matrix.
The effect of the resulting transformation is to first apply the transformation
in t to the coordinates and then apply the transformation in the current
matrix to the coordinates.

 Link to this function

 get(This)

 View Source

 -spec get(This) -> Result
 when
 Result ::
 {A :: number(),
 B :: number(),
 C :: number(),
 D :: number(),
 Tx :: number(),
 Ty :: number()},
 This :: wxGraphicsMatrix().

Returns the component values of the matrix via the argument pointers.

 Link to this function

 invert(This)

 View Source

 -spec invert(This) -> ok when This :: wxGraphicsMatrix().

Inverts the matrix.

 Link to this function

 isEqual(This, T)

 View Source

 -spec isEqual(This, T) -> boolean() when This :: wxGraphicsMatrix(), T :: wxGraphicsMatrix().

Returns true if the elements of the transformation matrix are equal.

 Link to this function

 isIdentity(This)

 View Source

 -spec isIdentity(This) -> boolean() when This :: wxGraphicsMatrix().

Return true if this is the identity matrix.

 Link to this function

 rotate(This, Angle)

 View Source

 -spec rotate(This, Angle) -> ok when This :: wxGraphicsMatrix(), Angle :: number().

Rotates this matrix clockwise (in radians).

 Link to this function

 scale(This, XScale, YScale)

 View Source

 -spec scale(This, XScale, YScale) -> ok
 when This :: wxGraphicsMatrix(), XScale :: number(), YScale :: number().

Scales this matrix.

 Link to this function

 set(This)

 View Source

 -spec set(This) -> ok when This :: wxGraphicsMatrix().

 Link to this function

 set/2

 View Source

 -spec set(This, [Option]) -> ok
 when
 This :: wxGraphicsMatrix(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Sets the matrix to the respective values (default values are the identity
matrix).

 Link to this function

 transformDistance(This)

 View Source

 -spec transformDistance(This) -> {Dx :: number(), Dy :: number()} when This :: wxGraphicsMatrix().

Applies this matrix to a distance (ie.
performs all transforms except translations).

 Link to this function

 transformPoint(This)

 View Source

 -spec transformPoint(This) -> {X :: number(), Y :: number()} when This :: wxGraphicsMatrix().

Applies this matrix to a point.

 Link to this function

 translate(This, Dx, Dy)

 View Source

 -spec translate(This, Dx, Dy) -> ok when This :: wxGraphicsMatrix(), Dx :: number(), Dy :: number().

Translates this matrix.

wxGraphicsObject

Functions for wxGraphicsObject class
This class is the superclass of native graphics objects like pens etc. It allows
reference counting. Not instantiated by user code.
See: wxGraphicsBrush, wxGraphicsPen, wxGraphicsMatrix,
wxGraphicsPath
wxWidgets docs:
wxGraphicsObject

 Summary

 Types

 wxGraphicsObject()

 Functions

 destroy(This)

 getRenderer(This)

 Returns the renderer that was used to create this instance, or NULL if it has
not been initialized yet.

 isNull(This)

 Return: false if this object is valid, otherwise returns true.

 Types

 Link to this type

 wxGraphicsObject()

 View Source

 -type wxGraphicsObject() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGraphicsObject()) -> ok.

 Link to this function

 getRenderer(This)

 View Source

 -spec getRenderer(This) -> wxGraphicsRenderer:wxGraphicsRenderer() when This :: wxGraphicsObject().

Returns the renderer that was used to create this instance, or NULL if it has
not been initialized yet.

 Link to this function

 isNull(This)

 View Source

 -spec isNull(This) -> boolean() when This :: wxGraphicsObject().

Return: false if this object is valid, otherwise returns true.

wxGraphicsPath

Functions for wxGraphicsPath class
A wxGraphicsPath is a native representation of a geometric path. The
contents are specific and private to the respective renderer. Instances are
reference counted and can therefore be assigned as usual. The only way to get a
valid instance is by using wxGraphicsContext:createPath/1 or
wxGraphicsRenderer:createPath/1.
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsPath

 Summary

 Types

 wxGraphicsPath()

 Functions

 addArc(This, C, R, StartAngle, EndAngle, Clockwise)

 addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise)

 Adds an arc of a circle.

 addArcToPoint(This, X1, Y1, X2, Y2, R)

 Adds an arc (of a circle with radius r) that is tangent to the line connecting
current point and (x1, y1) and to the line connecting (x1, y1) and
(x2, y2).

 addCircle(This, X, Y, R)

 Appends a circle around (x,y) with radius r as a new closed subpath.

 addCurveToPoint(This, C1, C2, E)

 Adds a cubic bezier curve from the current point, using two control points and
an end point.

 addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y)

 Adds a cubic bezier curve from the current point, using two control points and
an end point.

 addEllipse(This, X, Y, W, H)

 Appends an ellipse fitting into the passed in rectangle as a new closed subpath.

 addLineToPoint(This, P)

 Adds a straight line from the current point to p.

 addLineToPoint(This, X, Y)

 Adds a straight line from the current point to (x,y).

 addPath(This, Path)

 Adds another path onto the current path.

 addQuadCurveToPoint(This, Cx, Cy, X, Y)

 Adds a quadratic bezier curve from the current point, using a control point and
an end point.

 addRectangle(This, X, Y, W, H)

 Appends a rectangle as a new closed subpath.

 addRoundedRectangle(This, X, Y, W, H, Radius)

 Appends a rounded rectangle as a new closed subpath.

 closeSubpath(This)

 Closes the current sub-path.

 contains(This, C)

 contains/3

 Return: true if the point is within the path.

 contains/4

 Return: true if the point is within the path.

 getBox(This)

 Gets the bounding box enclosing all points (possibly including control points).

 getCurrentPoint(This)

 Gets the last point of the current path, (0,0) if not yet set.

 moveToPoint(This, P)

 Begins a new subpath at p.

 moveToPoint(This, X, Y)

 Begins a new subpath at (x,y).

 transform(This, Matrix)

 Transforms each point of this path by the matrix.

 Types

 Link to this type

 wxGraphicsPath()

 View Source

 -type wxGraphicsPath() :: wx:wx_object().

 Functions

 Link to this function

 addArc(This, C, R, StartAngle, EndAngle, Clockwise)

 View Source

 -spec addArc(This, C, R, StartAngle, EndAngle, Clockwise) -> ok
 when
 This :: wxGraphicsPath(),
 C :: {X :: float(), Y :: float()},
 R :: number(),
 StartAngle :: number(),
 EndAngle :: number(),
 Clockwise :: boolean().

 Link to this function

 addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise)

 View Source

 -spec addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 R :: number(),
 StartAngle :: number(),
 EndAngle :: number(),
 Clockwise :: boolean().

Adds an arc of a circle.
The circle is defined by the coordinates of its centre (x, y) or c and its
radius r. The arc goes from the starting angle startAngle to endAngle
either clockwise or counter-clockwise depending on the value of clockwise
argument.
The angles are measured in radians but, contrary to the usual mathematical
convention, are always clockwise from the horizontal axis.
If for clockwise arc endAngle is less than startAngle it will be
progressively increased by 2pi until it is greater than startAngle. If for
counter-clockwise arc endAngle is greater than startAngle it will be
progressively decreased by 2pi until it is less than startAngle.
If there is a current point set, an initial line segment will be added to the
path to connect the current point to the beginning of the arc.

 Link to this function

 addArcToPoint(This, X1, Y1, X2, Y2, R)

 View Source

 -spec addArcToPoint(This, X1, Y1, X2, Y2, R) -> ok
 when
 This :: wxGraphicsPath(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 R :: number().

Adds an arc (of a circle with radius r) that is tangent to the line connecting
current point and (x1, y1) and to the line connecting (x1, y1) and
(x2, y2).
If the current point and the starting point of the arc are different, a straight
line connecting these points is also appended. If there is no current point
before the call to addArcToPoint/6 this function will behave as if preceded by
a call to MoveToPoint(0, 0). After this call the current point will be at the
ending point of the arc.

 Link to this function

 addCircle(This, X, Y, R)

 View Source

 -spec addCircle(This, X, Y, R) -> ok
 when This :: wxGraphicsPath(), X :: number(), Y :: number(), R :: number().

Appends a circle around (x,y) with radius r as a new closed subpath.
After this call the current point will be at (x+r, y).

 Link to this function

 addCurveToPoint(This, C1, C2, E)

 View Source

 -spec addCurveToPoint(This, C1, C2, E) -> ok
 when
 This :: wxGraphicsPath(),
 C1 :: {X :: float(), Y :: float()},
 C2 :: {X :: float(), Y :: float()},
 E :: {X :: float(), Y :: float()}.

Adds a cubic bezier curve from the current point, using two control points and
an end point.
If there is no current point before the call to addCurveToPoint/7 this
function will behave as if preceded by a call to MoveToPoint(c1).

 Link to this function

 addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y)

 View Source

 -spec addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y) -> ok
 when
 This :: wxGraphicsPath(),
 Cx1 :: number(),
 Cy1 :: number(),
 Cx2 :: number(),
 Cy2 :: number(),
 X :: number(),
 Y :: number().

Adds a cubic bezier curve from the current point, using two control points and
an end point.
If there is no current point before the call to addCurveToPoint/7 this
function will behave as if preceded by a call to MoveToPoint(cx1, cy1).

 Link to this function

 addEllipse(This, X, Y, W, H)

 View Source

 -spec addEllipse(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Appends an ellipse fitting into the passed in rectangle as a new closed subpath.
After this call the current point will be at (x+w, y+h/2).

 Link to this function

 addLineToPoint(This, P)

 View Source

 -spec addLineToPoint(This, P) -> ok when This :: wxGraphicsPath(), P :: {X :: float(), Y :: float()}.

Adds a straight line from the current point to p.
If current point is not yet set before the call to addLineToPoint/3 this
function will behave as moveToPoint/3.

 Link to this function

 addLineToPoint(This, X, Y)

 View Source

 -spec addLineToPoint(This, X, Y) -> ok when This :: wxGraphicsPath(), X :: number(), Y :: number().

Adds a straight line from the current point to (x,y).
If current point is not yet set before the call to addLineToPoint/3 this
function will behave as moveToPoint/3.

 Link to this function

 addPath(This, Path)

 View Source

 -spec addPath(This, Path) -> ok when This :: wxGraphicsPath(), Path :: wxGraphicsPath().

Adds another path onto the current path.
After this call the current point will be at the added path's current point. For
Direct2D the path being appended shouldn't contain a started non-empty subpath
when this function is called.

 Link to this function

 addQuadCurveToPoint(This, Cx, Cy, X, Y)

 View Source

 -spec addQuadCurveToPoint(This, Cx, Cy, X, Y) -> ok
 when
 This :: wxGraphicsPath(),
 Cx :: number(),
 Cy :: number(),
 X :: number(),
 Y :: number().

Adds a quadratic bezier curve from the current point, using a control point and
an end point.
If there is no current point before the call to addQuadCurveToPoint/5 this
function will behave as if preceded by a call to MoveToPoint(cx, cy).

 Link to this function

 addRectangle(This, X, Y, W, H)

 View Source

 -spec addRectangle(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Appends a rectangle as a new closed subpath.
After this call the current point will be at (x, y).

 Link to this function

 addRoundedRectangle(This, X, Y, W, H, Radius)

 View Source

 -spec addRoundedRectangle(This, X, Y, W, H, Radius) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number(),
 Radius :: number().

Appends a rounded rectangle as a new closed subpath.
If radius equals 0 this function will behave as addRectangle/5, otherwise
after this call the current point will be at (x+w, y+h/2).

 Link to this function

 closeSubpath(This)

 View Source

 -spec closeSubpath(This) -> ok when This :: wxGraphicsPath().

Closes the current sub-path.
After this call the current point will be at the joined endpoint of the
sub-path.

 Link to this function

 contains(This, C)

 View Source

 -spec contains(This, C) -> boolean() when This :: wxGraphicsPath(), C :: {X :: float(), Y :: float()}.

 Link to this function

 contains/3

 View Source

 -spec contains(This, X, Y) -> boolean() when This :: wxGraphicsPath(), X :: number(), Y :: number();
 (This, C, [Option]) -> boolean()
 when
 This :: wxGraphicsPath(),
 C :: {X :: float(), Y :: float()},
 Option :: {fillStyle, wx:wx_enum()}.

Return: true if the point is within the path.

 Link to this function

 contains/4

 View Source

 -spec contains(This, X, Y, [Option]) -> boolean()
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 Option :: {fillStyle, wx:wx_enum()}.

Return: true if the point is within the path.

 Link to this function

 getBox(This)

 View Source

 -spec getBox(This) -> {X :: float(), Y :: float(), W :: float(), H :: float()}
 when This :: wxGraphicsPath().

Gets the bounding box enclosing all points (possibly including control points).

 Link to this function

 getCurrentPoint(This)

 View Source

 -spec getCurrentPoint(This) -> {X :: float(), Y :: float()} when This :: wxGraphicsPath().

Gets the last point of the current path, (0,0) if not yet set.

 Link to this function

 moveToPoint(This, P)

 View Source

 -spec moveToPoint(This, P) -> ok when This :: wxGraphicsPath(), P :: {X :: float(), Y :: float()}.

Begins a new subpath at p.

 Link to this function

 moveToPoint(This, X, Y)

 View Source

 -spec moveToPoint(This, X, Y) -> ok when This :: wxGraphicsPath(), X :: number(), Y :: number().

Begins a new subpath at (x,y).

 Link to this function

 transform(This, Matrix)

 View Source

 -spec transform(This, Matrix) -> ok
 when This :: wxGraphicsPath(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Transforms each point of this path by the matrix.
For Direct2D the current path shouldn't contain a started non-empty subpath when
this function is called.

wxGraphicsPen

Functions for wxGraphicsPen class
A wxGraphicsPen is a native representation of a pen. The contents are
specific and private to the respective renderer. Instances are ref counted and
can therefore be assigned as usual. The only way to get a valid instance is via
wxGraphicsContext:createPen/2 or wxGraphicsRenderer::CreatePen() (not
implemented in wx).
This class is derived (and can use functions) from: wxGraphicsObject
wxWidgets docs:
wxGraphicsPen

 Summary

 Types

 wxGraphicsPen()

 Types

 Link to this type

 wxGraphicsPen()

 View Source

 -type wxGraphicsPen() :: wx:wx_object().

wxGraphicsRenderer

Functions for wxGraphicsRenderer class
A wxGraphicsRenderer is the instance corresponding to the rendering engine
used. There may be multiple instances on a system, if there are different
rendering engines present, but there is always only one instance per engine.
This instance is pointed back to by all objects created by it
(wxGraphicsContext, wxGraphicsPath etc.) and can be retrieved through
their wxGraphicsObject:getRenderer/1 method. Therefore you can create an
additional instance of a path etc. by calling wxGraphicsObject:getRenderer/1
and then using the appropriate CreateXXX() function of that renderer.
wxWidgets docs:
wxGraphicsRenderer

 Summary

 Types

 wxGraphicsRenderer()

 Functions

 createBrush(This, Brush)

 Creates a native brush from a wxBrush.

 createContext(This, WindowDC)

 Creates a wxGraphicsContext from a wxWindowDC.

 createFont(This, Font)

 createFont/3

 Creates a native graphics font from a wxFont and a text colour.

 createFont/4

 Creates a graphics font with the given characteristics.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 Creates a native brush with a linear gradient.

 createMatrix(This)

 createMatrix/2

 Creates a native affine transformation matrix from the passed in values.

 createPath(This)

 Creates a native graphics path which is initially empty.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 Creates a native brush with a radial gradient.

 getDefaultRenderer()

 Returns the default renderer on this platform.

 Types

 Link to this type

 wxGraphicsRenderer()

 View Source

 -type wxGraphicsRenderer() :: wx:wx_object().

 Functions

 Link to this function

 createBrush(This, Brush)

 View Source

 -spec createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
 when This :: wxGraphicsRenderer(), Brush :: wxBrush:wxBrush().

Creates a native brush from a wxBrush.

 Link to this function

 createContext(This, WindowDC)

 View Source

 -spec createContext(This, WindowDC) -> wxGraphicsContext:wxGraphicsContext()
 when
 This :: wxGraphicsRenderer(),
 WindowDC ::
 wxWindowDC:wxWindowDC() | wxWindow:wxWindow() | wxMemoryDC:wxMemoryDC().

Creates a wxGraphicsContext from a wxWindowDC.

 Link to this function

 createFont(This, Font)

 View Source

 -spec createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
 when This :: wxGraphicsRenderer(), Font :: wxFont:wxFont().

 Link to this function

 createFont/3

 View Source

 -spec createFont(This, SizeInPixels, Facename) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata();
 (This, Font, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 Font :: wxFont:wxFont(),
 Option :: {col, wx:wx_colour()}.

Creates a native graphics font from a wxFont and a text colour.

 Link to this function

 createFont/4

 View Source

 -spec createFont(This, SizeInPixels, Facename, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata(),
 Option :: {flags, integer()} | {col, wx:wx_colour()}.

Creates a graphics font with the given characteristics.
If possible, the createFont/4 overload taking wxFont should be used
instead. The main advantage of this overload is that it can be used without X
server connection under Unix when using Cairo.
Since: 2.9.3

 Link to this function

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 View Source

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsRenderer(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

Creates a native brush with a linear gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end
colours could be specified.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 Link to this function

 createMatrix(This)

 View Source

 -spec createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsRenderer().

 Link to this function

 createMatrix/2

 View Source

 -spec createMatrix(This, [Option]) -> wxGraphicsMatrix:wxGraphicsMatrix()
 when
 This :: wxGraphicsRenderer(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Creates a native affine transformation matrix from the passed in values.
The defaults result in an identity matrix.

 Link to this function

 createPath(This)

 View Source

 -spec createPath(This) -> wxGraphicsPath:wxGraphicsPath() when This :: wxGraphicsRenderer().

Creates a native graphics path which is initially empty.

 Link to this function

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 View Source

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsRenderer(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

Creates a native brush with a radial gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end
colours could be specified.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 Link to this function

 getDefaultRenderer()

 View Source

 -spec getDefaultRenderer() -> wxGraphicsRenderer().

Returns the default renderer on this platform.
On macOS this is the Core Graphics (a.k.a. Quartz 2D) renderer, on MSW the
GDIPlus renderer, and on GTK we currently default to the Cairo renderer.

wxGrid

Functions for wxGrid class
wxGrid and its related classes are used for displaying and editing tabular
data. They provide a rich set of features for display, editing, and interacting
with a variety of data sources. For simple applications, and to help you get
started, wxGrid is the only class you need to refer to directly. It will set
up default instances of the other classes and manage them for you. For more
complex applications you can derive your own classes for custom grid views, grid
data tables, cell editors and renderers. The overview_grid has examples of
simple and more complex applications, explains the relationship between the
various grid classes and has a summary of the keyboard shortcuts and mouse
functions provided by wxGrid.
A wxGridTableBase (not implemented in wx) class holds the actual data to be
displayed by a wxGrid class. One or more wxGrid classes may act as a
view for one table class. The default table class is called wxGridStringTable
(not implemented in wx) and holds an array of strings. An instance of such a
class is created by createGrid/4.
wxGridCellRenderer is the abstract base class for rendering contents in a
cell. The following renderers are predefined:
The look of a cell can be further defined using wxGridCellAttr. An object of
this type may be returned by wxGridTableBase::GetAttr() (not implemented in
wx).
wxGridCellEditor is the abstract base class for editing the value of a cell.
The following editors are predefined:
Please see wxGridEvent, wxGridSizeEvent (not implemented in wx),
wxGridRangeSelectEvent (not implemented in wx), and wxGridEditorCreatedEvent
(not implemented in wx) for the documentation of all event types you can use
with wxGrid.
See:
Overview grid,
wxGridUpdateLocker (not implemented in wx)
This class is derived (and can use functions) from: wxScrolledWindow
wxPanel wxWindow wxEvtHandler
wxWidgets docs: wxGrid

 Summary

 Types

 wxGrid()

 Functions

 appendCols(This)

 appendCols/2

 Appends one or more new columns to the right of the grid.

 appendRows(This)

 appendRows/2

 Appends one or more new rows to the bottom of the grid.

 autoSize(This)

 Automatically sets the height and width of all rows and columns to fit their
contents.

 autoSizeColumn(This, Col)

 autoSizeColumn/3

 Automatically sizes the column to fit its contents.

 autoSizeColumns(This)

 autoSizeColumns/2

 Automatically sizes all columns to fit their contents.

 autoSizeRow(This, Row)

 autoSizeRow/3

 Automatically sizes the row to fit its contents.

 autoSizeRows(This)

 autoSizeRows/2

 Automatically sizes all rows to fit their contents.

 beginBatch(This)

 Increments the grid's batch count.

 blockToDeviceRect(This, TopLeft, BottomRight)

 Convert grid cell coordinates to grid window pixel coordinates.

 canDragCell(This)

 Return true if the dragging of cells is enabled or false otherwise.

 canDragColMove(This)

 Returns true if columns can be moved by dragging with the mouse.

 canDragColSize(This, Col)

 Returns true if the given column can be resized by dragging with the mouse.

 canDragGridRowEdges(This)

 Return true if row edges inside the grid can be dragged to resize the rows.

 canDragGridSize(This)

 Return true if the dragging of grid lines to resize rows and columns is enabled
or false otherwise.

 canDragRowSize(This, Row)

 Returns true if the given row can be resized by dragging with the mouse.

 canEnableCellControl(This)

 Returns true if the in-place edit control for the current grid cell can be used
and false otherwise.

 cellToRect(This, Coords)

 Return the rectangle corresponding to the grid cell's size and position in
logical coordinates.

 cellToRect(This, Row, Col)

 Return the rectangle corresponding to the grid cell's size and position in
logical coordinates.

 clearGrid(This)

 Clears all data in the underlying grid table and repaints the grid.

 clearSelection(This)

 Deselects all cells that are currently selected.

 createGrid(This, NumRows, NumCols)

 createGrid/4

 Creates a grid with the specified initial number of rows and columns.

 deleteCols(This)

 deleteCols/2

 Deletes one or more columns from a grid starting at the specified position.

 deleteRows(This)

 deleteRows/2

 Deletes one or more rows from a grid starting at the specified position.

 destroy(This)

 Destructor.

 disableCellEditControl(This)

 Disables in-place editing of grid cells.

 disableDragColSize(This)

 Disables column sizing by dragging with the mouse.

 disableDragGridSize(This)

 Disable mouse dragging of grid lines to resize rows and columns.

 disableDragRowSize(This)

 Disables row sizing by dragging with the mouse.

 enableCellEditControl(This)

 enableCellEditControl/2

 Enables or disables in-place editing of grid cell data.

 enableDragColSize(This)

 enableDragColSize/2

 Enables or disables column sizing by dragging with the mouse.

 enableDragGridSize(This)

 enableDragGridSize/2

 Enables or disables row and column resizing by dragging gridlines with the
mouse.

 enableDragRowSize(This)

 enableDragRowSize/2

 Enables or disables row sizing by dragging with the mouse.

 enableEditing(This, Edit)

 Makes the grid globally editable or read-only.

 enableGridLines(This)

 enableGridLines/2

 Turns the drawing of grid lines on or off.

 endBatch(This)

 Decrements the grid's batch count.

 fit(This)

 Overridden wxWindow method.

 forceRefresh(This)

 Causes immediate repainting of the grid.

 getBatchCount(This)

 Returns the number of times that beginBatch/1 has been called without (yet)
matching calls to endBatch/1.

 getCellAlignment(This, Row, Col)

 Sets the arguments to the horizontal and vertical text alignment values for the
grid cell at the specified location.

 getCellBackgroundColour(This, Row, Col)

 Returns the background colour of the cell at the specified location.

 getCellEditor(This, Row, Col)

 Returns a pointer to the editor for the cell at the specified location.

 getCellFont(This, Row, Col)

 Returns the font for text in the grid cell at the specified location.

 getCellRenderer(This, Row, Col)

 Returns a pointer to the renderer for the grid cell at the specified location.

 getCellTextColour(This, Row, Col)

 Returns the text colour for the grid cell at the specified location.

 getCellValue(This, Coords)

 Returns the string contained in the cell at the specified location.

 getCellValue(This, Row, Col)

 Returns the string contained in the cell at the specified location.

 getColLabelAlignment(This)

 Sets the arguments to the current column label alignment values.

 getColLabelSize(This)

 Returns the current height of the column labels.

 getColLabelValue(This, Col)

 Returns the specified column label.

 getColMinimalAcceptableWidth(This)

 Returns the minimal width to which a column may be resized.

 getDefaultCellAlignment(This)

 Returns the default cell alignment.

 getDefaultCellBackgroundColour(This)

 Returns the current default background colour for grid cells.

 getDefaultCellFont(This)

 Returns the current default font for grid cell text.

 getDefaultCellTextColour(This)

 Returns the current default colour for grid cell text.

 getDefaultColLabelSize(This)

 Returns the default height for column labels.

 getDefaultColSize(This)

 Returns the current default width for grid columns.

 getDefaultEditor(This)

 Returns a pointer to the current default grid cell editor.

 getDefaultEditorForCell(This, C)

 Returns the default editor for the specified cell.

 getDefaultEditorForCell(This, Row, Col)

 Returns the default editor for the specified cell.

 getDefaultEditorForType(This, TypeName)

 Returns the default editor for the cells containing values of the given type.

 getDefaultRenderer(This)

 Returns a pointer to the current default grid cell renderer.

 getDefaultRendererForCell(This, Row, Col)

 Returns the default renderer for the given cell.

 getDefaultRendererForType(This, TypeName)

 Returns the default renderer for the cell containing values of the given type.

 getDefaultRowLabelSize(This)

 Returns the default width for the row labels.

 getDefaultRowSize(This)

 Returns the current default height for grid rows.

 getGridColLabelWindow(This)

 Return the column labels window.

 getGridCornerLabelWindow(This)

 Return the window in the top left grid corner.

 getGridCursorCol(This)

 Returns the current grid cell column position.

 getGridCursorRow(This)

 Returns the current grid cell row position.

 getGridLineColour(This)

 Returns the colour used for grid lines.

 getGridRowLabelWindow(This)

 Return the row labels window.

 getGridWindow(This)

 Return the main grid window containing the grid cells.

 getLabelBackgroundColour(This)

 Returns the colour used for the background of row and column labels.

 getLabelFont(This)

 Returns the font used for row and column labels.

 getLabelTextColour(This)

 Returns the colour used for row and column label text.

 getNumberCols(This)

 Returns the total number of grid columns.

 getNumberRows(This)

 Returns the total number of grid rows.

 getOrCreateCellAttr(This, Row, Col)

 Returns the attribute for the given cell creating one if necessary.

 getRowLabelAlignment(This)

 Returns the alignment used for row labels.

 getRowLabelSize(This)

 Returns the current width of the row labels.

 getRowLabelValue(This, Row)

 Returns the specified row label.

 getRowMinimalAcceptableHeight(This)

 Returns the minimal size to which rows can be resized.

 getRowSize(This, Row)

 Returns the height of the specified row.

 getScrollLineX(This)

 Returns the number of pixels per horizontal scroll increment.

 getScrollLineY(This)

 Returns the number of pixels per vertical scroll increment.

 getSelectedCells(This)

 Returns an array of individually selected cells.

 getSelectedCols(This)

 Returns an array of selected columns.

 getSelectedRows(This)

 Returns an array of selected rows.

 getSelectionBackground(This)

 Returns the colour used for drawing the selection background.

 getSelectionBlockBottomRight(This)

 Returns an array of the bottom right corners of blocks of selected cells.

 getSelectionBlockTopLeft(This)

 Returns an array of the top left corners of blocks of selected cells.

 getSelectionForeground(This)

 Returns the colour used for drawing the selection foreground.

 gridLinesEnabled(This)

 Returns true if drawing of grid lines is turned on, false otherwise.

 hideCellEditControl(This)

 Hides the in-place cell edit control.

 insertCols(This)

 insertCols/2

 Inserts one or more new columns into a grid with the first new column at the
specified position.

 insertRows(This)

 insertRows/2

 Inserts one or more new rows into a grid with the first new row at the specified
position.

 isCellEditControlEnabled(This)

 Returns true if the in-place edit control is currently enabled.

 isCurrentCellReadOnly(This)

 Returns true if the current cell is read-only.

 isEditable(This)

 Returns false if the whole grid has been set as read-only or true otherwise.

 isInSelection(This, Coords)

 Returns true if the given cell is selected.

 isInSelection(This, Row, Col)

 Returns true if the given cell is selected.

 isReadOnly(This, Row, Col)

 Returns true if the cell at the specified location can't be edited.

 isSelection(This)

 Returns true if there are currently any selected cells, rows, columns or blocks.

 isVisible(This, Coords)

 isVisible/3

 Returns true if a cell is either entirely or at least partially visible in the
grid window.

 isVisible/4

 Returns true if a cell is either entirely or at least partially visible in the
grid window.

 makeCellVisible(This, Coords)

 Brings the specified cell into the visible grid cell area with minimal
scrolling.

 makeCellVisible(This, Row, Col)

 Brings the specified cell into the visible grid cell area with minimal
scrolling.

 moveCursorDown(This, ExpandSelection)

 Moves the grid cursor down by one row.

 moveCursorDownBlock(This, ExpandSelection)

 Moves the grid cursor down in the current column such that it skips to the
beginning or end of a block of non-empty cells.

 moveCursorLeft(This, ExpandSelection)

 Moves the grid cursor left by one column.

 moveCursorLeftBlock(This, ExpandSelection)

 Moves the grid cursor left in the current row such that it skips to the
beginning or end of a block of non-empty cells.

 moveCursorRight(This, ExpandSelection)

 Moves the grid cursor right by one column.

 moveCursorRightBlock(This, ExpandSelection)

 Moves the grid cursor right in the current row such that it skips to the
beginning or end of a block of non-empty cells.

 moveCursorUp(This, ExpandSelection)

 Moves the grid cursor up by one row.

 moveCursorUpBlock(This, ExpandSelection)

 Moves the grid cursor up in the current column such that it skips to the
beginning or end of a block of non-empty cells.

 movePageDown(This)

 Moves the grid cursor down by some number of rows so that the previous bottom
visible row becomes the top visible row.

 movePageUp(This)

 Moves the grid cursor up by some number of rows so that the previous top visible
row becomes the bottom visible row.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor creating the grid window.

 registerDataType(This, TypeName, Renderer, Editor)

 Register a new data type.

 saveEditControlValue(This)

 Sets the value of the current grid cell to the current in-place edit control
value.

 selectAll(This)

 Selects all cells in the grid.

 selectBlock(This, TopLeft, BottomRight)

 selectBlock/4

 Selects a rectangular block of cells.

 selectBlock(This, TopRow, LeftCol, BottomRow, RightCol)

 selectBlock/6

 Selects a rectangular block of cells.

 selectCol(This, Col)

 selectCol/3

 Selects the specified column.

 selectRow(This, Row)

 selectRow/3

 Selects the specified row.

 setCellAlignment(This, Row, Col, Horiz, Vert)

 Sets the horizontal and vertical alignment for grid cell text at the specified
location.

 setCellBackgroundColour(This, Row, Col, Colour)

 Set the background colour for the given cell or all cells by default.

 setCellEditor(This, Row, Col, Editor)

 Sets the editor for the grid cell at the specified location.

 setCellFont(This, Row, Col, Font)

 Sets the font for text in the grid cell at the specified location.

 setCellRenderer(This, Row, Col, Renderer)

 Sets the renderer for the grid cell at the specified location.

 setCellTextColour(This, Row, Col, Colour)

 Sets the text colour for the given cell.

 setCellValue(This, Coords, S)

 Sets the string value for the cell at the specified location.

 setCellValue(This, Row, Col, S)

 Sets the string value for the cell at the specified location.

 setColAttr(This, Col, Attr)

 Sets the cell attributes for all cells in the specified column.

 setColFormatBool(This, Col)

 Sets the specified column to display boolean values.

 setColFormatCustom(This, Col, TypeName)

 Sets the specified column to display data in a custom format.

 setColFormatFloat(This, Col)

 setColFormatFloat/3

 Sets the specified column to display floating point values with the given width
and precision.

 setColFormatNumber(This, Col)

 Sets the specified column to display integer values.

 setColLabelAlignment(This, Horiz, Vert)

 Sets the horizontal and vertical alignment of column label text.

 setColLabelSize(This, Height)

 Sets the height of the column labels.

 setColLabelValue(This, Col, Value)

 Set the value for the given column label.

 setColMinimalAcceptableWidth(This, Width)

 Sets the minimal width to which the user can resize columns.

 setColMinimalWidth(This, Col, Width)

 Sets the minimal width for the specified column col.

 setColSize(This, Col, Width)

 Sets the width of the specified column.

 setDefaultCellAlignment(This, Horiz, Vert)

 Sets the default horizontal and vertical alignment for grid cell text.

 setDefaultCellBackgroundColour(This, Colour)

 Sets the default background colour for grid cells.

 setDefaultCellFont(This, Font)

 Sets the default font to be used for grid cell text.

 setDefaultCellTextColour(This, Colour)

 Sets the current default colour for grid cell text.

 setDefaultColSize(This, Width)

 setDefaultColSize/3

 Sets the default width for columns in the grid.

 setDefaultEditor(This, Editor)

 Sets the default editor for grid cells.

 setDefaultRenderer(This, Renderer)

 Sets the default renderer for grid cells.

 setDefaultRowSize(This, Height)

 setDefaultRowSize/3

 Sets the default height for rows in the grid.

 setGridCursor(This, Coords)

 Set the grid cursor to the specified cell.

 setGridCursor(This, Row, Col)

 Set the grid cursor to the specified cell.

 setGridLineColour(This, Colour)

 Sets the colour used to draw grid lines.

 setLabelBackgroundColour(This, Colour)

 Sets the background colour for row and column labels.

 setLabelFont(This, Font)

 Sets the font for row and column labels.

 setLabelTextColour(This, Colour)

 Sets the colour for row and column label text.

 setMargins(This, ExtraWidth, ExtraHeight)

 Sets the extra margins used around the grid area.

 setReadOnly(This, Row, Col)

 setReadOnly/4

 Makes the cell at the specified location read-only or editable.

 setRowAttr(This, Row, Attr)

 Sets the cell attributes for all cells in the specified row.

 setRowLabelAlignment(This, Horiz, Vert)

 Sets the horizontal and vertical alignment of row label text.

 setRowLabelSize(This, Width)

 Sets the width of the row labels.

 setRowLabelValue(This, Row, Value)

 Sets the value for the given row label.

 setRowMinimalAcceptableHeight(This, Height)

 Sets the minimal row height used by default.

 setRowMinimalHeight(This, Row, Height)

 Sets the minimal height for the specified row.

 setRowSize(This, Row, Height)

 Sets the height of the specified row.

 setScrollLineX(This, X)

 Sets the number of pixels per horizontal scroll increment.

 setScrollLineY(This, Y)

 Sets the number of pixels per vertical scroll increment.

 setSelectionBackground(This, C)

 Set the colour to be used for drawing the selection background.

 setSelectionForeground(This, C)

 Set the colour to be used for drawing the selection foreground.

 setSelectionMode(This, Selmode)

 Set the selection behaviour of the grid.

 showCellEditControl(This)

 Displays the active in-place cell edit control for the current cell after it was
hidden.

 xToCol(This, X)

 xToCol/3

 Returns the column at the given pixel position depending on the window.

 xToEdgeOfCol(This, X)

 Returns the column whose right hand edge is close to the given logical x
position.

 yToEdgeOfRow(This, Y)

 Returns the row whose bottom edge is close to the given logical y position.

 yToRow(This, Y)

 yToRow/3

 Returns the grid row that corresponds to the logical y coordinate.

 Types

 Link to this type

 wxGrid()

 View Source

 -type wxGrid() :: wx:wx_object().

 Functions

 Link to this function

 appendCols(This)

 View Source

 -spec appendCols(This) -> boolean() when This :: wxGrid().

 Link to this function

 appendCols/2

 View Source

 -spec appendCols(This, [Option]) -> boolean()
 when This :: wxGrid(), Option :: {numCols, integer()} | {updateLabels, boolean()}.

Appends one or more new columns to the right of the grid.
The updateLabels argument is not used at present. If you are using a derived
grid table class you will need to override wxGridTableBase::AppendCols() (not
implemented in wx). See insertCols/2 for further information.
Return: true on success or false if appending columns failed.

 Link to this function

 appendRows(This)

 View Source

 -spec appendRows(This) -> boolean() when This :: wxGrid().

 Link to this function

 appendRows/2

 View Source

 -spec appendRows(This, [Option]) -> boolean()
 when This :: wxGrid(), Option :: {numRows, integer()} | {updateLabels, boolean()}.

Appends one or more new rows to the bottom of the grid.
The updateLabels argument is not used at present. If you are using a derived
grid table class you will need to override wxGridTableBase::AppendRows() (not
implemented in wx). See insertRows/2 for further information.
Return: true on success or false if appending rows failed.

 Link to this function

 autoSize(This)

 View Source

 -spec autoSize(This) -> ok when This :: wxGrid().

Automatically sets the height and width of all rows and columns to fit their
contents.

 Link to this function

 autoSizeColumn(This, Col)

 View Source

 -spec autoSizeColumn(This, Col) -> ok when This :: wxGrid(), Col :: integer().

 Link to this function

 autoSizeColumn/3

 View Source

 -spec autoSizeColumn(This, Col, [Option]) -> ok
 when This :: wxGrid(), Col :: integer(), Option :: {setAsMin, boolean()}.

Automatically sizes the column to fit its contents.
If setAsMin is true the calculated width will also be set as the minimal width
for the column.

 Link to this function

 autoSizeColumns(This)

 View Source

 -spec autoSizeColumns(This) -> ok when This :: wxGrid().

 Link to this function

 autoSizeColumns/2

 View Source

 -spec autoSizeColumns(This, [Option]) -> ok when This :: wxGrid(), Option :: {setAsMin, boolean()}.

Automatically sizes all columns to fit their contents.
If setAsMin is true the calculated widths will also be set as the minimal
widths for the columns.

 Link to this function

 autoSizeRow(This, Row)

 View Source

 -spec autoSizeRow(This, Row) -> ok when This :: wxGrid(), Row :: integer().

 Link to this function

 autoSizeRow/3

 View Source

 -spec autoSizeRow(This, Row, [Option]) -> ok
 when This :: wxGrid(), Row :: integer(), Option :: {setAsMin, boolean()}.

Automatically sizes the row to fit its contents.
If setAsMin is true the calculated height will also be set as the minimal
height for the row.

 Link to this function

 autoSizeRows(This)

 View Source

 -spec autoSizeRows(This) -> ok when This :: wxGrid().

 Link to this function

 autoSizeRows/2

 View Source

 -spec autoSizeRows(This, [Option]) -> ok when This :: wxGrid(), Option :: {setAsMin, boolean()}.

Automatically sizes all rows to fit their contents.
If setAsMin is true the calculated heights will also be set as the minimal
heights for the rows.

 Link to this function

 beginBatch(This)

 View Source

 -spec beginBatch(This) -> ok when This :: wxGrid().

Increments the grid's batch count.
When the count is greater than zero repainting of the grid is suppressed. Each
call to BeginBatch must be matched by a later call to endBatch/1. Code that
does a lot of grid modification can be enclosed between beginBatch/1 and
endBatch/1 calls to avoid screen flicker. The final endBatch/1 call will
cause the grid to be repainted.
Notice that you should use wxGridUpdateLocker (not implemented in wx) which
ensures that there is always a matching endBatch/1 call for this
beginBatch/1 if possible instead of calling this method directly.

 Link to this function

 blockToDeviceRect(This, TopLeft, BottomRight)

 View Source

 -spec blockToDeviceRect(This, TopLeft, BottomRight) ->
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()}.

Convert grid cell coordinates to grid window pixel coordinates.
This function returns the rectangle that encloses the block of cells limited by
topLeft and bottomRight cell in device coords and clipped to the client size
of the grid window.
Since: 3.1.3 Parameter gridWindow has been added.
See: cellToRect/3

 Link to this function

 canDragCell(This)

 View Source

 -spec canDragCell(This) -> boolean() when This :: wxGrid().

Return true if the dragging of cells is enabled or false otherwise.

 Link to this function

 canDragColMove(This)

 View Source

 -spec canDragColMove(This) -> boolean() when This :: wxGrid().

Returns true if columns can be moved by dragging with the mouse.
Columns can be moved by dragging on their labels.

 Link to this function

 canDragColSize(This, Col)

 View Source

 -spec canDragColSize(This, Col) -> boolean() when This :: wxGrid(), Col :: integer().

Returns true if the given column can be resized by dragging with the mouse.
This function returns true if resizing the columns interactively is globally
enabled, i.e. if disableDragColSize/1 hadn't been called, and if this column
wasn't explicitly marked as non-resizable with DisableColResize() (not
implemented in wx).

 Link to this function

 canDragGridRowEdges(This)

 View Source

 -spec canDragGridRowEdges(This) -> boolean() when This :: wxGrid().

Return true if row edges inside the grid can be dragged to resize the rows.
See: canDragGridSize/1, canDragRowSize/2
Since: 3.1.4

 Link to this function

 canDragGridSize(This)

 View Source

 -spec canDragGridSize(This) -> boolean() when This :: wxGrid().

Return true if the dragging of grid lines to resize rows and columns is enabled
or false otherwise.

 Link to this function

 canDragRowSize(This, Row)

 View Source

 -spec canDragRowSize(This, Row) -> boolean() when This :: wxGrid(), Row :: integer().

Returns true if the given row can be resized by dragging with the mouse.
This is the same as canDragColSize/2 but for rows.

 Link to this function

 canEnableCellControl(This)

 View Source

 -spec canEnableCellControl(This) -> boolean() when This :: wxGrid().

Returns true if the in-place edit control for the current grid cell can be used
and false otherwise.
This function always returns false for the read-only cells.

 Link to this function

 cellToRect(This, Coords)

 View Source

 -spec cellToRect(This, Coords) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Return the rectangle corresponding to the grid cell's size and position in
logical coordinates.
See: blockToDeviceRect/3

 Link to this function

 cellToRect(This, Row, Col)

 View Source

 -spec cellToRect(This, Row, Col) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Return the rectangle corresponding to the grid cell's size and position in
logical coordinates.
See: blockToDeviceRect/3

 Link to this function

 clearGrid(This)

 View Source

 -spec clearGrid(This) -> ok when This :: wxGrid().

Clears all data in the underlying grid table and repaints the grid.
The table is not deleted by this function. If you are using a derived table
class then you need to override wxGridTableBase::Clear() (not implemented in
wx) for this function to have any effect.

 Link to this function

 clearSelection(This)

 View Source

 -spec clearSelection(This) -> ok when This :: wxGrid().

Deselects all cells that are currently selected.

 Link to this function

 createGrid(This, NumRows, NumCols)

 View Source

 -spec createGrid(This, NumRows, NumCols) -> boolean()
 when This :: wxGrid(), NumRows :: integer(), NumCols :: integer().

 Link to this function

 createGrid/4

 View Source

 -spec createGrid(This, NumRows, NumCols, [Option]) -> boolean()
 when
 This :: wxGrid(),
 NumRows :: integer(),
 NumCols :: integer(),
 Option :: {selmode, wx:wx_enum()}.

Creates a grid with the specified initial number of rows and columns.
Call this directly after the grid constructor. When you use this function
wxGrid will create and manage a simple table of string values for you. All
of the grid data will be stored in memory.
For applications with more complex data types or relationships, or for dealing
with very large datasets, you should derive your own grid table class and pass a
table object to the grid with SetTable() (not implemented in wx) or
AssignTable() (not implemented in wx).

 Link to this function

 deleteCols(This)

 View Source

 -spec deleteCols(This) -> boolean() when This :: wxGrid().

 Link to this function

 deleteCols/2

 View Source

 -spec deleteCols(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numCols, integer()} | {updateLabels, boolean()}.

Deletes one or more columns from a grid starting at the specified position.
The updateLabels argument is not used at present. If you are using a derived
grid table class you will need to override wxGridTableBase::DeleteCols() (not
implemented in wx). See insertCols/2 for further information.
Return: true on success or false if deleting columns failed.

 Link to this function

 deleteRows(This)

 View Source

 -spec deleteRows(This) -> boolean() when This :: wxGrid().

 Link to this function

 deleteRows/2

 View Source

 -spec deleteRows(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numRows, integer()} | {updateLabels, boolean()}.

Deletes one or more rows from a grid starting at the specified position.
The updateLabels argument is not used at present. If you are using a derived
grid table class you will need to override wxGridTableBase::DeleteRows() (not
implemented in wx). See insertRows/2 for further information.
Return: true on success or false if deleting rows failed.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGrid()) -> ok.

Destructor.
This will also destroy the associated grid table unless you passed a table
object to the grid and specified that the grid should not take ownership of the
table (see SetTable() (not implemented in wx)).

 Link to this function

 disableCellEditControl(This)

 View Source

 -spec disableCellEditControl(This) -> ok when This :: wxGrid().

Disables in-place editing of grid cells.
Equivalent to calling EnableCellEditControl(false).

 Link to this function

 disableDragColSize(This)

 View Source

 -spec disableDragColSize(This) -> ok when This :: wxGrid().

Disables column sizing by dragging with the mouse.
Equivalent to passing false to enableDragColSize/2.

 Link to this function

 disableDragGridSize(This)

 View Source

 -spec disableDragGridSize(This) -> ok when This :: wxGrid().

Disable mouse dragging of grid lines to resize rows and columns.
Equivalent to passing false to enableDragGridSize/2

 Link to this function

 disableDragRowSize(This)

 View Source

 -spec disableDragRowSize(This) -> ok when This :: wxGrid().

Disables row sizing by dragging with the mouse.
Equivalent to passing false to enableDragRowSize/2.

 Link to this function

 enableCellEditControl(This)

 View Source

 -spec enableCellEditControl(This) -> ok when This :: wxGrid().

 Link to this function

 enableCellEditControl/2

 View Source

 -spec enableCellEditControl(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables in-place editing of grid cell data.
Enabling in-place editing generates wxEVT_GRID_EDITOR_SHOWN and, if it isn't
vetoed by the application, shows the in-place editor which allows the user to
change the cell value.
Disabling in-place editing does nothing if the in-place editor isn't currently
shown, otherwise the wxEVT_GRID_EDITOR_HIDDEN event is generated but, unlike
the "shown" event, it can't be vetoed and the in-place editor is dismissed
unconditionally.
Note that it is an error to call this function if the current cell is read-only,
use canEnableCellControl/1 to check for this precondition.

 Link to this function

 enableDragColSize(This)

 View Source

 -spec enableDragColSize(This) -> ok when This :: wxGrid().

 Link to this function

 enableDragColSize/2

 View Source

 -spec enableDragColSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables column sizing by dragging with the mouse.
See: DisableColResize() (not implemented in wx)

 Link to this function

 enableDragGridSize(This)

 View Source

 -spec enableDragGridSize(This) -> ok when This :: wxGrid().

 Link to this function

 enableDragGridSize/2

 View Source

 -spec enableDragGridSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables row and column resizing by dragging gridlines with the
mouse.

 Link to this function

 enableDragRowSize(This)

 View Source

 -spec enableDragRowSize(This) -> ok when This :: wxGrid().

 Link to this function

 enableDragRowSize/2

 View Source

 -spec enableDragRowSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables row sizing by dragging with the mouse.
See: DisableRowResize() (not implemented in wx)

 Link to this function

 enableEditing(This, Edit)

 View Source

 -spec enableEditing(This, Edit) -> ok when This :: wxGrid(), Edit :: boolean().

Makes the grid globally editable or read-only.
If the edit argument is false this function sets the whole grid as read-only. If
the argument is true the grid is set to the default state where cells may be
editable. In the default state you can set single grid cells and whole rows and
columns to be editable or read-only via wxGridCellAttr:setReadOnly/2. For
single cells you can also use the shortcut function setReadOnly/4.
For more information about controlling grid cell attributes see the
wxGridCellAttr class and the overview_grid.

 Link to this function

 enableGridLines(This)

 View Source

 -spec enableGridLines(This) -> ok when This :: wxGrid().

 Link to this function

 enableGridLines/2

 View Source

 -spec enableGridLines(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Turns the drawing of grid lines on or off.

 Link to this function

 endBatch(This)

 View Source

 -spec endBatch(This) -> ok when This :: wxGrid().

Decrements the grid's batch count.
When the count is greater than zero repainting of the grid is suppressed. Each
previous call to beginBatch/1 must be matched by a later call to endBatch/1.
Code that does a lot of grid modification can be enclosed between beginBatch/1
and endBatch/1 calls to avoid screen flicker. The final endBatch/1 will
cause the grid to be repainted.
See: wxGridUpdateLocker (not implemented in wx)

 Link to this function

 fit(This)

 View Source

 -spec fit(This) -> ok when This :: wxGrid().

Overridden wxWindow method.

 Link to this function

 forceRefresh(This)

 View Source

 -spec forceRefresh(This) -> ok when This :: wxGrid().

Causes immediate repainting of the grid.
Use this instead of the usual wxWindow:refresh/2.

 Link to this function

 getBatchCount(This)

 View Source

 -spec getBatchCount(This) -> integer() when This :: wxGrid().

Returns the number of times that beginBatch/1 has been called without (yet)
matching calls to endBatch/1.
While the grid's batch count is greater than zero the display will not be
updated.

 Link to this function

 getCellAlignment(This, Row, Col)

 View Source

 -spec getCellAlignment(This, Row, Col) -> {Horiz :: integer(), Vert :: integer()}
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Sets the arguments to the horizontal and vertical text alignment values for the
grid cell at the specified location.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

 Link to this function

 getCellBackgroundColour(This, Row, Col)

 View Source

 -spec getCellBackgroundColour(This, Row, Col) -> wx:wx_colour4()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the background colour of the cell at the specified location.

 Link to this function

 getCellEditor(This, Row, Col)

 View Source

 -spec getCellEditor(This, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns a pointer to the editor for the cell at the specified location.
See wxGridCellEditor and the overview_grid for more information about cell
editors and renderers.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getCellFont(This, Row, Col)

 View Source

 -spec getCellFont(This, Row, Col) -> wxFont:wxFont()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the font for text in the grid cell at the specified location.

 Link to this function

 getCellRenderer(This, Row, Col)

 View Source

 -spec getCellRenderer(This, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns a pointer to the renderer for the grid cell at the specified location.
See wxGridCellRenderer and the overview_grid for more information about cell
editors and renderers.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getCellTextColour(This, Row, Col)

 View Source

 -spec getCellTextColour(This, Row, Col) -> wx:wx_colour4()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the text colour for the grid cell at the specified location.

 Link to this function

 getCellValue(This, Coords)

 View Source

 -spec getCellValue(This, Coords) -> unicode:charlist()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Returns the string contained in the cell at the specified location.
For simple applications where a grid object automatically uses a default grid
table of string values you use this function together with setCellValue/4 to
access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or
user-defined custom types) then you only use this function for those cells that
contain string values.
See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the
overview_grid for more information.

 Link to this function

 getCellValue(This, Row, Col)

 View Source

 -spec getCellValue(This, Row, Col) -> unicode:charlist()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the string contained in the cell at the specified location.
For simple applications where a grid object automatically uses a default grid
table of string values you use this function together with setCellValue/4 to
access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or
user-defined custom types) then you only use this function for those cells that
contain string values.
See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the
overview_grid for more information.

 Link to this function

 getColLabelAlignment(This)

 View Source

 -spec getColLabelAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Sets the arguments to the current column label alignment values.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

 Link to this function

 getColLabelSize(This)

 View Source

 -spec getColLabelSize(This) -> integer() when This :: wxGrid().

Returns the current height of the column labels.

 Link to this function

 getColLabelValue(This, Col)

 View Source

 -spec getColLabelValue(This, Col) -> unicode:charlist() when This :: wxGrid(), Col :: integer().

Returns the specified column label.
The default grid table class provides column labels of the form
A,B...Z,AA,AB...ZZ,AAA... If you are using a custom grid table you can override
wxGridTableBase::GetColLabelValue() (not implemented in wx) to provide your
own labels.

 Link to this function

 getColMinimalAcceptableWidth(This)

 View Source

 -spec getColMinimalAcceptableWidth(This) -> integer() when This :: wxGrid().

Returns the minimal width to which a column may be resized.
Use setColMinimalAcceptableWidth/2 to change this value globally or
setColMinimalWidth/3 to do it for individual columns.
See: getRowMinimalAcceptableHeight/1

 Link to this function

 getDefaultCellAlignment(This)

 View Source

 -spec getDefaultCellAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Returns the default cell alignment.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.
See: setDefaultCellAlignment/3

 Link to this function

 getDefaultCellBackgroundColour(This)

 View Source

 -spec getDefaultCellBackgroundColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the current default background colour for grid cells.

 Link to this function

 getDefaultCellFont(This)

 View Source

 -spec getDefaultCellFont(This) -> wxFont:wxFont() when This :: wxGrid().

Returns the current default font for grid cell text.

 Link to this function

 getDefaultCellTextColour(This)

 View Source

 -spec getDefaultCellTextColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the current default colour for grid cell text.

 Link to this function

 getDefaultColLabelSize(This)

 View Source

 -spec getDefaultColLabelSize(This) -> integer() when This :: wxGrid().

Returns the default height for column labels.

 Link to this function

 getDefaultColSize(This)

 View Source

 -spec getDefaultColSize(This) -> integer() when This :: wxGrid().

Returns the current default width for grid columns.

 Link to this function

 getDefaultEditor(This)

 View Source

 -spec getDefaultEditor(This) -> wxGridCellEditor:wxGridCellEditor() when This :: wxGrid().

Returns a pointer to the current default grid cell editor.
See wxGridCellEditor and the overview_grid for more information about cell
editors and renderers.

 Link to this function

 getDefaultEditorForCell(This, C)

 View Source

 -spec getDefaultEditorForCell(This, C) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), C :: {R :: integer(), C :: integer()}.

Returns the default editor for the specified cell.
The base class version returns the editor appropriate for the current cell type
but this method may be overridden in the derived classes to use custom editors
for some cells by default.
Notice that the same may be achieved in a usually simpler way by associating a
custom editor with the given cell or cells.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getDefaultEditorForCell(This, Row, Col)

 View Source

 -spec getDefaultEditorForCell(This, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the default editor for the specified cell.
The base class version returns the editor appropriate for the current cell type
but this method may be overridden in the derived classes to use custom editors
for some cells by default.
Notice that the same may be achieved in a usually simpler way by associating a
custom editor with the given cell or cells.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getDefaultEditorForType(This, TypeName)

 View Source

 -spec getDefaultEditorForType(This, TypeName) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), TypeName :: unicode:chardata().

Returns the default editor for the cells containing values of the given type.
The base class version returns the editor which was associated with the
specified typeName when it was registered registerDataType/4 but this
function may be overridden to return something different. This allows overriding
an editor used for one of the standard types.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getDefaultRenderer(This)

 View Source

 -spec getDefaultRenderer(This) -> wxGridCellRenderer:wxGridCellRenderer() when This :: wxGrid().

Returns a pointer to the current default grid cell renderer.
See wxGridCellRenderer and the overview_grid for more information about cell
editors and renderers.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getDefaultRendererForCell(This, Row, Col)

 View Source

 -spec getDefaultRendererForCell(This, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the default renderer for the given cell.
The base class version returns the renderer appropriate for the current cell
type but this method may be overridden in the derived classes to use custom
renderers for some cells by default.
The caller must call DecRef() on the returned pointer.

 Link to this function

 getDefaultRendererForType(This, TypeName)

 View Source

 -spec getDefaultRendererForType(This, TypeName) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), TypeName :: unicode:chardata().

Returns the default renderer for the cell containing values of the given type.
See: getDefaultEditorForType/2

 Link to this function

 getDefaultRowLabelSize(This)

 View Source

 -spec getDefaultRowLabelSize(This) -> integer() when This :: wxGrid().

Returns the default width for the row labels.

 Link to this function

 getDefaultRowSize(This)

 View Source

 -spec getDefaultRowSize(This) -> integer() when This :: wxGrid().

Returns the current default height for grid rows.

 Link to this function

 getGridColLabelWindow(This)

 View Source

 -spec getGridColLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the column labels window.
This window is not shown if the columns labels were hidden using
HideColLabels() (not implemented in wx).
Depending on whether UseNativeColHeader() (not implemented in wx) was called
or not this can be either a wxHeaderCtrl (not implemented in wx) or a plain
wxWindow. This function returns a valid window pointer in either case but in
the former case you can also use GetGridColHeader() (not implemented in wx) to
access it if you need wxHeaderCtrl-specific functionality.

 Link to this function

 getGridCornerLabelWindow(This)

 View Source

 -spec getGridCornerLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the window in the top left grid corner.
This window is shown only of both columns and row labels are shown and normally
doesn't contain anything. Clicking on it is handled by wxGrid however and
can be used to select the entire grid.

 Link to this function

 getGridCursorCol(This)

 View Source

 -spec getGridCursorCol(This) -> integer() when This :: wxGrid().

Returns the current grid cell column position.
See: GetGridCursorCoords() (not implemented in wx)

 Link to this function

 getGridCursorRow(This)

 View Source

 -spec getGridCursorRow(This) -> integer() when This :: wxGrid().

Returns the current grid cell row position.
See: GetGridCursorCoords() (not implemented in wx)

 Link to this function

 getGridLineColour(This)

 View Source

 -spec getGridLineColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for grid lines.
See: GetDefaultGridLinePen() (not implemented in wx)

 Link to this function

 getGridRowLabelWindow(This)

 View Source

 -spec getGridRowLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the row labels window.
This window is not shown if the row labels were hidden using HideRowLabels()
(not implemented in wx).

 Link to this function

 getGridWindow(This)

 View Source

 -spec getGridWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the main grid window containing the grid cells.
This window is always shown.

 Link to this function

 getLabelBackgroundColour(This)

 View Source

 -spec getLabelBackgroundColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for the background of row and column labels.

 Link to this function

 getLabelFont(This)

 View Source

 -spec getLabelFont(This) -> wxFont:wxFont() when This :: wxGrid().

Returns the font used for row and column labels.

 Link to this function

 getLabelTextColour(This)

 View Source

 -spec getLabelTextColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for row and column label text.

 Link to this function

 getNumberCols(This)

 View Source

 -spec getNumberCols(This) -> integer() when This :: wxGrid().

Returns the total number of grid columns.
This is the same as the number of columns in the underlying grid table.

 Link to this function

 getNumberRows(This)

 View Source

 -spec getNumberRows(This) -> integer() when This :: wxGrid().

Returns the total number of grid rows.
This is the same as the number of rows in the underlying grid table.

 Link to this function

 getOrCreateCellAttr(This, Row, Col)

 View Source

 -spec getOrCreateCellAttr(This, Row, Col) -> wxGridCellAttr:wxGridCellAttr()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the attribute for the given cell creating one if necessary.
If the cell already has an attribute, it is returned. Otherwise a new attribute
is created, associated with the cell and returned. In any case the caller must
call DecRef() on the returned pointer.
Prefer to use GetOrCreateCellAttrPtr() (not implemented in wx) to avoid the
need to call DecRef() on the returned pointer.
This function may only be called if CanHaveAttributes() (not implemented in
wx) returns true.

 Link to this function

 getRowLabelAlignment(This)

 View Source

 -spec getRowLabelAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Returns the alignment used for row labels.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

 Link to this function

 getRowLabelSize(This)

 View Source

 -spec getRowLabelSize(This) -> integer() when This :: wxGrid().

Returns the current width of the row labels.

 Link to this function

 getRowLabelValue(This, Row)

 View Source

 -spec getRowLabelValue(This, Row) -> unicode:charlist() when This :: wxGrid(), Row :: integer().

Returns the specified row label.
The default grid table class provides numeric row labels. If you are using a
custom grid table you can override wxGridTableBase::GetRowLabelValue() (not
implemented in wx) to provide your own labels.

 Link to this function

 getRowMinimalAcceptableHeight(This)

 View Source

 -spec getRowMinimalAcceptableHeight(This) -> integer() when This :: wxGrid().

Returns the minimal size to which rows can be resized.
Use setRowMinimalAcceptableHeight/2 to change this value globally or
setRowMinimalHeight/3 to do it for individual cells.
See: getColMinimalAcceptableWidth/1

 Link to this function

 getRowSize(This, Row)

 View Source

 -spec getRowSize(This, Row) -> integer() when This :: wxGrid(), Row :: integer().

Returns the height of the specified row.

 Link to this function

 getScrollLineX(This)

 View Source

 -spec getScrollLineX(This) -> integer() when This :: wxGrid().

Returns the number of pixels per horizontal scroll increment.
The default is 15.
See: getScrollLineY/1, setScrollLineX/2, setScrollLineY/2

 Link to this function

 getScrollLineY(This)

 View Source

 -spec getScrollLineY(This) -> integer() when This :: wxGrid().

Returns the number of pixels per vertical scroll increment.
The default is 15.
See: getScrollLineX/1, setScrollLineX/2, setScrollLineY/2

 Link to this function

 getSelectedCells(This)

 View Source

 -spec getSelectedCells(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of individually selected cells.
Notice that this array does not contain all the selected cells in general as
it doesn't include the cells selected as part of column, row or block selection.
You must use this method, getSelectedCols/1, getSelectedRows/1 and
getSelectionBlockTopLeft/1 and getSelectionBlockBottomRight/1 methods to
obtain the entire selection in general.
Please notice this behaviour is by design and is needed in order to support
grids of arbitrary size (when an entire column is selected in a grid with a
million of columns, we don't want to create an array with a million of entries
in this function, instead it returns an empty array and getSelectedCols/1
returns an array containing one element).
The function can be slow for the big grids, use GetSelectedBlocks() (not
implemented in wx) in the new code.

 Link to this function

 getSelectedCols(This)

 View Source

 -spec getSelectedCols(This) -> [integer()] when This :: wxGrid().

Returns an array of selected columns.
Please notice that this method alone is not sufficient to find all the selected
columns as it contains only the columns which were individually selected but not
those being part of the block selection or being selected in virtue of all of
their cells being selected individually, please see getSelectedCells/1 for
more details.
The function can be slow for the big grids, use GetSelectedBlocks() (not
implemented in wx) in the new code.

 Link to this function

 getSelectedRows(This)

 View Source

 -spec getSelectedRows(This) -> [integer()] when This :: wxGrid().

Returns an array of selected rows.
Please notice that this method alone is not sufficient to find all the selected
rows as it contains only the rows which were individually selected but not those
being part of the block selection or being selected in virtue of all of their
cells being selected individually, please see getSelectedCells/1 for more
details.
The function can be slow for the big grids, use GetSelectedBlocks() (not
implemented in wx) in the new code.

 Link to this function

 getSelectionBackground(This)

 View Source

 -spec getSelectionBackground(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for drawing the selection background.

 Link to this function

 getSelectionBlockBottomRight(This)

 View Source

 -spec getSelectionBlockBottomRight(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of the bottom right corners of blocks of selected cells.
Please see getSelectedCells/1 for more information about the selection
representation in wxGrid.
The function can be slow for the big grids, use GetSelectedBlocks() (not
implemented in wx) in the new code.
See: getSelectionBlockTopLeft/1

 Link to this function

 getSelectionBlockTopLeft(This)

 View Source

 -spec getSelectionBlockTopLeft(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of the top left corners of blocks of selected cells.
Please see getSelectedCells/1 for more information about the selection
representation in wxGrid.
The function can be slow for the big grids, use GetSelectedBlocks() (not
implemented in wx) in the new code.
See: getSelectionBlockBottomRight/1

 Link to this function

 getSelectionForeground(This)

 View Source

 -spec getSelectionForeground(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for drawing the selection foreground.

 Link to this function

 gridLinesEnabled(This)

 View Source

 -spec gridLinesEnabled(This) -> boolean() when This :: wxGrid().

Returns true if drawing of grid lines is turned on, false otherwise.

 Link to this function

 hideCellEditControl(This)

 View Source

 -spec hideCellEditControl(This) -> ok when This :: wxGrid().

Hides the in-place cell edit control.

 Link to this function

 insertCols(This)

 View Source

 -spec insertCols(This) -> boolean() when This :: wxGrid().

 Link to this function

 insertCols/2

 View Source

 -spec insertCols(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numCols, integer()} | {updateLabels, boolean()}.

Inserts one or more new columns into a grid with the first new column at the
specified position.
Notice that inserting the columns in the grid requires grid table cooperation:
when this method is called, grid object begins by requesting the underlying grid
table to insert new columns. If this is successful the table notifies the grid
and the grid updates the display. For a default grid (one where you have called
createGrid/4) this process is automatic. If you are using a custom grid table
(specified with SetTable() (not implemented in wx) or AssignTable() (not
implemented in wx)) then you must override wxGridTableBase::InsertCols() (not
implemented in wx) in your derived table class.
Return: true if the columns were successfully inserted, false if an error
occurred (most likely the table couldn't be updated).

 Link to this function

 insertRows(This)

 View Source

 -spec insertRows(This) -> boolean() when This :: wxGrid().

 Link to this function

 insertRows/2

 View Source

 -spec insertRows(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numRows, integer()} | {updateLabels, boolean()}.

Inserts one or more new rows into a grid with the first new row at the specified
position.
Notice that you must implement wxGridTableBase::InsertRows() (not implemented
in wx) if you use a grid with a custom table, please see insertCols/2 for more
information.
Return: true if the rows were successfully inserted, false if an error occurred
(most likely the table couldn't be updated).

 Link to this function

 isCellEditControlEnabled(This)

 View Source

 -spec isCellEditControlEnabled(This) -> boolean() when This :: wxGrid().

Returns true if the in-place edit control is currently enabled.

 Link to this function

 isCurrentCellReadOnly(This)

 View Source

 -spec isCurrentCellReadOnly(This) -> boolean() when This :: wxGrid().

Returns true if the current cell is read-only.
See: setReadOnly/4, isReadOnly/3

 Link to this function

 isEditable(This)

 View Source

 -spec isEditable(This) -> boolean() when This :: wxGrid().

Returns false if the whole grid has been set as read-only or true otherwise.
See enableEditing/2 for more information about controlling the editing status
of grid cells.

 Link to this function

 isInSelection(This, Coords)

 View Source

 -spec isInSelection(This, Coords) -> boolean()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Returns true if the given cell is selected.

 Link to this function

 isInSelection(This, Row, Col)

 View Source

 -spec isInSelection(This, Row, Col) -> boolean()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns true if the given cell is selected.

 Link to this function

 isReadOnly(This, Row, Col)

 View Source

 -spec isReadOnly(This, Row, Col) -> boolean() when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns true if the cell at the specified location can't be edited.
See: setReadOnly/4, isCurrentCellReadOnly/1

 Link to this function

 isSelection(This)

 View Source

 -spec isSelection(This) -> boolean() when This :: wxGrid().

Returns true if there are currently any selected cells, rows, columns or blocks.

 Link to this function

 isVisible(This, Coords)

 View Source

 -spec isVisible(This, Coords) -> boolean()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

 Link to this function

 isVisible/3

 View Source

 -spec isVisible(This, Row, Col) -> boolean() when This :: wxGrid(), Row :: integer(), Col :: integer();
 (This, Coords, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Coords :: {R :: integer(), C :: integer()},
 Option :: {wholeCellVisible, boolean()}.

Returns true if a cell is either entirely or at least partially visible in the
grid window.
By default, the cell must be entirely visible for this function to return true
but if wholeCellVisible is false, the function returns true even if the cell
is only partially visible.

 Link to this function

 isVisible/4

 View Source

 -spec isVisible(This, Row, Col, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Option :: {wholeCellVisible, boolean()}.

Returns true if a cell is either entirely or at least partially visible in the
grid window.
By default, the cell must be entirely visible for this function to return true
but if wholeCellVisible is false, the function returns true even if the cell
is only partially visible.

 Link to this function

 makeCellVisible(This, Coords)

 View Source

 -spec makeCellVisible(This, Coords) -> ok
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Brings the specified cell into the visible grid cell area with minimal
scrolling.
Does nothing if the cell is already visible.

 Link to this function

 makeCellVisible(This, Row, Col)

 View Source

 -spec makeCellVisible(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

Brings the specified cell into the visible grid cell area with minimal
scrolling.
Does nothing if the cell is already visible.

 Link to this function

 moveCursorDown(This, ExpandSelection)

 View Source

 -spec moveCursorDown(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor down by one row.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorDownBlock(This, ExpandSelection)

 View Source

 -spec moveCursorDownBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor down in the current column such that it skips to the
beginning or end of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorLeft(This, ExpandSelection)

 View Source

 -spec moveCursorLeft(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor left by one column.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorLeftBlock(This, ExpandSelection)

 View Source

 -spec moveCursorLeftBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor left in the current row such that it skips to the
beginning or end of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorRight(This, ExpandSelection)

 View Source

 -spec moveCursorRight(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor right by one column.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorRightBlock(This, ExpandSelection)

 View Source

 -spec moveCursorRightBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor right in the current row such that it skips to the
beginning or end of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorUp(This, ExpandSelection)

 View Source

 -spec moveCursorUp(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor up by one row.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 moveCursorUpBlock(This, ExpandSelection)

 View Source

 -spec moveCursorUpBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor up in the current column such that it skips to the
beginning or end of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is
true or be cleared if the argument is false.

 Link to this function

 movePageDown(This)

 View Source

 -spec movePageDown(This) -> boolean() when This :: wxGrid().

Moves the grid cursor down by some number of rows so that the previous bottom
visible row becomes the top visible row.

 Link to this function

 movePageUp(This)

 View Source

 -spec movePageUp(This) -> boolean() when This :: wxGrid().

Moves the grid cursor up by some number of rows so that the previous top visible
row becomes the bottom visible row.

 Link to this function

 new()

 View Source

 -spec new() -> wxGrid().

Default constructor.
You must call Create() (not implemented in wx) to really create the grid
window and also call createGrid/4 or SetTable() (not implemented in wx) or
AssignTable() (not implemented in wx) to initialize its contents.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxGrid() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxGrid()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor creating the grid window.
You must call either createGrid/4 or SetTable() (not implemented in wx) or
AssignTable() (not implemented in wx) to initialize the grid contents before
using it.

 Link to this function

 registerDataType(This, TypeName, Renderer, Editor)

 View Source

 -spec registerDataType(This, TypeName, Renderer, Editor) -> ok
 when
 This :: wxGrid(),
 TypeName :: unicode:chardata(),
 Renderer :: wxGridCellRenderer:wxGridCellRenderer(),
 Editor :: wxGridCellEditor:wxGridCellEditor().

Register a new data type.
The data types allow to naturally associate specific renderers and editors to
the cells containing values of the given type. For example, the grid
automatically registers a data type with the name wxGRID_VALUE_STRING which
uses wxGridCellStringRenderer and wxGridCellTextEditor as its renderer
and editor respectively - this is the data type used by all the cells of the
default wxGridStringTable (not implemented in wx), so this renderer and editor
are used by default for all grid cells.
However if a custom table returns wxGRID_VALUE_BOOL from its
wxGridTableBase::GetTypeName() (not implemented in wx) method, then
wxGridCellBoolRenderer and wxGridCellBoolEditor are used for it because
the grid also registers a boolean data type with this name.
And as this mechanism is completely generic, you may register your own data
types using your own custom renderers and editors. Just remember that the table
must identify a cell as being of the given type for them to be used for this
cell.

 Link to this function

 saveEditControlValue(This)

 View Source

 -spec saveEditControlValue(This) -> ok when This :: wxGrid().

Sets the value of the current grid cell to the current in-place edit control
value.
This is called automatically when the grid cursor moves from the current cell to
a new cell. It is also a good idea to call this function when closing a grid
since any edits to the final cell location will not be saved otherwise.

 Link to this function

 selectAll(This)

 View Source

 -spec selectAll(This) -> ok when This :: wxGrid().

Selects all cells in the grid.

 Link to this function

 selectBlock(This, TopLeft, BottomRight)

 View Source

 -spec selectBlock(This, TopLeft, BottomRight) -> ok
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()}.

 Link to this function

 selectBlock/4

 View Source

 -spec selectBlock(This, TopLeft, BottomRight, [Option]) -> ok
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()},
 Option :: {addToSelected, boolean()}.

Selects a rectangular block of cells.
If addToSelected is false then any existing selection will be deselected; if
true the column will be added to the existing selection.

 Link to this function

 selectBlock(This, TopRow, LeftCol, BottomRow, RightCol)

 View Source

 -spec selectBlock(This, TopRow, LeftCol, BottomRow, RightCol) -> ok
 when
 This :: wxGrid(),
 TopRow :: integer(),
 LeftCol :: integer(),
 BottomRow :: integer(),
 RightCol :: integer().

 Link to this function

 selectBlock/6

 View Source

 -spec selectBlock(This, TopRow, LeftCol, BottomRow, RightCol, [Option]) -> ok
 when
 This :: wxGrid(),
 TopRow :: integer(),
 LeftCol :: integer(),
 BottomRow :: integer(),
 RightCol :: integer(),
 Option :: {addToSelected, boolean()}.

Selects a rectangular block of cells.
If addToSelected is false then any existing selection will be deselected; if
true the column will be added to the existing selection.

 Link to this function

 selectCol(This, Col)

 View Source

 -spec selectCol(This, Col) -> ok when This :: wxGrid(), Col :: integer().

 Link to this function

 selectCol/3

 View Source

 -spec selectCol(This, Col, [Option]) -> ok
 when This :: wxGrid(), Col :: integer(), Option :: {addToSelected, boolean()}.

Selects the specified column.
If addToSelected is false then any existing selection will be deselected; if
true the column will be added to the existing selection.
This method won't select anything if the current selection mode is
wxGridSelectRows.

 Link to this function

 selectRow(This, Row)

 View Source

 -spec selectRow(This, Row) -> ok when This :: wxGrid(), Row :: integer().

 Link to this function

 selectRow/3

 View Source

 -spec selectRow(This, Row, [Option]) -> ok
 when This :: wxGrid(), Row :: integer(), Option :: {addToSelected, boolean()}.

Selects the specified row.
If addToSelected is false then any existing selection will be deselected; if
true the row will be added to the existing selection.
This method won't select anything if the current selection mode is
wxGridSelectColumns.

 Link to this function

 setCellAlignment(This, Row, Col, Horiz, Vert)

 View Source

 -spec setCellAlignment(This, Row, Col, Horiz, Vert) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Horiz :: integer(),
 Vert :: integer().

Sets the horizontal and vertical alignment for grid cell text at the specified
location.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or
wxALIGN_BOTTOM.

 Link to this function

 setCellBackgroundColour(This, Row, Col, Colour)

 View Source

 -spec setCellBackgroundColour(This, Row, Col, Colour) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Colour :: wx:wx_colour().

Set the background colour for the given cell or all cells by default.

 Link to this function

 setCellEditor(This, Row, Col, Editor)

 View Source

 -spec setCellEditor(This, Row, Col, Editor) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the editor for the grid cell at the specified location.
The grid will take ownership of the pointer.
See wxGridCellEditor and the overview_grid for more information about cell
editors and renderers.

 Link to this function

 setCellFont(This, Row, Col, Font)

 View Source

 -spec setCellFont(This, Row, Col, Font) -> ok
 when This :: wxGrid(), Row :: integer(), Col :: integer(), Font :: wxFont:wxFont().

Sets the font for text in the grid cell at the specified location.

 Link to this function

 setCellRenderer(This, Row, Col, Renderer)

 View Source

 -spec setCellRenderer(This, Row, Col, Renderer) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the renderer for the grid cell at the specified location.
The grid will take ownership of the pointer.
See wxGridCellRenderer and the overview_grid for more information about cell
editors and renderers.

 Link to this function

 setCellTextColour(This, Row, Col, Colour)

 View Source

 -spec setCellTextColour(This, Row, Col, Colour) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Colour :: wx:wx_colour().

Sets the text colour for the given cell.

 Link to this function

 setCellValue(This, Coords, S)

 View Source

 -spec setCellValue(This, Coords, S) -> ok
 when
 This :: wxGrid(),
 Coords :: {R :: integer(), C :: integer()},
 S :: unicode:chardata().

Sets the string value for the cell at the specified location.
For simple applications where a grid object automatically uses a default grid
table of string values you use this function together with getCellValue/3 to
access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or
user-defined custom types) then you only use this function for those cells that
contain string values.
See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the
overview_grid for more information.

 Link to this function

 setCellValue(This, Row, Col, S)

 View Source

 -spec setCellValue(This, Row, Col, S) -> ok
 when This :: wxGrid(), Row :: integer(), Col :: integer(), S :: unicode:chardata().

Sets the string value for the cell at the specified location.
For simple applications where a grid object automatically uses a default grid
table of string values you use this function together with getCellValue/3 to
access cell values. For more complex applications where you have derived your
own grid table class that contains various data types (e.g. numeric, boolean or
user-defined custom types) then you only use this function for those cells that
contain string values.
See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the
overview_grid for more information.

 Link to this function

 setColAttr(This, Col, Attr)

 View Source

 -spec setColAttr(This, Col, Attr) -> ok
 when This :: wxGrid(), Col :: integer(), Attr :: wxGridCellAttr:wxGridCellAttr().

Sets the cell attributes for all cells in the specified column.
For more information about controlling grid cell attributes see the
wxGridCellAttr cell attribute class and the overview_grid.

 Link to this function

 setColFormatBool(This, Col)

 View Source

 -spec setColFormatBool(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Sets the specified column to display boolean values.
See: setColFormatCustom/3

 Link to this function

 setColFormatCustom(This, Col, TypeName)

 View Source

 -spec setColFormatCustom(This, Col, TypeName) -> ok
 when This :: wxGrid(), Col :: integer(), TypeName :: unicode:chardata().

Sets the specified column to display data in a custom format.
This method provides an alternative to defining a custom grid table which would
return typeName from its GetTypeName() method for the cells in this column:
while it doesn't really change the type of the cells in this column, it does
associate the renderer and editor used for the cells of the specified type with
them.
See the overview_grid for more information on working with custom data types.

 Link to this function

 setColFormatFloat(This, Col)

 View Source

 -spec setColFormatFloat(This, Col) -> ok when This :: wxGrid(), Col :: integer().

 Link to this function

 setColFormatFloat/3

 View Source

 -spec setColFormatFloat(This, Col, [Option]) -> ok
 when
 This :: wxGrid(),
 Col :: integer(),
 Option :: {width, integer()} | {precision, integer()}.

Sets the specified column to display floating point values with the given width
and precision.
See: setColFormatCustom/3

 Link to this function

 setColFormatNumber(This, Col)

 View Source

 -spec setColFormatNumber(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Sets the specified column to display integer values.
See: setColFormatCustom/3

 Link to this function

 setColLabelAlignment(This, Horiz, Vert)

 View Source

 -spec setColLabelAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the horizontal and vertical alignment of column label text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT. Vertical alignment should be one of wxALIGN_TOP,
wxALIGN_CENTRE or wxALIGN_BOTTOM.

 Link to this function

 setColLabelSize(This, Height)

 View Source

 -spec setColLabelSize(This, Height) -> ok when This :: wxGrid(), Height :: integer().

Sets the height of the column labels.
If height equals to wxGRID_AUTOSIZE then height is calculated automatically
so that no label is truncated. Note that this could be slow for a large table.

 Link to this function

 setColLabelValue(This, Col, Value)

 View Source

 -spec setColLabelValue(This, Col, Value) -> ok
 when This :: wxGrid(), Col :: integer(), Value :: unicode:chardata().

Set the value for the given column label.
If you are using a custom grid table you must override
wxGridTableBase::SetColLabelValue() (not implemented in wx) for this to have
any effect.

 Link to this function

 setColMinimalAcceptableWidth(This, Width)

 View Source

 -spec setColMinimalAcceptableWidth(This, Width) -> ok when This :: wxGrid(), Width :: integer().

Sets the minimal width to which the user can resize columns.
See: getColMinimalAcceptableWidth/1

 Link to this function

 setColMinimalWidth(This, Col, Width)

 View Source

 -spec setColMinimalWidth(This, Col, Width) -> ok
 when This :: wxGrid(), Col :: integer(), Width :: integer().

Sets the minimal width for the specified column col.
It is usually best to call this method during grid creation as calling it later
will not resize the column to the given minimal width even if it is currently
narrower than it.
width must be greater than the minimal acceptable column width as returned by
getColMinimalAcceptableWidth/1.

 Link to this function

 setColSize(This, Col, Width)

 View Source

 -spec setColSize(This, Col, Width) -> ok when This :: wxGrid(), Col :: integer(), Width :: integer().

Sets the width of the specified column.

 Link to this function

 setDefaultCellAlignment(This, Horiz, Vert)

 View Source

 -spec setDefaultCellAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the default horizontal and vertical alignment for grid cell text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT. Vertical alignment should be one of wxALIGN_TOP,
wxALIGN_CENTRE or wxALIGN_BOTTOM.

 Link to this function

 setDefaultCellBackgroundColour(This, Colour)

 View Source

 -spec setDefaultCellBackgroundColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the default background colour for grid cells.

 Link to this function

 setDefaultCellFont(This, Font)

 View Source

 -spec setDefaultCellFont(This, Font) -> ok when This :: wxGrid(), Font :: wxFont:wxFont().

Sets the default font to be used for grid cell text.

 Link to this function

 setDefaultCellTextColour(This, Colour)

 View Source

 -spec setDefaultCellTextColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the current default colour for grid cell text.

 Link to this function

 setDefaultColSize(This, Width)

 View Source

 -spec setDefaultColSize(This, Width) -> ok when This :: wxGrid(), Width :: integer().

 Link to this function

 setDefaultColSize/3

 View Source

 -spec setDefaultColSize(This, Width, [Option]) -> ok
 when
 This :: wxGrid(),
 Width :: integer(),
 Option :: {resizeExistingCols, boolean()}.

Sets the default width for columns in the grid.
This will only affect columns subsequently added to the grid unless
resizeExistingCols is true.
If width is less than getColMinimalAcceptableWidth/1, then the minimal
acceptable width is used instead of it.

 Link to this function

 setDefaultEditor(This, Editor)

 View Source

 -spec setDefaultEditor(This, Editor) -> ok
 when This :: wxGrid(), Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the default editor for grid cells.
The grid will take ownership of the pointer.
See wxGridCellEditor and the overview_grid for more information about cell
editors and renderers.

 Link to this function

 setDefaultRenderer(This, Renderer)

 View Source

 -spec setDefaultRenderer(This, Renderer) -> ok
 when This :: wxGrid(), Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the default renderer for grid cells.
The grid will take ownership of the pointer.
See wxGridCellRenderer and the overview_grid for more information about cell
editors and renderers.

 Link to this function

 setDefaultRowSize(This, Height)

 View Source

 -spec setDefaultRowSize(This, Height) -> ok when This :: wxGrid(), Height :: integer().

 Link to this function

 setDefaultRowSize/3

 View Source

 -spec setDefaultRowSize(This, Height, [Option]) -> ok
 when
 This :: wxGrid(),
 Height :: integer(),
 Option :: {resizeExistingRows, boolean()}.

Sets the default height for rows in the grid.
This will only affect rows subsequently added to the grid unless
resizeExistingRows is true.
If height is less than getRowMinimalAcceptableHeight/1, then the minimal
acceptable height is used instead of it.

 Link to this function

 setGridCursor(This, Coords)

 View Source

 -spec setGridCursor(This, Coords) -> ok
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Set the grid cursor to the specified cell.
The grid cursor indicates the current cell and can be moved by the user using
the arrow keys or the mouse.
Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the
event handler vetoes this event, the cursor is not moved.
This function doesn't make the target call visible, use GoToCell() (not
implemented in wx) to do this.

 Link to this function

 setGridCursor(This, Row, Col)

 View Source

 -spec setGridCursor(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

Set the grid cursor to the specified cell.
The grid cursor indicates the current cell and can be moved by the user using
the arrow keys or the mouse.
Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the
event handler vetoes this event, the cursor is not moved.
This function doesn't make the target call visible, use GoToCell() (not
implemented in wx) to do this.

 Link to this function

 setGridLineColour(This, Colour)

 View Source

 -spec setGridLineColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the colour used to draw grid lines.

 Link to this function

 setLabelBackgroundColour(This, Colour)

 View Source

 -spec setLabelBackgroundColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the background colour for row and column labels.

 Link to this function

 setLabelFont(This, Font)

 View Source

 -spec setLabelFont(This, Font) -> ok when This :: wxGrid(), Font :: wxFont:wxFont().

Sets the font for row and column labels.

 Link to this function

 setLabelTextColour(This, Colour)

 View Source

 -spec setLabelTextColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the colour for row and column label text.

 Link to this function

 setMargins(This, ExtraWidth, ExtraHeight)

 View Source

 -spec setMargins(This, ExtraWidth, ExtraHeight) -> ok
 when This :: wxGrid(), ExtraWidth :: integer(), ExtraHeight :: integer().

Sets the extra margins used around the grid area.
A grid may occupy more space than needed for its data display and this function
allows setting how big this extra space is

 Link to this function

 setReadOnly(This, Row, Col)

 View Source

 -spec setReadOnly(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

 Link to this function

 setReadOnly/4

 View Source

 -spec setReadOnly(This, Row, Col, [Option]) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Option :: {isReadOnly, boolean()}.

Makes the cell at the specified location read-only or editable.
See: isReadOnly/3

 Link to this function

 setRowAttr(This, Row, Attr)

 View Source

 -spec setRowAttr(This, Row, Attr) -> ok
 when This :: wxGrid(), Row :: integer(), Attr :: wxGridCellAttr:wxGridCellAttr().

Sets the cell attributes for all cells in the specified row.
The grid takes ownership of the attribute pointer.
See the wxGridCellAttr class for more information about controlling cell
attributes.

 Link to this function

 setRowLabelAlignment(This, Horiz, Vert)

 View Source

 -spec setRowLabelAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the horizontal and vertical alignment of row label text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or
wxALIGN_RIGHT. Vertical alignment should be one of wxALIGN_TOP,
wxALIGN_CENTRE or wxALIGN_BOTTOM.

 Link to this function

 setRowLabelSize(This, Width)

 View Source

 -spec setRowLabelSize(This, Width) -> ok when This :: wxGrid(), Width :: integer().

Sets the width of the row labels.
If width equals wxGRID_AUTOSIZE then width is calculated automatically so
that no label is truncated. Note that this could be slow for a large table.

 Link to this function

 setRowLabelValue(This, Row, Value)

 View Source

 -spec setRowLabelValue(This, Row, Value) -> ok
 when This :: wxGrid(), Row :: integer(), Value :: unicode:chardata().

Sets the value for the given row label.
If you are using a derived grid table you must override
wxGridTableBase::SetRowLabelValue() (not implemented in wx) for this to have
any effect.

 Link to this function

 setRowMinimalAcceptableHeight(This, Height)

 View Source

 -spec setRowMinimalAcceptableHeight(This, Height) -> ok when This :: wxGrid(), Height :: integer().

Sets the minimal row height used by default.
See setColMinimalAcceptableWidth/2 for more information.

 Link to this function

 setRowMinimalHeight(This, Row, Height)

 View Source

 -spec setRowMinimalHeight(This, Row, Height) -> ok
 when This :: wxGrid(), Row :: integer(), Height :: integer().

Sets the minimal height for the specified row.
See setColMinimalWidth/3 for more information.

 Link to this function

 setRowSize(This, Row, Height)

 View Source

 -spec setRowSize(This, Row, Height) -> ok when This :: wxGrid(), Row :: integer(), Height :: integer().

Sets the height of the specified row.
See setColSize/3 for more information.

 Link to this function

 setScrollLineX(This, X)

 View Source

 -spec setScrollLineX(This, X) -> ok when This :: wxGrid(), X :: integer().

Sets the number of pixels per horizontal scroll increment.
The default is 15.
See: getScrollLineX/1, getScrollLineY/1, setScrollLineY/2

 Link to this function

 setScrollLineY(This, Y)

 View Source

 -spec setScrollLineY(This, Y) -> ok when This :: wxGrid(), Y :: integer().

Sets the number of pixels per vertical scroll increment.
The default is 15.
See: getScrollLineX/1, getScrollLineY/1, setScrollLineX/2

 Link to this function

 setSelectionBackground(This, C)

 View Source

 -spec setSelectionBackground(This, C) -> ok when This :: wxGrid(), C :: wx:wx_colour().

Set the colour to be used for drawing the selection background.

 Link to this function

 setSelectionForeground(This, C)

 View Source

 -spec setSelectionForeground(This, C) -> ok when This :: wxGrid(), C :: wx:wx_colour().

Set the colour to be used for drawing the selection foreground.

 Link to this function

 setSelectionMode(This, Selmode)

 View Source

 -spec setSelectionMode(This, Selmode) -> ok when This :: wxGrid(), Selmode :: wx:wx_enum().

Set the selection behaviour of the grid.
The existing selection is converted to conform to the new mode if possible and
discarded otherwise (e.g. any individual selected cells are deselected if the
new mode allows only the selection of the entire rows or columns).

 Link to this function

 showCellEditControl(This)

 View Source

 -spec showCellEditControl(This) -> ok when This :: wxGrid().

Displays the active in-place cell edit control for the current cell after it was
hidden.
This method should only be called after calling hideCellEditControl/1, to
start editing the current grid cell use enableCellEditControl/2 instead.

 Link to this function

 xToCol(This, X)

 View Source

 -spec xToCol(This, X) -> integer() when This :: wxGrid(), X :: integer().

 Link to this function

 xToCol/3

 View Source

 -spec xToCol(This, X, [Option]) -> integer()
 when This :: wxGrid(), X :: integer(), Option :: {clipToMinMax, boolean()}.

Returns the column at the given pixel position depending on the window.
Return: The column index or wxNOT_FOUND.

 Link to this function

 xToEdgeOfCol(This, X)

 View Source

 -spec xToEdgeOfCol(This, X) -> integer() when This :: wxGrid(), X :: integer().

Returns the column whose right hand edge is close to the given logical x
position.
If no column edge is near to this position wxNOT_FOUND is returned.

 Link to this function

 yToEdgeOfRow(This, Y)

 View Source

 -spec yToEdgeOfRow(This, Y) -> integer() when This :: wxGrid(), Y :: integer().

Returns the row whose bottom edge is close to the given logical y position.
If no row edge is near to this position wxNOT_FOUND is returned.

 Link to this function

 yToRow(This, Y)

 View Source

 -spec yToRow(This, Y) -> integer() when This :: wxGrid(), Y :: integer().

 Link to this function

 yToRow/3

 View Source

 -spec yToRow(This, Y, [Option]) -> integer()
 when This :: wxGrid(), Y :: integer(), Option :: {clipToMinMax, boolean()}.

Returns the grid row that corresponds to the logical y coordinate.
The parameter gridWindow is new since wxWidgets 3.1.3. If it is specified,
i.e. non-NULL, only the cells of this window are considered, i.e. the function
returns wxNOT_FOUND if y is out of bounds.
If gridWindow is NULL, the function returns wxNOT_FOUND only if there is no
row at all at the y position.

wxGridBagSizer

Functions for wxGridBagSizer class
A wxSizer that can lay out items in a virtual grid like a
wxFlexGridSizer but in this case explicit positioning of the items is
allowed using wxGBPosition (not implemented in wx), and items can optionally
span more than one row and/or column using wxGBSpan (not implemented in wx).
This class is derived (and can use functions) from: wxFlexGridSizer
wxGridSizer wxSizer
wxWidgets docs:
wxGridBagSizer

 Summary

 Types

 wxGridBagSizer()

 Functions

 add(This, Item)

 add(This, Window, Pos)

 add/4

 Adds the given item to the given position.

 add/5

 Adds a spacer to the given position.

 calcMin(This)

 Called when the managed size of the sizer is needed or when layout needs done.

 checkForIntersection(This, Item)

 checkForIntersection/3

 Look at all items and see if any intersect (or would overlap) the given item.

 checkForIntersection/4

 destroy(This)

 Destroys the object.

 findItem(This, Window)

 Find the sizer item for the given window or subsizer, returns NULL if not found.

 findItemAtPoint(This, Pt)

 Return the sizer item located at the point given in pt, or NULL if there is no
item at that point.

 findItemAtPosition(This, Pos)

 Return the sizer item for the given grid cell, or NULL if there is no item at
that position.

 findItemWithData(This, UserData)

 Return the sizer item that has a matching user data (it only compares pointer
values) or NULL if not found.

 getCellSize(This, Row, Col)

 Get the size of the specified cell, including hgap and vgap.

 getEmptyCellSize(This)

 Get the size used for cells in the grid with no item.

 getItemPosition/2

 getItemSpan/2

 new()

 new(Options)

 Constructor, with optional parameters to specify the gap between the rows and
columns.

 setEmptyCellSize(This, Sz)

 Set the size used for cells in the grid with no item.

 setItemPosition/3

 setItemSpan/3

 Types

 Link to this type

 wxGridBagSizer()

 View Source

 -type wxGridBagSizer() :: wx:wx_object().

 Functions

 Link to this function

 add(This, Item)

 View Source

 -spec add(This, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxGridBagSizer(), Item :: wxGBSizerItem:wxGBSizerItem().

 Link to this function

 add(This, Window, Pos)

 View Source

 -spec add(This, Window, Pos) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()}.

 Link to this function

 add/4

 View Source

 -spec add(This, Width, Height, Pos) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Width :: integer(),
 Height :: integer(),
 Pos :: {R :: integer(), C :: integer()};
 (This, Window, Pos, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Option ::
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Adds the given item to the given position.
Return: A valid pointer if the item was successfully placed at the given
position, or NULL if something was already there.

 Link to this function

 add/5

 View Source

 -spec add(This, Width, Height, Pos, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Width :: integer(),
 Height :: integer(),
 Pos :: {R :: integer(), C :: integer()},
 Option ::
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Adds a spacer to the given position.
width and height specify the dimension of the spacer to be added.
Return: A valid pointer if the spacer was successfully placed at the given
position, or NULL if something was already there.

 Link to this function

 calcMin(This)

 View Source

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxGridBagSizer().

Called when the managed size of the sizer is needed or when layout needs done.

 Link to this function

 checkForIntersection(This, Item)

 View Source

 -spec checkForIntersection(This, Item) -> boolean()
 when This :: wxGridBagSizer(), Item :: wxGBSizerItem:wxGBSizerItem().

 Link to this function

 checkForIntersection/3

 View Source

 -spec checkForIntersection(This, Pos, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Span :: {RS :: integer(), CS :: integer()};
 (This, Item, [Option]) -> boolean()
 when
 This :: wxGridBagSizer(),
 Item :: wxGBSizerItem:wxGBSizerItem(),
 Option :: {excludeItem, wxGBSizerItem:wxGBSizerItem()}.

Look at all items and see if any intersect (or would overlap) the given item.
Returns true if so, false if there would be no overlap. If an excludeItem is
given then it will not be checked for intersection, for example it may be the
item we are checking the position of.

 Link to this function

 checkForIntersection/4

 View Source

 -spec checkForIntersection(This, Pos, Span, [Option]) -> boolean()
 when
 This :: wxGridBagSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Span :: {RS :: integer(), CS :: integer()},
 Option :: {excludeItem, wxGBSizerItem:wxGBSizerItem()}.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridBagSizer()) -> ok.

Destroys the object.

 Link to this function

 findItem(This, Window)

 View Source

 -spec findItem(This, Window) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

Find the sizer item for the given window or subsizer, returns NULL if not found.
(non-recursive)

 Link to this function

 findItemAtPoint(This, Pt)

 View Source

 -spec findItemAtPoint(This, Pt) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Pt :: {X :: integer(), Y :: integer()}.

Return the sizer item located at the point given in pt, or NULL if there is no
item at that point.
The (x,y) coordinates in pt correspond to the client coordinates of the window
using the sizer for layout. (non-recursive)

 Link to this function

 findItemAtPosition(This, Pos)

 View Source

 -spec findItemAtPosition(This, Pos) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Pos :: {R :: integer(), C :: integer()}.

Return the sizer item for the given grid cell, or NULL if there is no item at
that position.
(non-recursive)

 Link to this function

 findItemWithData(This, UserData)

 View Source

 -spec findItemWithData(This, UserData) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), UserData :: wx:wx_object().

Return the sizer item that has a matching user data (it only compares pointer
values) or NULL if not found.
(non-recursive)

 Link to this function

 getCellSize(This, Row, Col)

 View Source

 -spec getCellSize(This, Row, Col) -> {W :: integer(), H :: integer()}
 when This :: wxGridBagSizer(), Row :: integer(), Col :: integer().

Get the size of the specified cell, including hgap and vgap.
Only valid after window layout has been performed.

 Link to this function

 getEmptyCellSize(This)

 View Source

 -spec getEmptyCellSize(This) -> {W :: integer(), H :: integer()} when This :: wxGridBagSizer().

Get the size used for cells in the grid with no item.

 Link to this function

 getItemPosition/2

 View Source

 -spec getItemPosition(This, Window) -> {R :: integer(), C :: integer()}
 when
 This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> {R :: integer(), C :: integer()}
 when This :: wxGridBagSizer(), Index :: integer().

 Link to this function

 getItemSpan/2

 View Source

 -spec getItemSpan(This, Window) -> {RS :: integer(), CS :: integer()}
 when This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> {RS :: integer(), CS :: integer()}
 when This :: wxGridBagSizer(), Index :: integer().

 Link to this function

 new()

 View Source

 -spec new() -> wxGridBagSizer().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGridBagSizer() when Option :: {vgap, integer()} | {hgap, integer()}.

Constructor, with optional parameters to specify the gap between the rows and
columns.

 Link to this function

 setEmptyCellSize(This, Sz)

 View Source

 -spec setEmptyCellSize(This, Sz) -> ok
 when This :: wxGridBagSizer(), Sz :: {W :: integer(), H :: integer()}.

Set the size used for cells in the grid with no item.

 Link to this function

 setItemPosition/3

 View Source

 -spec setItemPosition(This, Window, Pos) -> boolean()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()};
 (This, Index, Pos) -> boolean()
 when
 This :: wxGridBagSizer(),
 Index :: integer(),
 Pos :: {R :: integer(), C :: integer()}.

 Link to this function

 setItemSpan/3

 View Source

 -spec setItemSpan(This, Window, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Span :: {RS :: integer(), CS :: integer()};
 (This, Index, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Index :: integer(),
 Span :: {RS :: integer(), CS :: integer()}.

wxGridCellAttr

Functions for wxGridCellAttr class
This class can be used to alter the cells' appearance in the grid by changing
their attributes from the defaults. An object of this class may be returned by
wxGridTableBase::GetAttr() (not implemented in wx).
Note that objects of this class are reference-counted and it's recommended to
use wxGridCellAttrPtr smart pointer class when working with them to avoid memory
leaks.
wxWidgets docs:
wxGridCellAttr

 Summary

 Types

 wxGridCellAttr()

 Functions

 getAlignment(This)

 Get the alignment to use for the cell with the given attribute.

 getBackgroundColour(This)

 Returns the background colour.

 getEditor(This, Grid, Row, Col)

 Returns the cell editor.

 getFont(This)

 Returns the font.

 getRenderer(This, Grid, Row, Col)

 Returns the cell renderer.

 getTextColour(This)

 Returns the text colour.

 hasAlignment(This)

 Returns true if this attribute has a valid alignment set.

 hasBackgroundColour(This)

 Returns true if this attribute has a valid background colour set.

 hasEditor(This)

 Returns true if this attribute has a valid cell editor set.

 hasFont(This)

 Returns true if this attribute has a valid font set.

 hasRenderer(This)

 Returns true if this attribute has a valid cell renderer set.

 hasTextColour(This)

 Returns true if this attribute has a valid text colour set.

 isReadOnly(This)

 Returns true if this cell is set as read-only.

 setAlignment(This, HAlign, VAlign)

 Sets the alignment.

 setBackgroundColour(This, ColBack)

 Sets the background colour.

 setDefAttr(This, DefAttr)

 setEditor(This, Editor)

 Sets the editor to be used with the cells with this attribute.

 setFont(This, Font)

 Sets the font.

 setReadOnly(This)

 setReadOnly/2

 Sets the cell as read-only.

 setRenderer(This, Renderer)

 Sets the renderer to be used for cells with this attribute.

 setTextColour(This, ColText)

 Sets the text colour.

 Types

 Link to this type

 wxGridCellAttr()

 View Source

 -type wxGridCellAttr() :: wx:wx_object().

 Functions

 Link to this function

 getAlignment(This)

 View Source

 -spec getAlignment(This) -> {HAlign :: integer(), VAlign :: integer()} when This :: wxGridCellAttr().

Get the alignment to use for the cell with the given attribute.
If this attribute doesn't specify any alignment, the default attribute alignment
is used (which can be changed using wxGrid:setDefaultCellAlignment/3 but is
left and top by default).
Notice that hAlign and vAlign values are always overwritten by this
function, use GetNonDefaultAlignment() (not implemented in wx) if this is not
desirable.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxGridCellAttr().

Returns the background colour.

 Link to this function

 getEditor(This, Grid, Row, Col)

 View Source

 -spec getEditor(This, Grid, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when
 This :: wxGridCellAttr(),
 Grid :: wxGrid:wxGrid(),
 Row :: integer(),
 Col :: integer().

Returns the cell editor.
The caller is responsible for calling DecRef() (not implemented in wx) on the
returned pointer, use GetEditorPtr() (not implemented in wx) to do it
automatically.

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxGridCellAttr().

Returns the font.

 Link to this function

 getRenderer(This, Grid, Row, Col)

 View Source

 -spec getRenderer(This, Grid, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when
 This :: wxGridCellAttr(),
 Grid :: wxGrid:wxGrid(),
 Row :: integer(),
 Col :: integer().

Returns the cell renderer.
The caller is responsible for calling DecRef() (not implemented in wx) on the
returned pointer, use GetRendererPtr() (not implemented in wx) to do it
automatically.

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxGridCellAttr().

Returns the text colour.

 Link to this function

 hasAlignment(This)

 View Source

 -spec hasAlignment(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid alignment set.

 Link to this function

 hasBackgroundColour(This)

 View Source

 -spec hasBackgroundColour(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid background colour set.

 Link to this function

 hasEditor(This)

 View Source

 -spec hasEditor(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid cell editor set.

 Link to this function

 hasFont(This)

 View Source

 -spec hasFont(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid font set.

 Link to this function

 hasRenderer(This)

 View Source

 -spec hasRenderer(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid cell renderer set.

 Link to this function

 hasTextColour(This)

 View Source

 -spec hasTextColour(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid text colour set.

 Link to this function

 isReadOnly(This)

 View Source

 -spec isReadOnly(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this cell is set as read-only.

 Link to this function

 setAlignment(This, HAlign, VAlign)

 View Source

 -spec setAlignment(This, HAlign, VAlign) -> ok
 when This :: wxGridCellAttr(), HAlign :: integer(), VAlign :: integer().

Sets the alignment.
hAlign can be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT and
vAlign can be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 Link to this function

 setBackgroundColour(This, ColBack)

 View Source

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxGridCellAttr(), ColBack :: wx:wx_colour().

Sets the background colour.

 Link to this function

 setDefAttr(This, DefAttr)

 View Source

 -spec setDefAttr(This, DefAttr) -> ok when This :: wxGridCellAttr(), DefAttr :: wxGridCellAttr().

 Link to this function

 setEditor(This, Editor)

 View Source

 -spec setEditor(This, Editor) -> ok
 when This :: wxGridCellAttr(), Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the editor to be used with the cells with this attribute.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxGridCellAttr(), Font :: wxFont:wxFont().

Sets the font.

 Link to this function

 setReadOnly(This)

 View Source

 -spec setReadOnly(This) -> ok when This :: wxGridCellAttr().

 Link to this function

 setReadOnly/2

 View Source

 -spec setReadOnly(This, [Option]) -> ok when This :: wxGridCellAttr(), Option :: {isReadOnly, boolean()}.

Sets the cell as read-only.

 Link to this function

 setRenderer(This, Renderer)

 View Source

 -spec setRenderer(This, Renderer) -> ok
 when This :: wxGridCellAttr(), Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the renderer to be used for cells with this attribute.
Takes ownership of the pointer.

 Link to this function

 setTextColour(This, ColText)

 View Source

 -spec setTextColour(This, ColText) -> ok when This :: wxGridCellAttr(), ColText :: wx:wx_colour().

Sets the text colour.

wxGridCellBoolEditor

Functions for wxGridCellBoolEditor class
Grid cell editor for boolean data.
See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellChoiceEditor, wxGridCellEnumEditor (not implemented in wx),
wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellTextEditor,
wxGridCellDateEditor (not implemented in wx)
This class is derived (and can use functions) from: wxGridCellEditor
wxWidgets docs:
wxGridCellBoolEditor

 Summary

 Types

 wxGridCellBoolEditor()

 Functions

 destroy(This)

 Destroys the object.

 isTrueValue(Value)

 Returns true if the given value is equal to the string representation of the
truth value we currently use (see useStringValues/1).

 new()

 Default constructor.

 useStringValues()

 useStringValues(Options)

 This method allows you to customize the values returned by
wxGridCellNumberEditor:getValue/1 for the cell using this editor.

 Types

 Link to this type

 wxGridCellBoolEditor()

 View Source

 -type wxGridCellBoolEditor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellBoolEditor()) -> ok.

Destroys the object.

 Link to this function

 isTrueValue(Value)

 View Source

 -spec isTrueValue(Value) -> boolean() when Value :: unicode:chardata().

Returns true if the given value is equal to the string representation of the
truth value we currently use (see useStringValues/1).

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellBoolEditor().

Default constructor.

 Link to this function

 useStringValues()

 View Source

 -spec useStringValues() -> ok.

 Link to this function

 useStringValues(Options)

 View Source

 -spec useStringValues([Option]) -> ok
 when
 Option ::
 {valueTrue, unicode:chardata()} | {valueFalse, unicode:chardata()}.

This method allows you to customize the values returned by
wxGridCellNumberEditor:getValue/1 for the cell using this editor.
By default, the default values of the arguments are used, i.e. "1" is returned
if the cell is checked and an empty string otherwise.

wxGridCellBoolRenderer

Functions for wxGridCellBoolRenderer class
This class may be used to format boolean data in a cell.
See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented
in wx), wxGridCellDateTimeRenderer (not implemented in wx),
wxGridCellEnumRenderer (not implemented in wx), wxGridCellFloatRenderer,
wxGridCellNumberRenderer, wxGridCellStringRenderer
This class is derived (and can use functions) from: wxGridCellRenderer
wxWidgets docs:
wxGridCellBoolRenderer

 Summary

 Types

 wxGridCellBoolRenderer()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Types

 Link to this type

 wxGridCellBoolRenderer()

 View Source

 -type wxGridCellBoolRenderer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellBoolRenderer()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellBoolRenderer().

wxGridCellChoiceEditor

Functions for wxGridCellChoiceEditor class
Grid cell editor for string data providing the user a choice from a list of
strings.
See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellBoolEditor, wxGridCellEnumEditor (not implemented in wx),
wxGridCellFloatEditor, wxGridCellNumberEditor, wxGridCellTextEditor,
wxGridCellDateEditor (not implemented in wx)
This class is derived (and can use functions) from: wxGridCellEditor
wxWidgets docs:
wxGridCellChoiceEditor

 Summary

 Types

 wxGridCellChoiceEditor()

 Functions

 destroy(This)

 Destroys the object.

 new(Choices)

 new(Choices, Options)

 Choice cell renderer ctor.

 setParameters(This, Params)

 Parameters string format is "item1[,item2[...,itemN]]".

 Types

 Link to this type

 wxGridCellChoiceEditor()

 View Source

 -type wxGridCellChoiceEditor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellChoiceEditor()) -> ok.

Destroys the object.

 Link to this function

 new(Choices)

 View Source

 -spec new(Choices) -> wxGridCellChoiceEditor() when Choices :: [unicode:chardata()].

 Link to this function

 new(Choices, Options)

 View Source

 -spec new(Choices, [Option]) -> wxGridCellChoiceEditor()
 when Choices :: [unicode:chardata()], Option :: {allowOthers, boolean()}.

Choice cell renderer ctor.

 Link to this function

 setParameters(This, Params)

 View Source

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellChoiceEditor(), Params :: unicode:chardata().

Parameters string format is "item1[,item2[...,itemN]]".
This method can be called before the editor is used for the first time, or
later, in which case it replaces the previously specified strings with the new
ones.

wxGridCellEditor

Functions for wxGridCellEditor class
This class is responsible for providing and manipulating the in-place edit
controls for the grid. Instances of wxGridCellEditor (actually, instances of
derived classes since it is an abstract class) can be associated with the cell
attributes for individual cells, rows, columns, or even for the entire grid.
Normally wxGridCellEditor shows some UI control allowing the user to edit
the cell, but starting with wxWidgets 3.1.4 it's also possible to define
"activatable" cell editors, that change the value of the cell directly when it's
activated (typically by pressing Space key or clicking on it), see
TryActivate() (not implemented in wx) method. Note that when implementing an
editor which is always activatable, i.e. never shows any in-place editor, it is
more convenient to derive its class from wxGridCellActivatableEditor (not
implemented in wx) than from wxGridCellEditor itself.
See: wxGridCellAutoWrapStringEditor (not implemented in wx),
wxGridCellBoolEditor, wxGridCellChoiceEditor, wxGridCellEnumEditor
(not implemented in wx), wxGridCellFloatEditor, wxGridCellNumberEditor,
wxGridCellTextEditor, wxGridCellDateEditor (not implemented in wx)
wxWidgets docs:
wxGridCellEditor

 Summary

 Types

 wxGridCellEditor()

 Functions

 create(This, Parent, Id, EvtHandler)

 Creates the actual edit control.

 handleReturn(This, Event)

 Some types of controls on some platforms may need some help with the Return key.

 isCreated(This)

 Returns true if the edit control has been created.

 reset(This)

 Reset the value in the control back to its starting value.

 setSize(This, Rect)

 Size and position the edit control.

 show(This, Show)

 show/3

 Show or hide the edit control, use the specified attributes to set colours/fonts
for it.

 startingClick(This)

 If the editor is enabled by clicking on the cell, this method will be called.

 startingKey(This, Event)

 If the editor is enabled by pressing keys on the grid, this will be called to
let the editor do something about that first key if desired.

 Types

 Link to this type

 wxGridCellEditor()

 View Source

 -type wxGridCellEditor() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, EvtHandler)

 View Source

 -spec create(This, Parent, Id, EvtHandler) -> ok
 when
 This :: wxGridCellEditor(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 EvtHandler :: wxEvtHandler:wxEvtHandler().

Creates the actual edit control.

 Link to this function

 handleReturn(This, Event)

 View Source

 -spec handleReturn(This, Event) -> ok when This :: wxGridCellEditor(), Event :: wxKeyEvent:wxKeyEvent().

Some types of controls on some platforms may need some help with the Return key.

 Link to this function

 isCreated(This)

 View Source

 -spec isCreated(This) -> boolean() when This :: wxGridCellEditor().

Returns true if the edit control has been created.

 Link to this function

 reset(This)

 View Source

 -spec reset(This) -> ok when This :: wxGridCellEditor().

Reset the value in the control back to its starting value.

 Link to this function

 setSize(This, Rect)

 View Source

 -spec setSize(This, Rect) -> ok
 when
 This :: wxGridCellEditor(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Size and position the edit control.

 Link to this function

 show(This, Show)

 View Source

 -spec show(This, Show) -> ok when This :: wxGridCellEditor(), Show :: boolean().

 Link to this function

 show/3

 View Source

 -spec show(This, Show, [Option]) -> ok
 when
 This :: wxGridCellEditor(),
 Show :: boolean(),
 Option :: {attr, wxGridCellAttr:wxGridCellAttr()}.

Show or hide the edit control, use the specified attributes to set colours/fonts
for it.

 Link to this function

 startingClick(This)

 View Source

 -spec startingClick(This) -> ok when This :: wxGridCellEditor().

If the editor is enabled by clicking on the cell, this method will be called.

 Link to this function

 startingKey(This, Event)

 View Source

 -spec startingKey(This, Event) -> ok when This :: wxGridCellEditor(), Event :: wxKeyEvent:wxKeyEvent().

If the editor is enabled by pressing keys on the grid, this will be called to
let the editor do something about that first key if desired.

wxGridCellFloatEditor

Functions for wxGridCellFloatEditor class
The editor for floating point numbers data.
See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellBoolEditor, wxGridCellChoiceEditor,
wxGridCellEnumEditor (not implemented in wx), wxGridCellNumberEditor,
wxGridCellTextEditor, wxGridCellDateEditor (not implemented in wx)
This class is derived (and can use functions) from: wxGridCellEditor
wxWidgets docs:
wxGridCellFloatEditor

 Summary

 Types

 wxGridCellFloatEditor()

 Functions

 destroy(This)

 Destroys the object.

 new()

 new(Options)

 Float cell editor ctor.

 setParameters(This, Params)

 The parameters string format is "width[,precision[,format]]" where format
should be chosen between f|e|g|E|G (f is used by default)

 Types

 Link to this type

 wxGridCellFloatEditor()

 View Source

 -type wxGridCellFloatEditor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellFloatEditor()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellFloatEditor().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGridCellFloatEditor()
 when Option :: {width, integer()} | {precision, integer()} | {format, integer()}.

Float cell editor ctor.

 Link to this function

 setParameters(This, Params)

 View Source

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellFloatEditor(), Params :: unicode:chardata().

The parameters string format is "width[,precision[,format]]" where format
should be chosen between f|e|g|E|G (f is used by default)

wxGridCellFloatRenderer

Functions for wxGridCellFloatRenderer class
This class may be used to format floating point data in a cell.
See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented
in wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not
implemented in wx), wxGridCellEnumRenderer (not implemented in wx),
wxGridCellNumberRenderer, wxGridCellStringRenderer
This class is derived (and can use functions) from: wxGridCellStringRenderer
wxGridCellRenderer
wxWidgets docs:
wxGridCellFloatRenderer

 Summary

 Types

 wxGridCellFloatRenderer()

 Functions

 destroy(This)

 Destroys the object.

 getPrecision(This)

 Returns the precision.

 getWidth(This)

 Returns the width.

 new()

 new(Options)

 Float cell renderer ctor.

 setParameters(This, Params)

 The parameters string format is "width[,precision[,format]]" where format
should be chosen between f|e|g|E|G (f is used by default)

 setPrecision(This, Precision)

 Sets the precision.

 setWidth(This, Width)

 Sets the width.

 Types

 Link to this type

 wxGridCellFloatRenderer()

 View Source

 -type wxGridCellFloatRenderer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellFloatRenderer()) -> ok.

Destroys the object.

 Link to this function

 getPrecision(This)

 View Source

 -spec getPrecision(This) -> integer() when This :: wxGridCellFloatRenderer().

Returns the precision.

 Link to this function

 getWidth(This)

 View Source

 -spec getWidth(This) -> integer() when This :: wxGridCellFloatRenderer().

Returns the width.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellFloatRenderer().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGridCellFloatRenderer()
 when Option :: {width, integer()} | {precision, integer()} | {format, integer()}.

Float cell renderer ctor.

 Link to this function

 setParameters(This, Params)

 View Source

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellFloatRenderer(), Params :: unicode:chardata().

The parameters string format is "width[,precision[,format]]" where format
should be chosen between f|e|g|E|G (f is used by default)

 Link to this function

 setPrecision(This, Precision)

 View Source

 -spec setPrecision(This, Precision) -> ok when This :: wxGridCellFloatRenderer(), Precision :: integer().

Sets the precision.

 Link to this function

 setWidth(This, Width)

 View Source

 -spec setWidth(This, Width) -> ok when This :: wxGridCellFloatRenderer(), Width :: integer().

Sets the width.

wxGridCellNumberEditor

Functions for wxGridCellNumberEditor class
Grid cell editor for numeric integer data.
See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellBoolEditor, wxGridCellChoiceEditor,
wxGridCellEnumEditor (not implemented in wx), wxGridCellFloatEditor,
wxGridCellTextEditor, wxGridCellDateEditor (not implemented in wx)
This class is derived (and can use functions) from: wxGridCellTextEditor
wxGridCellEditor
wxWidgets docs:
wxGridCellNumberEditor

 Summary

 Types

 wxGridCellNumberEditor()

 Functions

 destroy(This)

 Destroys the object.

 getValue(This)

 Returns the value currently in the editor control.

 new()

 new(Options)

 Allows you to specify the range for acceptable data.

 setParameters(This, Params)

 Parameters string format is "min,max".

 Types

 Link to this type

 wxGridCellNumberEditor()

 View Source

 -type wxGridCellNumberEditor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellNumberEditor()) -> ok.

Destroys the object.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> unicode:charlist() when This :: wxGridCellNumberEditor().

Returns the value currently in the editor control.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellNumberEditor().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGridCellNumberEditor() when Option :: {min, integer()} | {max, integer()}.

Allows you to specify the range for acceptable data.
Values equal to -1 for both min and max indicate that no range checking
should be done.

 Link to this function

 setParameters(This, Params)

 View Source

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellNumberEditor(), Params :: unicode:chardata().

Parameters string format is "min,max".

wxGridCellNumberRenderer

Functions for wxGridCellNumberRenderer class
This class may be used to format integer data in a cell.
See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented
in wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not
implemented in wx), wxGridCellEnumRenderer (not implemented in wx),
wxGridCellFloatRenderer, wxGridCellStringRenderer
This class is derived (and can use functions) from: wxGridCellStringRenderer
wxGridCellRenderer
wxWidgets docs:
wxGridCellNumberRenderer

 Summary

 Types

 wxGridCellNumberRenderer()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Default constructor.

 Types

 Link to this type

 wxGridCellNumberRenderer()

 View Source

 -type wxGridCellNumberRenderer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellNumberRenderer()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellNumberRenderer().

Default constructor.

wxGridCellRenderer

Functions for wxGridCellRenderer class
This class is responsible for actually drawing the cell in the grid. You may
pass it to the wxGridCellAttr (below) to change the format of one given cell
or to wxGrid:setDefaultRenderer/2 to change the view of all cells. This is an
abstract class, and you will normally use one of the predefined derived classes
or derive your own class from it.
See: wxGridCellAutoWrapStringRenderer (not implemented in wx),
wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not implemented in
wx), wxGridCellEnumRenderer (not implemented in wx),
wxGridCellFloatRenderer, wxGridCellNumberRenderer,
wxGridCellStringRenderer
wxWidgets docs:
wxGridCellRenderer

 Summary

 Types

 wxGridCellRenderer()

 Functions

 draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected)

 Draw the given cell on the provided DC inside the given rectangle using the
style specified by the attribute and the default or selected state corresponding
to the isSelected value.

 getBestSize(This, Grid, Attr, Dc, Row, Col)

 Get the preferred size of the cell for its contents.

 Types

 Link to this type

 wxGridCellRenderer()

 View Source

 -type wxGridCellRenderer() :: wx:wx_object().

 Functions

 Link to this function

 draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected)

 View Source

 -spec draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected) -> ok
 when
 This :: wxGridCellRenderer(),
 Grid :: wxGrid:wxGrid(),
 Attr :: wxGridCellAttr:wxGridCellAttr(),
 Dc :: wxDC:wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Row :: integer(),
 Col :: integer(),
 IsSelected :: boolean().

Draw the given cell on the provided DC inside the given rectangle using the
style specified by the attribute and the default or selected state corresponding
to the isSelected value.
This pure virtual function has a default implementation which will prepare the
DC using the given attribute: it will draw the rectangle with the background
colour from attr and set the text colour and font.

 Link to this function

 getBestSize(This, Grid, Attr, Dc, Row, Col)

 View Source

 -spec getBestSize(This, Grid, Attr, Dc, Row, Col) -> {W :: integer(), H :: integer()}
 when
 This :: wxGridCellRenderer(),
 Grid :: wxGrid:wxGrid(),
 Attr :: wxGridCellAttr:wxGridCellAttr(),
 Dc :: wxDC:wxDC(),
 Row :: integer(),
 Col :: integer().

Get the preferred size of the cell for its contents.
This method must be overridden in the derived classes to return the minimal
fitting size for displaying the content of the given grid cell.
See: GetBestHeight() (not implemented in wx), GetBestWidth() (not
implemented in wx)

wxGridCellStringRenderer

Functions for wxGridCellStringRenderer class
This class may be used to format string data in a cell; it is the default for
string cells.
See: wxGridCellRenderer, wxGridCellAutoWrapStringRenderer (not implemented
in wx), wxGridCellBoolRenderer, wxGridCellDateTimeRenderer (not
implemented in wx), wxGridCellEnumRenderer (not implemented in wx),
wxGridCellFloatRenderer, wxGridCellNumberRenderer
This class is derived (and can use functions) from: wxGridCellRenderer
wxWidgets docs:
wxGridCellStringRenderer

 Summary

 Types

 wxGridCellStringRenderer()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Types

 Link to this type

 wxGridCellStringRenderer()

 View Source

 -type wxGridCellStringRenderer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellStringRenderer()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellStringRenderer().

wxGridCellTextEditor

Functions for wxGridCellTextEditor class
Grid cell editor for string/text data.
See: wxGridCellEditor, wxGridCellAutoWrapStringEditor (not implemented in
wx), wxGridCellBoolEditor, wxGridCellChoiceEditor,
wxGridCellEnumEditor (not implemented in wx), wxGridCellFloatEditor,
wxGridCellNumberEditor, wxGridCellDateEditor (not implemented in wx)
This class is derived (and can use functions) from: wxGridCellEditor
wxWidgets docs:
wxGridCellTextEditor

 Summary

 Types

 wxGridCellTextEditor()

 Functions

 destroy(This)

 Destroys the object.

 new()

 new(Options)

 Text cell editor constructor.

 setParameters(This, Params)

 The parameters string format is "n" where n is a number representing the maximum
width.

 Types

 Link to this type

 wxGridCellTextEditor()

 View Source

 -type wxGridCellTextEditor() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridCellTextEditor()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxGridCellTextEditor().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxGridCellTextEditor() when Option :: {maxChars, integer()}.

Text cell editor constructor.

 Link to this function

 setParameters(This, Params)

 View Source

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellTextEditor(), Params :: unicode:chardata().

The parameters string format is "n" where n is a number representing the maximum
width.

wxGridEvent

Functions for wxGridEvent class
This event class contains information about various grid events.
Notice that all grid event table macros are available in two versions:
EVT_GRID_XXX and EVT_GRID_CMD_XXX. The only difference between the two is
that the former doesn't allow to specify the grid window identifier and so takes
a single parameter, the event handler, but is not suitable if there is more than
one grid control in the window where the event table is used (as it would catch
the events from all the grids). The version with CMD takes the id as first
argument and the event handler as the second one and so can be used with
multiple grids as well. Otherwise there are no difference between the two and
only the versions without the id are documented below for brevity.
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxGridEvent

 Events

Use wxEvtHandler:connect/3 with wxGridEventType to
subscribe to events of this type.

 Summary

 Types

 wxGrid()

 wxGridEvent()

 wxGridEventType()

 Functions

 altDown(This)

 Returns true if the Alt key was down at the time of the event.

 controlDown(This)

 Returns true if the Control key was down at the time of the event.

 getCol(This)

 Column at which the event occurred.

 getPosition(This)

 Position in pixels at which the event occurred.

 getRow(This)

 Row at which the event occurred.

 metaDown(This)

 Returns true if the Meta key was down at the time of the event.

 selecting(This)

 Returns true if the user is selecting grid cells, or false if deselecting.

 shiftDown(This)

 Returns true if the Shift key was down at the time of the event.

 Types

 Link to this type

 wxGrid()

 View Source

 -type wxGrid() ::
 #wxGrid{type :: wxGridEvent:wxGridEventType(),
 row :: integer(),
 col :: integer(),
 pos :: {X :: integer(), Y :: integer()},
 selecting :: boolean(),
 control :: boolean(),
 meta :: boolean(),
 shift :: boolean(),
 alt :: boolean()}.

 Link to this type

 wxGridEvent()

 View Source

 -type wxGridEvent() :: wx:wx_object().

 Link to this type

 wxGridEventType()

 View Source

 -type wxGridEventType() ::
 grid_cell_left_click | grid_cell_right_click | grid_cell_left_dclick |
 grid_cell_right_dclick | grid_label_left_click | grid_label_right_click |
 grid_label_left_dclick | grid_label_right_dclick | grid_cell_changed | grid_select_cell |
 grid_cell_begin_drag | grid_editor_shown | grid_editor_hidden | grid_col_move |
 grid_col_sort | grid_tabbing.

 Functions

 Link to this function

 altDown(This)

 View Source

 -spec altDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Alt key was down at the time of the event.

 Link to this function

 controlDown(This)

 View Source

 -spec controlDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Control key was down at the time of the event.

 Link to this function

 getCol(This)

 View Source

 -spec getCol(This) -> integer() when This :: wxGridEvent().

Column at which the event occurred.
Notice that for a wxEVT_GRID_SELECT_CELL event this column is the column of
the newly selected cell while the previously selected cell can be retrieved
using wxGrid:getGridCursorCol/1.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxGridEvent().

Position in pixels at which the event occurred.

 Link to this function

 getRow(This)

 View Source

 -spec getRow(This) -> integer() when This :: wxGridEvent().

Row at which the event occurred.
Notice that for a wxEVT_GRID_SELECT_CELL event this row is the row of the
newly selected cell while the previously selected cell can be retrieved using
wxGrid:getGridCursorRow/1.

 Link to this function

 metaDown(This)

 View Source

 -spec metaDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Meta key was down at the time of the event.

 Link to this function

 selecting(This)

 View Source

 -spec selecting(This) -> boolean() when This :: wxGridEvent().

Returns true if the user is selecting grid cells, or false if deselecting.

 Link to this function

 shiftDown(This)

 View Source

 -spec shiftDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Shift key was down at the time of the event.

wxGridSizer

Functions for wxGridSizer class
A grid sizer is a sizer which lays out its children in a two-dimensional table
with all table fields having the same size, i.e. the width of each field is the
width of the widest child, the height of each field is the height of the tallest
child.
See: wxSizer,
Overview sizer
This class is derived (and can use functions) from: wxSizer
wxWidgets docs:
wxGridSizer

 Summary

 Types

 wxGridSizer()

 Functions

 destroy(This)

 Destroys the object.

 getCols(This)

 Returns the number of columns that has been specified for the sizer.

 getHGap(This)

 Returns the horizontal gap (in pixels) between cells in the sizer.

 getRows(This)

 Returns the number of rows that has been specified for the sizer.

 getVGap(This)

 Returns the vertical gap (in pixels) between the cells in the sizer.

 new(Cols)

 new(Cols, Options)

 new/3

 new(Rows, Cols, Vgap, Hgap)

 setCols(This, Cols)

 Sets the number of columns in the sizer.

 setHGap(This, Gap)

 Sets the horizontal gap (in pixels) between cells in the sizer.

 setRows(This, Rows)

 Sets the number of rows in the sizer.

 setVGap(This, Gap)

 Sets the vertical gap (in pixels) between the cells in the sizer.

 Types

 Link to this type

 wxGridSizer()

 View Source

 -type wxGridSizer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxGridSizer()) -> ok.

Destroys the object.

 Link to this function

 getCols(This)

 View Source

 -spec getCols(This) -> integer() when This :: wxGridSizer().

Returns the number of columns that has been specified for the sizer.
Returns zero if the sizer is automatically adjusting the number of columns
depending on number of its children. To get the effective number of columns or
rows being currently used, see GetEffectiveColsCount() (not implemented in wx)

 Link to this function

 getHGap(This)

 View Source

 -spec getHGap(This) -> integer() when This :: wxGridSizer().

Returns the horizontal gap (in pixels) between cells in the sizer.

 Link to this function

 getRows(This)

 View Source

 -spec getRows(This) -> integer() when This :: wxGridSizer().

Returns the number of rows that has been specified for the sizer.
Returns zero if the sizer is automatically adjusting the number of rows
depending on number of its children. To get the effective number of columns or
rows being currently used, see GetEffectiveRowsCount() (not implemented in
wx).

 Link to this function

 getVGap(This)

 View Source

 -spec getVGap(This) -> integer() when This :: wxGridSizer().

Returns the vertical gap (in pixels) between the cells in the sizer.

 Link to this function

 new(Cols)

 View Source

 -spec new(Cols) -> wxGridSizer() when Cols :: integer().

 Link to this function

 new(Cols, Options)

 View Source

 -spec new(Cols, [Option]) -> wxGridSizer()
 when Cols :: integer(), Option :: {gap, {W :: integer(), H :: integer()}}.

 Link to this function

 new/3

 View Source

 -spec new(Cols, Vgap, Hgap) -> wxGridSizer()
 when Cols :: integer(), Vgap :: integer(), Hgap :: integer();
 (Rows, Cols, Gap) -> wxGridSizer()
 when Rows :: integer(), Cols :: integer(), Gap :: {W :: integer(), H :: integer()}.

 Link to this function

 new(Rows, Cols, Vgap, Hgap)

 View Source

 -spec new(Rows, Cols, Vgap, Hgap) -> wxGridSizer()
 when Rows :: integer(), Cols :: integer(), Vgap :: integer(), Hgap :: integer().

 Link to this function

 setCols(This, Cols)

 View Source

 -spec setCols(This, Cols) -> ok when This :: wxGridSizer(), Cols :: integer().

Sets the number of columns in the sizer.

 Link to this function

 setHGap(This, Gap)

 View Source

 -spec setHGap(This, Gap) -> ok when This :: wxGridSizer(), Gap :: integer().

Sets the horizontal gap (in pixels) between cells in the sizer.

 Link to this function

 setRows(This, Rows)

 View Source

 -spec setRows(This, Rows) -> ok when This :: wxGridSizer(), Rows :: integer().

Sets the number of rows in the sizer.

 Link to this function

 setVGap(This, Gap)

 View Source

 -spec setVGap(This, Gap) -> ok when This :: wxGridSizer(), Gap :: integer().

Sets the vertical gap (in pixels) between the cells in the sizer.

wxHelpEvent

Functions for wxHelpEvent class
A help event is sent when the user has requested context-sensitive help. This
can either be caused by the application requesting context-sensitive help mode
via wxContextHelp (not implemented in wx), or (on MS Windows) by the system
generating a WM_HELP message when the user pressed F1 or clicked on the query
button in a dialog caption.
A help event is sent to the window that the user clicked on, and is propagated
up the window hierarchy until the event is processed or there are no more event
handlers.
The application should call wxEvent:getId/1 to check the identity of the
clicked-on window, and then either show some suitable help or call
wxEvent:skip/2 if the identifier is unrecognised.
Calling Skip is important because it allows wxWidgets to generate further events
for ancestors of the clicked-on window. Otherwise it would be impossible to show
help for container windows, since processing would stop after the first window
found.
See: wxContextHelp (not implemented in wx), wxDialog,
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxHelpEvent

 Events

Use wxEvtHandler:connect/3 with wxHelpEventType to
subscribe to events of this type.

 Summary

 Types

 wxHelp()

 wxHelpEvent()

 wxHelpEventType()

 Functions

 getOrigin(This)

 Returns the origin of the help event which is one of the wxHelpEvent::Origin
(not implemented in wx) values.

 getPosition(This)

 Returns the left-click position of the mouse, in screen coordinates.

 setOrigin(This, Origin)

 Set the help event origin, only used internally by wxWidgets normally.

 setPosition(This, Pt)

 Sets the left-click position of the mouse, in screen coordinates.

 Types

 Link to this type

 wxHelp()

 View Source

 -type wxHelp() :: #wxHelp{type :: wxHelpEvent:wxHelpEventType()}.

 Link to this type

 wxHelpEvent()

 View Source

 -type wxHelpEvent() :: wx:wx_object().

 Link to this type

 wxHelpEventType()

 View Source

 -type wxHelpEventType() :: help | detailed_help.

 Functions

 Link to this function

 getOrigin(This)

 View Source

 -spec getOrigin(This) -> wx:wx_enum() when This :: wxHelpEvent().

Returns the origin of the help event which is one of the wxHelpEvent::Origin
(not implemented in wx) values.
The application may handle events generated using the keyboard or mouse
differently, e.g. by using wx_misc:getMousePosition/0 for the mouse events.
See: setOrigin/2

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxHelpEvent().

Returns the left-click position of the mouse, in screen coordinates.
This allows the application to position the help appropriately.

 Link to this function

 setOrigin(This, Origin)

 View Source

 -spec setOrigin(This, Origin) -> ok when This :: wxHelpEvent(), Origin :: wx:wx_enum().

Set the help event origin, only used internally by wxWidgets normally.
See: getOrigin/1

 Link to this function

 setPosition(This, Pt)

 View Source

 -spec setPosition(This, Pt) -> ok when This :: wxHelpEvent(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left-click position of the mouse, in screen coordinates.

wxHtmlEasyPrinting

Functions for wxHtmlEasyPrinting class
This class provides very simple interface to printing architecture. It allows
you to print HTML documents using only a few commands.
Note: Do not create this class on the stack only. You should create an instance
on app startup and use this instance for all printing operations. The reason is
that this class stores various settings in it.
wxWidgets docs:
wxHtmlEasyPrinting

 Summary

 Types

 wxHtmlEasyPrinting()

 Functions

 destroy(This)

 Destroys the object.

 getPageSetupData(This)

 Returns a pointer to wxPageSetupDialogData instance used by this class.

 getPrintData(This)

 Returns pointer to wxPrintData instance used by this class.

 new()

 new(Options)

 Constructor.

 pageSetup(This)

 Display page setup dialog and allows the user to modify settings.

 previewFile(This, Htmlfile)

 Preview HTML file.

 previewText(This, Htmltext)

 previewText/3

 Preview HTML text (not file!).

 printFile(This, Htmlfile)

 Print HTML file.

 printText(This, Htmltext)

 printText/3

 Print HTML text (not file!).

 setFonts(This, Normal_face, Fixed_face)

 setFonts/4

 Sets fonts.

 setFooter(This, Footer)

 setFooter/3

 Set page footer.

 setHeader(This, Header)

 setHeader/3

 Set page header.

 Types

 Link to this type

 wxHtmlEasyPrinting()

 View Source

 -type wxHtmlEasyPrinting() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxHtmlEasyPrinting()) -> ok.

Destroys the object.

 Link to this function

 getPageSetupData(This)

 View Source

 -spec getPageSetupData(This) -> wxPageSetupDialogData:wxPageSetupDialogData()
 when This :: wxHtmlEasyPrinting().

Returns a pointer to wxPageSetupDialogData instance used by this class.
You can set its parameters (via SetXXXX methods).

 Link to this function

 getPrintData(This)

 View Source

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxHtmlEasyPrinting().

Returns pointer to wxPrintData instance used by this class.
You can set its parameters (via SetXXXX methods).

 Link to this function

 new()

 View Source

 -spec new() -> wxHtmlEasyPrinting().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxHtmlEasyPrinting()
 when Option :: {name, unicode:chardata()} | {parentWindow, wxWindow:wxWindow()}.

Constructor.

 Link to this function

 pageSetup(This)

 View Source

 -spec pageSetup(This) -> ok when This :: wxHtmlEasyPrinting().

Display page setup dialog and allows the user to modify settings.

 Link to this function

 previewFile(This, Htmlfile)

 View Source

 -spec previewFile(This, Htmlfile) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmlfile :: unicode:chardata().

Preview HTML file.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed
information about the kind of the error.

 Link to this function

 previewText(This, Htmltext)

 View Source

 -spec previewText(This, Htmltext) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmltext :: unicode:chardata().

 Link to this function

 previewText/3

 View Source

 -spec previewText(This, Htmltext, [Option]) -> boolean()
 when
 This :: wxHtmlEasyPrinting(),
 Htmltext :: unicode:chardata(),
 Option :: {basepath, unicode:chardata()}.

Preview HTML text (not file!).
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed
information about the kind of the error.

 Link to this function

 printFile(This, Htmlfile)

 View Source

 -spec printFile(This, Htmlfile) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmlfile :: unicode:chardata().

Print HTML file.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed
information about the kind of the error.

 Link to this function

 printText(This, Htmltext)

 View Source

 -spec printText(This, Htmltext) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmltext :: unicode:chardata().

 Link to this function

 printText/3

 View Source

 -spec printText(This, Htmltext, [Option]) -> boolean()
 when
 This :: wxHtmlEasyPrinting(),
 Htmltext :: unicode:chardata(),
 Option :: {basepath, unicode:chardata()}.

Print HTML text (not file!).
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed
information about the kind of the error.

 Link to this function

 setFonts(This, Normal_face, Fixed_face)

 View Source

 -spec setFonts(This, Normal_face, Fixed_face) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata().

 Link to this function

 setFonts/4

 View Source

 -spec setFonts(This, Normal_face, Fixed_face, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata(),
 Option :: {sizes, [integer()]}.

Sets fonts.
See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed
description.

 Link to this function

 setFooter(This, Footer)

 View Source

 -spec setFooter(This, Footer) -> ok when This :: wxHtmlEasyPrinting(), Footer :: unicode:chardata().

 Link to this function

 setFooter/3

 View Source

 -spec setFooter(This, Footer, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Footer :: unicode:chardata(),
 Option :: {pg, integer()}.

Set page footer.
The following macros can be used inside it: @DATE@ is replaced by the current
date in default format @PAGENUM@ is replaced by page number @PAGESCNT@ is
replaced by total number of pages @TIME@ is replaced by the current time in
default format @TITLE@ is replaced with the title of the document

 Link to this function

 setHeader(This, Header)

 View Source

 -spec setHeader(This, Header) -> ok when This :: wxHtmlEasyPrinting(), Header :: unicode:chardata().

 Link to this function

 setHeader/3

 View Source

 -spec setHeader(This, Header, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Header :: unicode:chardata(),
 Option :: {pg, integer()}.

Set page header.
The following macros can be used inside it:

wxHtmlLinkEvent

Functions for wxHtmlLinkEvent class
This event class is used for the events generated by wxHtmlWindow.
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxHtmlLinkEvent

 Events

Use wxEvtHandler:connect/3 with
wxHtmlLinkEventType to subscribe to events of
this type.

 Summary

 Types

 wxHtmlLink()

 wxHtmlLinkEvent()

 wxHtmlLinkEventType()

 Functions

 getLinkInfo(This)

 Returns the wx_wxHtmlLinkInfo() which contains
info about the cell clicked and the hyperlink it contains.

 Types

 Link to this type

 wxHtmlLink()

 View Source

 -type wxHtmlLink() ::
 #wxHtmlLink{type :: wxHtmlLinkEvent:wxHtmlLinkEventType(), linkInfo :: wx:wx_wxHtmlLinkInfo()}.

 Link to this type

 wxHtmlLinkEvent()

 View Source

 -type wxHtmlLinkEvent() :: wx:wx_object().

 Link to this type

 wxHtmlLinkEventType()

 View Source

 -type wxHtmlLinkEventType() :: command_html_link_clicked | html_cell_clicked | html_cell_hover.

 Functions

 Link to this function

 getLinkInfo(This)

 View Source

 -spec getLinkInfo(This) -> wx:wx_wxHtmlLinkInfo() when This :: wxHtmlLinkEvent().

Returns the wx_wxHtmlLinkInfo() which contains
info about the cell clicked and the hyperlink it contains.

wxHtmlWindow

Functions for wxHtmlWindow class
wxHtmlWindow is probably the only class you will directly use unless you
want to do something special (like adding new tag handlers or MIME filters).
The purpose of this class is to display rich content pages (either local file or
downloaded via HTTP protocol) in a window based on a subset of the HTML
standard. The width of the window is constant, given in the constructor and
virtual height is changed dynamically depending on page size. Once the window is
created you can set its content by calling setPage/2 with raw HTML,
loadPage/2 with a wxFileSystem (not implemented in wx) location or
loadFile/2 with a filename.
Note: If you want complete HTML/CSS support as well as a Javascript engine,
consider using wxWebView instead.
wxHtmlWindow uses the wxImage class for displaying images, so you need
to initialize the handlers for any image formats you use before loading a page.
See ?wxInitAllImageHandlers and wxImage::AddHandler (not implemented in wx).
Styles
This class supports the following styles:
See: wxHtmlLinkEvent, wxHtmlCellEvent (not implemented in wx)
This class is derived (and can use functions) from: wxScrolledWindow
wxPanel wxWindow wxEvtHandler
wxWidgets docs:
wxHtmlWindow

 Events

Event types emitted from this class: html_cell_clicked,
html_cell_hover,
command_html_link_clicked

 Summary

 Types

 wxHtmlWindow()

 Functions

 appendToPage(This, Source)

 Appends HTML fragment to currently displayed text and refreshes the window.

 destroy(This)

 Destroys the object.

 getOpenedAnchor(This)

 Returns anchor within currently opened page (see getOpenedPage/1).

 getOpenedPage(This)

 Returns full location of the opened page.

 getOpenedPageTitle(This)

 Returns title of the opened page or wxEmptyString if the current page does not
contain <TITLE> tag.

 getRelatedFrame(This)

 Returns the related frame.

 historyBack(This)

 Moves back to the previous page.

 historyCanBack(This)

 Returns true if it is possible to go back in the history i.e.

 historyCanForward(This)

 Returns true if it is possible to go forward in the history i.e.

 historyClear(This)

 Clears history.

 historyForward(This)

 Moves to next page in history.

 loadFile(This, Filename)

 Loads an HTML page from a file and displays it.

 loadPage(This, Location)

 Unlike setPage/2 this function first loads the HTML page from location and
then displays it.

 new()

 Default ctor.

 new(Parent)

 new/2

 Constructor.

 selectAll(This)

 Selects all text in the window.

 selectionToText(This)

 Returns the current selection as plain text.

 selectLine(This, Pos)

 Selects the line of text that pos points at.

 selectWord(This, Pos)

 Selects the word at position pos.

 setBorders(This, B)

 This function sets the space between border of window and HTML contents.

 setFonts(This, Normal_face, Fixed_face)

 setFonts/4

 This function sets font sizes and faces.

 setPage(This, Source)

 Sets the source of a page and displays it, for example

 setRelatedFrame(This, Frame, Format)

 Sets the frame in which page title will be displayed.

 setRelatedStatusBar/2

 After calling setRelatedFrame/3, this sets statusbar slot where messages
will be displayed.

 setRelatedStatusBar/3

 Sets the associated statusbar where messages will be displayed.

 toText(This)

 Returns content of currently displayed page as plain text.

 Types

 Link to this type

 wxHtmlWindow()

 View Source

 -type wxHtmlWindow() :: wx:wx_object().

 Functions

 Link to this function

 appendToPage(This, Source)

 View Source

 -spec appendToPage(This, Source) -> boolean() when This :: wxHtmlWindow(), Source :: unicode:chardata().

Appends HTML fragment to currently displayed text and refreshes the window.
Return: false if an error occurred, true otherwise.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxHtmlWindow()) -> ok.

Destroys the object.

 Link to this function

 getOpenedAnchor(This)

 View Source

 -spec getOpenedAnchor(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns anchor within currently opened page (see getOpenedPage/1).
If no page is opened or if the displayed page wasn't produced by call to
loadPage/2, empty string is returned.

 Link to this function

 getOpenedPage(This)

 View Source

 -spec getOpenedPage(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns full location of the opened page.
If no page is opened or if the displayed page wasn't produced by call to
loadPage/2, empty string is returned.

 Link to this function

 getOpenedPageTitle(This)

 View Source

 -spec getOpenedPageTitle(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns title of the opened page or wxEmptyString if the current page does not
contain <TITLE> tag.

 Link to this function

 getRelatedFrame(This)

 View Source

 -spec getRelatedFrame(This) -> wxFrame:wxFrame() when This :: wxHtmlWindow().

Returns the related frame.

 Link to this function

 historyBack(This)

 View Source

 -spec historyBack(This) -> boolean() when This :: wxHtmlWindow().

Moves back to the previous page.
Only pages displayed using loadPage/2 are stored in history list.

 Link to this function

 historyCanBack(This)

 View Source

 -spec historyCanBack(This) -> boolean() when This :: wxHtmlWindow().

Returns true if it is possible to go back in the history i.e.
historyBack/1 won't fail.

 Link to this function

 historyCanForward(This)

 View Source

 -spec historyCanForward(This) -> boolean() when This :: wxHtmlWindow().

Returns true if it is possible to go forward in the history i.e.
historyForward/1 won't fail.

 Link to this function

 historyClear(This)

 View Source

 -spec historyClear(This) -> ok when This :: wxHtmlWindow().

Clears history.

 Link to this function

 historyForward(This)

 View Source

 -spec historyForward(This) -> boolean() when This :: wxHtmlWindow().

Moves to next page in history.
Only pages displayed using loadPage/2 are stored in history list.

 Link to this function

 loadFile(This, Filename)

 View Source

 -spec loadFile(This, Filename) -> boolean() when This :: wxHtmlWindow(), Filename :: unicode:chardata().

Loads an HTML page from a file and displays it.
Return: false if an error occurred, true otherwise
See: loadPage/2

 Link to this function

 loadPage(This, Location)

 View Source

 -spec loadPage(This, Location) -> boolean() when This :: wxHtmlWindow(), Location :: unicode:chardata().

Unlike setPage/2 this function first loads the HTML page from location and
then displays it.
Return: false if an error occurred, true otherwise
See: loadFile/2

 Link to this function

 new()

 View Source

 -spec new() -> wxHtmlWindow().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxHtmlWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxHtmlWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
The parameters are the same as wxScrolled::wxScrolled() (not implemented in
wx) constructor.

 Link to this function

 selectAll(This)

 View Source

 -spec selectAll(This) -> ok when This :: wxHtmlWindow().

Selects all text in the window.
See: selectLine/2, selectWord/2

 Link to this function

 selectionToText(This)

 View Source

 -spec selectionToText(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns the current selection as plain text.
Returns an empty string if no text is currently selected.

 Link to this function

 selectLine(This, Pos)

 View Source

 -spec selectLine(This, Pos) -> ok when This :: wxHtmlWindow(), Pos :: {X :: integer(), Y :: integer()}.

Selects the line of text that pos points at.
Note that pos is relative to the top of displayed page, not to window's
origin, use wxScrolledWindow:calcUnscrolledPosition/3 to convert physical
coordinate.
See: selectAll/1, selectWord/2

 Link to this function

 selectWord(This, Pos)

 View Source

 -spec selectWord(This, Pos) -> ok when This :: wxHtmlWindow(), Pos :: {X :: integer(), Y :: integer()}.

Selects the word at position pos.
Note that pos is relative to the top of displayed page, not to window's
origin, use wxScrolledWindow:calcUnscrolledPosition/3 to convert physical
coordinate.
See: selectAll/1, selectLine/2

 Link to this function

 setBorders(This, B)

 View Source

 -spec setBorders(This, B) -> ok when This :: wxHtmlWindow(), B :: integer().

This function sets the space between border of window and HTML contents.
See image:

 Link to this function

 setFonts(This, Normal_face, Fixed_face)

 View Source

 -spec setFonts(This, Normal_face, Fixed_face) -> ok
 when
 This :: wxHtmlWindow(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata().

 Link to this function

 setFonts/4

 View Source

 -spec setFonts(This, Normal_face, Fixed_face, [Option]) -> ok
 when
 This :: wxHtmlWindow(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata(),
 Option :: {sizes, [integer()]}.

This function sets font sizes and faces.
See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed
description.
See: SetSize()

 Link to this function

 setPage(This, Source)

 View Source

 -spec setPage(This, Source) -> boolean() when This :: wxHtmlWindow(), Source :: unicode:chardata().

Sets the source of a page and displays it, for example:
If you want to load a document from some location use loadPage/2 instead.
Return: false if an error occurred, true otherwise.

 Link to this function

 setRelatedFrame(This, Frame, Format)

 View Source

 -spec setRelatedFrame(This, Frame, Format) -> ok
 when
 This :: wxHtmlWindow(),
 Frame :: wxFrame:wxFrame(),
 Format :: unicode:chardata().

Sets the frame in which page title will be displayed.
format is the format of the frame title, e.g. "HtmlHelp : %s". It must contain
exactly one s. This s is substituted with HTML page title.

 Link to this function

 setRelatedStatusBar/2

 View Source

 -spec setRelatedStatusBar(This, Statusbar) -> ok
 when This :: wxHtmlWindow(), Statusbar :: wxStatusBar:wxStatusBar();
 (This, Index) -> ok when This :: wxHtmlWindow(), Index :: integer().

After calling setRelatedFrame/3, this sets statusbar slot where messages
will be displayed.
(Default is -1 = no messages.)

 Link to this function

 setRelatedStatusBar/3

 View Source

 -spec setRelatedStatusBar(This, Statusbar, [Option]) -> ok
 when
 This :: wxHtmlWindow(),
 Statusbar :: wxStatusBar:wxStatusBar(),
 Option :: {index, integer()}.

Sets the associated statusbar where messages will be displayed.
Call this instead of setRelatedFrame/3 if you want statusbar updates only, no
changing of the frame title.
Since: 2.9.0

 Link to this function

 toText(This)

 View Source

 -spec toText(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns content of currently displayed page as plain text.

wxIcon

Functions for wxIcon class
An icon is a small rectangular bitmap usually used for denoting a minimized
application.
It differs from a wxBitmap in always having a mask associated with it for
transparent drawing. On some platforms, icons and bitmaps are implemented
identically, since there is no real distinction between a wxBitmap with a
mask and an icon; and there is no specific icon format on some platforms
(X-based applications usually standardize on XPMs for small bitmaps and icons).
However, some platforms (such as Windows) make the distinction, so a separate
class is provided.
Remark: It is usually desirable to associate a pertinent icon with a frame.
Icons can also be used for other purposes, for example with wxTreeCtrl and
wxListCtrl. Icons have different formats on different platforms therefore
separate icons will usually be created for the different environments.
Platform-specific methods for creating a wxIcon structure are catered for,
and this is an occasion where conditional compilation will probably be required.
Note that a new icon must be created for every time the icon is to be used for a
new window. In Windows, the icon will not be reloaded if it has already been
used. An icon allocated to a frame will be deleted when the frame is deleted.
For more information please see overview_bitmap.
Predefined objects (include wx.hrl): ?wxNullIcon
See:
Overview bitmap,
Overview bitmap,
wxIconBundle, wxDC:drawIcon/3, wxCursor
This class is derived (and can use functions) from: wxBitmap
wxWidgets docs: wxIcon

 Summary

 Types

 wxIcon()

 Functions

 copyFromBitmap(This, Bmp)

 Copies bmp bitmap to this icon.

 destroy(This)

 Destructor.

 new()

 Default ctor.

 new/1

 Copy ctor.

 new(Name, Options)

 Loads an icon from a file or resource.

 Types

 Link to this type

 wxIcon()

 View Source

 -type wxIcon() :: wx:wx_object().

 Functions

 Link to this function

 copyFromBitmap(This, Bmp)

 View Source

 -spec copyFromBitmap(This, Bmp) -> ok when This :: wxIcon(), Bmp :: wxBitmap:wxBitmap().

Copies bmp bitmap to this icon.
Under MS Windows the bitmap must have mask colour set.
See: wxBitmap:loadFile/3

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxIcon()) -> ok.

Destructor.
See overview_refcount_destruct for more info.
If the application omits to delete the icon explicitly, the icon will be
destroyed automatically by wxWidgets when the application exits.
Warning: Do not delete an icon that is selected into a memory device context.

 Link to this function

 new()

 View Source

 -spec new() -> wxIcon().

Default ctor.
Constructs an icon object with no data; an assignment or another member function
such as wxBitmap:loadFile/3 must be called subsequently.

 Link to this function

 new/1

 View Source

 -spec new(Name) -> wxIcon() when Name :: unicode:chardata();
 (Icon) -> wxIcon() when Icon :: wxIcon().

Copy ctor.

 Link to this function

 new(Name, Options)

 View Source

 -spec new(Name, [Option]) -> wxIcon()
 when
 Name :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {desiredWidth, integer()} | {desiredHeight, integer()}.

Loads an icon from a file or resource.
See: wxBitmap:loadFile/3

wxIconBundle

Functions for wxIconBundle class
This class contains multiple copies of an icon in different sizes. It is
typically used in wxDialog::SetIcons (not implemented in wx) and
wxTopLevelWindow:setIcons/2.
Predefined objects (include wx.hrl): ?wxNullIconBundle
wxWidgets docs:
wxIconBundle

 Summary

 Types

 wxIconBundle()

 Functions

 addIcon/2

 Adds the icon to the collection; if the collection already contains an icon with
the same width and height, it is replaced by the new one.

 addIcon(This, File, Type)

 destroy(This)

 Destructor.

 getIcon(This)

 getIcon/2

 Same as.

 getIcon/3

 Returns the icon with the given size.

 new()

 Default ctor.

 new/1

 Initializes the bundle with the icon(s) found in the file.

 new(File, Type)

 Types

 Link to this type

 wxIconBundle()

 View Source

 -type wxIconBundle() :: wx:wx_object().

 Functions

 Link to this function

 addIcon/2

 View Source

 -spec addIcon(This, File) -> ok when This :: wxIconBundle(), File :: unicode:chardata();
 (This, Icon) -> ok when This :: wxIconBundle(), Icon :: wxIcon:wxIcon().

Adds the icon to the collection; if the collection already contains an icon with
the same width and height, it is replaced by the new one.

 Link to this function

 addIcon(This, File, Type)

 View Source

 -spec addIcon(This, File, Type) -> ok
 when This :: wxIconBundle(), File :: unicode:chardata(), Type :: wx:wx_enum().

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxIconBundle()) -> ok.

Destructor.

 Link to this function

 getIcon(This)

 View Source

 -spec getIcon(This) -> wxIcon:wxIcon() when This :: wxIconBundle().

 Link to this function

 getIcon/2

 View Source

 -spec getIcon(This, Size) -> wxIcon:wxIcon()
 when This :: wxIconBundle(), Size :: {W :: integer(), H :: integer()};
 (This, [Option]) -> wxIcon:wxIcon()
 when This :: wxIconBundle(), Option :: {size, integer()} | {flags, integer()}.

Same as.
.

 Link to this function

 getIcon/3

 View Source

 -spec getIcon(This, Size, [Option]) -> wxIcon:wxIcon()
 when
 This :: wxIconBundle(),
 Size :: {W :: integer(), H :: integer()},
 Option :: {flags, integer()}.

Returns the icon with the given size.
If size is ?wxDefaultSize, it is interpreted as the standard system icon size,
i.e. the size returned by wxSystemSettings:getMetric/2 for wxSYS_ICON_X and
wxSYS_ICON_Y.
If the bundle contains an icon with exactly the requested size, it's always
returned. Otherwise, the behaviour depends on the flags. If only
wxIconBundle::FALLBACK_NONE (not implemented in wx) is given, the function
returns an invalid icon. If wxIconBundle::FALLBACK_SYSTEM (not implemented in
wx) is given, it tries to find the icon of standard system size, regardless of
the size passed as parameter. Otherwise, or if the icon system size is not found
neither, but wxIconBundle::FALLBACK_NEAREST_LARGER (not implemented in wx)
flag is specified, the function returns the smallest icon of the size larger
than the requested one or, if this fails too, just the icon closest to the
specified size.
The flags parameter is available only since wxWidgets 2.9.4.

 Link to this function

 new()

 View Source

 -spec new() -> wxIconBundle().

Default ctor.

 Link to this function

 new/1

 View Source

 -spec new(Ic) -> wxIconBundle() when Ic :: wxIconBundle:wxIconBundle() | wxIcon:wxIcon();
 (File) -> wxIconBundle() when File :: unicode:chardata().

Initializes the bundle with the icon(s) found in the file.

 Link to this function

 new(File, Type)

 View Source

 -spec new(File, Type) -> wxIconBundle() when File :: unicode:chardata(), Type :: wx:wx_enum().

wxIconizeEvent

Functions for wxIconizeEvent class
An event being sent when the frame is iconized (minimized) or restored.
See:
Overview events,
wxTopLevelWindow:iconize/2, wxTopLevelWindow:isIconized/1
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxIconizeEvent

 Events

Use wxEvtHandler:connect/3 with
wxIconizeEventType to subscribe to events of this
type.

 Summary

 Types

 wxIconize()

 wxIconizeEvent()

 wxIconizeEventType()

 Functions

 isIconized(This)

 Returns true if the frame has been iconized, false if it has been restored.

 Types

 Link to this type

 wxIconize()

 View Source

 -type wxIconize() :: #wxIconize{type :: wxIconizeEvent:wxIconizeEventType(), iconized :: boolean()}.

 Link to this type

 wxIconizeEvent()

 View Source

 -type wxIconizeEvent() :: wx:wx_object().

 Link to this type

 wxIconizeEventType()

 View Source

 -type wxIconizeEventType() :: iconize.

 Functions

 Link to this function

 isIconized(This)

 View Source

 -spec isIconized(This) -> boolean() when This :: wxIconizeEvent().

Returns true if the frame has been iconized, false if it has been restored.

wxIdleEvent

Functions for wxIdleEvent class
This class is used for idle events, which are generated when the system becomes
idle. Note that, unless you do something specifically, the idle events are not
sent if the system remains idle once it has become it, e.g. only a single idle
event will be generated until something else resulting in more normal events
happens and only then is the next idle event sent again.
If you need to ensure a continuous stream of idle events, you can either use
requestMore/2 method in your handler or call ?wxWakeUpIdle() periodically (for
example from a timer event handler), but note that both of these approaches (and
especially the first one) increase the system load and so should be avoided if
possible.
By default, idle events are sent to all windows, including even the hidden ones
because they may be shown if some condition is met from their wxEVT_IDLE (or
related wxEVT_UPDATE_UI) handler. The children of hidden windows do not
receive idle events however as they can't change their state in any way
noticeable by the user. Finally, the global wxApp (not implemented in wx)
object also receives these events, as usual, so it can be used for any global
idle time processing.
If sending idle events to all windows is causing a significant overhead in your
application, you can call setMode/1 with the value wxIDLE_PROCESS_SPECIFIED,
and set the wxWS_EX_PROCESS_IDLE extra window style for every window which
should receive idle events, all the other ones will not receive them in this
case.
Delayed Action Mechanism
wxIdleEvent can be used to perform some action "at slightly later time".
This can be necessary in several circumstances when, for whatever reason,
something can't be done in the current event handler. For example, if a mouse
event handler is called with the mouse button pressed, the mouse can be
currently captured and some operations with it - notably capturing it again -
might be impossible or lead to undesirable results. If you still want to capture
it, you can do it from wxEVT_IDLE handler when it is called the next time
instead of doing it immediately.
This can be achieved in two different ways: when using static event tables, you
will need a flag indicating to the (always connected) idle event handler whether
the desired action should be performed. The originally called handler would then
set it to indicate that it should indeed be done and the idle handler itself
would reset it to prevent it from doing the same action again.
Using dynamically connected event handlers things are even simpler as the
original event handler can simply wxEvtHandler::Connect() (not implemented in
wx) or wxEvtHandler::Bind() (not implemented in wx) the idle event handler
which would only be executed then and could wxEvtHandler::Disconnect() (not
implemented in wx) or wxEvtHandler::Unbind() (not implemented in wx) itself.
See:
Overview events,
wxUpdateUIEvent, wxWindow::OnInternalIdle (not implemented in wx)
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxIdleEvent

 Events

Use wxEvtHandler:connect/3 with wxIdleEventType to
subscribe to events of this type.

 Summary

 Types

 wxIdle()

 wxIdleEvent()

 wxIdleEventType()

 Functions

 getMode()

 Static function returning a value specifying how wxWidgets will send idle
events: to all windows, or only to those which specify that they will process
the events.

 moreRequested(This)

 Returns true if the OnIdle function processing this event requested more
processing time.

 requestMore(This)

 requestMore/2

 Tells wxWidgets that more processing is required.

 setMode(Mode)

 Static function for specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.

 Types

 Link to this type

 wxIdle()

 View Source

 -type wxIdle() :: #wxIdle{type :: wxIdleEvent:wxIdleEventType()}.

 Link to this type

 wxIdleEvent()

 View Source

 -type wxIdleEvent() :: wx:wx_object().

 Link to this type

 wxIdleEventType()

 View Source

 -type wxIdleEventType() :: idle.

 Functions

 Link to this function

 getMode()

 View Source

 -spec getMode() -> wx:wx_enum().

Static function returning a value specifying how wxWidgets will send idle
events: to all windows, or only to those which specify that they will process
the events.
See: setMode/1

 Link to this function

 moreRequested(This)

 View Source

 -spec moreRequested(This) -> boolean() when This :: wxIdleEvent().

Returns true if the OnIdle function processing this event requested more
processing time.
See: requestMore/2

 Link to this function

 requestMore(This)

 View Source

 -spec requestMore(This) -> ok when This :: wxIdleEvent().

 Link to this function

 requestMore/2

 View Source

 -spec requestMore(This, [Option]) -> ok when This :: wxIdleEvent(), Option :: {needMore, boolean()}.

Tells wxWidgets that more processing is required.
This function can be called by an OnIdle handler for a window or window event
handler to indicate that wxApp::OnIdle should forward the OnIdle event once more
to the application windows.
If no window calls this function during OnIdle, then the application will remain
in a passive event loop (not calling OnIdle) until a new event is posted to the
application by the windowing system.
See: moreRequested/1

 Link to this function

 setMode(Mode)

 View Source

 -spec setMode(Mode) -> ok when Mode :: wx:wx_enum().

Static function for specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.

wxImage

Functions for wxImage class
This class encapsulates a platform-independent image.
An image can be created from data, or using wxBitmap:convertToImage/1. An
image can be loaded from a file in a variety of formats, and is extensible to
new formats via image format handlers. Functions are available to set and get
image bits, so it can be used for basic image manipulation.
A wxImage cannot (currently) be drawn directly to a wxDC. Instead, a
platform-specific wxBitmap object must be created from it using the
wxBitmap::wxBitmap(wxImage,int depth) constructor. This bitmap can then be drawn
in a device context, using wxDC:drawBitmap/4.
More on the difference between wxImage and wxBitmap: wxImage is just
a buffer of RGB bytes with an optional buffer for the alpha bytes. It is all
generic, platform independent and image file format independent code. It
includes generic code for scaling, resizing, clipping, and other manipulations
of the image data. OTOH, wxBitmap is intended to be a wrapper of whatever is
the native image format that is quickest/easiest to draw to a DC or to be the
target of the drawing operations performed on a wxMemoryDC. By splitting the
responsibilities between wxImage/wxBitmap like this then it's easier to use
generic code shared by all platforms and image types for generic operations and
platform specific code where performance or compatibility is needed.
One colour value of the image may be used as a mask colour which will lead to
the automatic creation of a wxMask object associated to the bitmap object.
Alpha channel support
Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is
in addition to a byte for the red, green and blue colour components for each
pixel it also stores a byte representing the pixel opacity.
An alpha value of 0 corresponds to a transparent pixel (null opacity) while a
value of 255 means that the pixel is 100% opaque. The constants
?wxIMAGE_ALPHA_TRANSPARENT and ?wxIMAGE_ALPHA_OPAQUE can be used to indicate
those values in a more readable form.
While all images have RGB data, not all images have an alpha channel. Before
using getAlpha/3 you should check if this image contains an alpha channel with
hasAlpha/1. Currently the BMP, PNG, TGA, and TIFF format handlers have full
alpha channel support for loading so if you want to use alpha you have to use
one of these formats. If you initialize the image alpha channel yourself using
setAlpha/4, you should save it in either PNG, TGA, or TIFF format to avoid
losing it as these are the only handlers that currently support saving with
alpha.
Available image handlers
The following image handlers are available. wxBMPHandler is always installed by
default. To use other image formats, install the appropriate handler with
wxImage::AddHandler (not implemented in wx) or call ?wxInitAllImageHandlers().
When saving in PCX format, wxPCXHandler (not implemented in wx) will count the
number of different colours in the image; if there are 256 or less colours, it
will save as 8 bit, else it will save as 24 bit.
Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format,
wxPNMHandler (not implemented in wx) will always save as raw RGB.
Saving GIFs requires images of maximum 8 bpp (see wxQuantize (not implemented
in wx)), and the alpha channel converted to a mask (see convertAlphaToMask/5).
Saving an animated GIF requires images of the same size (see
wxGIFHandler::SaveAnimation (not implemented in wx))
Predefined objects (include wx.hrl): ?wxNullImage
See: wxBitmap, ?wxInitAllImageHandlers(), wxPixelData (not implemented in
wx)
wxWidgets docs: wxImage

 Summary

 Types

 wxImage()

 Functions

 blur(This, BlurRadius)

 Blurs the image in both horizontal and vertical directions by the specified
pixel blurRadius.

 blurHorizontal(This, BlurRadius)

 Blurs the image in the horizontal direction only.

 blurVertical(This, BlurRadius)

 Blurs the image in the vertical direction only.

 convertAlphaToMask(This)

 convertAlphaToMask/2

 If the image has alpha channel, this method converts it to mask.

 convertAlphaToMask(This, Mr, Mg, Mb)

 convertAlphaToMask/5

 If the image has alpha channel, this method converts it to mask using the
specified colour as the mask colour.

 convertToGreyscale(This)

 Returns a greyscale version of the image.

 convertToGreyscale(This, Weight_r, Weight_g, Weight_b)

 Returns a greyscale version of the image.

 convertToMono(This, R, G, B)

 Returns monochromatic version of the image.

 copy(This)

 Returns an identical copy of this image.

 create(This, Sz)

 create/3

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 create/4

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 create(This, Width, Height, Data, Alpha)

 Creates a fresh image.

 'Destroy'(This)

 Destroys the image data.

 destroy(This)

 Destructor.

 findFirstUnusedColour(This)

 findFirstUnusedColour/2

 Finds the first colour that is never used in the image.

 getAlpha(This)

 Returns pointer to the array storing the alpha values for this image.

 getAlpha(This, X, Y)

 Return alpha value at given pixel location.

 getBlue(This, X, Y)

 Returns the blue intensity at the given coordinate.

 getData(This)

 Returns the image data as an array.

 getGreen(This, X, Y)

 Returns the green intensity at the given coordinate.

 getHeight(This)

 Gets the height of the image in pixels.

 getImageCount(Filename)

 getImageCount(Filename, Options)

 If the image file contains more than one image and the image handler is capable
of retrieving these individually, this function will return the number of
available images.

 getImageExtWildcard()

 Iterates all registered wxImageHandler (not implemented in wx) objects, and
returns a string containing file extension masks suitable for passing to file
open/save dialog boxes.

 getMaskBlue(This)

 Gets the blue value of the mask colour.

 getMaskGreen(This)

 Gets the green value of the mask colour.

 getMaskRed(This)

 Gets the red value of the mask colour.

 getOption(This, Name)

 Gets a user-defined string-valued option.

 getOptionInt(This, Name)

 Gets a user-defined integer-valued option.

 getOrFindMaskColour(This)

 Get the current mask colour or find a suitable unused colour that could be used
as a mask colour.

 getPalette(This)

 Returns the palette associated with the image.

 getRed(This, X, Y)

 Returns the red intensity at the given coordinate.

 getSubImage(This, Rect)

 Returns a sub image of the current one as long as the rect belongs entirely to
the image.

 getWidth(This)

 Gets the width of the image in pixels.

 hasAlpha(This)

 Returns true if this image has alpha channel, false otherwise.

 hasMask(This)

 Returns true if there is a mask active, false otherwise.

 hasOption(This, Name)

 Returns true if the given option is present.

 initAlpha(This)

 Initializes the image alpha channel data.

 initStandardHandlers()

 Internal use only.

 isOk(This)

 Returns true if image data is present.

 isTransparent(This, X, Y)

 isTransparent/4

 Returns true if the given pixel is transparent, i.e. either has the mask colour
if this image has a mask or if this image has alpha channel and alpha value of
this pixel is strictly less than threshold.

 loadFile(This, Name)

 loadFile/3

 Loads an image from a file.

 loadFile/4

 Loads an image from a file.

 mirror(This)

 mirror/2

 Returns a mirrored copy of the image.

 new()

 Creates an empty wxImage object without an alpha channel.

 new/1

 new/2

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 new/3

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 new(Width, Height, Data, Alpha)

 Creates an image from data in memory.

 ok(This)

 See: isOk/1.

 removeHandler(Name)

 Finds the handler with the given name, and removes it.

 replace(This, R1, G1, B1, R2, G2, B2)

 Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

 rescale(This, Width, Height)

 rescale/4

 Changes the size of the image in-place by scaling it: after a call to this
function,the image will have the given width and height.

 resize(This, Size, Pos)

 resize/4

 Changes the size of the image in-place without scaling it by adding either a
border with the given colour or cropping as necessary.

 rotate90(This)

 rotate90/2

 Returns a copy of the image rotated 90 degrees in the direction indicated by
clockwise.

 rotate(This, Angle, RotationCentre)

 rotate/4

 Rotates the image about the given point, by angle radians.

 rotateHue(This, Angle)

 Rotates the hue of each pixel in the image by angle, which is a double in the
range of -1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0
corresponds to +360 degrees.

 saveFile(This, Name)

 Saves an image in the named file.

 saveFile/3

 Saves an image in the named file.

 scale(This, Width, Height)

 scale/4

 Returns a scaled version of the image.

 setAlpha(This, Alpha)

 This function is similar to setData/4 and has similar restrictions.

 setAlpha(This, X, Y, Alpha)

 Sets the alpha value for the given pixel.

 setData(This, Data)

 Sets the image data without performing checks.

 setData(This, Data, New_width, New_height)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setMask(This)

 setMask/2

 Specifies whether there is a mask or not.

 setMaskColour(This, Red, Green, Blue)

 Sets the mask colour for this image (and tells the image to use the mask).

 setMaskFromImage(This, Mask, Mr, Mg, Mb)

 Sets image's mask so that the pixels that have RGB value of mr,mg,mb in mask
will be masked in the image.

 setOption/3

 Sets a user-defined option.

 setPalette(This, Palette)

 Associates a palette with the image.

 setRGB(This, Rect, Red, Green, Blue)

 Sets the colour of the pixels within the given rectangle.

 setRGB(This, X, Y, R, G, B)

 Set the color of the pixel at the given x and y coordinate.

 size(This, Size, Pos)

 size/4

 Returns a resized version of this image without scaling it by adding either a
border with the given colour or cropping as necessary.

 Types

 Link to this type

 wxImage()

 View Source

 -type wxImage() :: wx:wx_object().

 Functions

 Link to this function

 blur(This, BlurRadius)

 View Source

 -spec blur(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in both horizontal and vertical directions by the specified
pixel blurRadius.
This should not be used when using a single mask colour for transparency.
See: blurHorizontal/2, blurVertical/2

 Link to this function

 blurHorizontal(This, BlurRadius)

 View Source

 -spec blurHorizontal(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in the horizontal direction only.
This should not be used when using a single mask colour for transparency.
See: blur/2, blurVertical/2

 Link to this function

 blurVertical(This, BlurRadius)

 View Source

 -spec blurVertical(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in the vertical direction only.
This should not be used when using a single mask colour for transparency.
See: blur/2, blurHorizontal/2

 Link to this function

 convertAlphaToMask(This)

 View Source

 -spec convertAlphaToMask(This) -> boolean() when This :: wxImage().

 Link to this function

 convertAlphaToMask/2

 View Source

 -spec convertAlphaToMask(This, [Option]) -> boolean()
 when This :: wxImage(), Option :: {threshold, integer()}.

If the image has alpha channel, this method converts it to mask.
If the image has an alpha channel, all pixels with alpha value less than
threshold are replaced with the mask colour and the alpha channel is removed.
Otherwise nothing is done.
The mask colour is chosen automatically using findFirstUnusedColour/2, see the
overload below if this is not appropriate.
Return: Returns true on success, false on error.

 Link to this function

 convertAlphaToMask(This, Mr, Mg, Mb)

 View Source

 -spec convertAlphaToMask(This, Mr, Mg, Mb) -> boolean()
 when This :: wxImage(), Mr :: integer(), Mg :: integer(), Mb :: integer().

 Link to this function

 convertAlphaToMask/5

 View Source

 -spec convertAlphaToMask(This, Mr, Mg, Mb, [Option]) -> boolean()
 when
 This :: wxImage(),
 Mr :: integer(),
 Mg :: integer(),
 Mb :: integer(),
 Option :: {threshold, integer()}.

If the image has alpha channel, this method converts it to mask using the
specified colour as the mask colour.
If the image has an alpha channel, all pixels with alpha value less than
threshold are replaced with the mask colour and the alpha channel is removed.
Otherwise nothing is done.
Since: 2.9.0
Return: Returns true on success, false on error.

 Link to this function

 convertToGreyscale(This)

 View Source

 -spec convertToGreyscale(This) -> wxImage() when This :: wxImage().

Returns a greyscale version of the image.
Since: 2.9.0

 Link to this function

 convertToGreyscale(This, Weight_r, Weight_g, Weight_b)

 View Source

 -spec convertToGreyscale(This, Weight_r, Weight_g, Weight_b) -> wxImage()
 when
 This :: wxImage(),
 Weight_r :: number(),
 Weight_g :: number(),
 Weight_b :: number().

Returns a greyscale version of the image.
The returned image uses the luminance component of the original to calculate the
greyscale. Defaults to using the standard ITU-T BT.601 when converting to YUV,
where every pixel equals (R weight_r) + (G weight_g) + (B *
weight_b).

 Link to this function

 convertToMono(This, R, G, B)

 View Source

 -spec convertToMono(This, R, G, B) -> wxImage()
 when This :: wxImage(), R :: integer(), G :: integer(), B :: integer().

Returns monochromatic version of the image.
The returned image has white colour where the original has (r,g,b) colour and
black colour everywhere else.

 Link to this function

 copy(This)

 View Source

 -spec copy(This) -> wxImage() when This :: wxImage().

Returns an identical copy of this image.

 Link to this function

 create(This, Sz)

 View Source

 -spec create(This, Sz) -> boolean() when This :: wxImage(), Sz :: {W :: integer(), H :: integer()}.

 Link to this function

 create/3

 View Source

 -spec create(This, Width, Height) -> boolean()
 when This :: wxImage(), Width :: integer(), Height :: integer();
 (This, Sz, Data) -> boolean()
 when This :: wxImage(), Sz :: {W :: integer(), H :: integer()}, Data :: binary();
 (This, Sz, [Option]) -> boolean()
 when
 This :: wxImage(),
 Sz :: {W :: integer(), H :: integer()},
 Option :: {clear, boolean()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 create/4

 View Source

 -spec create(This, Width, Height, Data) -> boolean()
 when This :: wxImage(), Width :: integer(), Height :: integer(), Data :: binary();
 (This, Width, Height, [Option]) -> boolean()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {clear, boolean()};
 (This, Sz, Data, Alpha) -> boolean()
 when
 This :: wxImage(),
 Sz :: {W :: integer(), H :: integer()},
 Data :: binary(),
 Alpha :: binary().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 create(This, Width, Height, Data, Alpha)

 View Source

 -spec create(This, Width, Height, Data, Alpha) -> boolean()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Data :: binary(),
 Alpha :: binary().

Creates a fresh image.
See new/4 for more info.
Return: true if the call succeeded, false otherwise.

 Link to this function

 'Destroy'(This)

 View Source

 -spec 'Destroy'(This) -> ok when This :: wxImage().

Destroys the image data.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxImage()) -> ok.

Destructor.
See reference-counted object destruction for more info.

 Link to this function

 findFirstUnusedColour(This)

 View Source

 -spec findFirstUnusedColour(This) -> Result
 when
 Result ::
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()},
 This :: wxImage().

 Link to this function

 findFirstUnusedColour/2

 View Source

 -spec findFirstUnusedColour(This, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()},
 This :: wxImage(),
 Option ::
 {startR, integer()} | {startG, integer()} | {startB, integer()}.

Finds the first colour that is never used in the image.
The search begins at given initial colour and continues by increasing R, G and B
components (in this order) by 1 until an unused colour is found or the colour
space exhausted.
The parameters r, g, b are pointers to variables to save the colour.
The parameters startR, startG, startB define the initial values of the
colour. The returned colour will have RGB values equal to or greater than these.
Return: Returns false if there is no unused colour left, true on success.
Note: This method involves computing the histogram, which is a computationally
intensive operation.

 Link to this function

 getAlpha(This)

 View Source

 -spec getAlpha(This) -> binary() when This :: wxImage().

Returns pointer to the array storing the alpha values for this image.
This pointer is NULL for the images without the alpha channel. If the image does
have it, this pointer may be used to directly manipulate the alpha values which
are stored as the RGB ones.

 Link to this function

 getAlpha(This, X, Y)

 View Source

 -spec getAlpha(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Return alpha value at given pixel location.

 Link to this function

 getBlue(This, X, Y)

 View Source

 -spec getBlue(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the blue intensity at the given coordinate.

 Link to this function

 getData(This)

 View Source

 -spec getData(This) -> binary() when This :: wxImage().

Returns the image data as an array.
This is most often used when doing direct image manipulation. The return value
points to an array of characters in RGBRGBRGB... format in the top-to-bottom,
left-to-right order, that is the first RGB triplet corresponds to the first
pixel of the first row, the second one - to the second pixel of the first row
and so on until the end of the first row, with second row following after it and
so on.
You should not delete the returned pointer nor pass it to setData/4.

 Link to this function

 getGreen(This, X, Y)

 View Source

 -spec getGreen(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the green intensity at the given coordinate.

 Link to this function

 getHeight(This)

 View Source

 -spec getHeight(This) -> integer() when This :: wxImage().

Gets the height of the image in pixels.
See: getWidth/1, GetSize() (not implemented in wx)

 Link to this function

 getImageCount(Filename)

 View Source

 -spec getImageCount(Filename) -> integer() when Filename :: unicode:chardata().

 Link to this function

 getImageCount(Filename, Options)

 View Source

 -spec getImageCount(Filename, [Option]) -> integer()
 when Filename :: unicode:chardata(), Option :: {type, wx:wx_enum()}.

If the image file contains more than one image and the image handler is capable
of retrieving these individually, this function will return the number of
available images.
For the overload taking the parameter filename, that's the name of the file to
query. For the overload taking the parameter stream, that's the opened input
stream with image data.
See wxImageHandler::GetImageCount() (not implemented in wx) for more info.
The parameter type may be one of the following values:
Return: Number of available images. For most image handlers, this is 1
(exceptions are TIFF and ICO formats as well as animated GIFs for which this
function returns the number of frames in the animation).

 Link to this function

 getImageExtWildcard()

 View Source

 -spec getImageExtWildcard() -> unicode:charlist().

Iterates all registered wxImageHandler (not implemented in wx) objects, and
returns a string containing file extension masks suitable for passing to file
open/save dialog boxes.
Return: The format of the returned string is "(*.ext1;*.ext2)|*.ext1;*.ext2".
It is usually a good idea to prepend a description before passing the result to
the dialog. Example:
See: wxImageHandler (not implemented in wx)

 Link to this function

 getMaskBlue(This)

 View Source

 -spec getMaskBlue(This) -> integer() when This :: wxImage().

Gets the blue value of the mask colour.

 Link to this function

 getMaskGreen(This)

 View Source

 -spec getMaskGreen(This) -> integer() when This :: wxImage().

Gets the green value of the mask colour.

 Link to this function

 getMaskRed(This)

 View Source

 -spec getMaskRed(This) -> integer() when This :: wxImage().

Gets the red value of the mask colour.

 Link to this function

 getOption(This, Name)

 View Source

 -spec getOption(This, Name) -> unicode:charlist() when This :: wxImage(), Name :: unicode:chardata().

Gets a user-defined string-valued option.
Generic options:
Options specific to wxGIFHandler (not implemented in wx):
Return: The value of the option or an empty string if not found. Use
hasOption/2 if an empty string can be a valid option value.
See: setOption/3, getOptionInt/2, hasOption/2

 Link to this function

 getOptionInt(This, Name)

 View Source

 -spec getOptionInt(This, Name) -> integer() when This :: wxImage(), Name :: unicode:chardata().

Gets a user-defined integer-valued option.
The function is case-insensitive to name. If the given option is not present,
the function returns 0. Use hasOption/2 if 0 is a possibly valid value for the
option.
Generic options:
Since: 2.9.3
Options specific to wxPNGHandler (not implemented in wx):
Options specific to wxTIFFHandler (not implemented in wx):
Options specific to wxGIFHandler (not implemented in wx):
Note: Be careful when combining the options
wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL, wxIMAGE_OPTION_TIFF_BITSPERSAMPLE, and
wxIMAGE_OPTION_TIFF_PHOTOMETRIC. While some measures are taken to prevent
illegal combinations and/or values, it is still easy to abuse them and come up
with invalid results in the form of either corrupted images or crashes.
Return: The value of the option or 0 if not found. Use hasOption/2 if 0 can be
a valid option value.
See: setOption/3, getOption/2

 Link to this function

 getOrFindMaskColour(This)

 View Source

 -spec getOrFindMaskColour(This) -> Result
 when
 Result ::
 {Res :: boolean(), R :: integer(), G :: integer(), B :: integer()},
 This :: wxImage().

Get the current mask colour or find a suitable unused colour that could be used
as a mask colour.
Returns true if the image currently has a mask.

 Link to this function

 getPalette(This)

 View Source

 -spec getPalette(This) -> wxPalette:wxPalette() when This :: wxImage().

Returns the palette associated with the image.
Currently the palette is only used when converting to wxBitmap under
Windows.
Some of the wxImage handlers have been modified to set the palette if one
exists in the image file (usually 256 or less colour images in GIF or PNG
format).

 Link to this function

 getRed(This, X, Y)

 View Source

 -spec getRed(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the red intensity at the given coordinate.

 Link to this function

 getSubImage(This, Rect)

 View Source

 -spec getSubImage(This, Rect) -> wxImage()
 when
 This :: wxImage(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a sub image of the current one as long as the rect belongs entirely to
the image.

 Link to this function

 getWidth(This)

 View Source

 -spec getWidth(This) -> integer() when This :: wxImage().

Gets the width of the image in pixels.
See: getHeight/1, GetSize() (not implemented in wx)

 Link to this function

 hasAlpha(This)

 View Source

 -spec hasAlpha(This) -> boolean() when This :: wxImage().

Returns true if this image has alpha channel, false otherwise.
See: getAlpha/3, setAlpha/4

 Link to this function

 hasMask(This)

 View Source

 -spec hasMask(This) -> boolean() when This :: wxImage().

Returns true if there is a mask active, false otherwise.

 Link to this function

 hasOption(This, Name)

 View Source

 -spec hasOption(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

Returns true if the given option is present.
The function is case-insensitive to name.
The lists of the currently supported options are in getOption/2 and
getOptionInt/2 function docs.
See: setOption/3, getOption/2, getOptionInt/2

 Link to this function

 initAlpha(This)

 View Source

 -spec initAlpha(This) -> ok when This :: wxImage().

Initializes the image alpha channel data.
It is an error to call it if the image already has alpha data. If it doesn't,
alpha data will be by default initialized to all pixels being fully opaque. But
if the image has a mask colour, all mask pixels will be completely transparent.

 Link to this function

 initStandardHandlers()

 View Source

 -spec initStandardHandlers() -> ok.

Internal use only.
Adds standard image format handlers. It only install wxBMPHandler for the time
being, which is used by wxBitmap.
This function is called by wxWidgets on startup, and shouldn't be called by the
user.
See: wxImageHandler (not implemented in wx), ?wxInitAllImageHandlers(),
wxQuantize (not implemented in wx)

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxImage().

Returns true if image data is present.

 Link to this function

 isTransparent(This, X, Y)

 View Source

 -spec isTransparent(This, X, Y) -> boolean() when This :: wxImage(), X :: integer(), Y :: integer().

 Link to this function

 isTransparent/4

 View Source

 -spec isTransparent(This, X, Y, [Option]) -> boolean()
 when
 This :: wxImage(),
 X :: integer(),
 Y :: integer(),
 Option :: {threshold, integer()}.

Returns true if the given pixel is transparent, i.e. either has the mask colour
if this image has a mask or if this image has alpha channel and alpha value of
this pixel is strictly less than threshold.

 Link to this function

 loadFile(This, Name)

 View Source

 -spec loadFile(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

 Link to this function

 loadFile/3

 View Source

 -spec loadFile(This, Name, [Option]) -> boolean()
 when
 This :: wxImage(),
 Name :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {index, integer()}.

Loads an image from a file.
If no handler type is provided, the library will try to autodetect the format.

 Link to this function

 loadFile/4

 View Source

 -spec loadFile(This, Name, Mimetype, [Option]) -> boolean()
 when
 This :: wxImage(),
 Name :: unicode:chardata(),
 Mimetype :: unicode:chardata(),
 Option :: {index, integer()}.

Loads an image from a file.
If no handler type is provided, the library will try to autodetect the format.

 Link to this function

 mirror(This)

 View Source

 -spec mirror(This) -> wxImage() when This :: wxImage().

 Link to this function

 mirror/2

 View Source

 -spec mirror(This, [Option]) -> wxImage() when This :: wxImage(), Option :: {horizontally, boolean()}.

Returns a mirrored copy of the image.
The parameter horizontally indicates the orientation.

 Link to this function

 new()

 View Source

 -spec new() -> wxImage().

Creates an empty wxImage object without an alpha channel.

 Link to this function

 new/1

 View Source

 -spec new(Name) -> wxImage() when Name :: unicode:chardata();
 (Sz) -> wxImage() when Sz :: {W :: integer(), H :: integer()}.

 Link to this function

 new/2

 View Source

 -spec new(Width, Height) -> wxImage() when Width :: integer(), Height :: integer();
 (Name, [Option]) -> wxImage()
 when Name :: unicode:chardata(), Option :: {type, wx:wx_enum()} | {index, integer()};
 (Sz, Data) -> wxImage() when Sz :: {W :: integer(), H :: integer()}, Data :: binary();
 (Sz, [Option]) -> wxImage()
 when Sz :: {W :: integer(), H :: integer()}, Option :: {clear, boolean()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 new/3

 View Source

 -spec new(Width, Height, Data) -> wxImage()
 when Width :: integer(), Height :: integer(), Data :: binary();
 (Width, Height, [Option]) -> wxImage()
 when Width :: integer(), Height :: integer(), Option :: {clear, boolean()};
 (Name, Mimetype, [Option]) -> wxImage()
 when
 Name :: unicode:chardata(),
 Mimetype :: unicode:chardata(),
 Option :: {index, integer()};
 (Sz, Data, Alpha) -> wxImage()
 when Sz :: {W :: integer(), H :: integer()}, Data :: binary(), Alpha :: binary().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 new(Width, Height, Data, Alpha)

 View Source

 -spec new(Width, Height, Data, Alpha) -> wxImage()
 when Width :: integer(), Height :: integer(), Data :: binary(), Alpha :: binary().

Creates an image from data in memory.
If static_data is false then the wxImage will take ownership of the data
and free it afterwards. For this, it has to be allocated with malloc.

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxImage().

See: isOk/1.

 Link to this function

 removeHandler(Name)

 View Source

 -spec removeHandler(Name) -> boolean() when Name :: unicode:chardata().

Finds the handler with the given name, and removes it.
The handler is also deleted.
Return: true if the handler was found and removed, false otherwise.
See: wxImageHandler (not implemented in wx)

 Link to this function

 replace(This, R1, G1, B1, R2, G2, B2)

 View Source

 -spec replace(This, R1, G1, B1, R2, G2, B2) -> ok
 when
 This :: wxImage(),
 R1 :: integer(),
 G1 :: integer(),
 B1 :: integer(),
 R2 :: integer(),
 G2 :: integer(),
 B2 :: integer().

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

 Link to this function

 rescale(This, Width, Height)

 View Source

 -spec rescale(This, Width, Height) -> wxImage()
 when This :: wxImage(), Width :: integer(), Height :: integer().

 Link to this function

 rescale/4

 View Source

 -spec rescale(This, Width, Height, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {quality, wx:wx_enum()}.

Changes the size of the image in-place by scaling it: after a call to this
function,the image will have the given width and height.
For a description of the quality parameter, see the scale/4 function.
Returns the (modified) image itself.
See: scale/4

 Link to this function

 resize(This, Size, Pos)

 View Source

 -spec resize(This, Size, Pos) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()}.

 Link to this function

 resize/4

 View Source

 -spec resize(This, Size, Pos, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()},
 Option :: {r, integer()} | {g, integer()} | {b, integer()}.

Changes the size of the image in-place without scaling it by adding either a
border with the given colour or cropping as necessary.
The image is pasted into a new image with the given size and background colour
at the position pos relative to the upper left of the new image.
If red = green = blue = -1 then use either the current mask colour if set or
find, use, and set a suitable mask colour for any newly exposed areas.
Return: The (modified) image itself.
See: size/4

 Link to this function

 rotate90(This)

 View Source

 -spec rotate90(This) -> wxImage() when This :: wxImage().

 Link to this function

 rotate90/2

 View Source

 -spec rotate90(This, [Option]) -> wxImage() when This :: wxImage(), Option :: {clockwise, boolean()}.

Returns a copy of the image rotated 90 degrees in the direction indicated by
clockwise.

 Link to this function

 rotate(This, Angle, RotationCentre)

 View Source

 -spec rotate(This, Angle, RotationCentre) -> wxImage()
 when
 This :: wxImage(),
 Angle :: number(),
 RotationCentre :: {X :: integer(), Y :: integer()}.

 Link to this function

 rotate/4

 View Source

 -spec rotate(This, Angle, RotationCentre, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Angle :: number(),
 RotationCentre :: {X :: integer(), Y :: integer()},
 Option ::
 {interpolating, boolean()} |
 {offset_after_rotation, {X :: integer(), Y :: integer()}}.

Rotates the image about the given point, by angle radians.
Passing true to interpolating results in better image quality, but is slower.
If the image has a mask, then the mask colour is used for the uncovered pixels
in the rotated image background. Else, black (rgb 0, 0, 0) will be used.
Returns the rotated image, leaving this image intact.

 Link to this function

 rotateHue(This, Angle)

 View Source

 -spec rotateHue(This, Angle) -> ok when This :: wxImage(), Angle :: number().

Rotates the hue of each pixel in the image by angle, which is a double in the
range of -1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0
corresponds to +360 degrees.

 Link to this function

 saveFile(This, Name)

 View Source

 -spec saveFile(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

Saves an image in the named file.
File type is determined from the extension of the file name. Note that this
function may fail if the extension is not recognized! You can use one of the
forms above to save images to files with non-standard extensions.

 Link to this function

 saveFile/3

 View Source

 -spec saveFile(This, Name, Type) -> boolean()
 when This :: wxImage(), Name :: unicode:chardata(), Type :: wx:wx_enum();
 (This, Name, Mimetype) -> boolean()
 when This :: wxImage(), Name :: unicode:chardata(), Mimetype :: unicode:chardata().

Saves an image in the named file.

 Link to this function

 scale(This, Width, Height)

 View Source

 -spec scale(This, Width, Height) -> wxImage()
 when This :: wxImage(), Width :: integer(), Height :: integer().

 Link to this function

 scale/4

 View Source

 -spec scale(This, Width, Height, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {quality, wx:wx_enum()}.

Returns a scaled version of the image.
This is also useful for scaling bitmaps in general as the only other way to
scale bitmaps is to blit a wxMemoryDC into another wxMemoryDC.
The parameter quality determines what method to use for resampling the image,
see wxImageResizeQuality documentation.
It should be noted that although using wxIMAGE_QUALITY_HIGH produces much
nicer looking results it is a slower method. Downsampling will use the box
averaging method which seems to operate very fast. If you are upsampling larger
images using this method you will most likely notice that it is a bit slower and
in extreme cases it will be quite substantially slower as the bicubic algorithm
has to process a lot of data.
It should also be noted that the high quality scaling may not work as expected
when using a single mask colour for transparency, as the scaling will blur the
image and will therefore remove the mask partially. Using the alpha channel will
work.
Example:
See: rescale/4

 Link to this function

 setAlpha(This, Alpha)

 View Source

 -spec setAlpha(This, Alpha) -> ok when This :: wxImage(), Alpha :: binary().

This function is similar to setData/4 and has similar restrictions.
The pointer passed to it may however be NULL in which case the function will
allocate the alpha array internally - this is useful to add alpha channel data
to an image which doesn't have any.
If the pointer is not NULL, it must have one byte for each image pixel and be
allocated with malloc(). wxImage takes ownership of the pointer and will
free it unless static_data parameter is set to true - in this case the caller
should do it.

 Link to this function

 setAlpha(This, X, Y, Alpha)

 View Source

 -spec setAlpha(This, X, Y, Alpha) -> ok
 when This :: wxImage(), X :: integer(), Y :: integer(), Alpha :: integer().

Sets the alpha value for the given pixel.
This function should only be called if the image has alpha channel data, use
hasAlpha/1 to check for this.

 Link to this function

 setData(This, Data)

 View Source

 -spec setData(This, Data) -> ok when This :: wxImage(), Data :: binary().

Sets the image data without performing checks.
The data given must have the size (widthheight3) or results will be
unexpected. Don't use this method if you aren't sure you know what you are
doing.
The data must have been allocated with malloc(), NOT with operator new.
If static_data is false, after this call the pointer to the data is owned by
the wxImage object, that will be responsible for deleting it. Do not pass to
this function a pointer obtained through getData/1.

 Link to this function

 setData(This, Data, New_width, New_height)

 View Source

 -spec setData(This, Data, New_width, New_height) -> ok
 when
 This :: wxImage(),
 Data :: binary(),
 New_width :: integer(),
 New_height :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setMask(This)

 View Source

 -spec setMask(This) -> ok when This :: wxImage().

 Link to this function

 setMask/2

 View Source

 -spec setMask(This, [Option]) -> ok when This :: wxImage(), Option :: {mask, boolean()}.

Specifies whether there is a mask or not.
The area of the mask is determined by the current mask colour.

 Link to this function

 setMaskColour(This, Red, Green, Blue)

 View Source

 -spec setMaskColour(This, Red, Green, Blue) -> ok
 when This :: wxImage(), Red :: integer(), Green :: integer(), Blue :: integer().

Sets the mask colour for this image (and tells the image to use the mask).

 Link to this function

 setMaskFromImage(This, Mask, Mr, Mg, Mb)

 View Source

 -spec setMaskFromImage(This, Mask, Mr, Mg, Mb) -> boolean()
 when
 This :: wxImage(),
 Mask :: wxImage(),
 Mr :: integer(),
 Mg :: integer(),
 Mb :: integer().

Sets image's mask so that the pixels that have RGB value of mr,mg,mb in mask
will be masked in the image.
This is done by first finding an unused colour in the image, setting this colour
as the mask colour and then using this colour to draw all pixels in the image
who corresponding pixel in mask has given RGB value.
The parameter mask is the mask image to extract mask shape from. It must have
the same dimensions as the image.
The parameters mr, mg, mb are the RGB values of the pixels in mask that
will be used to create the mask.
Return: Returns false if mask does not have same dimensions as the image or if
there is no unused colour left. Returns true if the mask was successfully
applied.
Note: Note that this method involves computing the histogram, which is a
computationally intensive operation.

 Link to this function

 setOption/3

 View Source

 -spec setOption(This, Name, Value) -> ok
 when This :: wxImage(), Name :: unicode:chardata(), Value :: integer();
 (This, Name, Value) -> ok
 when This :: wxImage(), Name :: unicode:chardata(), Value :: unicode:chardata().

Sets a user-defined option.
The function is case-insensitive to name.
For example, when saving as a JPEG file, the option quality is used, which is
a number between 0 and 100 (0 is terrible, 100 is very good).
The lists of the currently supported options are in getOption/2 and
getOptionInt/2 function docs.
See: getOption/2, getOptionInt/2, hasOption/2

 Link to this function

 setPalette(This, Palette)

 View Source

 -spec setPalette(This, Palette) -> ok when This :: wxImage(), Palette :: wxPalette:wxPalette().

Associates a palette with the image.
The palette may be used when converting wxImage to wxBitmap (MSW only at
present) or in file save operations (none as yet).

 Link to this function

 setRGB(This, Rect, Red, Green, Blue)

 View Source

 -spec setRGB(This, Rect, Red, Green, Blue) -> ok
 when
 This :: wxImage(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Red :: integer(),
 Green :: integer(),
 Blue :: integer().

Sets the colour of the pixels within the given rectangle.
This routine performs bounds-checks for the coordinate so it can be considered a
safe way to manipulate the data.

 Link to this function

 setRGB(This, X, Y, R, G, B)

 View Source

 -spec setRGB(This, X, Y, R, G, B) -> ok
 when
 This :: wxImage(),
 X :: integer(),
 Y :: integer(),
 R :: integer(),
 G :: integer(),
 B :: integer().

Set the color of the pixel at the given x and y coordinate.

 Link to this function

 size(This, Size, Pos)

 View Source

 -spec size(This, Size, Pos) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()}.

 Link to this function

 size/4

 View Source

 -spec size(This, Size, Pos, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()},
 Option :: {r, integer()} | {g, integer()} | {b, integer()}.

Returns a resized version of this image without scaling it by adding either a
border with the given colour or cropping as necessary.
The image is pasted into a new image with the given size and background colour
at the position pos relative to the upper left of the new image.
If red = green = blue = -1 then the areas of the larger image not covered by
this image are made transparent by filling them with the image mask colour
(which will be allocated automatically if it isn't currently set).
Otherwise, the areas will be filled with the colour with the specified RGB
components.
See: resize/4

wxImageList

Functions for wxImageList class
A wxImageList contains a list of images, which are stored in an unspecified
form. Images can have masks for transparent drawing, and can be made from a
variety of sources including bitmaps and icons.
wxImageList is used principally in conjunction with wxTreeCtrl and
wxListCtrl classes.
See: wxTreeCtrl, wxListCtrl
wxWidgets docs:
wxImageList

 Summary

 Types

 wxImageList()

 Functions

 add(This, Icon)

 Adds a new image using an icon.

 add/3

 Adds a new image or images using a bitmap and mask colour.

 create(This, Width, Height)

 create/4

 Initializes the list.

 destroy(This)

 Destroys the object.

 draw(This, Index, Dc, X, Y)

 draw/6

 Draws a specified image onto a device context.

 getBitmap(This, Index)

 Returns the bitmap corresponding to the given index.

 getIcon(This, Index)

 Returns the icon corresponding to the given index.

 getImageCount(This)

 Returns the number of images in the list.

 getSize(This, Index)

 Retrieves the size of the images in the list.

 new()

 Default ctor.

 new(Width, Height)

 new(Width, Height, Options)

 Constructor specifying the image size, whether image masks should be created,
and the initial size of the list.

 remove(This, Index)

 Removes the image at the given position.

 removeAll(This)

 Removes all the images in the list.

 replace(This, Index, Icon)

 Replaces the existing image with the new image.

 replace(This, Index, Bitmap, Mask)

 Replaces the existing image with the new image.

 Types

 Link to this type

 wxImageList()

 View Source

 -type wxImageList() :: wx:wx_object().

 Functions

 Link to this function

 add(This, Icon)

 View Source

 -spec add(This, Icon) -> integer()
 when This :: wxImageList(), Icon :: wxIcon:wxIcon() | wxBitmap:wxBitmap().

Adds a new image using an icon.
Return: The new zero-based image index.
Remark: The original bitmap or icon is not affected by the add/3 operation,
and can be deleted afterwards. If the bitmap is wider than the images in the
list, then the bitmap will automatically be split into smaller images, each
matching the dimensions of the image list. This does not apply when adding
icons.
Only for:wxmsw,wxosx

 Link to this function

 add/3

 View Source

 -spec add(This, Bitmap, Mask) -> integer()
 when This :: wxImageList(), Bitmap :: wxBitmap:wxBitmap(), Mask :: wxBitmap:wxBitmap();
 (This, Bitmap, MaskColour) -> integer()
 when This :: wxImageList(), Bitmap :: wxBitmap:wxBitmap(), MaskColour :: wx:wx_colour().

Adds a new image or images using a bitmap and mask colour.
Return: The new zero-based image index.
Remark: The original bitmap or icon is not affected by the add/3 operation,
and can be deleted afterwards. If the bitmap is wider than the images in the
list, then the bitmap will automatically be split into smaller images, each
matching the dimensions of the image list. This does not apply when adding
icons.

 Link to this function

 create(This, Width, Height)

 View Source

 -spec create(This, Width, Height) -> boolean()
 when This :: wxImageList(), Width :: integer(), Height :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Width, Height, [Option]) -> boolean()
 when
 This :: wxImageList(),
 Width :: integer(),
 Height :: integer(),
 Option :: {mask, boolean()} | {initialCount, integer()}.

Initializes the list.
See new/3 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxImageList()) -> ok.

Destroys the object.

 Link to this function

 draw(This, Index, Dc, X, Y)

 View Source

 -spec draw(This, Index, Dc, X, Y) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer().

 Link to this function

 draw/6

 View Source

 -spec draw(This, Index, Dc, X, Y, [Option]) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer(),
 Option :: {flags, integer()} | {solidBackground, boolean()}.

Draws a specified image onto a device context.

 Link to this function

 getBitmap(This, Index)

 View Source

 -spec getBitmap(This, Index) -> wxBitmap:wxBitmap() when This :: wxImageList(), Index :: integer().

Returns the bitmap corresponding to the given index.

 Link to this function

 getIcon(This, Index)

 View Source

 -spec getIcon(This, Index) -> wxIcon:wxIcon() when This :: wxImageList(), Index :: integer().

Returns the icon corresponding to the given index.

 Link to this function

 getImageCount(This)

 View Source

 -spec getImageCount(This) -> integer() when This :: wxImageList().

Returns the number of images in the list.

 Link to this function

 getSize(This, Index)

 View Source

 -spec getSize(This, Index) -> Result
 when
 Result :: {Res :: boolean(), Width :: integer(), Height :: integer()},
 This :: wxImageList(),
 Index :: integer().

Retrieves the size of the images in the list.
Currently, the index parameter is ignored as all images in the list have the
same size.
Return: true if the function succeeded, false if it failed (for example, if the
image list was not yet initialized).

 Link to this function

 new()

 View Source

 -spec new() -> wxImageList().

Default ctor.

 Link to this function

 new(Width, Height)

 View Source

 -spec new(Width, Height) -> wxImageList() when Width :: integer(), Height :: integer().

 Link to this function

 new(Width, Height, Options)

 View Source

 -spec new(Width, Height, [Option]) -> wxImageList()
 when
 Width :: integer(),
 Height :: integer(),
 Option :: {mask, boolean()} | {initialCount, integer()}.

Constructor specifying the image size, whether image masks should be created,
and the initial size of the list.
See: create/4

 Link to this function

 remove(This, Index)

 View Source

 -spec remove(This, Index) -> boolean() when This :: wxImageList(), Index :: integer().

Removes the image at the given position.

 Link to this function

 removeAll(This)

 View Source

 -spec removeAll(This) -> boolean() when This :: wxImageList().

Removes all the images in the list.

 Link to this function

 replace(This, Index, Icon)

 View Source

 -spec replace(This, Index, Icon) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Icon :: wxIcon:wxIcon() | wxBitmap:wxBitmap().

Replaces the existing image with the new image.
Return: true if the replacement was successful, false otherwise.
Remark: The original bitmap or icon is not affected by the replace/4
operation, and can be deleted afterwards.
Only for:wxmsw,wxosx

 Link to this function

 replace(This, Index, Bitmap, Mask)

 View Source

 -spec replace(This, Index, Bitmap, Mask) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Mask :: wxBitmap:wxBitmap().

Replaces the existing image with the new image.
Windows only.
Return: true if the replacement was successful, false otherwise.
Remark: The original bitmap or icon is not affected by the replace/4
operation, and can be deleted afterwards.

wxInitDialogEvent

Functions for wxInitDialogEvent class
A wxInitDialogEvent is sent as a dialog or panel is being initialised.
Handlers for this event can transfer data to the window.
The default handler calls wxWindow:transferDataToWindow/1.
See:
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxInitDialogEvent

 Events

Use wxEvtHandler:connect/3 with
wxInitDialogEventType to subscribe to events of
this type.

 Summary

 Types

 wxInitDialog()

 wxInitDialogEvent()

 wxInitDialogEventType()

 Types

 Link to this type

 wxInitDialog()

 View Source

 -type wxInitDialog() :: #wxInitDialog{type :: wxInitDialogEvent:wxInitDialogEventType()}.

 Link to this type

 wxInitDialogEvent()

 View Source

 -type wxInitDialogEvent() :: wx:wx_object().

 Link to this type

 wxInitDialogEventType()

 View Source

 -type wxInitDialogEventType() :: init_dialog.

wxJoystickEvent

Functions for wxJoystickEvent class
This event class contains information about joystick events, particularly events
received by windows.
See: wxJoystick (not implemented in wx)
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxJoystickEvent

 Events

Use wxEvtHandler:connect/3 with
wxJoystickEventType to subscribe to events of
this type.

 Summary

 Types

 wxJoystick()

 wxJoystickEvent()

 wxJoystickEventType()

 Functions

 buttonDown(This)

 buttonDown/2

 Returns true if the event was a down event from the specified button (or any
button).

 buttonIsDown(This)

 buttonIsDown/2

 Returns true if the specified button (or any button) was in a down state.

 buttonUp(This)

 buttonUp/2

 Returns true if the event was an up event from the specified button (or any
button).

 getButtonChange(This)

 Returns the identifier of the button changing state.

 getButtonState(This)

 Returns the down state of the buttons.

 getJoystick(This)

 Returns the identifier of the joystick generating the event - one of wxJOYSTICK1
and wxJOYSTICK2.

 getPosition(This)

 Returns the x, y position of the joystick event.

 getZPosition(This)

 Returns the z position of the joystick event.

 isButton(This)

 Returns true if this was a button up or down event (not 'is any button
down?').

 isMove(This)

 Returns true if this was an x, y move event.

 isZMove(This)

 Returns true if this was a z move event.

 Types

 Link to this type

 wxJoystick()

 View Source

 -type wxJoystick() ::
 #wxJoystick{type :: wxJoystickEvent:wxJoystickEventType(),
 pos :: {X :: integer(), Y :: integer()},
 zPosition :: integer(),
 buttonChange :: integer(),
 buttonState :: integer(),
 joyStick :: integer()}.

 Link to this type

 wxJoystickEvent()

 View Source

 -type wxJoystickEvent() :: wx:wx_object().

 Link to this type

 wxJoystickEventType()

 View Source

 -type wxJoystickEventType() :: joy_button_down | joy_button_up | joy_move | joy_zmove.

 Functions

 Link to this function

 buttonDown(This)

 View Source

 -spec buttonDown(This) -> boolean() when This :: wxJoystickEvent().

 Link to this function

 buttonDown/2

 View Source

 -spec buttonDown(This, [Option]) -> boolean() when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the event was a down event from the specified button (or any
button).

 Link to this function

 buttonIsDown(This)

 View Source

 -spec buttonIsDown(This) -> boolean() when This :: wxJoystickEvent().

 Link to this function

 buttonIsDown/2

 View Source

 -spec buttonIsDown(This, [Option]) -> boolean()
 when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the specified button (or any button) was in a down state.

 Link to this function

 buttonUp(This)

 View Source

 -spec buttonUp(This) -> boolean() when This :: wxJoystickEvent().

 Link to this function

 buttonUp/2

 View Source

 -spec buttonUp(This, [Option]) -> boolean() when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the event was an up event from the specified button (or any
button).

 Link to this function

 getButtonChange(This)

 View Source

 -spec getButtonChange(This) -> integer() when This :: wxJoystickEvent().

Returns the identifier of the button changing state.
The return value is where n is the index of the button changing state, which
can also be retrieved using GetButtonOrdinal() (not implemented in wx).
Note that for n equal to 1, 2, 3 or 4 there are predefined wxJOY_BUTTONn
constants which can be used for more clarity, however these constants are not
defined for the buttons beyond the first four.

 Link to this function

 getButtonState(This)

 View Source

 -spec getButtonState(This) -> integer() when This :: wxJoystickEvent().

Returns the down state of the buttons.
This is a wxJOY_BUTTONn identifier, where n is one of 1, 2, 3, 4.

 Link to this function

 getJoystick(This)

 View Source

 -spec getJoystick(This) -> integer() when This :: wxJoystickEvent().

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1
and wxJOYSTICK2.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxJoystickEvent().

Returns the x, y position of the joystick event.
These coordinates are valid for all the events except wxEVT_JOY_ZMOVE.

 Link to this function

 getZPosition(This)

 View Source

 -spec getZPosition(This) -> integer() when This :: wxJoystickEvent().

Returns the z position of the joystick event.
This method can only be used for wxEVT_JOY_ZMOVE events.

 Link to this function

 isButton(This)

 View Source

 -spec isButton(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was a button up or down event (not 'is any button
down?').

 Link to this function

 isMove(This)

 View Source

 -spec isMove(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was an x, y move event.

 Link to this function

 isZMove(This)

 View Source

 -spec isZMove(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was a z move event.

wxKeyEvent

Functions for wxKeyEvent class
This event class contains information about key press and release events.
The main information carried by this event is the key being pressed or released.
It can be accessed using either getKeyCode/1 function or getUnicodeKey/1.
For the printable characters, the latter should be used as it works for any
keys, including non-Latin-1 characters that can be entered when using national
keyboard layouts. getKeyCode/1 should be used to handle special characters
(such as cursor arrows keys or HOME or INS and so on) which correspond to
?wxKeyCode enum elements above the WXK_START constant. While getKeyCode/1
also returns the character code for Latin-1 keys for compatibility, it doesn't
work for Unicode characters in general and will return WXK_NONE for any
non-Latin-1 ones. For this reason, it's recommended to always use
getUnicodeKey/1 and only fall back to getKeyCode/1 if getUnicodeKey/1
returned WXK_NONE meaning that the event corresponds to a non-printable
special keys.
While both of these functions can be used with the events of wxEVT_KEY_DOWN,
wxEVT_KEY_UP and wxEVT_CHAR types, the values returned by them are different
for the first two events and the last one. For the latter, the key returned
corresponds to the character that would appear in e.g. a text zone if the user
pressed the key in it. As such, its value depends on the current state of the
Shift key and, for the letters, on the state of Caps Lock modifier. For example,
if A key is pressed without Shift being held down, wxKeyEvent of type
wxEVT_CHAR generated for this key press will return (from either
getKeyCode/1 or getUnicodeKey/1 as their meanings coincide for ASCII
characters) key code of 97 corresponding the ASCII value of a. And if the same
key is pressed but with Shift being held (or Caps Lock being active), then the
key could would be 65, i.e. ASCII value of capital A.
However for the key down and up events the returned key code will instead be A
independently of the state of the modifier keys i.e. it depends only on physical
key being pressed and is not translated to its logical representation using the
current keyboard state. Such untranslated key codes are defined as follows:
Notice that the first rule applies to all Unicode letters, not just the usual
Latin-1 ones. However for non-Latin-1 letters only getUnicodeKey/1 can be used
to retrieve the key code as getKeyCode/1 just returns WXK_NONE in this case.
To summarize: you should handle wxEVT_CHAR if you need the translated key and
wxEVT_KEY_DOWN if you only need the value of the key itself, independent of
the current keyboard state.
Note: Not all key down events may be generated by the user. As an example,
wxEVT_KEY_DOWN with = key code can be generated using the standard US
keyboard layout but not using the German one because the = key corresponds to
Shift-0 key combination in this layout and the key code for it is 0, not =.
Because of this you should avoid requiring your users to type key events that
might be impossible to enter on their keyboard.
Another difference between key and char events is that another kind of
translation is done for the latter ones when the Control key is pressed: char
events for ASCII letters in this case carry codes corresponding to the ASCII
value of Ctrl-Latter, i.e. 1 for Ctrl-A, 2 for Ctrl-B and so on until 26 for
Ctrl-Z. This is convenient for terminal-like applications and can be completely
ignored by all the other ones (if you need to handle Ctrl-A it is probably a
better idea to use the key event rather than the char one). Notice that
currently no translation is done for the presses of [, \,], ^ and _ keys
which might be mapped to ASCII values from 27 to 31. Since version 2.9.2, the
enum values WXK_CONTROL_A - WXK_CONTROL_Z can be used instead of the
non-descriptive constant values 1-26.
Finally, modifier keys only generate key events but no char events at all. The
modifiers keys are WXK_SHIFT, WXK_CONTROL, WXK_ALT and various
WXK_WINDOWS_XXX from ?wxKeyCode enum.
Modifier keys events are special in one additional aspect: usually the keyboard
state associated with a key press is well defined, e.g. shiftDown/1 returns
true only if the Shift key was held pressed when the key that generated this
event itself was pressed. There is an ambiguity for the key press events for
Shift key itself however. By convention, it is considered to be already pressed
when it is pressed and already released when it is released. In other words,
wxEVT_KEY_DOWN event for the Shift key itself will have wxMOD_SHIFT in
getModifiers/1 and shiftDown/1 will return true while the wxEVT_KEY_UP
event for Shift itself will not have wxMOD_SHIFT in its modifiers and
shiftDown/1 will return false.
Tip: You may discover the key codes and modifiers generated by all the keys on
your system interactively by running the page_samples_keyboard wxWidgets sample
and pressing some keys in it.
Note: If a key down (EVT_KEY_DOWN) event is caught and the event handler does
not call event.Skip() then the corresponding char event (EVT_CHAR) will not
happen. This is by design and enables the programs that handle both types of
events to avoid processing the same key twice. As a consequence, if you do not
want to suppress the wxEVT_CHAR events for the keys you handle, always call
event.Skip() in your wxEVT_KEY_DOWN handler. Not doing may also prevent
accelerators defined using this key from working.
Note: If a key is maintained in a pressed state, you will typically get a lot of
(automatically generated) key down events but only one key up one at the end
when the key is released so it is wrong to assume that there is one up event
corresponding to each down one.
Note: For Windows programmers: The key and char events in wxWidgets are similar
to but slightly different from Windows WM_KEYDOWN and WM_CHAR events. In
particular, Alt-x combination will generate a char event in wxWidgets (unless it
is used as an accelerator) and almost all keys, including ones without ASCII
equivalents, generate char events too.
See: wxKeyboardState (not implemented in wx)
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxKeyEvent

 Events

Use wxEvtHandler:connect/3 with wxKeyEventType to
subscribe to events of this type.

 Summary

 Types

 wxKey()

 wxKeyEvent()

 wxKeyEventType()

 Functions

 altDown(This)

 Returns true if the Alt key is pressed.

 cmdDown(This)

 Returns true if the key used for command accelerators is pressed.

 controlDown(This)

 Returns true if the Control key or Apple/Command key under macOS is pressed.

 getKeyCode(This)

 Returns the key code of the key that generated this event.

 getModifiers(This)

 Return the bit mask of all pressed modifier keys.

 getPosition(This)

 Obtains the position (in client coordinates) at which the key was pressed.

 getRawKeyCode(This)

 Returns the raw key code for this event.

 getRawKeyFlags(This)

 Returns the low level key flags for this event.

 getUnicodeKey(This)

 Returns the Unicode character corresponding to this key event.

 getX(This)

 Returns the X position (in client coordinates) of the event.

 getY(This)

 Returns the Y position (in client coordinates) of the event.

 hasModifiers(This)

 Returns true if Control or Alt are pressed.

 metaDown(This)

 Returns true if the Meta/Windows/Apple key is pressed.

 shiftDown(This)

 Returns true if the Shift key is pressed.

 Types

 Link to this type

 wxKey()

 View Source

 -type wxKey() ::
 #wxKey{type :: wxKeyEvent:wxKeyEventType(),
 x :: integer(),
 y :: integer(),
 keyCode :: integer(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 uniChar :: integer(),
 rawCode :: integer(),
 rawFlags :: integer()}.

 Link to this type

 wxKeyEvent()

 View Source

 -type wxKeyEvent() :: wx:wx_object().

 Link to this type

 wxKeyEventType()

 View Source

 -type wxKeyEventType() :: char | char_hook | key_down | key_up.

 Functions

 Link to this function

 altDown(This)

 View Source

 -spec altDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Alt key is pressed.
Notice that getModifiers/1 should usually be used instead of this one.

 Link to this function

 cmdDown(This)

 View Source

 -spec cmdDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the key used for command accelerators is pressed.
Same as controlDown/1. Deprecated.
Notice that getModifiers/1 should usually be used instead of this one.

 Link to this function

 controlDown(This)

 View Source

 -spec controlDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Control key or Apple/Command key under macOS is pressed.
This function doesn't distinguish between right and left control keys.
Notice that getModifiers/1 should usually be used instead of this one.

 Link to this function

 getKeyCode(This)

 View Source

 -spec getKeyCode(This) -> integer() when This :: wxKeyEvent().

Returns the key code of the key that generated this event.
ASCII symbols return normal ASCII values, while events from special keys such as
"left cursor arrow" (WXK_LEFT) return values outside of the ASCII range. See
?wxKeyCode for a full list of the virtual key codes.
Note that this method returns a meaningful value only for special
non-alphanumeric keys or if the user entered a Latin-1 character (this includes
ASCII and the accented letters found in Western European languages but not
letters of other alphabets such as e.g. Cyrillic). Otherwise it simply method
returns WXK_NONE and getUnicodeKey/1 should be used to obtain the
corresponding Unicode character.
Using getUnicodeKey/1 is in general the right thing to do if you are
interested in the characters typed by the user, getKeyCode/1 should be only
used for special keys (for which getUnicodeKey/1 returns WXK_NONE). To
handle both kinds of keys you might write:

 Link to this function

 getModifiers(This)

 View Source

 -spec getModifiers(This) -> integer() when This :: wxKeyEvent().

Return the bit mask of all pressed modifier keys.
The return value is a combination of wxMOD_ALT, wxMOD_CONTROL, wxMOD_SHIFT
and wxMOD_META bit masks. Additionally, wxMOD_NONE is defined as 0, i.e.
corresponds to no modifiers (see HasAnyModifiers() (not implemented in wx))
and wxMOD_CMD is either wxMOD_CONTROL (MSW and Unix) or wxMOD_META (Mac),
see cmdDown/1. See ?wxKeyModifier for the full list of modifiers.
Notice that this function is easier to use correctly than, for example,
controlDown/1 because when using the latter you also have to remember to test
that none of the other modifiers is pressed:
and forgetting to do it can result in serious program bugs (e.g. program not
working with European keyboard layout where AltGr key which is seen by the
program as combination of CTRL and ALT is used). On the other hand, you can
simply write:
with this function.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxKeyEvent().

Obtains the position (in client coordinates) at which the key was pressed.
Notice that under most platforms this position is simply the current mouse
pointer position and has no special relationship to the key event itself.
x and y may be NULL if the corresponding coordinate is not needed.

 Link to this function

 getRawKeyCode(This)

 View Source

 -spec getRawKeyCode(This) -> integer() when This :: wxKeyEvent().

Returns the raw key code for this event.
The flags are platform-dependent and should only be used if the functionality
provided by other wxKeyEvent methods is insufficient.
Under MSW, the raw key code is the value of wParam parameter of the
corresponding message.
Under GTK, the raw key code is the keyval field of the corresponding GDK
event.
Under macOS, the raw key code is the keyCode field of the corresponding
NSEvent.
Note: Currently the raw key codes are not supported by all ports, use #ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

 Link to this function

 getRawKeyFlags(This)

 View Source

 -spec getRawKeyFlags(This) -> integer() when This :: wxKeyEvent().

Returns the low level key flags for this event.
The flags are platform-dependent and should only be used if the functionality
provided by other wxKeyEvent methods is insufficient.
Under MSW, the raw flags are just the value of lParam parameter of the
corresponding message.
Under GTK, the raw flags contain the hardware_keycode field of the
corresponding GDK event.
Under macOS, the raw flags contain the modifiers state.
Note: Currently the raw key flags are not supported by all ports, use #ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

 Link to this function

 getUnicodeKey(This)

 View Source

 -spec getUnicodeKey(This) -> integer() when This :: wxKeyEvent().

Returns the Unicode character corresponding to this key event.
If the key pressed doesn't have any character value (e.g. a cursor key) this
method will return WXK_NONE. In this case you should use getKeyCode/1 to
retrieve the value of the key.
This function is only available in Unicode build, i.e. when wxUSE_UNICODE
is 1.

 Link to this function

 getX(This)

 View Source

 -spec getX(This) -> integer() when This :: wxKeyEvent().

Returns the X position (in client coordinates) of the event.
See: getPosition/1

 Link to this function

 getY(This)

 View Source

 -spec getY(This) -> integer() when This :: wxKeyEvent().

Returns the Y position (in client coordinates) of the event.
See: getPosition/1

 Link to this function

 hasModifiers(This)

 View Source

 -spec hasModifiers(This) -> boolean() when This :: wxKeyEvent().

Returns true if Control or Alt are pressed.
Checks if Control, Alt or, under macOS only, Command key are pressed (notice
that the real Control key is still taken into account under OS X too).
This method returns false if only Shift is pressed for compatibility reasons and
also because pressing Shift usually doesn't change the interpretation of key
events, see HasAnyModifiers() (not implemented in wx) if you want to take
Shift into account as well.

 Link to this function

 metaDown(This)

 View Source

 -spec metaDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Meta/Windows/Apple key is pressed.
This function tests the state of the key traditionally called Meta under Unix
systems, Windows keys under MSW Notice that getModifiers/1 should usually be
used instead of this one.
See: cmdDown/1

 Link to this function

 shiftDown(This)

 View Source

 -spec shiftDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Shift key is pressed.
This function doesn't distinguish between right and left shift keys.
Notice that getModifiers/1 should usually be used instead of this one.

wxLayoutAlgorithm

Functions for wxLayoutAlgorithm class
wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames. It
sends a wxCalculateLayoutEvent (not implemented in wx) event to children of
the frame, asking them for information about their size. For MDI parent frames,
the algorithm allocates the remaining space to the MDI client window (which
contains the MDI child frames).
For SDI (normal) frames, a 'main' window is specified as taking up the remaining
space.
Because the event system is used, this technique can be applied to any windows,
which are not necessarily 'aware' of the layout classes (no virtual functions in
wxWindow refer to wxLayoutAlgorithm or its events). However, you may
wish to use wxSashLayoutWindow for your subwindows since this class provides
handlers for the required events, and accessors to specify the desired size of
the window. The sash behaviour in the base class can be used, optionally, to
make the windows user-resizable.
wxLayoutAlgorithm is typically used in IDE (integrated development
environment) applications, where there are several resizable windows in addition
to the MDI client window, or other primary editing window. Resizable windows
might include toolbars, a project window, and a window for displaying error and
warning messages.
When a window receives an OnCalculateLayout event, it should call SetRect in the
given event object, to be the old supplied rectangle minus whatever space the
window takes up. It should also set its own size accordingly.
wxSashLayoutWindow::OnCalculateLayout (not implemented in wx) generates an
OnQueryLayoutInfo event which it sends to itself to determine the orientation,
alignment and size of the window, which it gets from internal member variables
set by the application.
The algorithm works by starting off with a rectangle equal to the whole frame
client area. It iterates through the frame children, generating
wxLayoutAlgorithm::OnCalculateLayout events which subtract the window size and
return the remaining rectangle for the next window to process. It is assumed (by
wxSashLayoutWindow::OnCalculateLayout (not implemented in wx)) that a window
stretches the full dimension of the frame client, according to the orientation
it specifies. For example, a horizontal window will stretch the full width of
the remaining portion of the frame client area. In the other orientation, the
window will be fixed to whatever size was specified by
wxLayoutAlgorithm::OnQueryLayoutInfo. An alignment setting will make the window
'stick' to the left, top, right or bottom of the remaining client area. This
scheme implies that order of window creation is important. Say you wish to have
an extra toolbar at the top of the frame, a project window to the left of the
MDI client window, and an output window above the status bar. You should
therefore create the windows in this order: toolbar, output window, project
window. This ensures that the toolbar and output window take up space at the top
and bottom, and then the remaining height in-between is used for the project
window.
wxLayoutAlgorithm is quite independent of the way in which
wxLayoutAlgorithm::OnCalculateLayout chooses to interpret a window's size and
alignment. Therefore you could implement a different window class with a new
wxLayoutAlgorithm::OnCalculateLayout event handler, that has a more
sophisticated way of laying out the windows. It might allow specification of
whether stretching occurs in the specified orientation, for example, rather than
always assuming stretching. (This could, and probably should, be added to the
existing implementation).
Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints (not
implemented in wx). It is an alternative way of specifying layouts for which the
normal constraint system is unsuitable.
See: wxSashEvent, wxSashLayoutWindow,
Overview events
wxWidgets docs:
wxLayoutAlgorithm

 Summary

 Types

 wxLayoutAlgorithm()

 Functions

 destroy(This)

 Destructor.

 layoutFrame(This, Frame)

 layoutFrame/3

 Lays out the children of a normal frame.

 layoutMDIFrame(This, Frame)

 layoutMDIFrame/3

 Lays out the children of an MDI parent frame.

 layoutWindow(This, Parent)

 layoutWindow/3

 Lays out the children of a normal frame or other window.

 new()

 Default constructor.

 Types

 Link to this type

 wxLayoutAlgorithm()

 View Source

 -type wxLayoutAlgorithm() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxLayoutAlgorithm()) -> ok.

Destructor.

 Link to this function

 layoutFrame(This, Frame)

 View Source

 -spec layoutFrame(This, Frame) -> boolean() when This :: wxLayoutAlgorithm(), Frame :: wxFrame:wxFrame().

 Link to this function

 layoutFrame/3

 View Source

 -spec layoutFrame(This, Frame, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Frame :: wxFrame:wxFrame(),
 Option :: {mainWindow, wxWindow:wxWindow()}.

Lays out the children of a normal frame.
mainWindow is set to occupy the remaining space. This function simply calls
layoutWindow/3.

 Link to this function

 layoutMDIFrame(This, Frame)

 View Source

 -spec layoutMDIFrame(This, Frame) -> boolean()
 when This :: wxLayoutAlgorithm(), Frame :: wxMDIParentFrame:wxMDIParentFrame().

 Link to this function

 layoutMDIFrame/3

 View Source

 -spec layoutMDIFrame(This, Frame, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Frame :: wxMDIParentFrame:wxMDIParentFrame(),
 Option ::
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Lays out the children of an MDI parent frame.
If rect is non-NULL, the given rectangle will be used as a starting point
instead of the frame's client area. The MDI client window is set to occupy the
remaining space.

 Link to this function

 layoutWindow(This, Parent)

 View Source

 -spec layoutWindow(This, Parent) -> boolean()
 when This :: wxLayoutAlgorithm(), Parent :: wxWindow:wxWindow().

 Link to this function

 layoutWindow/3

 View Source

 -spec layoutWindow(This, Parent, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Parent :: wxWindow:wxWindow(),
 Option :: {mainWindow, wxWindow:wxWindow()}.

Lays out the children of a normal frame or other window.
mainWindow is set to occupy the remaining space. If this is not specified,
then the last window that responds to a calculate layout event in query mode
will get the remaining space (that is, a non-query OnCalculateLayout event will
not be sent to this window and the window will be set to the remaining size).

 Link to this function

 new()

 View Source

 -spec new() -> wxLayoutAlgorithm().

Default constructor.

wxListBox

Functions for wxListBox class
A listbox is used to select one or more of a list of strings.
The strings are displayed in a scrolling box, with the selected string(s) marked
in reverse video. A listbox can be single selection (if an item is selected, the
previous selection is removed) or multiple selection (clicking an item toggles
the item on or off independently of other selections).
List box elements are numbered from zero and while the maximal number of
elements is unlimited, it is usually better to use a virtual control, not
requiring to add all the items to it at once, such as wxDataViewCtrl (not
implemented in wx) or wxListCtrl with wxLC_VIRTUAL style, once more than a
few hundreds items need to be displayed because this control is not optimized,
neither from performance nor from user interface point of view, for large number
of items.
Notice that the list box doesn't support control characters other than TAB.
Styles
This class supports the following styles:
See: wxEditableListBox (not implemented in wx), wxChoice, wxComboBox,
wxListCtrl, wxCommandEvent
This class is derived (and can use functions) from: wxControlWithItems
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxListBox

 Events

Event types emitted from this class:
command_listbox_selected,
command_listbox_doubleclicked

 Summary

 Types

 wxListBox()

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 create/7

 deselect(This, N)

 Deselects an item in the list box.

 destroy(This)

 Destructor, destroying the list box.

 getSelections(This)

 Fill an array of ints with the positions of the currently selected items.

 hitTest(This, Point)

 Returns the item located at point, or wxNOT_FOUND if there is no item
located at point.

 hitTest(This, X, Y)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 insertItems(This, Items, Pos)

 Insert the given number of strings before the specified position.

 isSelected(This, N)

 Determines whether an item is selected.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a list box.

 set(This, Items)

 Replaces the current control contents with the given items.

 setFirstItem/2

 Set the specified item to be the first visible item.

 Types

 Link to this type

 wxListBox()

 View Source

 -type wxListBox() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Pos, Size, Choices)

 View Source

 -spec create(This, Parent, Id, Pos, Size, Choices) -> boolean()
 when
 This :: wxListBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

 Link to this function

 create/7

 View Source

 -spec create(This, Parent, Id, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxListBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 Link to this function

 deselect(This, N)

 View Source

 -spec deselect(This, N) -> ok when This :: wxListBox(), N :: integer().

Deselects an item in the list box.
Remark: This applies to multiple selection listboxes only.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxListBox()) -> ok.

Destructor, destroying the list box.

 Link to this function

 getSelections(This)

 View Source

 -spec getSelections(This) -> Result
 when Result :: {Res :: integer(), Selections :: [integer()]}, This :: wxListBox().

Fill an array of ints with the positions of the currently selected items.
Return: The number of selections.
Remark: Use this with a multiple selection listbox.
See: wxControlWithItems:getSelection/1,
wxControlWithItems:getStringSelection/1, wxControlWithItems:setSelection/2

 Link to this function

 hitTest(This, Point)

 View Source

 -spec hitTest(This, Point) -> integer()
 when This :: wxListBox(), Point :: {X :: integer(), Y :: integer()}.

Returns the item located at point, or wxNOT_FOUND if there is no item
located at point.
It is currently implemented for wxMSW, wxMac and wxGTK2 ports.
Return: Item located at point, or wxNOT_FOUND if unimplemented or the item does
not exist.
Since: 2.7.0

 Link to this function

 hitTest(This, X, Y)

 View Source

 -spec hitTest(This, X, Y) -> integer() when This :: wxListBox(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 insertItems(This, Items, Pos)

 View Source

 -spec insertItems(This, Items, Pos) -> ok
 when This :: wxListBox(), Items :: [unicode:chardata()], Pos :: integer().

Insert the given number of strings before the specified position.

 Link to this function

 isSelected(This, N)

 View Source

 -spec isSelected(This, N) -> boolean() when This :: wxListBox(), N :: integer().

Determines whether an item is selected.
Return: true if the given item is selected, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxListBox().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxListBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxListBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a list box.
See the other new/3 constructor; the only difference is that this overload
takes a wxArrayString (not implemented in wx) instead of a pointer to an array
of wxString (not implemented in wx).

 Link to this function

 set(This, Items)

 View Source

 -spec set(This, Items) -> ok when This :: wxListBox(), Items :: [unicode:chardata()].

Replaces the current control contents with the given items.
Notice that calling this method is usually much faster than appending them one
by one if you need to add a lot of items.

 Link to this function

 setFirstItem/2

 View Source

 -spec setFirstItem(This, N) -> ok when This :: wxListBox(), N :: integer();
 (This, String) -> ok when This :: wxListBox(), String :: unicode:chardata().

Set the specified item to be the first visible item.

wxListCtrl

Functions for wxListCtrl class
A list control presents lists in a number of formats: list view, report view,
icon view and small icon view. In any case, elements are numbered from zero. For
all these modes, the items are stored in the control and must be added to it
using insertItem/4 method.
A special case of report view quite different from the other modes of the list
control is a virtual control in which the items data (including text, images and
attributes) is managed by the main program and is requested by the control
itself only when needed which allows having controls with millions of items
without consuming much memory. To use virtual list control you must use
setItemCount/2 first and override at least wxListCtrl::OnGetItemText (not
implemented in wx) (and optionally wxListCtrl::OnGetItemImage (not implemented
in wx) or wxListCtrl::OnGetItemColumnImage (not implemented in wx) and
wxListCtrl::OnGetItemAttr (not implemented in wx)) to return the information
about the items when the control requests it.
Virtual list control can be used as a normal one except that no operations which
can take time proportional to the number of items in the control happen - this
is required to allow having a practically infinite number of items. For example,
in a multiple selection virtual list control, the selections won't be sent when
many items are selected at once because this could mean iterating over all the
items.
Using many of wxListCtrl features is shown in the corresponding sample.
To intercept events from a list control, use the event table macros described in
wxListEvent.
wxMac Note: Starting with wxWidgets 2.8, wxListCtrl uses a native
implementation for report mode, and uses a generic implementation for other
modes. You can use the generic implementation for report mode as well by setting
the mac.listctrl.always_use_generic system option (see wxSystemOptions)
to 1.
Styles
This class supports the following styles:
Note: Under wxMSW this control uses wxSystemThemedControl (not implemented in
wx) for an explorer style appearance by default since wxWidgets 3.1.0. If this
is not desired, you can call wxSystemThemedControl::EnableSystemTheme (not
implemented in wx) with false argument to disable this.
See:
Overview listctrl,
wxListView, wxListBox, wxTreeCtrl, wxImageList, wxListEvent,
wxListItem, wxEditableListBox (not implemented in wx)
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxListCtrl

 Events

Event types emitted from this class:
command_list_begin_drag,
command_list_begin_rdrag,
command_list_begin_label_edit,
command_list_end_label_edit,
command_list_delete_item,
command_list_delete_all_items,
command_list_item_selected,
command_list_item_deselected,
command_list_item_activated,
command_list_item_focused,
command_list_item_middle_click,
command_list_item_right_click,
command_list_key_down,
command_list_insert_item,
command_list_col_click,
command_list_col_right_click,
command_list_col_begin_drag,
command_list_col_dragging,
command_list_col_end_drag,
command_list_cache_hint

 Summary

 Types

 wxListCtrl()

 Functions

 arrange(This)

 arrange/2

 Arranges the items in icon or small icon view.

 assignImageList(This, ImageList, Which)

 Sets the image list associated with the control and takes ownership of it (i.e.

 clearAll(This)

 Deletes all items and all columns.

 create/3

 Creates the list control.

 deleteAllItems(This)

 Deletes all items in the list control.

 deleteColumn(This, Col)

 Deletes a column.

 deleteItem(This, Item)

 Deletes the specified item.

 destroy(This)

 Destructor, destroying the list control.

 editLabel(This, Item)

 Starts editing the label of the given item.

 ensureVisible(This, Item)

 Ensures this item is visible.

 findItem(This, Start, Str)

 findItem/4

 Find an item nearest this position in the specified direction, starting from
start or the beginning if start is -1.

 getColumn(This, Col, Item)

 Gets information about this column.

 getColumnCount(This)

 Returns the number of columns.

 getColumnWidth(This, Col)

 Gets the column width (report view only).

 getCountPerPage(This)

 Gets the number of items that can fit vertically in the visible area of the list
control (list or report view) or the total number of items in the list control
(icon or small icon view).

 getEditControl(This)

 Returns the edit control being currently used to edit a label.

 getImageList(This, Which)

 Returns the specified image list.

 getItem(This, Info)

 Gets information about the item.

 getItemBackgroundColour(This, Item)

 Returns the colour for this item.

 getItemCount(This)

 Returns the number of items in the list control.

 getItemData(This, Item)

 Gets the application-defined data associated with this item.

 getItemFont(This, Item)

 Returns the item's font.

 getItemPosition(This, Item)

 Returns the position of the item, in icon or small icon view.

 getItemRect(This, Item)

 getItemRect/3

 Returns the rectangle representing the item's size and position, in physical
coordinates.

 getItemSpacing(This)

 Retrieves the spacing between icons in pixels: horizontal spacing is returned as
x component of the {Width,Height} object and the vertical spacing as its y
component.

 getItemState(This, Item, StateMask)

 Gets the item state.

 getItemText(This, Item)

 getItemText/3

 Gets the item text for this item.

 getItemTextColour(This, Item)

 Returns the colour for this item.

 getNextItem(This, Item)

 getNextItem/3

 Searches for an item with the given geometry or state, starting from item but
excluding the item itself.

 getSelectedItemCount(This)

 Returns the number of selected items in the list control.

 getTextColour(This)

 Gets the text colour of the list control.

 getTopItem(This)

 Gets the index of the topmost visible item when in list or report view.

 getViewRect(This)

 Returns the rectangle taken by all items in the control.

 hitTest(This, Point)

 Determines which item (if any) is at the specified point, giving details in
flags.

 insertColumn/3

 For report view mode (only), inserts a column.

 insertColumn/4

 For report view mode (only), inserts a column.

 insertItem(This, Info)

 Inserts an item, returning the index of the new item if successful, -1
otherwise.

 insertItem/3

 Insert a string item.

 insertItem(This, Index, Label, ImageIndex)

 Insert an image/string item.

 new()

 Default constructor.

 new/2

 Constructor, creating and showing a list control.

 refreshItem(This, Item)

 Redraws the given item.

 refreshItems(This, ItemFrom, ItemTo)

 Redraws the items between itemFrom and itemTo.

 scrollList(This, Dx, Dy)

 Scrolls the list control.

 setBackgroundColour(This, Col)

 Sets the background colour.

 setColumn(This, Col, Item)

 Sets information about this column.

 setColumnWidth(This, Col, Width)

 Sets the column width.

 setImageList(This, ImageList, Which)

 Sets the image list associated with the control.

 setItem(This, Info)

 Sets the data of an item.

 setItem(This, Index, Column, Label)

 setItem/5

 Sets an item string field at a particular column.

 setItemBackgroundColour(This, Item, Col)

 Sets the background colour for this item.

 setItemColumnImage(This, Item, Column, Image)

 Sets the image associated with the item.

 setItemCount(This, Count)

 This method can only be used with virtual list controls.

 setItemData(This, Item, Data)

 Associates application-defined data with this item.

 setItemFont(This, Item, Font)

 Sets the item's font.

 setItemImage(This, Item, Image)

 setItemImage/4

 Sets the unselected and selected images associated with the item.

 setItemPosition(This, Item, Pos)

 Sets the position of the item, in icon or small icon view.

 setItemState(This, Item, State, StateMask)

 Sets the item state.

 setItemText(This, Item, Text)

 Sets the item text for this item.

 setItemTextColour(This, Item, Col)

 Sets the colour for this item.

 setSingleStyle(This, Style)

 setSingleStyle/3

 Adds or removes a single window style.

 setTextColour(This, Col)

 Sets the text colour of the list control.

 setWindowStyleFlag(This, Style)

 Sets the whole window style, deleting all items.

 sortItems(This, SortCallBack)

 Sort the items in the list control.

 Types

 Link to this type

 wxListCtrl()

 View Source

 -type wxListCtrl() :: wx:wx_object().

 Functions

 Link to this function

 arrange(This)

 View Source

 -spec arrange(This) -> boolean() when This :: wxListCtrl().

 Link to this function

 arrange/2

 View Source

 -spec arrange(This, [Option]) -> boolean() when This :: wxListCtrl(), Option :: {flag, integer()}.

Arranges the items in icon or small icon view.
This only has effect on Win32. flag is one of:

 Link to this function

 assignImageList(This, ImageList, Which)

 View Source

 -spec assignImageList(This, ImageList, Which) -> ok
 when
 This :: wxListCtrl(),
 ImageList :: wxImageList:wxImageList(),
 Which :: integer().

Sets the image list associated with the control and takes ownership of it (i.e.
the control will, unlike when using setImageList/3, delete the list when
destroyed). which is one of wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL,
wxIMAGE_LIST_STATE (the last is unimplemented).
See: setImageList/3

 Link to this function

 clearAll(This)

 View Source

 -spec clearAll(This) -> ok when This :: wxListCtrl().

Deletes all items and all columns.
Note: This sends an event of type wxEVT_LIST_DELETE_ALL_ITEMS under all
platforms.

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxWindow:wxWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}.

Creates the list control.
See new/2 for further details.

 Link to this function

 deleteAllItems(This)

 View Source

 -spec deleteAllItems(This) -> boolean() when This :: wxListCtrl().

Deletes all items in the list control.
This function does not send the wxEVT_LIST_DELETE_ITEM event because
deleting many items from the control would be too slow then (unlike
deleteItem/2) but it does send the special wxEVT_LIST_DELETE_ALL_ITEMS event
if the control was not empty. If it was already empty, nothing is done and no
event is sent.
Return: true if the items were successfully deleted or if the control was
already empty, false if an error occurred while deleting the items.

 Link to this function

 deleteColumn(This, Col)

 View Source

 -spec deleteColumn(This, Col) -> boolean() when This :: wxListCtrl(), Col :: integer().

Deletes a column.

 Link to this function

 deleteItem(This, Item)

 View Source

 -spec deleteItem(This, Item) -> boolean() when This :: wxListCtrl(), Item :: integer().

Deletes the specified item.
This function sends the wxEVT_LIST_DELETE_ITEM event for the item being
deleted.
See: deleteAllItems/1

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxListCtrl()) -> ok.

Destructor, destroying the list control.

 Link to this function

 editLabel(This, Item)

 View Source

 -spec editLabel(This, Item) -> wxTextCtrl:wxTextCtrl() when This :: wxListCtrl(), Item :: integer().

Starts editing the label of the given item.
This function generates a EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed
so that no text control will appear for in-place editing.
If the user changed the label (i.e. s/he does not press ESC or leave the text
control without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which
can be vetoed as well.

 Link to this function

 ensureVisible(This, Item)

 View Source

 -spec ensureVisible(This, Item) -> boolean() when This :: wxListCtrl(), Item :: integer().

Ensures this item is visible.

 Link to this function

 findItem(This, Start, Str)

 View Source

 -spec findItem(This, Start, Str) -> integer()
 when This :: wxListCtrl(), Start :: integer(), Str :: unicode:chardata().

 Link to this function

 findItem/4

 View Source

 -spec findItem(This, Start, Str, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Start :: integer(),
 Str :: unicode:chardata(),
 Option :: {partial, boolean()};
 (This, Start, Pt, Direction) -> integer()
 when
 This :: wxListCtrl(),
 Start :: integer(),
 Pt :: {X :: integer(), Y :: integer()},
 Direction :: integer().

Find an item nearest this position in the specified direction, starting from
start or the beginning if start is -1.
Return: The next matching item if any or -1 (wxNOT_FOUND) otherwise.

 Link to this function

 getColumn(This, Col, Item)

 View Source

 -spec getColumn(This, Col, Item) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Item :: wxListItem:wxListItem().

Gets information about this column.
See setItem/5 for more information.

 Link to this function

 getColumnCount(This)

 View Source

 -spec getColumnCount(This) -> integer() when This :: wxListCtrl().

Returns the number of columns.

 Link to this function

 getColumnWidth(This, Col)

 View Source

 -spec getColumnWidth(This, Col) -> integer() when This :: wxListCtrl(), Col :: integer().

Gets the column width (report view only).

 Link to this function

 getCountPerPage(This)

 View Source

 -spec getCountPerPage(This) -> integer() when This :: wxListCtrl().

Gets the number of items that can fit vertically in the visible area of the list
control (list or report view) or the total number of items in the list control
(icon or small icon view).

 Link to this function

 getEditControl(This)

 View Source

 -spec getEditControl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxListCtrl().

Returns the edit control being currently used to edit a label.
Returns NULL if no label is being edited.
Note: It is currently only implemented for wxMSW and the generic version, not
for the native macOS version.

 Link to this function

 getImageList(This, Which)

 View Source

 -spec getImageList(This, Which) -> wxImageList:wxImageList()
 when This :: wxListCtrl(), Which :: integer().

Returns the specified image list.
which may be one of:

 Link to this function

 getItem(This, Info)

 View Source

 -spec getItem(This, Info) -> boolean() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Gets information about the item.
See setItem/5 for more information.
You must call info.SetId() to set the ID of item you're interested in before
calling this method, and info.SetMask() with the flags indicating what fields
you need to retrieve from info.

 Link to this function

 getItemBackgroundColour(This, Item)

 View Source

 -spec getItemBackgroundColour(This, Item) -> wx:wx_colour4()
 when This :: wxListCtrl(), Item :: integer().

Returns the colour for this item.
If the item has no specific colour, returns an invalid colour (and not the
default background control of the control itself).
See: getItemTextColour/2

 Link to this function

 getItemCount(This)

 View Source

 -spec getItemCount(This) -> integer() when This :: wxListCtrl().

Returns the number of items in the list control.

 Link to this function

 getItemData(This, Item)

 View Source

 -spec getItemData(This, Item) -> integer() when This :: wxListCtrl(), Item :: integer().

Gets the application-defined data associated with this item.

 Link to this function

 getItemFont(This, Item)

 View Source

 -spec getItemFont(This, Item) -> wxFont:wxFont() when This :: wxListCtrl(), Item :: integer().

Returns the item's font.

 Link to this function

 getItemPosition(This, Item)

 View Source

 -spec getItemPosition(This, Item) -> Result
 when
 Result :: {Res :: boolean(), Pos :: {X :: integer(), Y :: integer()}},
 This :: wxListCtrl(),
 Item :: integer().

Returns the position of the item, in icon or small icon view.

 Link to this function

 getItemRect(This, Item)

 View Source

 -spec getItemRect(This, Item) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxListCtrl(),
 Item :: integer().

 Link to this function

 getItemRect/3

 View Source

 -spec getItemRect(This, Item, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxListCtrl(),
 Item :: integer(),
 Option :: {code, integer()}.

Returns the rectangle representing the item's size and position, in physical
coordinates.
code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON, wxLIST_RECT_LABEL.

 Link to this function

 getItemSpacing(This)

 View Source

 -spec getItemSpacing(This) -> {W :: integer(), H :: integer()} when This :: wxListCtrl().

Retrieves the spacing between icons in pixels: horizontal spacing is returned as
x component of the {Width,Height} object and the vertical spacing as its y
component.

 Link to this function

 getItemState(This, Item, StateMask)

 View Source

 -spec getItemState(This, Item, StateMask) -> integer()
 when This :: wxListCtrl(), Item :: integer(), StateMask :: integer().

Gets the item state.
For a list of state flags, see setItem/5. The stateMask indicates which
state flags are of interest.

 Link to this function

 getItemText(This, Item)

 View Source

 -spec getItemText(This, Item) -> unicode:charlist() when This :: wxListCtrl(), Item :: integer().

 Link to this function

 getItemText/3

 View Source

 -spec getItemText(This, Item, [Option]) -> unicode:charlist()
 when This :: wxListCtrl(), Item :: integer(), Option :: {col, integer()}.

Gets the item text for this item.

 Link to this function

 getItemTextColour(This, Item)

 View Source

 -spec getItemTextColour(This, Item) -> wx:wx_colour4() when This :: wxListCtrl(), Item :: integer().

Returns the colour for this item.
If the item has no specific colour, returns an invalid colour (and not the
default foreground control of the control itself as this wouldn't allow
distinguishing between items having the same colour as the current control
foreground and items with default colour which, hence, have always the same
colour as the control).

 Link to this function

 getNextItem(This, Item)

 View Source

 -spec getNextItem(This, Item) -> integer() when This :: wxListCtrl(), Item :: integer().

 Link to this function

 getNextItem/3

 View Source

 -spec getNextItem(This, Item, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Option :: {geometry, integer()} | {state, integer()}.

Searches for an item with the given geometry or state, starting from item but
excluding the item itself.
If item is -1, the first item that matches the specified flags will be
returned. Returns the first item with given state following item or -1 if no
such item found. This function may be used to find all selected items in the
control like this:
geometry can be one of:
Note: this parameter is only supported by wxMSW currently and ignored on other
platforms.
state can be a bitlist of the following:

 Link to this function

 getSelectedItemCount(This)

 View Source

 -spec getSelectedItemCount(This) -> integer() when This :: wxListCtrl().

Returns the number of selected items in the list control.

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListCtrl().

Gets the text colour of the list control.

 Link to this function

 getTopItem(This)

 View Source

 -spec getTopItem(This) -> integer() when This :: wxListCtrl().

Gets the index of the topmost visible item when in list or report view.

 Link to this function

 getViewRect(This)

 View Source

 -spec getViewRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxListCtrl().

Returns the rectangle taken by all items in the control.
In other words, if the controls client size were equal to the size of this
rectangle, no scrollbars would be needed and no free space would be left.
Note that this function only works in the icon and small icon views, not in list
or report views (this is a limitation of the native Win32 control).

 Link to this function

 hitTest(This, Point)

 View Source

 -spec hitTest(This, Point) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer(), PtrSubItem :: integer()},
 This :: wxListCtrl(),
 Point :: {X :: integer(), Y :: integer()}.

Determines which item (if any) is at the specified point, giving details in
flags.
Returns index of the item or wxNOT_FOUND if no item is at the specified point.
flags will be a combination of the following flags:
If ptrSubItem is not NULL and the wxListCtrl is in the report mode the
subitem (or column) number will also be provided. This feature is only available
in version 2.7.0 or higher and is currently only implemented under wxMSW and
requires at least comctl32.dll of version 4.70 on the host system or the value
stored in ptrSubItem will be always -1. To compile this feature into wxWidgets
library you need to have access to commctrl.h of version 4.70 that is provided
by Microsoft.

 Link to this function

 insertColumn/3

 View Source

 -spec insertColumn(This, Col, Heading) -> integer()
 when This :: wxListCtrl(), Col :: integer(), Heading :: unicode:chardata();
 (This, Col, Info) -> integer()
 when This :: wxListCtrl(), Col :: integer(), Info :: wxListItem:wxListItem().

For report view mode (only), inserts a column.
For more details, see setItem/5. Also see insertColumn/4 overload for a
usually more convenient alternative to this method and the description of how
the item width is interpreted by this method.

 Link to this function

 insertColumn/4

 View Source

 -spec insertColumn(This, Col, Heading, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Col :: integer(),
 Heading :: unicode:chardata(),
 Option :: {format, integer()} | {width, integer()}.

For report view mode (only), inserts a column.
Insert a new column in the list control in report view mode at the given
position specifying its most common attributes.
Notice that to set the image for the column you need to use insertColumn/4
overload and specify ?wxLIST_MASK_IMAGE in the item mask.
Return: The index of the inserted column or -1 if adding it failed.

 Link to this function

 insertItem(This, Info)

 View Source

 -spec insertItem(This, Info) -> integer() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Inserts an item, returning the index of the new item if successful, -1
otherwise.

 Link to this function

 insertItem/3

 View Source

 -spec insertItem(This, Index, ImageIndex) -> integer()
 when This :: wxListCtrl(), Index :: integer(), ImageIndex :: integer();
 (This, Index, Label) -> integer()
 when This :: wxListCtrl(), Index :: integer(), Label :: unicode:chardata().

Insert a string item.

 Link to this function

 insertItem(This, Index, Label, ImageIndex)

 View Source

 -spec insertItem(This, Index, Label, ImageIndex) -> integer()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Label :: unicode:chardata(),
 ImageIndex :: integer().

Insert an image/string item.

 Link to this function

 new()

 View Source

 -spec new() -> wxListCtrl().

Default constructor.

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxListCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}.

Constructor, creating and showing a list control.
See: create/3, wxValidator (not implemented in wx)

 Link to this function

 refreshItem(This, Item)

 View Source

 -spec refreshItem(This, Item) -> ok when This :: wxListCtrl(), Item :: integer().

Redraws the given item.
This is only useful for the virtual list controls as without calling this
function the displayed value of the item doesn't change even when the underlying
data does change.
See: refreshItems/3

 Link to this function

 refreshItems(This, ItemFrom, ItemTo)

 View Source

 -spec refreshItems(This, ItemFrom, ItemTo) -> ok
 when This :: wxListCtrl(), ItemFrom :: integer(), ItemTo :: integer().

Redraws the items between itemFrom and itemTo.
The starting item must be less than or equal to the ending one.
Just as refreshItem/2 this is only useful for virtual list controls.

 Link to this function

 scrollList(This, Dx, Dy)

 View Source

 -spec scrollList(This, Dx, Dy) -> boolean() when This :: wxListCtrl(), Dx :: integer(), Dy :: integer().

Scrolls the list control.
If in icon, small icon or report view mode, dx specifies the number of pixels
to scroll. If in list view mode, dx specifies the number of columns to scroll.
dy always specifies the number of pixels to scroll vertically.
Note: This method is currently only implemented in the Windows version.

 Link to this function

 setBackgroundColour(This, Col)

 View Source

 -spec setBackgroundColour(This, Col) -> boolean() when This :: wxListCtrl(), Col :: wx:wx_colour().

Sets the background colour.
Note that the wxWindow:getBackgroundColour/1 function of wxWindow base
class can be used to retrieve the current background colour.

 Link to this function

 setColumn(This, Col, Item)

 View Source

 -spec setColumn(This, Col, Item) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Item :: wxListItem:wxListItem().

Sets information about this column.
See setItem/5 for more information.

 Link to this function

 setColumnWidth(This, Col, Width)

 View Source

 -spec setColumnWidth(This, Col, Width) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Width :: integer().

Sets the column width.
width can be a width in pixels or wxLIST_AUTOSIZE (-1) or
wxLIST_AUTOSIZE_USEHEADER (-2).
wxLIST_AUTOSIZE will resize the column to the length of its longest item.
wxLIST_AUTOSIZE_USEHEADER will resize the column to the length of the header
(Win32) or 80 pixels (other platforms).
In small or normal icon view, col must be -1, and the column width is set for
all columns.

 Link to this function

 setImageList(This, ImageList, Which)

 View Source

 -spec setImageList(This, ImageList, Which) -> ok
 when
 This :: wxListCtrl(),
 ImageList :: wxImageList:wxImageList(),
 Which :: integer().

Sets the image list associated with the control.
which is one of wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL,
wxIMAGE_LIST_STATE (the last is unimplemented).
This method does not take ownership of the image list, you have to delete it
yourself.
See: assignImageList/3

 Link to this function

 setItem(This, Info)

 View Source

 -spec setItem(This, Info) -> boolean() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Sets the data of an item.
Using the wxListItem's mask and state mask, you can change only selected
attributes of a wxListCtrl item.
Return: true if the item was successfully updated or false if the update failed
for some reason (e.g. an invalid item index).

 Link to this function

 setItem(This, Index, Column, Label)

 View Source

 -spec setItem(This, Index, Column, Label) -> boolean()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Column :: integer(),
 Label :: unicode:chardata().

 Link to this function

 setItem/5

 View Source

 -spec setItem(This, Index, Column, Label, [Option]) -> boolean()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Column :: integer(),
 Label :: unicode:chardata(),
 Option :: {imageId, integer()}.

Sets an item string field at a particular column.
Return: true if the item was successfully updated or false if the update failed
for some reason (e.g. an invalid item index).

 Link to this function

 setItemBackgroundColour(This, Item, Col)

 View Source

 -spec setItemBackgroundColour(This, Item, Col) -> ok
 when This :: wxListCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the background colour for this item.
This function only works in report view mode. The colour can be retrieved using
getItemBackgroundColour/2.

 Link to this function

 setItemColumnImage(This, Item, Column, Image)

 View Source

 -spec setItemColumnImage(This, Item, Column, Image) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Column :: integer(),
 Image :: integer().

Sets the image associated with the item.
In report view, you can specify the column. The image is an index into the image
list associated with the list control.

 Link to this function

 setItemCount(This, Count)

 View Source

 -spec setItemCount(This, Count) -> ok when This :: wxListCtrl(), Count :: integer().

This method can only be used with virtual list controls.
It is used to indicate to the control the number of items it contains. After
calling it, the main program should be ready to handle calls to various item
callbacks (such as wxListCtrl::OnGetItemText (not implemented in wx)) for all
items in the range from 0 to count.
Notice that the control is not necessarily redrawn after this call as it may be
undesirable if an item which is not visible on the screen anyhow was added to or
removed from a control displaying many items, if you do need to refresh the
display you can just call wxWindow:refresh/2 manually.

 Link to this function

 setItemData(This, Item, Data)

 View Source

 -spec setItemData(This, Item, Data) -> boolean()
 when This :: wxListCtrl(), Item :: integer(), Data :: integer().

Associates application-defined data with this item.
Notice that this function cannot be used to associate pointers with the control
items, use SetItemPtrData() (not implemented in wx) instead.

 Link to this function

 setItemFont(This, Item, Font)

 View Source

 -spec setItemFont(This, Item, Font) -> ok
 when This :: wxListCtrl(), Item :: integer(), Font :: wxFont:wxFont().

Sets the item's font.

 Link to this function

 setItemImage(This, Item, Image)

 View Source

 -spec setItemImage(This, Item, Image) -> boolean()
 when This :: wxListCtrl(), Item :: integer(), Image :: integer().

 Link to this function

 setItemImage/4

 View Source

 -spec setItemImage(This, Item, Image, [Option]) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Image :: integer(),
 Option :: {selImage, integer()}.

Sets the unselected and selected images associated with the item.
The images are indices into the image list associated with the list control.

 Link to this function

 setItemPosition(This, Item, Pos)

 View Source

 -spec setItemPosition(This, Item, Pos) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Pos :: {X :: integer(), Y :: integer()}.

Sets the position of the item, in icon or small icon view.
Windows only.

 Link to this function

 setItemState(This, Item, State, StateMask)

 View Source

 -spec setItemState(This, Item, State, StateMask) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 State :: integer(),
 StateMask :: integer().

Sets the item state.
The stateMask is a combination of wxLIST_STATE_XXX constants described in
wxListItem documentation. For each of the bits specified in stateMask, the
corresponding state is set or cleared depending on whether state argument
contains the same bit or not.
So to select an item you can use while to deselect it you should use
Consider using wxListView if possible to avoid dealing with this error-prone
and confusing method.
Also notice that contrary to the usual rule that only user actions generate
events, this method does generate wxEVT_LIST_ITEM_SELECTED event when it is used
to select an item.

 Link to this function

 setItemText(This, Item, Text)

 View Source

 -spec setItemText(This, Item, Text) -> ok
 when This :: wxListCtrl(), Item :: integer(), Text :: unicode:chardata().

Sets the item text for this item.

 Link to this function

 setItemTextColour(This, Item, Col)

 View Source

 -spec setItemTextColour(This, Item, Col) -> ok
 when This :: wxListCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour for this item.
This function only works in report view. The colour can be retrieved using
getItemTextColour/2.

 Link to this function

 setSingleStyle(This, Style)

 View Source

 -spec setSingleStyle(This, Style) -> ok when This :: wxListCtrl(), Style :: integer().

 Link to this function

 setSingleStyle/3

 View Source

 -spec setSingleStyle(This, Style, [Option]) -> ok
 when This :: wxListCtrl(), Style :: integer(), Option :: {add, boolean()}.

Adds or removes a single window style.

 Link to this function

 setTextColour(This, Col)

 View Source

 -spec setTextColour(This, Col) -> ok when This :: wxListCtrl(), Col :: wx:wx_colour().

Sets the text colour of the list control.

 Link to this function

 setWindowStyleFlag(This, Style)

 View Source

 -spec setWindowStyleFlag(This, Style) -> ok when This :: wxListCtrl(), Style :: integer().

Sets the whole window style, deleting all items.

 Link to this function

 sortItems(This, SortCallBack)

 View Source

 -spec sortItems(This :: wxListCtrl(), SortCallBack) -> boolean()
 when SortCallBack :: fun((integer(), integer()) -> integer()).

Sort the items in the list control.
Sorts the items with supplied SortCallBack fun.
SortCallBack receives the client data associated with two items to compare
(NOT the the index), and should return 0 if the items are equal, a negative
value if the first item is less than the second one and a positive value if the
first item is greater than the second one.
Remark: Notice that the control may only be sorted on client data associated
with the items, so you must use SetItemData if you want to be able to sort the
items in the control.
The callback may not call other (wx) processes.

wxListEvent

Functions for wxListEvent class
A list event holds information about events associated with wxListCtrl
objects.
See: wxListCtrl
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxListEvent

 Events

Use wxEvtHandler:connect/3 with wxListEventType to
subscribe to events of this type.

 Summary

 Types

 wxList()

 wxListEvent()

 wxListEventType()

 Functions

 getCacheFrom(This)

 For EVT_LIST_CACHE_HINT event only: return the first item which the list
control advises us to cache.

 getCacheTo(This)

 For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the
list control advises us to cache.

 getColumn(This)

 The column position: it is only used with COL events.

 getData(This)

 The data.

 getImage(This)

 The image.

 getIndex(This)

 The item index.

 getItem(This)

 An item object, used by some events.

 getKeyCode(This)

 Key code if the event is a keypress event.

 getLabel(This)

 The (new) item label for EVT_LIST_END_LABEL_EDIT event.

 getMask(This)

 The mask.

 getPoint(This)

 The position of the mouse pointer if the event is a drag event.

 getText(This)

 The text.

 isEditCancelled(This)

 This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns
true if it the label editing has been cancelled by the user (getLabel/1
returns an empty string in this case but it doesn't allow the application to
distinguish between really cancelling the edit and the admittedly rare case when
the user wants to rename it to an empty string).

 Types

 Link to this type

 wxList()

 View Source

 -type wxList() ::
 #wxList{type :: wxListEvent:wxListEventType(),
 code :: integer(),
 oldItemIndex :: integer(),
 itemIndex :: integer(),
 col :: integer(),
 pointDrag :: {X :: integer(), Y :: integer()}}.

 Link to this type

 wxListEvent()

 View Source

 -type wxListEvent() :: wx:wx_object().

 Link to this type

 wxListEventType()

 View Source

 -type wxListEventType() ::
 command_list_begin_drag | command_list_begin_rdrag | command_list_begin_label_edit |
 command_list_end_label_edit | command_list_delete_item | command_list_delete_all_items |
 command_list_key_down | command_list_insert_item | command_list_col_click |
 command_list_col_right_click | command_list_col_begin_drag | command_list_col_dragging |
 command_list_col_end_drag | command_list_item_selected | command_list_item_deselected |
 command_list_item_right_click | command_list_item_middle_click | command_list_item_activated |
 command_list_item_focused | command_list_cache_hint.

 Functions

 Link to this function

 getCacheFrom(This)

 View Source

 -spec getCacheFrom(This) -> integer() when This :: wxListEvent().

For EVT_LIST_CACHE_HINT event only: return the first item which the list
control advises us to cache.

 Link to this function

 getCacheTo(This)

 View Source

 -spec getCacheTo(This) -> integer() when This :: wxListEvent().

For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the
list control advises us to cache.

 Link to this function

 getColumn(This)

 View Source

 -spec getColumn(This) -> integer() when This :: wxListEvent().

The column position: it is only used with COL events.
For the column dragging events, it is the column to the left of the divider
being dragged, for the column click events it may be -1 if the user clicked in
the list control header outside any column.

 Link to this function

 getData(This)

 View Source

 -spec getData(This) -> integer() when This :: wxListEvent().

The data.

 Link to this function

 getImage(This)

 View Source

 -spec getImage(This) -> integer() when This :: wxListEvent().

The image.

 Link to this function

 getIndex(This)

 View Source

 -spec getIndex(This) -> integer() when This :: wxListEvent().

The item index.

 Link to this function

 getItem(This)

 View Source

 -spec getItem(This) -> wxListItem:wxListItem() when This :: wxListEvent().

An item object, used by some events.
See also wxListCtrl:setItem/5.

 Link to this function

 getKeyCode(This)

 View Source

 -spec getKeyCode(This) -> integer() when This :: wxListEvent().

Key code if the event is a keypress event.

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxListEvent().

The (new) item label for EVT_LIST_END_LABEL_EDIT event.

 Link to this function

 getMask(This)

 View Source

 -spec getMask(This) -> integer() when This :: wxListEvent().

The mask.

 Link to this function

 getPoint(This)

 View Source

 -spec getPoint(This) -> {X :: integer(), Y :: integer()} when This :: wxListEvent().

The position of the mouse pointer if the event is a drag event.

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxListEvent().

The text.

 Link to this function

 isEditCancelled(This)

 View Source

 -spec isEditCancelled(This) -> boolean() when This :: wxListEvent().

This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns
true if it the label editing has been cancelled by the user (getLabel/1
returns an empty string in this case but it doesn't allow the application to
distinguish between really cancelling the edit and the admittedly rare case when
the user wants to rename it to an empty string).

wxListItem

Functions for wxListItem class
This class stores information about a wxListCtrl item or column.
wxListItem is a class which contains information about:
The wxListItem object can also contain item-specific colour and font
information: for this you need to call one of setTextColour/2,
setBackgroundColour/2 or setFont/2 functions on it passing it the
colour/font to use. If the colour/font is not specified, the default list
control colour/font is used.
See: wxListCtrl
wxWidgets docs:
wxListItem

 Summary

 Types

 wxListItem()

 Functions

 clear(This)

 Resets the item state to the default.

 destroy(This)

 Destroys the object.

 getAlign(This)

 Returns the alignment for this item.

 getBackgroundColour(This)

 Returns the background colour for this item.

 getColumn(This)

 Returns the zero-based column; meaningful only in report mode.

 getFont(This)

 Returns the font used to display the item.

 getId(This)

 Returns the zero-based item position.

 getImage(This)

 Returns the zero-based index of the image associated with the item into the
image list.

 getMask(This)

 Returns a bit mask indicating which fields of the structure are valid.

 getState(This)

 Returns a bit field representing the state of the item.

 getText(This)

 Returns the label/header text.

 getTextColour(This)

 Returns the text colour.

 getWidth(This)

 Meaningful only for column headers in report mode.

 new()

 Constructor.

 new(Item)

 setAlign(This, Align)

 Sets the alignment for the item.

 setBackgroundColour(This, ColBack)

 Sets the background colour for the item.

 setColumn(This, Col)

 Sets the zero-based column.

 setFont(This, Font)

 Sets the font for the item.

 setId(This, Id)

 Sets the zero-based item position.

 setImage(This, Image)

 Sets the zero-based index of the image associated with the item into the image
list.

 setMask(This, Mask)

 Sets the mask of valid fields.

 setState(This, State)

 Sets the item state flags (note that the valid state flags are influenced by the
value of the state mask, see setStateMask/2).

 setStateMask(This, StateMask)

 Sets the bitmask that is used to determine which of the state flags are to be
set.

 setText(This, Text)

 Sets the text label for the item.

 setTextColour(This, ColText)

 Sets the text colour for the item.

 setWidth(This, Width)

 Meaningful only for column headers in report mode.

 Types

 Link to this type

 wxListItem()

 View Source

 -type wxListItem() :: wx:wx_object().

 Functions

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxListItem().

Resets the item state to the default.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxListItem()) -> ok.

Destroys the object.

 Link to this function

 getAlign(This)

 View Source

 -spec getAlign(This) -> wx:wx_enum() when This :: wxListItem().

Returns the alignment for this item.
Can be one of wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or
wxLIST_FORMAT_CENTRE.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxListItem().

Returns the background colour for this item.

 Link to this function

 getColumn(This)

 View Source

 -spec getColumn(This) -> integer() when This :: wxListItem().

Returns the zero-based column; meaningful only in report mode.

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxListItem().

Returns the font used to display the item.

 Link to this function

 getId(This)

 View Source

 -spec getId(This) -> integer() when This :: wxListItem().

Returns the zero-based item position.

 Link to this function

 getImage(This)

 View Source

 -spec getImage(This) -> integer() when This :: wxListItem().

Returns the zero-based index of the image associated with the item into the
image list.

 Link to this function

 getMask(This)

 View Source

 -spec getMask(This) -> integer() when This :: wxListItem().

Returns a bit mask indicating which fields of the structure are valid.
Can be any combination of the following values:

 Link to this function

 getState(This)

 View Source

 -spec getState(This) -> integer() when This :: wxListItem().

Returns a bit field representing the state of the item.
Can be any combination of:

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxListItem().

Returns the label/header text.

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListItem().

Returns the text colour.

 Link to this function

 getWidth(This)

 View Source

 -spec getWidth(This) -> integer() when This :: wxListItem().

Meaningful only for column headers in report mode.
Returns the column width.

 Link to this function

 new()

 View Source

 -spec new() -> wxListItem().

Constructor.

 Link to this function

 new(Item)

 View Source

 -spec new(Item) -> wxListItem() when Item :: wxListItem().

 Link to this function

 setAlign(This, Align)

 View Source

 -spec setAlign(This, Align) -> ok when This :: wxListItem(), Align :: wx:wx_enum().

Sets the alignment for the item.
See also getAlign/1

 Link to this function

 setBackgroundColour(This, ColBack)

 View Source

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxListItem(), ColBack :: wx:wx_colour().

Sets the background colour for the item.

 Link to this function

 setColumn(This, Col)

 View Source

 -spec setColumn(This, Col) -> ok when This :: wxListItem(), Col :: integer().

Sets the zero-based column.
Meaningful only in report mode.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxListItem(), Font :: wxFont:wxFont().

Sets the font for the item.

 Link to this function

 setId(This, Id)

 View Source

 -spec setId(This, Id) -> ok when This :: wxListItem(), Id :: integer().

Sets the zero-based item position.

 Link to this function

 setImage(This, Image)

 View Source

 -spec setImage(This, Image) -> ok when This :: wxListItem(), Image :: integer().

Sets the zero-based index of the image associated with the item into the image
list.

 Link to this function

 setMask(This, Mask)

 View Source

 -spec setMask(This, Mask) -> ok when This :: wxListItem(), Mask :: integer().

Sets the mask of valid fields.
See getMask/1.

 Link to this function

 setState(This, State)

 View Source

 -spec setState(This, State) -> ok when This :: wxListItem(), State :: integer().

Sets the item state flags (note that the valid state flags are influenced by the
value of the state mask, see setStateMask/2).
See getState/1 for valid flag values.

 Link to this function

 setStateMask(This, StateMask)

 View Source

 -spec setStateMask(This, StateMask) -> ok when This :: wxListItem(), StateMask :: integer().

Sets the bitmask that is used to determine which of the state flags are to be
set.
See also setState/2.

 Link to this function

 setText(This, Text)

 View Source

 -spec setText(This, Text) -> ok when This :: wxListItem(), Text :: unicode:chardata().

Sets the text label for the item.

 Link to this function

 setTextColour(This, ColText)

 View Source

 -spec setTextColour(This, ColText) -> ok when This :: wxListItem(), ColText :: wx:wx_colour().

Sets the text colour for the item.

 Link to this function

 setWidth(This, Width)

 View Source

 -spec setWidth(This, Width) -> ok when This :: wxListItem(), Width :: integer().

Meaningful only for column headers in report mode.
Sets the column width.

wxListItemAttr

Functions for wxListItemAttr class
wxWidgets docs:
wxListItemAttr

 Summary

 Types

 wxListItemAttr()

 Functions

 destroy(This)

 Destroys the object.

 getBackgroundColour(This)

 getFont(This)

 getTextColour(This)

 hasBackgroundColour(This)

 hasFont(This)

 hasTextColour(This)

 new()

 new(ColText, ColBack, Font)

 setBackgroundColour(This, ColBack)

 setFont(This, Font)

 setTextColour(This, ColText)

 Types

 Link to this type

 wxListItemAttr()

 View Source

 -type wxListItemAttr() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxListItemAttr()) -> ok.

Destroys the object.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxListItemAttr().

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxListItemAttr().

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListItemAttr().

 Link to this function

 hasBackgroundColour(This)

 View Source

 -spec hasBackgroundColour(This) -> boolean() when This :: wxListItemAttr().

 Link to this function

 hasFont(This)

 View Source

 -spec hasFont(This) -> boolean() when This :: wxListItemAttr().

 Link to this function

 hasTextColour(This)

 View Source

 -spec hasTextColour(This) -> boolean() when This :: wxListItemAttr().

 Link to this function

 new()

 View Source

 -spec new() -> wxListItemAttr().

 Link to this function

 new(ColText, ColBack, Font)

 View Source

 -spec new(ColText, ColBack, Font) -> wxListItemAttr()
 when ColText :: wx:wx_colour(), ColBack :: wx:wx_colour(), Font :: wxFont:wxFont().

 Link to this function

 setBackgroundColour(This, ColBack)

 View Source

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxListItemAttr(), ColBack :: wx:wx_colour().

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxListItemAttr(), Font :: wxFont:wxFont().

 Link to this function

 setTextColour(This, ColText)

 View Source

 -spec setTextColour(This, ColText) -> ok when This :: wxListItemAttr(), ColText :: wx:wx_colour().

wxListView

Functions for wxListView class
This class currently simply presents a simpler to use interface for the
wxListCtrl - it can be thought of as a façade for that complicated class.
Using it is preferable to using wxListCtrl directly whenever possible
because in the future some ports might implement wxListView but not the full
set of wxListCtrl features.
Other than different interface, this class is identical to wxListCtrl. In
particular, it uses the same events, same window styles and so on.
See: setColumnImage/3
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxListView

 Summary

 Types

 wxListView()

 Functions

 clearColumnImage(This, Col)

 Resets the column image - after calling this function, no image will be shown.

 focus(This, Index)

 Sets focus to the item with the given index.

 getFirstSelected(This)

 Returns the first selected item in a (presumably) multiple selection control.

 getFocusedItem(This)

 Returns the currently focused item or -1 if none.

 getNextSelected(This, Item)

 Used together with getFirstSelected/1 to iterate over all selected items in
the control.

 isSelected(This, Index)

 Returns true if the item with the given index is selected, false otherwise.

 select(This, N)

 select/3

 Selects or unselects the given item.

 setColumnImage(This, Col, Image)

 Sets the column image for the specified column.

 Types

 Link to this type

 wxListView()

 View Source

 -type wxListView() :: wx:wx_object().

 Functions

 Link to this function

 clearColumnImage(This, Col)

 View Source

 -spec clearColumnImage(This, Col) -> ok when This :: wxListView(), Col :: integer().

Resets the column image - after calling this function, no image will be shown.
See: setColumnImage/3

 Link to this function

 focus(This, Index)

 View Source

 -spec focus(This, Index) -> ok when This :: wxListView(), Index :: integer().

Sets focus to the item with the given index.

 Link to this function

 getFirstSelected(This)

 View Source

 -spec getFirstSelected(This) -> integer() when This :: wxListView().

Returns the first selected item in a (presumably) multiple selection control.
Together with getNextSelected/2 it can be used to iterate over all selected
items in the control.
Return: The first selected item, if any, -1 otherwise.

 Link to this function

 getFocusedItem(This)

 View Source

 -spec getFocusedItem(This) -> integer() when This :: wxListView().

Returns the currently focused item or -1 if none.
See: isSelected/2, focus/2

 Link to this function

 getNextSelected(This, Item)

 View Source

 -spec getNextSelected(This, Item) -> integer() when This :: wxListView(), Item :: integer().

Used together with getFirstSelected/1 to iterate over all selected items in
the control.
Return: Returns the next selected item or -1 if there are no more of them.

 Link to this function

 isSelected(This, Index)

 View Source

 -spec isSelected(This, Index) -> boolean() when This :: wxListView(), Index :: integer().

Returns true if the item with the given index is selected, false otherwise.
See: getFirstSelected/1, getNextSelected/2

 Link to this function

 select(This, N)

 View Source

 -spec select(This, N) -> ok when This :: wxListView(), N :: integer().

 Link to this function

 select/3

 View Source

 -spec select(This, N, [Option]) -> ok
 when This :: wxListView(), N :: integer(), Option :: {on, boolean()}.

Selects or unselects the given item.
Notice that this method inherits the unusual behaviour of
wxListCtrl:setItemState/4 which sends a wxEVT_LIST_ITEM_SELECTED event when it
is used to select an item, contrary to the usual rule that only the user actions
result in selection.

 Link to this function

 setColumnImage(This, Col, Image)

 View Source

 -spec setColumnImage(This, Col, Image) -> ok
 when This :: wxListView(), Col :: integer(), Image :: integer().

Sets the column image for the specified column.
To use the column images, the control must have a valid image list with at least
one image.

wxListbook

Functions for wxListbook class
wxListbook is a class similar to wxNotebook but which uses a
wxListCtrl to show the labels instead of the tabs.
The underlying wxListCtrl displays page labels in a one-column report view
by default. Calling wxBookCtrl::SetImageList will implicitly switch the control
to use an icon view.
For usage documentation of this class, please refer to the base abstract class
wxBookCtrl. You can also use the page_samples_notebook to see wxListbook in
action.
Styles
This class supports the following styles:
See: ?wxBookCtrl, wxNotebook,
Examples
This class is derived (and can use functions) from: wxBookCtrlBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxListbook

 Events

Event types emitted from this class:
listbook_page_changed,
listbook_page_changing

 Summary

 Types

 wxListbook()

 Functions

 addPage(This, Page, Text)

 addPage/4

 Adds a new page.

 advanceSelection(This)

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 create/4

 Create the list book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Default ctor.

 new(Parent, Id)

 new/3

 Constructs a listbook control.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 Link to this type

 wxListbook()

 View Source

 -type wxListbook() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Text)

 View Source

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxListbook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been
added to this control previously.
The call to this function will generate the page changing and page changed
events if select is true, but not when inserting the very first page (as there
is no previous page selection to switch from in this case and so it wouldn't
make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 Link to this function

 advanceSelection(This)

 View Source

 -spec advanceSelection(This) -> ok when This :: wxListbook().

 Link to this function

 advanceSelection/2

 View Source

 -spec advanceSelection(This, [Option]) -> ok when This :: wxListbook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxListbook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See: wxImageList, setImageList/2

 Link to this function

 changeSelection(This, Page)

 View Source

 -spec changeSelection(This, Page) -> integer() when This :: wxListbook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page
changing events.
See overview_events_prog for more information.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxListbook(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the list book control that has already been constructed with the default
constructor.

 Link to this function

 deleteAllPages(This)

 View Source

 -spec deleteAllPages(This) -> boolean() when This :: wxListbook().

Deletes all pages.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxListbook()) -> ok.

Destroys the object.

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxListbook().

Returns the currently selected page or NULL.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxListbook().

Returns the associated image list, may be NULL.
See: wxImageList, setImageList/2

 Link to this function

 getPage(This, Page)

 View Source

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxListbook(), Page :: integer().

Returns the window at the given page position.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxListbook().

Returns the number of pages in the control.

 Link to this function

 getPageImage(This, NPage)

 View Source

 -spec getPageImage(This, NPage) -> integer() when This :: wxListbook(), NPage :: integer().

Returns the image index for the given page.

 Link to this function

 getPageText(This, NPage)

 View Source

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxListbook(), NPage :: integer().

Returns the string for the given page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxListbook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page
when called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the
platform and so wxBookCtrlEvent:getSelection/1 should be used instead in this
case.

 Link to this function

 hitTest(This, Pt)

 View Source

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxListbook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is
returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at
the specified position.

 Link to this function

 insertPage(This, Index, Page, Text)

 View Source

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxListbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 Link to this function

 new()

 View Source

 -spec new() -> wxListbook().

Default ctor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxListbook() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxListbook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a listbook control.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxListbook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See: wxImageList, assignImageList/2

 Link to this function

 setPageImage(This, Page, Image)

 View Source

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxListbook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 Link to this function

 setPageSize(This, Size)

 View Source

 -spec setPageSize(This, Size) -> ok when This :: wxListbook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxListbook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> integer() when This :: wxListbook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use
the changeSelection/2 function if you don't want these events to be generated.
See: getSelection/1

wxLocale

Functions for wxLocale class
wxLocale class encapsulates all language-dependent settings and is a
generalization of the C locale concept.
In wxWidgets this class manages current locale. It also initializes and
activates wxTranslations (not implemented in wx) object that manages message
catalogs.
For a list of the supported languages, please see ?wxLanguage enum values. These
constants may be used to specify the language in init/3 and are returned by
getSystemLanguage/0.
See:
Overview i18n,
Examples,
wxXLocale (not implemented in wx), wxTranslations (not implemented in wx)
wxWidgets docs: wxLocale

 Summary

 Types

 wxLocale()

 Functions

 addCatalog(This, Domain)

 Calls wxTranslations::AddCatalog(const wxString&).

 addCatalog(This, Domain, MsgIdLanguage)

 Calls wxTranslations::AddCatalog(const wxString&, wxLanguage) (not implemented
in wx).

 addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset)

 Calls wxTranslations::AddCatalog(const wxString&, wxLanguage, const wxString&)
(not implemented in wx).

 addCatalogLookupPathPrefix(Prefix)

 Calls wxFileTranslationsLoader::AddCatalogLookupPathPrefix() (not implemented
in wx).

 destroy(This)

 The destructor, like the constructor, also has global side effects: the
previously set locale is restored and so the changes described in init/3
documentation are rolled back.

 getCanonicalName(This)

 Returns the canonical form of current locale name.

 getHeaderValue(This, Header)

 getHeaderValue/3

 Calls wxTranslations::GetHeaderValue() (not implemented in wx).

 getLanguage(This)

 Returns the ?wxLanguage constant of current language.

 getLanguageName(Lang)

 Returns English name of the given language or empty string if this language is
unknown.

 getLocale(This)

 Returns the locale name as passed to the constructor or init/3.

 getName(This)

 Returns the current short name for the locale (as given to the constructor or
the init/3 function).

 getString(This, OrigString)

 getString/3

 Calls wxGetTranslation(const wxString&, const wxString&).

 getString(This, OrigString, OrigString2, N)

 getString/5

 Calls wxGetTranslation(const wxString&, const wxString&, unsigned, const
wxString&).

 getSysName(This)

 Returns current platform-specific locale name as passed to setlocale().

 getSystemEncoding()

 Tries to detect the user's default font encoding.

 getSystemEncodingName()

 Tries to detect the name of the user's default font encoding.

 getSystemLanguage()

 Tries to detect the user's default locale setting.

 init(This)

 init/2

 Initializes the wxLocale instance.

 init/3

 Deprecated: This form is deprecated, use the other one unless you know what you
are doing.

 isLoaded(This, Domain)

 Calls wxTranslations::IsLoaded() (not implemented in wx).

 isOk(This)

 Returns true if the locale could be set successfully.

 new()

 This is the default constructor and it does nothing to initialize the object:
init/3 must be used to do that.

 new/1

 new/2

 See init/3 for parameters description.

 Types

 Link to this type

 wxLocale()

 View Source

 -type wxLocale() :: wx:wx_object().

 Functions

 Link to this function

 addCatalog(This, Domain)

 View Source

 -spec addCatalog(This, Domain) -> boolean() when This :: wxLocale(), Domain :: unicode:chardata().

Calls wxTranslations::AddCatalog(const wxString&).

 Link to this function

 addCatalog(This, Domain, MsgIdLanguage)

 View Source

 -spec addCatalog(This, Domain, MsgIdLanguage) -> boolean()
 when This :: wxLocale(), Domain :: unicode:chardata(), MsgIdLanguage :: wx:wx_enum().

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage) (not implemented
in wx).

 Link to this function

 addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset)

 View Source

 -spec addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset) -> boolean()
 when
 This :: wxLocale(),
 Domain :: unicode:chardata(),
 MsgIdLanguage :: wx:wx_enum(),
 MsgIdCharset :: unicode:chardata().

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage, const wxString&)
(not implemented in wx).

 Link to this function

 addCatalogLookupPathPrefix(Prefix)

 View Source

 -spec addCatalogLookupPathPrefix(Prefix) -> ok when Prefix :: unicode:chardata().

Calls wxFileTranslationsLoader::AddCatalogLookupPathPrefix() (not implemented
in wx).

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxLocale()) -> ok.

The destructor, like the constructor, also has global side effects: the
previously set locale is restored and so the changes described in init/3
documentation are rolled back.

 Link to this function

 getCanonicalName(This)

 View Source

 -spec getCanonicalName(This) -> unicode:charlist() when This :: wxLocale().

Returns the canonical form of current locale name.
Canonical form is the one that is used on UNIX systems: it is a two- or
five-letter string in xx or xx_YY format, where xx is ISO 639 code of language
and YY is ISO 3166 code of the country. Examples are "en", "en_GB", "en_US" or
"fr_FR". This form is internally used when looking up message catalogs. Compare
getSysName/1.

 Link to this function

 getHeaderValue(This, Header)

 View Source

 -spec getHeaderValue(This, Header) -> unicode:charlist()
 when This :: wxLocale(), Header :: unicode:chardata().

 Link to this function

 getHeaderValue/3

 View Source

 -spec getHeaderValue(This, Header, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 Header :: unicode:chardata(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxTranslations::GetHeaderValue() (not implemented in wx).

 Link to this function

 getLanguage(This)

 View Source

 -spec getLanguage(This) -> integer() when This :: wxLocale().

Returns the ?wxLanguage constant of current language.
Note that you can call this function only if you used the form of init/3 that
takes ?wxLanguage argument.

 Link to this function

 getLanguageName(Lang)

 View Source

 -spec getLanguageName(Lang) -> unicode:charlist() when Lang :: integer().

Returns English name of the given language or empty string if this language is
unknown.
See GetLanguageInfo() (not implemented in wx) for a remark about special
meaning of wxLANGUAGE_DEFAULT.

 Link to this function

 getLocale(This)

 View Source

 -spec getLocale(This) -> unicode:charlist() when This :: wxLocale().

Returns the locale name as passed to the constructor or init/3.
This is a full, human-readable name, e.g. "English" or "French".

 Link to this function

 getName(This)

 View Source

 -spec getName(This) -> unicode:charlist() when This :: wxLocale().

Returns the current short name for the locale (as given to the constructor or
the init/3 function).

 Link to this function

 getString(This, OrigString)

 View Source

 -spec getString(This, OrigString) -> unicode:charlist()
 when This :: wxLocale(), OrigString :: unicode:chardata().

 Link to this function

 getString/3

 View Source

 -spec getString(This, OrigString, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxGetTranslation(const wxString&, const wxString&).

 Link to this function

 getString(This, OrigString, OrigString2, N)

 View Source

 -spec getString(This, OrigString, OrigString2, N) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 OrigString2 :: unicode:chardata(),
 N :: integer().

 Link to this function

 getString/5

 View Source

 -spec getString(This, OrigString, OrigString2, N, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 OrigString2 :: unicode:chardata(),
 N :: integer(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxGetTranslation(const wxString&, const wxString&, unsigned, const
wxString&).

 Link to this function

 getSysName(This)

 View Source

 -spec getSysName(This) -> unicode:charlist() when This :: wxLocale().

Returns current platform-specific locale name as passed to setlocale().
Compare getCanonicalName/1.

 Link to this function

 getSystemEncoding()

 View Source

 -spec getSystemEncoding() -> wx:wx_enum().

Tries to detect the user's default font encoding.
Returns ?wxFontEncoding() value or wxFONTENCODING_SYSTEM if it couldn't be
determined.

 Link to this function

 getSystemEncodingName()

 View Source

 -spec getSystemEncodingName() -> unicode:charlist().

Tries to detect the name of the user's default font encoding.
This string isn't particularly useful for the application as its form is
platform-dependent and so you should probably use getSystemEncoding/0 instead.
Returns a user-readable string value or an empty string if it couldn't be
determined.

 Link to this function

 getSystemLanguage()

 View Source

 -spec getSystemLanguage() -> integer().

Tries to detect the user's default locale setting.
Returns the ?wxLanguage value or wxLANGUAGE_UNKNOWN if the language-guessing
algorithm failed.
Note: This function works with locales and returns the user's default locale.
This may be, and usually is, the same as their preferred UI language, but it's
not the same thing. Use wxTranslation to obtain language information.
See: wxTranslations::GetBestTranslation() (not implemented in wx)

 Link to this function

 init(This)

 View Source

 -spec init(This) -> boolean() when This :: wxLocale().

 Link to this function

 init/2

 View Source

 -spec init(This, [Option]) -> boolean()
 when This :: wxLocale(), Option :: {language, integer()} | {flags, integer()}.

Initializes the wxLocale instance.
The call of this function has several global side effects which you should
understand: first of all, the application locale is changed - note that this
will affect many of standard C library functions such as printf() or strftime().
Second, this wxLocale object becomes the new current global locale for the
application and so all subsequent calls to ?wxGetTranslation() will try to
translate the messages using the message catalogs for this locale.
Return: true on success or false if the given locale couldn't be set.

 Link to this function

 init/3

 View Source

 -spec init(This, Name, [Option]) -> boolean()
 when
 This :: wxLocale(),
 Name :: unicode:chardata(),
 Option ::
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}.

Deprecated: This form is deprecated, use the other one unless you know what you
are doing.

 Link to this function

 isLoaded(This, Domain)

 View Source

 -spec isLoaded(This, Domain) -> boolean() when This :: wxLocale(), Domain :: unicode:chardata().

Calls wxTranslations::IsLoaded() (not implemented in wx).

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxLocale().

Returns true if the locale could be set successfully.

 Link to this function

 new()

 View Source

 -spec new() -> wxLocale().

This is the default constructor and it does nothing to initialize the object:
init/3 must be used to do that.

 Link to this function

 new/1

 View Source

 -spec new(Language) -> wxLocale() when Language :: integer();
 (Name) -> wxLocale() when Name :: unicode:chardata().

 Link to this function

 new/2

 View Source

 -spec new(Language, [Option]) -> wxLocale() when Language :: integer(), Option :: {flags, integer()};
 (Name, [Option]) -> wxLocale()
 when
 Name :: unicode:chardata(),
 Option ::
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}.

See init/3 for parameters description.
The call of this function has several global side effects which you should
understand: first of all, the application locale is changed - note that this
will affect many of standard C library functions such as printf() or strftime().
Second, this wxLocale object becomes the new current global locale for the
application and so all subsequent calls to ?wxGetTranslation() will try to
translate the messages using the message catalogs for this locale.

wxLogNull

Functions for wxLogNull class
This class allows you to temporarily suspend logging. All calls to the log
functions during the life time of an object of this class are just ignored.
In particular, it can be used to suppress the log messages given by wxWidgets
itself but it should be noted that it is rarely the best way to cope with this
problem as all log messages are suppressed, even if they indicate a completely
different error than the one the programmer wanted to suppress.
For instance, the example of the overview:
would be better written as:
wxWidgets docs:
wxLogNull

 Summary

 Types

 wxLogNull()

 Functions

 destroy(This)

 Resumes logging.

 new()

 Suspends logging.

 Types

 Link to this type

 wxLogNull()

 View Source

 -type wxLogNull() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxLogNull()) -> ok.

Resumes logging.

 Link to this function

 new()

 View Source

 -spec new() -> wxLogNull().

Suspends logging.

wxMDIChildFrame

Functions for wxMDIChildFrame class
An MDI child frame is a frame that can only exist inside a
wxMDIClientWindow, which is itself a child of wxMDIParentFrame.
Styles
This class supports the following styles:
All of the standard wxFrame styles can be used but most of them are ignored
by TDI-based MDI implementations.
Remark: Although internally an MDI child frame is a child of the MDI client
window, in wxWidgets you create it as a child of wxMDIParentFrame. In fact,
you can usually forget that the client window exists. MDI child frames are
clipped to the area of the MDI client window, and may be iconized on the client
window. You can associate a menubar with a child frame as usual, although an MDI
child doesn't display its menubar under its own title bar. The MDI parent
frame's menubar will be changed to reflect the currently active child frame. If
there are currently no children, the parent frame's own menubar will be
displayed.
See: wxMDIClientWindow, wxMDIParentFrame, wxFrame
This class is derived (and can use functions) from: wxFrame
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxMDIChildFrame

 Summary

 Types

 wxMDIChildFrame()

 Functions

 activate(This)

 Activates this MDI child frame.

 create(This, Parent, Id, Title)

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destructor.

 maximize(This)

 maximize/2

 Maximizes this MDI child frame.

 new()

 Default constructor.

 new(Parent, Id, Title)

 new/4

 Constructor, creating the window.

 restore(This)

 Restores this MDI child frame (unmaximizes).

 Types

 Link to this type

 wxMDIChildFrame()

 View Source

 -type wxMDIChildFrame() :: wx:wx_object().

 Functions

 Link to this function

 activate(This)

 View Source

 -spec activate(This) -> ok when This :: wxMDIChildFrame().

Activates this MDI child frame.
See: maximize/2, restore/1

 Link to this function

 create(This, Parent, Id, Title)

 View Source

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMDIChildFrame(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMDIChildFrame(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMDIChildFrame()) -> ok.

Destructor.
Destroys all child windows and menu bar if present.

 Link to this function

 maximize(This)

 View Source

 -spec maximize(This) -> ok when This :: wxMDIChildFrame().

 Link to this function

 maximize/2

 View Source

 -spec maximize(This, [Option]) -> ok when This :: wxMDIChildFrame(), Option :: {maximize, boolean()}.

Maximizes this MDI child frame.
This function doesn't do anything if IsAlwaysMaximized() (not implemented in
wx) returns true.
See: activate/1, restore/1

 Link to this function

 new()

 View Source

 -spec new() -> wxMDIChildFrame().

Default constructor.

 Link to this function

 new(Parent, Id, Title)

 View Source

 -spec new(Parent, Id, Title) -> wxMDIChildFrame()
 when
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Title, [Option]) -> wxMDIChildFrame()
 when
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
See: create/5

 Link to this function

 restore(This)

 View Source

 -spec restore(This) -> ok when This :: wxMDIChildFrame().

Restores this MDI child frame (unmaximizes).
This function doesn't do anything if IsAlwaysMaximized() (not implemented in
wx) returns true.
See: activate/1, maximize/2

wxMDIClientWindow

Functions for wxMDIClientWindow class
An MDI client window is a child of wxMDIParentFrame, and manages zero or
more wxMDIChildFrame objects.
The client window is the area where MDI child windows exist. It doesn't have to
cover the whole parent frame; other windows such as toolbars and a help window
might coexist with it. There can be scrollbars on a client window, which are
controlled by the parent window style.
The wxMDIClientWindow class is usually adequate without further derivation,
and it is created automatically when the MDI parent frame is created. If the
application needs to derive a new class, the function
wxMDIParentFrame::OnCreateClient() (not implemented in wx) must be overridden
in order to give an opportunity to use a different class of client window.
Under wxMSW, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is
maximized.
See: wxMDIChildFrame, wxMDIParentFrame, wxFrame
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxMDIClientWindow

 Summary

 Types

 wxMDIClientWindow()

 Functions

 createClient(This, Parent)

 createClient/3

 Called by wxMDIParentFrame immediately after creating the client window.

 destroy(This)

 Destroys the object.

 new()

 Default constructor.

 Types

 Link to this type

 wxMDIClientWindow()

 View Source

 -type wxMDIClientWindow() :: wx:wx_object().

 Functions

 Link to this function

 createClient(This, Parent)

 View Source

 -spec createClient(This, Parent) -> boolean()
 when This :: wxMDIClientWindow(), Parent :: wxMDIParentFrame:wxMDIParentFrame().

 Link to this function

 createClient/3

 View Source

 -spec createClient(This, Parent, [Option]) -> boolean()
 when
 This :: wxMDIClientWindow(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Option :: {style, integer()}.

Called by wxMDIParentFrame immediately after creating the client window.
This function may be overridden in the derived class but the base class version
must usually be called first to really create the window.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMDIClientWindow()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxMDIClientWindow().

Default constructor.
Objects of this class are only created by wxMDIParentFrame which uses the
default constructor and calls createClient/3 immediately afterwards.

wxMDIParentFrame

Functions for wxMDIParentFrame class
An MDI (Multiple Document Interface) parent frame is a window which can contain
MDI child frames in its client area which emulates the full desktop.
MDI is a user-interface model in which all the window reside inside the single
parent window as opposed to being separate from each other. It remains popular
despite dire warnings from Microsoft itself (which popularized this model in the
first model) that MDI is obsolete.
An MDI parent frame always has a wxMDIClientWindow associated with it, which
is the parent for MDI child frames. In the simplest case, the client window
takes up the entire parent frame area but it is also possible to resize it to be
smaller in order to have other windows in the frame, a typical example is using
a sidebar along one of the window edges.
The appearance of MDI applications differs between different ports. The classic
MDI model, with child windows which can be independently moved, resized etc, is
only available under MSW, which provides native support for it. In Mac ports,
multiple top level windows are used for the MDI children too and the MDI parent
frame itself is invisible, to accommodate the native look and feel requirements.
In all the other ports, a tab-based MDI implementation (sometimes called TDI) is
used and so at most one MDI child is visible at any moment (child frames are
always maximized).
Although it is possible to have multiple MDI parent frames, a typical MDI
application has a single MDI parent frame window inside which multiple MDI child
frames, i.e. objects of class wxMDIChildFrame, can be created.
Styles
This class supports the following styles:
There are no special styles for this class, all wxFrame styles apply to it
in the usual way. The only exception is that wxHSCROLL and wxVSCROLL styles
apply not to the frame itself but to the client window, so that using them
enables horizontal and vertical scrollbars for this window and not the frame.
See: wxMDIChildFrame, wxMDIClientWindow, wxFrame, wxDialog
This class is derived (and can use functions) from: wxFrame
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxMDIParentFrame

 Summary

 Types

 wxMDIParentFrame()

 Functions

 activateNext(This)

 Activates the MDI child following the currently active one.

 activatePrevious(This)

 Activates the MDI child preceding the currently active one.

 arrangeIcons(This)

 Arranges any iconized (minimized) MDI child windows.

 cascade(This)

 Arranges the MDI child windows in a cascade.

 create(This, Parent, Id, Title)

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destructor.

 getActiveChild(This)

 Returns a pointer to the active MDI child, if there is one.

 getClientWindow(This)

 Returns a pointer to the client window.

 new()

 Default constructor.

 new(Parent, Id, Title)

 new/4

 Constructor, creating the window.

 tile(This)

 tile/2

 Tiles the MDI child windows either horizontally or vertically depending on
whether orient is wxHORIZONTAL or wxVERTICAL.

 Types

 Link to this type

 wxMDIParentFrame()

 View Source

 -type wxMDIParentFrame() :: wx:wx_object().

 Functions

 Link to this function

 activateNext(This)

 View Source

 -spec activateNext(This) -> ok when This :: wxMDIParentFrame().

Activates the MDI child following the currently active one.
The MDI children are maintained in an ordered list and this function switches to
the next element in this list, wrapping around the end of it if the currently
active child is the last one.
See: activatePrevious/1

 Link to this function

 activatePrevious(This)

 View Source

 -spec activatePrevious(This) -> ok when This :: wxMDIParentFrame().

Activates the MDI child preceding the currently active one.
See: activateNext/1

 Link to this function

 arrangeIcons(This)

 View Source

 -spec arrangeIcons(This) -> ok when This :: wxMDIParentFrame().

Arranges any iconized (minimized) MDI child windows.
This method is only implemented in MSW MDI implementation and does nothing under
the other platforms.
See: cascade/1, tile/2

 Link to this function

 cascade(This)

 View Source

 -spec cascade(This) -> ok when This :: wxMDIParentFrame().

Arranges the MDI child windows in a cascade.
This method is only implemented in MSW MDI implementation and does nothing under
the other platforms.
See: tile/2, arrangeIcons/1

 Link to this function

 create(This, Parent, Id, Title)

 View Source

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMDIParentFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMDIParentFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMDIParentFrame()) -> ok.

Destructor.
Destroys all child windows and menu bar if present.

 Link to this function

 getActiveChild(This)

 View Source

 -spec getActiveChild(This) -> wxMDIChildFrame:wxMDIChildFrame() when This :: wxMDIParentFrame().

Returns a pointer to the active MDI child, if there is one.
If there are any children at all this function returns a non-NULL pointer.

 Link to this function

 getClientWindow(This)

 View Source

 -spec getClientWindow(This) -> wxMDIClientWindow:wxMDIClientWindow() when This :: wxMDIParentFrame().

Returns a pointer to the client window.
See: OnCreateClient() (not implemented in wx)

 Link to this function

 new()

 View Source

 -spec new() -> wxMDIParentFrame().

Default constructor.
Use create/5 for the objects created using this constructor.

 Link to this function

 new(Parent, Id, Title)

 View Source

 -spec new(Parent, Id, Title) -> wxMDIParentFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Title, [Option]) -> wxMDIParentFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Notice that if you override virtual OnCreateClient() (not implemented in wx)
method you shouldn't be using this constructor but the default constructor and
create/5 as otherwise your overridden method is never going to be called
because of the usual C++ virtual call resolution rules.
Under wxMSW, the client window will automatically have a sunken border style
when the active child is not maximized, and no border style when a child is
maximized.
See: create/5, OnCreateClient() (not implemented in wx)

 Link to this function

 tile(This)

 View Source

 -spec tile(This) -> ok when This :: wxMDIParentFrame().

 Link to this function

 tile/2

 View Source

 -spec tile(This, [Option]) -> ok when This :: wxMDIParentFrame(), Option :: {orient, wx:wx_enum()}.

Tiles the MDI child windows either horizontally or vertically depending on
whether orient is wxHORIZONTAL or wxVERTICAL.
This method is only implemented in MSW MDI implementation and does nothing under
the other platforms.

wxMask

Functions for wxMask class
This class encapsulates a monochrome mask bitmap, where the masked area is black
and the unmasked area is white.
When associated with a bitmap and drawn in a device context, the unmasked area
of the bitmap will be drawn, and the masked area will not be drawn.
Note: A mask can be associated also with a bitmap with an alpha channel but
drawing such bitmaps under wxMSW may be slow so using them should be avoided if
drawing performance is an important factor.
See: wxBitmap, wxDC:blit/6, wxMemoryDC
wxWidgets docs: wxMask

 Summary

 Types

 wxMask()

 Functions

 create(This, Bitmap)

 Constructs a mask from a monochrome bitmap.

 create/3

 Constructs a mask from a bitmap and a colour that indicates the background.

 destroy(This)

 Destroys the wxMask object and the underlying bitmap data.

 new()

 Default constructor.

 new(Bitmap)

 Constructs a mask from a monochrome bitmap.

 new/2

 Constructs a mask from a bitmap and a colour that indicates the background.

 Types

 Link to this type

 wxMask()

 View Source

 -type wxMask() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Bitmap)

 View Source

 -spec create(This, Bitmap) -> boolean() when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap().

Constructs a mask from a monochrome bitmap.

 Link to this function

 create/3

 View Source

 -spec create(This, Bitmap, Index) -> boolean()
 when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap(), Index :: integer();
 (This, Bitmap, Colour) -> boolean()
 when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap(), Colour :: wx:wx_colour().

Constructs a mask from a bitmap and a colour that indicates the background.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMask()) -> ok.

Destroys the wxMask object and the underlying bitmap data.

 Link to this function

 new()

 View Source

 -spec new() -> wxMask().

Default constructor.

 Link to this function

 new(Bitmap)

 View Source

 -spec new(Bitmap) -> wxMask() when Bitmap :: wxBitmap:wxBitmap().

Constructs a mask from a monochrome bitmap.

 Link to this function

 new/2

 View Source

 -spec new(Bitmap, Index) -> wxMask() when Bitmap :: wxBitmap:wxBitmap(), Index :: integer();
 (Bitmap, Colour) -> wxMask() when Bitmap :: wxBitmap:wxBitmap(), Colour :: wx:wx_colour().

Constructs a mask from a bitmap and a colour that indicates the background.

wxMaximizeEvent

Functions for wxMaximizeEvent class
An event being sent when a top level window is maximized. Notice that it is not
sent when the window is restored to its original size after it had been
maximized, only a normal wxSizeEvent is generated in this case.
Currently this event is only generated in wxMSW, wxGTK and wxOSX/Cocoa ports so
portable programs should only rely on receiving wxEVT_SIZE and not necessarily
this event when the window is maximized.
See:
Overview events,
wxTopLevelWindow:maximize/2, wxTopLevelWindow:isMaximized/1
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMaximizeEvent

 Events

Use wxEvtHandler:connect/3 with
wxMaximizeEventType to subscribe to events of
this type.

 Summary

 Types

 wxMaximize()

 wxMaximizeEvent()

 wxMaximizeEventType()

 Types

 Link to this type

 wxMaximize()

 View Source

 -type wxMaximize() :: #wxMaximize{type :: wxMaximizeEvent:wxMaximizeEventType()}.

 Link to this type

 wxMaximizeEvent()

 View Source

 -type wxMaximizeEvent() :: wx:wx_object().

 Link to this type

 wxMaximizeEventType()

 View Source

 -type wxMaximizeEventType() :: maximize.

wxMemoryDC

Functions for wxMemoryDC class
A memory device context provides a means to draw graphics onto a bitmap. When
drawing in to a mono-bitmap, using wxWHITE, wxWHITE_PEN and wxWHITE_BRUSH
will draw the background colour (i.e. 0) whereas all other colours will draw the
foreground colour (i.e. 1).
A bitmap must be selected into the new memory DC before it may be used for
anything. Typical usage is as follows:
Note that the memory DC must be deleted (or the bitmap selected out of it)
before a bitmap can be reselected into another memory DC.
And, before performing any other operations on the bitmap data, the bitmap must
be selected out of the memory DC:
This happens automatically when wxMemoryDC object goes out of scope.
See: wxBitmap, wxDC
This class is derived (and can use functions) from: wxDC
wxWidgets docs:
wxMemoryDC

 Summary

 Types

 wxMemoryDC()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Constructs a new memory device context.

 new(Dc)

 Constructs a new memory device context having the same characteristics as the
given existing device context.

 selectObject(This, Bitmap)

 Works exactly like selectObjectAsSource/2 but this is the function you should
use when you select a bitmap because you want to modify it, e.g.

 selectObjectAsSource(This, Bitmap)

 Selects the given bitmap into the device context, to use as the memory bitmap.

 Types

 Link to this type

 wxMemoryDC()

 View Source

 -type wxMemoryDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMemoryDC()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxMemoryDC().

Constructs a new memory device context.
Use the wxDC:isOk/1 member to test whether the constructor was successful in
creating a usable device context. Don't forget to select a bitmap into the DC
before drawing on it.

 Link to this function

 new(Dc)

 View Source

 -spec new(Dc) -> wxMemoryDC() when Dc :: wxDC:wxDC() | wxBitmap:wxBitmap().

Constructs a new memory device context having the same characteristics as the
given existing device context.
This constructor creates a memory device context compatible with dc in
wxMSW, the argument is ignored in the other ports. If dc is NULL, a device
context compatible with the screen is created, just as with the default
constructor.

 Link to this function

 selectObject(This, Bitmap)

 View Source

 -spec selectObject(This, Bitmap) -> ok when This :: wxMemoryDC(), Bitmap :: wxBitmap:wxBitmap().

Works exactly like selectObjectAsSource/2 but this is the function you should
use when you select a bitmap because you want to modify it, e.g.
drawing on this DC.
Using selectObjectAsSource/2 when modifying the bitmap may incur some problems
related to wxBitmap being a reference counted object (see
overview_refcount).
Before using the updated bitmap data, make sure to select it out of context
first either by selecting ?wxNullBitmap into the device context or destroying
the device context entirely.
If the bitmap is already selected in this device context, nothing is done. If it
is selected in another context, the function asserts and drawing on the bitmap
won't work correctly.
See: wxDC:drawBitmap/4

 Link to this function

 selectObjectAsSource(This, Bitmap)

 View Source

 -spec selectObjectAsSource(This, Bitmap) -> ok when This :: wxMemoryDC(), Bitmap :: wxBitmap:wxBitmap().

Selects the given bitmap into the device context, to use as the memory bitmap.
Selecting the bitmap into a memory DC allows you to draw into the DC (and
therefore the bitmap) and also to use wxDC:blit/6 to copy the bitmap to a
window. For this purpose, you may find wxDC:drawIcon/3 easier to use instead.
If the argument is ?wxNullBitmap (or some other uninitialised wxBitmap) the
current bitmap is selected out of the device context, and the original bitmap
restored, allowing the current bitmap to be destroyed safely.

wxMenu

Functions for wxMenu class
A menu is a popup (or pull down) list of items, one of which may be selected
before the menu goes away (clicking elsewhere dismisses the menu). Menus may be
used to construct either menu bars or popup menus.
A menu item has an integer ID associated with it which can be used to identify
the selection, or to change the menu item in some way. A menu item with a
special identifier wxID_SEPARATOR is a separator item and doesn't have an
associated command but just makes a separator line appear in the menu.
Note: Please note that wxID_ABOUT and wxID_EXIT are predefined by wxWidgets
and have a special meaning since entries using these IDs will be taken out of
the normal menus under macOS and will be inserted into the system menu
(following the appropriate macOS interface guideline).
Menu items may be either normal items, check items or radio items. Normal
items don't have any special properties while the check items have a boolean
flag associated to them and they show a checkmark in the menu when the flag is
set. wxWidgets automatically toggles the flag value when the item is clicked and
its value may be retrieved using either isChecked/2 method of wxMenu or
wxMenuBar itself or by using wxEvent::IsChecked when you get the menu
notification for the item in question.
The radio items are similar to the check items except that all the other items
in the same radio group are unchecked when a radio item is checked. The radio
group is formed by a contiguous range of radio items, i.e. it starts at the
first item of this kind and ends with the first item of a different kind (or the
end of the menu). Notice that because the radio groups are defined in terms of
the item positions inserting or removing the items in the menu containing the
radio items risks to not work correctly.
Allocation strategy
All menus must be created on the heap because all menus attached to a menubar
or to another menu will be deleted by their parent when it is deleted. The only
exception to this rule are the popup menus (i.e. menus used with
wxWindow:popupMenu/4) as wxWidgets does not destroy them to allow reusing the
same menu more than once. But the exception applies only to the menus themselves
and not to any submenus of popup menus which are still destroyed by wxWidgets as
usual and so must be heap-allocated.
As the frame menubar is deleted by the frame itself, it means that normally all
menus used are deleted automatically.
Event handling
Event handlers for the commands generated by the menu items can be connected
directly to the menu object itself using wxEvtHandler::Bind() (not implemented
in wx). If this menu is a submenu of another one, the events from its items can
also be processed in the parent menu and so on, recursively.
If the menu is part of a menu bar, then events can also be handled in
wxMenuBar object.
Finally, menu events can also be handled in the associated window, which is
either the wxFrame associated with the menu bar this menu belongs to or the
window for which wxWindow:popupMenu/4 was called for the popup menus.
See overview_events_bind for how to bind event handlers to the various objects.
See: wxMenuBar, wxWindow:popupMenu/4,
Overview events,
wxFileHistory (not implemented in wx)
This class is derived (and can use functions) from: wxEvtHandler
wxWidgets docs: wxMenu

 Summary

 Types

 wxMenu()

 Functions

 append(This, MenuItem)

 Adds a menu item object.

 append(This, Id, Item)

 append/4

 Adds a menu item.

 append/5

 Adds a submenu.

 appendCheckItem(This, Id, Item)

 appendCheckItem/4

 Adds a checkable item to the end of the menu.

 appendRadioItem(This, Id, Item)

 appendRadioItem/4

 Adds a radio item to the end of the menu.

 appendSeparator(This)

 Adds a separator to the end of the menu.

 break(This)

 Inserts a break in a menu, causing the next appended item to appear in a new
column.

 check(This, Id, Check)

 Checks or unchecks the menu item.

 'Destroy'/2

 Deletes the menu item from the menu.

 delete/2

 Deletes the menu item from the menu.

 destroy(This)

 Destructor, destroying the menu.

 enable(This, Id, Enable)

 Enables or disables (greys out) a menu item.

 findItem/2

 Finds the menu id for a menu item string.

 findItemByPosition(This, Position)

 Returns the wxMenuItem given a position in the menu.

 getHelpString(This, Id)

 Returns the help string associated with a menu item.

 getLabel(This, Id)

 Returns a menu item label.

 getMenuItemCount(This)

 Returns the number of items in the menu.

 getMenuItems(This)

 getTitle(This)

 Returns the title of the menu.

 insert/3

 Inserts the given item before the position pos.

 insert/4

 Inserts the given item before the position pos.

 insert(This, Pos, Id, Text, Submenu)

 insert/6

 Inserts the given submenu before the position pos.

 insertCheckItem(This, Pos, Id, Item)

 insertCheckItem/5

 Inserts a checkable item at the given position.

 insertRadioItem(This, Pos, Id, Item)

 insertRadioItem/5

 Inserts a radio item at the given position.

 insertSeparator(This, Pos)

 Inserts a separator at the given position.

 isChecked(This, Id)

 Determines whether a menu item is checked.

 isEnabled(This, Id)

 Determines whether a menu item is enabled.

 new()

 Constructs a wxMenu object.

 new(Options)

 Constructs a wxMenu object.

 new(Title, Options)

 Constructs a wxMenu object with a title.

 prepend/2

 Inserts the given item at position 0, i.e. before all the other existing
items.

 prepend/3

 Inserts the given item at position 0, i.e. before all the other existing
items.

 prepend(This, Id, Text, Submenu)

 prepend/5

 Inserts the given submenu at position 0.

 prependCheckItem(This, Id, Item)

 prependCheckItem/4

 Inserts a checkable item at position 0.

 prependRadioItem(This, Id, Item)

 prependRadioItem/4

 Inserts a radio item at position 0.

 prependSeparator(This)

 Inserts a separator at position 0.

 remove/2

 Removes the menu item from the menu but doesn't delete the associated C++
object.

 setHelpString(This, Id, HelpString)

 Sets an item's help string.

 setLabel(This, Id, Label)

 Sets the label of a menu item.

 setTitle(This, Title)

 Sets the title of the menu.

 Types

 Link to this type

 wxMenu()

 View Source

 -type wxMenu() :: wx:wx_object().

 Functions

 Link to this function

 append(This, MenuItem)

 View Source

 -spec append(This, MenuItem) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), MenuItem :: wxMenuItem:wxMenuItem().

Adds a menu item object.
This is the most generic variant of append/5 method because it may be used for
both items (including separators) and submenus and because you can also specify
various extra properties of a menu item this way, such as bitmaps and fonts.
Remark: See the remarks for the other append/5 overloads.
See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4,
AppendSubMenu() (not implemented in wx), insert/6, setLabel/3,
getHelpString/2, setHelpString/3, wxMenuItem

 Link to this function

 append(This, Id, Item)

 View Source

 -spec append(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

 Link to this function

 append/4

 View Source

 -spec append(This, Id, Item, SubMenu) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata(), SubMenu :: wxMenu();
 (This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Adds a menu item.
Example:
or even better for stock menu items (see wxMenuItem:new/1):
Remark: This command can be used after the menu has been shown, as well as on
initial creation of a menu or menubar.
See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4,
AppendSubMenu() (not implemented in wx), insert/6, setLabel/3,
getHelpString/2, setHelpString/3, wxMenuItem

 Link to this function

 append/5

 View Source

 -spec append(This, Id, Item, SubMenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 SubMenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Adds a submenu.
Deprecated: This function is deprecated, use AppendSubMenu() (not implemented
in wx) instead.
See: appendSeparator/1, appendCheckItem/4, appendRadioItem/4,
AppendSubMenu() (not implemented in wx), insert/6, setLabel/3,
getHelpString/2, setHelpString/3, wxMenuItem

 Link to this function

 appendCheckItem(This, Id, Item)

 View Source

 -spec appendCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

 Link to this function

 appendCheckItem/4

 View Source

 -spec appendCheckItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Adds a checkable item to the end of the menu.
See: append/5, insertCheckItem/5

 Link to this function

 appendRadioItem(This, Id, Item)

 View Source

 -spec appendRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

 Link to this function

 appendRadioItem/4

 View Source

 -spec appendRadioItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Adds a radio item to the end of the menu.
All consequent radio items form a group and when an item in the group is
checked, all the others are automatically unchecked.
Note: Radio items are not supported under wxMotif.
See: append/5, insertRadioItem/5

 Link to this function

 appendSeparator(This)

 View Source

 -spec appendSeparator(This) -> wxMenuItem:wxMenuItem() when This :: wxMenu().

Adds a separator to the end of the menu.
See: append/5, insertSeparator/2

 Link to this function

 break(This)

 View Source

 -spec break(This) -> ok when This :: wxMenu().

Inserts a break in a menu, causing the next appended item to appear in a new
column.
This function only actually inserts a break in wxMSW and does nothing under the
other platforms.

 Link to this function

 check(This, Id, Check)

 View Source

 -spec check(This, Id, Check) -> ok when This :: wxMenu(), Id :: integer(), Check :: boolean().

Checks or unchecks the menu item.
See: isChecked/2

 Link to this function

 'Destroy'/2

 View Source

 -spec 'Destroy'(This, Id) -> boolean() when This :: wxMenu(), Id :: integer();
 (This, Item) -> boolean() when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Deletes the menu item from the menu.
If the item is a submenu, it will be deleted. Use remove/2 if you want to keep
the submenu (for example, to reuse it later).
See: findItem/2, delete/2, remove/2

 Link to this function

 delete/2

 View Source

 -spec delete(This, Id) -> boolean() when This :: wxMenu(), Id :: integer();
 (This, Item) -> boolean() when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Deletes the menu item from the menu.
If the item is a submenu, it will not be deleted. Use 'Destroy'/2 if you
want to delete a submenu.
See: findItem/2, 'Destroy'/2, remove/2

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMenu()) -> ok.

Destructor, destroying the menu.
Note: Under Motif, a popup menu must have a valid parent (the window it was last
popped up on) when being destroyed. Therefore, make sure you delete or re-use
the popup menu before destroying the parent window. Re-use in this context
means popping up the menu on a different window from last time, which causes an
implicit destruction and recreation of internal data structures.

 Link to this function

 enable(This, Id, Enable)

 View Source

 -spec enable(This, Id, Enable) -> ok when This :: wxMenu(), Id :: integer(), Enable :: boolean().

Enables or disables (greys out) a menu item.
See: isEnabled/2

 Link to this function

 findItem/2

 View Source

 -spec findItem(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, ItemString) -> integer() when This :: wxMenu(), ItemString :: unicode:chardata().

Finds the menu id for a menu item string.
Return: Menu item identifier, or wxNOT_FOUND if none is found.
Remark: Any special menu codes are stripped out of source and target strings
before matching.

 Link to this function

 findItemByPosition(This, Position)

 View Source

 -spec findItemByPosition(This, Position) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Position :: integer().

Returns the wxMenuItem given a position in the menu.

 Link to this function

 getHelpString(This, Id)

 View Source

 -spec getHelpString(This, Id) -> unicode:charlist() when This :: wxMenu(), Id :: integer().

Returns the help string associated with a menu item.
Return: The help string, or the empty string if there is no help string or the
item was not found.
See: setHelpString/3, append/5

 Link to this function

 getLabel(This, Id)

 View Source

 -spec getLabel(This, Id) -> unicode:charlist() when This :: wxMenu(), Id :: integer().

Returns a menu item label.
Return: The item label, or the empty string if the item was not found.
See: GetLabelText() (not implemented in wx), setLabel/3

 Link to this function

 getMenuItemCount(This)

 View Source

 -spec getMenuItemCount(This) -> integer() when This :: wxMenu().

Returns the number of items in the menu.

 Link to this function

 getMenuItems(This)

 View Source

 -spec getMenuItems(This) -> [wxMenuItem:wxMenuItem()] when This :: wxMenu().

 Link to this function

 getTitle(This)

 View Source

 -spec getTitle(This) -> unicode:charlist() when This :: wxMenu().

Returns the title of the menu.
See: setTitle/2

 Link to this function

 insert/3

 View Source

 -spec insert(This, Pos, Id) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Pos :: integer(), Id :: integer();
 (This, Pos, MenuItem) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Pos :: integer(), MenuItem :: wxMenuItem:wxMenuItem().

Inserts the given item before the position pos.
Inserting the item at position getMenuItemCount/1 is the same as appending it.
See: append/5, prepend/5

 Link to this function

 insert/4

 View Source

 -spec insert(This, Pos, Id, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Option ::
 {text, unicode:chardata()} | {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Inserts the given item before the position pos.
Inserting the item at position getMenuItemCount/1 is the same as appending it.
See: append/5, prepend/5

 Link to this function

 insert(This, Pos, Id, Text, Submenu)

 View Source

 -spec insert(This, Pos, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu().

 Link to this function

 insert/6

 View Source

 -spec insert(This, Pos, Id, Text, Submenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Inserts the given submenu before the position pos.
text is the text shown in the menu for it and help is the help string shown
in the status bar when the submenu item is selected.
See: AppendSubMenu() (not implemented in wx), prepend/5

 Link to this function

 insertCheckItem(This, Pos, Id, Item)

 View Source

 -spec insertCheckItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata().

 Link to this function

 insertCheckItem/5

 View Source

 -spec insertCheckItem(This, Pos, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a checkable item at the given position.
See: insert/6, appendCheckItem/4

 Link to this function

 insertRadioItem(This, Pos, Id, Item)

 View Source

 -spec insertRadioItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata().

 Link to this function

 insertRadioItem/5

 View Source

 -spec insertRadioItem(This, Pos, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a radio item at the given position.
See: insert/6, appendRadioItem/4

 Link to this function

 insertSeparator(This, Pos)

 View Source

 -spec insertSeparator(This, Pos) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Pos :: integer().

Inserts a separator at the given position.
See: insert/6, appendSeparator/1

 Link to this function

 isChecked(This, Id)

 View Source

 -spec isChecked(This, Id) -> boolean() when This :: wxMenu(), Id :: integer().

Determines whether a menu item is checked.
Return: true if the menu item is checked, false otherwise.
See: check/3

 Link to this function

 isEnabled(This, Id)

 View Source

 -spec isEnabled(This, Id) -> boolean() when This :: wxMenu(), Id :: integer().

Determines whether a menu item is enabled.
Return: true if the menu item is enabled, false otherwise.
See: enable/3

 Link to this function

 new()

 View Source

 -spec new() -> wxMenu().

Constructs a wxMenu object.

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxMenu() when Option :: {style, integer()}.

Constructs a wxMenu object.

 Link to this function

 new(Title, Options)

 View Source

 -spec new(Title, [Option]) -> wxMenu() when Title :: unicode:chardata(), Option :: {style, integer()}.

Constructs a wxMenu object with a title.

 Link to this function

 prepend/2

 View Source

 -spec prepend(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Inserts the given item at position 0, i.e. before all the other existing
items.
See: append/5, insert/6

 Link to this function

 prepend/3

 View Source

 -spec prepend(This, Id, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Option ::
 {text, unicode:chardata()} | {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Inserts the given item at position 0, i.e. before all the other existing
items.
See: append/5, insert/6

 Link to this function

 prepend(This, Id, Text, Submenu)

 View Source

 -spec prepend(This, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Text :: unicode:chardata(), Submenu :: wxMenu().

 Link to this function

 prepend/5

 View Source

 -spec prepend(This, Id, Text, Submenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Inserts the given submenu at position 0.
See: AppendSubMenu() (not implemented in wx), insert/6

 Link to this function

 prependCheckItem(This, Id, Item)

 View Source

 -spec prependCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

 Link to this function

 prependCheckItem/4

 View Source

 -spec prependCheckItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a checkable item at position 0.
See: prepend/5, appendCheckItem/4

 Link to this function

 prependRadioItem(This, Id, Item)

 View Source

 -spec prependRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

 Link to this function

 prependRadioItem/4

 View Source

 -spec prependRadioItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a radio item at position 0.
See: prepend/5, appendRadioItem/4

 Link to this function

 prependSeparator(This)

 View Source

 -spec prependSeparator(This) -> wxMenuItem:wxMenuItem() when This :: wxMenu().

Inserts a separator at position 0.
See: prepend/5, appendSeparator/1

 Link to this function

 remove/2

 View Source

 -spec remove(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Removes the menu item from the menu but doesn't delete the associated C++
object.
This allows you to reuse the same item later by adding it back to the menu
(especially useful with submenus).
Return: A pointer to the item which was detached from the menu.

 Link to this function

 setHelpString(This, Id, HelpString)

 View Source

 -spec setHelpString(This, Id, HelpString) -> ok
 when This :: wxMenu(), Id :: integer(), HelpString :: unicode:chardata().

Sets an item's help string.
See: getHelpString/2

 Link to this function

 setLabel(This, Id, Label)

 View Source

 -spec setLabel(This, Id, Label) -> ok
 when This :: wxMenu(), Id :: integer(), Label :: unicode:chardata().

Sets the label of a menu item.
See: append/5, getLabel/2

 Link to this function

 setTitle(This, Title)

 View Source

 -spec setTitle(This, Title) -> ok when This :: wxMenu(), Title :: unicode:chardata().

Sets the title of the menu.
Remark: Notice that you can only call this method directly for the popup menus,
to change the title of a menu that is part of a menu bar you need to use
wxMenuBar:setLabelTop/3.
See: getTitle/1

wxMenuBar

Functions for wxMenuBar class
A menu bar is a series of menus accessible from the top of a frame.
Remark: To respond to a menu selection, provide a handler for EVT_MENU, in the
frame that contains the menu bar.
If you have a toolbar which uses the same identifiers as your EVT_MENU entries,
events from the toolbar will also be processed by your EVT_MENU event handlers.
Tip: under Windows, if you discover that menu shortcuts (for example, Alt-F to
show the file menu) are not working, check any EVT_CHAR events you are handling
in child windows. If you are not calling event.Skip() for events that you don't
process in these event handlers, menu shortcuts may cease to work.
See: wxMenu,
Overview events
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxMenuBar

 Summary

 Types

 wxMenuBar()

 Functions

 append(This, Menu, Title)

 Adds the item to the end of the menu bar.

 check(This, Id, Check)

 Checks or unchecks a menu item.

 destroy(This)

 Destructor, destroying the menu bar and removing it from the parent frame (if
any).

 enable(This, Id, Enable)

 Enables or disables (greys out) a menu item.

 enableTop(This, Pos, Enable)

 Enables or disables a whole menu.

 findItem(This, Id)

 Finds the menu item object associated with the given menu item identifier.

 findMenu(This, Title)

 Returns the index of the menu with the given title or wxNOT_FOUND if no such
menu exists in this menubar.

 findMenuItem(This, MenuString, ItemString)

 Finds the menu item id for a menu name/menu item string pair.

 getAutoWindowMenu()

 getHelpString(This, Id)

 Gets the help string associated with the menu item identifier.

 getLabel(This, Id)

 Gets the label associated with a menu item.

 getLabelTop(This, Pos)

 See: getMenuLabel/2.

 getMenu(This, MenuIndex)

 Returns the menu at menuIndex (zero-based).

 getMenuCount(This)

 Returns the number of menus in this menubar.

 getMenuLabel(This, Pos)

 Returns the label of a top-level menu.

 getMenuLabelText(This, Pos)

 Returns the label of a top-level menu.

 insert(This, Pos, Menu, Title)

 Inserts the menu at the given position into the menu bar.

 isChecked(This, Id)

 Determines whether an item is checked.

 isEnabled(This, Id)

 Determines whether an item is enabled.

 macGetCommonMenuBar()

 Enables you to get the global menubar on Mac, that is, the menubar displayed
when the app is running without any frames open.

 macSetCommonMenuBar(Menubar)

 Enables you to set the global menubar on Mac, that is, the menubar displayed
when the app is running without any frames open.

 new()

 Construct an empty menu bar.

 new(Style)

 oSXGetAppleMenu(This)

 Returns the Apple menu.

 remove(This, Pos)

 Removes the menu from the menu bar and returns the menu object - the caller is
responsible for deleting it.

 replace(This, Pos, Menu, Title)

 Replaces the menu at the given position with another one.

 setAutoWindowMenu(Enable)

 setHelpString(This, Id, HelpString)

 Sets the help string associated with a menu item.

 setLabel(This, Id, Label)

 Sets the label of a menu item.

 setLabelTop(This, Pos, Label)

 See: setMenuLabel/3.

 setMenuLabel(This, Pos, Label)

 Sets the label of a top-level menu.

 Types

 Link to this type

 wxMenuBar()

 View Source

 -type wxMenuBar() :: wx:wx_object().

 Functions

 Link to this function

 append(This, Menu, Title)

 View Source

 -spec append(This, Menu, Title) -> boolean()
 when This :: wxMenuBar(), Menu :: wxMenu:wxMenu(), Title :: unicode:chardata().

Adds the item to the end of the menu bar.
Return: true on success, false if an error occurred.
See: insert/4

 Link to this function

 check(This, Id, Check)

 View Source

 -spec check(This, Id, Check) -> ok when This :: wxMenuBar(), Id :: integer(), Check :: boolean().

Checks or unchecks a menu item.
Remark: Only use this when the menu bar has been associated with a frame;
otherwise, use the wxMenu equivalent call.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMenuBar()) -> ok.

Destructor, destroying the menu bar and removing it from the parent frame (if
any).

 Link to this function

 enable(This, Id, Enable)

 View Source

 -spec enable(This, Id, Enable) -> ok when This :: wxMenuBar(), Id :: integer(), Enable :: boolean().

Enables or disables (greys out) a menu item.
Remark: Only use this when the menu bar has been associated with a frame;
otherwise, use the wxMenu equivalent call.

 Link to this function

 enableTop(This, Pos, Enable)

 View Source

 -spec enableTop(This, Pos, Enable) -> ok when This :: wxMenuBar(), Pos :: integer(), Enable :: boolean().

Enables or disables a whole menu.
Remark: Only use this when the menu bar has been associated with a frame.

 Link to this function

 findItem(This, Id)

 View Source

 -spec findItem(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenuBar(), Id :: integer().

Finds the menu item object associated with the given menu item identifier.
Return: The found menu item object, or NULL if one was not found.

 Link to this function

 findMenu(This, Title)

 View Source

 -spec findMenu(This, Title) -> integer() when This :: wxMenuBar(), Title :: unicode:chardata().

Returns the index of the menu with the given title or wxNOT_FOUND if no such
menu exists in this menubar.
The title parameter may specify either the menu title (with accelerator
characters, i.e. "&File") or just the menu label ("File") indifferently.

 Link to this function

 findMenuItem(This, MenuString, ItemString)

 View Source

 -spec findMenuItem(This, MenuString, ItemString) -> integer()
 when
 This :: wxMenuBar(),
 MenuString :: unicode:chardata(),
 ItemString :: unicode:chardata().

Finds the menu item id for a menu name/menu item string pair.
Return: The menu item identifier, or wxNOT_FOUND if none was found.
Remark: Any special menu codes are stripped out of source and target strings
before matching.

 Link to this function

 getAutoWindowMenu()

 View Source

 -spec getAutoWindowMenu() -> boolean().

 Link to this function

 getHelpString(This, Id)

 View Source

 -spec getHelpString(This, Id) -> unicode:charlist() when This :: wxMenuBar(), Id :: integer().

Gets the help string associated with the menu item identifier.
Return: The help string, or the empty string if there was no help string or the
menu item was not found.
See: setHelpString/3

 Link to this function

 getLabel(This, Id)

 View Source

 -spec getLabel(This, Id) -> unicode:charlist() when This :: wxMenuBar(), Id :: integer().

Gets the label associated with a menu item.
Return: The menu item label, or the empty string if the item was not found.
Remark: Use only after the menubar has been associated with a frame.

 Link to this function

 getLabelTop(This, Pos)

 View Source

 -spec getLabelTop(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

See: getMenuLabel/2.

 Link to this function

 getMenu(This, MenuIndex)

 View Source

 -spec getMenu(This, MenuIndex) -> wxMenu:wxMenu() when This :: wxMenuBar(), MenuIndex :: integer().

Returns the menu at menuIndex (zero-based).

 Link to this function

 getMenuCount(This)

 View Source

 -spec getMenuCount(This) -> integer() when This :: wxMenuBar().

Returns the number of menus in this menubar.

 Link to this function

 getMenuLabel(This, Pos)

 View Source

 -spec getMenuLabel(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

Returns the label of a top-level menu.
Note that the returned string includes the accelerator characters that have been
specified in the menu title string during its construction.
Return: The menu label, or the empty string if the menu was not found.
Remark: Use only after the menubar has been associated with a frame.
See: getMenuLabelText/2, setMenuLabel/3

 Link to this function

 getMenuLabelText(This, Pos)

 View Source

 -spec getMenuLabelText(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

Returns the label of a top-level menu.
Note that the returned string does not include any accelerator characters that
may have been specified in the menu title string during its construction.
Return: The menu label, or the empty string if the menu was not found.
Remark: Use only after the menubar has been associated with a frame.
See: getMenuLabel/2, setMenuLabel/3

 Link to this function

 insert(This, Pos, Menu, Title)

 View Source

 -spec insert(This, Pos, Menu, Title) -> boolean()
 when
 This :: wxMenuBar(),
 Pos :: integer(),
 Menu :: wxMenu:wxMenu(),
 Title :: unicode:chardata().

Inserts the menu at the given position into the menu bar.
Inserting menu at position 0 will insert it in the very beginning of it,
inserting at position getMenuCount/1 is the same as calling append/3.
Return: true on success, false if an error occurred.
See: append/3

 Link to this function

 isChecked(This, Id)

 View Source

 -spec isChecked(This, Id) -> boolean() when This :: wxMenuBar(), Id :: integer().

Determines whether an item is checked.
Return: true if the item was found and is checked, false otherwise.

 Link to this function

 isEnabled(This, Id)

 View Source

 -spec isEnabled(This, Id) -> boolean() when This :: wxMenuBar(), Id :: integer().

Determines whether an item is enabled.
Return: true if the item was found and is enabled, false otherwise.

 Link to this function

 macGetCommonMenuBar()

 View Source

 -spec macGetCommonMenuBar() -> wxMenuBar().

Enables you to get the global menubar on Mac, that is, the menubar displayed
when the app is running without any frames open.
Return: The global menubar.
Remark: Only exists on Mac, other platforms do not have this method.
Only for:wxosx

 Link to this function

 macSetCommonMenuBar(Menubar)

 View Source

 -spec macSetCommonMenuBar(Menubar) -> ok when Menubar :: wxMenuBar().

Enables you to set the global menubar on Mac, that is, the menubar displayed
when the app is running without any frames open.
Remark: Only exists on Mac, other platforms do not have this method.
Only for:wxosx

 Link to this function

 new()

 View Source

 -spec new() -> wxMenuBar().

Construct an empty menu bar.

 Link to this function

 new(Style)

 View Source

 -spec new(Style) -> wxMenuBar() when Style :: integer().

 Link to this function

 oSXGetAppleMenu(This)

 View Source

 -spec oSXGetAppleMenu(This) -> wxMenu:wxMenu() when This :: wxMenuBar().

Returns the Apple menu.
This is the leftmost menu with application's name as its title. You shouldn't
remove any items from it, but it is safe to insert extra menu items or submenus
into it.
Only for:wxosx
Since: 3.0.1

 Link to this function

 remove(This, Pos)

 View Source

 -spec remove(This, Pos) -> wxMenu:wxMenu() when This :: wxMenuBar(), Pos :: integer().

Removes the menu from the menu bar and returns the menu object - the caller is
responsible for deleting it.
This function may be used together with insert/4 to change the menubar
dynamically.
See: replace/4

 Link to this function

 replace(This, Pos, Menu, Title)

 View Source

 -spec replace(This, Pos, Menu, Title) -> wxMenu:wxMenu()
 when
 This :: wxMenuBar(),
 Pos :: integer(),
 Menu :: wxMenu:wxMenu(),
 Title :: unicode:chardata().

Replaces the menu at the given position with another one.
Return: The menu which was previously at position pos. The caller is responsible
for deleting it.
See: insert/4, remove/2

 Link to this function

 setAutoWindowMenu(Enable)

 View Source

 -spec setAutoWindowMenu(Enable) -> ok when Enable :: boolean().

 Link to this function

 setHelpString(This, Id, HelpString)

 View Source

 -spec setHelpString(This, Id, HelpString) -> ok
 when This :: wxMenuBar(), Id :: integer(), HelpString :: unicode:chardata().

Sets the help string associated with a menu item.
See: getHelpString/2

 Link to this function

 setLabel(This, Id, Label)

 View Source

 -spec setLabel(This, Id, Label) -> ok
 when This :: wxMenuBar(), Id :: integer(), Label :: unicode:chardata().

Sets the label of a menu item.
Remark: Use only after the menubar has been associated with a frame.
See: getLabel/2

 Link to this function

 setLabelTop(This, Pos, Label)

 View Source

 -spec setLabelTop(This, Pos, Label) -> ok
 when This :: wxMenuBar(), Pos :: integer(), Label :: unicode:chardata().

See: setMenuLabel/3.

 Link to this function

 setMenuLabel(This, Pos, Label)

 View Source

 -spec setMenuLabel(This, Pos, Label) -> ok
 when This :: wxMenuBar(), Pos :: integer(), Label :: unicode:chardata().

Sets the label of a top-level menu.
Remark: Use only after the menubar has been associated with a frame.

wxMenuEvent

Functions for wxMenuEvent class
This class is used for a variety of menu-related events. Note that these do not
include menu command events, which are handled using wxCommandEvent objects.
Events of this class are generated by both menus that are part of a
wxMenuBar, attached to wxFrame, and popup menus shown by
wxWindow:popupMenu/4. They are sent to the following objects until one of them
handles the event:
-# The menu object itself, as returned by GetMenu(), if any. -# The wxMenuBar to which this menu is attached, if any. -# The window associated with the menu, e.g. the one calling PopupMenu() for the popup menus. -# The top level parent of that window if it's different from the window itself.
This is similar to command events generated by the menu items, but, unlike them,
wxMenuEvent are only sent to the window itself and its top level parent but
not any intermediate windows in the hierarchy.
The default handler for wxEVT_MENU_HIGHLIGHT in wxFrame displays help text
in the status bar, see wxFrame:setStatusBarPane/2.
See: wxCommandEvent,
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMenuEvent

 Events

Use wxEvtHandler:connect/3 with wxMenuEventType to
subscribe to events of this type.

 Summary

 Types

 wxMenu()

 wxMenuEvent()

 wxMenuEventType()

 Functions

 getMenu(This)

 Returns the menu which is being opened or closed, or the menu containing the
highlighted item.

 getMenuId(This)

 Returns the menu identifier associated with the event.

 isPopup(This)

 Returns true if the menu which is being opened or closed is a popup menu, false
if it is a normal one.

 Types

 Link to this type

 wxMenu()

 View Source

 -type wxMenu() ::
 #wxMenu{type :: wxMenuEvent:wxMenuEventType(), menuId :: integer(), menu :: wxMenu:wxMenu()}.

 Link to this type

 wxMenuEvent()

 View Source

 -type wxMenuEvent() :: wx:wx_object().

 Link to this type

 wxMenuEventType()

 View Source

 -type wxMenuEventType() :: menu_open | menu_close | menu_highlight.

 Functions

 Link to this function

 getMenu(This)

 View Source

 -spec getMenu(This) -> wxMenu:wxMenu() when This :: wxMenuEvent().

Returns the menu which is being opened or closed, or the menu containing the
highlighted item.
Note that the returned value can be NULL if the menu being opened doesn't have a
corresponding wxMenu, e.g. this happens when opening the system menu in
wxMSW port.
Remark: Since 3.1.3 this function can be used with OPEN, CLOSE and
HIGHLIGHT events. Before 3.1.3, this method can only be used with the OPEN
and CLOSE events.

 Link to this function

 getMenuId(This)

 View Source

 -spec getMenuId(This) -> integer() when This :: wxMenuEvent().

Returns the menu identifier associated with the event.
This method should be only used with the HIGHLIGHT events.

 Link to this function

 isPopup(This)

 View Source

 -spec isPopup(This) -> boolean() when This :: wxMenuEvent().

Returns true if the menu which is being opened or closed is a popup menu, false
if it is a normal one.
This method should only be used with the OPEN and CLOSE events.

wxMenuItem

Functions for wxMenuItem class
A menu item represents an item in a menu.
Note that you usually don't have to deal with it directly as wxMenu methods
usually construct an object of this class for you.
Also please note that the methods related to fonts and bitmaps are currently
only implemented for Windows, Mac and GTK+.
See: wxMenuBar, wxMenu
wxWidgets docs:
wxMenuItem

 Events

Event types emitted from this class: menu_open,
menu_close, menu_highlight

 Summary

 Types

 wxMenuItem()

 Functions

 check(This)

 check/2

 Checks or unchecks the menu item.

 destroy(This)

 Destructor.

 enable(This)

 enable/2

 Enables or disables the menu item.

 getBitmap(This)

 Returns the checked or unchecked bitmap.

 getHelp(This)

 Returns the help string associated with the menu item.

 getId(This)

 Returns the menu item identifier.

 getItemLabel(This)

 Returns the text associated with the menu item including any accelerator
characters that were passed to the constructor or setItemLabel/2.

 getItemLabelText(This)

 Returns the text associated with the menu item, without any accelerator
characters.

 getKind(This)

 Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL,
wxITEM_CHECK or wxITEM_RADIO.

 getLabel(This)

 See: getItemLabelText/1.

 getLabelFromText(Text)

 See: getLabelText/1.

 getLabelText(Text)

 Strips all accelerator characters and mnemonics from the given text.

 getMenu(This)

 Returns the menu this menu item is in, or NULL if this menu item is not
attached.

 getSubMenu(This)

 Returns the submenu associated with the menu item, or NULL if there isn't one.

 getText(This)

 See: getItemLabel/1.

 isCheckable(This)

 Returns true if the item is checkable.

 isChecked(This)

 Returns true if the item is checked.

 isEnabled(This)

 Returns true if the item is enabled.

 isSeparator(This)

 Returns true if the item is a separator.

 isSubMenu(This)

 Returns true if the item is a submenu.

 new()

 new(Options)

 Constructs a wxMenuItem object.

 setBitmap(This, Bmp)

 Sets the bitmap for the menu item.

 setHelp(This, HelpString)

 Sets the help string.

 setItemLabel(This, Label)

 Sets the label associated with the menu item.

 setMenu(This, Menu)

 Sets the parent menu which will contain this menu item.

 setSubMenu(This, Menu)

 Sets the submenu of this menu item.

 setText(This, Label)

 See: setItemLabel/2.

 Types

 Link to this type

 wxMenuItem()

 View Source

 -type wxMenuItem() :: wx:wx_object().

 Functions

 Link to this function

 check(This)

 View Source

 -spec check(This) -> ok when This :: wxMenuItem().

 Link to this function

 check/2

 View Source

 -spec check(This, [Option]) -> ok when This :: wxMenuItem(), Option :: {check, boolean()}.

Checks or unchecks the menu item.
Note that this only works when the item is already appended to a menu.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMenuItem()) -> ok.

Destructor.

 Link to this function

 enable(This)

 View Source

 -spec enable(This) -> ok when This :: wxMenuItem().

 Link to this function

 enable/2

 View Source

 -spec enable(This, [Option]) -> ok when This :: wxMenuItem(), Option :: {enable, boolean()}.

Enables or disables the menu item.

 Link to this function

 getBitmap(This)

 View Source

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxMenuItem().

Returns the checked or unchecked bitmap.
Only for:wxmsw

 Link to this function

 getHelp(This)

 View Source

 -spec getHelp(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the help string associated with the menu item.

 Link to this function

 getId(This)

 View Source

 -spec getId(This) -> integer() when This :: wxMenuItem().

Returns the menu item identifier.

 Link to this function

 getItemLabel(This)

 View Source

 -spec getItemLabel(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the text associated with the menu item including any accelerator
characters that were passed to the constructor or setItemLabel/2.
See: getItemLabelText/1, getLabelText/1

 Link to this function

 getItemLabelText(This)

 View Source

 -spec getItemLabelText(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the text associated with the menu item, without any accelerator
characters.
See: getItemLabel/1, getLabelText/1

 Link to this function

 getKind(This)

 View Source

 -spec getKind(This) -> wx:wx_enum() when This :: wxMenuItem().

Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL,
wxITEM_CHECK or wxITEM_RADIO.

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxMenuItem().

See: getItemLabelText/1.

 Link to this function

 getLabelFromText(Text)

 View Source

 -spec getLabelFromText(Text) -> unicode:charlist() when Text :: unicode:chardata().

See: getLabelText/1.

 Link to this function

 getLabelText(Text)

 View Source

 -spec getLabelText(Text) -> unicode:charlist() when Text :: unicode:chardata().

Strips all accelerator characters and mnemonics from the given text.
For example:
will return just "Hello".
See: getItemLabelText/1, getItemLabel/1

 Link to this function

 getMenu(This)

 View Source

 -spec getMenu(This) -> wxMenu:wxMenu() when This :: wxMenuItem().

Returns the menu this menu item is in, or NULL if this menu item is not
attached.

 Link to this function

 getSubMenu(This)

 View Source

 -spec getSubMenu(This) -> wxMenu:wxMenu() when This :: wxMenuItem().

Returns the submenu associated with the menu item, or NULL if there isn't one.

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxMenuItem().

See: getItemLabel/1.

 Link to this function

 isCheckable(This)

 View Source

 -spec isCheckable(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is checkable.
Notice that the radio buttons are considered to be checkable as well, so this
method returns true for them too. Use IsCheck() (not implemented in wx) if you
want to test for the check items only.

 Link to this function

 isChecked(This)

 View Source

 -spec isChecked(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is checked.

 Link to this function

 isEnabled(This)

 View Source

 -spec isEnabled(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is enabled.

 Link to this function

 isSeparator(This)

 View Source

 -spec isSeparator(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is a separator.

 Link to this function

 isSubMenu(This)

 View Source

 -spec isSubMenu(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is a submenu.

 Link to this function

 new()

 View Source

 -spec new() -> wxMenuItem().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxMenuItem()
 when
 Option ::
 {parentMenu, wxMenu:wxMenu()} |
 {id, integer()} |
 {text, unicode:chardata()} |
 {help, unicode:chardata()} |
 {kind, wx:wx_enum()} |
 {subMenu, wxMenu:wxMenu()}.

Constructs a wxMenuItem object.
Menu items can be standard, or "stock menu items", or custom. For the standard
menu items (such as commands to open a file, exit the program and so on, see
page_stockitems for the full list) it is enough to specify just the stock ID and
leave text and help string empty. Some platforms (currently wxGTK only, and
see the remark in setBitmap/2 documentation) will also show standard bitmaps
for stock menu items.
Leaving at least text empty for the stock menu items is actually strongly
recommended as they will have appearance and keyboard interface (including
standard accelerators) familiar to the user.
For the custom (non-stock) menu items, text must be specified and while help
string may be left empty, it's recommended to pass the item description (which
is automatically shown by the library in the status bar when the menu item is
selected) in this parameter.
Finally note that you can e.g. use a stock menu label without using its stock
help string:
that is, stock properties are set independently one from the other.

 Link to this function

 setBitmap(This, Bmp)

 View Source

 -spec setBitmap(This, Bmp) -> ok when This :: wxMenuItem(), Bmp :: wxBitmap:wxBitmap().

Sets the bitmap for the menu item.
It is equivalent to wxMenuItem::SetBitmaps(bmp, wxNullBitmap) if checked is
true (default value) or SetBitmaps(wxNullBitmap, bmp) otherwise.
setBitmap/2 must be called before the item is appended to the menu, i.e.
appending the item without a bitmap and setting one later is not guaranteed to
work. But the bitmap can be changed or reset later if it had been set up
initially.
Notice that GTK+ uses a global setting called gtk-menu-images to determine if
the images should be shown in the menus at all. If it is off (which is the case
in e.g. Gnome 2.28 by default), no images will be shown, consistently with the
native behaviour.
Only for:wxmsw,wxosx,wxgtk

 Link to this function

 setHelp(This, HelpString)

 View Source

 -spec setHelp(This, HelpString) -> ok when This :: wxMenuItem(), HelpString :: unicode:chardata().

Sets the help string.

 Link to this function

 setItemLabel(This, Label)

 View Source

 -spec setItemLabel(This, Label) -> ok when This :: wxMenuItem(), Label :: unicode:chardata().

Sets the label associated with the menu item.
Note that if the ID of this menu item corresponds to a stock ID, then it is not
necessary to specify a label: wxWidgets will automatically use the stock item
label associated with that ID. See the new/1 for more info.
The label string for the normal menu items (not separators) may include the
accelerator which can be used to activate the menu item from keyboard. An
accelerator key can be specified using the ampersand & character. In order to
embed an ampersand character in the menu item text, the ampersand must be
doubled.
Optionally you can specify also an accelerator string appending a tab character
\t followed by a valid key combination (e.g. CTRL+V). Its general syntax is
any combination of "CTRL", "RAWCTRL", "ALT" and "SHIFT" strings (case
doesn't matter) separated by either '-' or '+' characters and followed by
the accelerator itself. Notice that CTRL corresponds to the "Ctrl" key on most
platforms but not under macOS where it is mapped to "Cmd" key on Mac keyboard.
Usually this is exactly what you want in portable code but if you really need to
use the (rarely used for this purpose) "Ctrl" key even under Mac, you may use
RAWCTRL to prevent this mapping. Under the other platforms RAWCTRL is the
same as plain CTRL.
The accelerator may be any alphanumeric character, any function key (from F1
to F12), any numpad digit key using KP_ prefix (i.e. from KP_0 to KP_9)
or one of the special strings listed below (again, case doesn't matter)
corresponding to the specified key code:
Examples:
Note: In wxGTK using "SHIFT" with non-alphabetic characters currently doesn't
work, even in combination with other modifiers, due to GTK+ limitation. E.g.
Shift+Ctrl+A works but Shift+Ctrl+1 or Shift+/ do not, so avoid using
accelerators of this form in portable code.
Note: In wxGTk, the left/right/up/down arrow keys do not work as accelerator
keys for a menu item unless a modifier key is used. Additionally, the following
keycodes are not supported as menu accelerator keys:
See: getItemLabel/1, getItemLabelText/1

 Link to this function

 setMenu(This, Menu)

 View Source

 -spec setMenu(This, Menu) -> ok when This :: wxMenuItem(), Menu :: wxMenu:wxMenu().

Sets the parent menu which will contain this menu item.

 Link to this function

 setSubMenu(This, Menu)

 View Source

 -spec setSubMenu(This, Menu) -> ok when This :: wxMenuItem(), Menu :: wxMenu:wxMenu().

Sets the submenu of this menu item.

 Link to this function

 setText(This, Label)

 View Source

 -spec setText(This, Label) -> ok when This :: wxMenuItem(), Label :: unicode:chardata().

See: setItemLabel/2.

wxMessageDialog

Functions for wxMessageDialog class
This class represents a dialog that shows a single or multi-line message, with a
choice of OK, Yes, No and Cancel buttons.
Styles
This class supports the following styles:
See:
Overview cmndlg
See: wxRichMessageDialog (not implemented in wx)
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxMessageDialog

 Summary

 Types

 wxMessageDialog()

 Functions

 destroy(This)

 Destroys the object.

 new(Parent, Message)

 new/3

 Constructor specifying the message box properties.

 Types

 Link to this type

 wxMessageDialog()

 View Source

 -type wxMessageDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMessageDialog()) -> ok.

Destroys the object.

 Link to this function

 new(Parent, Message)

 View Source

 -spec new(Parent, Message) -> wxMessageDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Message, [Option]) -> wxMessageDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor specifying the message box properties.
Use wxDialog:showModal/1 to show the dialog.
style may be a bit list of the identifiers described above.
Notice that not all styles are compatible: only one of wxOK and wxYES_NO may
be specified (and one of them must be specified) and at most one default button
style can be used and it is only valid if the corresponding button is shown in
the message box.

wxMiniFrame

Functions for wxMiniFrame class
A miniframe is a frame with a small title bar. It is suitable for floating
toolbars that must not take up too much screen area.
An example of mini frame can be seen in the page_samples_dialogs using the "Mini
frame" command of the "Generic dialogs" submenu.
Styles
This class supports the following styles:
Remark: This class has miniframe functionality under Windows and GTK, i.e. the
presence of mini frame will not be noted in the task bar and focus behaviour is
different. On other platforms, it behaves like a normal frame.
See: wxMDIParentFrame, wxMDIChildFrame, wxFrame, wxDialog
This class is derived (and can use functions) from: wxFrame
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxMiniFrame

 Summary

 Types

 wxMiniFrame()

 Functions

 create(This, Parent, Id, Title)

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destructor.

 new()

 Default ctor.

 new(Parent, Id, Title)

 new/4

 Constructor, creating the window.

 Types

 Link to this type

 wxMiniFrame()

 View Source

 -type wxMiniFrame() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Title)

 View Source

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMiniFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMiniFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMiniFrame()) -> ok.

Destructor.
Destroys all child windows and menu bar if present.

 Link to this function

 new()

 View Source

 -spec new() -> wxMiniFrame().

Default ctor.

 Link to this function

 new(Parent, Id, Title)

 View Source

 -spec new(Parent, Id, Title) -> wxMiniFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Title, [Option]) -> wxMiniFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Remark: The frame behaves like a normal frame on non-Windows platforms.
See: create/5

wxMirrorDC

Functions for wxMirrorDC class
wxMirrorDC is a simple wrapper class which is always associated with a real
wxDC object and either forwards all of its operations to it without changes
(no mirroring takes place) or exchanges x and y coordinates which makes it
possible to reuse the same code to draw a figure and its mirror - i.e.
reflection related to the diagonal line x == y.
Since: 2.5.0
This class is derived (and can use functions) from: wxDC
wxWidgets docs:
wxMirrorDC

 Summary

 Types

 wxMirrorDC()

 Functions

 destroy(This)

 Destroys the object.

 new(Dc, Mirror)

 Creates a (maybe) mirrored DC associated with the real dc.

 Types

 Link to this type

 wxMirrorDC()

 View Source

 -type wxMirrorDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMirrorDC()) -> ok.

Destroys the object.

 Link to this function

 new(Dc, Mirror)

 View Source

 -spec new(Dc, Mirror) -> wxMirrorDC() when Dc :: wxDC:wxDC(), Mirror :: boolean().

Creates a (maybe) mirrored DC associated with the real dc.
Everything drawn on wxMirrorDC will appear (and maybe mirrored) on dc.
mirror specifies if we do mirror (if it is true) or not (if it is false).

wxMouseCaptureChangedEvent

Functions for wxMouseCaptureChangedEvent class
An mouse capture changed event is sent to a window that loses its mouse capture.
This is called even if wxWindow:releaseMouse/1 was called by the application
code. Handling this event allows an application to cater for unexpected capture
releases which might otherwise confuse mouse handling code.
Only for:wxmsw
See: wxMouseCaptureLostEvent,
Overview events,
wxWindow:captureMouse/1, wxWindow:releaseMouse/1, wxWindow:getCapture/0
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMouseCaptureChangedEvent

 Events

Use wxEvtHandler:connect/3 with
wxMouseCaptureChangedEventType to
subscribe to events of this type.

 Summary

 Types

 wxMouseCaptureChanged()

 wxMouseCaptureChangedEvent()

 wxMouseCaptureChangedEventType()

 Functions

 getCapturedWindow(This)

 Returns the window that gained the capture, or NULL if it was a non-wxWidgets
window.

 Types

 Link to this type

 wxMouseCaptureChanged()

 View Source

 -type wxMouseCaptureChanged() ::
 #wxMouseCaptureChanged{type :: wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType()}.

 Link to this type

 wxMouseCaptureChangedEvent()

 View Source

 -type wxMouseCaptureChangedEvent() :: wx:wx_object().

 Link to this type

 wxMouseCaptureChangedEventType()

 View Source

 -type wxMouseCaptureChangedEventType() :: mouse_capture_changed.

 Functions

 Link to this function

 getCapturedWindow(This)

 View Source

 -spec getCapturedWindow(This) -> wxWindow:wxWindow() when This :: wxMouseCaptureChangedEvent().

Returns the window that gained the capture, or NULL if it was a non-wxWidgets
window.

wxMouseCaptureLostEvent

Functions for wxMouseCaptureLostEvent class
A mouse capture lost event is sent to a window that had obtained mouse capture,
which was subsequently lost due to an "external" event (for example, when a
dialog box is shown or if another application captures the mouse).
If this happens, this event is sent to all windows that are on the capture stack
(i.e. called CaptureMouse, but didn't call ReleaseMouse yet). The event is not
sent if the capture changes because of a call to CaptureMouse or ReleaseMouse.
This event is currently emitted under Windows only.
Only for:wxmsw
See: wxMouseCaptureChangedEvent,
Overview events,
wxWindow:captureMouse/1, wxWindow:releaseMouse/1, wxWindow:getCapture/0
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMouseCaptureLostEvent

 Events

Use wxEvtHandler:connect/3 with
wxMouseCaptureLostEventType to subscribe
to events of this type.

 Summary

 Types

 wxMouseCaptureLost()

 wxMouseCaptureLostEvent()

 wxMouseCaptureLostEventType()

 Types

 Link to this type

 wxMouseCaptureLost()

 View Source

 -type wxMouseCaptureLost() ::
 #wxMouseCaptureLost{type :: wxMouseCaptureLostEvent:wxMouseCaptureLostEventType()}.

 Link to this type

 wxMouseCaptureLostEvent()

 View Source

 -type wxMouseCaptureLostEvent() :: wx:wx_object().

 Link to this type

 wxMouseCaptureLostEventType()

 View Source

 -type wxMouseCaptureLostEventType() :: mouse_capture_lost.

wxMouseEvent

Functions for wxMouseEvent class
This event class contains information about the events generated by the mouse:
they include mouse buttons press and release events and mouse move events.
All mouse events involving the buttons use wxMOUSE_BTN_LEFT for the left mouse
button, wxMOUSE_BTN_MIDDLE for the middle one and wxMOUSE_BTN_RIGHT for the
right one. And if the system supports more buttons, the wxMOUSE_BTN_AUX1 and
wxMOUSE_BTN_AUX2 events can also be generated. Note that not all mice have
even a middle button so a portable application should avoid relying on the
events from it (but the right button click can be emulated using the left mouse
button with the control key under Mac platforms with a single button mouse).
For the wxEVT_ENTER_WINDOW and wxEVT_LEAVE_WINDOW events purposes, the mouse
is considered to be inside the window if it is in the window client area and not
inside one of its children. In other words, the parent window receives
wxEVT_LEAVE_WINDOW event not only when the mouse leaves the window entirely
but also when it enters one of its children.
The position associated with a mouse event is expressed in the window
coordinates of the window which generated the event, you can use
wxWindow:clientToScreen/3 to convert it to screen coordinates and possibly
call wxWindow:screenToClient/2 next to convert it to window coordinates of
another window.
Note: Note the difference between methods like leftDown/1 and the inherited
leftIsDown/1: the former returns true when the event corresponds to the left
mouse button click while the latter returns true if the left mouse button is
currently being pressed. For example, when the user is dragging the mouse you
can use leftIsDown/1 to test whether the left mouse button is (still)
depressed. Also, by convention, if leftDown/1 returns true, leftIsDown/1
will also return true in wxWidgets whatever the underlying GUI behaviour is
(which is platform-dependent). The same applies, of course, to other mouse
buttons as well.
See: wxKeyEvent
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMouseEvent

 Events

Use wxEvtHandler:connect/3 with wxMouseEventType
to subscribe to events of this type.

 Summary

 Types

 wxMouse()

 wxMouseEvent()

 wxMouseEventType()

 Functions

 altDown(This)

 Returns true if the Alt key is pressed.

 aux1DClick(This)

 Returns true if the event was a first extra button double click.

 aux1Down(This)

 Returns true if the first extra button mouse button changed to down.

 aux1Up(This)

 Returns true if the first extra button mouse button changed to up.

 aux2DClick(This)

 Returns true if the event was a second extra button double click.

 aux2Down(This)

 Returns true if the second extra button mouse button changed to down.

 aux2Up(This)

 Returns true if the second extra button mouse button changed to up.

 button(This, But)

 Returns true if the event was generated by the specified button.

 buttonDClick(This)

 buttonDClick/2

 If the argument is omitted, this returns true if the event was a mouse double
click event.

 buttonDown(This)

 buttonDown/2

 If the argument is omitted, this returns true if the event was a mouse button
down event.

 buttonUp(This)

 buttonUp/2

 If the argument is omitted, this returns true if the event was a mouse button up
event.

 cmdDown(This)

 Returns true if the key used for command accelerators is pressed.

 controlDown(This)

 Returns true if the Control key or Apple/Command key under macOS is pressed.

 dragging(This)

 Returns true if this was a dragging event (motion while a button is depressed).

 entering(This)

 Returns true if the mouse was entering the window.

 getButton(This)

 Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no
button is involved (for mouse move, enter or leave event, for example).

 getLinesPerAction(This)

 Returns the configured number of lines (or whatever) to be scrolled per wheel
action.

 getLogicalPosition(This, Dc)

 Returns the logical mouse position in pixels (i.e. translated according to the
translation set for the DC, which usually indicates that the window has been
scrolled).

 getPosition(This)

 Returns the physical mouse position.

 getWheelAxis(This)

 Gets the axis the wheel operation concerns.

 getWheelDelta(This)

 Get wheel delta, normally 120.

 getWheelRotation(This)

 Get wheel rotation, positive or negative indicates direction of rotation.

 getX(This)

 Returns X coordinate of the physical mouse event position.

 getY(This)

 Returns Y coordinate of the physical mouse event position.

 isButton(This)

 Returns true if the event was a mouse button event (not necessarily a button
down event - that may be tested using buttonDown/2).

 isPageScroll(This)

 Returns true if the system has been setup to do page scrolling with the mouse
wheel instead of line scrolling.

 leaving(This)

 Returns true if the mouse was leaving the window.

 leftDClick(This)

 Returns true if the event was a left double click.

 leftDown(This)

 Returns true if the left mouse button changed to down.

 leftIsDown(This)

 Returns true if the left mouse button is currently down.

 leftUp(This)

 Returns true if the left mouse button changed to up.

 metaDown(This)

 Returns true if the Meta key was down at the time of the event.

 middleDClick(This)

 Returns true if the event was a middle double click.

 middleDown(This)

 Returns true if the middle mouse button changed to down.

 middleIsDown(This)

 Returns true if the middle mouse button is currently down.

 middleUp(This)

 Returns true if the middle mouse button changed to up.

 moving(This)

 Returns true if this was a motion event and no mouse buttons were pressed.

 rightDClick(This)

 Returns true if the event was a right double click.

 rightDown(This)

 Returns true if the right mouse button changed to down.

 rightIsDown(This)

 Returns true if the right mouse button is currently down.

 rightUp(This)

 Returns true if the right mouse button changed to up.

 shiftDown(This)

 Returns true if the Shift key is pressed.

 Types

 Link to this type

 wxMouse()

 View Source

 -type wxMouse() ::
 #wxMouse{type :: wxMouseEvent:wxMouseEventType(),
 x :: integer(),
 y :: integer(),
 leftDown :: boolean(),
 middleDown :: boolean(),
 rightDown :: boolean(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 wheelRotation :: integer(),
 wheelDelta :: integer(),
 linesPerAction :: integer()}.

 Link to this type

 wxMouseEvent()

 View Source

 -type wxMouseEvent() :: wx:wx_object().

 Link to this type

 wxMouseEventType()

 View Source

 -type wxMouseEventType() ::
 left_down | left_up | middle_down | middle_up | right_down | right_up | motion |
 enter_window | leave_window | left_dclick | middle_dclick | right_dclick | mousewheel |
 aux1_down | aux1_up | aux1_dclick | aux2_down | aux2_up | aux2_dclick.

 Functions

 Link to this function

 altDown(This)

 View Source

 -spec altDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Alt key is pressed.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this
one.

 Link to this function

 aux1DClick(This)

 View Source

 -spec aux1DClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a first extra button double click.

 Link to this function

 aux1Down(This)

 View Source

 -spec aux1Down(This) -> boolean() when This :: wxMouseEvent().

Returns true if the first extra button mouse button changed to down.

 Link to this function

 aux1Up(This)

 View Source

 -spec aux1Up(This) -> boolean() when This :: wxMouseEvent().

Returns true if the first extra button mouse button changed to up.

 Link to this function

 aux2DClick(This)

 View Source

 -spec aux2DClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a second extra button double click.

 Link to this function

 aux2Down(This)

 View Source

 -spec aux2Down(This) -> boolean() when This :: wxMouseEvent().

Returns true if the second extra button mouse button changed to down.

 Link to this function

 aux2Up(This)

 View Source

 -spec aux2Up(This) -> boolean() when This :: wxMouseEvent().

Returns true if the second extra button mouse button changed to up.

 Link to this function

 button(This, But)

 View Source

 -spec button(This, But) -> boolean() when This :: wxMouseEvent(), But :: wx:wx_enum().

Returns true if the event was generated by the specified button.
See: wxMouseState::ButtoinIsDown()

 Link to this function

 buttonDClick(This)

 View Source

 -spec buttonDClick(This) -> boolean() when This :: wxMouseEvent().

 Link to this function

 buttonDClick/2

 View Source

 -spec buttonDClick(This, [Option]) -> boolean()
 when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse double
click event.
Otherwise the argument specifies which double click event was generated (see
button/2 for the possible values).

 Link to this function

 buttonDown(This)

 View Source

 -spec buttonDown(This) -> boolean() when This :: wxMouseEvent().

 Link to this function

 buttonDown/2

 View Source

 -spec buttonDown(This, [Option]) -> boolean() when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse button
down event.
Otherwise the argument specifies which button-down event was generated (see
button/2 for the possible values).

 Link to this function

 buttonUp(This)

 View Source

 -spec buttonUp(This) -> boolean() when This :: wxMouseEvent().

 Link to this function

 buttonUp/2

 View Source

 -spec buttonUp(This, [Option]) -> boolean() when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse button up
event.
Otherwise the argument specifies which button-up event was generated (see
button/2 for the possible values).

 Link to this function

 cmdDown(This)

 View Source

 -spec cmdDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the key used for command accelerators is pressed.
Same as controlDown/1. Deprecated.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this
one.

 Link to this function

 controlDown(This)

 View Source

 -spec controlDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Control key or Apple/Command key under macOS is pressed.
This function doesn't distinguish between right and left control keys.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this
one.

 Link to this function

 dragging(This)

 View Source

 -spec dragging(This) -> boolean() when This :: wxMouseEvent().

Returns true if this was a dragging event (motion while a button is depressed).
See: moving/1

 Link to this function

 entering(This)

 View Source

 -spec entering(This) -> boolean() when This :: wxMouseEvent().

Returns true if the mouse was entering the window.
See: leaving/1

 Link to this function

 getButton(This)

 View Source

 -spec getButton(This) -> integer() when This :: wxMouseEvent().

Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no
button is involved (for mouse move, enter or leave event, for example).
Otherwise wxMOUSE_BTN_LEFT is returned for the left button down, up and double
click events, wxMOUSE_BTN_MIDDLE and wxMOUSE_BTN_RIGHT for the same events
for the middle and the right buttons respectively.

 Link to this function

 getLinesPerAction(This)

 View Source

 -spec getLinesPerAction(This) -> integer() when This :: wxMouseEvent().

Returns the configured number of lines (or whatever) to be scrolled per wheel
action.
Default value under most platforms is three.
See: GetColumnsPerAction() (not implemented in wx)

 Link to this function

 getLogicalPosition(This, Dc)

 View Source

 -spec getLogicalPosition(This, Dc) -> {X :: integer(), Y :: integer()}
 when This :: wxMouseEvent(), Dc :: wxDC:wxDC().

Returns the logical mouse position in pixels (i.e. translated according to the
translation set for the DC, which usually indicates that the window has been
scrolled).

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxMouseEvent().

Returns the physical mouse position.

 Link to this function

 getWheelAxis(This)

 View Source

 -spec getWheelAxis(This) -> wx:wx_enum() when This :: wxMouseEvent().

Gets the axis the wheel operation concerns.
Usually the mouse wheel is used to scroll vertically so wxMOUSE_WHEEL_VERTICAL
is returned but some mice (and most trackpads) also allow to use the wheel to
scroll horizontally in which case wxMOUSE_WHEEL_HORIZONTAL is returned.
Notice that before wxWidgets 2.9.4 this method returned int.

 Link to this function

 getWheelDelta(This)

 View Source

 -spec getWheelDelta(This) -> integer() when This :: wxMouseEvent().

Get wheel delta, normally 120.
This is the threshold for action to be taken, and one such action (for example,
scrolling one increment) should occur for each delta.

 Link to this function

 getWheelRotation(This)

 View Source

 -spec getWheelRotation(This) -> integer() when This :: wxMouseEvent().

Get wheel rotation, positive or negative indicates direction of rotation.
Current devices all send an event when rotation is at least +/-WheelDelta, but
finer resolution devices can be created in the future.
Because of this you shouldn't assume that one event is equal to 1 line, but you
should be able to either do partial line scrolling or wait until several events
accumulate before scrolling.

 Link to this function

 getX(This)

 View Source

 -spec getX(This) -> integer() when This :: wxMouseEvent().

Returns X coordinate of the physical mouse event position.

 Link to this function

 getY(This)

 View Source

 -spec getY(This) -> integer() when This :: wxMouseEvent().

Returns Y coordinate of the physical mouse event position.

 Link to this function

 isButton(This)

 View Source

 -spec isButton(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a mouse button event (not necessarily a button
down event - that may be tested using buttonDown/2).

 Link to this function

 isPageScroll(This)

 View Source

 -spec isPageScroll(This) -> boolean() when This :: wxMouseEvent().

Returns true if the system has been setup to do page scrolling with the mouse
wheel instead of line scrolling.

 Link to this function

 leaving(This)

 View Source

 -spec leaving(This) -> boolean() when This :: wxMouseEvent().

Returns true if the mouse was leaving the window.
See: entering/1

 Link to this function

 leftDClick(This)

 View Source

 -spec leftDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a left double click.

 Link to this function

 leftDown(This)

 View Source

 -spec leftDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button changed to down.

 Link to this function

 leftIsDown(This)

 View Source

 -spec leftIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button is currently down.

 Link to this function

 leftUp(This)

 View Source

 -spec leftUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button changed to up.

 Link to this function

 metaDown(This)

 View Source

 -spec metaDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Meta key was down at the time of the event.

 Link to this function

 middleDClick(This)

 View Source

 -spec middleDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a middle double click.

 Link to this function

 middleDown(This)

 View Source

 -spec middleDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button changed to down.

 Link to this function

 middleIsDown(This)

 View Source

 -spec middleIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button is currently down.

 Link to this function

 middleUp(This)

 View Source

 -spec middleUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button changed to up.

 Link to this function

 moving(This)

 View Source

 -spec moving(This) -> boolean() when This :: wxMouseEvent().

Returns true if this was a motion event and no mouse buttons were pressed.
If any mouse button is held pressed, then this method returns false and
dragging/1 returns true.

 Link to this function

 rightDClick(This)

 View Source

 -spec rightDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a right double click.

 Link to this function

 rightDown(This)

 View Source

 -spec rightDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button changed to down.

 Link to this function

 rightIsDown(This)

 View Source

 -spec rightIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button is currently down.

 Link to this function

 rightUp(This)

 View Source

 -spec rightUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button changed to up.

 Link to this function

 shiftDown(This)

 View Source

 -spec shiftDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Shift key is pressed.
This function doesn't distinguish between right and left shift keys.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this
one.

wxMoveEvent

Functions for wxMoveEvent class
A move event holds information about window position change.
These events are currently generated for top level (see wxTopLevelWindow)
windows in all ports, but are not generated for the child windows in wxGTK.
See: {X,Y},
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxMoveEvent

 Events

Use wxEvtHandler:connect/3 with wxMoveEventType to
subscribe to events of this type.

 Summary

 Types

 wxMove()

 wxMoveEvent()

 wxMoveEventType()

 Functions

 getPosition(This)

 Returns the position of the window generating the move change event.

 getRect(This)

 Types

 Link to this type

 wxMove()

 View Source

 -type wxMove() ::
 #wxMove{type :: wxMoveEvent:wxMoveEventType(),
 pos :: {X :: integer(), Y :: integer()},
 rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

 Link to this type

 wxMoveEvent()

 View Source

 -type wxMoveEvent() :: wx:wx_object().

 Link to this type

 wxMoveEventType()

 View Source

 -type wxMoveEventType() :: move.

 Functions

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxMoveEvent().

Returns the position of the window generating the move change event.

 Link to this function

 getRect(This)

 View Source

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxMoveEvent().

wxMultiChoiceDialog

Functions for wxMultiChoiceDialog class
This class represents a dialog that shows a list of strings, and allows the user
to select one or more.
Styles
This class supports the following styles:
See:
Overview cmndlg,
wxSingleChoiceDialog
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxMultiChoiceDialog

 Summary

 Types

 wxMultiChoiceDialog()

 Functions

 destroy(This)

 Destroys the object.

 getSelections(This)

 Returns array with indexes of selected items.

 new(Parent, Message, Caption, Choices)

 new/5

 Constructor taking an array of wxString (not implemented in wx) choices.

 setSelections(This, Selections)

 Sets selected items from the array of selected items' indexes.

 Types

 Link to this type

 wxMultiChoiceDialog()

 View Source

 -type wxMultiChoiceDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxMultiChoiceDialog()) -> ok.

Destroys the object.

 Link to this function

 getSelections(This)

 View Source

 -spec getSelections(This) -> [integer()] when This :: wxMultiChoiceDialog().

Returns array with indexes of selected items.

 Link to this function

 new(Parent, Message, Caption, Choices)

 View Source

 -spec new(Parent, Message, Caption, Choices) -> wxMultiChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()].

 Link to this function

 new/5

 View Source

 -spec new(Parent, Message, Caption, Choices, [Option]) -> wxMultiChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {pos, {X :: integer(), Y :: integer()}}.

Constructor taking an array of wxString (not implemented in wx) choices.
Remark: Use wxDialog:showModal/1 to show the dialog.

 Link to this function

 setSelections(This, Selections)

 View Source

 -spec setSelections(This, Selections) -> ok
 when This :: wxMultiChoiceDialog(), Selections :: [integer()].

Sets selected items from the array of selected items' indexes.

wxNavigationKeyEvent

Functions for wxNavigationKeyEvent class
This event class contains information about navigation events, generated by
navigation keys such as tab and page down.
This event is mainly used by wxWidgets implementations. A
wxNavigationKeyEvent handler is automatically provided by wxWidgets when you
enable keyboard navigation inside a window by inheriting it from
wxNavigationEnabled<>.
See: wxWindow:navigate/2, wxWindow::NavigateIn (not implemented in wx)
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxNavigationKeyEvent

 Events

Use wxEvtHandler:connect/3 with
wxNavigationKeyEventType to subscribe to
events of this type.

 Summary

 Types

 wxNavigationKey()

 wxNavigationKeyEvent()

 wxNavigationKeyEventType()

 Functions

 getCurrentFocus(This)

 Returns the child that has the focus, or NULL.

 getDirection(This)

 Returns true if the navigation was in the forward direction.

 isFromTab(This)

 Returns true if the navigation event was from a tab key.

 isWindowChange(This)

 Returns true if the navigation event represents a window change (for example,
from Ctrl-Page Down in a notebook).

 setCurrentFocus(This, CurrentFocus)

 Sets the current focus window member.

 setDirection(This, Direction)

 Sets the direction to forward if direction is true, or backward if false.

 setFromTab(This, FromTab)

 Marks the navigation event as from a tab key.

 setWindowChange(This, WindowChange)

 Marks the event as a window change event.

 Types

 Link to this type

 wxNavigationKey()

 View Source

 -type wxNavigationKey() ::
 #wxNavigationKey{type :: wxNavigationKeyEvent:wxNavigationKeyEventType(),
 dir :: boolean(),
 focus :: wxWindow:wxWindow()}.

 Link to this type

 wxNavigationKeyEvent()

 View Source

 -type wxNavigationKeyEvent() :: wx:wx_object().

 Link to this type

 wxNavigationKeyEventType()

 View Source

 -type wxNavigationKeyEventType() :: navigation_key.

 Functions

 Link to this function

 getCurrentFocus(This)

 View Source

 -spec getCurrentFocus(This) -> wxWindow:wxWindow() when This :: wxNavigationKeyEvent().

Returns the child that has the focus, or NULL.

 Link to this function

 getDirection(This)

 View Source

 -spec getDirection(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation was in the forward direction.

 Link to this function

 isFromTab(This)

 View Source

 -spec isFromTab(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation event was from a tab key.
This is required for proper navigation over radio buttons.

 Link to this function

 isWindowChange(This)

 View Source

 -spec isWindowChange(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation event represents a window change (for example,
from Ctrl-Page Down in a notebook).

 Link to this function

 setCurrentFocus(This, CurrentFocus)

 View Source

 -spec setCurrentFocus(This, CurrentFocus) -> ok
 when This :: wxNavigationKeyEvent(), CurrentFocus :: wxWindow:wxWindow().

Sets the current focus window member.

 Link to this function

 setDirection(This, Direction)

 View Source

 -spec setDirection(This, Direction) -> ok when This :: wxNavigationKeyEvent(), Direction :: boolean().

Sets the direction to forward if direction is true, or backward if false.

 Link to this function

 setFromTab(This, FromTab)

 View Source

 -spec setFromTab(This, FromTab) -> ok when This :: wxNavigationKeyEvent(), FromTab :: boolean().

Marks the navigation event as from a tab key.

 Link to this function

 setWindowChange(This, WindowChange)

 View Source

 -spec setWindowChange(This, WindowChange) -> ok
 when This :: wxNavigationKeyEvent(), WindowChange :: boolean().

Marks the event as a window change event.

wxNotebook

Functions for wxNotebook class
This class represents a notebook control, which manages multiple windows with
associated tabs.
To use the class, create a wxNotebook object and call
wxBookCtrlBase:addPage/4 or wxBookCtrlBase:insertPage/5, passing a window to
be used as the page. Do not explicitly delete the window for a page that is
currently managed by wxNotebook.
wxNotebookPage is a typedef for wxWindow.
Styles
This class supports the following styles:
Page backgrounds
On Windows, the default theme paints a background on the notebook's pages. If
you wish to suppress this theme, for aesthetic or performance reasons, there are
three ways of doing it. You can use wxNB_NOPAGETHEME to disable themed drawing
for a particular notebook, you can call wxSystemOptions:setOption/2 to disable
it for the whole application, or you can disable it for individual pages by
using wxWindow:setBackgroundColour/2.
To disable themed pages globally:
Set the value to 1 to enable it again. To give a single page a solid background
that more or less fits in with the overall theme, use:
On platforms other than Windows, or if the application is not using Windows
themes, getThemeBackgroundColour/1 will return an uninitialised colour object,
and the above code will therefore work on all platforms.
See: ?wxBookCtrl, wxBookCtrlEvent, wxImageList,
Examples
This class is derived (and can use functions) from: wxBookCtrlBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxNotebook

 Events

Event types emitted from this class:
command_notebook_page_changed,
command_notebook_page_changing

 Summary

 Types

 wxNotebook()

 Functions

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 create(This, Parent, Id)

 create/4

 Creates a notebook control.

 destroy(This)

 Destroys the wxNotebook object.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getRowCount(This)

 Returns the number of rows in the notebook control.

 getThemeBackgroundColour(This)

 If running under Windows and themes are enabled for the application, this
function returns a suitable colour for painting the background of a notebook
page, and can be passed to wxWindow:setBackgroundColour/2.

 new()

 Constructs a notebook control.

 new(Parent, Id)

 new/3

 Constructs a notebook control.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPadding(This, Padding)

 Sets the amount of space around each page's icon and label, in pixels.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 Types

 Link to this type

 wxNotebook()

 View Source

 -type wxNotebook() :: wx:wx_object().

 Functions

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxNotebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See: wxImageList, setImageList/2

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxNotebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxNotebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates a notebook control.
See new/3 for a description of the parameters.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxNotebook()) -> ok.

Destroys the wxNotebook object.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxNotebook().

Returns the associated image list, may be NULL.
See: wxImageList, setImageList/2

 Link to this function

 getPageImage(This, NPage)

 View Source

 -spec getPageImage(This, NPage) -> integer() when This :: wxNotebook(), NPage :: integer().

Returns the image index for the given page.

 Link to this function

 getRowCount(This)

 View Source

 -spec getRowCount(This) -> integer() when This :: wxNotebook().

Returns the number of rows in the notebook control.

 Link to this function

 getThemeBackgroundColour(This)

 View Source

 -spec getThemeBackgroundColour(This) -> wx:wx_colour4() when This :: wxNotebook().

If running under Windows and themes are enabled for the application, this
function returns a suitable colour for painting the background of a notebook
page, and can be passed to wxWindow:setBackgroundColour/2.
Otherwise, an uninitialised colour will be returned.

 Link to this function

 new()

 View Source

 -spec new() -> wxNotebook().

Constructs a notebook control.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxNotebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxNotebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a notebook control.
Note that sometimes you can reduce flicker by passing the wxCLIP_CHILDREN window
style.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxNotebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See: wxImageList, assignImageList/2

 Link to this function

 setPadding(This, Padding)

 View Source

 -spec setPadding(This, Padding) -> ok
 when This :: wxNotebook(), Padding :: {W :: integer(), H :: integer()}.

Sets the amount of space around each page's icon and label, in pixels.
Note: The vertical padding cannot be changed in wxGTK.

 Link to this function

 setPageImage(This, Page, Image)

 View Source

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxNotebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 Link to this function

 setPageSize(This, Size)

 View Source

 -spec setPageSize(This, Size) -> ok when This :: wxNotebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

wxNotificationMessage

Functions for wxNotificationMessage class
This class allows showing the user a message non intrusively.
Currently it is implemented natively for Windows, macOS, GTK and uses generic
toast notifications under the other platforms. It's not recommended but
wxGenericNotificationMessage can be used instead of the native ones. This
might make sense if your application requires features not available in the
native implementation.
Notice that this class is not a window and so doesn't derive from wxWindow.
Platform Notes
Par: Up to Windows 8 balloon notifications are displayed from an icon in the
notification area of the taskbar. If your application uses a wxTaskBarIcon
you should call useTaskBarIcon/1 to ensure that only one icon is shown in the
notification area. Windows 10 displays all notifications as popup toasts. To
suppress the additional icon in the notification area on Windows 10 and for
toast notification support on Windows 8 it is recommended to call
mSWUseToasts/1 before showing the first notification message.
Par: The macOS implementation uses Notification Center to display native
notifications. In order to use actions your notifications must use the alert
style. This can be enabled by the user in system settings or by setting the
NSUserNotificationAlertStyle value in Info.plist to alert. Please note that
the user always has the option to change the notification style.
Since: 2.9.0
This class is derived (and can use functions) from: wxEvtHandler
wxWidgets docs:
wxNotificationMessage

 Events

Event types emitted from this class:
notification_message_click,
notification_message_dismissed,
notification_message_action

 Summary

 Types

 wxNotificationMessage()

 Functions

 addAction(This, Actionid)

 addAction/3

 Add an action to the notification.

 close(This)

 Hides the notification.

 destroy(This)

 Destructor does not hide the notification.

 mSWUseToasts()

 mSWUseToasts(Options)

 Enables toast notifications available since Windows 8 and suppresses the
additional icon in the notification area on Windows 10.

 new()

 Default constructor, use setParent/2, setTitle/2 and setMessage/2 to
initialize the object before showing it.

 new(Title)

 new(Title, Options)

 Create a notification object with the given attributes.

 setFlags(This, Flags)

 This parameter can be currently used to specify the icon to show in the
notification.

 setIcon(This, Icon)

 Specify a custom icon to be displayed in the notification.

 setMessage(This, Message)

 Set the main text of the notification.

 setParent(This, Parent)

 Set the parent for this notification: the notification will be associated with
the top level parent of this window or, if this method is not called, with the
main application window by default.

 setTitle(This, Title)

 Set the title, it must be a concise string (not more than 64 characters), use
setMessage/2 to give the user more details.

 show(This)

 show/2

 Show the notification to the user and hides it after timeout seconds are
elapsed.

 useTaskBarIcon(Icon)

 If the application already uses a wxTaskBarIcon, it should be connected to
notifications by using this method.

 Types

 Link to this type

 wxNotificationMessage()

 View Source

 -type wxNotificationMessage() :: wx:wx_object().

 Functions

 Link to this function

 addAction(This, Actionid)

 View Source

 -spec addAction(This, Actionid) -> boolean() when This :: wxNotificationMessage(), Actionid :: integer().

 Link to this function

 addAction/3

 View Source

 -spec addAction(This, Actionid, [Option]) -> boolean()
 when
 This :: wxNotificationMessage(),
 Actionid :: integer(),
 Option :: {label, unicode:chardata()}.

Add an action to the notification.
If supported by the implementation this are usually buttons in the notification
selectable by the user.
Return: false if the current implementation or OS version does not support
actions in notifications.
Since: 3.1.0

 Link to this function

 close(This)

 View Source

 -spec close(This) -> boolean() when This :: wxNotificationMessage().

Hides the notification.
Returns true if it was hidden or false if it couldn't be done (e.g. on some
systems automatically hidden notifications can't be hidden manually).

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxNotificationMessage()) -> ok.

Destructor does not hide the notification.
The notification can continue to be shown even after the C++ object was
destroyed, call close/1 explicitly if it needs to be hidden.

 Link to this function

 mSWUseToasts()

 View Source

 -spec mSWUseToasts() -> boolean().

 Link to this function

 mSWUseToasts(Options)

 View Source

 -spec mSWUseToasts([Option]) -> boolean()
 when Option :: {shortcutPath, unicode:chardata()} | {appId, unicode:chardata()}.

Enables toast notifications available since Windows 8 and suppresses the
additional icon in the notification area on Windows 10.
Toast notifications require a shortcut to the application in the start menu.
The start menu shortcut needs to contain an Application User Model ID. It is
recommended that the applications setup creates the shortcut and the application
specifies the setup created shortcut in shortcutPath. A call to this method
will verify (and if necessary modify) the shortcut before enabling toast
notifications.
Return: false if toast notifications could not be enabled.
Only for:wxmsw
See: wxAppConsole::SetAppName() (not implemented in wx),
wxAppConsole::SetVendorName() (not implemented in wx)
Since: 3.1.0

 Link to this function

 new()

 View Source

 -spec new() -> wxNotificationMessage().

Default constructor, use setParent/2, setTitle/2 and setMessage/2 to
initialize the object before showing it.

 Link to this function

 new(Title)

 View Source

 -spec new(Title) -> wxNotificationMessage() when Title :: unicode:chardata().

 Link to this function

 new(Title, Options)

 View Source

 -spec new(Title, [Option]) -> wxNotificationMessage()
 when
 Title :: unicode:chardata(),
 Option ::
 {message, unicode:chardata()} | {parent, wxWindow:wxWindow()} | {flags, integer()}.

Create a notification object with the given attributes.
See setTitle/2, setMessage/2, setParent/2 and setFlags/2 for the
description of the corresponding parameters.

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxNotificationMessage(), Flags :: integer().

This parameter can be currently used to specify the icon to show in the
notification.
Valid values are wxICON_INFORMATION, wxICON_WARNING and wxICON_ERROR
(notice that wxICON_QUESTION is not allowed here). Some implementations of
this class may not support the icons.
See: setIcon/2

 Link to this function

 setIcon(This, Icon)

 View Source

 -spec setIcon(This, Icon) -> ok when This :: wxNotificationMessage(), Icon :: wxIcon:wxIcon().

Specify a custom icon to be displayed in the notification.
Some implementations of this class may not support custom icons.
See: setFlags/2
Since: 3.1.0

 Link to this function

 setMessage(This, Message)

 View Source

 -spec setMessage(This, Message) -> ok
 when This :: wxNotificationMessage(), Message :: unicode:chardata().

Set the main text of the notification.
This should be a more detailed description than the title but still limited to
reasonable length (not more than 256 characters).

 Link to this function

 setParent(This, Parent)

 View Source

 -spec setParent(This, Parent) -> ok when This :: wxNotificationMessage(), Parent :: wxWindow:wxWindow().

Set the parent for this notification: the notification will be associated with
the top level parent of this window or, if this method is not called, with the
main application window by default.

 Link to this function

 setTitle(This, Title)

 View Source

 -spec setTitle(This, Title) -> ok when This :: wxNotificationMessage(), Title :: unicode:chardata().

Set the title, it must be a concise string (not more than 64 characters), use
setMessage/2 to give the user more details.

 Link to this function

 show(This)

 View Source

 -spec show(This) -> boolean() when This :: wxNotificationMessage().

 Link to this function

 show/2

 View Source

 -spec show(This, [Option]) -> boolean()
 when This :: wxNotificationMessage(), Option :: {timeout, integer()}.

Show the notification to the user and hides it after timeout seconds are
elapsed.
Special values Timeout_Auto and Timeout_Never can be used here, notice that
you shouldn't rely on timeout being exactly respected because the current
platform may only support default timeout value and also because the user may be
able to close the notification.
Note: When using native notifications in wxGTK, the timeout is ignored for the
notifications with wxICON_WARNING or wxICON_ERROR flags, they always remain
shown unless they're explicitly hidden by the user, i.e. behave as if
Timeout_Auto were given.
Return: false if an error occurred.

 Link to this function

 useTaskBarIcon(Icon)

 View Source

 -spec useTaskBarIcon(Icon) -> wxTaskBarIcon:wxTaskBarIcon() when Icon :: wxTaskBarIcon:wxTaskBarIcon().

If the application already uses a wxTaskBarIcon, it should be connected to
notifications by using this method.
This has no effect if toast notifications are used.
Return: the task bar icon which was used previously (may be NULL)
Only for:wxmsw

wxNotifyEvent

Functions for wxNotifyEvent class
This class is not used by the event handlers by itself, but is a base class for
other event classes (such as wxBookCtrlEvent).
It (or an object of a derived class) is sent when the controls state is being
changed and allows the program to veto/1 this change if it wants to prevent it
from happening.
See: wxBookCtrlEvent
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxNotifyEvent

 Summary

 Types

 wxNotifyEvent()

 Functions

 allow(This)

 This is the opposite of veto/1: it explicitly allows the event to be
processed.

 isAllowed(This)

 Returns true if the change is allowed (veto/1 hasn't been called) or false
otherwise (if it was).

 veto(This)

 Prevents the change announced by this event from happening.

 Types

 Link to this type

 wxNotifyEvent()

 View Source

 -type wxNotifyEvent() :: wx:wx_object().

 Functions

 Link to this function

 allow(This)

 View Source

 -spec allow(This) -> ok when This :: wxNotifyEvent().

This is the opposite of veto/1: it explicitly allows the event to be
processed.
For most events it is not necessary to call this method as the events are
allowed anyhow but some are forbidden by default (this will be mentioned in the
corresponding event description).

 Link to this function

 isAllowed(This)

 View Source

 -spec isAllowed(This) -> boolean() when This :: wxNotifyEvent().

Returns true if the change is allowed (veto/1 hasn't been called) or false
otherwise (if it was).

 Link to this function

 veto(This)

 View Source

 -spec veto(This) -> ok when This :: wxNotifyEvent().

Prevents the change announced by this event from happening.
It is in general a good idea to notify the user about the reasons for vetoing
the change because otherwise the applications behaviour (which just refuses to
do what the user wants) might be quite surprising.

wxOverlay

Functions for wxOverlay class
Creates an overlay over an existing window, allowing for manipulations like
rubberbanding, etc. On wxOSX the overlay is implemented with native platform
APIs, on the other platforms it is simulated using wxMemoryDC.
See: wxDCOverlay, wxDC
wxWidgets docs: wxOverlay

 Summary

 Types

 wxOverlay()

 Functions

 destroy(This)

 new()

 reset(This)

 Clears the overlay without restoring the former state.

 Types

 Link to this type

 wxOverlay()

 View Source

 -type wxOverlay() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxOverlay()) -> ok.

 Link to this function

 new()

 View Source

 -spec new() -> wxOverlay().

 Link to this function

 reset(This)

 View Source

 -spec reset(This) -> ok when This :: wxOverlay().

Clears the overlay without restoring the former state.
To be done, for example, when the window content has been changed and repainted.

wxPageSetupDialog

Functions for wxPageSetupDialog class
This class represents the page setup common dialog.
The page setup dialog contains controls for paper size (letter, A4, A5 etc.),
orientation (landscape or portrait), and, only under Windows currently, controls
for setting left, top, right and bottom margin sizes in millimetres.
The exact appearance of this dialog varies among the platforms as a native
dialog is used when available (currently the case for all major platforms).
When the dialog has been closed, you need to query the wxPageSetupDialogData
object associated with the dialog.
Note that the OK and Cancel buttons do not destroy the dialog; this must be done
by the application.
See:
Overview printing,
wxPrintDialog, wxPageSetupDialogData
wxWidgets docs:
wxPageSetupDialog

 Summary

 Types

 wxPageSetupDialog()

 Functions

 destroy(This)

 Destructor.

 getPageSetupData(This)

 Returns the wxPageSetupDialogData object associated with the dialog.

 new(Parent)

 new/2

 Constructor.

 showModal(This)

 Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

 Types

 Link to this type

 wxPageSetupDialog()

 View Source

 -type wxPageSetupDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPageSetupDialog()) -> ok.

Destructor.

 Link to this function

 getPageSetupData(This)

 View Source

 -spec getPageSetupData(This) -> wxPageSetupDialogData:wxPageSetupDialogData()
 when This :: wxPageSetupDialog().

Returns the wxPageSetupDialogData object associated with the dialog.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxPageSetupDialog() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxPageSetupDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option :: {data, wxPageSetupDialogData:wxPageSetupDialogData()}.

Constructor.
Pass a parent window, and optionally a pointer to a block of page setup data,
which will be copied to the print dialog's internal data.

 Link to this function

 showModal(This)

 View Source

 -spec showModal(This) -> integer() when This :: wxPageSetupDialog().

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxPageSetupDialogData

Functions for wxPageSetupDialogData class
This class holds a variety of information related to wxPageSetupDialog.
It contains a wxPrintData member which is used to hold basic printer
configuration data (as opposed to the user-interface configuration settings
stored by wxPageSetupDialogData).
See:
Overview printing,
wxPageSetupDialog
wxWidgets docs:
wxPageSetupDialogData

 Summary

 Types

 wxPageSetupDialogData()

 Functions

 destroy(This)

 Destructor.

 enableHelp(This, Flag)

 Enables or disables the "Help" button (Windows only).

 enableMargins(This, Flag)

 Enables or disables the margin controls (Windows only).

 enableOrientation(This, Flag)

 Enables or disables the orientation control (Windows only).

 enablePaper(This, Flag)

 Enables or disables the paper size control (Windows only).

 enablePrinter(This, Flag)

 Enables or disables the "Printer" button, which invokes a printer setup dialog.

 getDefaultInfo(This)

 Returns true if the dialog will simply return default printer information (such
as orientation) instead of showing a dialog (Windows only).

 getDefaultMinMargins(This)

 Returns true if the page setup dialog will take its minimum margin values from
the currently selected printer properties (Windows only).

 getEnableHelp(This)

 Returns true if the printer setup button is enabled.

 getEnableMargins(This)

 Returns true if the margin controls are enabled (Windows only).

 getEnableOrientation(This)

 Returns true if the orientation control is enabled (Windows only).

 getEnablePaper(This)

 Returns true if the paper size control is enabled (Windows only).

 getEnablePrinter(This)

 Returns true if the printer setup button is enabled.

 getMarginBottomRight(This)

 Returns the right (x) and bottom (y) margins in millimetres.

 getMarginTopLeft(This)

 Returns the left (x) and top (y) margins in millimetres.

 getMinMarginBottomRight(This)

 Returns the right (x) and bottom (y) minimum margins the user can enter (Windows
only).

 getMinMarginTopLeft(This)

 Returns the left (x) and top (y) minimum margins the user can enter (Windows
only).

 getPaperId(This)

 Returns the paper id (stored in the internal wxPrintData object).

 getPaperSize(This)

 Returns the paper size in millimetres.

 getPrintData(This)

 isOk(This)

 Returns true if the print data associated with the dialog data is valid.

 new()

 Default constructor.

 new(PrintData)

 Construct an object from a print data object.

 setDefaultInfo(This, Flag)

 Pass true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 setDefaultMinMargins(This, Flag)

 Pass true if the page setup dialog will take its minimum margin values from the
currently selected printer properties (Windows only).

 setMarginBottomRight(This, Pt)

 Sets the right (x) and bottom (y) margins in millimetres.

 setMarginTopLeft(This, Pt)

 Sets the left (x) and top (y) margins in millimetres.

 setMinMarginBottomRight(This, Pt)

 Sets the right (x) and bottom (y) minimum margins the user can enter (Windows
only).

 setMinMarginTopLeft(This, Pt)

 Sets the left (x) and top (y) minimum margins the user can enter (Windows only).

 setPaperId(This, Id)

 Sets the paper size id.

 setPaperSize(This, Size)

 Sets the paper size in millimetres.

 setPrintData(This, PrintData)

 Sets the print data associated with this object.

 Types

 Link to this type

 wxPageSetupDialogData()

 View Source

 -type wxPageSetupDialogData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPageSetupDialogData()) -> ok.

Destructor.

 Link to this function

 enableHelp(This, Flag)

 View Source

 -spec enableHelp(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the "Help" button (Windows only).

 Link to this function

 enableMargins(This, Flag)

 View Source

 -spec enableMargins(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the margin controls (Windows only).

 Link to this function

 enableOrientation(This, Flag)

 View Source

 -spec enableOrientation(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the orientation control (Windows only).

 Link to this function

 enablePaper(This, Flag)

 View Source

 -spec enablePaper(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the paper size control (Windows only).

 Link to this function

 enablePrinter(This, Flag)

 View Source

 -spec enablePrinter(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the "Printer" button, which invokes a printer setup dialog.

 Link to this function

 getDefaultInfo(This)

 View Source

 -spec getDefaultInfo(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the dialog will simply return default printer information (such
as orientation) instead of showing a dialog (Windows only).

 Link to this function

 getDefaultMinMargins(This)

 View Source

 -spec getDefaultMinMargins(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the page setup dialog will take its minimum margin values from
the currently selected printer properties (Windows only).

 Link to this function

 getEnableHelp(This)

 View Source

 -spec getEnableHelp(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the printer setup button is enabled.

 Link to this function

 getEnableMargins(This)

 View Source

 -spec getEnableMargins(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the margin controls are enabled (Windows only).

 Link to this function

 getEnableOrientation(This)

 View Source

 -spec getEnableOrientation(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the orientation control is enabled (Windows only).

 Link to this function

 getEnablePaper(This)

 View Source

 -spec getEnablePaper(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the paper size control is enabled (Windows only).

 Link to this function

 getEnablePrinter(This)

 View Source

 -spec getEnablePrinter(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the printer setup button is enabled.

 Link to this function

 getMarginBottomRight(This)

 View Source

 -spec getMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
 when This :: wxPageSetupDialogData().

Returns the right (x) and bottom (y) margins in millimetres.

 Link to this function

 getMarginTopLeft(This)

 View Source

 -spec getMarginTopLeft(This) -> {X :: integer(), Y :: integer()} when This :: wxPageSetupDialogData().

Returns the left (x) and top (y) margins in millimetres.

 Link to this function

 getMinMarginBottomRight(This)

 View Source

 -spec getMinMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
 when This :: wxPageSetupDialogData().

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows
only).
Units are in millimetres.

 Link to this function

 getMinMarginTopLeft(This)

 View Source

 -spec getMinMarginTopLeft(This) -> {X :: integer(), Y :: integer()} when This :: wxPageSetupDialogData().

Returns the left (x) and top (y) minimum margins the user can enter (Windows
only).
Units are in millimetres.

 Link to this function

 getPaperId(This)

 View Source

 -spec getPaperId(This) -> wx:wx_enum() when This :: wxPageSetupDialogData().

Returns the paper id (stored in the internal wxPrintData object).
See: wxPrintData:setPaperId/2

 Link to this function

 getPaperSize(This)

 View Source

 -spec getPaperSize(This) -> {W :: integer(), H :: integer()} when This :: wxPageSetupDialogData().

Returns the paper size in millimetres.

 Link to this function

 getPrintData(This)

 View Source

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxPageSetupDialogData().

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the print data associated with the dialog data is valid.
This can return false on Windows if the current printer is not set, for example.
On all other platforms, it returns true.

 Link to this function

 new()

 View Source

 -spec new() -> wxPageSetupDialogData().

Default constructor.

 Link to this function

 new(PrintData)

 View Source

 -spec new(PrintData) -> wxPageSetupDialogData()
 when PrintData :: wxPrintData:wxPrintData() | wxPageSetupDialogData:wxPageSetupDialogData().

Construct an object from a print data object.

 Link to this function

 setDefaultInfo(This, Flag)

 View Source

 -spec setDefaultInfo(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Pass true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 Link to this function

 setDefaultMinMargins(This, Flag)

 View Source

 -spec setDefaultMinMargins(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Pass true if the page setup dialog will take its minimum margin values from the
currently selected printer properties (Windows only).
Units are in millimetres.

 Link to this function

 setMarginBottomRight(This, Pt)

 View Source

 -spec setMarginBottomRight(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(),
 Pt :: {X :: integer(), Y :: integer()}.

Sets the right (x) and bottom (y) margins in millimetres.

 Link to this function

 setMarginTopLeft(This, Pt)

 View Source

 -spec setMarginTopLeft(This, Pt) -> ok
 when This :: wxPageSetupDialogData(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left (x) and top (y) margins in millimetres.

 Link to this function

 setMinMarginBottomRight(This, Pt)

 View Source

 -spec setMinMarginBottomRight(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(),
 Pt :: {X :: integer(), Y :: integer()}.

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows
only).
Units are in millimetres.

 Link to this function

 setMinMarginTopLeft(This, Pt)

 View Source

 -spec setMinMarginTopLeft(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

 Link to this function

 setPaperId(This, Id)

 View Source

 -spec setPaperId(This, Id) -> ok when This :: wxPageSetupDialogData(), Id :: wx:wx_enum().

Sets the paper size id.
Calling this function overrides the explicit paper dimensions passed in
setPaperSize/2.
See: wxPrintData:setPaperId/2

 Link to this function

 setPaperSize(This, Size)

 View Source

 -spec setPaperSize(This, Size) -> ok
 when This :: wxPageSetupDialogData(), Size :: {W :: integer(), H :: integer()}.

Sets the paper size in millimetres.
If a corresponding paper id is found, it will be set in the internal
wxPrintData object, otherwise the paper size overrides the paper id.

 Link to this function

 setPrintData(This, PrintData)

 View Source

 -spec setPrintData(This, PrintData) -> ok
 when This :: wxPageSetupDialogData(), PrintData :: wxPrintData:wxPrintData().

Sets the print data associated with this object.

wxPaintDC

Functions for wxPaintDC class
A wxPaintDC must be constructed if an application wishes to paint on the
client area of a window from within an EVT_PAINT() event handler. This should
normally be constructed as a temporary stack object; don't store a wxPaintDC
object. If you have an EVT_PAINT() handler, you must create a wxPaintDC
object within it even if you don't actually use it.
Using wxPaintDC within your EVT_PAINT() handler is important because it
automatically sets the clipping area to the damaged area of the window. Attempts
to draw outside this area do not appear.
A wxPaintDC object is initialized to use the same font and colours as the
window it is associated with.
See: wxDC, wxClientDC, wxMemoryDC, wxWindowDC, wxScreenDC
This class is derived (and can use functions) from: wxWindowDC wxDC
wxWidgets docs:
wxPaintDC

 Summary

 Types

 wxPaintDC()

 Functions

 destroy(This)

 Destroys the object.

 new(Window)

 Constructor.

 Types

 Link to this type

 wxPaintDC()

 View Source

 -type wxPaintDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPaintDC()) -> ok.

Destroys the object.

 Link to this function

 new(Window)

 View Source

 -spec new(Window) -> wxPaintDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxPaintEvent

Functions for wxPaintEvent class
A paint event is sent when a window's contents needs to be repainted.
The handler of this event must create a wxPaintDC object and use it for
painting the window contents. For example:
Notice that you must not create other kinds of wxDC (e.g. wxClientDC
or wxWindowDC) in EVT_PAINT handlers and also don't create wxPaintDC
outside of this event handlers.
You can optimize painting by retrieving the rectangles that have been damaged
and only repainting these. The rectangles are in terms of the client area, and
are unscrolled, so you will need to do some calculations using the current view
position to obtain logical, scrolled units. Here is an example of using the
wxRegionIterator (not implemented in wx) class:
Remark: Please notice that in general it is impossible to change the drawing of
a standard control (such as wxButton) and so you shouldn't attempt to handle
paint events for them as even if it might work on some platforms, this is
inherently not portable and won't work everywhere.
See:
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxPaintEvent

 Events

Use wxEvtHandler:connect/3 with wxPaintEventType
to subscribe to events of this type.

 Summary

 Types

 wxPaint()

 wxPaintEvent()

 wxPaintEventType()

 Types

 Link to this type

 wxPaint()

 View Source

 -type wxPaint() :: #wxPaint{type :: wxPaintEvent:wxPaintEventType()}.

 Link to this type

 wxPaintEvent()

 View Source

 -type wxPaintEvent() :: wx:wx_object().

 Link to this type

 wxPaintEventType()

 View Source

 -type wxPaintEventType() :: paint.

wxPalette

Functions for wxPalette class
A palette is a table that maps pixel values to RGB colours. It allows the
colours of a low-depth bitmap, for example, to be mapped to the available
colours in a display. The notion of palettes is becoming more and more obsolete
nowadays and only the MSW port is still using a native palette. All other ports
use generic code which is basically just an array of colours.
It is likely that in the future the only use for palettes within wxWidgets will
be for representing colour indices from images (such as GIF or PNG). The image
handlers for these formats have been modified to create a palette if there is
such information in the original image file (usually 256 or less colour images).
See wxImage for more information.
Predefined objects (include wx.hrl): ?wxNullPalette
See: wxDC:setPalette/2, wxBitmap
wxWidgets docs: wxPalette

 Summary

 Types

 wxPalette()

 Functions

 create(This, Red, Green, Blue)

 Creates a palette from arrays of size n, one for each red, blue or green
component.

 destroy(This)

 Destructor.

 getColoursCount(This)

 Returns number of entries in palette.

 getPixel(This, Red, Green, Blue)

 Returns a pixel value (index into the palette) for the given RGB values.

 getRGB(This, Pixel)

 Returns RGB values for a given palette index.

 isOk(This)

 Returns true if palette data is present.

 new()

 Default constructor.

 new(Palette)

 Copy constructor, uses overview_refcount.

 new(Red, Green, Blue)

 Creates a palette from arrays of size n, one for each red, blue or green
component.

 ok(This)

 See: isOk/1.

 Types

 Link to this type

 wxPalette()

 View Source

 -type wxPalette() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Red, Green, Blue)

 View Source

 -spec create(This, Red, Green, Blue) -> boolean()
 when This :: wxPalette(), Red :: binary(), Green :: binary(), Blue :: binary().

Creates a palette from arrays of size n, one for each red, blue or green
component.
Return: true if the creation was successful, false otherwise.
See: new/3

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPalette()) -> ok.

Destructor.
See: reference-counted object destruction

 Link to this function

 getColoursCount(This)

 View Source

 -spec getColoursCount(This) -> integer() when This :: wxPalette().

Returns number of entries in palette.

 Link to this function

 getPixel(This, Red, Green, Blue)

 View Source

 -spec getPixel(This, Red, Green, Blue) -> integer()
 when This :: wxPalette(), Red :: integer(), Green :: integer(), Blue :: integer().

Returns a pixel value (index into the palette) for the given RGB values.
Return: The nearest palette index or wxNOT_FOUND for unexpected errors.
See: getRGB/2

 Link to this function

 getRGB(This, Pixel)

 View Source

 -spec getRGB(This, Pixel) -> Result
 when
 Result ::
 {Res :: boolean(), Red :: integer(), Green :: integer(), Blue :: integer()},
 This :: wxPalette(),
 Pixel :: integer().

Returns RGB values for a given palette index.
Return: true if the operation was successful.
See: getPixel/4

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPalette().

Returns true if palette data is present.

 Link to this function

 new()

 View Source

 -spec new() -> wxPalette().

Default constructor.

 Link to this function

 new(Palette)

 View Source

 -spec new(Palette) -> wxPalette() when Palette :: wxPalette().

Copy constructor, uses overview_refcount.

 Link to this function

 new(Red, Green, Blue)

 View Source

 -spec new(Red, Green, Blue) -> wxPalette() when Red :: binary(), Green :: binary(), Blue :: binary().

Creates a palette from arrays of size n, one for each red, blue or green
component.
See: create/4

 Link to this function

 ok(This)

 View Source

 -spec ok(This) -> boolean() when This :: wxPalette().

See: isOk/1.

wxPaletteChangedEvent

Functions for wxPaletteChangedEvent class
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxPaletteChangedEvent

 Summary

 Types

 wxPaletteChanged()

 wxPaletteChangedEvent()

 wxPaletteChangedEventType()

 Functions

 getChangedWindow(This)

 setChangedWindow(This, Win)

 Types

 Link to this type

 wxPaletteChanged()

 View Source

 -type wxPaletteChanged() :: #wxPaletteChanged{type :: wxPaletteChangedEvent:wxPaletteChangedEventType()}.

 Link to this type

 wxPaletteChangedEvent()

 View Source

 -type wxPaletteChangedEvent() :: wx:wx_object().

 Link to this type

 wxPaletteChangedEventType()

 View Source

 -type wxPaletteChangedEventType() :: palette_changed.

 Functions

 Link to this function

 getChangedWindow(This)

 View Source

 -spec getChangedWindow(This) -> wxWindow:wxWindow() when This :: wxPaletteChangedEvent().

 Link to this function

 setChangedWindow(This, Win)

 View Source

 -spec setChangedWindow(This, Win) -> ok when This :: wxPaletteChangedEvent(), Win :: wxWindow:wxWindow().

wxPanel

Functions for wxPanel class
A panel is a window on which controls are placed. It is usually placed within a
frame. Its main feature over its parent class wxWindow is code for handling
child windows and TAB traversal, which is implemented natively if possible (e.g.
in wxGTK) or by wxWidgets itself otherwise.
Note: Tab traversal is implemented through an otherwise undocumented
intermediate wxControlContainer class from which any class can derive in
addition to the normal wxWindow base class. Please see and to find out how
this is achieved.
Note: if not all characters are being intercepted by your OnKeyDown or OnChar
handler, it may be because you are using the wxTAB_TRAVERSAL style, which
grabs some keypresses for use by child controls.
Remark: By default, a panel has the same colouring as a dialog.
See: wxDialog
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs: wxPanel

 Events

Event types emitted from this class:
navigation_key

 Summary

 Types

 wxPanel()

 Functions

 destroy(This)

 Destructor.

 initDialog(This)

 Sends a wxInitDialogEvent, which in turn transfers data to the dialog via
validators.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor.

 setFocusIgnoringChildren(This)

 In contrast to wxWindow:setFocus/1 (see above) this will set the focus to the
panel even if there are child windows in the panel.

 Types

 Link to this type

 wxPanel()

 View Source

 -type wxPanel() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPanel()) -> ok.

Destructor.
Deletes any child windows before deleting the physical window.

 Link to this function

 initDialog(This)

 View Source

 -spec initDialog(This) -> ok when This :: wxPanel().

Sends a wxInitDialogEvent, which in turn transfers data to the dialog via
validators.
See: wxInitDialogEvent

 Link to this function

 new()

 View Source

 -spec new() -> wxPanel().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxPanel() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxPanel()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
See: Create() (not implemented in wx)

 Link to this function

 setFocusIgnoringChildren(This)

 View Source

 -spec setFocusIgnoringChildren(This) -> ok when This :: wxPanel().

In contrast to wxWindow:setFocus/1 (see above) this will set the focus to the
panel even if there are child windows in the panel.
This is only rarely needed.

wxPasswordEntryDialog

Functions for wxPasswordEntryDialog class
This class represents a dialog that requests a one-line password string from the
user.
It is implemented as a generic wxWidgets dialog.
See:
Overview cmndlg
This class is derived (and can use functions) from: wxTextEntryDialog
wxDialog wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxPasswordEntryDialog

 Summary

 Types

 wxPasswordEntryDialog()

 Functions

 destroy(This)

 Destroys the object.

 new(Parent, Message)

 new/3

 Constructor.

 Types

 Link to this type

 wxPasswordEntryDialog()

 View Source

 -type wxPasswordEntryDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPasswordEntryDialog()) -> ok.

Destroys the object.

 Link to this function

 new(Parent, Message)

 View Source

 -spec new(Parent, Message) -> wxPasswordEntryDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Message, [Option]) -> wxPasswordEntryDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

wxPen

Functions for wxPen class
A pen is a drawing tool for drawing outlines. It is used for drawing lines and
painting the outline of rectangles, ellipses, etc. It has a colour, a width and
a style.
Note: On a monochrome display, wxWidgets shows all non-white pens as black.
Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global
pointers to objects and create them in wxApp::OnInit() (not implemented in wx)
or when required.
An application may wish to dynamically create pens with different
characteristics, and there is the consequent danger that a large number of
duplicate pens will be created. Therefore an application may wish to get a
pointer to a pen by using the global list of pens ?wxThePenList, and calling the
member function wxPenList::FindOrCreatePen() (not implemented in wx). See
wxPenList (not implemented in wx) for more info.
This class uses reference counting and copy-on-write internally so that
assignments between two instances of this class are very cheap. You can
therefore use actual objects instead of pointers without efficiency problems. If
an instance of this class is changed it will create its own data internally so
that other instances, which previously shared the data using the reference
counting, are not affected.
Predefined objects (include wx.hrl):
See: wxPenList (not implemented in wx), wxDC, wxDC:setPen/2
wxWidgets docs: wxPen

 Summary

 Types

 wxPen()

 Functions

 destroy(This)

 Destructor.

 getCap(This)

 Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT.

 getColour(This)

 Returns a reference to the pen colour.

 getJoin(This)

 Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND
and wxJOIN_MITER.

 getStyle(This)

 Returns the pen style.

 getWidth(This)

 Returns the pen width.

 isOk(This)

 Returns true if the pen is initialised.

 new()

 Default constructor.

 new/1

 Copy constructor, uses overview_refcount.

 new(Colour, Options)

 Constructs a pen from a colour object, pen width and style.

 setCap(This, CapStyle)

 Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT.

 setColour(This, Colour)

 The pen's colour is changed to the given colour.

 setColour(This, Red, Green, Blue)

 setJoin(This, Join_style)

 Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER.

 setStyle(This, Style)

 Set the pen style.

 setWidth(This, Width)

 Sets the pen width.

 Types

 Link to this type

 wxPen()

 View Source

 -type wxPen() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPen()) -> ok.

Destructor.
See: reference-counted object destruction
Remark: Although all remaining pens are deleted when the application exits, the
application should try to clean up all pens itself. This is because wxWidgets
cannot know if a pointer to the pen object is stored in an application data
structure, and there is a risk of double deletion.

 Link to this function

 getCap(This)

 View Source

 -spec getCap(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT.
The default is wxCAP_ROUND.
See: setCap/2

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> wx:wx_colour4() when This :: wxPen().

Returns a reference to the pen colour.
See: setColour/4

 Link to this function

 getJoin(This)

 View Source

 -spec getJoin(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND
and wxJOIN_MITER.
The default is wxJOIN_ROUND.
See: setJoin/2

 Link to this function

 getStyle(This)

 View Source

 -spec getStyle(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen style.
See: new/2, setStyle/2

 Link to this function

 getWidth(This)

 View Source

 -spec getWidth(This) -> integer() when This :: wxPen().

Returns the pen width.
See: setWidth/2

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPen().

Returns true if the pen is initialised.
Notice that an uninitialized pen object can't be queried for any pen properties
and all calls to the accessor methods on it will result in an assert failure.

 Link to this function

 new()

 View Source

 -spec new() -> wxPen().

Default constructor.
The pen will be uninitialised, and isOk/1 will return false.

 Link to this function

 new/1

 View Source

 -spec new(Colour) -> wxPen() when Colour :: wx:wx_colour();
 (Pen) -> wxPen() when Pen :: wxPen().

Copy constructor, uses overview_refcount.

 Link to this function

 new(Colour, Options)

 View Source

 -spec new(Colour, [Option]) -> wxPen()
 when Colour :: wx:wx_colour(), Option :: {width, integer()} | {style, wx:wx_enum()}.

Constructs a pen from a colour object, pen width and style.
Remark: Different versions of Windows and different versions of other platforms
support very different subsets of the styles above so handle with care.
See: setStyle/2, setColour/4, setWidth/2

 Link to this function

 setCap(This, CapStyle)

 View Source

 -spec setCap(This, CapStyle) -> ok when This :: wxPen(), CapStyle :: wx:wx_enum().

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING
and wxCAP_BUTT.
The default is wxCAP_ROUND.
See: getCap/1

 Link to this function

 setColour(This, Colour)

 View Source

 -spec setColour(This, Colour) -> ok when This :: wxPen(), Colour :: wx:wx_colour().

The pen's colour is changed to the given colour.
See: getColour/1

 Link to this function

 setColour(This, Red, Green, Blue)

 View Source

 -spec setColour(This, Red, Green, Blue) -> ok
 when This :: wxPen(), Red :: integer(), Green :: integer(), Blue :: integer().

 Link to this function

 setJoin(This, Join_style)

 View Source

 -spec setJoin(This, Join_style) -> ok when This :: wxPen(), Join_style :: wx:wx_enum().

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and
wxJOIN_MITER.
The default is wxJOIN_ROUND.
See: getJoin/1

 Link to this function

 setStyle(This, Style)

 View Source

 -spec setStyle(This, Style) -> ok when This :: wxPen(), Style :: wx:wx_enum().

Set the pen style.
See: new/2

 Link to this function

 setWidth(This, Width)

 View Source

 -spec setWidth(This, Width) -> ok when This :: wxPen(), Width :: integer().

Sets the pen width.
See: getWidth/1

wxPickerBase

Functions for wxPickerBase class
Base abstract class for all pickers which support an auxiliary text control.
This class handles all positioning and sizing of the text control like a an
horizontal wxBoxSizer would do, with the text control on the left of the
picker button.
The proportion (see wxSizer documentation for more info about proportion
values) of the picker control defaults to 1 when there isn't a text control
associated (see wxPB_USE_TEXTCTRL style) and to 0 otherwise.
Styles
This class supports the following styles:
See: wxColourPickerCtrl
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxPickerBase

 Summary

 Types

 wxPickerBase()

 Functions

 getInternalMargin(This)

 Returns the margin (in pixel) between the picker and the text control.

 getPickerCtrlProportion(This)

 Returns the proportion value of the picker.

 getTextCtrl(This)

 Returns a pointer to the text control handled by this window or NULL if the
wxPB_USE_TEXTCTRL style was not specified when this control was created.

 getTextCtrlProportion(This)

 Returns the proportion value of the text control.

 hasTextCtrl(This)

 Returns true if this window has a valid text control (i.e. if the
wxPB_USE_TEXTCTRL style was given when creating this control).

 isPickerCtrlGrowable(This)

 Returns true if the picker control is growable.

 isTextCtrlGrowable(This)

 Returns true if the text control is growable.

 setInternalMargin(This, Margin)

 Sets the margin (in pixel) between the picker and the text control.

 setPickerCtrlGrowable(This)

 setPickerCtrlGrowable/2

 Sets the picker control as growable when grow is true.

 setPickerCtrlProportion(This, Prop)

 Sets the proportion value of the picker.

 setTextCtrlGrowable(This)

 setTextCtrlGrowable/2

 Sets the text control as growable when grow is true.

 setTextCtrlProportion(This, Prop)

 Sets the proportion value of the text control.

 Types

 Link to this type

 wxPickerBase()

 View Source

 -type wxPickerBase() :: wx:wx_object().

 Functions

 Link to this function

 getInternalMargin(This)

 View Source

 -spec getInternalMargin(This) -> integer() when This :: wxPickerBase().

Returns the margin (in pixel) between the picker and the text control.
This function can be used only when hasTextCtrl/1 returns true.

 Link to this function

 getPickerCtrlProportion(This)

 View Source

 -spec getPickerCtrlProportion(This) -> integer() when This :: wxPickerBase().

Returns the proportion value of the picker.

 Link to this function

 getTextCtrl(This)

 View Source

 -spec getTextCtrl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxPickerBase().

Returns a pointer to the text control handled by this window or NULL if the
wxPB_USE_TEXTCTRL style was not specified when this control was created.
Remark: The contents of the text control could be an invalid representation of
the entity which can be chosen through the picker (e.g. when the user enters an
invalid colour syntax because of a typo). Thus you should never parse the
content of the textctrl to get the user's input; rather use the derived-class
getter (e.g. wxColourPickerCtrl:getColour/1, wxFilePickerCtrl:getPath/1,
etc).

 Link to this function

 getTextCtrlProportion(This)

 View Source

 -spec getTextCtrlProportion(This) -> integer() when This :: wxPickerBase().

Returns the proportion value of the text control.
This function can be used only when hasTextCtrl/1 returns true.

 Link to this function

 hasTextCtrl(This)

 View Source

 -spec hasTextCtrl(This) -> boolean() when This :: wxPickerBase().

Returns true if this window has a valid text control (i.e. if the
wxPB_USE_TEXTCTRL style was given when creating this control).

 Link to this function

 isPickerCtrlGrowable(This)

 View Source

 -spec isPickerCtrlGrowable(This) -> boolean() when This :: wxPickerBase().

Returns true if the picker control is growable.

 Link to this function

 isTextCtrlGrowable(This)

 View Source

 -spec isTextCtrlGrowable(This) -> boolean() when This :: wxPickerBase().

Returns true if the text control is growable.
This function can be used only when hasTextCtrl/1 returns true.

 Link to this function

 setInternalMargin(This, Margin)

 View Source

 -spec setInternalMargin(This, Margin) -> ok when This :: wxPickerBase(), Margin :: integer().

Sets the margin (in pixel) between the picker and the text control.
This function can be used only when hasTextCtrl/1 returns true.

 Link to this function

 setPickerCtrlGrowable(This)

 View Source

 -spec setPickerCtrlGrowable(This) -> ok when This :: wxPickerBase().

 Link to this function

 setPickerCtrlGrowable/2

 View Source

 -spec setPickerCtrlGrowable(This, [Option]) -> ok
 when This :: wxPickerBase(), Option :: {grow, boolean()}.

Sets the picker control as growable when grow is true.

 Link to this function

 setPickerCtrlProportion(This, Prop)

 View Source

 -spec setPickerCtrlProportion(This, Prop) -> ok when This :: wxPickerBase(), Prop :: integer().

Sets the proportion value of the picker.
Look at the detailed description of wxPickerBase for more info.

 Link to this function

 setTextCtrlGrowable(This)

 View Source

 -spec setTextCtrlGrowable(This) -> ok when This :: wxPickerBase().

 Link to this function

 setTextCtrlGrowable/2

 View Source

 -spec setTextCtrlGrowable(This, [Option]) -> ok when This :: wxPickerBase(), Option :: {grow, boolean()}.

Sets the text control as growable when grow is true.
This function can be used only when hasTextCtrl/1 returns true.

 Link to this function

 setTextCtrlProportion(This, Prop)

 View Source

 -spec setTextCtrlProportion(This, Prop) -> ok when This :: wxPickerBase(), Prop :: integer().

Sets the proportion value of the text control.
Look at the detailed description of wxPickerBase for more info.
This function can be used only when hasTextCtrl/1 returns true.

wxPopupTransientWindow

Functions for wxPopupTransientWindow class
A wxPopupWindow which disappears automatically when the user clicks mouse
outside it or if it loses focus in any other way.
This window can be useful for implementing custom combobox-like controls for
example.
See: wxPopupWindow
This class is derived (and can use functions) from: wxPopupWindow
wxWindow wxEvtHandler
wxWidgets docs:
wxPopupTransientWindow

 Summary

 Types

 wxPopupTransientWindow()

 Functions

 destroy(This)

 Destroys the object.

 dismiss(This)

 Hide the window.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor.

 popup(This)

 popup/2

 Popup the window (this will show it too).

 Types

 Link to this type

 wxPopupTransientWindow()

 View Source

 -type wxPopupTransientWindow() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPopupTransientWindow()) -> ok.

Destroys the object.

 Link to this function

 dismiss(This)

 View Source

 -spec dismiss(This) -> ok when This :: wxPopupTransientWindow().

Hide the window.

 Link to this function

 new()

 View Source

 -spec new() -> wxPopupTransientWindow().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxPopupTransientWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxPopupTransientWindow()
 when Parent :: wxWindow:wxWindow(), Option :: {style, integer()}.

Constructor.

 Link to this function

 popup(This)

 View Source

 -spec popup(This) -> ok when This :: wxPopupTransientWindow().

 Link to this function

 popup/2

 View Source

 -spec popup(This, [Option]) -> ok
 when This :: wxPopupTransientWindow(), Option :: {focus, wxWindow:wxWindow()}.

Popup the window (this will show it too).
If focus is non-NULL, it will be kept focused while this window is shown if
supported by the current platform, otherwise the popup itself will receive
focus. In any case, the popup will disappear automatically if it loses focus
because of a user action.
See: dismiss/1

wxPopupWindow

Functions for wxPopupWindow class
A special kind of top level window used for popup menus, combobox popups and
such.
Styles
This class supports the following styles:
See: wxDialog, wxFrame
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxPopupWindow

 Summary

 Types

 wxPopupWindow()

 Functions

 create(This, Parent)

 create/3

 Create method for two-step creation.

 destroy(This)

 Destroys the object.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor.

 position(This, PtOrigin, SizePopup)

 Move the popup window to the right position, i.e. such that it is entirely
visible.

 Types

 Link to this type

 wxPopupWindow()

 View Source

 -type wxPopupWindow() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxPopupWindow(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxPopupWindow(), Parent :: wxWindow:wxWindow(), Option :: {flags, integer()}.

Create method for two-step creation.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPopupWindow()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxPopupWindow().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxPopupWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxPopupWindow()
 when Parent :: wxWindow:wxWindow(), Option :: {flags, integer()}.

Constructor.

 Link to this function

 position(This, PtOrigin, SizePopup)

 View Source

 -spec position(This, PtOrigin, SizePopup) -> ok
 when
 This :: wxPopupWindow(),
 PtOrigin :: {X :: integer(), Y :: integer()},
 SizePopup :: {W :: integer(), H :: integer()}.

Move the popup window to the right position, i.e. such that it is entirely
visible.
The popup is positioned at ptOrigin + size if it opens below and to the right
(default), at ptOrigin - sizePopup if it opens above and to the left etc.

wxPostScriptDC

Functions for wxPostScriptDC class
This defines the wxWidgets Encapsulated PostScript device context, which can
write PostScript files on any platform. See wxDC for descriptions of the
member functions.
Starting a document
Document should be started with call to wxDC:startDoc/2 prior to calling any
function to execute a drawing operation. However, some functions, like
wxDC:setFont/2, may be legitimately called even before wxDC:startDoc/2.
This class is derived (and can use functions) from: wxDC
wxWidgets docs:
wxPostScriptDC

 Summary

 Types

 wxPostScriptDC()

 Functions

 destroy(This)

 Destroys the object.

 new()

 new(PrintData)

 Constructs a PostScript printer device context from a wxPrintData object.

 Types

 Link to this type

 wxPostScriptDC()

 View Source

 -type wxPostScriptDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPostScriptDC()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxPostScriptDC().

 Link to this function

 new(PrintData)

 View Source

 -spec new(PrintData) -> wxPostScriptDC() when PrintData :: wxPrintData:wxPrintData().

Constructs a PostScript printer device context from a wxPrintData object.

wxPreviewCanvas

Functions for wxPreviewCanvas class
A preview canvas is the default canvas used by the print preview system to
display the preview.
See: wxPreviewFrame, wxPreviewControlBar, wxPrintPreview
This class is derived (and can use functions) from: wxScrolledWindow
wxPanel wxWindow wxEvtHandler
wxWidgets docs:
wxPreviewCanvas

 Summary

 Types

 wxPreviewCanvas()

 Types

 Link to this type

 wxPreviewCanvas()

 View Source

 -type wxPreviewCanvas() :: wx:wx_object().

wxPreviewControlBar

Functions for wxPreviewControlBar class
This is the default implementation of the preview control bar, a panel with
buttons and a zoom control.
You can derive a new class from this and override some or all member functions
to change the behaviour and appearance; or you can leave it as it is.
See: wxPreviewFrame, wxPreviewCanvas, wxPrintPreview
This class is derived (and can use functions) from: wxPanel wxWindow
wxEvtHandler
wxWidgets docs:
wxPreviewControlBar

 Summary

 Types

 wxPreviewControlBar()

 Functions

 createButtons(This)

 Creates buttons, according to value of the button style flags.

 destroy(This)

 Destructor.

 getPrintPreview(This)

 Gets the print preview object associated with the control bar.

 getZoomControl(This)

 Gets the current zoom setting in percent.

 new(Preview, Buttons, Parent)

 new/4

 Constructor.

 setZoomControl(This, Percent)

 Sets the zoom control.

 Types

 Link to this type

 wxPreviewControlBar()

 View Source

 -type wxPreviewControlBar() :: wx:wx_object().

 Functions

 Link to this function

 createButtons(This)

 View Source

 -spec createButtons(This) -> ok when This :: wxPreviewControlBar().

Creates buttons, according to value of the button style flags.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPreviewControlBar()) -> ok.

Destructor.

 Link to this function

 getPrintPreview(This)

 View Source

 -spec getPrintPreview(This) -> wxPrintPreview:wxPrintPreview() when This :: wxPreviewControlBar().

Gets the print preview object associated with the control bar.

 Link to this function

 getZoomControl(This)

 View Source

 -spec getZoomControl(This) -> integer() when This :: wxPreviewControlBar().

Gets the current zoom setting in percent.

 Link to this function

 new(Preview, Buttons, Parent)

 View Source

 -spec new(Preview, Buttons, Parent) -> wxPreviewControlBar()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Buttons :: integer(),
 Parent :: wxWindow:wxWindow().

 Link to this function

 new/4

 View Source

 -spec new(Preview, Buttons, Parent, [Option]) -> wxPreviewControlBar()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Buttons :: integer(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
The buttons parameter may be a combination of the following, using the bitwise
'or' operator:

 Link to this function

 setZoomControl(This, Percent)

 View Source

 -spec setZoomControl(This, Percent) -> ok when This :: wxPreviewControlBar(), Percent :: integer().

Sets the zoom control.

wxPreviewFrame

Functions for wxPreviewFrame class
This class provides the default method of managing the print preview interface.
Member functions may be overridden to replace functionality, or the class may be
used without derivation.
See: wxPreviewCanvas, wxPreviewControlBar, wxPrintPreview
This class is derived (and can use functions) from: wxFrame
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxPreviewFrame

 Summary

 Types

 wxPreviewFrame()

 Functions

 createCanvas(This)

 Creates a wxPreviewCanvas.

 createControlBar(This)

 Creates a wxPreviewControlBar.

 destroy(This)

 Destructor.

 initialize(This)

 Initializes the frame elements and prepares for showing it.

 new(Preview, Parent)

 new/3

 Constructor.

 onCloseWindow(This, Event)

 Enables any disabled frames in the application, and deletes the print preview
object, implicitly deleting any printout objects associated with the print
preview object.

 Types

 Link to this type

 wxPreviewFrame()

 View Source

 -type wxPreviewFrame() :: wx:wx_object().

 Functions

 Link to this function

 createCanvas(This)

 View Source

 -spec createCanvas(This) -> ok when This :: wxPreviewFrame().

Creates a wxPreviewCanvas.
Override this function to allow a user-defined preview canvas object to be
created.

 Link to this function

 createControlBar(This)

 View Source

 -spec createControlBar(This) -> ok when This :: wxPreviewFrame().

Creates a wxPreviewControlBar.
Override this function to allow a user-defined preview control bar object to be
created.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPreviewFrame()) -> ok.

Destructor.

 Link to this function

 initialize(This)

 View Source

 -spec initialize(This) -> ok when This :: wxPreviewFrame().

Initializes the frame elements and prepares for showing it.
Calling this method is equivalent to calling InitializeWithModality() (not
implemented in wx) with wxPreviewFrame_AppModal argument, please see its
documentation for more details.
Please notice that this function is virtual mostly for backwards compatibility
only, there is no real need to override it as it's never called by wxWidgets
itself.

 Link to this function

 new(Preview, Parent)

 View Source

 -spec new(Preview, Parent) -> wxPreviewFrame()
 when Preview :: wxPrintPreview:wxPrintPreview(), Parent :: wxWindow:wxWindow().

 Link to this function

 new/3

 View Source

 -spec new(Preview, Parent, [Option]) -> wxPreviewFrame()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {title, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Pass a print preview object plus other normal frame arguments. The print preview
object will be destroyed by the frame when it closes.

 Link to this function

 onCloseWindow(This, Event)

 View Source

 -spec onCloseWindow(This, Event) -> ok
 when This :: wxPreviewFrame(), Event :: wxCloseEvent:wxCloseEvent().

Enables any disabled frames in the application, and deletes the print preview
object, implicitly deleting any printout objects associated with the print
preview object.

wxPrintData

Functions for wxPrintData class
This class holds a variety of information related to printers and printer device
contexts. This class is used to create a wxPrinterDC (not implemented in wx)
and a wxPostScriptDC. It is also used as a data member of
wxPrintDialogData and wxPageSetupDialogData, as part of the mechanism
for transferring data between the print dialogs and the application.
See:
Overview printing,
wxPrintDialog, wxPageSetupDialog, wxPrintDialogData,
wxPageSetupDialogData,
Overview cmndlg,
wxPrinterDC (not implemented in wx), wxPostScriptDC
wxWidgets docs:
wxPrintData

 Summary

 Types

 wxPrintData()

 Functions

 destroy(This)

 Destructor.

 getBin(This)

 Returns the current bin (papersource).

 getCollate(This)

 Returns true if collation is on.

 getColour(This)

 Returns true if colour printing is on.

 getDuplex(This)

 Returns the duplex mode.

 getNoCopies(This)

 Returns the number of copies requested by the user.

 getOrientation(This)

 Gets the orientation.

 getPaperId(This)

 Returns the paper size id.

 getPrinterName(This)

 Returns the printer name.

 getQuality(This)

 Returns the current print quality.

 isOk(This)

 Returns true if the print data is valid for using in print dialogs.

 new()

 Default constructor.

 new(Data)

 Copy constructor.

 setBin(This, Flag)

 Sets the current bin.

 setCollate(This, Flag)

 Sets collation to on or off.

 setColour(This, Flag)

 Sets colour printing on or off.

 setDuplex(This, Mode)

 Returns the duplex mode.

 setNoCopies(This, N)

 Sets the default number of copies to be printed out.

 setOrientation(This, Orientation)

 Sets the orientation.

 setPaperId(This, PaperId)

 Sets the paper id.

 setPrinterName(This, PrinterName)

 Sets the printer name.

 setQuality(This, Quality)

 Sets the desired print quality.

 Types

 Link to this type

 wxPrintData()

 View Source

 -type wxPrintData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrintData()) -> ok.

Destructor.

 Link to this function

 getBin(This)

 View Source

 -spec getBin(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the current bin (papersource).
By default, the system is left to select the bin (wxPRINTBIN_DEFAULT is
returned).
See setBin/2 for the full list of bin values.

 Link to this function

 getCollate(This)

 View Source

 -spec getCollate(This) -> boolean() when This :: wxPrintData().

Returns true if collation is on.

 Link to this function

 getColour(This)

 View Source

 -spec getColour(This) -> boolean() when This :: wxPrintData().

Returns true if colour printing is on.

 Link to this function

 getDuplex(This)

 View Source

 -spec getDuplex(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the duplex mode.
One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

 Link to this function

 getNoCopies(This)

 View Source

 -spec getNoCopies(This) -> integer() when This :: wxPrintData().

Returns the number of copies requested by the user.

 Link to this function

 getOrientation(This)

 View Source

 -spec getOrientation(This) -> wx:wx_enum() when This :: wxPrintData().

Gets the orientation.
This can be wxLANDSCAPE or wxPORTRAIT.

 Link to this function

 getPaperId(This)

 View Source

 -spec getPaperId(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the paper size id.
See: setPaperId/2

 Link to this function

 getPrinterName(This)

 View Source

 -spec getPrinterName(This) -> unicode:charlist() when This :: wxPrintData().

Returns the printer name.
If the printer name is the empty string, it indicates that the default printer
should be used.

 Link to this function

 getQuality(This)

 View Source

 -spec getQuality(This) -> integer() when This :: wxPrintData().

Returns the current print quality.
This can be a positive integer, denoting the number of dots per inch, or one of
the following identifiers:
On input you should pass one of these identifiers, but on return you may get
back a positive integer indicating the current resolution setting.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPrintData().

Returns true if the print data is valid for using in print dialogs.
This can return false on Windows if the current printer is not set, for example.
On all other platforms, it returns true.

 Link to this function

 new()

 View Source

 -spec new() -> wxPrintData().

Default constructor.

 Link to this function

 new(Data)

 View Source

 -spec new(Data) -> wxPrintData() when Data :: wxPrintData().

Copy constructor.

 Link to this function

 setBin(This, Flag)

 View Source

 -spec setBin(This, Flag) -> ok when This :: wxPrintData(), Flag :: wx:wx_enum().

Sets the current bin.

 Link to this function

 setCollate(This, Flag)

 View Source

 -spec setCollate(This, Flag) -> ok when This :: wxPrintData(), Flag :: boolean().

Sets collation to on or off.

 Link to this function

 setColour(This, Flag)

 View Source

 -spec setColour(This, Flag) -> ok when This :: wxPrintData(), Flag :: boolean().

Sets colour printing on or off.

 Link to this function

 setDuplex(This, Mode)

 View Source

 -spec setDuplex(This, Mode) -> ok when This :: wxPrintData(), Mode :: wx:wx_enum().

Returns the duplex mode.
One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

 Link to this function

 setNoCopies(This, N)

 View Source

 -spec setNoCopies(This, N) -> ok when This :: wxPrintData(), N :: integer().

Sets the default number of copies to be printed out.

 Link to this function

 setOrientation(This, Orientation)

 View Source

 -spec setOrientation(This, Orientation) -> ok when This :: wxPrintData(), Orientation :: wx:wx_enum().

Sets the orientation.
This can be wxLANDSCAPE or wxPORTRAIT.

 Link to this function

 setPaperId(This, PaperId)

 View Source

 -spec setPaperId(This, PaperId) -> ok when This :: wxPrintData(), PaperId :: wx:wx_enum().

Sets the paper id.
This indicates the type of paper to be used. For a mapping between paper id,
paper size and string name, see wxPrintPaperDatabase in "paper.h" (not yet
documented).
See: SetPaperSize() (not implemented in wx)

 Link to this function

 setPrinterName(This, PrinterName)

 View Source

 -spec setPrinterName(This, PrinterName) -> ok
 when This :: wxPrintData(), PrinterName :: unicode:chardata().

Sets the printer name.
This can be the empty string to indicate that the default printer should be
used.

 Link to this function

 setQuality(This, Quality)

 View Source

 -spec setQuality(This, Quality) -> ok when This :: wxPrintData(), Quality :: integer().

Sets the desired print quality.
This can be a positive integer, denoting the number of dots per inch, or one of
the following identifiers:
On input you should pass one of these identifiers, but on return you may get
back a positive integer indicating the current resolution setting.

wxPrintDialog

Functions for wxPrintDialog class
This class represents the print and print setup common dialogs. You may obtain a
wxPrinterDC (not implemented in wx) device context from a successfully
dismissed print dialog.
See:
Overview printing,
Overview cmndlg
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxPrintDialog

 Summary

 Types

 wxPrintDialog()

 Functions

 destroy(This)

 Destructor.

 getPrintDC(This)

 Returns the device context created by the print dialog, if any.

 getPrintDialogData(This)

 Returns the print dialog data associated with the print dialog.

 new(Parent)

 new/2

 Types

 Link to this type

 wxPrintDialog()

 View Source

 -type wxPrintDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrintDialog()) -> ok.

Destructor.
If getPrintDC/1 has not been called, the device context obtained by the dialog
(if any) will be deleted.

 Link to this function

 getPrintDC(This)

 View Source

 -spec getPrintDC(This) -> wxDC:wxDC() when This :: wxPrintDialog().

Returns the device context created by the print dialog, if any.
When this function has been called, the ownership of the device context is
transferred to the application, so it must then be deleted explicitly.

 Link to this function

 getPrintDialogData(This)

 View Source

 -spec getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData() when This :: wxPrintDialog().

Returns the print dialog data associated with the print dialog.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxPrintDialog() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxPrintDialog()
 when Parent :: wxWindow:wxWindow(), Option :: {data, wxPrintDialogData:wxPrintDialogData()};
 (Parent, Data) -> wxPrintDialog()
 when Parent :: wxWindow:wxWindow(), Data :: wxPrintData:wxPrintData().

wxPrintDialogData

Functions for wxPrintDialogData class
This class holds information related to the visual characteristics of
wxPrintDialog. It contains a wxPrintData object with underlying printing
settings.
See:
Overview printing,
wxPrintDialog,
Overview cmndlg
wxWidgets docs:
wxPrintDialogData

 Summary

 Types

 wxPrintDialogData()

 Functions

 destroy(This)

 Destructor.

 enableHelp(This, Flag)

 Enables or disables the "Help" button.

 enablePageNumbers(This, Flag)

 Enables or disables the "Page numbers" controls.

 enablePrintToFile(This, Flag)

 Enables or disables the "Print to file" checkbox.

 enableSelection(This, Flag)

 Enables or disables the "Selection" radio button.

 getAllPages(This)

 Returns true if the user requested that all pages be printed.

 getCollate(This)

 Returns true if the user requested that the document(s) be collated.

 getFromPage(This)

 Returns the from page number, as entered by the user.

 getMaxPage(This)

 Returns the maximum page number.

 getMinPage(This)

 Returns the minimum page number.

 getNoCopies(This)

 Returns the number of copies requested by the user.

 getPrintData(This)

 Returns a reference to the internal wxPrintData object.

 getPrintToFile(This)

 Returns true if the user has selected printing to a file.

 getSelection(This)

 Returns true if the user requested that the selection be printed (where
"selection" is a concept specific to the application).

 getToPage(This)

 Returns the "print to" page number, as entered by the user.

 isOk(This)

 Returns true if the print data is valid for using in print dialogs.

 new()

 Default constructor.

 new(DialogData)

 Copy constructor.

 setCollate(This, Flag)

 Sets the "Collate" checkbox to true or false.

 setFromPage(This, Page)

 Sets the from page number.

 setMaxPage(This, Page)

 Sets the maximum page number.

 setMinPage(This, Page)

 Sets the minimum page number.

 setNoCopies(This, N)

 Sets the default number of copies the user has requested to be printed out.

 setPrintData(This, PrintData)

 Sets the internal wxPrintData.

 setPrintToFile(This, Flag)

 Sets the "Print to file" checkbox to true or false.

 setSelection(This, Flag)

 Selects the "Selection" radio button.

 setToPage(This, Page)

 Sets the "print to" page number.

 Types

 Link to this type

 wxPrintDialogData()

 View Source

 -type wxPrintDialogData() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrintDialogData()) -> ok.

Destructor.

 Link to this function

 enableHelp(This, Flag)

 View Source

 -spec enableHelp(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Help" button.

 Link to this function

 enablePageNumbers(This, Flag)

 View Source

 -spec enablePageNumbers(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Page numbers" controls.

 Link to this function

 enablePrintToFile(This, Flag)

 View Source

 -spec enablePrintToFile(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Print to file" checkbox.

 Link to this function

 enableSelection(This, Flag)

 View Source

 -spec enableSelection(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Selection" radio button.

 Link to this function

 getAllPages(This)

 View Source

 -spec getAllPages(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that all pages be printed.

 Link to this function

 getCollate(This)

 View Source

 -spec getCollate(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that the document(s) be collated.

 Link to this function

 getFromPage(This)

 View Source

 -spec getFromPage(This) -> integer() when This :: wxPrintDialogData().

Returns the from page number, as entered by the user.

 Link to this function

 getMaxPage(This)

 View Source

 -spec getMaxPage(This) -> integer() when This :: wxPrintDialogData().

Returns the maximum page number.

 Link to this function

 getMinPage(This)

 View Source

 -spec getMinPage(This) -> integer() when This :: wxPrintDialogData().

Returns the minimum page number.

 Link to this function

 getNoCopies(This)

 View Source

 -spec getNoCopies(This) -> integer() when This :: wxPrintDialogData().

Returns the number of copies requested by the user.

 Link to this function

 getPrintData(This)

 View Source

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxPrintDialogData().

Returns a reference to the internal wxPrintData object.

 Link to this function

 getPrintToFile(This)

 View Source

 -spec getPrintToFile(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user has selected printing to a file.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that the selection be printed (where
"selection" is a concept specific to the application).

 Link to this function

 getToPage(This)

 View Source

 -spec getToPage(This) -> integer() when This :: wxPrintDialogData().

Returns the "print to" page number, as entered by the user.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the print data is valid for using in print dialogs.
This can return false on Windows if the current printer is not set, for example.
On all other platforms, it returns true.

 Link to this function

 new()

 View Source

 -spec new() -> wxPrintDialogData().

Default constructor.

 Link to this function

 new(DialogData)

 View Source

 -spec new(DialogData) -> wxPrintDialogData()
 when DialogData :: wxPrintDialogData:wxPrintDialogData() | wxPrintData:wxPrintData().

Copy constructor.

 Link to this function

 setCollate(This, Flag)

 View Source

 -spec setCollate(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Sets the "Collate" checkbox to true or false.

 Link to this function

 setFromPage(This, Page)

 View Source

 -spec setFromPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the from page number.

 Link to this function

 setMaxPage(This, Page)

 View Source

 -spec setMaxPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the maximum page number.

 Link to this function

 setMinPage(This, Page)

 View Source

 -spec setMinPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the minimum page number.

 Link to this function

 setNoCopies(This, N)

 View Source

 -spec setNoCopies(This, N) -> ok when This :: wxPrintDialogData(), N :: integer().

Sets the default number of copies the user has requested to be printed out.

 Link to this function

 setPrintData(This, PrintData)

 View Source

 -spec setPrintData(This, PrintData) -> ok
 when This :: wxPrintDialogData(), PrintData :: wxPrintData:wxPrintData().

Sets the internal wxPrintData.

 Link to this function

 setPrintToFile(This, Flag)

 View Source

 -spec setPrintToFile(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Sets the "Print to file" checkbox to true or false.

 Link to this function

 setSelection(This, Flag)

 View Source

 -spec setSelection(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Selects the "Selection" radio button.
The effect of printing the selection depends on how the application implements
this command, if at all.

 Link to this function

 setToPage(This, Page)

 View Source

 -spec setToPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the "print to" page number.

wxPrintPreview

Functions for wxPrintPreview class
Objects of this class manage the print preview process. The object is passed a
wxPrintout object, and the wxPrintPreview object itself is passed to a
wxPreviewFrame object. Previewing is started by initializing and showing the
preview frame. Unlike wxPrinter:print/4, flow of control returns to the
application immediately after the frame is shown.
Note: The preview shown is only exact on Windows. On other platforms, the
wxDC used for preview is different from what is used for printing and the
results may be significantly different, depending on how is the output created.
In particular, printing code relying on wxDC:getTextExtent/3 heavily (for
example, wxHtmlEasyPrinting and other wxHTML classes do) is affected. It is
recommended to use native preview functionality on platforms that offer it
(macOS, GTK+).
See:
Overview printing,
wxPrinterDC (not implemented in wx), wxPrintDialog, wxPrintout,
wxPrinter, wxPreviewCanvas, wxPreviewControlBar, wxPreviewFrame
wxWidgets docs:
wxPrintPreview

 Summary

 Types

 wxPrintPreview()

 Functions

 destroy(This)

 Destructor.

 getCanvas(This)

 Gets the preview window used for displaying the print preview image.

 getCurrentPage(This)

 Gets the page currently being previewed.

 getFrame(This)

 Gets the frame used for displaying the print preview canvas and control bar.

 getMaxPage(This)

 Returns the maximum page number.

 getMinPage(This)

 Returns the minimum page number.

 getPrintout(This)

 Gets the preview printout object associated with the wxPrintPreview object.

 getPrintoutForPrinting(This)

 Gets the printout object to be used for printing from within the preview
interface, or NULL if none exists.

 isOk(This)

 Returns true if the wxPrintPreview is valid, false otherwise.

 new(Printout)

 new/2

 Constructor.

 new(Printout, PrintoutForPrinting, Data)

 paintPage(This, Canvas, Dc)

 This refreshes the preview window with the preview image.

 print(This, Prompt)

 Invokes the print process using the second wxPrintout object supplied in the
wxPrintPreview constructor.

 renderPage(This, PageNum)

 Renders a page into a wxMemoryDC.

 setCanvas(This, Window)

 Sets the window to be used for displaying the print preview image.

 setCurrentPage(This, PageNum)

 Sets the current page to be previewed.

 setFrame(This, Frame)

 Sets the frame to be used for displaying the print preview canvas and control
bar.

 setPrintout(This, Printout)

 Associates a printout object with the wxPrintPreview object.

 setZoom(This, Percent)

 Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

 Types

 Link to this type

 wxPrintPreview()

 View Source

 -type wxPrintPreview() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrintPreview()) -> ok.

Destructor.
Deletes both print preview objects, so do not destroy these objects in your
application.

 Link to this function

 getCanvas(This)

 View Source

 -spec getCanvas(This) -> wxPreviewCanvas:wxPreviewCanvas() when This :: wxPrintPreview().

Gets the preview window used for displaying the print preview image.

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> integer() when This :: wxPrintPreview().

Gets the page currently being previewed.

 Link to this function

 getFrame(This)

 View Source

 -spec getFrame(This) -> wxFrame:wxFrame() when This :: wxPrintPreview().

Gets the frame used for displaying the print preview canvas and control bar.

 Link to this function

 getMaxPage(This)

 View Source

 -spec getMaxPage(This) -> integer() when This :: wxPrintPreview().

Returns the maximum page number.

 Link to this function

 getMinPage(This)

 View Source

 -spec getMinPage(This) -> integer() when This :: wxPrintPreview().

Returns the minimum page number.

 Link to this function

 getPrintout(This)

 View Source

 -spec getPrintout(This) -> wxPrintout:wxPrintout() when This :: wxPrintPreview().

Gets the preview printout object associated with the wxPrintPreview object.

 Link to this function

 getPrintoutForPrinting(This)

 View Source

 -spec getPrintoutForPrinting(This) -> wxPrintout:wxPrintout() when This :: wxPrintPreview().

Gets the printout object to be used for printing from within the preview
interface, or NULL if none exists.

 Link to this function

 isOk(This)

 View Source

 -spec isOk(This) -> boolean() when This :: wxPrintPreview().

Returns true if the wxPrintPreview is valid, false otherwise.
It could return false if there was a problem initializing the printer device
context (current printer not set, for example).

 Link to this function

 new(Printout)

 View Source

 -spec new(Printout) -> wxPrintPreview() when Printout :: wxPrintout:wxPrintout().

 Link to this function

 new/2

 View Source

 -spec new(Printout, [Option]) -> wxPrintPreview()
 when
 Printout :: wxPrintout:wxPrintout(),
 Option ::
 {printoutForPrinting, wxPrintout:wxPrintout()} |
 {data, wxPrintDialogData:wxPrintDialogData()}.

Constructor.
Pass a printout object, an optional printout object to be used for actual
printing, and the address of an optional block of printer data, which will be
copied to the print preview object's print data.
If printoutForPrinting is non-NULL, a "Print..." button will be placed on
the preview frame so that the user can print directly from the preview
interface.
Remark: Do not explicitly delete the printout objects once this constructor has
been called, since they will be deleted in the wxPrintPreview destructor.
The same does not apply to the data argument.
Use isOk/1 to check whether the wxPrintPreview object was created
correctly.

 Link to this function

 new(Printout, PrintoutForPrinting, Data)

 View Source

 -spec new(Printout, PrintoutForPrinting, Data) -> wxPrintPreview()
 when
 Printout :: wxPrintout:wxPrintout(),
 PrintoutForPrinting :: wxPrintout:wxPrintout(),
 Data :: wxPrintData:wxPrintData().

 Link to this function

 paintPage(This, Canvas, Dc)

 View Source

 -spec paintPage(This, Canvas, Dc) -> boolean()
 when
 This :: wxPrintPreview(),
 Canvas :: wxPreviewCanvas:wxPreviewCanvas(),
 Dc :: wxDC:wxDC().

This refreshes the preview window with the preview image.
It must be called from the preview window's OnPaint member.
The implementation simply blits the preview bitmap onto the canvas, creating a
new preview bitmap if none exists.

 Link to this function

 print(This, Prompt)

 View Source

 -spec print(This, Prompt) -> boolean() when This :: wxPrintPreview(), Prompt :: boolean().

Invokes the print process using the second wxPrintout object supplied in the
wxPrintPreview constructor.
Will normally be called by the Print... panel item on the preview frame's
control bar.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed
information about the kind of the error.

 Link to this function

 renderPage(This, PageNum)

 View Source

 -spec renderPage(This, PageNum) -> boolean() when This :: wxPrintPreview(), PageNum :: integer().

Renders a page into a wxMemoryDC.
Used internally by wxPrintPreview.

 Link to this function

 setCanvas(This, Window)

 View Source

 -spec setCanvas(This, Window) -> ok
 when This :: wxPrintPreview(), Window :: wxPreviewCanvas:wxPreviewCanvas().

Sets the window to be used for displaying the print preview image.

 Link to this function

 setCurrentPage(This, PageNum)

 View Source

 -spec setCurrentPage(This, PageNum) -> boolean() when This :: wxPrintPreview(), PageNum :: integer().

Sets the current page to be previewed.

 Link to this function

 setFrame(This, Frame)

 View Source

 -spec setFrame(This, Frame) -> ok when This :: wxPrintPreview(), Frame :: wxFrame:wxFrame().

Sets the frame to be used for displaying the print preview canvas and control
bar.

 Link to this function

 setPrintout(This, Printout)

 View Source

 -spec setPrintout(This, Printout) -> ok
 when This :: wxPrintPreview(), Printout :: wxPrintout:wxPrintout().

Associates a printout object with the wxPrintPreview object.

 Link to this function

 setZoom(This, Percent)

 View Source

 -spec setZoom(This, Percent) -> ok when This :: wxPrintPreview(), Percent :: integer().

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

wxPrinter

Functions for wxPrinter class
This class represents the Windows or PostScript printer, and is the vehicle
through which printing may be launched by an application.
Printing can also be achieved through using of lower functions and classes, but
this and associated classes provide a more convenient and general method of
printing.
See:
Overview printing,
wxPrinterDC (not implemented in wx), wxPrintDialog, wxPrintout,
wxPrintPreview
wxWidgets docs: wxPrinter

 Summary

 Types

 wxPrinter()

 Functions

 createAbortWindow(This, Parent, Printout)

 Creates the default printing abort window, with a cancel button.

 destroy(This)

 Destroys the object.

 getAbort(This)

 Returns true if the user has aborted the print job.

 getLastError()

 Return last error.

 getPrintDialogData(This)

 Returns the print data associated with the printer object.

 new()

 new(Options)

 Constructor.

 print(This, Parent, Printout)

 print/4

 Starts the printing process.

 printDialog(This, Parent)

 Invokes the print dialog.

 reportError(This, Parent, Printout, Message)

 Default error-reporting function.

 setup(This, Parent)

 Invokes the print setup dialog.

 Types

 Link to this type

 wxPrinter()

 View Source

 -type wxPrinter() :: wx:wx_object().

 Functions

 Link to this function

 createAbortWindow(This, Parent, Printout)

 View Source

 -spec createAbortWindow(This, Parent, Printout) -> wxDialog:wxDialog()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout().

Creates the default printing abort window, with a cancel button.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrinter()) -> ok.

Destroys the object.

 Link to this function

 getAbort(This)

 View Source

 -spec getAbort(This) -> boolean() when This :: wxPrinter().

Returns true if the user has aborted the print job.

 Link to this function

 getLastError()

 View Source

 -spec getLastError() -> wx:wx_enum().

Return last error.
Valid after calling print/4, printDialog/2 or wxPrintPreview:print/2.
These functions set last error to wxPRINTER_NO_ERROR if no error happened.
Returned value is one of the following:

 Link to this function

 getPrintDialogData(This)

 View Source

 -spec getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData() when This :: wxPrinter().

Returns the print data associated with the printer object.

 Link to this function

 new()

 View Source

 -spec new() -> wxPrinter().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxPrinter() when Option :: {data, wxPrintDialogData:wxPrintDialogData()}.

Constructor.
Pass an optional pointer to a block of print dialog data, which will be copied
to the printer object's local data.
See: wxPrintDialogData, wxPrintData

 Link to this function

 print(This, Parent, Printout)

 View Source

 -spec print(This, Parent, Printout) -> boolean()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout().

 Link to this function

 print/4

 View Source

 -spec print(This, Parent, Printout, [Option]) -> boolean()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout(),
 Option :: {prompt, boolean()}.

Starts the printing process.
Provide a parent window, a user-defined wxPrintout object which controls the
printing of a document, and whether the print dialog should be invoked first.
print/4 could return false if there was a problem initializing the printer
device context (current printer not set, for example) or the user cancelled
printing. Call getLastError/0 to get detailed information about the kind of
the error.

 Link to this function

 printDialog(This, Parent)

 View Source

 -spec printDialog(This, Parent) -> wxDC:wxDC() when This :: wxPrinter(), Parent :: wxWindow:wxWindow().

Invokes the print dialog.
If successful (the user did not press Cancel and no error occurred), a suitable
device context will be returned; otherwise NULL is returned; call
getLastError/0 to get detailed information about the kind of the error.
Remark: The application must delete this device context to avoid a memory leak.

 Link to this function

 reportError(This, Parent, Printout, Message)

 View Source

 -spec reportError(This, Parent, Printout, Message) -> ok
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout(),
 Message :: unicode:chardata().

Default error-reporting function.

 Link to this function

 setup(This, Parent)

 View Source

 -spec setup(This, Parent) -> boolean() when This :: wxPrinter(), Parent :: wxWindow:wxWindow().

Invokes the print setup dialog.
Deprecated: The setup dialog is obsolete, though retained for backward
compatibility.

wxPrintout

Functions for wxPrintout class
This class encapsulates the functionality of printing out an application
document.
A new class must be derived and members overridden to respond to calls such as
OnPrintPage() (not implemented in wx) and HasPage() (not implemented in wx)
and to render the print image onto an associated wxDC. Instances of this
class are passed to wxPrinter:print/4 or to a wxPrintPreview object to
initiate printing or previewing.
Your derived wxPrintout is responsible for drawing both the preview image
and the printed page. If your windows' drawing routines accept an arbitrary DC
as an argument, you can re-use those routines within your wxPrintout
subclass to draw the printout image. You may also add additional drawing
elements within your wxPrintout subclass, like headers, footers, and/or page
numbers. However, the image on the printed page will often differ from the image
drawn on the screen, as will the print preview image - not just in the presence
of headers and footers, but typically in scale. A high-resolution printer
presents a much larger drawing surface (i.e., a higher-resolution DC); a
zoomed-out preview image presents a much smaller drawing surface
(lower-resolution DC). By using the routines FitThisSizeToXXX() and/or
MapScreenSizeToXXX() within your wxPrintout subclass to set the user scale
and origin of the associated DC, you can easily use a single drawing routine to
draw on your application's windows, to create the print preview image, and to
create the printed paper image, and achieve a common appearance to the preview
image and the printed page.
See:
Overview printing,
wxPrinterDC (not implemented in wx), wxPrintDialog, wxPageSetupDialog,
wxPrinter, wxPrintPreview
wxWidgets docs:
wxPrintout

 Summary

 Types

 wxPrintout()

 Functions

 destroy(This)

 Destructor.

 fitThisSizeToPage(This, ImageSize)

 Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the page
rectangle and the origin is at the top left corner of the page rectangle.

 fitThisSizeToPageMargins(This, ImageSize, PageSetupData)

 Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the page
margins set in the given wxPageSetupDialogData object.

 fitThisSizeToPaper(This, ImageSize)

 Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the paper and
the origin is at the top left corner of the paper.

 getDC(This)

 Returns the device context associated with the printout (given to the printout
at start of printing or previewing).

 getLogicalPageMarginsRect(This, PageSetupData)

 Return the rectangle corresponding to the page margins specified by the given
wxPageSetupDialogData object in the associated wxDC's logical
coordinates for the current user scale and device origin.

 getLogicalPageRect(This)

 Return the rectangle corresponding to the page in the associated wxDC 's
logical coordinates for the current user scale and device origin.

 getLogicalPaperRect(This)

 Return the rectangle corresponding to the paper in the associated wxDC 's
logical coordinates for the current user scale and device origin.

 getPageSizeMM(This)

 Returns the size of the printer page in millimetres.

 getPageSizePixels(This)

 Returns the size of the printer page in pixels, called the page rectangle.

 getPaperRectPixels(This)

 Returns the rectangle that corresponds to the entire paper in pixels, called the
paper rectangle.

 getPPIPrinter(This)

 Returns the number of pixels per logical inch of the printer device context.

 getPPIScreen(This)

 Returns the number of pixels per logical inch of the screen device context.

 getTitle(This)

 Returns the title of the printout.

 isPreview(This)

 Returns true if the printout is currently being used for previewing.

 mapScreenSizeToDevice(This)

 Set the user scale and device origin of the wxDC associated with this
wxPrintout so that one screen pixel maps to one device pixel on the DC.

 mapScreenSizeToPage(This)

 This sets the user scale of the wxDC associated with this wxPrintout to
the same scale as mapScreenSizeToPaper/1 but sets the logical origin to the
top left corner of the page rectangle.

 mapScreenSizeToPageMargins(This, PageSetupData)

 This sets the user scale of the wxDC associated with this wxPrintout to
the same scale as mapScreenSizeToPageMargins/2 but sets the logical origin to
the top left corner of the page margins specified by the given
wxPageSetupDialogData object.

 mapScreenSizeToPaper(This)

 Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the printed page matches the screen size as closely as
possible and the logical origin is in the top left corner of the paper
rectangle.

 new(Title, OnPrintPage, Opts)

 Constructor.

 offsetLogicalOrigin(This, Xoff, Yoff)

 Shift the device origin by an amount specified in logical coordinates.

 setLogicalOrigin(This, X, Y)

 Set the device origin of the associated wxDC so that the current logical
point becomes the new logical origin.

 Types

 Link to this type

 wxPrintout()

 View Source

 -type wxPrintout() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxPrintout()) -> ok.

Destructor.

 Link to this function

 fitThisSizeToPage(This, ImageSize)

 View Source

 -spec fitThisSizeToPage(This, ImageSize) -> ok
 when This :: wxPrintout(), ImageSize :: {W :: integer(), H :: integer()}.

Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the page
rectangle and the origin is at the top left corner of the page rectangle.
On MSW and Mac, the page rectangle is the printable area of the page. On other
platforms and PostScript printing, the page rectangle is the entire paper.
Use this if you want your printed image as large as possible, but with the
caveat that on some platforms, portions of the image might be cut off at the
edges.

 Link to this function

 fitThisSizeToPageMargins(This, ImageSize, PageSetupData)

 View Source

 -spec fitThisSizeToPageMargins(This, ImageSize, PageSetupData) -> ok
 when
 This :: wxPrintout(),
 ImageSize :: {W :: integer(), H :: integer()},
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the page
margins set in the given wxPageSetupDialogData object.
This function provides the greatest consistency across all platforms because it
does not depend on having access to the printable area of the paper.
Remark: On Mac, the native wxPageSetupDialog does not let you set the page
margins; you'll have to provide your own mechanism, or you can use the Mac-only
class wxMacPageMarginsDialog.

 Link to this function

 fitThisSizeToPaper(This, ImageSize)

 View Source

 -spec fitThisSizeToPaper(This, ImageSize) -> ok
 when This :: wxPrintout(), ImageSize :: {W :: integer(), H :: integer()}.

Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the given image size fits entirely within the paper and
the origin is at the top left corner of the paper.
Use this if you're managing your own page margins.
Note: With most printers, the region around the edges of the paper are not
printable so that the edges of the image could be cut off.

 Link to this function

 getDC(This)

 View Source

 -spec getDC(This) -> wxDC:wxDC() when This :: wxPrintout().

Returns the device context associated with the printout (given to the printout
at start of printing or previewing).
The application can use getDC/1 to obtain a device context to draw on.
This will be a wxPrinterDC (not implemented in wx) if printing under Windows
or Mac, a wxPostScriptDC if printing on other platforms, and a
wxMemoryDC if previewing.

 Link to this function

 getLogicalPageMarginsRect(This, PageSetupData)

 View Source

 -spec getLogicalPageMarginsRect(This, PageSetupData) ->
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when
 This :: wxPrintout(),
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

Return the rectangle corresponding to the page margins specified by the given
wxPageSetupDialogData object in the associated wxDC's logical
coordinates for the current user scale and device origin.
The page margins are specified with respect to the edges of the paper on all
platforms.

 Link to this function

 getLogicalPageRect(This)

 View Source

 -spec getLogicalPageRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Return the rectangle corresponding to the page in the associated wxDC 's
logical coordinates for the current user scale and device origin.
On MSW and Mac, this will be the printable area of the paper. On other platforms
and PostScript printing, this will be the full paper rectangle.

 Link to this function

 getLogicalPaperRect(This)

 View Source

 -spec getLogicalPaperRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Return the rectangle corresponding to the paper in the associated wxDC 's
logical coordinates for the current user scale and device origin.

 Link to this function

 getPageSizeMM(This)

 View Source

 -spec getPageSizeMM(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the size of the printer page in millimetres.

 Link to this function

 getPageSizePixels(This)

 View Source

 -spec getPageSizePixels(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the size of the printer page in pixels, called the page rectangle.
The page rectangle has a top left corner at (0,0) and a bottom right corner at
(w,h). These values may not be the same as the values returned from
wxDC:getSize/1; if the printout is being used for previewing, a memory device
context is used, which uses a bitmap size reflecting the current preview zoom.
The application must take this discrepancy into account if previewing is to be
supported.

 Link to this function

 getPaperRectPixels(This)

 View Source

 -spec getPaperRectPixels(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Returns the rectangle that corresponds to the entire paper in pixels, called the
paper rectangle.
This distinction between paper rectangle and page rectangle reflects the fact
that most printers cannot print all the way to the edge of the paper. The page
rectangle is a rectangle whose top left corner is at (0,0) and whose width and
height are given by wxDC::GetPageSizePixels().
On MSW and Mac, the page rectangle gives the printable area of the paper, while
the paper rectangle represents the entire paper, including non-printable
borders. Thus, the rectangle returned by wxDC::GetPaperRectPixels() will have a
top left corner whose coordinates are small negative numbers and the bottom
right corner will have values somewhat larger than the width and height given by
wxDC::GetPageSizePixels().
On other platforms and for PostScript printing, the paper is treated as if its
entire area were printable, so this function will return the same rectangle as
the page rectangle.

 Link to this function

 getPPIPrinter(This)

 View Source

 -spec getPPIPrinter(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the number of pixels per logical inch of the printer device context.
Dividing the printer PPI by the screen PPI can give a suitable scaling factor
for drawing text onto the printer.
Remember to multiply this by a scaling factor to take the preview DC size into
account. Or you can just use the FitThisSizeToXXX() and MapScreenSizeToXXX
routines below, which do most of the scaling calculations for you.

 Link to this function

 getPPIScreen(This)

 View Source

 -spec getPPIScreen(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the number of pixels per logical inch of the screen device context.
Dividing the printer PPI by the screen PPI can give a suitable scaling factor
for drawing text onto the printer.
If you are doing your own scaling, remember to multiply this by a scaling factor
to take the preview DC size into account.

 Link to this function

 getTitle(This)

 View Source

 -spec getTitle(This) -> unicode:charlist() when This :: wxPrintout().

Returns the title of the printout.

 Link to this function

 isPreview(This)

 View Source

 -spec isPreview(This) -> boolean() when This :: wxPrintout().

Returns true if the printout is currently being used for previewing.
See: GetPreview() (not implemented in wx)

 Link to this function

 mapScreenSizeToDevice(This)

 View Source

 -spec mapScreenSizeToDevice(This) -> ok when This :: wxPrintout().

Set the user scale and device origin of the wxDC associated with this
wxPrintout so that one screen pixel maps to one device pixel on the DC.
That is, the user scale is set to (1,1) and the device origin is set to (0,0).
Use this if you want to do your own scaling prior to calling wxDC drawing
calls, for example, if your underlying model is floating-point and you want to
achieve maximum drawing precision on high-resolution printers.
You can use the GetLogicalXXXRect() routines below to obtain the paper
rectangle, page rectangle, or page margins rectangle to perform your own
scaling.
Note: While the underlying drawing model of macOS is floating-point, wxWidgets's
drawing model scales from integer coordinates.

 Link to this function

 mapScreenSizeToPage(This)

 View Source

 -spec mapScreenSizeToPage(This) -> ok when This :: wxPrintout().

This sets the user scale of the wxDC associated with this wxPrintout to
the same scale as mapScreenSizeToPaper/1 but sets the logical origin to the
top left corner of the page rectangle.

 Link to this function

 mapScreenSizeToPageMargins(This, PageSetupData)

 View Source

 -spec mapScreenSizeToPageMargins(This, PageSetupData) -> ok
 when
 This :: wxPrintout(),
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

This sets the user scale of the wxDC associated with this wxPrintout to
the same scale as mapScreenSizeToPageMargins/2 but sets the logical origin to
the top left corner of the page margins specified by the given
wxPageSetupDialogData object.

 Link to this function

 mapScreenSizeToPaper(This)

 View Source

 -spec mapScreenSizeToPaper(This) -> ok when This :: wxPrintout().

Set the user scale and device origin of the wxDC associated with this
wxPrintout so that the printed page matches the screen size as closely as
possible and the logical origin is in the top left corner of the paper
rectangle.
That is, a 100-pixel object on screen should appear at the same size on the
printed page. (It will, of course, be larger or smaller in the preview image,
depending on the zoom factor.)
Use this if you want WYSIWYG behaviour, e.g., in a text editor.

 Link to this function

 new(Title, OnPrintPage, Opts)

 View Source

 -spec new(Title :: string(), OnPrintPage, [Option]) -> wxPrintout:wxPrintout()
 when
 OnPrintPage :: fun((wxPrintout(), Page :: integer()) -> boolean()),
 Option ::
 {onPreparePrinting, fun((wxPrintout()) -> ok)} |
 {onBeginPrinting, fun((wxPrintout()) -> ok)} |
 {onEndPrinting, fun((wxPrintout()) -> ok)} |
 {onBeginDocument,
 fun((wxPrintout(), StartPage :: integer(), EndPage :: integer()) -> boolean())} |
 {onEndDocument, fun((wxPrintout()) -> ok)} |
 {hasPage, fun((wxPrintout(), Page :: integer()) -> ok)} |
 {getPageInfo,
 fun((wxPrintout()) ->
 {MinPage :: integer(),
 MaxPage :: integer(),
 PageFrom :: integer(),
 PageTo :: integer()})}.

Constructor.
Creates a wxPrintout object with a callback fun and optionally other
callback funs. The This argument is the wxPrintout object reference to
this object
Notice: The callbacks may not call other processes.

 Link to this function

 offsetLogicalOrigin(This, Xoff, Yoff)

 View Source

 -spec offsetLogicalOrigin(This, Xoff, Yoff) -> ok
 when This :: wxPrintout(), Xoff :: integer(), Yoff :: integer().

Shift the device origin by an amount specified in logical coordinates.

 Link to this function

 setLogicalOrigin(This, X, Y)

 View Source

 -spec setLogicalOrigin(This, X, Y) -> ok when This :: wxPrintout(), X :: integer(), Y :: integer().

Set the device origin of the associated wxDC so that the current logical
point becomes the new logical origin.

wxProgressDialog

Functions for wxProgressDialog class
If supported by the platform this class will provide the platform's native
progress dialog, else it will simply be the wxGenericProgressDialog (not
implemented in wx).
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxProgressDialog

 Summary

 Types

 wxProgressDialog()

 Functions

 destroy(This)

 Destroys the object.

 new(Title, Message)

 new(Title, Message, Options)

 resume(This)

 Can be used to continue with the dialog, after the user had clicked the "Abort"
button.

 update(This, Value)

 update/3

 Updates the dialog, setting the progress bar to the new value and updating the
message if new one is specified.

 Types

 Link to this type

 wxProgressDialog()

 View Source

 -type wxProgressDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxProgressDialog()) -> ok.

Destroys the object.

 Link to this function

 new(Title, Message)

 View Source

 -spec new(Title, Message) -> wxProgressDialog()
 when Title :: unicode:chardata(), Message :: unicode:chardata().

 Link to this function

 new(Title, Message, Options)

 View Source

 -spec new(Title, Message, [Option]) -> wxProgressDialog()
 when
 Title :: unicode:chardata(),
 Message :: unicode:chardata(),
 Option :: {maximum, integer()} | {parent, wxWindow:wxWindow()} | {style, integer()}.

 Link to this function

 resume(This)

 View Source

 -spec resume(This) -> ok when This :: wxProgressDialog().

Can be used to continue with the dialog, after the user had clicked the "Abort"
button.

 Link to this function

 update(This, Value)

 View Source

 -spec update(This, Value) -> boolean() when This :: wxProgressDialog(), Value :: integer().

 Link to this function

 update/3

 View Source

 -spec update(This, Value, [Option]) -> boolean()
 when
 This :: wxProgressDialog(),
 Value :: integer(),
 Option :: {newmsg, unicode:chardata()}.

Updates the dialog, setting the progress bar to the new value and updating the
message if new one is specified.
Returns true unless the "Cancel" button has been pressed.
If false is returned, the application can either immediately destroy the dialog
or ask the user for the confirmation and if the abort is not confirmed the
dialog may be resumed with resume/1 function.
If value is the maximum value for the dialog, the behaviour of the function
depends on whether wxPD_AUTO_HIDE was used when the dialog was created. If it
was, the dialog is hidden and the function returns immediately. If it was not,
the dialog becomes a modal dialog and waits for the user to dismiss it, meaning
that this function does not return until this happens.
Notice that if newmsg is longer than the currently shown message, the dialog
will be automatically made wider to account for it. However if the new message
is shorter than the previous one, the dialog doesn't shrink back to avoid
constant resizes if the message is changed often. To do this and fit the dialog
to its current contents you may call wxWindow:fit/1 explicitly. However the
native MSW implementation of this class does make the dialog shorter if the new
text has fewer lines of text than the old one, so it is recommended to keep the
number of lines of text constant in order to avoid jarring dialog size changes.
You may also want to make the initial message, specified when creating the
dialog, wide enough to avoid having to resize the dialog later, e.g. by
appending a long string of unbreakable spaces (wxString (not implemented in
wx)(L'\u00a0', 100)) to it.

wxQueryNewPaletteEvent

Functions for wxQueryNewPaletteEvent class
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxQueryNewPaletteEvent

 Summary

 Types

 wxQueryNewPalette()

 wxQueryNewPaletteEvent()

 wxQueryNewPaletteEventType()

 Functions

 getPaletteRealized(This)

 setPaletteRealized(This, Realized)

 Types

 Link to this type

 wxQueryNewPalette()

 View Source

 -type wxQueryNewPalette() ::
 #wxQueryNewPalette{type :: wxQueryNewPaletteEvent:wxQueryNewPaletteEventType()}.

 Link to this type

 wxQueryNewPaletteEvent()

 View Source

 -type wxQueryNewPaletteEvent() :: wx:wx_object().

 Link to this type

 wxQueryNewPaletteEventType()

 View Source

 -type wxQueryNewPaletteEventType() :: query_new_palette.

 Functions

 Link to this function

 getPaletteRealized(This)

 View Source

 -spec getPaletteRealized(This) -> boolean() when This :: wxQueryNewPaletteEvent().

 Link to this function

 setPaletteRealized(This, Realized)

 View Source

 -spec setPaletteRealized(This, Realized) -> ok
 when This :: wxQueryNewPaletteEvent(), Realized :: boolean().

wxRadioBox

Functions for wxRadioBox class
A radio box item is used to select one of number of mutually exclusive choices.
It is displayed as a vertical column or horizontal row of labelled buttons.
Styles
This class supports the following styles:
See:
Overview events,
wxRadioButton, wxCheckBox
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxRadioBox

 Events

Event types emitted from this class:
command_radiobox_selected

 Summary

 Types

 wxRadioBox()

 Functions

 create(This, Parent, Id, Label, Pos, Size, Choices)

 create/8

 Creates the radiobox for two-step construction.

 destroy(This)

 Destructor, destroying the radiobox item.

 enable(This)

 enable/2

 Enables or disables the radiobox.

 enable/3

 Enables or disables an individual button in the radiobox.

 getColumnCount(This)

 Returns the number of columns in the radiobox.

 getItemFromPoint(This, Pt)

 Returns a radio box item under the point, a zero-based item index, or
wxNOT_FOUND if no item is under the point.

 getItemHelpText(This, Item)

 Returns the helptext associated with the specified item if any or
wxEmptyString.

 getItemToolTip(This, Item)

 Returns the tooltip associated with the specified item if any or NULL.

 getRowCount(This)

 Returns the number of rows in the radiobox.

 getSelection(This)

 Returns the index of the selected item or wxNOT_FOUND if no item is selected.

 getString(This, N)

 Returns the label of the item with the given index.

 isItemEnabled(This, N)

 Returns true if the item is enabled or false if it was disabled using
enable/3.

 isItemShown(This, N)

 Returns true if the item is currently shown or false if it was hidden using
show/3.

 new(Parent, Id, Label, Pos, Size, Choices)

 new/7

 Constructor, creating and showing a radiobox.

 setItemHelpText(This, Item, Helptext)

 Sets the helptext for an item.

 setItemToolTip(This, Item, Text)

 Sets the tooltip text for the specified item in the radio group.

 setSelection(This, N)

 Sets the selection to the given item.

 show(This, Item)

 show/3

 Shows or hides individual buttons.

 Types

 Link to this type

 wxRadioBox()

 View Source

 -type wxRadioBox() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label, Pos, Size, Choices)

 View Source

 -spec create(This, Parent, Id, Label, Pos, Size, Choices) -> boolean()
 when
 This :: wxRadioBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

 Link to this function

 create/8

 View Source

 -spec create(This, Parent, Id, Label, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxRadioBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {majorDim, integer()} | {style, integer()} | {val, wx:wx_object()}.

Creates the radiobox for two-step construction.
See new/7 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxRadioBox()) -> ok.

Destructor, destroying the radiobox item.

 Link to this function

 enable(This)

 View Source

 -spec enable(This) -> boolean() when This :: wxRadioBox().

 Link to this function

 enable/2

 View Source

 -spec enable(This, N) -> boolean() when This :: wxRadioBox(), N :: integer();
 (This, [Option]) -> boolean() when This :: wxRadioBox(), Option :: {enable, boolean()}.

Enables or disables the radiobox.
See: wxWindow:enable/2

 Link to this function

 enable/3

 View Source

 -spec enable(This, N, [Option]) -> boolean()
 when This :: wxRadioBox(), N :: integer(), Option :: {enable, boolean()}.

Enables or disables an individual button in the radiobox.
See: wxWindow:enable/2

 Link to this function

 getColumnCount(This)

 View Source

 -spec getColumnCount(This) -> integer() when This :: wxRadioBox().

Returns the number of columns in the radiobox.

 Link to this function

 getItemFromPoint(This, Pt)

 View Source

 -spec getItemFromPoint(This, Pt) -> integer()
 when This :: wxRadioBox(), Pt :: {X :: integer(), Y :: integer()}.

Returns a radio box item under the point, a zero-based item index, or
wxNOT_FOUND if no item is under the point.

 Link to this function

 getItemHelpText(This, Item)

 View Source

 -spec getItemHelpText(This, Item) -> unicode:charlist() when This :: wxRadioBox(), Item :: integer().

Returns the helptext associated with the specified item if any or
wxEmptyString.
See: setItemHelpText/3

 Link to this function

 getItemToolTip(This, Item)

 View Source

 -spec getItemToolTip(This, Item) -> wxToolTip:wxToolTip() when This :: wxRadioBox(), Item :: integer().

Returns the tooltip associated with the specified item if any or NULL.
See: setItemToolTip/3, wxWindow:getToolTip/1

 Link to this function

 getRowCount(This)

 View Source

 -spec getRowCount(This) -> integer() when This :: wxRadioBox().

Returns the number of rows in the radiobox.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxRadioBox().

Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return: The position of the current selection.
Remark: This method can be used with single selection list boxes only, you
should use wxListBox:getSelections/1 for the list boxes with wxLB_MULTIPLE
style.
See: setSelection/2, wxControlWithItems:getStringSelection/1

 Link to this function

 getString(This, N)

 View Source

 -spec getString(This, N) -> unicode:charlist() when This :: wxRadioBox(), N :: integer().

Returns the label of the item with the given index.
Return: The label of the item or an empty string if the position was invalid.

 Link to this function

 isItemEnabled(This, N)

 View Source

 -spec isItemEnabled(This, N) -> boolean() when This :: wxRadioBox(), N :: integer().

Returns true if the item is enabled or false if it was disabled using
enable/3.
This function is currently only implemented in wxMSW, wxGTK, wxQT and
wxUniversal and always returns true in the other ports.

 Link to this function

 isItemShown(This, N)

 View Source

 -spec isItemShown(This, N) -> boolean() when This :: wxRadioBox(), N :: integer().

Returns true if the item is currently shown or false if it was hidden using
show/3.
Note that this function returns true for an item which hadn't been hidden even
if the entire radiobox is not currently shown.
This function is currently only implemented in wxMSW, wxGTK, wxQT and
wxUniversal and always returns true in the other ports.

 Link to this function

 new(Parent, Id, Label, Pos, Size, Choices)

 View Source

 -spec new(Parent, Id, Label, Pos, Size, Choices) -> wxRadioBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

 Link to this function

 new/7

 View Source

 -spec new(Parent, Id, Label, Pos, Size, Choices, [Option]) -> wxRadioBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {majorDim, integer()} | {style, integer()} | {val, wx:wx_object()}.

Constructor, creating and showing a radiobox.
See: create/8, wxValidator (not implemented in wx)

 Link to this function

 setItemHelpText(This, Item, Helptext)

 View Source

 -spec setItemHelpText(This, Item, Helptext) -> ok
 when This :: wxRadioBox(), Item :: integer(), Helptext :: unicode:chardata().

Sets the helptext for an item.
Empty string erases any existing helptext.
See: getItemHelpText/2

 Link to this function

 setItemToolTip(This, Item, Text)

 View Source

 -spec setItemToolTip(This, Item, Text) -> ok
 when This :: wxRadioBox(), Item :: integer(), Text :: unicode:chardata().

Sets the tooltip text for the specified item in the radio group.
This function is currently only implemented in wxMSW and wxGTK2 and does nothing
in the other ports.
See: getItemToolTip/2, wxWindow:setToolTip/2

 Link to this function

 setSelection(This, N)

 View Source

 -spec setSelection(This, N) -> ok when This :: wxRadioBox(), N :: integer().

Sets the selection to the given item.
Notice that a radio box always has selection, so n must be valid here and
passing wxNOT_FOUND is not allowed.

 Link to this function

 show(This, Item)

 View Source

 -spec show(This, Item) -> boolean() when This :: wxRadioBox(), Item :: integer().

 Link to this function

 show/3

 View Source

 -spec show(This, Item, [Option]) -> boolean()
 when This :: wxRadioBox(), Item :: integer(), Option :: {show, boolean()}.

Shows or hides individual buttons.
Return: true if the item has been shown or hidden or false if nothing was done
because it already was in the requested state.
See: show/3

wxRadioButton

Functions for wxRadioButton class
A radio button item is a button which usually denotes one of several mutually
exclusive options. It has a text label next to a (usually) round button.
You can create a group of mutually-exclusive radio buttons by specifying
wxRB_GROUP for the first in the group. The group ends when another radio
button group is created, or there are no more radio buttons.
Styles
This class supports the following styles:
See:
Overview events,
wxRadioBox, wxCheckBox
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxRadioButton

 Events

Event types emitted from this class:
command_radiobutton_selected

 Summary

 Types

 wxRadioButton()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creates the choice for two-step construction.

 destroy(This)

 Destructor, destroying the radio button item.

 getValue(This)

 Returns true if the radio button is checked, false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a radio button.

 setValue(This, Value)

 Sets the radio button to checked or unchecked status.

 Types

 Link to this type

 wxRadioButton()

 View Source

 -type wxRadioButton() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxRadioButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxRadioButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the choice for two-step construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxRadioButton()) -> ok.

Destructor, destroying the radio button item.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> boolean() when This :: wxRadioButton().

Returns true if the radio button is checked, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxRadioButton().

Default constructor.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxRadioButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxRadioButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a radio button.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 setValue(This, Value)

 View Source

 -spec setValue(This, Value) -> ok when This :: wxRadioButton(), Value :: boolean().

Sets the radio button to checked or unchecked status.
This does not cause a wxEVT_RADIOBUTTON event to get emitted.
If the radio button belongs to a radio group exactly one button in the group may
be checked and so this method can be only called with value set to true. To
uncheck a radio button in a group you must check another button in the same
group.
Note: Under MSW, the focused radio button is always selected, i.e. its value is
true. And, conversely, calling SetValue(true) will also set focus to the radio
button if the focus had previously been on another radio button in the same
group - as otherwise setting it on wouldn't work.

wxRegion

Functions for wxRegion class
A wxRegion represents a simple or complex region on a device context or
window.
This class uses reference counting and copy-on-write internally so that
assignments between two instances of this class are very cheap. You can
therefore use actual objects instead of pointers without efficiency problems. If
an instance of this class is changed it will create its own data internally so
that other instances, which previously shared the data using the reference
counting, are not affected.
Predefined objects (include wx.hrl):
See: wxRegionIterator (not implemented in wx)
wxWidgets docs: wxRegion

 Summary

 Types

 wxRegion()

 Functions

 clear(This)

 Clears the current region.

 contains/2

 Returns a value indicating whether the given rectangle is contained within the
region.

 contains(This, X, Y)

 Returns a value indicating whether the given point is contained within the
region.

 contains(This, X, Y, Width, Height)

 Returns a value indicating whether the given rectangle is contained within the
region.

 convertToBitmap(This)

 Convert the region to a black and white bitmap with the white pixels being
inside the region.

 destroy(This)

 Destructor.

 getBox(This)

 intersect/2

 Finds the intersection of this region and another region.

 intersect(This, X, Y, Width, Height)

 Finds the intersection of this region and another, rectangular region, specified
using position and size.

 isEmpty(This)

 Returns true if the region is empty, false otherwise.

 new()

 Default constructor.

 new/1

 Constructs a region using a bitmap.

 new(TopLeft, BottomRight)

 Constructs a rectangular region from the top left point and the bottom right
point.

 new(X, Y, Width, Height)

 Constructs a rectangular region with the given position and size.

 offset(This, Pt)

 offset(This, X, Y)

 Moves the region by the specified offsets in horizontal and vertical directions.

 subtract/2

 Subtracts a region from this region.

 union/2

 Finds the union of this region and another, rectangular region.

 union(This, Bmp, TransColour)

 union/4

 Finds the union of this region and the non-transparent pixels of a bitmap.

 union(This, X, Y, Width, Height)

 Finds the union of this region and another, rectangular region, specified using
position and size.

 'Xor'/2

 Finds the Xor of this region and another region.

 'Xor'(This, X, Y, Width, Height)

 Finds the Xor of this region and another, rectangular region, specified using
position and size.

 Types

 Link to this type

 wxRegion()

 View Source

 -type wxRegion() :: wx:wx_object().

 Functions

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxRegion().

Clears the current region.
The object becomes invalid, or null, after being cleared.

 Link to this function

 contains/2

 View Source

 -spec contains(This, Pt) -> wx:wx_enum() when This :: wxRegion(), Pt :: {X :: integer(), Y :: integer()};
 (This, Rect) -> wx:wx_enum()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a value indicating whether the given rectangle is contained within the
region.
This method always returns wxOutRegion for an invalid region but may,
nevertheless, be safely called in this case.
Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.
Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value
?wxInRegion then indicates that all or some part of the region is contained in
this region.

 Link to this function

 contains(This, X, Y)

 View Source

 -spec contains(This, X, Y) -> wx:wx_enum() when This :: wxRegion(), X :: integer(), Y :: integer().

Returns a value indicating whether the given point is contained within the
region.
This method always returns wxOutRegion for an invalid region but may,
nevertheless, be safely called in this case.
Return: The return value is one of wxOutRegion and wxInRegion.

 Link to this function

 contains(This, X, Y, Width, Height)

 View Source

 -spec contains(This, X, Y, Width, Height) -> wx:wx_enum()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Returns a value indicating whether the given rectangle is contained within the
region.
This method always returns wxOutRegion for an invalid region but may,
nevertheless, be safely called in this case.
Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.
Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value
?wxInRegion then indicates that all or some part of the region is contained in
this region.

 Link to this function

 convertToBitmap(This)

 View Source

 -spec convertToBitmap(This) -> wxBitmap:wxBitmap() when This :: wxRegion().

Convert the region to a black and white bitmap with the white pixels being
inside the region.
This method can't be used for invalid region.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxRegion()) -> ok.

Destructor.
See reference-counted object destruction for more info.

 Link to this function

 getBox(This)

 View Source

 -spec getBox(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxRegion().

 Link to this function

 intersect/2

 View Source

 -spec intersect(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Finds the intersection of this region and another region.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: Creates the intersection of the two regions, that is, the parts which
are in both regions. The result is stored in this region.

 Link to this function

 intersect(This, X, Y, Width, Height)

 View Source

 -spec intersect(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the intersection of this region and another, rectangular region, specified
using position and size.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: Creates the intersection of the two regions, that is, the parts which
are in both regions. The result is stored in this region.

 Link to this function

 isEmpty(This)

 View Source

 -spec isEmpty(This) -> boolean() when This :: wxRegion().

Returns true if the region is empty, false otherwise.
Always returns true if the region is invalid.

 Link to this function

 new()

 View Source

 -spec new() -> wxRegion().

Default constructor.
This constructor creates an invalid, or null, object, i.e. calling IsOk() on it
returns false and isEmpty/1 returns true.

 Link to this function

 new/1

 View Source

 -spec new(Rect) -> wxRegion()
 when Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (Bmp) -> wxRegion() when Bmp :: wxBitmap:wxBitmap().

Constructs a region using a bitmap.
See union/5 for more details.

 Link to this function

 new(TopLeft, BottomRight)

 View Source

 -spec new(TopLeft, BottomRight) -> wxRegion()
 when
 TopLeft :: {X :: integer(), Y :: integer()},
 BottomRight :: {X :: integer(), Y :: integer()}.

Constructs a rectangular region from the top left point and the bottom right
point.

 Link to this function

 new(X, Y, Width, Height)

 View Source

 -spec new(X, Y, Width, Height) -> wxRegion()
 when X :: integer(), Y :: integer(), Width :: integer(), Height :: integer().

Constructs a rectangular region with the given position and size.

 Link to this function

 offset(This, Pt)

 View Source

 -spec offset(This, Pt) -> boolean() when This :: wxRegion(), Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 offset(This, X, Y)

 View Source

 -spec offset(This, X, Y) -> boolean() when This :: wxRegion(), X :: integer(), Y :: integer().

Moves the region by the specified offsets in horizontal and vertical directions.
This method can't be called if the region is invalid as it doesn't make sense to
offset it then. Attempts to do it will result in assert failure.
Return: true if successful, false otherwise (the region is unchanged then).

 Link to this function

 subtract/2

 View Source

 -spec subtract(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Subtracts a region from this region.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: This operation combines the parts of 'this' region that are not part of
the second region. The result is stored in this region.

 Link to this function

 union/2

 View Source

 -spec union(This, Region) -> boolean()
 when This :: wxRegion(), Region :: wxRegion:wxRegion() | wxBitmap:wxBitmap();
 (This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Finds the union of this region and another, rectangular region.
This method can be used even if this region is invalid and has the natural
behaviour in this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the
second region. The result is stored in this region.

 Link to this function

 union(This, Bmp, TransColour)

 View Source

 -spec union(This, Bmp, TransColour) -> boolean()
 when This :: wxRegion(), Bmp :: wxBitmap:wxBitmap(), TransColour :: wx:wx_colour().

 Link to this function

 union/4

 View Source

 -spec union(This, Bmp, TransColour, [Option]) -> boolean()
 when
 This :: wxRegion(),
 Bmp :: wxBitmap:wxBitmap(),
 TransColour :: wx:wx_colour(),
 Option :: {tolerance, integer()}.

Finds the union of this region and the non-transparent pixels of a bitmap.
Colour to be treated as transparent is specified in the transColour argument,
along with an optional colour tolerance value.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the
second region. The result is stored in this region.

 Link to this function

 union(This, X, Y, Width, Height)

 View Source

 -spec union(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the union of this region and another, rectangular region, specified using
position and size.
This method can be used even if this region is invalid and has the natural
behaviour in this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the
second region. The result is stored in this region.

 Link to this function

 'Xor'/2

 View Source

 -spec 'Xor'(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Finds the Xor of this region and another region.
This method can be used even if this region is invalid and has the natural
behaviour in this case, i.e. makes this region equal to the given region.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the
second region, except for any overlapping areas. The result is stored in this
region.

 Link to this function

 'Xor'(This, X, Y, Width, Height)

 View Source

 -spec 'Xor'(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the Xor of this region and another, rectangular region, specified using
position and size.
This method can be used even if this region is invalid and has the natural
behaviour in this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the
second region, except for any overlapping areas. The result is stored in this
region.

wxSashEvent

Functions for wxSashEvent class
A sash event is sent when the sash of a wxSashWindow has been dragged by the
user.
Remark: When a sash belonging to a sash window is dragged by the user, and then
released, this event is sent to the window, where it may be processed by an
event table entry in a derived class, a plug-in event handler or an ancestor
class. Note that the wxSashWindow doesn't change the window's size itself.
It relies on the application's event handler to do that. This is because the
application may have to handle other consequences of the resize, or it may wish
to veto it altogether. The event handler should look at the drag rectangle: see
getDragRect/1 to see what the new size of the window would be if the resize
were to be applied. It should also call getDragStatus/1 to see whether the
drag was OK or out of the current allowed range.
See: wxSashWindow,
Overview events
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxSashEvent

 Events

Use wxEvtHandler:connect/3 with wxSashEventType to
subscribe to events of this type.

 Summary

 Types

 wxSash()

 wxSashEvent()

 wxSashEventType()

 Functions

 getDragRect(This)

 Returns the rectangle representing the new size the window would be if the
resize was applied.

 getDragStatus(This)

 Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE.

 getEdge(This)

 Returns the dragged edge.

 Types

 Link to this type

 wxSash()

 View Source

 -type wxSash() ::
 #wxSash{type :: wxSashEvent:wxSashEventType(),
 edge :: wx:wx_enum(),
 dragRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 dragStatus :: wx:wx_enum()}.

 Link to this type

 wxSashEvent()

 View Source

 -type wxSashEvent() :: wx:wx_object().

 Link to this type

 wxSashEventType()

 View Source

 -type wxSashEventType() :: sash_dragged.

 Functions

 Link to this function

 getDragRect(This)

 View Source

 -spec getDragRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSashEvent().

Returns the rectangle representing the new size the window would be if the
resize was applied.
It is up to the application to set the window size if required.

 Link to this function

 getDragStatus(This)

 View Source

 -spec getDragStatus(This) -> wx:wx_enum() when This :: wxSashEvent().

Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE.
If the drag caused the notional bounding box of the window to flip over, for
example, the drag will be out of rage.

 Link to this function

 getEdge(This)

 View Source

 -spec getEdge(This) -> wx:wx_enum() when This :: wxSashEvent().

Returns the dragged edge.
The return value is one of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM, wxSASH_LEFT.

wxSashLayoutWindow

Functions for wxSashLayoutWindow class
wxSashLayoutWindow responds to OnCalculateLayout events generated by
wxLayoutAlgorithm. It allows the application to use simple accessors to
specify how the window should be laid out, rather than having to respond to
events.
The fact that the class derives from wxSashWindow allows sashes to be used
if required, to allow the windows to be user-resizable.
The documentation for wxLayoutAlgorithm explains the purpose of this class
in more detail.
For the window styles see wxSashWindow.
This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT events for
you. However, if you use sashes, see wxSashWindow for relevant event
information. See also wxLayoutAlgorithm for information about the layout
events.
See: wxLayoutAlgorithm, wxSashWindow,
Overview events
This class is derived (and can use functions) from: wxSashWindow
wxWindow wxEvtHandler
wxWidgets docs:
wxSashLayoutWindow

 Summary

 Types

 wxSashLayoutWindow()

 Functions

 create(This, Parent)

 create/3

 Initializes a sash layout window, which can be a child of a frame, dialog or any
other non-control window.

 destroy(This)

 Destroys the object.

 getAlignment(This)

 Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

 getOrientation(This)

 Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

 new()

 Default ctor.

 new(Parent)

 new/2

 Constructs a sash layout window, which can be a child of a frame, dialog or any
other non-control window.

 setAlignment(This, Alignment)

 Sets the alignment of the window (which edge of the available parent client area
the window is attached to).

 setDefaultSize(This, Size)

 Sets the default dimensions of the window.

 setOrientation(This, Orientation)

 Sets the orientation of the window (the direction the window will stretch in, to
fill the available parent client area).

 Types

 Link to this type

 wxSashLayoutWindow()

 View Source

 -type wxSashLayoutWindow() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxSashLayoutWindow(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSashLayoutWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Initializes a sash layout window, which can be a child of a frame, dialog or any
other non-control window.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSashLayoutWindow()) -> ok.

Destroys the object.

 Link to this function

 getAlignment(This)

 View Source

 -spec getAlignment(This) -> wx:wx_enum() when This :: wxSashLayoutWindow().

Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

 Link to this function

 getOrientation(This)

 View Source

 -spec getOrientation(This) -> wx:wx_enum() when This :: wxSashLayoutWindow().

Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL,
wxLAYOUT_VERTICAL.

 Link to this function

 new()

 View Source

 -spec new() -> wxSashLayoutWindow().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxSashLayoutWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxSashLayoutWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a sash layout window, which can be a child of a frame, dialog or any
other non-control window.

 Link to this function

 setAlignment(This, Alignment)

 View Source

 -spec setAlignment(This, Alignment) -> ok when This :: wxSashLayoutWindow(), Alignment :: wx:wx_enum().

Sets the alignment of the window (which edge of the available parent client area
the window is attached to).
alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT,
wxLAYOUT_BOTTOM.

 Link to this function

 setDefaultSize(This, Size)

 View Source

 -spec setDefaultSize(This, Size) -> ok
 when This :: wxSashLayoutWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the default dimensions of the window.
The dimension other than the orientation will be fixed to this value, and the
orientation dimension will be ignored and the window stretched to fit the
available space.

 Link to this function

 setOrientation(This, Orientation)

 View Source

 -spec setOrientation(This, Orientation) -> ok
 when This :: wxSashLayoutWindow(), Orientation :: wx:wx_enum().

Sets the orientation of the window (the direction the window will stretch in, to
fill the available parent client area).
orientation is one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxSashWindow

Functions for wxSashWindow class
wxSashWindow allows any of its edges to have a sash which can be dragged to
resize the window. The actual content window will be created by the application
as a child of wxSashWindow.
The window (or an ancestor) will be notified of a drag via a wxSashEvent
notification.
Styles
This class supports the following styles:
See: wxSashEvent, wxSashLayoutWindow,
Overview events
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxSashWindow

 Events

Event types emitted from this class: sash_dragged

 Summary

 Types

 wxSashWindow()

 Functions

 destroy(This)

 Destructor.

 getMaximumSizeX(This)

 Gets the maximum window size in the x direction.

 getMaximumSizeY(This)

 Gets the maximum window size in the y direction.

 getMinimumSizeX(This)

 Gets the minimum window size in the x direction.

 getMinimumSizeY(This)

 Gets the minimum window size in the y direction.

 getSashVisible(This, Edge)

 Returns true if a sash is visible on the given edge, false otherwise.

 new()

 Default ctor.

 new(Parent)

 new/2

 Constructs a sash window, which can be a child of a frame, dialog or any other
non-control window.

 setMaximumSizeX(This, Min)

 Sets the maximum window size in the x direction.

 setMaximumSizeY(This, Min)

 Sets the maximum window size in the y direction.

 setMinimumSizeX(This, Min)

 Sets the minimum window size in the x direction.

 setMinimumSizeY(This, Min)

 Sets the minimum window size in the y direction.

 setSashVisible(This, Edge, Visible)

 Call this function to make a sash visible or invisible on a particular edge.

 Types

 Link to this type

 wxSashWindow()

 View Source

 -type wxSashWindow() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSashWindow()) -> ok.

Destructor.

 Link to this function

 getMaximumSizeX(This)

 View Source

 -spec getMaximumSizeX(This) -> integer() when This :: wxSashWindow().

Gets the maximum window size in the x direction.

 Link to this function

 getMaximumSizeY(This)

 View Source

 -spec getMaximumSizeY(This) -> integer() when This :: wxSashWindow().

Gets the maximum window size in the y direction.

 Link to this function

 getMinimumSizeX(This)

 View Source

 -spec getMinimumSizeX(This) -> integer() when This :: wxSashWindow().

Gets the minimum window size in the x direction.

 Link to this function

 getMinimumSizeY(This)

 View Source

 -spec getMinimumSizeY(This) -> integer() when This :: wxSashWindow().

Gets the minimum window size in the y direction.

 Link to this function

 getSashVisible(This, Edge)

 View Source

 -spec getSashVisible(This, Edge) -> boolean() when This :: wxSashWindow(), Edge :: wx:wx_enum().

Returns true if a sash is visible on the given edge, false otherwise.
See: setSashVisible/3

 Link to this function

 new()

 View Source

 -spec new() -> wxSashWindow().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxSashWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxSashWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a sash window, which can be a child of a frame, dialog or any other
non-control window.

 Link to this function

 setMaximumSizeX(This, Min)

 View Source

 -spec setMaximumSizeX(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the maximum window size in the x direction.

 Link to this function

 setMaximumSizeY(This, Min)

 View Source

 -spec setMaximumSizeY(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the maximum window size in the y direction.

 Link to this function

 setMinimumSizeX(This, Min)

 View Source

 -spec setMinimumSizeX(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the minimum window size in the x direction.

 Link to this function

 setMinimumSizeY(This, Min)

 View Source

 -spec setMinimumSizeY(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the minimum window size in the y direction.

 Link to this function

 setSashVisible(This, Edge, Visible)

 View Source

 -spec setSashVisible(This, Edge, Visible) -> ok
 when This :: wxSashWindow(), Edge :: wx:wx_enum(), Visible :: boolean().

Call this function to make a sash visible or invisible on a particular edge.
See: getSashVisible/2

wxScreenDC

Functions for wxScreenDC class
A wxScreenDC can be used to paint on the screen. This should normally be
constructed as a temporary stack object; don't store a wxScreenDC object.
When using multiple monitors, wxScreenDC corresponds to the entire virtual
screen composed of all of them. Notice that coordinates on wxScreenDC can be
negative in this case, see wxDisplay:getGeometry/1 for more.
See: wxDC, wxMemoryDC, wxPaintDC, wxClientDC, wxWindowDC
This class is derived (and can use functions) from: wxDC
wxWidgets docs:
wxScreenDC

 Summary

 Types

 wxScreenDC()

 Functions

 destroy(This)

 Destroys the object.

 new()

 Constructor.

 Types

 Link to this type

 wxScreenDC()

 View Source

 -type wxScreenDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxScreenDC()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxScreenDC().

Constructor.

wxScrollBar

Functions for wxScrollBar class
A wxScrollBar is a control that represents a horizontal or vertical
scrollbar.
It is distinct from the two scrollbars that some windows provide automatically,
but the two types of scrollbar share the way events are received.
Remark: A scrollbar has the following main attributes: range, thumb size, page
size, and position. The range is the total number of units associated with the
view represented by the scrollbar. For a table with 15 columns, the range would
be 15. The thumb size is the number of units that are currently visible. For the
table example, the window might be sized so that only 5 columns are currently
visible, in which case the application would set the thumb size to 5. When the
thumb size becomes the same as or greater than the range, the scrollbar will be
automatically hidden on most platforms. The page size is the number of units
that the scrollbar should scroll by, when 'paging' through the data. This value
is normally the same as the thumb size length, because it is natural to assume
that the visible window size defines a page. The scrollbar position is the
current thumb position. Most applications will find it convenient to provide a
function called AdjustScrollbars() which can be called initially, from an OnSize
event handler, and whenever the application data changes in size. It will adjust
the view, object and page size according to the size of the window and the size
of the data.
Styles
This class supports the following styles:
The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is
also followed by an EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).
In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/moving has
finished independently of the way it had started. Please see the
page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
See:
Overview scrolling,
Overview events,
wxScrolled (not implemented in wx)
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxScrollBar

 Events

Event types emitted from this class: scroll_top,
scroll_bottom, scroll_lineup,
scroll_linedown, scroll_pageup,
scroll_pagedown,
scroll_thumbtrack,
scroll_thumbrelease,
scroll_changed, scroll_top,
scroll_bottom, scroll_lineup,
scroll_linedown, scroll_pageup,
scroll_pagedown,
scroll_thumbtrack,
scroll_thumbrelease,
scroll_changed

 Summary

 Types

 wxScrollBar()

 Functions

 create(This, Parent, Id)

 create/4

 Scrollbar creation function called by the scrollbar constructor.

 destroy(This)

 Destructor, destroying the scrollbar.

 getPageSize(This)

 Returns the page size of the scrollbar.

 getRange(This)

 Returns the length of the scrollbar.

 getThumbPosition(This)

 Returns the current position of the scrollbar thumb.

 getThumbSize(This)

 Returns the thumb or 'view' size.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a scrollbar.

 setScrollbar(This, Position, ThumbSize, Range, PageSize)

 setScrollbar/6

 Sets the scrollbar properties.

 setThumbPosition(This, ViewStart)

 Sets the position of the scrollbar.

 Types

 Link to this type

 wxScrollBar()

 View Source

 -type wxScrollBar() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxScrollBar(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxScrollBar(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Scrollbar creation function called by the scrollbar constructor.
See new/3 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxScrollBar()) -> ok.

Destructor, destroying the scrollbar.

 Link to this function

 getPageSize(This)

 View Source

 -spec getPageSize(This) -> integer() when This :: wxScrollBar().

Returns the page size of the scrollbar.
This is the number of scroll units that will be scrolled when the user pages up
or down. Often it is the same as the thumb size.
See: setScrollbar/6

 Link to this function

 getRange(This)

 View Source

 -spec getRange(This) -> integer() when This :: wxScrollBar().

Returns the length of the scrollbar.
See: setScrollbar/6

 Link to this function

 getThumbPosition(This)

 View Source

 -spec getThumbPosition(This) -> integer() when This :: wxScrollBar().

Returns the current position of the scrollbar thumb.
See: setThumbPosition/2

 Link to this function

 getThumbSize(This)

 View Source

 -spec getThumbSize(This) -> integer() when This :: wxScrollBar().

Returns the thumb or 'view' size.
See: setScrollbar/6

 Link to this function

 new()

 View Source

 -spec new() -> wxScrollBar().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxScrollBar() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxScrollBar()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a scrollbar.
See: create/4, wxValidator (not implemented in wx)

 Link to this function

 setScrollbar(This, Position, ThumbSize, Range, PageSize)

 View Source

 -spec setScrollbar(This, Position, ThumbSize, Range, PageSize) -> ok
 when
 This :: wxScrollBar(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 PageSize :: integer().

 Link to this function

 setScrollbar/6

 View Source

 -spec setScrollbar(This, Position, ThumbSize, Range, PageSize, [Option]) -> ok
 when
 This :: wxScrollBar(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 PageSize :: integer(),
 Option :: {refresh, boolean()}.

Sets the scrollbar properties.
Remark: Let's say you wish to display 50 lines of text, using the same font. The
window is sized so that you can only see 16 lines at a time. You would use: The
page size is 1 less than the thumb size so that the last line of the previous
page will be visible on the next page, to help orient the user. Note that with
the window at this size, the thumb position can never go above 50 minus 16,
or 34. You can determine how many lines are currently visible by dividing the
current view size by the character height in pixels. When defining your own
scrollbar behaviour, you will always need to recalculate the scrollbar settings
when the window size changes. You could therefore put your scrollbar
calculations and setScrollbar/6 call into a function named AdjustScrollbars,
which can be called initially and also from a wxSizeEvent event handler
function.

 Link to this function

 setThumbPosition(This, ViewStart)

 View Source

 -spec setThumbPosition(This, ViewStart) -> ok when This :: wxScrollBar(), ViewStart :: integer().

Sets the position of the scrollbar.
See: getThumbPosition/1

wxScrollEvent

Functions for wxScrollEvent class
A scroll event holds information about events sent from stand-alone scrollbars
(see wxScrollBar) and sliders (see wxSlider).
Note that scrolled windows send the wxScrollWinEvent which does not derive
from wxCommandEvent, but from wxEvent directly - don't confuse these two
kinds of events and use the event table macros mentioned below only for the
scrollbar-like controls.
The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is
also followed by an EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).
In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has
finished independently of the way it had started. Please see the
page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
Remark: Note that unless specifying a scroll control identifier, you will need
to test for scrollbar orientation with getOrientation/1, since horizontal and
vertical scroll events are processed using the same event handler.
See: wxScrollBar, wxSlider, wxSpinButton, wxScrollWinEvent,
Overview events
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxScrollEvent

 Events

Use wxEvtHandler:connect/3 with wxScrollEventType
to subscribe to events of this type.

 Summary

 Types

 wxScroll()

 wxScrollEvent()

 wxScrollEventType()

 Functions

 getOrientation(This)

 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

 getPosition(This)

 Returns the position of the scrollbar.

 Types

 Link to this type

 wxScroll()

 View Source

 -type wxScroll() ::
 #wxScroll{type :: wxScrollEvent:wxScrollEventType(),
 commandInt :: integer(),
 extraLong :: integer()}.

 Link to this type

 wxScrollEvent()

 View Source

 -type wxScrollEvent() :: wx:wx_object().

 Link to this type

 wxScrollEventType()

 View Source

 -type wxScrollEventType() ::
 scroll_top | scroll_bottom | scroll_lineup | scroll_linedown | scroll_pageup |
 scroll_pagedown | scroll_thumbtrack | scroll_thumbrelease | scroll_changed.

 Functions

 Link to this function

 getOrientation(This)

 View Source

 -spec getOrientation(This) -> integer() when This :: wxScrollEvent().

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> integer() when This :: wxScrollEvent().

Returns the position of the scrollbar.

wxScrollWinEvent

Functions for wxScrollWinEvent class
A scroll event holds information about events sent from scrolling windows.
Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window
events from the receiving window.
See: wxScrollEvent,
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxScrollWinEvent

 Events

Use wxEvtHandler:connect/3 with
wxScrollWinEventType to subscribe to events of
this type.

 Summary

 Types

 wxScrollWin()

 wxScrollWinEvent()

 wxScrollWinEventType()

 Functions

 getOrientation(This)

 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

 getPosition(This)

 Returns the position of the scrollbar for the thumb track and release events.

 Types

 Link to this type

 wxScrollWin()

 View Source

 -type wxScrollWin() ::
 #wxScrollWin{type :: wxScrollWinEvent:wxScrollWinEventType(),
 commandInt :: integer(),
 extraLong :: integer()}.

 Link to this type

 wxScrollWinEvent()

 View Source

 -type wxScrollWinEvent() :: wx:wx_object().

 Link to this type

 wxScrollWinEventType()

 View Source

 -type wxScrollWinEventType() ::
 scrollwin_top | scrollwin_bottom | scrollwin_lineup | scrollwin_linedown | scrollwin_pageup |
 scrollwin_pagedown | scrollwin_thumbtrack | scrollwin_thumbrelease.

 Functions

 Link to this function

 getOrientation(This)

 View Source

 -spec getOrientation(This) -> integer() when This :: wxScrollWinEvent().

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the
scrollbar.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> integer() when This :: wxScrollWinEvent().

Returns the position of the scrollbar for the thumb track and release events.
Note that this field can't be used for the other events, you need to query the
window itself for the current position in that case.

wxScrolledWindow

The wxScrolled (not implemented in wx) class manages scrolling for its client
area, transforming the coordinates according to the scrollbar positions, and
setting the scroll positions, thumb sizes and ranges according to the area in
view.
There are two commonly used (but not the only possible!) specializations of
this class:
Note: See wxScrolled::Create() (not implemented in wx) if you want to use
wxScrolled (not implemented in wx) with a custom class.
Starting from version 2.4 of wxWidgets, there are several ways to use a
?wxScrolledWindow (and now wxScrolled (not implemented in wx)). In particular,
there are three ways to set the size of the scrolling area:
One way is to set the scrollbars directly using a call to setScrollbars/6.
This is the way it used to be in any previous version of wxWidgets and it will
be kept for backwards compatibility.
An additional method of manual control, which requires a little less computation
of your own, is to set the total size of the scrolling area by calling either
wxWindow:setVirtualSize/3, or wxWindow:fitInside/1, and setting the
scrolling increments for it by calling setScrollRate/3. Scrolling in some
orientation is enabled by setting a non-zero increment for it.
The most automatic and newest way is to simply let sizers determine the
scrolling area. This is now the default when you set an interior sizer into a
wxScrolled (not implemented in wx) with wxWindow:setSizer/3. The scrolling
area will be set to the size requested by the sizer and the scrollbars will be
assigned for each orientation according to the need for them and the scrolling
increment set by setScrollRate/3. As above, scrolling is only enabled in
orientations with a non-zero increment. You can influence the minimum size of
the scrolled area controlled by a sizer by calling
wxWindow::SetVirtualSizeHints(). (Calling setScrollbars/6 has analogous
effects in wxWidgets 2.4 - in later versions it may not continue to override the
sizer.)
Note that if maximum size hints are still supported by
wxWindow::SetVirtualSizeHints(), use them at your own dire risk. They may or may
not have been removed for 2.4, but it really only makes sense to set minimum
size hints here. We should probably replace wxWindow::SetVirtualSizeHints() with
wxWindow::SetMinVirtualSize() or similar and remove it entirely in future.
As with all windows, an application can draw onto a wxScrolled (not
implemented in wx) using a device context.
You have the option of handling the OnPaint handler or overriding the
wxScrolled::OnDraw() (not implemented in wx) function, which is passed a
pre-scrolled device context (prepared by doPrepareDC/2).
If you don't wish to calculate your own scrolling, you must call doPrepareDC/2
when not drawing from within OnDraw() (not implemented in wx), to set the
device origin for the device context according to the current scroll position.
A wxScrolled (not implemented in wx) will normally scroll itself and therefore
its child windows as well. It might however be desired to scroll a different
window than itself: e.g. when designing a spreadsheet, you will normally only
have to scroll the (usually white) cell area, whereas the (usually grey) label
area will scroll very differently. For this special purpose, you can call
setTargetWindow/2 which means that pressing the scrollbars will scroll a
different window.
Note that the underlying system knows nothing about scrolling coordinates, so
that all system functions (mouse events, expose events, refresh calls etc) as
well as the position of subwindows are relative to the "physical" origin of the
scrolled window. If the user insert a child window at position (10,10) and
scrolls the window down 100 pixels (moving the child window out of the visible
area), the child window will report a position of (10,-90).
Styles
This class supports the following styles:
Note: Don't confuse wxScrollWinEvents generated by this class with
wxScrollEvent objects generated by wxScrollBar and wxSlider.
Remark: Use wxScrolled (not implemented in wx) for applications where the user
scrolls by a fixed amount, and where a 'page' can be interpreted to be the
current visible portion of the window. For more sophisticated applications, use
the wxScrolled (not implemented in wx) implementation as a guide to build your
own scroll behaviour or use wxVScrolledWindow (not implemented in wx) or its
variants.
Since: The wxScrolled (not implemented in wx) template exists since version
2.9.0. In older versions, only ?wxScrolledWindow (equivalent of
wxScrolled<wxPanel>) was available.
See: wxScrollBar, wxClientDC, wxPaintDC, wxVScrolledWindow (not
implemented in wx), wxHScrolledWindow (not implemented in wx),
wxHVScrolledWindow (not implemented in wx)
This class is derived (and can use functions) from: wxPanel wxWindow
wxEvtHandler
wxWidgets docs:
wxScrolledWindow

 Events

Event types emitted from this class: scrollwin_top,
scrollwin_bottom,
scrollwin_lineup,
scrollwin_linedown,
scrollwin_pageup,
scrollwin_pagedown,
scrollwin_thumbtrack,
scrollwin_thumbrelease

 Summary

 Types

 wxScrolledWindow()

 Functions

 calcScrolledPosition(This, Pt)

 calcScrolledPosition(This, X, Y)

 Translates the logical coordinates to the device ones.

 calcUnscrolledPosition(This, Pt)

 calcUnscrolledPosition(This, X, Y)

 Translates the device coordinates to the logical ones.

 destroy(This)

 Destroys the object.

 doPrepareDC(This, Dc)

 Call this function to prepare the device context for drawing a scrolled image.

 enableScrolling(This, XScrolling, YScrolling)

 Enable or disable use of wxWindow:scrollWindow/4 for scrolling.

 getScrollPixelsPerUnit(This)

 Get the number of pixels per scroll unit (line), in each direction, as set by
setScrollbars/6.

 getViewStart(This)

 This is a simple overload of GetViewStart(int,int); see that function for more
info.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor.

 prepareDC(This, Dc)

 This function is for backwards compatibility only and simply calls
doPrepareDC/2 now.

 scroll(This, Pt)

 This is an overload of scroll/3; see that function for more info.

 scroll(This, X, Y)

 Scrolls a window so the view start is at the given point.

 setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY)

 setScrollbars/6

 Sets up vertical and/or horizontal scrollbars.

 setScrollRate(This, Xstep, Ystep)

 Set the horizontal and vertical scrolling increment only.

 setTargetWindow(This, Window)

 Call this function to tell wxScrolled (not implemented in wx) to perform the
actual scrolling on a different window (and not on itself).

 Types

 Link to this type

 wxScrolledWindow()

 View Source

 -type wxScrolledWindow() :: wx:wx_object().

 Functions

 Link to this function

 calcScrolledPosition(This, Pt)

 View Source

 -spec calcScrolledPosition(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 calcScrolledPosition(This, X, Y)

 View Source

 -spec calcScrolledPosition(This, X, Y) -> {Xx :: integer(), Yy :: integer()}
 when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Translates the logical coordinates to the device ones.
For example, if a window is scrolled 10 pixels to the bottom, the device
coordinates of the origin are (0, 0) (as always), but the logical coordinates
are (0, 10) and so the call to CalcScrolledPosition(0, 10, xx, yy) will return 0
in yy.
See: calcUnscrolledPosition/3

 Link to this function

 calcUnscrolledPosition(This, Pt)

 View Source

 -spec calcUnscrolledPosition(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 calcUnscrolledPosition(This, X, Y)

 View Source

 -spec calcUnscrolledPosition(This, X, Y) -> {Xx :: integer(), Yy :: integer()}
 when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Translates the device coordinates to the logical ones.
For example, if a window is scrolled 10 pixels to the bottom, the device
coordinates of the origin are (0, 0) (as always), but the logical coordinates
are (0, 10) and so the call to CalcUnscrolledPosition(0, 0, xx, yy) will return
10 in yy.
See: calcScrolledPosition/3

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxScrolledWindow()) -> ok.

Destroys the object.

 Link to this function

 doPrepareDC(This, Dc)

 View Source

 -spec doPrepareDC(This, Dc) -> ok when This :: wxScrolledWindow(), Dc :: wxDC:wxDC().

Call this function to prepare the device context for drawing a scrolled image.
It sets the device origin according to the current scroll position.
doPrepareDC/2 is called automatically within the default wxEVT_PAINT event
handler, so your OnDraw() (not implemented in wx) override will be passed an
already 'pre-scrolled' device context. However, if you wish to draw from outside
of OnDraw() (not implemented in wx) (e.g. from your own wxEVT_PAINT
handler), you must call this function yourself.
For example:
Notice that the function sets the origin by moving it relatively to the current
origin position, so you shouldn't change the origin before calling
doPrepareDC/2 or, if you do, reset it to (0, 0) later. If you call
doPrepareDC/2 immediately after device context creation, as in the example
above, this problem doesn't arise, of course, so it is customary to do it like
this.

 Link to this function

 enableScrolling(This, XScrolling, YScrolling)

 View Source

 -spec enableScrolling(This, XScrolling, YScrolling) -> ok
 when
 This :: wxScrolledWindow(),
 XScrolling :: boolean(),
 YScrolling :: boolean().

Enable or disable use of wxWindow:scrollWindow/4 for scrolling.
By default, when a scrolled window is logically scrolled,
wxWindow:scrollWindow/4 is called on the underlying window which scrolls the
window contents and only invalidates the part of the window newly brought into
view. If false is passed as an argument, then this "physical scrolling" is
disabled and the window is entirely invalidated whenever it is scrolled by
calling wxWindow:refresh/2.
It should be rarely necessary to disable physical scrolling, so this method
shouldn't be called in normal circumstances.

 Link to this function

 getScrollPixelsPerUnit(This)

 View Source

 -spec getScrollPixelsPerUnit(This) -> {XUnit :: integer(), YUnit :: integer()}
 when This :: wxScrolledWindow().

Get the number of pixels per scroll unit (line), in each direction, as set by
setScrollbars/6.
A value of zero indicates no scrolling in that direction.
See: setScrollbars/6, wxWindow:getVirtualSize/1

 Link to this function

 getViewStart(This)

 View Source

 -spec getViewStart(This) -> {X :: integer(), Y :: integer()} when This :: wxScrolledWindow().

This is a simple overload of GetViewStart(int,int); see that function for more
info.

 Link to this function

 new()

 View Source

 -spec new() -> wxScrolledWindow().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxScrolledWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxScrolledWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Remark: The window is initially created without visible scrollbars. Call
setScrollbars/6 to specify how big the virtual window size should be.

 Link to this function

 prepareDC(This, Dc)

 View Source

 -spec prepareDC(This, Dc) -> ok when This :: wxScrolledWindow(), Dc :: wxDC:wxDC().

This function is for backwards compatibility only and simply calls
doPrepareDC/2 now.
Notice that it is not called by the default paint event handle (doPrepareDC/2
is), so overriding this method in your derived class is useless.

 Link to this function

 scroll(This, Pt)

 View Source

 -spec scroll(This, Pt) -> ok when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

This is an overload of scroll/3; see that function for more info.

 Link to this function

 scroll(This, X, Y)

 View Source

 -spec scroll(This, X, Y) -> ok when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Scrolls a window so the view start is at the given point.
Remark: The positions are in scroll units, not pixels, so to convert to pixels
you will have to multiply by the number of pixels per scroll increment. If
either parameter is ?wxDefaultCoord (-1), that position will be ignored (no
change in that direction).
See: setScrollbars/6, getScrollPixelsPerUnit/1

 Link to this function

 setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY)

 View Source

 -spec setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY) -> ok
 when
 This :: wxScrolledWindow(),
 PixelsPerUnitX :: integer(),
 PixelsPerUnitY :: integer(),
 NoUnitsX :: integer(),
 NoUnitsY :: integer().

 Link to this function

 setScrollbars/6

 View Source

 -spec setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY, [Option]) -> ok
 when
 This :: wxScrolledWindow(),
 PixelsPerUnitX :: integer(),
 PixelsPerUnitY :: integer(),
 NoUnitsX :: integer(),
 NoUnitsY :: integer(),
 Option :: {xPos, integer()} | {yPos, integer()} | {noRefresh, boolean()}.

Sets up vertical and/or horizontal scrollbars.
The first pair of parameters give the number of pixels per 'scroll step', i.e.
amount moved when the up or down scroll arrows are pressed. The second pair
gives the length of scrollbar in scroll steps, which sets the size of the
virtual window.
xPos and yPos optionally specify a position to scroll to immediately.
For example, the following gives a window horizontal and vertical scrollbars
with 20 pixels per scroll step, and a size of 50 steps (1000 pixels) in each
direction:
wxScrolled (not implemented in wx) manages the page size itself, using the
current client window size as the page size.
Note that for more sophisticated scrolling applications, for example where
scroll steps may be variable according to the position in the document, it will
be necessary to derive a new class from wxWindow, overriding OnSize() and
adjusting the scrollbars appropriately.
See: wxWindow:setVirtualSize/3

 Link to this function

 setScrollRate(This, Xstep, Ystep)

 View Source

 -spec setScrollRate(This, Xstep, Ystep) -> ok
 when This :: wxScrolledWindow(), Xstep :: integer(), Ystep :: integer().

Set the horizontal and vertical scrolling increment only.
See the pixelsPerUnit parameter in setScrollbars/6.

 Link to this function

 setTargetWindow(This, Window)

 View Source

 -spec setTargetWindow(This, Window) -> ok when This :: wxScrolledWindow(), Window :: wxWindow:wxWindow().

Call this function to tell wxScrolled (not implemented in wx) to perform the
actual scrolling on a different window (and not on itself).
This method is useful when only a part of the window should be scrolled. A
typical example is a control consisting of a fixed header and the scrollable
contents window: the scrollbars are attached to the main window itself, hence
it, and not the contents window must be derived from wxScrolled (not
implemented in wx), but only the contents window scrolls when the scrollbars are
used. To implement such setup, you need to call this method with the contents
window as argument.
Notice that if this method is used, GetSizeAvailableForScrollTarget() (not
implemented in wx) method must be overridden.

wxSetCursorEvent

Functions for wxSetCursorEvent class
A wxSetCursorEvent is generated from wxWindow when the mouse cursor is
about to be set as a result of mouse motion.
This event gives the application the chance to perform specific mouse cursor
processing based on the current position of the mouse within the window. Use
setCursor/2 to specify the cursor you want to be displayed.
See: wx_misc:setCursor/1, wxWindow:setCursor/2
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxSetCursorEvent

 Events

Use wxEvtHandler:connect/3 with
wxSetCursorEventType to subscribe to events of
this type.

 Summary

 Types

 wxSetCursor()

 wxSetCursorEvent()

 wxSetCursorEventType()

 Functions

 getCursor(This)

 Returns a reference to the cursor specified by this event.

 getX(This)

 Returns the X coordinate of the mouse in client coordinates.

 getY(This)

 Returns the Y coordinate of the mouse in client coordinates.

 hasCursor(This)

 Returns true if the cursor specified by this event is a valid cursor.

 setCursor(This, Cursor)

 Sets the cursor associated with this event.

 Types

 Link to this type

 wxSetCursor()

 View Source

 -type wxSetCursor() ::
 #wxSetCursor{type :: wxSetCursorEvent:wxSetCursorEventType(),
 x :: integer(),
 y :: integer(),
 cursor :: wxCursor:wxCursor()}.

 Link to this type

 wxSetCursorEvent()

 View Source

 -type wxSetCursorEvent() :: wx:wx_object().

 Link to this type

 wxSetCursorEventType()

 View Source

 -type wxSetCursorEventType() :: set_cursor.

 Functions

 Link to this function

 getCursor(This)

 View Source

 -spec getCursor(This) -> wxCursor:wxCursor() when This :: wxSetCursorEvent().

Returns a reference to the cursor specified by this event.

 Link to this function

 getX(This)

 View Source

 -spec getX(This) -> integer() when This :: wxSetCursorEvent().

Returns the X coordinate of the mouse in client coordinates.

 Link to this function

 getY(This)

 View Source

 -spec getY(This) -> integer() when This :: wxSetCursorEvent().

Returns the Y coordinate of the mouse in client coordinates.

 Link to this function

 hasCursor(This)

 View Source

 -spec hasCursor(This) -> boolean() when This :: wxSetCursorEvent().

Returns true if the cursor specified by this event is a valid cursor.
Remark: You cannot specify wxNullCursor with this event, as it is not considered
a valid cursor.

 Link to this function

 setCursor(This, Cursor)

 View Source

 -spec setCursor(This, Cursor) -> ok when This :: wxSetCursorEvent(), Cursor :: wxCursor:wxCursor().

Sets the cursor associated with this event.

wxShowEvent

Functions for wxShowEvent class
An event being sent when the window is shown or hidden. The event is triggered
by calls to wxWindow:show/2, and any user action showing a previously hidden
window or vice versa (if allowed by the current platform and/or window manager).
Notice that the event is not triggered when the application is iconized
(minimized) or restored under wxMSW.
See:
Overview events,
wxWindow:show/2, wxWindow:isShown/1
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxShowEvent

 Events

Use wxEvtHandler:connect/3 with wxShowEventType to
subscribe to events of this type.

 Summary

 Types

 wxShow()

 wxShowEvent()

 wxShowEventType()

 Functions

 isShown(This)

 Return true if the window has been shown, false if it has been hidden.

 setShow(This, Show)

 Set whether the windows was shown or hidden.

 Types

 Link to this type

 wxShow()

 View Source

 -type wxShow() :: #wxShow{type :: wxShowEvent:wxShowEventType(), show :: boolean()}.

 Link to this type

 wxShowEvent()

 View Source

 -type wxShowEvent() :: wx:wx_object().

 Link to this type

 wxShowEventType()

 View Source

 -type wxShowEventType() :: show.

 Functions

 Link to this function

 isShown(This)

 View Source

 -spec isShown(This) -> boolean() when This :: wxShowEvent().

Return true if the window has been shown, false if it has been hidden.

 Link to this function

 setShow(This, Show)

 View Source

 -spec setShow(This, Show) -> ok when This :: wxShowEvent(), Show :: boolean().

Set whether the windows was shown or hidden.

wxSingleChoiceDialog

Functions for wxSingleChoiceDialog class
This class represents a dialog that shows a list of strings, and allows the user
to select one. Double-clicking on a list item is equivalent to single-clicking
and then pressing OK.
Styles
This class supports the following styles:
See:
Overview cmndlg,
wxMultiChoiceDialog
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxSingleChoiceDialog

 Summary

 Types

 wxSingleChoiceDialog()

 Functions

 destroy(This)

 Destroys the object.

 getSelection(This)

 Returns the index of selected item.

 getStringSelection(This)

 Returns the selected string.

 new(Parent, Message, Caption, Choices)

 new/5

 Constructor, taking an array of wxString (not implemented in wx) choices and
optional client data.

 setSelection(This, Selection)

 Sets the index of the initially selected item.

 Types

 Link to this type

 wxSingleChoiceDialog()

 View Source

 -type wxSingleChoiceDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSingleChoiceDialog()) -> ok.

Destroys the object.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxSingleChoiceDialog().

Returns the index of selected item.

 Link to this function

 getStringSelection(This)

 View Source

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxSingleChoiceDialog().

Returns the selected string.

 Link to this function

 new(Parent, Message, Caption, Choices)

 View Source

 -spec new(Parent, Message, Caption, Choices) -> wxSingleChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()].

 Link to this function

 new/5

 View Source

 -spec new(Parent, Message, Caption, Choices, [Option]) -> wxSingleChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {pos, {X :: integer(), Y :: integer()}}.

Constructor, taking an array of wxString (not implemented in wx) choices and
optional client data.
Remark: Use wxDialog:showModal/1 to show the dialog.

 Link to this function

 setSelection(This, Selection)

 View Source

 -spec setSelection(This, Selection) -> ok when This :: wxSingleChoiceDialog(), Selection :: integer().

Sets the index of the initially selected item.

wxSizeEvent

Functions for wxSizeEvent class
A size event holds information about size change events of wxWindow.
The EVT_SIZE handler function will be called when the window has been resized.
You may wish to use this for frames to resize their child windows as
appropriate.
Note that the size passed is of the whole window: call
wxWindow:getClientSize/1 for the area which may be used by the application.
When a window is resized, usually only a small part of the window is damaged and
you may only need to repaint that area. However, if your drawing depends on the
size of the window, you may need to clear the DC explicitly and repaint the
whole window. In which case, you may need to call wxWindow:refresh/2 to
invalidate the entire window.
Important : Sizers (see overview_sizer) rely on size events to function
correctly. Therefore, in a sizer-based layout, do not forget to call Skip on all
size events you catch (and don't catch size events at all when you don't need
to).
See: {Width,Height},
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxSizeEvent

 Events

Use wxEvtHandler:connect/3 with wxSizeEventType to
subscribe to events of this type.

 Summary

 Types

 wxSize()

 wxSizeEvent()

 wxSizeEventType()

 Functions

 getRect(This)

 getSize(This)

 Returns the entire size of the window generating the size change event.

 Types

 Link to this type

 wxSize()

 View Source

 -type wxSize() ::
 #wxSize{type :: wxSizeEvent:wxSizeEventType(),
 size :: {W :: integer(), H :: integer()},
 rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

 Link to this type

 wxSizeEvent()

 View Source

 -type wxSizeEvent() :: wx:wx_object().

 Link to this type

 wxSizeEventType()

 View Source

 -type wxSizeEventType() :: size.

 Functions

 Link to this function

 getRect(This)

 View Source

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSizeEvent().

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizeEvent().

Returns the entire size of the window generating the size change event.
This is the new total size of the window, i.e. the same size as would be
returned by wxWindow:getSize/1 if it were called now. Use
wxWindow:getClientSize/1 if you catch this event in a top level window such as
wxFrame to find the size available for the window contents.

wxSizer

Functions for wxSizer class
wxSizer is the abstract base class used for laying out subwindows in a
window. You cannot use wxSizer directly; instead, you will have to use one
of the sizer classes derived from it. Currently there are wxBoxSizer,
wxStaticBoxSizer, wxGridSizer, wxFlexGridSizer, wxWrapSizer (not
implemented in wx) and wxGridBagSizer.
The layout algorithm used by sizers in wxWidgets is closely related to layout in
other GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is
based upon the idea of the individual subwindows reporting their minimal
required size and their ability to get stretched if the size of the parent
window has changed.
This will most often mean that the programmer does not set the original size of
a dialog in the beginning, rather the dialog will be assigned a sizer and this
sizer will be queried about the recommended size. The sizer in turn will query
its children, which can be normal windows, empty space or other sizers, so that
a hierarchy of sizers can be constructed. Note that wxSizer does not derive
from wxWindow and thus does not interfere with tab ordering and requires
very little resources compared to a real window on screen.
What makes sizers so well fitted for use in wxWidgets is the fact that every
control reports its own minimal size and the algorithm can handle differences in
font sizes or different window (dialog item) sizes on different platforms
without problems. If e.g. the standard font as well as the overall design of
Motif widgets requires more space than on Windows, the initial dialog size will
automatically be bigger on Motif than on Windows.
Sizers may also be used to control the layout of custom drawn items on the
window. The add/4, insert/5, and prepend/4 functions return a pointer to
the newly added wxSizerItem. Just add empty space of the desired size and
attributes, and then use the wxSizerItem:getRect/1 method to determine where
the drawing operations should take place.
Please notice that sizers, like child windows, are owned by the library and will
be deleted by it which implies that they must be allocated on the heap. However
if you create a sizer and do not add it to another sizer or window, the library
wouldn't be able to delete such an orphan sizer and in this, and only this, case
it should be deleted explicitly.
wxSizer flags
The "flag" argument accepted by wxSizerItem constructors and other
functions, e.g. add/4, is an OR-combination of the following flags. Two main
behaviours are defined using these flags. One is the border around a window: the
border parameter determines the border width whereas the flags given here
determine which side(s) of the item that the border will be added. The other
flags determine how the sizer item behaves when the space allotted to the sizer
changes, and is somewhat dependent on the specific kind of sizer used.
See:
Overview sizer
wxWidgets docs: wxSizer

 Summary

 Types

 wxSizer()

 Functions

 add(This, Window)

 add/3

 Appends a child to the sizer.

 add/4

 Appends a spacer child to the sizer.

 addSpacer(This, Size)

 This base function adds non-stretchable space to both the horizontal and
vertical orientation of the sizer.

 addStretchSpacer(This)

 addStretchSpacer/2

 Adds stretchable space to the sizer.

 calcMin(This)

 This method is abstract and has to be overwritten by any derived class.

 clear(This)

 clear/2

 Detaches all children from the sizer.

 detach/2

 Detach a item at position index from the sizer without destroying it.

 fit(This, Window)

 Tell the sizer to resize the window so that its client area matches the
sizer's minimal size (ComputeFittingClientSize() (not implemented in wx) is
called to determine it).

 fitInside(This, Window)

 Tell the sizer to resize the virtual size of the window to match the sizer's
minimal size.

 getChildren(This)

 getItem/2

 Finds wxSizerItem which is located in the sizer at position index.

 getItem/3

 Finds wxSizerItem which holds the given window.

 getMinSize(This)

 Returns the minimal size of the sizer.

 getPosition(This)

 Returns the current position of the sizer.

 getSize(This)

 Returns the current size of the sizer.

 hide/2

 Hides the item at position index.

 hide/3

 Hides the child window.

 insert(This, Index, Item)

 insert/4

 Insert a child into the sizer before any existing item at index.

 insert/5

 Insert a child into the sizer before any existing item at index.

 insertSpacer(This, Index, Size)

 Inserts non-stretchable space to the sizer.

 insertStretchSpacer(This, Index)

 insertStretchSpacer/3

 Inserts stretchable space to the sizer.

 isShown/2

 Returns true if the item at index is shown.

 layout(This)

 Call this to force layout of the children anew, e.g. after having added a child
to or removed a child (window, other sizer or space) from the sizer while
keeping the current dimension.

 prepend(This, Item)

 prepend/3

 Same as add/4, but prepends the items to the beginning of the list of items
(windows, subsizers or spaces) owned by this sizer.

 prepend/4

 Same as add/4, but prepends the items to the beginning of the list of items
(windows, subsizers or spaces) owned by this sizer.

 prependSpacer(This, Size)

 Prepends non-stretchable space to the sizer.

 prependStretchSpacer(This)

 prependStretchSpacer/2

 Prepends stretchable space to the sizer.

 recalcSizes(This)

 See: layout/1.

 remove/2

 Removes a sizer child from the sizer and destroys it.

 replace/3

 Detaches the given item at position index from the sizer and replaces it with
the given wxSizerItem newitem.

 replace/4

 Detaches the given oldwin from the sizer and replaces it with the given
newwin.

 setDimension(This, Pos, Size)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setDimension(This, X, Y, Width, Height)

 Call this to force the sizer to take the given dimension and thus force the
items owned by the sizer to resize themselves according to the rules defined by
the parameter in the add/4 and prepend/4 methods.

 setItemMinSize/3

 setItemMinSize/4

 setMinSize(This, Size)

 Call this to give the sizer a minimal size.

 setMinSize(This, Width, Height)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setSizeHints(This, Window)

 This method first calls fit/2 and then setSizeHints/2 on the window passed
to it.

 setVirtualSizeHints(This, Window)

 See: fitInside/2.

 show/2

 show/3

 Shows the item at index.

 showItems(This, Show)

 Show or hide all items managed by the sizer.

 Types

 Link to this type

 wxSizer()

 View Source

 -type wxSizer() :: wx:wx_object().

 Functions

 Link to this function

 add(This, Window)

 View Source

 -spec add(This, Window) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

 Link to this function

 add/3

 View Source

 -spec add(This, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Width :: integer(), Height :: integer();
 (This, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Appends a child to the sizer.
wxSizer itself is an abstract class, but the parameters are equivalent in
the derived classes that you will instantiate to use it so they are described
here:

 Link to this function

 add/4

 View Source

 -spec add(This, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Appends a spacer child to the sizer.

 Link to this function

 addSpacer(This, Size)

 View Source

 -spec addSpacer(This, Size) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Size :: integer().

This base function adds non-stretchable space to both the horizontal and
vertical orientation of the sizer.
More readable way of calling:
See: addSpacer/2

 Link to this function

 addStretchSpacer(This)

 View Source

 -spec addStretchSpacer(This) -> wxSizerItem:wxSizerItem() when This :: wxSizer().

 Link to this function

 addStretchSpacer/2

 View Source

 -spec addStretchSpacer(This, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Option :: {prop, integer()}.

Adds stretchable space to the sizer.
More readable way of calling:

 Link to this function

 calcMin(This)

 View Source

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

This method is abstract and has to be overwritten by any derived class.
Here, the sizer will do the actual calculation of its children's minimal sizes.

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxSizer().

 Link to this function

 clear/2

 View Source

 -spec clear(This, [Option]) -> ok when This :: wxSizer(), Option :: {delete_windows, boolean()}.

Detaches all children from the sizer.
If delete_windows is true then child windows will also be deleted.
Notice that child sizers are always deleted, as a general consequence of the
principle that sizers own their sizer children, but don't own their window
children (because they are already owned by their parent windows).

 Link to this function

 detach/2

 View Source

 -spec detach(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Detach a item at position index from the sizer without destroying it.
This method does not cause any layout or resizing to take place, call layout/1
to update the layout "on screen" after detaching a child from the sizer. Returns
true if the child item was found and detached, false otherwise.
See: remove/2

 Link to this function

 fit(This, Window)

 View Source

 -spec fit(This, Window) -> {W :: integer(), H :: integer()}
 when This :: wxSizer(), Window :: wxWindow:wxWindow().

Tell the sizer to resize the window so that its client area matches the
sizer's minimal size (ComputeFittingClientSize() (not implemented in wx) is
called to determine it).
This is commonly done in the constructor of the window itself, see sample in the
description of wxBoxSizer.
Return: The new window size.
See: ComputeFittingClientSize() (not implemented in wx),
ComputeFittingWindowSize() (not implemented in wx)

 Link to this function

 fitInside(This, Window)

 View Source

 -spec fitInside(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

Tell the sizer to resize the virtual size of the window to match the sizer's
minimal size.
This will not alter the on screen size of the window, but may cause the
addition/removal/alteration of scrollbars required to view the virtual area in
windows which manage it.
See: wxScrolledWindow:setScrollbars/6, setVirtualSizeHints/2

 Link to this function

 getChildren(This)

 View Source

 -spec getChildren(This) -> [wxSizerItem:wxSizerItem()] when This :: wxSizer().

 Link to this function

 getItem/2

 View Source

 -spec getItem(This, Window) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Index :: integer().

Finds wxSizerItem which is located in the sizer at position index.
Use parameter recursive to search in subsizers too. Returns pointer to item or
NULL.

 Link to this function

 getItem/3

 View Source

 -spec getItem(This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Finds wxSizerItem which holds the given window.
Use parameter recursive to search in subsizers too. Returns pointer to item or
NULL.

 Link to this function

 getMinSize(This)

 View Source

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

Returns the minimal size of the sizer.
This is either the combined minimal size of all the children and their borders
or the minimal size set by setMinSize/3, depending on which is bigger. Note
that the returned value is client size, not window size. In particular, if you
use the value to set toplevel window's minimal or actual size, use
wxWindow::SetMinClientSize() (not implemented in wx) or
wxWindow:setClientSize/3, not wxWindow:setMinSize/2 or wxWindow:setSize/6.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxSizer().

Returns the current position of the sizer.

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

Returns the current size of the sizer.

 Link to this function

 hide/2

 View Source

 -spec hide(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Hides the item at position index.
To make a sizer item disappear, use hide/3 followed by layout/1.
Use parameter recursive to hide elements found in subsizers. Returns true if
the child item was found, false otherwise.
See: isShown/2, show/3

 Link to this function

 hide/3

 View Source

 -spec hide(This, Window, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Hides the child window.
To make a sizer item disappear, use hide/3 followed by layout/1.
Use parameter recursive to hide elements found in subsizers. Returns true if
the child item was found, false otherwise.
See: isShown/2, show/3

 Link to this function

 insert(This, Index, Item)

 View Source

 -spec insert(This, Index, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Item :: wxSizerItem:wxSizerItem().

 Link to this function

 insert/4

 View Source

 -spec insert(This, Index, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Width :: integer(), Height :: integer();
 (This, Index, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Index, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Insert a child into the sizer before any existing item at index.
See add/4 for the meaning of the other parameters.

 Link to this function

 insert/5

 View Source

 -spec insert(This, Index, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Index, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Insert a child into the sizer before any existing item at index.
See add/4 for the meaning of the other parameters.

 Link to this function

 insertSpacer(This, Index, Size)

 View Source

 -spec insertSpacer(This, Index, Size) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Size :: integer().

Inserts non-stretchable space to the sizer.
More readable way of calling wxSizer::Insert(index, size, size).

 Link to this function

 insertStretchSpacer(This, Index)

 View Source

 -spec insertStretchSpacer(This, Index) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer().

 Link to this function

 insertStretchSpacer/3

 View Source

 -spec insertStretchSpacer(This, Index, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Option :: {prop, integer()}.

Inserts stretchable space to the sizer.
More readable way of calling wxSizer::Insert(0, 0, prop).

 Link to this function

 isShown/2

 View Source

 -spec isShown(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Returns true if the item at index is shown.
See: hide/3, show/3, wxSizerItem:isShown/1

 Link to this function

 layout(This)

 View Source

 -spec layout(This) -> ok when This :: wxSizer().

Call this to force layout of the children anew, e.g. after having added a child
to or removed a child (window, other sizer or space) from the sizer while
keeping the current dimension.

 Link to this function

 prepend(This, Item)

 View Source

 -spec prepend(This, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Item :: wxSizerItem:wxSizerItem().

 Link to this function

 prepend/3

 View Source

 -spec prepend(This, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Width :: integer(), Height :: integer();
 (This, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Same as add/4, but prepends the items to the beginning of the list of items
(windows, subsizers or spaces) owned by this sizer.

 Link to this function

 prepend/4

 View Source

 -spec prepend(This, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Same as add/4, but prepends the items to the beginning of the list of items
(windows, subsizers or spaces) owned by this sizer.

 Link to this function

 prependSpacer(This, Size)

 View Source

 -spec prependSpacer(This, Size) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Size :: integer().

Prepends non-stretchable space to the sizer.
More readable way of calling wxSizer::Prepend(size, size, 0).

 Link to this function

 prependStretchSpacer(This)

 View Source

 -spec prependStretchSpacer(This) -> wxSizerItem:wxSizerItem() when This :: wxSizer().

 Link to this function

 prependStretchSpacer/2

 View Source

 -spec prependStretchSpacer(This, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Option :: {prop, integer()}.

Prepends stretchable space to the sizer.
More readable way of calling wxSizer::Prepend(0, 0, prop).

 Link to this function

 recalcSizes(This)

 View Source

 -spec recalcSizes(This) -> ok when This :: wxSizer().

See: layout/1.

 Link to this function

 remove/2

 View Source

 -spec remove(This, Index) -> boolean() when This :: wxSizer(), Index :: integer();
 (This, Sizer) -> boolean() when This :: wxSizer(), Sizer :: wxSizer().

Removes a sizer child from the sizer and destroys it.
Note: This method does not cause any layout or resizing to take place, call
layout/1 to update the layout "on screen" after removing a child from the
sizer.
Return: true if the child item was found and removed, false otherwise.

 Link to this function

 replace/3

 View Source

 -spec replace(This, Oldwin, Newwin) -> boolean()
 when
 This :: wxSizer(),
 Oldwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Newwin :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index, Newitem) -> boolean()
 when This :: wxSizer(), Index :: integer(), Newitem :: wxSizerItem:wxSizerItem().

Detaches the given item at position index from the sizer and replaces it with
the given wxSizerItem newitem.
The detached child is deleted only if it is a sizer or a spacer (but not if it
is a wxWindow because windows are owned by their parent window, not the
sizer).
This method does not cause any layout or resizing to take place, call layout/1
to update the layout "on screen" after replacing a child from the sizer.
Returns true if the child item was found and removed, false otherwise.

 Link to this function

 replace/4

 View Source

 -spec replace(This, Oldwin, Newwin, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Oldwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Newwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Detaches the given oldwin from the sizer and replaces it with the given
newwin.
The detached child window is not deleted (because windows are owned by their
parent window, not the sizer).
Use parameter recursive to search the given element recursively in subsizers.
This method does not cause any layout or resizing to take place, call layout/1
to update the layout "on screen" after replacing a child from the sizer.
Returns true if the child item was found and removed, false otherwise.

 Link to this function

 setDimension(This, Pos, Size)

 View Source

 -spec setDimension(This, Pos, Size) -> ok
 when
 This :: wxSizer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setDimension(This, X, Y, Width, Height)

 View Source

 -spec setDimension(This, X, Y, Width, Height) -> ok
 when
 This :: wxSizer(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Call this to force the sizer to take the given dimension and thus force the
items owned by the sizer to resize themselves according to the rules defined by
the parameter in the add/4 and prepend/4 methods.

 Link to this function

 setItemMinSize/3

 View Source

 -spec setItemMinSize(This, Window, Size) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Size :: {W :: integer(), H :: integer()};
 (This, Index, Size) -> boolean()
 when
 This :: wxSizer(),
 Index :: integer(),
 Size :: {W :: integer(), H :: integer()}.

 Link to this function

 setItemMinSize/4

 View Source

 -spec setItemMinSize(This, Window, Width, Height) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Width :: integer(),
 Height :: integer();
 (This, Index, Width, Height) -> boolean()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer().

 Link to this function

 setMinSize(This, Size)

 View Source

 -spec setMinSize(This, Size) -> ok when This :: wxSizer(), Size :: {W :: integer(), H :: integer()}.

Call this to give the sizer a minimal size.
Normally, the sizer will calculate its minimal size based purely on how much
space its children need. After calling this method getMinSize/1 will return
either the minimal size as requested by its children or the minimal size set
here, depending on which is bigger.

 Link to this function

 setMinSize(This, Width, Height)

 View Source

 -spec setMinSize(This, Width, Height) -> ok
 when This :: wxSizer(), Width :: integer(), Height :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setSizeHints(This, Window)

 View Source

 -spec setSizeHints(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

This method first calls fit/2 and then setSizeHints/2 on the window passed
to it.
This only makes sense when window is actually a wxTopLevelWindow such as a
wxFrame or a wxDialog, since SetSizeHints only has any effect in these
classes. It does nothing in normal windows or controls.
This method is implicitly used by wxWindow:setSizerAndFit/3 which is commonly
invoked in the constructor of a toplevel window itself (see the sample in the
description of wxBoxSizer) if the toplevel window is resizable.

 Link to this function

 setVirtualSizeHints(This, Window)

 View Source

 -spec setVirtualSizeHints(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

See: fitInside/2.

 Link to this function

 show/2

 View Source

 -spec show(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer();
 (This, Show) -> ok when This :: wxSizer(), Show :: boolean().

 Link to this function

 show/3

 View Source

 -spec show(This, Window, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {show, boolean()} | {recursive, boolean()};
 (This, Index, [Option]) -> boolean()
 when This :: wxSizer(), Index :: integer(), Option :: {show, boolean()}.

Shows the item at index.
To make a sizer item disappear or reappear, use show/3 followed by layout/1.
Returns true if the child item was found, false otherwise.
See: hide/3, isShown/2

 Link to this function

 showItems(This, Show)

 View Source

 -spec showItems(This, Show) -> ok when This :: wxSizer(), Show :: boolean().

Show or hide all items managed by the sizer.

wxSizerFlags

Functions for wxSizerFlags class
Container for sizer items flags providing readable names for them.
Normally, when you add an item to a sizer via wxSizer:add/4, you have to
specify a lot of flags and parameters which can be unwieldy. This is where
wxSizerFlags comes in: it allows you to specify all parameters using the
named methods instead. For example, instead of
you can now write
This is more readable and also allows you to create wxSizerFlags objects
which can be reused for several sizer items.
Note that by specification, all methods of wxSizerFlags return the
wxSizerFlags object itself to allowing chaining multiple methods calls like
in the examples above.
See: wxSizer
wxWidgets docs:
wxSizerFlags

 Summary

 Types

 wxSizerFlags()

 Functions

 align(This, Alignment)

 Sets the alignment of this wxSizerFlags to align.

 border(This)

 border/2

 Sets the wxSizerFlags to have a border with size as returned by
GetDefaultBorder() (not implemented in wx).

 border(This, Direction, Borderinpixels)

 Sets the wxSizerFlags to have a border of a number of pixels specified by
borderinpixels with the directions specified by direction.

 center(This)

 Sets the object of the wxSizerFlags to center itself in the area it is
given.

 centre(This)

 See: center/1.

 destroy(This)

 Destroys the object.

 expand(This)

 Sets the object of the wxSizerFlags to expand to fill as much area as it
can.

 left(This)

 Aligns the object to the left, similar for Align(wxALIGN_LEFT).

 new()

 new(Options)

 Creates the wxSizer with the proportion specified by proportion.

 proportion(This, Proportion)

 Sets the proportion of this wxSizerFlags to proportion.

 right(This)

 Aligns the object to the right, similar for Align(wxALIGN_RIGHT).

 Types

 Link to this type

 wxSizerFlags()

 View Source

 -type wxSizerFlags() :: wx:wx_object().

 Functions

 Link to this function

 align(This, Alignment)

 View Source

 -spec align(This, Alignment) -> wxSizerFlags() when This :: wxSizerFlags(), Alignment :: integer().

Sets the alignment of this wxSizerFlags to align.
This method replaces the previously set alignment with the specified one.
See: Top() (not implemented in wx), left/1, right/1, Bottom() (not
implemented in wx), centre/1

 Link to this function

 border(This)

 View Source

 -spec border(This) -> wxSizerFlags() when This :: wxSizerFlags().

 Link to this function

 border/2

 View Source

 -spec border(This, [Option]) -> wxSizerFlags()
 when This :: wxSizerFlags(), Option :: {direction, integer()}.

Sets the wxSizerFlags to have a border with size as returned by
GetDefaultBorder() (not implemented in wx).

 Link to this function

 border(This, Direction, Borderinpixels)

 View Source

 -spec border(This, Direction, Borderinpixels) -> wxSizerFlags()
 when This :: wxSizerFlags(), Direction :: integer(), Borderinpixels :: integer().

Sets the wxSizerFlags to have a border of a number of pixels specified by
borderinpixels with the directions specified by direction.
Prefer to use the overload below or DoubleBorder() (not implemented in wx) or
TripleBorder() (not implemented in wx) versions instead of hard-coding the
border value in pixels to avoid too small borders on devices with high DPI
displays.

 Link to this function

 center(This)

 View Source

 -spec center(This) -> wxSizerFlags() when This :: wxSizerFlags().

Sets the object of the wxSizerFlags to center itself in the area it is
given.

 Link to this function

 centre(This)

 View Source

 -spec centre(This) -> wxSizerFlags() when This :: wxSizerFlags().

See: center/1.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSizerFlags()) -> ok.

Destroys the object.

 Link to this function

 expand(This)

 View Source

 -spec expand(This) -> wxSizerFlags() when This :: wxSizerFlags().

Sets the object of the wxSizerFlags to expand to fill as much area as it
can.

 Link to this function

 left(This)

 View Source

 -spec left(This) -> wxSizerFlags() when This :: wxSizerFlags().

Aligns the object to the left, similar for Align(wxALIGN_LEFT).
Unlike align/2, this method doesn't change the vertical alignment of the item.

 Link to this function

 new()

 View Source

 -spec new() -> wxSizerFlags().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxSizerFlags() when Option :: {proportion, integer()}.

Creates the wxSizer with the proportion specified by proportion.

 Link to this function

 proportion(This, Proportion)

 View Source

 -spec proportion(This, Proportion) -> wxSizerFlags()
 when This :: wxSizerFlags(), Proportion :: integer().

Sets the proportion of this wxSizerFlags to proportion.

 Link to this function

 right(This)

 View Source

 -spec right(This) -> wxSizerFlags() when This :: wxSizerFlags().

Aligns the object to the right, similar for Align(wxALIGN_RIGHT).
Unlike align/2, this method doesn't change the vertical alignment of the item.

wxSizerItem

Functions for wxSizerItem class
The wxSizerItem class is used to track the position, size and other
attributes of each item managed by a wxSizer.
It is not usually necessary to use this class because the sizer elements can
also be identified by their positions or window or sizer pointers but sometimes
it may be more convenient to use it directly.
wxWidgets docs:
wxSizerItem

 Summary

 Types

 wxSizerItem()

 Functions

 assignSizer(This, Sizer)

 Set the sizer tracked by this item.

 assignSpacer(This, Size)

 Set the size of the spacer tracked by this item.

 assignSpacer(This, W, H)

 assignWindow(This, Window)

 Set the window to be tracked by this item.

 calcMin(This)

 Calculates the minimum desired size for the item, including any space needed by
borders.

 deleteWindows(This)

 Destroy the window or the windows in a subsizer, depending on the type of item.

 destroy(This)

 Deletes the user data and subsizer, if any.

 detachSizer(This)

 Enable deleting the SizerItem without destroying the contained sizer.

 getBorder(This)

 Return the border attribute.

 getFlag(This)

 Return the flags attribute.

 getMinSize(This)

 Get the minimum size needed for the item.

 getPosition(This)

 What is the current position of the item, as set in the last Layout.

 getProportion(This)

 Get the proportion item attribute.

 getRatio(This)

 Get the ratio item attribute.

 getRect(This)

 Get the rectangle of the item on the parent window, excluding borders.

 getSize(This)

 Get the current size of the item, as set in the last Layout.

 getSizer(This)

 If this item is tracking a sizer, return it.

 getSpacer(This)

 If this item is tracking a spacer, return its size.

 getUserData(This)

 Get the userData item attribute.

 getWindow(This)

 If this item is tracking a window then return it.

 isShown(This)

 Returns true if this item is a window or a spacer and it is shown or if this
item is a sizer and not all of its elements are hidden.

 isSizer(This)

 Is this item a sizer?

 isSpacer(This)

 Is this item a spacer?

 isWindow(This)

 Is this item a window?

 new(Window)

 new/2

 new(Width, Height, Options)

 Construct a sizer item for tracking a spacer.

 setBorder(This, Border)

 Set the border item attribute.

 setDimension(This, Pos, Size)

 Set the position and size of the space allocated to the sizer, and adjust the
position and size of the item to be within that space taking alignment and
borders into account.

 setFlag(This, Flag)

 Set the flag item attribute.

 setInitSize(This, X, Y)

 Sets the minimum size to be allocated for this item.

 setMinSize(This, Size)

 Sets the minimum size to be allocated for this item.

 setMinSize(This, X, Y)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setProportion(This, Proportion)

 Set the proportion item attribute.

 setRatio/2

 setRatio(This, Width, Height)

 Set the ratio item attribute.

 show(This, Show)

 Set the show item attribute, which sizers use to determine if the item is to be
made part of the layout or not.

 Types

 Link to this type

 wxSizerItem()

 View Source

 -type wxSizerItem() :: wx:wx_object().

 Functions

 Link to this function

 assignSizer(This, Sizer)

 View Source

 -spec assignSizer(This, Sizer) -> ok when This :: wxSizerItem(), Sizer :: wxSizer:wxSizer().

Set the sizer tracked by this item.
Old sizer, if any, is deleted.

 Link to this function

 assignSpacer(This, Size)

 View Source

 -spec assignSpacer(This, Size) -> ok
 when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

Set the size of the spacer tracked by this item.
Old spacer, if any, is deleted.

 Link to this function

 assignSpacer(This, W, H)

 View Source

 -spec assignSpacer(This, W, H) -> ok when This :: wxSizerItem(), W :: integer(), H :: integer().

 Link to this function

 assignWindow(This, Window)

 View Source

 -spec assignWindow(This, Window) -> ok when This :: wxSizerItem(), Window :: wxWindow:wxWindow().

Set the window to be tracked by this item.
Note: This is a low-level method which is dangerous if used incorrectly, avoid
using it if possible, i.e. if higher level methods such as wxSizer:replace/4
can be used instead.
If the sizer item previously contained a window, it is dissociated from the
sizer containing this sizer item (if any), but this object doesn't have the
pointer to the containing sizer and so it's the caller's responsibility to call
wxWindow:setContainingSizer/2 on window. Failure to do this can result in
memory corruption when the window is destroyed later, so it is crucial to not
forget to do it.
Also note that the previously contained window is not deleted, so it's also
the callers responsibility to do it, if necessary.

 Link to this function

 calcMin(This)

 View Source

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Calculates the minimum desired size for the item, including any space needed by
borders.

 Link to this function

 deleteWindows(This)

 View Source

 -spec deleteWindows(This) -> ok when This :: wxSizerItem().

Destroy the window or the windows in a subsizer, depending on the type of item.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSizerItem()) -> ok.

Deletes the user data and subsizer, if any.

 Link to this function

 detachSizer(This)

 View Source

 -spec detachSizer(This) -> ok when This :: wxSizerItem().

Enable deleting the SizerItem without destroying the contained sizer.

 Link to this function

 getBorder(This)

 View Source

 -spec getBorder(This) -> integer() when This :: wxSizerItem().

Return the border attribute.

 Link to this function

 getFlag(This)

 View Source

 -spec getFlag(This) -> integer() when This :: wxSizerItem().

Return the flags attribute.
See wxSizer flags list (not implemented in wx) for details.

 Link to this function

 getMinSize(This)

 View Source

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Get the minimum size needed for the item.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxSizerItem().

What is the current position of the item, as set in the last Layout.

 Link to this function

 getProportion(This)

 View Source

 -spec getProportion(This) -> integer() when This :: wxSizerItem().

Get the proportion item attribute.

 Link to this function

 getRatio(This)

 View Source

 -spec getRatio(This) -> number() when This :: wxSizerItem().

Get the ratio item attribute.

 Link to this function

 getRect(This)

 View Source

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSizerItem().

Get the rectangle of the item on the parent window, excluding borders.

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Get the current size of the item, as set in the last Layout.

 Link to this function

 getSizer(This)

 View Source

 -spec getSizer(This) -> wxSizer:wxSizer() when This :: wxSizerItem().

If this item is tracking a sizer, return it.
NULL otherwise.

 Link to this function

 getSpacer(This)

 View Source

 -spec getSpacer(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

If this item is tracking a spacer, return its size.

 Link to this function

 getUserData(This)

 View Source

 -spec getUserData(This) -> wx:wx_object() when This :: wxSizerItem().

Get the userData item attribute.

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxSizerItem().

If this item is tracking a window then return it.
NULL otherwise.

 Link to this function

 isShown(This)

 View Source

 -spec isShown(This) -> boolean() when This :: wxSizerItem().

Returns true if this item is a window or a spacer and it is shown or if this
item is a sizer and not all of its elements are hidden.
In other words, for sizer items, all of the child elements must be hidden for
the sizer itself to be considered hidden.
As an exception, if the wxRESERVE_SPACE_EVEN_IF_HIDDEN flag was used for this
sizer item, then isShown/1 always returns true for it (see
wxSizerFlags::ReserveSpaceEvenIfHidden() (not implemented in wx)).

 Link to this function

 isSizer(This)

 View Source

 -spec isSizer(This) -> boolean() when This :: wxSizerItem().

Is this item a sizer?

 Link to this function

 isSpacer(This)

 View Source

 -spec isSpacer(This) -> boolean() when This :: wxSizerItem().

Is this item a spacer?

 Link to this function

 isWindow(This)

 View Source

 -spec isWindow(This) -> boolean() when This :: wxSizerItem().

Is this item a window?

 Link to this function

 new(Window)

 View Source

 -spec new(Window) -> wxSizerItem() when Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

 Link to this function

 new/2

 View Source

 -spec new(Width, Height) -> wxSizerItem() when Width :: integer(), Height :: integer();
 (Window, Flags) -> wxSizerItem()
 when
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(), Flags :: wxSizerFlags:wxSizerFlags();
 (Window, [Option]) -> wxSizerItem()
 when
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

 Link to this function

 new(Width, Height, Options)

 View Source

 -spec new(Width, Height, [Option]) -> wxSizerItem()
 when
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Construct a sizer item for tracking a spacer.

 Link to this function

 setBorder(This, Border)

 View Source

 -spec setBorder(This, Border) -> ok when This :: wxSizerItem(), Border :: integer().

Set the border item attribute.

 Link to this function

 setDimension(This, Pos, Size)

 View Source

 -spec setDimension(This, Pos, Size) -> ok
 when
 This :: wxSizerItem(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

Set the position and size of the space allocated to the sizer, and adjust the
position and size of the item to be within that space taking alignment and
borders into account.

 Link to this function

 setFlag(This, Flag)

 View Source

 -spec setFlag(This, Flag) -> ok when This :: wxSizerItem(), Flag :: integer().

Set the flag item attribute.

 Link to this function

 setInitSize(This, X, Y)

 View Source

 -spec setInitSize(This, X, Y) -> ok when This :: wxSizerItem(), X :: integer(), Y :: integer().

Sets the minimum size to be allocated for this item.
This is identical to setMinSize/3, prefer to use the other function, as its
name is more clear.

 Link to this function

 setMinSize(This, Size)

 View Source

 -spec setMinSize(This, Size) -> ok when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

Sets the minimum size to be allocated for this item.
If this item is a window, the size is also passed to wxWindow:setMinSize/2.

 Link to this function

 setMinSize(This, X, Y)

 View Source

 -spec setMinSize(This, X, Y) -> ok when This :: wxSizerItem(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setProportion(This, Proportion)

 View Source

 -spec setProportion(This, Proportion) -> ok when This :: wxSizerItem(), Proportion :: integer().

Set the proportion item attribute.

 Link to this function

 setRatio/2

 View Source

 -spec setRatio(This, Ratio) -> ok when This :: wxSizerItem(), Ratio :: number();
 (This, Size) -> ok when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

 Link to this function

 setRatio(This, Width, Height)

 View Source

 -spec setRatio(This, Width, Height) -> ok
 when This :: wxSizerItem(), Width :: integer(), Height :: integer().

Set the ratio item attribute.

 Link to this function

 show(This, Show)

 View Source

 -spec show(This, Show) -> ok when This :: wxSizerItem(), Show :: boolean().

Set the show item attribute, which sizers use to determine if the item is to be
made part of the layout or not.
If the item is tracking a window then it is shown or hidden as needed.

wxSlider

Functions for wxSlider class
A slider is a control with a handle which can be pulled back and forth to change
the value.
On Windows, the track bar control is used.
On GTK+, tick marks are only available for version 2.16 and later.
Slider generates the same events as wxScrollBar but in practice the most
convenient way to process wxSlider updates is by handling the
slider-specific wxEVT_SLIDER event which carries wxCommandEvent containing
just the latest slider position.
Styles
This class supports the following styles:
The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the
thumb using the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is
also followed by an EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the
thumb position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen). In short, the EVT_SCROLL_CHANGED
event is triggered when scrolling/ moving has finished independently of the way
it had started. Please see the page_samples_widgets ("Slider" page) to see the
difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
See:
Overview events,
wxScrollBar
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs: wxSlider

 Events

Event types emitted from this class: scroll_top,
scroll_bottom, scroll_lineup,
scroll_linedown, scroll_pageup,
scroll_pagedown,
scroll_thumbtrack,
scroll_thumbrelease,
scroll_changed, scroll_top,
scroll_bottom, scroll_lineup,
scroll_linedown, scroll_pageup,
scroll_pagedown,
scroll_thumbtrack,
scroll_thumbrelease,
scroll_changed,
command_slider_updated

 Summary

 Types

 wxSlider()

 Functions

 create(This, Parent, Id, Value, MinValue, MaxValue)

 create/7

 Used for two-step slider construction.

 destroy(This)

 Destructor, destroying the slider.

 getLineSize(This)

 Returns the line size.

 getMax(This)

 Gets the maximum slider value.

 getMin(This)

 Gets the minimum slider value.

 getPageSize(This)

 Returns the page size.

 getThumbLength(This)

 Returns the thumb length.

 getValue(This)

 Gets the current slider value.

 new()

 Default constructor.

 new(Parent, Id, Value, MinValue, MaxValue)

 new/6

 Constructor, creating and showing a slider.

 setLineSize(This, LineSize)

 Sets the line size for the slider.

 setPageSize(This, PageSize)

 Sets the page size for the slider.

 setRange(This, MinValue, MaxValue)

 Sets the minimum and maximum slider values.

 setThumbLength(This, Len)

 Sets the slider thumb length.

 setValue(This, Value)

 Sets the slider position.

 Types

 Link to this type

 wxSlider()

 View Source

 -type wxSlider() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Value, MinValue, MaxValue)

 View Source

 -spec create(This, Parent, Id, Value, MinValue, MaxValue) -> boolean()
 when
 This :: wxSlider(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer().

 Link to this function

 create/7

 View Source

 -spec create(This, Parent, Id, Value, MinValue, MaxValue, [Option]) -> boolean()
 when
 This :: wxSlider(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Used for two-step slider construction.
See new/6 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSlider()) -> ok.

Destructor, destroying the slider.

 Link to this function

 getLineSize(This)

 View Source

 -spec getLineSize(This) -> integer() when This :: wxSlider().

Returns the line size.
See: setLineSize/2

 Link to this function

 getMax(This)

 View Source

 -spec getMax(This) -> integer() when This :: wxSlider().

Gets the maximum slider value.
See: getMin/1, setRange/3

 Link to this function

 getMin(This)

 View Source

 -spec getMin(This) -> integer() when This :: wxSlider().

Gets the minimum slider value.
See: getMin/1, setRange/3

 Link to this function

 getPageSize(This)

 View Source

 -spec getPageSize(This) -> integer() when This :: wxSlider().

Returns the page size.
See: setPageSize/2

 Link to this function

 getThumbLength(This)

 View Source

 -spec getThumbLength(This) -> integer() when This :: wxSlider().

Returns the thumb length.
Only for:wxmsw
See: setThumbLength/2

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> integer() when This :: wxSlider().

Gets the current slider value.
See: getMin/1, getMax/1, setValue/2

 Link to this function

 new()

 View Source

 -spec new() -> wxSlider().

Default constructor.

 Link to this function

 new(Parent, Id, Value, MinValue, MaxValue)

 View Source

 -spec new(Parent, Id, Value, MinValue, MaxValue) -> wxSlider()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer().

 Link to this function

 new/6

 View Source

 -spec new(Parent, Id, Value, MinValue, MaxValue, [Option]) -> wxSlider()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a slider.
See: create/7, wxValidator (not implemented in wx)

 Link to this function

 setLineSize(This, LineSize)

 View Source

 -spec setLineSize(This, LineSize) -> ok when This :: wxSlider(), LineSize :: integer().

Sets the line size for the slider.
See: getLineSize/1

 Link to this function

 setPageSize(This, PageSize)

 View Source

 -spec setPageSize(This, PageSize) -> ok when This :: wxSlider(), PageSize :: integer().

Sets the page size for the slider.
See: getPageSize/1

 Link to this function

 setRange(This, MinValue, MaxValue)

 View Source

 -spec setRange(This, MinValue, MaxValue) -> ok
 when This :: wxSlider(), MinValue :: integer(), MaxValue :: integer().

Sets the minimum and maximum slider values.
See: getMin/1, getMax/1

 Link to this function

 setThumbLength(This, Len)

 View Source

 -spec setThumbLength(This, Len) -> ok when This :: wxSlider(), Len :: integer().

Sets the slider thumb length.
Only for:wxmsw
See: getThumbLength/1

 Link to this function

 setValue(This, Value)

 View Source

 -spec setValue(This, Value) -> ok when This :: wxSlider(), Value :: integer().

Sets the slider position.

wxSpinButton

Functions for wxSpinButton class
A wxSpinButton has two small up and down (or left and right) arrow buttons.
It is often used next to a text control for increment and decrementing a value.
Portable programs should try to use wxSpinCtrl instead as wxSpinButton
is not implemented for all platforms but wxSpinCtrl is as it degenerates to
a simple wxTextCtrl on such platforms.
Note: the range supported by this control (and wxSpinCtrl) depends on the
platform but is at least -0x8000 to 0x7fff. Under GTK and Win32 with
sufficiently new version of comctrl32.dll (at least 4.71 is required, 5.80 is
recommended) the full 32 bit range is supported.
Styles
This class supports the following styles:
See: wxSpinCtrl
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxSpinButton

 Events

Event types emitted from this class: spin,
spin_up, spin_down

 Summary

 Types

 wxSpinButton()

 Functions

 create(This, Parent)

 create/3

 Scrollbar creation function called by the spin button constructor.

 destroy(This)

 Destructor, destroys the spin button control.

 getMax(This)

 Returns the maximum permissible value.

 getMin(This)

 Returns the minimum permissible value.

 getValue(This)

 Returns the current spin button value.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor, creating and showing a spin button.

 setRange(This, Min, Max)

 Sets the range of the spin button.

 setValue(This, Value)

 Sets the value of the spin button.

 Types

 Link to this type

 wxSpinButton()

 View Source

 -type wxSpinButton() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxSpinButton(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSpinButton(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Scrollbar creation function called by the spin button constructor.
See new/2 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSpinButton()) -> ok.

Destructor, destroys the spin button control.

 Link to this function

 getMax(This)

 View Source

 -spec getMax(This) -> integer() when This :: wxSpinButton().

Returns the maximum permissible value.
See: setRange/3

 Link to this function

 getMin(This)

 View Source

 -spec getMin(This) -> integer() when This :: wxSpinButton().

Returns the minimum permissible value.
See: setRange/3

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> integer() when This :: wxSpinButton().

Returns the current spin button value.
See: setValue/2

 Link to this function

 new()

 View Source

 -spec new() -> wxSpinButton().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxSpinButton() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxSpinButton()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a spin button.
See: create/3

 Link to this function

 setRange(This, Min, Max)

 View Source

 -spec setRange(This, Min, Max) -> ok when This :: wxSpinButton(), Min :: integer(), Max :: integer().

Sets the range of the spin button.
In portable code, min should be less than or equal to max. In wxMSW it is
possible to specify minimum greater than maximum and the native control supports
the same range as if they were reversed, but swaps the meaning of up and down
arrows, however this dubious feature is not supported on other platforms.
See: getMin/1, getMax/1

 Link to this function

 setValue(This, Value)

 View Source

 -spec setValue(This, Value) -> ok when This :: wxSpinButton(), Value :: integer().

Sets the value of the spin button.

wxSpinCtrl

Functions for wxSpinCtrl class
wxSpinCtrl combines wxTextCtrl and wxSpinButton in one control.
Styles
This class supports the following styles:
See: wxSpinButton, wxSpinCtrlDouble (not implemented in wx), wxControl
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxSpinCtrl

 Events

Event types emitted from this class:
command_spinctrl_updated

 Summary

 Types

 wxSpinCtrl()

 Functions

 create(This, Parent)

 create/3

 Creation function called by the spin control constructor.

 destroy(This)

 Destroys the object.

 getMax(This)

 Gets maximal allowable value.

 getMin(This)

 Gets minimal allowable value.

 getValue(This)

 Gets the value of the spin control.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor, creating and showing a spin control.

 setRange(This, MinVal, MaxVal)

 Sets range of allowable values.

 setSelection(This, From, To)

 Select the text in the text part of the control between positions from
(inclusive) and to (exclusive).

 setValue/2

 Sets the value of the spin control.

 Types

 Link to this type

 wxSpinCtrl()

 View Source

 -type wxSpinCtrl() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxSpinCtrl(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSpinCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}.

Creation function called by the spin control constructor.
See new/2 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSpinCtrl()) -> ok.

Destroys the object.

 Link to this function

 getMax(This)

 View Source

 -spec getMax(This) -> integer() when This :: wxSpinCtrl().

Gets maximal allowable value.

 Link to this function

 getMin(This)

 View Source

 -spec getMin(This) -> integer() when This :: wxSpinCtrl().

Gets minimal allowable value.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> integer() when This :: wxSpinCtrl().

Gets the value of the spin control.

 Link to this function

 new()

 View Source

 -spec new() -> wxSpinCtrl().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxSpinCtrl() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxSpinCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}.

Constructor, creating and showing a spin control.
If value is non-empty, it will be shown in the text entry part of the control
and if it has numeric value, the initial numeric value of the control, as
returned by getValue/1 will also be determined by it instead of by initial.
Hence, it only makes sense to specify initial if value is an empty string or
is not convertible to a number, otherwise initial is simply ignored and the
number specified by value is used.
See: create/3

 Link to this function

 setRange(This, MinVal, MaxVal)

 View Source

 -spec setRange(This, MinVal, MaxVal) -> ok
 when This :: wxSpinCtrl(), MinVal :: integer(), MaxVal :: integer().

Sets range of allowable values.
Notice that calling this method may change the value of the control if it's not
inside the new valid range, e.g. it will become minVal if it is less than it
now. However no wxEVT_SPINCTRL event is generated, even if it the value does
change.
Note: Setting a range including negative values is silently ignored if current
base is set to 16.

 Link to this function

 setSelection(This, From, To)

 View Source

 -spec setSelection(This, From, To) -> ok when This :: wxSpinCtrl(), From :: integer(), To :: integer().

Select the text in the text part of the control between positions from
(inclusive) and to (exclusive).
This is similar to wxTextCtrl:setSelection/3.
Note: this is currently only implemented for Windows and generic versions of the
control.

 Link to this function

 setValue/2

 View Source

 -spec setValue(This, Value) -> ok when This :: wxSpinCtrl(), Value :: integer();
 (This, Text) -> ok when This :: wxSpinCtrl(), Text :: unicode:chardata().

Sets the value of the spin control.
It is recommended to use the overload taking an integer value instead.
Notice that, unlike wxTextCtrl:setValue/2, but like most of the other setter
methods in wxWidgets, calling this method does not generate any events as events
are only generated for the user actions.

wxSpinEvent

Functions for wxSpinEvent class
This event class is used for the events generated by wxSpinButton and
wxSpinCtrl.
See: wxSpinButton, and, wxSpinCtrl
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxSpinEvent

 Events

Use wxEvtHandler:connect/3 with wxSpinEventType to
subscribe to events of this type.

 Summary

 Types

 wxSpin()

 wxSpinEvent()

 wxSpinEventType()

 Functions

 getPosition(This)

 Retrieve the current spin button or control value.

 setPosition(This, Pos)

 Set the value associated with the event.

 Types

 Link to this type

 wxSpin()

 View Source

 -type wxSpin() :: #wxSpin{type :: wxSpinEvent:wxSpinEventType(), commandInt :: integer()}.

 Link to this type

 wxSpinEvent()

 View Source

 -type wxSpinEvent() :: wx:wx_object().

 Link to this type

 wxSpinEventType()

 View Source

 -type wxSpinEventType() :: command_spinctrl_updated | spin_up | spin_down | spin.

 Functions

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> integer() when This :: wxSpinEvent().

Retrieve the current spin button or control value.

 Link to this function

 setPosition(This, Pos)

 View Source

 -spec setPosition(This, Pos) -> ok when This :: wxSpinEvent(), Pos :: integer().

Set the value associated with the event.

wxSplashScreen

Functions for wxSplashScreen class
wxSplashScreen shows a window with a thin border, displaying a bitmap
describing your application.
Show it in application initialisation, and then either explicitly destroy it or
let it time-out.
Example usage:
This class is derived (and can use functions) from: wxFrame
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxSplashScreen

 Summary

 Types

 wxSplashScreen()

 Functions

 destroy(This)

 Destroys the splash screen.

 getSplashStyle(This)

 Returns the splash style (see new/6 for details).

 getTimeout(This)

 Returns the timeout in milliseconds.

 new(Bitmap, SplashStyle, Milliseconds, Parent, Id)

 new/6

 Construct the splash screen passing a bitmap, a style, a timeout, a window id,
optional position and size, and a window style.

 Types

 Link to this type

 wxSplashScreen()

 View Source

 -type wxSplashScreen() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSplashScreen()) -> ok.

Destroys the splash screen.

 Link to this function

 getSplashStyle(This)

 View Source

 -spec getSplashStyle(This) -> integer() when This :: wxSplashScreen().

Returns the splash style (see new/6 for details).

 Link to this function

 getTimeout(This)

 View Source

 -spec getTimeout(This) -> integer() when This :: wxSplashScreen().

Returns the timeout in milliseconds.

 Link to this function

 new(Bitmap, SplashStyle, Milliseconds, Parent, Id)

 View Source

 -spec new(Bitmap, SplashStyle, Milliseconds, Parent, Id) -> wxSplashScreen()
 when
 Bitmap :: wxBitmap:wxBitmap(),
 SplashStyle :: integer(),
 Milliseconds :: integer(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer().

 Link to this function

 new/6

 View Source

 -spec new(Bitmap, SplashStyle, Milliseconds, Parent, Id, [Option]) -> wxSplashScreen()
 when
 Bitmap :: wxBitmap:wxBitmap(),
 SplashStyle :: integer(),
 Milliseconds :: integer(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Construct the splash screen passing a bitmap, a style, a timeout, a window id,
optional position and size, and a window style.
splashStyle is a bitlist of some of the following:
milliseconds is the timeout in milliseconds.

wxSplitterEvent

Functions for wxSplitterEvent class
This class represents the events generated by a splitter control.
Also there is only one event class, the data associated to the different events
is not the same and so not all accessor functions may be called for each event.
The documentation mentions the kind of event(s) for which the given accessor
function makes sense: calling it for other types of events will result in assert
failure (in debug mode) and will return meaningless results.
See: wxSplitterWindow,
Overview events
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxSplitterEvent

 Events

Use wxEvtHandler:connect/3 with
wxSplitterEventType to subscribe to events of
this type.

 Summary

 Types

 wxSplitter()

 wxSplitterEvent()

 wxSplitterEventType()

 Functions

 getSashPosition(This)

 Returns the new sash position.

 getWindowBeingRemoved(This)

 Returns a pointer to the window being removed when a splitter window is unsplit.

 getX(This)

 Returns the x coordinate of the double-click point.

 getY(This)

 Returns the y coordinate of the double-click point.

 setSashPosition(This, Pos)

 In the case of wxEVT_SPLITTER_SASH_POS_CHANGED events, sets the new sash
position.

 Types

 Link to this type

 wxSplitter()

 View Source

 -type wxSplitter() :: #wxSplitter{type :: wxSplitterEvent:wxSplitterEventType()}.

 Link to this type

 wxSplitterEvent()

 View Source

 -type wxSplitterEvent() :: wx:wx_object().

 Link to this type

 wxSplitterEventType()

 View Source

 -type wxSplitterEventType() ::
 command_splitter_sash_pos_changed | command_splitter_sash_pos_changing |
 command_splitter_doubleclicked | command_splitter_unsplit.

 Functions

 Link to this function

 getSashPosition(This)

 View Source

 -spec getSashPosition(This) -> integer() when This :: wxSplitterEvent().

Returns the new sash position.
May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and
wxEVT_SPLITTER_SASH_POS_CHANGED events.

 Link to this function

 getWindowBeingRemoved(This)

 View Source

 -spec getWindowBeingRemoved(This) -> wxWindow:wxWindow() when This :: wxSplitterEvent().

Returns a pointer to the window being removed when a splitter window is unsplit.
May only be called while processing wxEVT_SPLITTER_UNSPLIT events.

 Link to this function

 getX(This)

 View Source

 -spec getX(This) -> integer() when This :: wxSplitterEvent().

Returns the x coordinate of the double-click point.
May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

 Link to this function

 getY(This)

 View Source

 -spec getY(This) -> integer() when This :: wxSplitterEvent().

Returns the y coordinate of the double-click point.
May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

 Link to this function

 setSashPosition(This, Pos)

 View Source

 -spec setSashPosition(This, Pos) -> ok when This :: wxSplitterEvent(), Pos :: integer().

In the case of wxEVT_SPLITTER_SASH_POS_CHANGED events, sets the new sash
position.
In the case of wxEVT_SPLITTER_SASH_POS_CHANGING events, sets the new tracking
bar position so visual feedback during dragging will represent that change that
will actually take place. Set to -1 from the event handler code to prevent
repositioning.
May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and
wxEVT_SPLITTER_SASH_POS_CHANGED events.

wxSplitterWindow

Functions for wxSplitterWindow class
This class manages up to two subwindows. The current view can be split into two
programmatically (perhaps from a menu command), and unsplit either
programmatically or via the wxSplitterWindow user interface.
Styles
This class supports the following styles:
See: wxSplitterEvent,
Overview splitterwindow
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxSplitterWindow

 Events

Event types emitted from this class:
command_splitter_sash_pos_changing,
command_splitter_sash_pos_changed,
command_splitter_unsplit

 Summary

 Types

 wxSplitterWindow()

 Functions

 create(This, Parent)

 create/3

 Creation function, for two-step construction.

 destroy(This)

 Destroys the wxSplitterWindow and its children.

 getMinimumPaneSize(This)

 Returns the current minimum pane size (defaults to zero).

 getSashGravity(This)

 Returns the current sash gravity.

 getSashPosition(This)

 Returns the current sash position.

 getSplitMode(This)

 Gets the split mode.

 getWindow1(This)

 Returns the left/top or only pane.

 getWindow2(This)

 Returns the right/bottom pane.

 initialize(This, Window)

 Initializes the splitter window to have one pane.

 isSplit(This)

 Returns true if the window is split, false otherwise.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor for creating the window.

 replaceWindow(This, WinOld, WinNew)

 This function replaces one of the windows managed by the wxSplitterWindow
with another one.

 setMinimumPaneSize(This, PaneSize)

 Sets the minimum pane size.

 setSashGravity(This, Gravity)

 Sets the sash gravity.

 setSashPosition(This, Position)

 setSashPosition/3

 Sets the sash position.

 setSplitMode(This, Mode)

 Sets the split mode.

 splitHorizontally(This, Window1, Window2)

 splitHorizontally/4

 Initializes the top and bottom panes of the splitter window.

 splitVertically(This, Window1, Window2)

 splitVertically/4

 Initializes the left and right panes of the splitter window.

 unsplit(This)

 unsplit/2

 Unsplits the window.

 updateSize(This)

 Causes any pending sizing of the sash and child panes to take place immediately.

 Types

 Link to this type

 wxSplitterWindow()

 View Source

 -type wxSplitterWindow() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxSplitterWindow(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
See new/2 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxSplitterWindow()) -> ok.

Destroys the wxSplitterWindow and its children.

 Link to this function

 getMinimumPaneSize(This)

 View Source

 -spec getMinimumPaneSize(This) -> integer() when This :: wxSplitterWindow().

Returns the current minimum pane size (defaults to zero).
See: setMinimumPaneSize/2

 Link to this function

 getSashGravity(This)

 View Source

 -spec getSashGravity(This) -> number() when This :: wxSplitterWindow().

Returns the current sash gravity.
See: setSashGravity/2

 Link to this function

 getSashPosition(This)

 View Source

 -spec getSashPosition(This) -> integer() when This :: wxSplitterWindow().

Returns the current sash position.
See: setSashPosition/3

 Link to this function

 getSplitMode(This)

 View Source

 -spec getSplitMode(This) -> wx:wx_enum() when This :: wxSplitterWindow().

Gets the split mode.
See: setSplitMode/2, splitVertically/4, splitHorizontally/4

 Link to this function

 getWindow1(This)

 View Source

 -spec getWindow1(This) -> wxWindow:wxWindow() when This :: wxSplitterWindow().

Returns the left/top or only pane.

 Link to this function

 getWindow2(This)

 View Source

 -spec getWindow2(This) -> wxWindow:wxWindow() when This :: wxSplitterWindow().

Returns the right/bottom pane.

 Link to this function

 initialize(This, Window)

 View Source

 -spec initialize(This, Window) -> ok when This :: wxSplitterWindow(), Window :: wxWindow:wxWindow().

Initializes the splitter window to have one pane.
The child window is shown if it is currently hidden.
Remark: This should be called if you wish to initially view only a single pane
in the splitter window.
See: splitVertically/4, splitHorizontally/4

 Link to this function

 isSplit(This)

 View Source

 -spec isSplit(This) -> boolean() when This :: wxSplitterWindow().

Returns true if the window is split, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxSplitterWindow().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxSplitterWindow() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxSplitterWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor for creating the window.
Remark: After using this constructor, you must create either one or two
subwindows with the splitter window as parent, and then call one of
initialize/2, splitVertically/4 and splitHorizontally/4 in order to set
the pane(s). You can create two windows, with one hidden when not being shown;
or you can create and delete the second pane on demand.
See: initialize/2, splitVertically/4, splitHorizontally/4, create/3

 Link to this function

 replaceWindow(This, WinOld, WinNew)

 View Source

 -spec replaceWindow(This, WinOld, WinNew) -> boolean()
 when
 This :: wxSplitterWindow(),
 WinOld :: wxWindow:wxWindow(),
 WinNew :: wxWindow:wxWindow().

This function replaces one of the windows managed by the wxSplitterWindow
with another one.
It is in general better to use it instead of calling unsplit/2 and then
resplitting the window back because it will provoke much less flicker (if any).
It is valid to call this function whether the splitter has two windows or only
one.
Both parameters should be non-NULL and winOld must specify one of the windows
managed by the splitter. If the parameters are incorrect or the window couldn't
be replaced, false is returned. Otherwise the function will return true, but
please notice that it will not delete the replaced window and you may wish to do
it yourself.
See: getMinimumPaneSize/1

 Link to this function

 setMinimumPaneSize(This, PaneSize)

 View Source

 -spec setMinimumPaneSize(This, PaneSize) -> ok when This :: wxSplitterWindow(), PaneSize :: integer().

Sets the minimum pane size.
Remark: The default minimum pane size is zero, which means that either pane can
be reduced to zero by dragging the sash, thus removing one of the panes. To
prevent this behaviour (and veto out-of-range sash dragging), set a minimum
size, for example 20 pixels. If the wxSP_PERMIT_UNSPLIT style is used when a
splitter window is created, the window may be unsplit even if minimum size is
non-zero.
See: getMinimumPaneSize/1

 Link to this function

 setSashGravity(This, Gravity)

 View Source

 -spec setSashGravity(This, Gravity) -> ok when This :: wxSplitterWindow(), Gravity :: number().

Sets the sash gravity.
Remark: Gravity is real factor which controls position of sash while resizing
wxSplitterWindow. Gravity tells wxSplitterWindow how much will left/top
window grow while resizing. Example values:
Notice that when sash gravity for a newly created splitter window, it is often
necessary to explicitly set the splitter size using wxWindow:setSize/6 to
ensure that is big enough for its initial sash position. Otherwise, i.e. if the
window is created with the default tiny size and only resized to its correct
size later, the initial sash position will be affected by the gravity and
typically result in sash being at the rightmost position for the gravity of 1.
See the example code creating wxSplitterWindow in the splitter sample for
more details.
See: getSashGravity/1

 Link to this function

 setSashPosition(This, Position)

 View Source

 -spec setSashPosition(This, Position) -> ok when This :: wxSplitterWindow(), Position :: integer().

 Link to this function

 setSashPosition/3

 View Source

 -spec setSashPosition(This, Position, [Option]) -> ok
 when
 This :: wxSplitterWindow(),
 Position :: integer(),
 Option :: {redraw, boolean()}.

Sets the sash position.
Remark: Does not currently check for an out-of-range value.
See: getSashPosition/1

 Link to this function

 setSplitMode(This, Mode)

 View Source

 -spec setSplitMode(This, Mode) -> ok when This :: wxSplitterWindow(), Mode :: integer().

Sets the split mode.
Remark: Only sets the internal variable; does not update the display.
See: getSplitMode/1, splitVertically/4, splitHorizontally/4

 Link to this function

 splitHorizontally(This, Window1, Window2)

 View Source

 -spec splitHorizontally(This, Window1, Window2) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow().

 Link to this function

 splitHorizontally/4

 View Source

 -spec splitHorizontally(This, Window1, Window2, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow(),
 Option :: {sashPosition, integer()}.

Initializes the top and bottom panes of the splitter window.
The child windows are shown if they are currently hidden.
Return: true if successful, false otherwise (the window was already split).
Remark: This should be called if you wish to initially view two panes. It can
also be called at any subsequent time, but the application should check that the
window is not currently split using isSplit/1.
See: splitVertically/4, isSplit/1, unsplit/2

 Link to this function

 splitVertically(This, Window1, Window2)

 View Source

 -spec splitVertically(This, Window1, Window2) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow().

 Link to this function

 splitVertically/4

 View Source

 -spec splitVertically(This, Window1, Window2, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow(),
 Option :: {sashPosition, integer()}.

Initializes the left and right panes of the splitter window.
The child windows are shown if they are currently hidden.
Return: true if successful, false otherwise (the window was already split).
Remark: This should be called if you wish to initially view two panes. It can
also be called at any subsequent time, but the application should check that the
window is not currently split using isSplit/1.
See: splitHorizontally/4, isSplit/1, unsplit/2

 Link to this function

 unsplit(This)

 View Source

 -spec unsplit(This) -> boolean() when This :: wxSplitterWindow().

 Link to this function

 unsplit/2

 View Source

 -spec unsplit(This, [Option]) -> boolean()
 when This :: wxSplitterWindow(), Option :: {toRemove, wxWindow:wxWindow()}.

Unsplits the window.
Return: true if successful, false otherwise (the window was not split).
Remark: This call will not actually delete the pane being removed; it calls
OnUnsplit() (not implemented in wx) which can be overridden for the desired
behaviour. By default, the pane being removed is hidden.
See: splitHorizontally/4, splitVertically/4, isSplit/1, OnUnsplit() (not
implemented in wx)

 Link to this function

 updateSize(This)

 View Source

 -spec updateSize(This) -> ok when This :: wxSplitterWindow().

Causes any pending sizing of the sash and child panes to take place immediately.
Such resizing normally takes place in idle time, in order to wait for layout to
be completed. However, this can cause unacceptable flicker as the panes are
resized after the window has been shown. To work around this, you can perform
window layout (for example by sending a size event to the parent window), and
then call this function, before showing the top-level window.

wxStaticBitmap

Functions for wxStaticBitmap class
A static bitmap control displays a bitmap. Native implementations on some
platforms are only meant for display of the small icons in the dialog boxes.
If you want to display larger images portably, you may use generic
implementation wxGenericStaticBitmap declared in <wx/generic/statbmpg.h>.
Notice that for the best results, the size of the control should be the same as
the size of the image displayed in it, as happens by default if it's not resized
explicitly. Otherwise, behaviour depends on the platform: under MSW, the bitmap
is drawn centred inside the control, while elsewhere it is drawn at the origin
of the control. You can use SetScaleMode() (not implemented in wx) to control
how the image is scaled inside the control.
See: wxBitmap
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxStaticBitmap

 Summary

 Types

 wxStaticBitmap()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creation function, for two-step construction.

 destroy(This)

 Destroys the object.

 getBitmap(This)

 Returns the bitmap currently used in the control.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a static bitmap control.

 setBitmap(This, Label)

 Sets the bitmap label.

 Types

 Link to this type

 wxStaticBitmap()

 View Source

 -type wxStaticBitmap() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticBitmap(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticBitmap(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
For details see new/4.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStaticBitmap()) -> ok.

Destroys the object.

 Link to this function

 getBitmap(This)

 View Source

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxStaticBitmap().

Returns the bitmap currently used in the control.
Notice that this method can be called even if SetIcon() (not implemented in
wx) had been used.
See: setBitmap/2

 Link to this function

 new()

 View Source

 -spec new() -> wxStaticBitmap().

Default constructor.

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxStaticBitmap()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: wxBitmap:wxBitmap().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxStaticBitmap()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static bitmap control.
See: create/5

 Link to this function

 setBitmap(This, Label)

 View Source

 -spec setBitmap(This, Label) -> ok when This :: wxStaticBitmap(), Label :: wxBitmap:wxBitmap().

Sets the bitmap label.
See: getBitmap/1

wxStaticBox

Functions for wxStaticBox class
A static box is a rectangle drawn around other windows to denote a logical
grouping of items.
Note that while the previous versions required that windows appearing inside a
static box be created as its siblings (i.e. use the same parent as the static
box itself), since wxWidgets 2.9.1 it is also possible to create them as
children of wxStaticBox itself and you are actually encouraged to do it like
this if compatibility with the previous versions is not important.
So the new recommended way to create static box is:
While the compatible - and now deprecated - way is
Also note that there is a specialized wxSizer class (wxStaticBoxSizer)
which can be used as an easier way to pack items into a static box.
See: wxStaticText, wxStaticBoxSizer
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxStaticBox

 Summary

 Types

 wxStaticBox()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creates the static box for two-step construction.

 destroy(This)

 Constructor for a static box using the given window as label.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a static box.

 Types

 Link to this type

 wxStaticBox()

 View Source

 -type wxStaticBox() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the static box for two-step construction.
See new/4 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStaticBox()) -> ok.

Constructor for a static box using the given window as label.
This constructor takes a pointer to an arbitrary window (although usually a
wxCheckBox or a wxRadioButton) instead of just the usual text label and
puts this window at the top of the box at the place where the label would be
shown.
The label window must be a non-null, fully created window and will become a
child of this wxStaticBox, i.e. it will be owned by this control and will be
deleted when the wxStaticBox itself is deleted.
An example of creating a wxStaticBox with window as a label:
Currently this constructor is only available in wxGTK and wxMSW, use
wxHAS_WINDOW_LABEL_IN_STATIC_BOX to check whether it can be used at
compile-time.
Since: 3.1.1 Destructor, destroying the group box.

 Link to this function

 new()

 View Source

 -spec new() -> wxStaticBox().

Default constructor.

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxStaticBox()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxStaticBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static box.
See: create/5

wxStaticBoxSizer

Functions for wxStaticBoxSizer class
wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static
box around the sizer.
The static box may be either created independently or the sizer may create it
itself as a convenience. In any case, the sizer owns the wxStaticBox control
and will delete it in the wxStaticBoxSizer destructor.
Note that since wxWidgets 2.9.1 you are encouraged to create the windows which
are added to wxStaticBoxSizer as children of wxStaticBox itself, see
this class documentation for more details.
Example of use of this class:
See: wxSizer, wxStaticBox, wxBoxSizer,
Overview sizer
This class is derived (and can use functions) from: wxBoxSizer wxSizer
wxWidgets docs:
wxStaticBoxSizer

 Summary

 Types

 wxStaticBoxSizer()

 Functions

 destroy(This)

 Destroys the object.

 getStaticBox(This)

 Returns the static box associated with the sizer.

 new/2

 This constructor uses an already existing static box.

 new/3

 This constructor creates a new static box with the given label and parent
window.

 Types

 Link to this type

 wxStaticBoxSizer()

 View Source

 -type wxStaticBoxSizer() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStaticBoxSizer()) -> ok.

Destroys the object.

 Link to this function

 getStaticBox(This)

 View Source

 -spec getStaticBox(This) -> wxStaticBox:wxStaticBox() when This :: wxStaticBoxSizer().

Returns the static box associated with the sizer.

 Link to this function

 new/2

 View Source

 -spec new(Orient, Parent) -> wxStaticBoxSizer() when Orient :: integer(), Parent :: wxWindow:wxWindow();
 (Box, Orient) -> wxStaticBoxSizer() when Box :: wxStaticBox:wxStaticBox(), Orient :: integer().

This constructor uses an already existing static box.

 Link to this function

 new/3

 View Source

 -spec new(Orient, Parent, [Option]) -> wxStaticBoxSizer()
 when
 Orient :: integer(),
 Parent :: wxWindow:wxWindow(),
 Option :: {label, unicode:chardata()}.

This constructor creates a new static box with the given label and parent
window.

wxStaticLine

Functions for wxStaticLine class
A static line is just a line which may be used in a dialog to separate the
groups of controls.
The line may be only vertical or horizontal. Moreover, not all ports (notably
not wxGTK) support specifying the transversal direction of the line (e.g. height
for a horizontal line) so for maximal portability you should specify it as
wxDefaultCoord.
Styles
This class supports the following styles:
See: wxStaticBox
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxStaticLine

 Summary

 Types

 wxStaticLine()

 Functions

 create(This, Parent)

 create/3

 Creates the static line for two-step construction.

 destroy(This)

 Destroys the object.

 getDefaultSize()

 This static function returns the size which will be given to the smaller
dimension of the static line, i.e.

 isVertical(This)

 Returns true if the line is vertical, false if horizontal.

 new()

 Default constructor.

 new(Parent)

 new/2

 Constructor, creating and showing a static line.

 Types

 Link to this type

 wxStaticLine()

 View Source

 -type wxStaticLine() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxStaticLine(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStaticLine(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the static line for two-step construction.
See new/2 for further details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStaticLine()) -> ok.

Destroys the object.

 Link to this function

 getDefaultSize()

 View Source

 -spec getDefaultSize() -> integer().

This static function returns the size which will be given to the smaller
dimension of the static line, i.e.
its height for a horizontal line or its width for a vertical one.

 Link to this function

 isVertical(This)

 View Source

 -spec isVertical(This) -> boolean() when This :: wxStaticLine().

Returns true if the line is vertical, false if horizontal.

 Link to this function

 new()

 View Source

 -spec new() -> wxStaticLine().

Default constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxStaticLine() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxStaticLine()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static line.
See: create/3

wxStaticText

Functions for wxStaticText class
A static text control displays one or more lines of read-only text.
wxStaticText supports the three classic text alignments, label ellipsization
i.e. replacing parts of the text with the ellipsis ("...") if the label doesn't
fit into the provided space and also formatting markup with
wxControl::SetLabelMarkup() (not implemented in wx).
Styles
This class supports the following styles:
See: wxStaticBitmap, wxStaticBox
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxStaticText

 Summary

 Types

 wxStaticText()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creation function, for two-step construction.

 destroy(This)

 Destroys the object.

 getLabel(This)

 Returns the control's label, as it was passed to wxControl:setLabel/2.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a text control.

 setLabel(This, Label)

 Change the label shown in the control.

 wrap(This, Width)

 This functions wraps the controls label so that each of its lines becomes at
most width pixels wide if possible (the lines are broken at words boundaries
so it might not be the case if words are too long).

 Types

 Link to this type

 wxStaticText()

 View Source

 -type wxStaticText() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticText(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticText(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
For details see new/4.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStaticText()) -> ok.

Destroys the object.

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxStaticText().

Returns the control's label, as it was passed to wxControl:setLabel/2.
Note that the returned string may contains mnemonics ("&" characters) if they
were passed to the wxControl:setLabel/2 function; use GetLabelText() (not
implemented in wx) if they are undesired.
Also note that the returned string is always the string which was passed to
wxControl:setLabel/2 but may be different from the string passed to
SetLabelText() (not implemented in wx) (since this last one escapes mnemonic
characters).

 Link to this function

 new()

 View Source

 -spec new() -> wxStaticText().

Default constructor.

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxStaticText()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxStaticText()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a text control.
See: create/5

 Link to this function

 setLabel(This, Label)

 View Source

 -spec setLabel(This, Label) -> ok when This :: wxStaticText(), Label :: unicode:chardata().

Change the label shown in the control.
Notice that since wxWidgets 3.1.1 this function is guaranteed not to do anything
if the label didn't really change, so there is no benefit to checking if the new
label is different from the current one in the application code.
See: wxControl:setLabel/2

 Link to this function

 wrap(This, Width)

 View Source

 -spec wrap(This, Width) -> ok when This :: wxStaticText(), Width :: integer().

This functions wraps the controls label so that each of its lines becomes at
most width pixels wide if possible (the lines are broken at words boundaries
so it might not be the case if words are too long).
If width is negative, no wrapping is done. Note that this width is not
necessarily the total width of the control, since a few pixels for the border
(depending on the controls border style) may be added.
Since: 2.6.2

wxStatusBar

Functions for wxStatusBar class
A status bar is a narrow window that can be placed along the bottom of a frame
to give small amounts of status information. It can contain one or more fields,
one or more of which can be variable length according to the size of the window.
wxStatusBar also maintains an independent stack of status texts for each
field (see pushStatusText/3 and popStatusText/2).
Note that in wxStatusBar context, the terms pane and field are synonyms.
Styles
This class supports the following styles:
Remark: It is possible to create controls and other windows on the status bar.
Position these windows from an OnSize() event handler.
Remark: Notice that only the first 127 characters of a string will be shown in
status bar fields under Windows if a proper manifest indicating that the program
uses version 6 of common controls library is not used. This is a limitation of
the native control on these platforms.
See: wxStatusBarPane (not implemented in wx), wxFrame,
Examples
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxStatusBar

 Summary

 Types

 wxStatusBar()

 Functions

 create(This, Parent)

 create/3

 Creates the window, for two-step construction.

 destroy(This)

 Destructor.

 getFieldRect(This, I)

 Returns the size and position of a field's internal bounding rectangle.

 getFieldsCount(This)

 Returns the number of fields in the status bar.

 getStatusText(This)

 getStatusText/2

 Returns the string associated with a status bar field.

 new()

 Default ctor.

 new(Parent)

 new/2

 Constructor, creating the window.

 popStatusText(This)

 popStatusText/2

 Restores the text to the value it had before the last call to
pushStatusText/3.

 pushStatusText(This, String)

 pushStatusText/3

 Saves the current field text in a per-field stack, and sets the field text to
the string passed as argument.

 setFieldsCount(This, Number)

 setFieldsCount/3

 Sets the number of fields, and optionally the field widths.

 setMinHeight(This, Height)

 Sets the minimal possible height for the status bar.

 setStatusStyles(This, Styles)

 Sets the styles of the fields in the status line which can make fields appear
flat or raised instead of the standard sunken 3D border.

 setStatusText(This, Text)

 setStatusText/3

 Sets the status text for the i-th field.

 setStatusWidths(This, Widths_field)

 Sets the widths of the fields in the status line.

 Types

 Link to this type

 wxStatusBar()

 View Source

 -type wxStatusBar() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxStatusBar(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStatusBar(),
 Parent :: wxWindow:wxWindow(),
 Option :: {winid, integer()} | {style, integer()}.

Creates the window, for two-step construction.
See new/2 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStatusBar()) -> ok.

Destructor.

 Link to this function

 getFieldRect(This, I)

 View Source

 -spec getFieldRect(This, I) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxStatusBar(),
 I :: integer().

Returns the size and position of a field's internal bounding rectangle.
Return: true if the field index is valid, false otherwise.
See: {X,Y,W,H}

 Link to this function

 getFieldsCount(This)

 View Source

 -spec getFieldsCount(This) -> integer() when This :: wxStatusBar().

Returns the number of fields in the status bar.

 Link to this function

 getStatusText(This)

 View Source

 -spec getStatusText(This) -> unicode:charlist() when This :: wxStatusBar().

 Link to this function

 getStatusText/2

 View Source

 -spec getStatusText(This, [Option]) -> unicode:charlist()
 when This :: wxStatusBar(), Option :: {number, integer()}.

Returns the string associated with a status bar field.
Return: The status field string if the field is valid, otherwise the empty
string.
See: setStatusText/3

 Link to this function

 new()

 View Source

 -spec new() -> wxStatusBar().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxStatusBar() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxStatusBar()
 when Parent :: wxWindow:wxWindow(), Option :: {winid, integer()} | {style, integer()}.

Constructor, creating the window.
See: create/3

 Link to this function

 popStatusText(This)

 View Source

 -spec popStatusText(This) -> ok when This :: wxStatusBar().

 Link to this function

 popStatusText/2

 View Source

 -spec popStatusText(This, [Option]) -> ok when This :: wxStatusBar(), Option :: {number, integer()}.

Restores the text to the value it had before the last call to
pushStatusText/3.
Notice that if setStatusText/3 had been called in the meanwhile,
popStatusText/2 will not change the text, i.e. it does not override explicit
changes to status text but only restores the saved text if it hadn't been
changed since.
See: pushStatusText/3

 Link to this function

 pushStatusText(This, String)

 View Source

 -spec pushStatusText(This, String) -> ok when This :: wxStatusBar(), String :: unicode:chardata().

 Link to this function

 pushStatusText/3

 View Source

 -spec pushStatusText(This, String, [Option]) -> ok
 when
 This :: wxStatusBar(),
 String :: unicode:chardata(),
 Option :: {number, integer()}.

Saves the current field text in a per-field stack, and sets the field text to
the string passed as argument.
See: popStatusText/2

 Link to this function

 setFieldsCount(This, Number)

 View Source

 -spec setFieldsCount(This, Number) -> ok when This :: wxStatusBar(), Number :: integer().

 Link to this function

 setFieldsCount/3

 View Source

 -spec setFieldsCount(This, Number, [Option]) -> ok
 when This :: wxStatusBar(), Number :: integer(), Option :: {widths, [integer()]}.

Sets the number of fields, and optionally the field widths.

 Link to this function

 setMinHeight(This, Height)

 View Source

 -spec setMinHeight(This, Height) -> ok when This :: wxStatusBar(), Height :: integer().

Sets the minimal possible height for the status bar.
The real height may be bigger than the height specified here depending on the
size of the font used by the status bar.

 Link to this function

 setStatusStyles(This, Styles)

 View Source

 -spec setStatusStyles(This, Styles) -> ok when This :: wxStatusBar(), Styles :: [integer()].

Sets the styles of the fields in the status line which can make fields appear
flat or raised instead of the standard sunken 3D border.

 Link to this function

 setStatusText(This, Text)

 View Source

 -spec setStatusText(This, Text) -> ok when This :: wxStatusBar(), Text :: unicode:chardata().

 Link to this function

 setStatusText/3

 View Source

 -spec setStatusText(This, Text, [Option]) -> ok
 when
 This :: wxStatusBar(),
 Text :: unicode:chardata(),
 Option :: {number, integer()}.

Sets the status text for the i-th field.
The given text will replace the current text. The display of the status bar is
updated immediately, so there is no need to call wxWindow:update/1 after
calling this function.
Note that if pushStatusText/3 had been called before the new text will also
replace the last saved value to make sure that the next call to
popStatusText/2 doesn't restore the old value, which was overwritten by the
call to this function.
See: getStatusText/2, wxFrame:setStatusText/3

 Link to this function

 setStatusWidths(This, Widths_field)

 View Source

 -spec setStatusWidths(This, Widths_field) -> ok when This :: wxStatusBar(), Widths_field :: [integer()].

Sets the widths of the fields in the status line.
There are two types of fields: fixed widths and variable width fields. For
the fixed width fields you should specify their (constant) width in pixels. For
the variable width fields, specify a negative number which indicates how the
field should expand: the space left for all variable width fields is divided
between them according to the absolute value of this number. A variable width
field with width of -2 gets twice as much of it as a field with width -1 and so
on.
For example, to create one fixed width field of width 100 in the right part of
the status bar and two more fields which get 66% and 33% of the remaining space
correspondingly, you should use an array containing -2, -1 and 100.
Remark: The widths of the variable fields are calculated from the total width of
all fields, minus the sum of widths of the non-variable fields, divided by the
number of variable fields.
See: setFieldsCount/3, wxFrame:setStatusWidths/2

wxStdDialogButtonSizer

Functions for wxStdDialogButtonSizer class
This class creates button layouts which conform to the standard button spacing
and ordering defined by the platform or toolkit's user interface guidelines (if
such things exist). By using this class, you can ensure that all your standard
dialogs look correct on all major platforms. Currently it conforms to the
Windows, GTK+ and macOS human interface guidelines.
When there aren't interface guidelines defined for a particular platform or
toolkit, wxStdDialogButtonSizer reverts to the Windows implementation.
To use this class, first add buttons to the sizer by calling addButton/2 (or
setAffirmativeButton/2, setNegativeButton/2 or setCancelButton/2) and then
call Realize in order to create the actual button layout used. Other than these
special operations, this sizer works like any other sizer.
If you add a button with wxID_SAVE, on macOS the button will be renamed to
"Save" and the wxID_NO button will be renamed to "Don't Save" in accordance with
the macOS Human Interface Guidelines.
See: wxSizer,
Overview sizer,
wxDialog:createButtonSizer/2
This class is derived (and can use functions) from: wxBoxSizer wxSizer
wxWidgets docs:
wxStdDialogButtonSizer

 Summary

 Types

 wxStdDialogButtonSizer()

 Functions

 addButton(This, Button)

 Adds a button to the wxStdDialogButtonSizer.

 destroy(This)

 Destroys the object.

 new()

 Constructor for a wxStdDialogButtonSizer.

 realize(This)

 Rearranges the buttons and applies proper spacing between buttons to make them
match the platform or toolkit's interface guidelines.

 setAffirmativeButton(This, Button)

 Sets the affirmative button for the sizer.

 setCancelButton(This, Button)

 Sets the cancel button for the sizer.

 setNegativeButton(This, Button)

 Sets the negative button for the sizer.

 Types

 Link to this type

 wxStdDialogButtonSizer()

 View Source

 -type wxStdDialogButtonSizer() :: wx:wx_object().

 Functions

 Link to this function

 addButton(This, Button)

 View Source

 -spec addButton(This, Button) -> ok when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Adds a button to the wxStdDialogButtonSizer.
The button must have one of the following identifiers:

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStdDialogButtonSizer()) -> ok.

Destroys the object.

 Link to this function

 new()

 View Source

 -spec new() -> wxStdDialogButtonSizer().

Constructor for a wxStdDialogButtonSizer.

 Link to this function

 realize(This)

 View Source

 -spec realize(This) -> ok when This :: wxStdDialogButtonSizer().

Rearranges the buttons and applies proper spacing between buttons to make them
match the platform or toolkit's interface guidelines.

 Link to this function

 setAffirmativeButton(This, Button)

 View Source

 -spec setAffirmativeButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the affirmative button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined
above.

 Link to this function

 setCancelButton(This, Button)

 View Source

 -spec setCancelButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the cancel button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined
above.

 Link to this function

 setNegativeButton(This, Button)

 View Source

 -spec setNegativeButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the negative button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined
above.

wxStyledTextCtrl

Functions for wxStyledTextCtrl class
A wxWidgets implementation of the Scintilla source code editing component.
As well as features found in standard text editing components, Scintilla
includes features especially useful when editing and debugging source code.
These include support for syntax styling, error indicators, code completion and
call tips.
The selection margin can contain markers like those used in debuggers to
indicate breakpoints and the current line. Styling choices are more open than
with many editors, allowing the use of proportional fonts, bold and italics,
multiple foreground and background colours and multiple fonts.
wxStyledTextCtrl is a 1 to 1 mapping of "raw" scintilla interface, whose
documentation can be found in the Scintilla website
(http://www.scintilla.org/).
Please see wxStyledTextEvent for the documentation of all event types you
can use with wxStyledTextCtrl.
Index of the member groups
Links for quick access to the various categories of wxStyledTextCtrl
functions:
See: wxStyledTextEvent
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxStyledTextCtrl

 Summary

 Types

 wxStyledTextCtrl()

 Functions

 addText(This, Text)

 Add text to the document at current position.

 addTextRaw(This, Text)

 addTextRaw/3

 Add text to the document at current position.

 allocate(This, Bytes)

 Enlarge the document to a particular size of text bytes.

 appendText(This, Text)

 Append a string to the end of the document without changing the selection.

 appendTextRaw(This, Text)

 appendTextRaw/3

 Append a string to the end of the document without changing the selection.

 autoCompActive(This)

 Is there an auto-completion list visible?

 autoCompCancel(This)

 Remove the auto-completion list from the screen.

 autoCompComplete(This)

 User has selected an item so remove the list and insert the selection.

 autoCompGetAutoHide(This)

 Retrieve whether or not autocompletion is hidden automatically when nothing
matches.

 autoCompGetCancelAtStart(This)

 Retrieve whether auto-completion cancelled by backspacing before start.

 autoCompGetChooseSingle(This)

 Retrieve whether a single item auto-completion list automatically choose the
item.

 autoCompGetCurrent(This)

 Get currently selected item position in the auto-completion list.

 autoCompGetDropRestOfWord(This)

 Retrieve whether or not autocompletion deletes any word characters after the
inserted text upon completion.

 autoCompGetIgnoreCase(This)

 Retrieve state of ignore case flag.

 autoCompGetMaxHeight(This)

 Set the maximum height, in rows, of auto-completion and user lists.

 autoCompGetMaxWidth(This)

 Get the maximum width, in characters, of auto-completion and user lists.

 autoCompGetSeparator(This)

 Retrieve the auto-completion list separator character.

 autoCompGetTypeSeparator(This)

 Retrieve the auto-completion list type-separator character.

 autoCompPosStart(This)

 Retrieve the position of the caret when the auto-completion list was displayed.

 autoCompSelect(This, Select)

 Select the item in the auto-completion list that starts with a string.

 autoCompSetAutoHide(This, AutoHide)

 Set whether or not autocompletion is hidden automatically when nothing matches.

 autoCompSetCancelAtStart(This, Cancel)

 Should the auto-completion list be cancelled if the user backspaces to a
position before where the box was created.

 autoCompSetChooseSingle(This, ChooseSingle)

 Should a single item auto-completion list automatically choose the item.

 autoCompSetDropRestOfWord(This, DropRestOfWord)

 Set whether or not autocompletion deletes any word characters after the inserted
text upon completion.

 autoCompSetFillUps(This, CharacterSet)

 Define a set of characters that when typed will cause the autocompletion to
choose the selected item.

 autoCompSetIgnoreCase(This, IgnoreCase)

 Set whether case is significant when performing auto-completion searches.

 autoCompSetMaxHeight(This, RowCount)

 Set the maximum height, in rows, of auto-completion and user lists.

 autoCompSetMaxWidth(This, CharacterCount)

 Set the maximum width, in characters, of auto-completion and user lists.

 autoCompSetSeparator(This, SeparatorCharacter)

 Change the separator character in the string setting up an auto-completion list.

 autoCompSetTypeSeparator(This, SeparatorCharacter)

 Change the type-separator character in the string setting up an auto-completion
list.

 autoCompShow(This, LengthEntered, ItemList)

 Display a auto-completion list.

 autoCompStops(This, CharacterSet)

 Define a set of character that when typed cancel the auto-completion list.

 backTab(This)

 Dedent the selected lines.

 beginUndoAction(This)

 Start a sequence of actions that is undone and redone as a unit.

 braceBadLight(This, Pos)

 Highlight the character at a position indicating there is no matching brace.

 braceHighlight(This, PosA, PosB)

 Highlight the characters at two positions.

 braceMatch(This, Pos)

 Find the position of a matching brace or wxSTC_INVALID_POSITION if no match.

 callTipActive(This)

 Is there an active call tip?

 callTipCancel(This)

 Remove the call tip from the screen.

 callTipPosAtStart(This)

 Retrieve the position where the caret was before displaying the call tip.

 callTipSetBackground(This, Back)

 Set the background colour for the call tip.

 callTipSetForeground(This, Fore)

 Set the foreground colour for the call tip.

 callTipSetForegroundHighlight(This, Fore)

 Set the foreground colour for the highlighted part of the call tip.

 callTipSetHighlight(This, HighlightStart, HighlightEnd)

 Highlight a segment of the definition.

 callTipShow(This, Pos, Definition)

 Show a call tip containing a definition near position pos.

 callTipUseStyle(This, TabSize)

 Enable use of wxSTC_STYLE_CALLTIP and set call tip tab size in pixels.

 cancel(This)

 Cancel any modes such as call tip or auto-completion list display.

 canPaste(This)

 Will a paste succeed?

 canRedo(This)

 Are there any redoable actions in the undo history?

 canUndo(This)

 Are there any undoable actions in the undo history?

 charLeft(This)

 Move caret left one character.

 charLeftExtend(This)

 Move caret left one character extending selection to new caret position.

 charLeftRectExtend(This)

 Move caret left one character, extending rectangular selection to new caret
position.

 charRight(This)

 Move caret right one character.

 charRightExtend(This)

 Move caret right one character extending selection to new caret position.

 charRightRectExtend(This)

 Move caret right one character, extending rectangular selection to new caret
position.

 chooseCaretX(This)

 Set the last x chosen value to be the caret x position.

 clear(This)

 Clear the selection.

 clearAll(This)

 Delete all text in the document.

 clearDocumentStyle(This)

 Set all style bytes to 0, remove all folding information.

 clearRegisteredImages(This)

 Clear all the registered images.

 cmdKeyAssign(This, Key, Modifiers, Cmd)

 When key+modifier combination keyDefinition is pressed perform sciCommand.

 cmdKeyClear(This, Key, Modifiers)

 When key+modifier combination keyDefinition is pressed do nothing.

 cmdKeyClearAll(This)

 Drop all key mappings.

 cmdKeyExecute(This, Cmd)

 Perform one of the operations defined by the wxSTCCMD* constants.

 colourise(This, Start, End)

 Colourise a segment of the document using the current lexing language.

 convertEOLs(This, EolMode)

 Convert all line endings in the document to one mode.

 copy(This)

 Copy the selection to the clipboard.

 copyRange(This, Start, End)

 Copy a range of text to the clipboard.

 copyText(This, Length, Text)

 Copy argument text to the clipboard.

 create(This, Parent)

 create/3

 Create the UI elements for a STC that was created with the default ctor.

 cut(This)

 Cut the selection to the clipboard.

 deleteBack(This)

 Delete the selection or if no selection, the character before the caret.

 deleteBackNotLine(This)

 Delete the selection or if no selection, the character before the caret.

 delLineLeft(This)

 Delete back from the current position to the start of the line.

 delLineRight(This)

 Delete forwards from the current position to the end of the line.

 delWordLeft(This)

 Delete the word to the left of the caret.

 delWordRight(This)

 Delete the word to the right of the caret.

 destroy(This)

 Destructor.

 docLineFromVisible(This, DisplayLine)

 Find the document line of a display line taking hidden lines into account.

 documentEnd(This)

 Move caret to last position in document.

 documentEndExtend(This)

 Move caret to last position in document extending selection to new caret
position.

 documentStart(This)

 Move caret to first position in document.

 documentStartExtend(This)

 Move caret to first position in document extending selection to new caret
position.

 doDragOver(This, X, Y, DefaultRes)

 Allow for simulating a DnD DragOver.

 doDropText(This, X, Y, Data)

 Allow for simulating a DnD DropText.

 editToggleOvertype(This)

 Switch from insert to overtype mode or the reverse.

 emptyUndoBuffer(This)

 Delete the undo history.

 endUndoAction(This)

 End a sequence of actions that is undone and redone as a unit.

 ensureCaretVisible(This)

 Ensure the caret is visible.

 ensureVisible(This, Line)

 Ensure a particular line is visible by expanding any header line hiding it.

 ensureVisibleEnforcePolicy(This, Line)

 Ensure a particular line is visible by expanding any header line hiding it.

 findColumn(This, Line, Column)

 Find the position of a column on a line taking into account tabs and multi-byte
characters.

 findText(This, MinPos, MaxPos, Text)

 findText/5

 Find some text in the document. @param minPos The position (starting from zero) in the document at which to begin the search @param maxPos The last position (starting from zero) in the document to which the search will be restricted. @param text The text to search for. @param flags (Optional) The search flags. This should be a bit list containing one or more of the @link wxStyledTextCtrl::wxSTC_FIND_WHOLEWORD wxSTC_FIND_* @endlink constants.

 formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect)

 On Windows, will draw the document into a display context such as a printer.

 formFeed(This)

 Insert a Form Feed character.

 getAnchor(This)

 Returns the position of the opposite end of the selection to the caret.

 getBackSpaceUnIndents(This)

 Does a backspace pressed when caret is within indentation unindent?

 getBufferedDraw(This)

 Is drawing done first into a buffer or direct to the screen?

 getCaretForeground(This)

 Get the foreground colour of the caret.

 getCaretLineBackAlpha(This)

 Get the background alpha of the caret line.

 getCaretLineBackground(This)

 Get the colour of the background of the line containing the caret.

 getCaretLineVisible(This)

 Is the background of the line containing the caret in a different colour?

 getCaretPeriod(This)

 Get the time in milliseconds that the caret is on and off.

 getCaretSticky(This)

 Can the caret preferred x position only be changed by explicit movement
commands?

 getCaretWidth(This)

 Returns the width of the insert mode caret.

 getCharAt(This, Pos)

 Returns the character byte at the position.

 getCodePage(This)

 Get the code page used to interpret the bytes of the document as characters.

 getColumn(This, Pos)

 Retrieve the column number of a position, taking tab width into account.

 getControlCharSymbol(This)

 Get the way control characters are displayed.

 getCurLine(This)

 Retrieve the text of the line containing the caret.

 getCurLineRaw(This)

 Retrieve the text of the line containing the caret.

 getCurrentLine(This)

 Returns the line number of the line with the caret.

 getCurrentPos(This)

 Returns the position of the caret.

 getEdgeColour(This)

 Retrieve the colour used in edge indication.

 getEdgeColumn(This)

 Retrieve the column number which text should be kept within.

 getEdgeMode(This)

 Retrieve the edge highlight mode.

 getEndAtLastLine(This)

 Retrieve whether the maximum scroll position has the last line at the bottom of
the view.

 getEndStyled(This)

 Retrieve the position of the last correctly styled character.

 getEOLMode(This)

 Retrieve the current end of line mode - one of wxSTC_EOL_CRLF, wxSTC_EOL_CR, or
wxSTC_EOL_LF.

 getFirstVisibleLine(This)

 Retrieve the display line at the top of the display.

 getFoldExpanded(This, Line)

 Is a header line expanded?

 getFoldLevel(This, Line)

 Retrieve the fold level of a line.

 getFoldParent(This, Line)

 Find the parent line of a child line.

 getHighlightGuide(This)

 Get the highlighted indentation guide column.

 getIndent(This)

 Retrieve indentation size.

 getIndentationGuides(This)

 Are the indentation guides visible?

 getLastChild(This, Line, Level)

 Find the last child line of a header line.

 getLastKeydownProcessed(This)

 Can be used to prevent the EVT_CHAR handler from adding the char.

 getLayoutCache(This)

 Retrieve the degree of caching of layout information.

 getLength(This)

 Returns the number of bytes in the document.

 getLexer(This)

 Retrieve the lexing language of the document.

 getLine(This, Line)

 Retrieve the contents of a line.

 getLineCount(This)

 Returns the number of lines in the document.

 getLineEndPosition(This, Line)

 Get the position after the last visible characters on a line.

 getLineIndentation(This, Line)

 Retrieve the number of columns that a line is indented.

 getLineIndentPosition(This, Line)

 Retrieve the position before the first non indentation character on a line.

 getLineRaw(This, Line)

 Retrieve the contents of a line.

 getLineState(This, Line)

 Retrieve the extra styling information for a line.

 getLineVisible(This, Line)

 Is a line visible?

 getMarginLeft(This)

 Returns the size in pixels of the left margin.

 getMarginMask(This, Margin)

 Retrieve the marker mask of a margin.

 getMarginRight(This)

 Returns the size in pixels of the right margin.

 getMarginSensitive(This, Margin)

 Retrieve the mouse click sensitivity of a margin.

 getMarginType(This, Margin)

 Retrieve the type of a margin.

 getMarginWidth(This, Margin)

 Retrieve the width of a margin in pixels.

 getMaxLineState(This)

 Retrieve the last line number that has line state.

 getModEventMask(This)

 Get which document modification events are sent to the container.

 getModify(This)

 Is the document different from when it was last saved?

 getMouseDownCaptures(This)

 Get whether mouse gets captured.

 getMouseDwellTime(This)

 Retrieve the time the mouse must sit still to generate a mouse dwell event.

 getOvertype(This)

 Returns true if overtype mode is active otherwise false is returned.

 getPasteConvertEndings(This)

 Get convert-on-paste setting.

 getPrintColourMode(This)

 Returns the print colour mode.

 getPrintMagnification(This)

 Returns the print magnification.

 getPrintWrapMode(This)

 Is printing line wrapped?

 getProperty(This, Key)

 Retrieve a "property" value previously set with SetProperty.

 getReadOnly(This)

 In read-only mode?

 getScrollWidth(This)

 Retrieve the document width assumed for scrolling.

 getSearchFlags(This)

 Get the search flags used by SearchInTarget.

 getSelAlpha(This)

 Get the alpha of the selection.

 getSelectedText(This)

 Retrieve the selected text.

 getSelectedTextRaw(This)

 Retrieve the selected text.

 getSelection(This)

 Gets the current selection span.

 getSelectionEnd(This)

 Returns the position at the end of the selection.

 getSelectionMode(This)

 Get the mode of the current selection.

 getSelectionStart(This)

 Returns the position at the start of the selection.

 getSTCCursor(This)

 Get cursor type.

 getSTCFocus(This)

 Get internal focus flag.

 getStatus(This)

 Get error status.

 getStyleAt(This, Pos)

 Returns the style byte at the position.

 getStyleBits(This)

 Retrieve number of bits in style bytes used to hold the lexical state.

 getStyleBitsNeeded(This)

 Retrieve the number of bits the current lexer needs for styling.

 getTabIndents(This)

 Does a tab pressed when caret is within indentation indent?

 getTabWidth(This)

 Retrieve the visible size of a tab.

 getTargetEnd(This)

 Get the position that ends the target.

 getTargetStart(This)

 Get the position that starts the target.

 getText(This)

 Retrieve all the text in the document.

 getTextLength(This)

 Retrieve the number of characters in the document.

 getTextRange(This, StartPos, EndPos)

 Retrieve a range of text.

 getTextRangeRaw(This, StartPos, EndPos)

 Retrieve a range of text.

 getTextRaw(This)

 Retrieve all the text in the document.

 getTwoPhaseDraw(This)

 Is drawing done in two phases with backgrounds drawn before foregrounds?

 getUndoCollection(This)

 Is undo history being collected?

 getUseAntiAliasing(This)

 Returns the current UseAntiAliasing setting.

 getUseHorizontalScrollBar(This)

 Is the horizontal scroll bar visible?

 getUseTabs(This)

 Retrieve whether tabs will be used in indentation.

 getUseVerticalScrollBar(This)

 Is the vertical scroll bar visible?

 getViewEOL(This)

 Are the end of line characters visible?

 getViewWhiteSpace(This)

 Are white space characters currently visible? Returns one of wxSTCWS*
constants.

 getWrapMode(This)

 Retrieve whether text is word wrapped.

 getWrapStartIndent(This)

 Retrieve the start indent for wrapped lines.

 getWrapVisualFlags(This)

 Retrieve the display mode of visual flags for wrapped lines.

 getWrapVisualFlagsLocation(This)

 Retrieve the location of visual flags for wrapped lines.

 getXOffset(This)

 Get the xOffset (ie, horizontal scroll position).

 getZoom(This)

 Retrieve the zoom level.

 gotoLine(This, Line)

 Set caret to start of a line and ensure it is visible.

 gotoPos(This, Caret)

 Set caret to a position and ensure it is visible.

 hideLines(This, LineStart, LineEnd)

 Make a range of lines invisible.

 hideSelection(This, Hide)

 Draw the selection in normal style or with selection highlighted.

 home(This)

 Move caret to first position on line.

 homeDisplay(This)

 Move caret to first position on display line.

 homeDisplayExtend(This)

 Move caret to first position on display line extending selection to new caret
position.

 homeExtend(This)

 Move caret to first position on line extending selection to new caret position.

 homeRectExtend(This)

 Move caret to first position on line, extending rectangular selection to new
caret position.

 homeWrapExtend(This)

 Like HomeExtend but when word-wrap is enabled extends first to start of display
line HomeDisplayExtend, then to start of document line HomeExtend.

 indicatorGetForeground(This, Indicator)

 Retrieve the foreground colour of an indicator.

 indicatorGetStyle(This, Indicator)

 Retrieve the style of an indicator.

 indicatorSetForeground(This, Indicator, Fore)

 Set the foreground colour of an indicator.

 indicatorSetStyle(This, Indicator, IndicatorStyle)

 Set an indicator to plain, squiggle or TT.

 insertText(This, Pos, Text)

 Insert string at a position.

 insertTextRaw(This, Pos, Text)

 Insert string at a position.

 lineCopy(This)

 Copy the line containing the caret.

 lineCut(This)

 Cut the line containing the caret.

 lineDelete(This)

 Delete the line containing the caret.

 lineDown(This)

 Move caret down one line.

 lineDownExtend(This)

 Move caret down one line extending selection to new caret position.

 lineDownRectExtend(This)

 Move caret down one line, extending rectangular selection to new caret position.

 lineDuplicate(This)

 Duplicate the current line.

 lineEnd(This)

 Move caret to last position on line.

 lineEndDisplay(This)

 Move caret to last position on display line.

 lineEndDisplayExtend(This)

 Move caret to last position on display line extending selection to new caret
position.

 lineEndExtend(This)

 Move caret to last position on line extending selection to new caret position.

 lineEndRectExtend(This)

 Move caret to last position on line, extending rectangular selection to new
caret position.

 lineEndWrap(This)

 Like LineEnd but when word-wrap is enabled goes first to end of display line
LineEndDisplay, then to start of document line LineEnd.

 lineEndWrapExtend(This)

 Like LineEndExtend but when word-wrap is enabled extends first to end of display
line LineEndDisplayExtend, then to start of document line LineEndExtend.

 lineFromPosition(This, Pos)

 Retrieve the line containing a position.

 lineLength(This, Line)

 How many characters are on a line, including end of line characters?

 lineScroll(This, Columns, Lines)

 Scroll horizontally and vertically.

 lineScrollDown(This)

 Scroll the document down, keeping the caret visible.

 lineScrollUp(This)

 Scroll the document up, keeping the caret visible.

 linesJoin(This)

 Join the lines in the target.

 linesOnScreen(This)

 Retrieves the number of lines completely visible.

 linesSplit(This, PixelWidth)

 Split the lines in the target into lines that are less wide than pixelWidth
where possible.

 lineTranspose(This)

 Switch the current line with the previous.

 lineUp(This)

 Move caret up one line.

 lineUpExtend(This)

 Move caret up one line extending selection to new caret position.

 lineUpRectExtend(This)

 Move caret up one line, extending rectangular selection to new caret position.

 loadFile(This, Filename)

 Load the contents of filename into the editor.

 lowerCase(This)

 Transform the selection to lower case.

 markerAdd(This, Line, MarkerNumber)

 Add a marker to a line, returning an ID which can be used to find or delete the
marker.

 markerAddSet(This, Line, MarkerSet)

 Add a set of markers to a line.

 markerDefine(This, MarkerNumber, MarkerSymbol)

 markerDefine/4

 Set the symbol used for a particular marker number, and optionally the fore and
background colours.

 markerDefineBitmap(This, MarkerNumber, Bmp)

 Define a marker with a wxBitmap.

 markerDelete(This, Line, MarkerNumber)

 Delete a marker from a line.

 markerDeleteAll(This, MarkerNumber)

 Delete all markers with a particular number from all lines.

 markerDeleteHandle(This, MarkerHandle)

 Delete a marker.

 markerGet(This, Line)

 Get a bit mask of all the markers set on a line.

 markerLineFromHandle(This, MarkerHandle)

 Retrieve the line number at which a particular marker is located.

 markerNext(This, LineStart, MarkerMask)

 Find the next line at or after lineStart that includes a marker in mask.

 markerPrevious(This, LineStart, MarkerMask)

 Find the previous line before lineStart that includes a marker in mask.

 markerSetAlpha(This, MarkerNumber, Alpha)

 Set the alpha used for a marker that is drawn in the text area, not the margin.

 markerSetBackground(This, MarkerNumber, Back)

 Set the background colour used for a particular marker number.

 markerSetForeground(This, MarkerNumber, Fore)

 Set the foreground colour used for a particular marker number.

 moveCaretInsideView(This)

 Move the caret inside current view if it's not there already.

 new()

 Default ctor.

 new(Parent)

 new/2

 Ctor.

 newLine(This)

 Insert a new line, may use a CRLF, CR or LF depending on EOL mode.

 pageDown(This)

 Move caret one page down.

 pageDownExtend(This)

 Move caret one page down extending selection to new caret position.

 pageDownRectExtend(This)

 Move caret one page down, extending rectangular selection to new caret position.

 pageUp(This)

 Move caret one page up.

 pageUpExtend(This)

 Move caret one page up extending selection to new caret position.

 pageUpRectExtend(This)

 Move caret one page up, extending rectangular selection to new caret position.

 paraDownExtend(This)

 Extend selection down one paragraph (delimited by empty lines).

 paraUp(This)

 Move caret up one paragraph (delimited by empty lines).

 paraUpExtend(This)

 Extend selection up one paragraph (delimited by empty lines).

 paste(This)

 Paste the contents of the clipboard into the document replacing the selection.

 pointFromPosition(This, Pos)

 Retrieve the point in the window where a position is displayed.

 positionAfter(This, Pos)

 Given a valid document position, return the next position taking code page into
account.

 positionBefore(This, Pos)

 Given a valid document position, return the previous position taking code page
into account.

 positionFromLine(This, Line)

 Retrieve the position at the start of a line.

 positionFromPoint(This, Pt)

 Find the position from a point within the window.

 positionFromPointClose(This, X, Y)

 Find the position from a point within the window but return
wxSTC_INVALID_POSITION if not close to text.

 redo(This)

 Redoes the next action on the undo history.

 registerImage(This, Type, Bmp)

 Register an image for use in autocompletion lists.

 replaceSelection(This, Text)

 Replace the selected text with the argument text.

 replaceTarget(This, Text)

 Replace the target text with the argument text.

 saveFile(This, Filename)

 Write the contents of the editor to filename.

 scrollToColumn(This, Column)

 Scroll enough to make the given column visible.

 scrollToLine(This, Line)

 Scroll enough to make the given line visible.

 searchAnchor(This)

 Sets the current caret position to be the search anchor.

 searchInTarget(This, Text)

 Search for a counted string in the target and set the target to the found range.

 searchNext(This, SearchFlags, Text)

 Find some text starting at the search anchor.

 searchPrev(This, SearchFlags, Text)

 Find some text starting at the search anchor and moving backwards.

 selectAll(This)

 Select all the text in the document.

 selectionDuplicate(This)

 Duplicate the selection.

 selectionIsRectangle(This)

 Is the selection rectangular? The alternative is the more common stream
selection.

 setAnchor(This, Anchor)

 Set the selection anchor to a position.

 setBackSpaceUnIndents(This, BsUnIndents)

 Sets whether a backspace pressed when caret is within indentation unindents.

 setBufferedDraw(This, Buffered)

 If drawing is buffered then each line of text is drawn into a bitmap buffer
before drawing it to the screen to avoid flicker.

 setCaretForeground(This, Fore)

 Set the foreground colour of the caret.

 setCaretLineBackAlpha(This, Alpha)

 Set background alpha of the caret line.

 setCaretLineBackground(This, Back)

 Set the colour of the background of the line containing the caret.

 setCaretLineVisible(This, Show)

 Display the background of the line containing the caret in a different colour.

 setCaretPeriod(This, PeriodMilliseconds)

 Get the time in milliseconds that the caret is on and off.

 setCaretSticky(This, UseCaretStickyBehaviour)

 Stop the caret preferred x position changing when the user types.

 setCaretWidth(This, PixelWidth)

 Set the width of the insert mode caret.

 setCharsDefault(This)

 Reset the set of characters for whitespace and word characters to the defaults.

 setCodePage(This, CodePage)

 Set the code page used to interpret the bytes of the document as characters.

 setControlCharSymbol(This, Symbol)

 Change the way control characters are displayed: If symbol is < 32, keep the
drawn way, else, use the given character.

 setCurrentPos(This, Caret)

 Sets the position of the caret.

 setEdgeColour(This, EdgeColour)

 Change the colour used in edge indication.

 setEdgeColumn(This, Column)

 Set the column number of the edge.

 setEdgeMode(This, EdgeMode)

 The edge may be displayed by a line (wxSTC_EDGE_LINE/wxSTC_EDGE_MULTILINE) or by
highlighting text that goes beyond it (wxSTC_EDGE_BACKGROUND) or not displayed
at all (wxSTC_EDGE_NONE).

 setEOLMode(This, EolMode)

 Set the current end of line mode.

 setFoldExpanded(This, Line, Expanded)

 Show the children of a header line.

 setFoldFlags(This, Flags)

 Set some style options for folding.

 setFoldLevel(This, Line, Level)

 Set the fold level of a line.

 setFoldMarginColour(This, UseSetting, Back)

 Set one of the colours used as a chequerboard pattern in the fold margin.

 setFoldMarginHiColour(This, UseSetting, Fore)

 Set the other colour used as a chequerboard pattern in the fold margin.

 setHighlightGuide(This, Column)

 Set the highlighted indentation guide column.

 setHotspotActiveBackground(This, UseSetting, Back)

 Set a back colour for active hotspots.

 setHotspotActiveForeground(This, UseSetting, Fore)

 Set a fore colour for active hotspots.

 setHotspotActiveUnderline(This, Underline)

 Enable / Disable underlining active hotspots.

 setHotspotSingleLine(This, SingleLine)

 Limit hotspots to single line so hotspots on two lines don't merge.

 setHScrollBar(This, Bar)

 Set the horizontal scrollbar to use instead of the one that's built-in.

 setIndent(This, IndentSize)

 Set the number of spaces used for one level of indentation.

 setIndentationGuides(This, IndentView)

 Show or hide indentation guides.

 setKeyWords(This, KeyWordSet, KeyWords)

 Set up the key words used by the lexer.

 setLastKeydownProcessed(This, Val)

 Returns the line number of the line with the caret.

 setLayoutCache(This, CacheMode)

 Sets the degree of caching of layout information.

 setLexer(This, Lexer)

 Set the lexing language of the document.

 setLexerLanguage(This, Language)

 Set the lexing language of the document based on string name.

 setLineIndentation(This, Line, Indentation)

 Change the indentation of a line to a number of columns.

 setLineState(This, Line, State)

 Used to hold extra styling information for each line.

 setMarginLeft(This, PixelWidth)

 Sets the size in pixels of the left margin.

 setMarginMask(This, Margin, Mask)

 Set a mask that determines which markers are displayed in a margin.

 setMarginRight(This, PixelWidth)

 Sets the size in pixels of the right margin.

 setMarginSensitive(This, Margin, Sensitive)

 Make a margin sensitive or insensitive to mouse clicks.

 setMargins(This, Left, Right)

 Set the left and right margin in the edit area, measured in pixels.

 setMarginType(This, Margin, MarginType)

 Set a margin to be either numeric or symbolic.

 setMarginWidth(This, Margin, PixelWidth)

 Set the width of a margin to a width expressed in pixels.

 setModEventMask(This, EventMask)

 Set which document modification events are sent to the container.

 setMouseDownCaptures(This, Captures)

 Set whether the mouse is captured when its button is pressed.

 setMouseDwellTime(This, PeriodMilliseconds)

 Sets the time the mouse must sit still to generate a mouse dwell event.

 setPasteConvertEndings(This, Convert)

 Enable/Disable convert-on-paste for line endings.

 setPrintColourMode(This, Mode)

 Modify colours when printing for clearer printed text.

 setPrintMagnification(This, Magnification)

 Sets the print magnification added to the point size of each style for printing.

 setProperty(This, Key, Value)

 Set up a value that may be used by a lexer for some optional feature.

 setReadOnly(This, ReadOnly)

 Set to read only or read write.

 setSavePoint(This)

 Remember the current position in the undo history as the position at which the
document was saved.

 setScrollWidth(This, PixelWidth)

 Sets the document width assumed for scrolling.

 setSearchFlags(This, SearchFlags)

 Set the search flags used by SearchInTarget.

 setSelAlpha(This, Alpha)

 Set the alpha of the selection.

 setSelBackground(This, UseSetting, Back)

 Set the background colour of the main and additional selections and whether to
use this setting.

 setSelection(This, From, To)

 Selects the text starting at the first position up to (but not including) the
character at the last position.

 setSelectionEnd(This, Caret)

 Sets the position that ends the selection - this becomes the caret.

 setSelectionMode(This, SelectionMode)

 Set the selection mode to stream (wxSTC_SEL_STREAM) or rectangular
(wxSTC_SEL_RECTANGLE/wxSTC_SEL_THIN) or by lines (wxSTC_SEL_LINES).

 setSelectionStart(This, Anchor)

 Sets the position that starts the selection - this becomes the anchor.

 setSelForeground(This, UseSetting, Fore)

 Set the foreground colour of the main and additional selections and whether to
use this setting.

 setSTCCursor(This, CursorType)

 Sets the cursor to one of the wxSTC_CURSOR* values.

 setSTCFocus(This, Focus)

 Change internal focus flag.

 setStatus(This, Status)

 Change error status - 0 = OK.

 setStyleBytes(This, Length)

 Set the styles for a segment of the document.

 setStyling(This, Length, Style)

 Change style from current styling position for length characters to a style and
move the current styling position to after this newly styled segment.

 setTabIndents(This, TabIndents)

 Sets whether a tab pressed when caret is within indentation indents.

 setTabWidth(This, TabWidth)

 Change the visible size of a tab to be a multiple of the width of a space
character.

 setTargetEnd(This, End)

 Sets the position that ends the target which is used for updating the document
without affecting the scroll position.

 setTargetStart(This, Start)

 Sets the position that starts the target which is used for updating the document
without affecting the scroll position.

 setText(This, Text)

 Replace the contents of the document with the argument text.

 setTextRaw(This, Text)

 Replace the contents of the document with the argument text.

 setTwoPhaseDraw(This, TwoPhase)

 In twoPhaseDraw mode, drawing is performed in two phases, first the background
and then the foreground.

 setUndoCollection(This, CollectUndo)

 Choose between collecting actions into the undo history and discarding them.

 setUseHorizontalScrollBar(This, Visible)

 Show or hide the horizontal scroll bar.

 setUseTabs(This, UseTabs)

 Indentation will only use space characters if useTabs is false, otherwise it
will use a combination of tabs and spaces.

 setUseVerticalScrollBar(This, Visible)

 Show or hide the vertical scroll bar.

 setViewEOL(This, Visible)

 Make the end of line characters visible or invisible.

 setViewWhiteSpace(This, ViewWS)

 Make white space characters invisible, always visible or visible outside
indentation.

 setVisiblePolicy(This, VisiblePolicy, VisibleSlop)

 Set the way the display area is determined when a particular line is to be moved
to by Find, FindNext, GotoLine, etc.

 setVScrollBar(This, Bar)

 Set the vertical scrollbar to use instead of the one that's built-in.

 setWhitespaceBackground(This, UseSetting, Back)

 Set the background colour of all whitespace and whether to use this setting.

 setWhitespaceChars(This, Characters)

 Set the set of characters making up whitespace for when moving or selecting by
word.

 setWhitespaceForeground(This, UseSetting, Fore)

 Set the foreground colour of all whitespace and whether to use this setting.

 setWordChars(This, Characters)

 Set the set of characters making up words for when moving or selecting by word.

 setWrapMode(This, WrapMode)

 Sets whether text is word wrapped.

 setWrapStartIndent(This, Indent)

 Set the start indent for wrapped lines.

 setWrapVisualFlags(This, WrapVisualFlags)

 Set the display mode of visual flags for wrapped lines.

 setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation)

 Set the location of visual flags for wrapped lines.

 setXCaretPolicy(This, CaretPolicy, CaretSlop)

 Set the way the caret is kept visible when going sideways.

 setYCaretPolicy(This, CaretPolicy, CaretSlop)

 Set the way the line the caret is on is kept visible.

 setZoom(This, ZoomInPoints)

 Set the zoom level.

 showLines(This, LineStart, LineEnd)

 Make a range of lines visible.

 startRecord(This)

 Start notifying the container of all key presses and commands.

 startStyling(This, Start)

 Set the current styling position to start.

 stopRecord(This)

 Stop notifying the container of all key presses and commands.

 stutteredPageDown(This)

 Move caret to bottom of page, or one page down if already at bottom of page.

 stutteredPageDownExtend(This)

 Move caret to bottom of page, or one page down if already at bottom of page,
extending selection to new caret position.

 stutteredPageUp(This)

 Move caret to top of page, or one page up if already at top of page.

 stutteredPageUpExtend(This)

 Move caret to top of page, or one page up if already at top of page, extending
selection to new caret position.

 styleClearAll(This)

 Clear all the styles and make equivalent to the global default style.

 styleResetDefault(This)

 Reset the default style to its state at startup.

 styleSetBackground(This, Style, Back)

 Set the background colour of a style.

 styleSetBold(This, Style, Bold)

 Set a style to be bold or not.

 styleSetCase(This, Style, CaseVisible)

 Set a style to be mixed case, or to force upper or lower case.

 styleSetCharacterSet(This, Style, CharacterSet)

 Set the character set of the font in a style.

 styleSetEOLFilled(This, Style, EolFilled)

 Set a style to have its end of line filled or not.

 styleSetFaceName(This, Style, FontName)

 Set the font of a style.

 styleSetFont(This, StyleNum, Font)

 Set style size, face, bold, italic, and underline attributes from a wxFont's
attributes.

 styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline)

 styleSetFontAttr/8

 Set all font style attributes at once.

 styleSetFontEncoding(This, Style, Encoding)

 Set the font encoding to be used by a style.

 styleSetForeground(This, Style, Fore)

 Set the foreground colour of a style.

 styleSetHotSpot(This, Style, Hotspot)

 Set a style to be a hotspot or not.

 styleSetItalic(This, Style, Italic)

 Set a style to be italic or not.

 styleSetSize(This, Style, SizePoints)

 Set the size of characters of a style.

 styleSetSpec(This, StyleNum, Spec)

 Extract style settings from a spec-string which is composed of one or more of
the following comma separated elements

 styleSetUnderline(This, Style, Underline)

 Set a style to be underlined or not.

 styleSetVisible(This, Style, Visible)

 Set a style to be visible or not.

 tab(This)

 If selection is empty or all on one line replace the selection with a tab
character.

 targetFromSelection(This)

 Make the target range start and end be the same as the selection range start and
end.

 textHeight(This, Line)

 Retrieve the height of a particular line of text in pixels.

 textWidth(This, Style, Text)

 Measure the pixel width of some text in a particular style.

 toggleCaretSticky(This)

 Switch between sticky and non-sticky: meant to be bound to a key.

 toggleFold(This, Line)

 Switch a header line between expanded and contracted.

 undo(This)

 Undo one action in the undo history.

 upperCase(This)

 Transform the selection to upper case.

 usePopUp(This, PopUpMode)

 Set whether a pop up menu is displayed automatically when the user presses the
wrong mouse button on certain areas.

 userListShow(This, ListType, ItemList)

 Display a list of strings and send notification when user chooses one.

 vCHome(This)

 Move caret to before first visible character on line.

 vCHomeExtend(This)

 Like VCHome but extending selection to new caret position.

 vCHomeRectExtend(This)

 Move caret to before first visible character on line.

 vCHomeWrap(This)

 Like VCHome but when word-wrap is enabled goes first to start of display line
VCHomeDisplay, then behaves like VCHome.

 vCHomeWrapExtend(This)

 Like VCHomeExtend but when word-wrap is enabled extends first to start of
display line VCHomeDisplayExtend, then behaves like VCHomeExtend.

 visibleFromDocLine(This, DocLine)

 Find the display line of a document line taking hidden lines into account.

 wordEndPosition(This, Pos, OnlyWordCharacters)

 Get position of end of word.

 wordLeft(This)

 Move caret left one word.

 wordLeftEnd(This)

 Move caret left one word, position cursor at end of word.

 wordLeftEndExtend(This)

 Move caret left one word, position cursor at end of word, extending selection to
new caret position.

 wordLeftExtend(This)

 Move caret left one word extending selection to new caret position.

 wordPartLeft(This)

 Move to the previous change in capitalisation.

 wordPartLeftExtend(This)

 Move to the previous change in capitalisation extending selection to new caret
position.

 wordPartRight(This)

 Move to the change next in capitalisation.

 wordPartRightExtend(This)

 Move to the next change in capitalisation extending selection to new caret
position.

 wordRight(This)

 Move caret right one word.

 wordRightEnd(This)

 Move caret right one word, position cursor at end of word.

 wordRightEndExtend(This)

 Move caret right one word, position cursor at end of word, extending selection
to new caret position.

 wordRightExtend(This)

 Move caret right one word extending selection to new caret position.

 wordStartPosition(This, Pos, OnlyWordCharacters)

 Get position of start of word.

 wrapCount(This, DocLine)

 The number of display lines needed to wrap a document line.

 zoomIn(This)

 Magnify the displayed text by increasing the sizes by 1 point.

 zoomOut(This)

 Make the displayed text smaller by decreasing the sizes by 1 point.

 Types

 Link to this type

 wxStyledTextCtrl()

 View Source

 -type wxStyledTextCtrl() :: wx:wx_object().

 Functions

 Link to this function

 addText(This, Text)

 View Source

 -spec addText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Add text to the document at current position.

 Link to this function

 addTextRaw(This, Text)

 View Source

 -spec addTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

 Link to this function

 addTextRaw/3

 View Source

 -spec addTextRaw(This, Text, [Option]) -> ok
 when This :: wxStyledTextCtrl(), Text :: binary(), Option :: {length, integer()}.

Add text to the document at current position.

 Link to this function

 allocate(This, Bytes)

 View Source

 -spec allocate(This, Bytes) -> ok when This :: wxStyledTextCtrl(), Bytes :: integer().

Enlarge the document to a particular size of text bytes.

 Link to this function

 appendText(This, Text)

 View Source

 -spec appendText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Append a string to the end of the document without changing the selection.

 Link to this function

 appendTextRaw(This, Text)

 View Source

 -spec appendTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

 Link to this function

 appendTextRaw/3

 View Source

 -spec appendTextRaw(This, Text, [Option]) -> ok
 when This :: wxStyledTextCtrl(), Text :: binary(), Option :: {length, integer()}.

Append a string to the end of the document without changing the selection.

 Link to this function

 autoCompActive(This)

 View Source

 -spec autoCompActive(This) -> boolean() when This :: wxStyledTextCtrl().

Is there an auto-completion list visible?

 Link to this function

 autoCompCancel(This)

 View Source

 -spec autoCompCancel(This) -> ok when This :: wxStyledTextCtrl().

Remove the auto-completion list from the screen.

 Link to this function

 autoCompComplete(This)

 View Source

 -spec autoCompComplete(This) -> ok when This :: wxStyledTextCtrl().

User has selected an item so remove the list and insert the selection.

 Link to this function

 autoCompGetAutoHide(This)

 View Source

 -spec autoCompGetAutoHide(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether or not autocompletion is hidden automatically when nothing
matches.

 Link to this function

 autoCompGetCancelAtStart(This)

 View Source

 -spec autoCompGetCancelAtStart(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether auto-completion cancelled by backspacing before start.

 Link to this function

 autoCompGetChooseSingle(This)

 View Source

 -spec autoCompGetChooseSingle(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether a single item auto-completion list automatically choose the
item.

 Link to this function

 autoCompGetCurrent(This)

 View Source

 -spec autoCompGetCurrent(This) -> integer() when This :: wxStyledTextCtrl().

Get currently selected item position in the auto-completion list.

 Link to this function

 autoCompGetDropRestOfWord(This)

 View Source

 -spec autoCompGetDropRestOfWord(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether or not autocompletion deletes any word characters after the
inserted text upon completion.

 Link to this function

 autoCompGetIgnoreCase(This)

 View Source

 -spec autoCompGetIgnoreCase(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve state of ignore case flag.

 Link to this function

 autoCompGetMaxHeight(This)

 View Source

 -spec autoCompGetMaxHeight(This) -> integer() when This :: wxStyledTextCtrl().

Set the maximum height, in rows, of auto-completion and user lists.

 Link to this function

 autoCompGetMaxWidth(This)

 View Source

 -spec autoCompGetMaxWidth(This) -> integer() when This :: wxStyledTextCtrl().

Get the maximum width, in characters, of auto-completion and user lists.

 Link to this function

 autoCompGetSeparator(This)

 View Source

 -spec autoCompGetSeparator(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the auto-completion list separator character.

 Link to this function

 autoCompGetTypeSeparator(This)

 View Source

 -spec autoCompGetTypeSeparator(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the auto-completion list type-separator character.

 Link to this function

 autoCompPosStart(This)

 View Source

 -spec autoCompPosStart(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position of the caret when the auto-completion list was displayed.

 Link to this function

 autoCompSelect(This, Select)

 View Source

 -spec autoCompSelect(This, Select) -> ok when This :: wxStyledTextCtrl(), Select :: unicode:chardata().

Select the item in the auto-completion list that starts with a string.

 Link to this function

 autoCompSetAutoHide(This, AutoHide)

 View Source

 -spec autoCompSetAutoHide(This, AutoHide) -> ok when This :: wxStyledTextCtrl(), AutoHide :: boolean().

Set whether or not autocompletion is hidden automatically when nothing matches.

 Link to this function

 autoCompSetCancelAtStart(This, Cancel)

 View Source

 -spec autoCompSetCancelAtStart(This, Cancel) -> ok when This :: wxStyledTextCtrl(), Cancel :: boolean().

Should the auto-completion list be cancelled if the user backspaces to a
position before where the box was created.

 Link to this function

 autoCompSetChooseSingle(This, ChooseSingle)

 View Source

 -spec autoCompSetChooseSingle(This, ChooseSingle) -> ok
 when This :: wxStyledTextCtrl(), ChooseSingle :: boolean().

Should a single item auto-completion list automatically choose the item.

 Link to this function

 autoCompSetDropRestOfWord(This, DropRestOfWord)

 View Source

 -spec autoCompSetDropRestOfWord(This, DropRestOfWord) -> ok
 when This :: wxStyledTextCtrl(), DropRestOfWord :: boolean().

Set whether or not autocompletion deletes any word characters after the inserted
text upon completion.

 Link to this function

 autoCompSetFillUps(This, CharacterSet)

 View Source

 -spec autoCompSetFillUps(This, CharacterSet) -> ok
 when This :: wxStyledTextCtrl(), CharacterSet :: unicode:chardata().

Define a set of characters that when typed will cause the autocompletion to
choose the selected item.

 Link to this function

 autoCompSetIgnoreCase(This, IgnoreCase)

 View Source

 -spec autoCompSetIgnoreCase(This, IgnoreCase) -> ok
 when This :: wxStyledTextCtrl(), IgnoreCase :: boolean().

Set whether case is significant when performing auto-completion searches.

 Link to this function

 autoCompSetMaxHeight(This, RowCount)

 View Source

 -spec autoCompSetMaxHeight(This, RowCount) -> ok when This :: wxStyledTextCtrl(), RowCount :: integer().

Set the maximum height, in rows, of auto-completion and user lists.
The default is 5 rows.

 Link to this function

 autoCompSetMaxWidth(This, CharacterCount)

 View Source

 -spec autoCompSetMaxWidth(This, CharacterCount) -> ok
 when This :: wxStyledTextCtrl(), CharacterCount :: integer().

Set the maximum width, in characters, of auto-completion and user lists.
Set to 0 to autosize to fit longest item, which is the default.

 Link to this function

 autoCompSetSeparator(This, SeparatorCharacter)

 View Source

 -spec autoCompSetSeparator(This, SeparatorCharacter) -> ok
 when This :: wxStyledTextCtrl(), SeparatorCharacter :: integer().

Change the separator character in the string setting up an auto-completion list.
Default is space but can be changed if items contain space.

 Link to this function

 autoCompSetTypeSeparator(This, SeparatorCharacter)

 View Source

 -spec autoCompSetTypeSeparator(This, SeparatorCharacter) -> ok
 when This :: wxStyledTextCtrl(), SeparatorCharacter :: integer().

Change the type-separator character in the string setting up an auto-completion
list.
Default is '?' but can be changed if items contain '?'.

 Link to this function

 autoCompShow(This, LengthEntered, ItemList)

 View Source

 -spec autoCompShow(This, LengthEntered, ItemList) -> ok
 when
 This :: wxStyledTextCtrl(),
 LengthEntered :: integer(),
 ItemList :: unicode:chardata().

Display a auto-completion list.
The lengthEntered parameter indicates how many characters before the caret
should be used to provide context.

 Link to this function

 autoCompStops(This, CharacterSet)

 View Source

 -spec autoCompStops(This, CharacterSet) -> ok
 when This :: wxStyledTextCtrl(), CharacterSet :: unicode:chardata().

Define a set of character that when typed cancel the auto-completion list.

 Link to this function

 backTab(This)

 View Source

 -spec backTab(This) -> ok when This :: wxStyledTextCtrl().

Dedent the selected lines.

 Link to this function

 beginUndoAction(This)

 View Source

 -spec beginUndoAction(This) -> ok when This :: wxStyledTextCtrl().

Start a sequence of actions that is undone and redone as a unit.
May be nested.

 Link to this function

 braceBadLight(This, Pos)

 View Source

 -spec braceBadLight(This, Pos) -> ok when This :: wxStyledTextCtrl(), Pos :: integer().

Highlight the character at a position indicating there is no matching brace.

 Link to this function

 braceHighlight(This, PosA, PosB)

 View Source

 -spec braceHighlight(This, PosA, PosB) -> ok
 when This :: wxStyledTextCtrl(), PosA :: integer(), PosB :: integer().

Highlight the characters at two positions.

 Link to this function

 braceMatch(This, Pos)

 View Source

 -spec braceMatch(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Find the position of a matching brace or wxSTC_INVALID_POSITION if no match.

 Link to this function

 callTipActive(This)

 View Source

 -spec callTipActive(This) -> boolean() when This :: wxStyledTextCtrl().

Is there an active call tip?

 Link to this function

 callTipCancel(This)

 View Source

 -spec callTipCancel(This) -> ok when This :: wxStyledTextCtrl().

Remove the call tip from the screen.

 Link to this function

 callTipPosAtStart(This)

 View Source

 -spec callTipPosAtStart(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position where the caret was before displaying the call tip.
Since: 3.1.0

 Link to this function

 callTipSetBackground(This, Back)

 View Source

 -spec callTipSetBackground(This, Back) -> ok when This :: wxStyledTextCtrl(), Back :: wx:wx_colour().

Set the background colour for the call tip.

 Link to this function

 callTipSetForeground(This, Fore)

 View Source

 -spec callTipSetForeground(This, Fore) -> ok when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour for the call tip.

 Link to this function

 callTipSetForegroundHighlight(This, Fore)

 View Source

 -spec callTipSetForegroundHighlight(This, Fore) -> ok
 when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour for the highlighted part of the call tip.

 Link to this function

 callTipSetHighlight(This, HighlightStart, HighlightEnd)

 View Source

 -spec callTipSetHighlight(This, HighlightStart, HighlightEnd) -> ok
 when
 This :: wxStyledTextCtrl(),
 HighlightStart :: integer(),
 HighlightEnd :: integer().

Highlight a segment of the definition.

 Link to this function

 callTipShow(This, Pos, Definition)

 View Source

 -spec callTipShow(This, Pos, Definition) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Definition :: unicode:chardata().

Show a call tip containing a definition near position pos.

 Link to this function

 callTipUseStyle(This, TabSize)

 View Source

 -spec callTipUseStyle(This, TabSize) -> ok when This :: wxStyledTextCtrl(), TabSize :: integer().

Enable use of wxSTC_STYLE_CALLTIP and set call tip tab size in pixels.

 Link to this function

 cancel(This)

 View Source

 -spec cancel(This) -> ok when This :: wxStyledTextCtrl().

Cancel any modes such as call tip or auto-completion list display.

 Link to this function

 canPaste(This)

 View Source

 -spec canPaste(This) -> boolean() when This :: wxStyledTextCtrl().

Will a paste succeed?

 Link to this function

 canRedo(This)

 View Source

 -spec canRedo(This) -> boolean() when This :: wxStyledTextCtrl().

Are there any redoable actions in the undo history?

 Link to this function

 canUndo(This)

 View Source

 -spec canUndo(This) -> boolean() when This :: wxStyledTextCtrl().

Are there any undoable actions in the undo history?

 Link to this function

 charLeft(This)

 View Source

 -spec charLeft(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character.

 Link to this function

 charLeftExtend(This)

 View Source

 -spec charLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character extending selection to new caret position.

 Link to this function

 charLeftRectExtend(This)

 View Source

 -spec charLeftRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character, extending rectangular selection to new caret
position.

 Link to this function

 charRight(This)

 View Source

 -spec charRight(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character.

 Link to this function

 charRightExtend(This)

 View Source

 -spec charRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character extending selection to new caret position.

 Link to this function

 charRightRectExtend(This)

 View Source

 -spec charRightRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character, extending rectangular selection to new caret
position.

 Link to this function

 chooseCaretX(This)

 View Source

 -spec chooseCaretX(This) -> ok when This :: wxStyledTextCtrl().

Set the last x chosen value to be the caret x position.

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxStyledTextCtrl().

Clear the selection.

 Link to this function

 clearAll(This)

 View Source

 -spec clearAll(This) -> ok when This :: wxStyledTextCtrl().

Delete all text in the document.

 Link to this function

 clearDocumentStyle(This)

 View Source

 -spec clearDocumentStyle(This) -> ok when This :: wxStyledTextCtrl().

Set all style bytes to 0, remove all folding information.

 Link to this function

 clearRegisteredImages(This)

 View Source

 -spec clearRegisteredImages(This) -> ok when This :: wxStyledTextCtrl().

Clear all the registered images.

 Link to this function

 cmdKeyAssign(This, Key, Modifiers, Cmd)

 View Source

 -spec cmdKeyAssign(This, Key, Modifiers, Cmd) -> ok
 when
 This :: wxStyledTextCtrl(),
 Key :: integer(),
 Modifiers :: integer(),
 Cmd :: integer().

When key+modifier combination keyDefinition is pressed perform sciCommand.
The second argument should be a bit list containing one or more of the
?wxSTCKEYMOD constants and the third argument should be one of the
?wxSTCCMD constants.

 Link to this function

 cmdKeyClear(This, Key, Modifiers)

 View Source

 -spec cmdKeyClear(This, Key, Modifiers) -> ok
 when This :: wxStyledTextCtrl(), Key :: integer(), Modifiers :: integer().

When key+modifier combination keyDefinition is pressed do nothing.
The second argument should be a bit list containing one or more of the
?wxSTCKEYMOD* constants.

 Link to this function

 cmdKeyClearAll(This)

 View Source

 -spec cmdKeyClearAll(This) -> ok when This :: wxStyledTextCtrl().

Drop all key mappings.

 Link to this function

 cmdKeyExecute(This, Cmd)

 View Source

 -spec cmdKeyExecute(This, Cmd) -> ok when This :: wxStyledTextCtrl(), Cmd :: integer().

Perform one of the operations defined by the wxSTCCMD* constants.

 Link to this function

 colourise(This, Start, End)

 View Source

 -spec colourise(This, Start, End) -> ok
 when This :: wxStyledTextCtrl(), Start :: integer(), End :: integer().

Colourise a segment of the document using the current lexing language.

 Link to this function

 convertEOLs(This, EolMode)

 View Source

 -spec convertEOLs(This, EolMode) -> ok when This :: wxStyledTextCtrl(), EolMode :: integer().

Convert all line endings in the document to one mode.

 Link to this function

 copy(This)

 View Source

 -spec copy(This) -> ok when This :: wxStyledTextCtrl().

Copy the selection to the clipboard.

 Link to this function

 copyRange(This, Start, End)

 View Source

 -spec copyRange(This, Start, End) -> ok
 when This :: wxStyledTextCtrl(), Start :: integer(), End :: integer().

Copy a range of text to the clipboard.
Positions are clipped into the document.

 Link to this function

 copyText(This, Length, Text)

 View Source

 -spec copyText(This, Length, Text) -> ok
 when This :: wxStyledTextCtrl(), Length :: integer(), Text :: unicode:chardata().

Copy argument text to the clipboard.

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxStyledTextCtrl(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStyledTextCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the UI elements for a STC that was created with the default ctor.
(For 2-phase create.)

 Link to this function

 cut(This)

 View Source

 -spec cut(This) -> ok when This :: wxStyledTextCtrl().

Cut the selection to the clipboard.

 Link to this function

 deleteBack(This)

 View Source

 -spec deleteBack(This) -> ok when This :: wxStyledTextCtrl().

Delete the selection or if no selection, the character before the caret.

 Link to this function

 deleteBackNotLine(This)

 View Source

 -spec deleteBackNotLine(This) -> ok when This :: wxStyledTextCtrl().

Delete the selection or if no selection, the character before the caret.
Will not delete the character before at the start of a line.

 Link to this function

 delLineLeft(This)

 View Source

 -spec delLineLeft(This) -> ok when This :: wxStyledTextCtrl().

Delete back from the current position to the start of the line.

 Link to this function

 delLineRight(This)

 View Source

 -spec delLineRight(This) -> ok when This :: wxStyledTextCtrl().

Delete forwards from the current position to the end of the line.

 Link to this function

 delWordLeft(This)

 View Source

 -spec delWordLeft(This) -> ok when This :: wxStyledTextCtrl().

Delete the word to the left of the caret.

 Link to this function

 delWordRight(This)

 View Source

 -spec delWordRight(This) -> ok when This :: wxStyledTextCtrl().

Delete the word to the right of the caret.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxStyledTextCtrl()) -> ok.

Destructor.

 Link to this function

 docLineFromVisible(This, DisplayLine)

 View Source

 -spec docLineFromVisible(This, DisplayLine) -> integer()
 when This :: wxStyledTextCtrl(), DisplayLine :: integer().

Find the document line of a display line taking hidden lines into account.

 Link to this function

 documentEnd(This)

 View Source

 -spec documentEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position in document.

 Link to this function

 documentEndExtend(This)

 View Source

 -spec documentEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position in document extending selection to new caret
position.

 Link to this function

 documentStart(This)

 View Source

 -spec documentStart(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position in document.

 Link to this function

 documentStartExtend(This)

 View Source

 -spec documentStartExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position in document extending selection to new caret
position.

 Link to this function

 doDragOver(This, X, Y, DefaultRes)

 View Source

 -spec doDragOver(This, X, Y, DefaultRes) -> wx:wx_enum()
 when
 This :: wxStyledTextCtrl(),
 X :: integer(),
 Y :: integer(),
 DefaultRes :: wx:wx_enum().

Allow for simulating a DnD DragOver.

 Link to this function

 doDropText(This, X, Y, Data)

 View Source

 -spec doDropText(This, X, Y, Data) -> boolean()
 when
 This :: wxStyledTextCtrl(),
 X :: integer(),
 Y :: integer(),
 Data :: unicode:chardata().

Allow for simulating a DnD DropText.

 Link to this function

 editToggleOvertype(This)

 View Source

 -spec editToggleOvertype(This) -> ok when This :: wxStyledTextCtrl().

Switch from insert to overtype mode or the reverse.

 Link to this function

 emptyUndoBuffer(This)

 View Source

 -spec emptyUndoBuffer(This) -> ok when This :: wxStyledTextCtrl().

Delete the undo history.

 Link to this function

 endUndoAction(This)

 View Source

 -spec endUndoAction(This) -> ok when This :: wxStyledTextCtrl().

End a sequence of actions that is undone and redone as a unit.

 Link to this function

 ensureCaretVisible(This)

 View Source

 -spec ensureCaretVisible(This) -> ok when This :: wxStyledTextCtrl().

Ensure the caret is visible.

 Link to this function

 ensureVisible(This, Line)

 View Source

 -spec ensureVisible(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Ensure a particular line is visible by expanding any header line hiding it.

 Link to this function

 ensureVisibleEnforcePolicy(This, Line)

 View Source

 -spec ensureVisibleEnforcePolicy(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Ensure a particular line is visible by expanding any header line hiding it.
Use the currently set visibility policy to determine which range to display.

 Link to this function

 findColumn(This, Line, Column)

 View Source

 -spec findColumn(This, Line, Column) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), Column :: integer().

Find the position of a column on a line taking into account tabs and multi-byte
characters.
If beyond end of line, return line end position.

 Link to this function

 findText(This, MinPos, MaxPos, Text)

 View Source

 -spec findText(This, MinPos, MaxPos, Text) -> integer()
 when
 This :: wxStyledTextCtrl(),
 MinPos :: integer(),
 MaxPos :: integer(),
 Text :: unicode:chardata().

 Link to this function

 findText/5

 View Source

 -spec findText(This, MinPos, MaxPos, Text, [Option]) -> integer()
 when
 This :: wxStyledTextCtrl(),
 MinPos :: integer(),
 MaxPos :: integer(),
 Text :: unicode:chardata(),
 Option :: {flags, integer()}.

Find some text in the document. @param minPos The position (starting from zero) in the document at which to begin the search @param maxPos The last position (starting from zero) in the document to which the search will be restricted. @param text The text to search for. @param flags (Optional) The search flags. This should be a bit list containing one or more of the @link wxStyledTextCtrl::wxSTC_FIND_WHOLEWORD wxSTC_FIND_* @endlink constants.
Return: The position (starting from zero) in the document at which the text was
found or wxSTC_INVALID_POSITION if the search fails.
Remark: A backwards search can be performed by setting minPos to be greater than
maxPos.

 Link to this function

 formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect)

 View Source

 -spec formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect) -> integer()
 when
 This :: wxStyledTextCtrl(),
 DoDraw :: boolean(),
 StartPos :: integer(),
 EndPos :: integer(),
 Draw :: wxDC:wxDC(),
 Target :: wxDC:wxDC(),
 RenderRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 PageRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

On Windows, will draw the document into a display context such as a printer.

 Link to this function

 formFeed(This)

 View Source

 -spec formFeed(This) -> ok when This :: wxStyledTextCtrl().

Insert a Form Feed character.

 Link to this function

 getAnchor(This)

 View Source

 -spec getAnchor(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position of the opposite end of the selection to the caret.

 Link to this function

 getBackSpaceUnIndents(This)

 View Source

 -spec getBackSpaceUnIndents(This) -> boolean() when This :: wxStyledTextCtrl().

Does a backspace pressed when caret is within indentation unindent?

 Link to this function

 getBufferedDraw(This)

 View Source

 -spec getBufferedDraw(This) -> boolean() when This :: wxStyledTextCtrl().

Is drawing done first into a buffer or direct to the screen?

 Link to this function

 getCaretForeground(This)

 View Source

 -spec getCaretForeground(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Get the foreground colour of the caret.

 Link to this function

 getCaretLineBackAlpha(This)

 View Source

 -spec getCaretLineBackAlpha(This) -> integer() when This :: wxStyledTextCtrl().

Get the background alpha of the caret line.

 Link to this function

 getCaretLineBackground(This)

 View Source

 -spec getCaretLineBackground(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Get the colour of the background of the line containing the caret.

 Link to this function

 getCaretLineVisible(This)

 View Source

 -spec getCaretLineVisible(This) -> boolean() when This :: wxStyledTextCtrl().

Is the background of the line containing the caret in a different colour?

 Link to this function

 getCaretPeriod(This)

 View Source

 -spec getCaretPeriod(This) -> integer() when This :: wxStyledTextCtrl().

Get the time in milliseconds that the caret is on and off.

 Link to this function

 getCaretSticky(This)

 View Source

 -spec getCaretSticky(This) -> integer() when This :: wxStyledTextCtrl().

Can the caret preferred x position only be changed by explicit movement
commands?
The return value will be one of the ?wxSTCCARETSTICKY* constants.

 Link to this function

 getCaretWidth(This)

 View Source

 -spec getCaretWidth(This) -> integer() when This :: wxStyledTextCtrl().

Returns the width of the insert mode caret.

 Link to this function

 getCharAt(This, Pos)

 View Source

 -spec getCharAt(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Returns the character byte at the position.

 Link to this function

 getCodePage(This)

 View Source

 -spec getCodePage(This) -> integer() when This :: wxStyledTextCtrl().

Get the code page used to interpret the bytes of the document as characters.

 Link to this function

 getColumn(This, Pos)

 View Source

 -spec getColumn(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the column number of a position, taking tab width into account.

 Link to this function

 getControlCharSymbol(This)

 View Source

 -spec getControlCharSymbol(This) -> integer() when This :: wxStyledTextCtrl().

Get the way control characters are displayed.

 Link to this function

 getCurLine(This)

 View Source

 -spec getCurLine(This) -> Result
 when
 Result :: {Res :: unicode:charlist(), LinePos :: integer()},
 This :: wxStyledTextCtrl().

Retrieve the text of the line containing the caret.
linePos can optionally be passed in to receive the index of the caret on the
line.

 Link to this function

 getCurLineRaw(This)

 View Source

 -spec getCurLineRaw(This) -> Result
 when
 Result :: {Res :: binary(), LinePos :: integer()}, This :: wxStyledTextCtrl().

Retrieve the text of the line containing the caret.
Returns the index of the caret on the line.

 Link to this function

 getCurrentLine(This)

 View Source

 -spec getCurrentLine(This) -> integer() when This :: wxStyledTextCtrl().

Returns the line number of the line with the caret.

 Link to this function

 getCurrentPos(This)

 View Source

 -spec getCurrentPos(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position of the caret.

 Link to this function

 getEdgeColour(This)

 View Source

 -spec getEdgeColour(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Retrieve the colour used in edge indication.

 Link to this function

 getEdgeColumn(This)

 View Source

 -spec getEdgeColumn(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the column number which text should be kept within.

 Link to this function

 getEdgeMode(This)

 View Source

 -spec getEdgeMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the edge highlight mode.
The return value will be one of the ?wxSTCEDGE* constants.

 Link to this function

 getEndAtLastLine(This)

 View Source

 -spec getEndAtLastLine(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether the maximum scroll position has the last line at the bottom of
the view.

 Link to this function

 getEndStyled(This)

 View Source

 -spec getEndStyled(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position of the last correctly styled character.

 Link to this function

 getEOLMode(This)

 View Source

 -spec getEOLMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the current end of line mode - one of wxSTC_EOL_CRLF, wxSTC_EOL_CR, or
wxSTC_EOL_LF.

 Link to this function

 getFirstVisibleLine(This)

 View Source

 -spec getFirstVisibleLine(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the display line at the top of the display.

 Link to this function

 getFoldExpanded(This, Line)

 View Source

 -spec getFoldExpanded(This, Line) -> boolean() when This :: wxStyledTextCtrl(), Line :: integer().

Is a header line expanded?

 Link to this function

 getFoldLevel(This, Line)

 View Source

 -spec getFoldLevel(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the fold level of a line.

 Link to this function

 getFoldParent(This, Line)

 View Source

 -spec getFoldParent(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Find the parent line of a child line.

 Link to this function

 getHighlightGuide(This)

 View Source

 -spec getHighlightGuide(This) -> integer() when This :: wxStyledTextCtrl().

Get the highlighted indentation guide column.

 Link to this function

 getIndent(This)

 View Source

 -spec getIndent(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve indentation size.

 Link to this function

 getIndentationGuides(This)

 View Source

 -spec getIndentationGuides(This) -> integer() when This :: wxStyledTextCtrl().

Are the indentation guides visible?
The return value will be one of the ?wxSTCIV* constants.

 Link to this function

 getLastChild(This, Line, Level)

 View Source

 -spec getLastChild(This, Line, Level) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), Level :: integer().

Find the last child line of a header line.

 Link to this function

 getLastKeydownProcessed(This)

 View Source

 -spec getLastKeydownProcessed(This) -> boolean() when This :: wxStyledTextCtrl().

Can be used to prevent the EVT_CHAR handler from adding the char.

 Link to this function

 getLayoutCache(This)

 View Source

 -spec getLayoutCache(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the degree of caching of layout information.
The return value will be one of the ?wxSTCCACHE* constants.

 Link to this function

 getLength(This)

 View Source

 -spec getLength(This) -> integer() when This :: wxStyledTextCtrl().

Returns the number of bytes in the document.

 Link to this function

 getLexer(This)

 View Source

 -spec getLexer(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the lexing language of the document.
The return value will be one of the ?wxSTCLEX* constants.

 Link to this function

 getLine(This, Line)

 View Source

 -spec getLine(This, Line) -> unicode:charlist() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the contents of a line.

 Link to this function

 getLineCount(This)

 View Source

 -spec getLineCount(This) -> integer() when This :: wxStyledTextCtrl().

Returns the number of lines in the document.
There is always at least one.

 Link to this function

 getLineEndPosition(This, Line)

 View Source

 -spec getLineEndPosition(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Get the position after the last visible characters on a line.

 Link to this function

 getLineIndentation(This, Line)

 View Source

 -spec getLineIndentation(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the number of columns that a line is indented.

 Link to this function

 getLineIndentPosition(This, Line)

 View Source

 -spec getLineIndentPosition(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the position before the first non indentation character on a line.

 Link to this function

 getLineRaw(This, Line)

 View Source

 -spec getLineRaw(This, Line) -> binary() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the contents of a line.

 Link to this function

 getLineState(This, Line)

 View Source

 -spec getLineState(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the extra styling information for a line.

 Link to this function

 getLineVisible(This, Line)

 View Source

 -spec getLineVisible(This, Line) -> boolean() when This :: wxStyledTextCtrl(), Line :: integer().

Is a line visible?

 Link to this function

 getMarginLeft(This)

 View Source

 -spec getMarginLeft(This) -> integer() when This :: wxStyledTextCtrl().

Returns the size in pixels of the left margin.

 Link to this function

 getMarginMask(This, Margin)

 View Source

 -spec getMarginMask(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the marker mask of a margin.

 Link to this function

 getMarginRight(This)

 View Source

 -spec getMarginRight(This) -> integer() when This :: wxStyledTextCtrl().

Returns the size in pixels of the right margin.

 Link to this function

 getMarginSensitive(This, Margin)

 View Source

 -spec getMarginSensitive(This, Margin) -> boolean() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the mouse click sensitivity of a margin.

 Link to this function

 getMarginType(This, Margin)

 View Source

 -spec getMarginType(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the type of a margin.
The return value will be one of the ?wxSTCMARGIN* constants.

 Link to this function

 getMarginWidth(This, Margin)

 View Source

 -spec getMarginWidth(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the width of a margin in pixels.

 Link to this function

 getMaxLineState(This)

 View Source

 -spec getMaxLineState(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the last line number that has line state.

 Link to this function

 getModEventMask(This)

 View Source

 -spec getModEventMask(This) -> integer() when This :: wxStyledTextCtrl().

Get which document modification events are sent to the container.
The return value will wxSTCMODEVENTMASKALL if all changes generate events.
Otherwise it will be a bit list containing one or more of the ?wxSTC_MOD
constants, the ?wxSTCPERFORMED constants, wxSTC_STARTACTION,
wxSTC_MULTILINEUNDOREDO, wxSTC_MULTISTEPUNDOREDO, and wxSTC_LASTSTEPINUNDOREDO.

 Link to this function

 getModify(This)

 View Source

 -spec getModify(This) -> boolean() when This :: wxStyledTextCtrl().

Is the document different from when it was last saved?

 Link to this function

 getMouseDownCaptures(This)

 View Source

 -spec getMouseDownCaptures(This) -> boolean() when This :: wxStyledTextCtrl().

Get whether mouse gets captured.

 Link to this function

 getMouseDwellTime(This)

 View Source

 -spec getMouseDwellTime(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the time the mouse must sit still to generate a mouse dwell event.
The return value will be a time in milliseconds or wxSTC_TIME_FOREVER.

 Link to this function

 getOvertype(This)

 View Source

 -spec getOvertype(This) -> boolean() when This :: wxStyledTextCtrl().

Returns true if overtype mode is active otherwise false is returned.

 Link to this function

 getPasteConvertEndings(This)

 View Source

 -spec getPasteConvertEndings(This) -> boolean() when This :: wxStyledTextCtrl().

Get convert-on-paste setting.

 Link to this function

 getPrintColourMode(This)

 View Source

 -spec getPrintColourMode(This) -> integer() when This :: wxStyledTextCtrl().

Returns the print colour mode.
The return value will be one of the ?wxSTCPRINT* constants.

 Link to this function

 getPrintMagnification(This)

 View Source

 -spec getPrintMagnification(This) -> integer() when This :: wxStyledTextCtrl().

Returns the print magnification.

 Link to this function

 getPrintWrapMode(This)

 View Source

 -spec getPrintWrapMode(This) -> integer() when This :: wxStyledTextCtrl().

Is printing line wrapped?
The return value will be one of the ?wxSTCWRAP* constants.

 Link to this function

 getProperty(This, Key)

 View Source

 -spec getProperty(This, Key) -> unicode:charlist()
 when This :: wxStyledTextCtrl(), Key :: unicode:chardata().

Retrieve a "property" value previously set with SetProperty.

 Link to this function

 getReadOnly(This)

 View Source

 -spec getReadOnly(This) -> boolean() when This :: wxStyledTextCtrl().

In read-only mode?

 Link to this function

 getScrollWidth(This)

 View Source

 -spec getScrollWidth(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the document width assumed for scrolling.

 Link to this function

 getSearchFlags(This)

 View Source

 -spec getSearchFlags(This) -> integer() when This :: wxStyledTextCtrl().

Get the search flags used by SearchInTarget.
The return value will be a bit list containing one or more of the ?wxSTCFIND*
constants.

 Link to this function

 getSelAlpha(This)

 View Source

 -spec getSelAlpha(This) -> integer() when This :: wxStyledTextCtrl().

Get the alpha of the selection.

 Link to this function

 getSelectedText(This)

 View Source

 -spec getSelectedText(This) -> unicode:charlist() when This :: wxStyledTextCtrl().

Retrieve the selected text.

 Link to this function

 getSelectedTextRaw(This)

 View Source

 -spec getSelectedTextRaw(This) -> binary() when This :: wxStyledTextCtrl().

Retrieve the selected text.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> {From :: integer(), To :: integer()} when This :: wxStyledTextCtrl().

Gets the current selection span.
If the returned values are equal, there was no selection. Please note that the
indices returned may be used with the other wxTextCtrl methods but don't
necessarily represent the correct indices into the string returned by
wxComboBox:getValue/1 for multiline controls under Windows (at least,) you
should use wxTextCtrl:getStringSelection/1 to get the selected text.

 Link to this function

 getSelectionEnd(This)

 View Source

 -spec getSelectionEnd(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position at the end of the selection.

 Link to this function

 getSelectionMode(This)

 View Source

 -spec getSelectionMode(This) -> integer() when This :: wxStyledTextCtrl().

Get the mode of the current selection.
The return value will be one of the ?wxSTCSEL* constants.

 Link to this function

 getSelectionStart(This)

 View Source

 -spec getSelectionStart(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position at the start of the selection.

 Link to this function

 getSTCCursor(This)

 View Source

 -spec getSTCCursor(This) -> integer() when This :: wxStyledTextCtrl().

Get cursor type.
The return value will be one of the ?wxSTC_CURSOR* constants.

 Link to this function

 getSTCFocus(This)

 View Source

 -spec getSTCFocus(This) -> boolean() when This :: wxStyledTextCtrl().

Get internal focus flag.

 Link to this function

 getStatus(This)

 View Source

 -spec getStatus(This) -> integer() when This :: wxStyledTextCtrl().

Get error status.
The return value will be one of the ?wxSTCSTATUS* constants.

 Link to this function

 getStyleAt(This, Pos)

 View Source

 -spec getStyleAt(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Returns the style byte at the position.

 Link to this function

 getStyleBits(This)

 View Source

 -spec getStyleBits(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve number of bits in style bytes used to hold the lexical state.
Deprecated:

 Link to this function

 getStyleBitsNeeded(This)

 View Source

 -spec getStyleBitsNeeded(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the number of bits the current lexer needs for styling.
Deprecated:

 Link to this function

 getTabIndents(This)

 View Source

 -spec getTabIndents(This) -> boolean() when This :: wxStyledTextCtrl().

Does a tab pressed when caret is within indentation indent?

 Link to this function

 getTabWidth(This)

 View Source

 -spec getTabWidth(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the visible size of a tab.

 Link to this function

 getTargetEnd(This)

 View Source

 -spec getTargetEnd(This) -> integer() when This :: wxStyledTextCtrl().

Get the position that ends the target.

 Link to this function

 getTargetStart(This)

 View Source

 -spec getTargetStart(This) -> integer() when This :: wxStyledTextCtrl().

Get the position that starts the target.

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxStyledTextCtrl().

Retrieve all the text in the document.

 Link to this function

 getTextLength(This)

 View Source

 -spec getTextLength(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the number of characters in the document.

 Link to this function

 getTextRange(This, StartPos, EndPos)

 View Source

 -spec getTextRange(This, StartPos, EndPos) -> unicode:charlist()
 when This :: wxStyledTextCtrl(), StartPos :: integer(), EndPos :: integer().

Retrieve a range of text.

 Link to this function

 getTextRangeRaw(This, StartPos, EndPos)

 View Source

 -spec getTextRangeRaw(This, StartPos, EndPos) -> binary()
 when This :: wxStyledTextCtrl(), StartPos :: integer(), EndPos :: integer().

Retrieve a range of text.

 Link to this function

 getTextRaw(This)

 View Source

 -spec getTextRaw(This) -> binary() when This :: wxStyledTextCtrl().

Retrieve all the text in the document.

 Link to this function

 getTwoPhaseDraw(This)

 View Source

 -spec getTwoPhaseDraw(This) -> boolean() when This :: wxStyledTextCtrl().

Is drawing done in two phases with backgrounds drawn before foregrounds?

 Link to this function

 getUndoCollection(This)

 View Source

 -spec getUndoCollection(This) -> boolean() when This :: wxStyledTextCtrl().

Is undo history being collected?

 Link to this function

 getUseAntiAliasing(This)

 View Source

 -spec getUseAntiAliasing(This) -> boolean() when This :: wxStyledTextCtrl().

Returns the current UseAntiAliasing setting.

 Link to this function

 getUseHorizontalScrollBar(This)

 View Source

 -spec getUseHorizontalScrollBar(This) -> boolean() when This :: wxStyledTextCtrl().

Is the horizontal scroll bar visible?

 Link to this function

 getUseTabs(This)

 View Source

 -spec getUseTabs(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether tabs will be used in indentation.

 Link to this function

 getUseVerticalScrollBar(This)

 View Source

 -spec getUseVerticalScrollBar(This) -> boolean() when This :: wxStyledTextCtrl().

Is the vertical scroll bar visible?

 Link to this function

 getViewEOL(This)

 View Source

 -spec getViewEOL(This) -> boolean() when This :: wxStyledTextCtrl().

Are the end of line characters visible?

 Link to this function

 getViewWhiteSpace(This)

 View Source

 -spec getViewWhiteSpace(This) -> integer() when This :: wxStyledTextCtrl().

Are white space characters currently visible? Returns one of wxSTCWS*
constants.

 Link to this function

 getWrapMode(This)

 View Source

 -spec getWrapMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve whether text is word wrapped.
The return value will be one of the ?wxSTCWRAP* constants.

 Link to this function

 getWrapStartIndent(This)

 View Source

 -spec getWrapStartIndent(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the start indent for wrapped lines.

 Link to this function

 getWrapVisualFlags(This)

 View Source

 -spec getWrapVisualFlags(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the display mode of visual flags for wrapped lines.
The return value will be a bit list containing one or more of the
?wxSTCWRAPVISUALFLAG* constants.

 Link to this function

 getWrapVisualFlagsLocation(This)

 View Source

 -spec getWrapVisualFlagsLocation(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the location of visual flags for wrapped lines.
The return value will be a bit list containing one or more of the
?wxSTCWRAPVISUALFLAGLOC* constants.

 Link to this function

 getXOffset(This)

 View Source

 -spec getXOffset(This) -> integer() when This :: wxStyledTextCtrl().

Get the xOffset (ie, horizontal scroll position).

 Link to this function

 getZoom(This)

 View Source

 -spec getZoom(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the zoom level.

 Link to this function

 gotoLine(This, Line)

 View Source

 -spec gotoLine(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Set caret to start of a line and ensure it is visible.

 Link to this function

 gotoPos(This, Caret)

 View Source

 -spec gotoPos(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Set caret to a position and ensure it is visible.

 Link to this function

 hideLines(This, LineStart, LineEnd)

 View Source

 -spec hideLines(This, LineStart, LineEnd) -> ok
 when This :: wxStyledTextCtrl(), LineStart :: integer(), LineEnd :: integer().

Make a range of lines invisible.

 Link to this function

 hideSelection(This, Hide)

 View Source

 -spec hideSelection(This, Hide) -> ok when This :: wxStyledTextCtrl(), Hide :: boolean().

Draw the selection in normal style or with selection highlighted.

 Link to this function

 home(This)

 View Source

 -spec home(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line.

 Link to this function

 homeDisplay(This)

 View Source

 -spec homeDisplay(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on display line.

 Link to this function

 homeDisplayExtend(This)

 View Source

 -spec homeDisplayExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on display line extending selection to new caret
position.

 Link to this function

 homeExtend(This)

 View Source

 -spec homeExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line extending selection to new caret position.

 Link to this function

 homeRectExtend(This)

 View Source

 -spec homeRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line, extending rectangular selection to new
caret position.

 Link to this function

 homeWrapExtend(This)

 View Source

 -spec homeWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like HomeExtend but when word-wrap is enabled extends first to start of display
line HomeDisplayExtend, then to start of document line HomeExtend.

 Link to this function

 indicatorGetForeground(This, Indicator)

 View Source

 -spec indicatorGetForeground(This, Indicator) -> wx:wx_colour4()
 when This :: wxStyledTextCtrl(), Indicator :: integer().

Retrieve the foreground colour of an indicator.

 Link to this function

 indicatorGetStyle(This, Indicator)

 View Source

 -spec indicatorGetStyle(This, Indicator) -> integer()
 when This :: wxStyledTextCtrl(), Indicator :: integer().

Retrieve the style of an indicator.
The return value will be one of the ?wxSTCINDIC* constants.

 Link to this function

 indicatorSetForeground(This, Indicator, Fore)

 View Source

 -spec indicatorSetForeground(This, Indicator, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 Indicator :: integer(),
 Fore :: wx:wx_colour().

Set the foreground colour of an indicator.

 Link to this function

 indicatorSetStyle(This, Indicator, IndicatorStyle)

 View Source

 -spec indicatorSetStyle(This, Indicator, IndicatorStyle) -> ok
 when
 This :: wxStyledTextCtrl(),
 Indicator :: integer(),
 IndicatorStyle :: integer().

Set an indicator to plain, squiggle or TT.
The second argument should be one of the ?wxSTCINDIC* constants.

 Link to this function

 insertText(This, Pos, Text)

 View Source

 -spec insertText(This, Pos, Text) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Text :: unicode:chardata().

Insert string at a position.

 Link to this function

 insertTextRaw(This, Pos, Text)

 View Source

 -spec insertTextRaw(This, Pos, Text) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Text :: binary().

Insert string at a position.

 Link to this function

 lineCopy(This)

 View Source

 -spec lineCopy(This) -> ok when This :: wxStyledTextCtrl().

Copy the line containing the caret.

 Link to this function

 lineCut(This)

 View Source

 -spec lineCut(This) -> ok when This :: wxStyledTextCtrl().

Cut the line containing the caret.

 Link to this function

 lineDelete(This)

 View Source

 -spec lineDelete(This) -> ok when This :: wxStyledTextCtrl().

Delete the line containing the caret.

 Link to this function

 lineDown(This)

 View Source

 -spec lineDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line.

 Link to this function

 lineDownExtend(This)

 View Source

 -spec lineDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line extending selection to new caret position.

 Link to this function

 lineDownRectExtend(This)

 View Source

 -spec lineDownRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line, extending rectangular selection to new caret position.

 Link to this function

 lineDuplicate(This)

 View Source

 -spec lineDuplicate(This) -> ok when This :: wxStyledTextCtrl().

Duplicate the current line.

 Link to this function

 lineEnd(This)

 View Source

 -spec lineEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line.

 Link to this function

 lineEndDisplay(This)

 View Source

 -spec lineEndDisplay(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on display line.

 Link to this function

 lineEndDisplayExtend(This)

 View Source

 -spec lineEndDisplayExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on display line extending selection to new caret
position.

 Link to this function

 lineEndExtend(This)

 View Source

 -spec lineEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line extending selection to new caret position.

 Link to this function

 lineEndRectExtend(This)

 View Source

 -spec lineEndRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line, extending rectangular selection to new
caret position.

 Link to this function

 lineEndWrap(This)

 View Source

 -spec lineEndWrap(This) -> ok when This :: wxStyledTextCtrl().

Like LineEnd but when word-wrap is enabled goes first to end of display line
LineEndDisplay, then to start of document line LineEnd.

 Link to this function

 lineEndWrapExtend(This)

 View Source

 -spec lineEndWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like LineEndExtend but when word-wrap is enabled extends first to end of display
line LineEndDisplayExtend, then to start of document line LineEndExtend.

 Link to this function

 lineFromPosition(This, Pos)

 View Source

 -spec lineFromPosition(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the line containing a position.

 Link to this function

 lineLength(This, Line)

 View Source

 -spec lineLength(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

How many characters are on a line, including end of line characters?

 Link to this function

 lineScroll(This, Columns, Lines)

 View Source

 -spec lineScroll(This, Columns, Lines) -> ok
 when This :: wxStyledTextCtrl(), Columns :: integer(), Lines :: integer().

Scroll horizontally and vertically.

 Link to this function

 lineScrollDown(This)

 View Source

 -spec lineScrollDown(This) -> ok when This :: wxStyledTextCtrl().

Scroll the document down, keeping the caret visible.

 Link to this function

 lineScrollUp(This)

 View Source

 -spec lineScrollUp(This) -> ok when This :: wxStyledTextCtrl().

Scroll the document up, keeping the caret visible.

 Link to this function

 linesJoin(This)

 View Source

 -spec linesJoin(This) -> ok when This :: wxStyledTextCtrl().

Join the lines in the target.

 Link to this function

 linesOnScreen(This)

 View Source

 -spec linesOnScreen(This) -> integer() when This :: wxStyledTextCtrl().

Retrieves the number of lines completely visible.

 Link to this function

 linesSplit(This, PixelWidth)

 View Source

 -spec linesSplit(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Split the lines in the target into lines that are less wide than pixelWidth
where possible.

 Link to this function

 lineTranspose(This)

 View Source

 -spec lineTranspose(This) -> ok when This :: wxStyledTextCtrl().

Switch the current line with the previous.

 Link to this function

 lineUp(This)

 View Source

 -spec lineUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line.

 Link to this function

 lineUpExtend(This)

 View Source

 -spec lineUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line extending selection to new caret position.

 Link to this function

 lineUpRectExtend(This)

 View Source

 -spec lineUpRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line, extending rectangular selection to new caret position.

 Link to this function

 loadFile(This, Filename)

 View Source

 -spec loadFile(This, Filename) -> boolean()
 when This :: wxStyledTextCtrl(), Filename :: unicode:chardata().

Load the contents of filename into the editor.

 Link to this function

 lowerCase(This)

 View Source

 -spec lowerCase(This) -> ok when This :: wxStyledTextCtrl().

Transform the selection to lower case.

 Link to this function

 markerAdd(This, Line, MarkerNumber)

 View Source

 -spec markerAdd(This, Line, MarkerNumber) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerNumber :: integer().

Add a marker to a line, returning an ID which can be used to find or delete the
marker.

 Link to this function

 markerAddSet(This, Line, MarkerSet)

 View Source

 -spec markerAddSet(This, Line, MarkerSet) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerSet :: integer().

Add a set of markers to a line.

 Link to this function

 markerDefine(This, MarkerNumber, MarkerSymbol)

 View Source

 -spec markerDefine(This, MarkerNumber, MarkerSymbol) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 MarkerSymbol :: integer().

 Link to this function

 markerDefine/4

 View Source

 -spec markerDefine(This, MarkerNumber, MarkerSymbol, [Option]) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 MarkerSymbol :: integer(),
 Option :: {foreground, wx:wx_colour()} | {background, wx:wx_colour()}.

Set the symbol used for a particular marker number, and optionally the fore and
background colours.
The second argument should be one of the ?wxSTCMARK* constants.

 Link to this function

 markerDefineBitmap(This, MarkerNumber, Bmp)

 View Source

 -spec markerDefineBitmap(This, MarkerNumber, Bmp) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Bmp :: wxBitmap:wxBitmap().

Define a marker with a wxBitmap.

 Link to this function

 markerDelete(This, Line, MarkerNumber)

 View Source

 -spec markerDelete(This, Line, MarkerNumber) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerNumber :: integer().

Delete a marker from a line.

 Link to this function

 markerDeleteAll(This, MarkerNumber)

 View Source

 -spec markerDeleteAll(This, MarkerNumber) -> ok
 when This :: wxStyledTextCtrl(), MarkerNumber :: integer().

Delete all markers with a particular number from all lines.

 Link to this function

 markerDeleteHandle(This, MarkerHandle)

 View Source

 -spec markerDeleteHandle(This, MarkerHandle) -> ok
 when This :: wxStyledTextCtrl(), MarkerHandle :: integer().

Delete a marker.

 Link to this function

 markerGet(This, Line)

 View Source

 -spec markerGet(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Get a bit mask of all the markers set on a line.

 Link to this function

 markerLineFromHandle(This, MarkerHandle)

 View Source

 -spec markerLineFromHandle(This, MarkerHandle) -> integer()
 when This :: wxStyledTextCtrl(), MarkerHandle :: integer().

Retrieve the line number at which a particular marker is located.

 Link to this function

 markerNext(This, LineStart, MarkerMask)

 View Source

 -spec markerNext(This, LineStart, MarkerMask) -> integer()
 when This :: wxStyledTextCtrl(), LineStart :: integer(), MarkerMask :: integer().

Find the next line at or after lineStart that includes a marker in mask.
Return -1 when no more lines.

 Link to this function

 markerPrevious(This, LineStart, MarkerMask)

 View Source

 -spec markerPrevious(This, LineStart, MarkerMask) -> integer()
 when This :: wxStyledTextCtrl(), LineStart :: integer(), MarkerMask :: integer().

Find the previous line before lineStart that includes a marker in mask.

 Link to this function

 markerSetAlpha(This, MarkerNumber, Alpha)

 View Source

 -spec markerSetAlpha(This, MarkerNumber, Alpha) -> ok
 when This :: wxStyledTextCtrl(), MarkerNumber :: integer(), Alpha :: integer().

Set the alpha used for a marker that is drawn in the text area, not the margin.

 Link to this function

 markerSetBackground(This, MarkerNumber, Back)

 View Source

 -spec markerSetBackground(This, MarkerNumber, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Back :: wx:wx_colour().

Set the background colour used for a particular marker number.

 Link to this function

 markerSetForeground(This, MarkerNumber, Fore)

 View Source

 -spec markerSetForeground(This, MarkerNumber, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Fore :: wx:wx_colour().

Set the foreground colour used for a particular marker number.

 Link to this function

 moveCaretInsideView(This)

 View Source

 -spec moveCaretInsideView(This) -> ok when This :: wxStyledTextCtrl().

Move the caret inside current view if it's not there already.

 Link to this function

 new()

 View Source

 -spec new() -> wxStyledTextCtrl().

Default ctor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxStyledTextCtrl() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxStyledTextCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Ctor.

 Link to this function

 newLine(This)

 View Source

 -spec newLine(This) -> ok when This :: wxStyledTextCtrl().

Insert a new line, may use a CRLF, CR or LF depending on EOL mode.

 Link to this function

 pageDown(This)

 View Source

 -spec pageDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down.

 Link to this function

 pageDownExtend(This)

 View Source

 -spec pageDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down extending selection to new caret position.

 Link to this function

 pageDownRectExtend(This)

 View Source

 -spec pageDownRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down, extending rectangular selection to new caret position.

 Link to this function

 pageUp(This)

 View Source

 -spec pageUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up.

 Link to this function

 pageUpExtend(This)

 View Source

 -spec pageUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up extending selection to new caret position.

 Link to this function

 pageUpRectExtend(This)

 View Source

 -spec pageUpRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up, extending rectangular selection to new caret position.

 Link to this function

 paraDownExtend(This)

 View Source

 -spec paraDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Extend selection down one paragraph (delimited by empty lines).

 Link to this function

 paraUp(This)

 View Source

 -spec paraUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one paragraph (delimited by empty lines).

 Link to this function

 paraUpExtend(This)

 View Source

 -spec paraUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Extend selection up one paragraph (delimited by empty lines).

 Link to this function

 paste(This)

 View Source

 -spec paste(This) -> ok when This :: wxStyledTextCtrl().

Paste the contents of the clipboard into the document replacing the selection.

 Link to this function

 pointFromPosition(This, Pos)

 View Source

 -spec pointFromPosition(This, Pos) -> {X :: integer(), Y :: integer()}
 when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the point in the window where a position is displayed.

 Link to this function

 positionAfter(This, Pos)

 View Source

 -spec positionAfter(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Given a valid document position, return the next position taking code page into
account.
Maximum value returned is the last position in the document.

 Link to this function

 positionBefore(This, Pos)

 View Source

 -spec positionBefore(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Given a valid document position, return the previous position taking code page
into account.
Returns 0 if passed 0.

 Link to this function

 positionFromLine(This, Line)

 View Source

 -spec positionFromLine(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the position at the start of a line.

 Link to this function

 positionFromPoint(This, Pt)

 View Source

 -spec positionFromPoint(This, Pt) -> integer()
 when This :: wxStyledTextCtrl(), Pt :: {X :: integer(), Y :: integer()}.

Find the position from a point within the window.

 Link to this function

 positionFromPointClose(This, X, Y)

 View Source

 -spec positionFromPointClose(This, X, Y) -> integer()
 when This :: wxStyledTextCtrl(), X :: integer(), Y :: integer().

Find the position from a point within the window but return
wxSTC_INVALID_POSITION if not close to text.

 Link to this function

 redo(This)

 View Source

 -spec redo(This) -> ok when This :: wxStyledTextCtrl().

Redoes the next action on the undo history.

 Link to this function

 registerImage(This, Type, Bmp)

 View Source

 -spec registerImage(This, Type, Bmp) -> ok
 when This :: wxStyledTextCtrl(), Type :: integer(), Bmp :: wxBitmap:wxBitmap().

Register an image for use in autocompletion lists.

 Link to this function

 replaceSelection(This, Text)

 View Source

 -spec replaceSelection(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the selected text with the argument text.

 Link to this function

 replaceTarget(This, Text)

 View Source

 -spec replaceTarget(This, Text) -> integer() when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the target text with the argument text.
Text is counted so it can contain NULs. Returns the length of the replacement
text.

 Link to this function

 saveFile(This, Filename)

 View Source

 -spec saveFile(This, Filename) -> boolean()
 when This :: wxStyledTextCtrl(), Filename :: unicode:chardata().

Write the contents of the editor to filename.

 Link to this function

 scrollToColumn(This, Column)

 View Source

 -spec scrollToColumn(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Scroll enough to make the given column visible.

 Link to this function

 scrollToLine(This, Line)

 View Source

 -spec scrollToLine(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Scroll enough to make the given line visible.

 Link to this function

 searchAnchor(This)

 View Source

 -spec searchAnchor(This) -> ok when This :: wxStyledTextCtrl().

Sets the current caret position to be the search anchor.

 Link to this function

 searchInTarget(This, Text)

 View Source

 -spec searchInTarget(This, Text) -> integer()
 when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Search for a counted string in the target and set the target to the found range.
Text is counted so it can contain NULs. Returns length of range or -1 for
failure in which case target is not moved.

 Link to this function

 searchNext(This, SearchFlags, Text)

 View Source

 -spec searchNext(This, SearchFlags, Text) -> integer()
 when
 This :: wxStyledTextCtrl(), SearchFlags :: integer(), Text :: unicode:chardata().

Find some text starting at the search anchor.
Does not ensure the selection is visible.

 Link to this function

 searchPrev(This, SearchFlags, Text)

 View Source

 -spec searchPrev(This, SearchFlags, Text) -> integer()
 when
 This :: wxStyledTextCtrl(), SearchFlags :: integer(), Text :: unicode:chardata().

Find some text starting at the search anchor and moving backwards.
Does not ensure the selection is visible.

 Link to this function

 selectAll(This)

 View Source

 -spec selectAll(This) -> ok when This :: wxStyledTextCtrl().

Select all the text in the document.

 Link to this function

 selectionDuplicate(This)

 View Source

 -spec selectionDuplicate(This) -> ok when This :: wxStyledTextCtrl().

Duplicate the selection.
If selection empty duplicate the line containing the caret.

 Link to this function

 selectionIsRectangle(This)

 View Source

 -spec selectionIsRectangle(This) -> boolean() when This :: wxStyledTextCtrl().

Is the selection rectangular? The alternative is the more common stream
selection.

 Link to this function

 setAnchor(This, Anchor)

 View Source

 -spec setAnchor(This, Anchor) -> ok when This :: wxStyledTextCtrl(), Anchor :: integer().

Set the selection anchor to a position.
The anchor is the opposite end of the selection from the caret.

 Link to this function

 setBackSpaceUnIndents(This, BsUnIndents)

 View Source

 -spec setBackSpaceUnIndents(This, BsUnIndents) -> ok
 when This :: wxStyledTextCtrl(), BsUnIndents :: boolean().

Sets whether a backspace pressed when caret is within indentation unindents.

 Link to this function

 setBufferedDraw(This, Buffered)

 View Source

 -spec setBufferedDraw(This, Buffered) -> ok when This :: wxStyledTextCtrl(), Buffered :: boolean().

If drawing is buffered then each line of text is drawn into a bitmap buffer
before drawing it to the screen to avoid flicker.

 Link to this function

 setCaretForeground(This, Fore)

 View Source

 -spec setCaretForeground(This, Fore) -> ok when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour of the caret.

 Link to this function

 setCaretLineBackAlpha(This, Alpha)

 View Source

 -spec setCaretLineBackAlpha(This, Alpha) -> ok when This :: wxStyledTextCtrl(), Alpha :: integer().

Set background alpha of the caret line.

 Link to this function

 setCaretLineBackground(This, Back)

 View Source

 -spec setCaretLineBackground(This, Back) -> ok when This :: wxStyledTextCtrl(), Back :: wx:wx_colour().

Set the colour of the background of the line containing the caret.

 Link to this function

 setCaretLineVisible(This, Show)

 View Source

 -spec setCaretLineVisible(This, Show) -> ok when This :: wxStyledTextCtrl(), Show :: boolean().

Display the background of the line containing the caret in a different colour.

 Link to this function

 setCaretPeriod(This, PeriodMilliseconds)

 View Source

 -spec setCaretPeriod(This, PeriodMilliseconds) -> ok
 when This :: wxStyledTextCtrl(), PeriodMilliseconds :: integer().

Get the time in milliseconds that the caret is on and off.
0 = steady on.

 Link to this function

 setCaretSticky(This, UseCaretStickyBehaviour)

 View Source

 -spec setCaretSticky(This, UseCaretStickyBehaviour) -> ok
 when This :: wxStyledTextCtrl(), UseCaretStickyBehaviour :: integer().

Stop the caret preferred x position changing when the user types.
The input should be one of the ?wxSTCCARETSTICKY* constants.

 Link to this function

 setCaretWidth(This, PixelWidth)

 View Source

 -spec setCaretWidth(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Set the width of the insert mode caret.

 Link to this function

 setCharsDefault(This)

 View Source

 -spec setCharsDefault(This) -> ok when This :: wxStyledTextCtrl().

Reset the set of characters for whitespace and word characters to the defaults.

 Link to this function

 setCodePage(This, CodePage)

 View Source

 -spec setCodePage(This, CodePage) -> ok when This :: wxStyledTextCtrl(), CodePage :: integer().

Set the code page used to interpret the bytes of the document as characters.

 Link to this function

 setControlCharSymbol(This, Symbol)

 View Source

 -spec setControlCharSymbol(This, Symbol) -> ok when This :: wxStyledTextCtrl(), Symbol :: integer().

Change the way control characters are displayed: If symbol is < 32, keep the
drawn way, else, use the given character.

 Link to this function

 setCurrentPos(This, Caret)

 View Source

 -spec setCurrentPos(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Sets the position of the caret.

 Link to this function

 setEdgeColour(This, EdgeColour)

 View Source

 -spec setEdgeColour(This, EdgeColour) -> ok
 when This :: wxStyledTextCtrl(), EdgeColour :: wx:wx_colour().

Change the colour used in edge indication.

 Link to this function

 setEdgeColumn(This, Column)

 View Source

 -spec setEdgeColumn(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Set the column number of the edge.
If text goes past the edge then it is highlighted.

 Link to this function

 setEdgeMode(This, EdgeMode)

 View Source

 -spec setEdgeMode(This, EdgeMode) -> ok when This :: wxStyledTextCtrl(), EdgeMode :: integer().

The edge may be displayed by a line (wxSTC_EDGE_LINE/wxSTC_EDGE_MULTILINE) or by
highlighting text that goes beyond it (wxSTC_EDGE_BACKGROUND) or not displayed
at all (wxSTC_EDGE_NONE).
The input should be one of the ?wxSTCEDGE* constants.

 Link to this function

 setEOLMode(This, EolMode)

 View Source

 -spec setEOLMode(This, EolMode) -> ok when This :: wxStyledTextCtrl(), EolMode :: integer().

Set the current end of line mode.
The input should be one of the ?wxSTCEOL* constants.

 Link to this function

 setFoldExpanded(This, Line, Expanded)

 View Source

 -spec setFoldExpanded(This, Line, Expanded) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Expanded :: boolean().

Show the children of a header line.

 Link to this function

 setFoldFlags(This, Flags)

 View Source

 -spec setFoldFlags(This, Flags) -> ok when This :: wxStyledTextCtrl(), Flags :: integer().

Set some style options for folding.
The second argument should be a bit list containing one or more of the
?wxSTCFOLDFLAG* constants.

 Link to this function

 setFoldLevel(This, Line, Level)

 View Source

 -spec setFoldLevel(This, Line, Level) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Level :: integer().

Set the fold level of a line.
This encodes an integer level along with flags indicating whether the line is a
header and whether it is effectively white space.

 Link to this function

 setFoldMarginColour(This, UseSetting, Back)

 View Source

 -spec setFoldMarginColour(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set one of the colours used as a chequerboard pattern in the fold margin.

 Link to this function

 setFoldMarginHiColour(This, UseSetting, Fore)

 View Source

 -spec setFoldMarginHiColour(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the other colour used as a chequerboard pattern in the fold margin.

 Link to this function

 setHighlightGuide(This, Column)

 View Source

 -spec setHighlightGuide(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Set the highlighted indentation guide column.
0 = no highlighted guide.

 Link to this function

 setHotspotActiveBackground(This, UseSetting, Back)

 View Source

 -spec setHotspotActiveBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set a back colour for active hotspots.

 Link to this function

 setHotspotActiveForeground(This, UseSetting, Fore)

 View Source

 -spec setHotspotActiveForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set a fore colour for active hotspots.

 Link to this function

 setHotspotActiveUnderline(This, Underline)

 View Source

 -spec setHotspotActiveUnderline(This, Underline) -> ok
 when This :: wxStyledTextCtrl(), Underline :: boolean().

Enable / Disable underlining active hotspots.

 Link to this function

 setHotspotSingleLine(This, SingleLine)

 View Source

 -spec setHotspotSingleLine(This, SingleLine) -> ok
 when This :: wxStyledTextCtrl(), SingleLine :: boolean().

Limit hotspots to single line so hotspots on two lines don't merge.

 Link to this function

 setHScrollBar(This, Bar)

 View Source

 -spec setHScrollBar(This, Bar) -> ok when This :: wxStyledTextCtrl(), Bar :: wxScrollBar:wxScrollBar().

Set the horizontal scrollbar to use instead of the one that's built-in.

 Link to this function

 setIndent(This, IndentSize)

 View Source

 -spec setIndent(This, IndentSize) -> ok when This :: wxStyledTextCtrl(), IndentSize :: integer().

Set the number of spaces used for one level of indentation.

 Link to this function

 setIndentationGuides(This, IndentView)

 View Source

 -spec setIndentationGuides(This, IndentView) -> ok
 when This :: wxStyledTextCtrl(), IndentView :: integer().

Show or hide indentation guides.
The input should be one of the ?wxSTCIV* constants.

 Link to this function

 setKeyWords(This, KeyWordSet, KeyWords)

 View Source

 -spec setKeyWords(This, KeyWordSet, KeyWords) -> ok
 when
 This :: wxStyledTextCtrl(),
 KeyWordSet :: integer(),
 KeyWords :: unicode:chardata().

Set up the key words used by the lexer.

 Link to this function

 setLastKeydownProcessed(This, Val)

 View Source

 -spec setLastKeydownProcessed(This, Val) -> ok when This :: wxStyledTextCtrl(), Val :: boolean().

Returns the line number of the line with the caret.

 Link to this function

 setLayoutCache(This, CacheMode)

 View Source

 -spec setLayoutCache(This, CacheMode) -> ok when This :: wxStyledTextCtrl(), CacheMode :: integer().

Sets the degree of caching of layout information.
The input should be one of the ?wxSTCCACHE* constants.

 Link to this function

 setLexer(This, Lexer)

 View Source

 -spec setLexer(This, Lexer) -> ok when This :: wxStyledTextCtrl(), Lexer :: integer().

Set the lexing language of the document.
The input should be one of the ?wxSTCLEX* constants.

 Link to this function

 setLexerLanguage(This, Language)

 View Source

 -spec setLexerLanguage(This, Language) -> ok
 when This :: wxStyledTextCtrl(), Language :: unicode:chardata().

Set the lexing language of the document based on string name.

 Link to this function

 setLineIndentation(This, Line, Indentation)

 View Source

 -spec setLineIndentation(This, Line, Indentation) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Indentation :: integer().

Change the indentation of a line to a number of columns.

 Link to this function

 setLineState(This, Line, State)

 View Source

 -spec setLineState(This, Line, State) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), State :: integer().

Used to hold extra styling information for each line.

 Link to this function

 setMarginLeft(This, PixelWidth)

 View Source

 -spec setMarginLeft(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the size in pixels of the left margin.

 Link to this function

 setMarginMask(This, Margin, Mask)

 View Source

 -spec setMarginMask(This, Margin, Mask) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), Mask :: integer().

Set a mask that determines which markers are displayed in a margin.

 Link to this function

 setMarginRight(This, PixelWidth)

 View Source

 -spec setMarginRight(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the size in pixels of the right margin.

 Link to this function

 setMarginSensitive(This, Margin, Sensitive)

 View Source

 -spec setMarginSensitive(This, Margin, Sensitive) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), Sensitive :: boolean().

Make a margin sensitive or insensitive to mouse clicks.

 Link to this function

 setMargins(This, Left, Right)

 View Source

 -spec setMargins(This, Left, Right) -> ok
 when This :: wxStyledTextCtrl(), Left :: integer(), Right :: integer().

Set the left and right margin in the edit area, measured in pixels.

 Link to this function

 setMarginType(This, Margin, MarginType)

 View Source

 -spec setMarginType(This, Margin, MarginType) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), MarginType :: integer().

Set a margin to be either numeric or symbolic.
The second argument should be one of the ?wxSTCMARGIN* constants.

 Link to this function

 setMarginWidth(This, Margin, PixelWidth)

 View Source

 -spec setMarginWidth(This, Margin, PixelWidth) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), PixelWidth :: integer().

Set the width of a margin to a width expressed in pixels.

 Link to this function

 setModEventMask(This, EventMask)

 View Source

 -spec setModEventMask(This, EventMask) -> ok when This :: wxStyledTextCtrl(), EventMask :: integer().

Set which document modification events are sent to the container.
The input should be a bit list containing one or more of the ?wxSTCMOD
constants, the ?wxSTCPERFORMED constants, wxSTC_STARTACTION,
wxSTC_MULTILINEUNDOREDO, wxSTC_MULTISTEPUNDOREDO, and wxSTC_LASTSTEPINUNDOREDO.
The input can also be wxSTC_MODEVENTMASKALL to indicate that all changes should
generate events.

 Link to this function

 setMouseDownCaptures(This, Captures)

 View Source

 -spec setMouseDownCaptures(This, Captures) -> ok when This :: wxStyledTextCtrl(), Captures :: boolean().

Set whether the mouse is captured when its button is pressed.

 Link to this function

 setMouseDwellTime(This, PeriodMilliseconds)

 View Source

 -spec setMouseDwellTime(This, PeriodMilliseconds) -> ok
 when This :: wxStyledTextCtrl(), PeriodMilliseconds :: integer().

Sets the time the mouse must sit still to generate a mouse dwell event.
The input should be a time in milliseconds or wxSTC_TIME_FOREVER.

 Link to this function

 setPasteConvertEndings(This, Convert)

 View Source

 -spec setPasteConvertEndings(This, Convert) -> ok when This :: wxStyledTextCtrl(), Convert :: boolean().

Enable/Disable convert-on-paste for line endings.

 Link to this function

 setPrintColourMode(This, Mode)

 View Source

 -spec setPrintColourMode(This, Mode) -> ok when This :: wxStyledTextCtrl(), Mode :: integer().

Modify colours when printing for clearer printed text.
The input should be one of the ?wxSTCPRINT* constants.

 Link to this function

 setPrintMagnification(This, Magnification)

 View Source

 -spec setPrintMagnification(This, Magnification) -> ok
 when This :: wxStyledTextCtrl(), Magnification :: integer().

Sets the print magnification added to the point size of each style for printing.

 Link to this function

 setProperty(This, Key, Value)

 View Source

 -spec setProperty(This, Key, Value) -> ok
 when
 This :: wxStyledTextCtrl(),
 Key :: unicode:chardata(),
 Value :: unicode:chardata().

Set up a value that may be used by a lexer for some optional feature.

 Link to this function

 setReadOnly(This, ReadOnly)

 View Source

 -spec setReadOnly(This, ReadOnly) -> ok when This :: wxStyledTextCtrl(), ReadOnly :: boolean().

Set to read only or read write.

 Link to this function

 setSavePoint(This)

 View Source

 -spec setSavePoint(This) -> ok when This :: wxStyledTextCtrl().

Remember the current position in the undo history as the position at which the
document was saved.

 Link to this function

 setScrollWidth(This, PixelWidth)

 View Source

 -spec setScrollWidth(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the document width assumed for scrolling.

 Link to this function

 setSearchFlags(This, SearchFlags)

 View Source

 -spec setSearchFlags(This, SearchFlags) -> ok when This :: wxStyledTextCtrl(), SearchFlags :: integer().

Set the search flags used by SearchInTarget.
The input should be a bit list containing one or more of the ?wxSTCFIND*
constants.

 Link to this function

 setSelAlpha(This, Alpha)

 View Source

 -spec setSelAlpha(This, Alpha) -> ok when This :: wxStyledTextCtrl(), Alpha :: integer().

Set the alpha of the selection.

 Link to this function

 setSelBackground(This, UseSetting, Back)

 View Source

 -spec setSelBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set the background colour of the main and additional selections and whether to
use this setting.

 Link to this function

 setSelection(This, From, To)

 View Source

 -spec setSelection(This, From, To) -> ok
 when This :: wxStyledTextCtrl(), From :: integer(), To :: integer().

Selects the text starting at the first position up to (but not including) the
character at the last position.
If both parameters are equal to -1 all text in the control is selected.
Notice that the insertion point will be moved to from by this function.
See: selectAll/1

 Link to this function

 setSelectionEnd(This, Caret)

 View Source

 -spec setSelectionEnd(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Sets the position that ends the selection - this becomes the caret.

 Link to this function

 setSelectionMode(This, SelectionMode)

 View Source

 -spec setSelectionMode(This, SelectionMode) -> ok
 when This :: wxStyledTextCtrl(), SelectionMode :: integer().

Set the selection mode to stream (wxSTC_SEL_STREAM) or rectangular
(wxSTC_SEL_RECTANGLE/wxSTC_SEL_THIN) or by lines (wxSTC_SEL_LINES).

 Link to this function

 setSelectionStart(This, Anchor)

 View Source

 -spec setSelectionStart(This, Anchor) -> ok when This :: wxStyledTextCtrl(), Anchor :: integer().

Sets the position that starts the selection - this becomes the anchor.

 Link to this function

 setSelForeground(This, UseSetting, Fore)

 View Source

 -spec setSelForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the foreground colour of the main and additional selections and whether to
use this setting.

 Link to this function

 setSTCCursor(This, CursorType)

 View Source

 -spec setSTCCursor(This, CursorType) -> ok when This :: wxStyledTextCtrl(), CursorType :: integer().

Sets the cursor to one of the wxSTC_CURSOR* values.

 Link to this function

 setSTCFocus(This, Focus)

 View Source

 -spec setSTCFocus(This, Focus) -> ok when This :: wxStyledTextCtrl(), Focus :: boolean().

Change internal focus flag.

 Link to this function

 setStatus(This, Status)

 View Source

 -spec setStatus(This, Status) -> ok when This :: wxStyledTextCtrl(), Status :: integer().

Change error status - 0 = OK.
The input should be one of the ?wxSTCSTATUS* constants.

 Link to this function

 setStyleBytes(This, Length)

 View Source

 -spec setStyleBytes(This, Length) -> integer() when This :: wxStyledTextCtrl(), Length :: integer().

Set the styles for a segment of the document.

 Link to this function

 setStyling(This, Length, Style)

 View Source

 -spec setStyling(This, Length, Style) -> ok
 when This :: wxStyledTextCtrl(), Length :: integer(), Style :: integer().

Change style from current styling position for length characters to a style and
move the current styling position to after this newly styled segment.

 Link to this function

 setTabIndents(This, TabIndents)

 View Source

 -spec setTabIndents(This, TabIndents) -> ok when This :: wxStyledTextCtrl(), TabIndents :: boolean().

Sets whether a tab pressed when caret is within indentation indents.

 Link to this function

 setTabWidth(This, TabWidth)

 View Source

 -spec setTabWidth(This, TabWidth) -> ok when This :: wxStyledTextCtrl(), TabWidth :: integer().

Change the visible size of a tab to be a multiple of the width of a space
character.

 Link to this function

 setTargetEnd(This, End)

 View Source

 -spec setTargetEnd(This, End) -> ok when This :: wxStyledTextCtrl(), End :: integer().

Sets the position that ends the target which is used for updating the document
without affecting the scroll position.

 Link to this function

 setTargetStart(This, Start)

 View Source

 -spec setTargetStart(This, Start) -> ok when This :: wxStyledTextCtrl(), Start :: integer().

Sets the position that starts the target which is used for updating the document
without affecting the scroll position.

 Link to this function

 setText(This, Text)

 View Source

 -spec setText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the contents of the document with the argument text.

 Link to this function

 setTextRaw(This, Text)

 View Source

 -spec setTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

Replace the contents of the document with the argument text.

 Link to this function

 setTwoPhaseDraw(This, TwoPhase)

 View Source

 -spec setTwoPhaseDraw(This, TwoPhase) -> ok when This :: wxStyledTextCtrl(), TwoPhase :: boolean().

In twoPhaseDraw mode, drawing is performed in two phases, first the background
and then the foreground.
This avoids chopping off characters that overlap the next run.

 Link to this function

 setUndoCollection(This, CollectUndo)

 View Source

 -spec setUndoCollection(This, CollectUndo) -> ok
 when This :: wxStyledTextCtrl(), CollectUndo :: boolean().

Choose between collecting actions into the undo history and discarding them.

 Link to this function

 setUseHorizontalScrollBar(This, Visible)

 View Source

 -spec setUseHorizontalScrollBar(This, Visible) -> ok
 when This :: wxStyledTextCtrl(), Visible :: boolean().

Show or hide the horizontal scroll bar.

 Link to this function

 setUseTabs(This, UseTabs)

 View Source

 -spec setUseTabs(This, UseTabs) -> ok when This :: wxStyledTextCtrl(), UseTabs :: boolean().

Indentation will only use space characters if useTabs is false, otherwise it
will use a combination of tabs and spaces.

 Link to this function

 setUseVerticalScrollBar(This, Visible)

 View Source

 -spec setUseVerticalScrollBar(This, Visible) -> ok when This :: wxStyledTextCtrl(), Visible :: boolean().

Show or hide the vertical scroll bar.

 Link to this function

 setViewEOL(This, Visible)

 View Source

 -spec setViewEOL(This, Visible) -> ok when This :: wxStyledTextCtrl(), Visible :: boolean().

Make the end of line characters visible or invisible.

 Link to this function

 setViewWhiteSpace(This, ViewWS)

 View Source

 -spec setViewWhiteSpace(This, ViewWS) -> ok when This :: wxStyledTextCtrl(), ViewWS :: integer().

Make white space characters invisible, always visible or visible outside
indentation.
The input should be one of the ?wxSTCWS* constants.

 Link to this function

 setVisiblePolicy(This, VisiblePolicy, VisibleSlop)

 View Source

 -spec setVisiblePolicy(This, VisiblePolicy, VisibleSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 VisiblePolicy :: integer(),
 VisibleSlop :: integer().

Set the way the display area is determined when a particular line is to be moved
to by Find, FindNext, GotoLine, etc.
The first argument should be a bit list containing one or more of the
?wxSTCVISIBLE* constants.

 Link to this function

 setVScrollBar(This, Bar)

 View Source

 -spec setVScrollBar(This, Bar) -> ok when This :: wxStyledTextCtrl(), Bar :: wxScrollBar:wxScrollBar().

Set the vertical scrollbar to use instead of the one that's built-in.

 Link to this function

 setWhitespaceBackground(This, UseSetting, Back)

 View Source

 -spec setWhitespaceBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set the background colour of all whitespace and whether to use this setting.

 Link to this function

 setWhitespaceChars(This, Characters)

 View Source

 -spec setWhitespaceChars(This, Characters) -> ok
 when This :: wxStyledTextCtrl(), Characters :: unicode:chardata().

Set the set of characters making up whitespace for when moving or selecting by
word.
Should be called after SetWordChars.

 Link to this function

 setWhitespaceForeground(This, UseSetting, Fore)

 View Source

 -spec setWhitespaceForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the foreground colour of all whitespace and whether to use this setting.

 Link to this function

 setWordChars(This, Characters)

 View Source

 -spec setWordChars(This, Characters) -> ok
 when This :: wxStyledTextCtrl(), Characters :: unicode:chardata().

Set the set of characters making up words for when moving or selecting by word.
First sets defaults like SetCharsDefault.

 Link to this function

 setWrapMode(This, WrapMode)

 View Source

 -spec setWrapMode(This, WrapMode) -> ok when This :: wxStyledTextCtrl(), WrapMode :: integer().

Sets whether text is word wrapped.
The input should be one of the ?wxSTCWRAP* constants.

 Link to this function

 setWrapStartIndent(This, Indent)

 View Source

 -spec setWrapStartIndent(This, Indent) -> ok when This :: wxStyledTextCtrl(), Indent :: integer().

Set the start indent for wrapped lines.

 Link to this function

 setWrapVisualFlags(This, WrapVisualFlags)

 View Source

 -spec setWrapVisualFlags(This, WrapVisualFlags) -> ok
 when This :: wxStyledTextCtrl(), WrapVisualFlags :: integer().

Set the display mode of visual flags for wrapped lines.
The input should be a bit list containing one or more of the
?wxSTCWRAPVISUALFLAG* constants.

 Link to this function

 setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation)

 View Source

 -spec setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation) -> ok
 when
 This :: wxStyledTextCtrl(), WrapVisualFlagsLocation :: integer().

Set the location of visual flags for wrapped lines.
The input should be a bit list containing one or more of the
?wxSTCWRAPVISUALFLAGLOC* constants.

 Link to this function

 setXCaretPolicy(This, CaretPolicy, CaretSlop)

 View Source

 -spec setXCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 CaretPolicy :: integer(),
 CaretSlop :: integer().

Set the way the caret is kept visible when going sideways.
The exclusion zone is given in pixels.
The first argument should be a bit list containing one or more of the
?wxSTCCARET* constants.

 Link to this function

 setYCaretPolicy(This, CaretPolicy, CaretSlop)

 View Source

 -spec setYCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 CaretPolicy :: integer(),
 CaretSlop :: integer().

Set the way the line the caret is on is kept visible.
The exclusion zone is given in lines.
The first argument should be a bit list containing one or more of the
?wxSTCCARET* constants.

 Link to this function

 setZoom(This, ZoomInPoints)

 View Source

 -spec setZoom(This, ZoomInPoints) -> ok when This :: wxStyledTextCtrl(), ZoomInPoints :: integer().

Set the zoom level.
This number of points is added to the size of all fonts. It may be positive to
magnify or negative to reduce.

 Link to this function

 showLines(This, LineStart, LineEnd)

 View Source

 -spec showLines(This, LineStart, LineEnd) -> ok
 when This :: wxStyledTextCtrl(), LineStart :: integer(), LineEnd :: integer().

Make a range of lines visible.

 Link to this function

 startRecord(This)

 View Source

 -spec startRecord(This) -> ok when This :: wxStyledTextCtrl().

Start notifying the container of all key presses and commands.

 Link to this function

 startStyling(This, Start)

 View Source

 -spec startStyling(This, Start) -> ok when This :: wxStyledTextCtrl(), Start :: integer().

Set the current styling position to start.

 Link to this function

 stopRecord(This)

 View Source

 -spec stopRecord(This) -> ok when This :: wxStyledTextCtrl().

Stop notifying the container of all key presses and commands.

 Link to this function

 stutteredPageDown(This)

 View Source

 -spec stutteredPageDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret to bottom of page, or one page down if already at bottom of page.

 Link to this function

 stutteredPageDownExtend(This)

 View Source

 -spec stutteredPageDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to bottom of page, or one page down if already at bottom of page,
extending selection to new caret position.

 Link to this function

 stutteredPageUp(This)

 View Source

 -spec stutteredPageUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret to top of page, or one page up if already at top of page.

 Link to this function

 stutteredPageUpExtend(This)

 View Source

 -spec stutteredPageUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to top of page, or one page up if already at top of page, extending
selection to new caret position.

 Link to this function

 styleClearAll(This)

 View Source

 -spec styleClearAll(This) -> ok when This :: wxStyledTextCtrl().

Clear all the styles and make equivalent to the global default style.

 Link to this function

 styleResetDefault(This)

 View Source

 -spec styleResetDefault(This) -> ok when This :: wxStyledTextCtrl().

Reset the default style to its state at startup.

 Link to this function

 styleSetBackground(This, Style, Back)

 View Source

 -spec styleSetBackground(This, Style, Back) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Back :: wx:wx_colour().

Set the background colour of a style.

 Link to this function

 styleSetBold(This, Style, Bold)

 View Source

 -spec styleSetBold(This, Style, Bold) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Bold :: boolean().

Set a style to be bold or not.

 Link to this function

 styleSetCase(This, Style, CaseVisible)

 View Source

 -spec styleSetCase(This, Style, CaseVisible) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), CaseVisible :: integer().

Set a style to be mixed case, or to force upper or lower case.
The second argument should be one of the ?wxSTCCASE* constants.

 Link to this function

 styleSetCharacterSet(This, Style, CharacterSet)

 View Source

 -spec styleSetCharacterSet(This, Style, CharacterSet) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 CharacterSet :: integer().

Set the character set of the font in a style.
Converts the Scintilla character set values to a wxFontEncoding.

 Link to this function

 styleSetEOLFilled(This, Style, EolFilled)

 View Source

 -spec styleSetEOLFilled(This, Style, EolFilled) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), EolFilled :: boolean().

Set a style to have its end of line filled or not.

 Link to this function

 styleSetFaceName(This, Style, FontName)

 View Source

 -spec styleSetFaceName(This, Style, FontName) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 FontName :: unicode:chardata().

Set the font of a style.

 Link to this function

 styleSetFont(This, StyleNum, Font)

 View Source

 -spec styleSetFont(This, StyleNum, Font) -> ok
 when This :: wxStyledTextCtrl(), StyleNum :: integer(), Font :: wxFont:wxFont().

Set style size, face, bold, italic, and underline attributes from a wxFont's
attributes.

 Link to this function

 styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline)

 View Source

 -spec styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline) -> ok
 when
 This :: wxStyledTextCtrl(),
 StyleNum :: integer(),
 Size :: integer(),
 FaceName :: unicode:chardata(),
 Bold :: boolean(),
 Italic :: boolean(),
 Underline :: boolean().

 Link to this function

 styleSetFontAttr/8

 View Source

 -spec styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline, [Option]) -> ok
 when
 This :: wxStyledTextCtrl(),
 StyleNum :: integer(),
 Size :: integer(),
 FaceName :: unicode:chardata(),
 Bold :: boolean(),
 Italic :: boolean(),
 Underline :: boolean(),
 Option :: {encoding, wx:wx_enum()}.

Set all font style attributes at once.

 Link to this function

 styleSetFontEncoding(This, Style, Encoding)

 View Source

 -spec styleSetFontEncoding(This, Style, Encoding) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 Encoding :: wx:wx_enum().

Set the font encoding to be used by a style.

 Link to this function

 styleSetForeground(This, Style, Fore)

 View Source

 -spec styleSetForeground(This, Style, Fore) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Fore :: wx:wx_colour().

Set the foreground colour of a style.

 Link to this function

 styleSetHotSpot(This, Style, Hotspot)

 View Source

 -spec styleSetHotSpot(This, Style, Hotspot) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Hotspot :: boolean().

Set a style to be a hotspot or not.

 Link to this function

 styleSetItalic(This, Style, Italic)

 View Source

 -spec styleSetItalic(This, Style, Italic) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Italic :: boolean().

Set a style to be italic or not.

 Link to this function

 styleSetSize(This, Style, SizePoints)

 View Source

 -spec styleSetSize(This, Style, SizePoints) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), SizePoints :: integer().

Set the size of characters of a style.

 Link to this function

 styleSetSpec(This, StyleNum, Spec)

 View Source

 -spec styleSetSpec(This, StyleNum, Spec) -> ok
 when This :: wxStyledTextCtrl(), StyleNum :: integer(), Spec :: unicode:chardata().

Extract style settings from a spec-string which is composed of one or more of
the following comma separated elements:
bold turns on bold italic turns on italics fore:[name or #RRGGBB] sets the
foreground colour back:[name or #RRGGBB] sets the background colour
face:[facename] sets the font face name to use size:[num] sets the font size
in points eol turns on eol filling underline turns on underlining

 Link to this function

 styleSetUnderline(This, Style, Underline)

 View Source

 -spec styleSetUnderline(This, Style, Underline) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Underline :: boolean().

Set a style to be underlined or not.

 Link to this function

 styleSetVisible(This, Style, Visible)

 View Source

 -spec styleSetVisible(This, Style, Visible) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Visible :: boolean().

Set a style to be visible or not.

 Link to this function

 tab(This)

 View Source

 -spec tab(This) -> ok when This :: wxStyledTextCtrl().

If selection is empty or all on one line replace the selection with a tab
character.
If more than one line selected, indent the lines.

 Link to this function

 targetFromSelection(This)

 View Source

 -spec targetFromSelection(This) -> ok when This :: wxStyledTextCtrl().

Make the target range start and end be the same as the selection range start and
end.

 Link to this function

 textHeight(This, Line)

 View Source

 -spec textHeight(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the height of a particular line of text in pixels.

 Link to this function

 textWidth(This, Style, Text)

 View Source

 -spec textWidth(This, Style, Text) -> integer()
 when This :: wxStyledTextCtrl(), Style :: integer(), Text :: unicode:chardata().

Measure the pixel width of some text in a particular style.
Does not handle tab or control characters.

 Link to this function

 toggleCaretSticky(This)

 View Source

 -spec toggleCaretSticky(This) -> ok when This :: wxStyledTextCtrl().

Switch between sticky and non-sticky: meant to be bound to a key.

 Link to this function

 toggleFold(This, Line)

 View Source

 -spec toggleFold(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Switch a header line between expanded and contracted.

 Link to this function

 undo(This)

 View Source

 -spec undo(This) -> ok when This :: wxStyledTextCtrl().

Undo one action in the undo history.

 Link to this function

 upperCase(This)

 View Source

 -spec upperCase(This) -> ok when This :: wxStyledTextCtrl().

Transform the selection to upper case.

 Link to this function

 usePopUp(This, PopUpMode)

 View Source

 -spec usePopUp(This, PopUpMode) -> ok when This :: wxStyledTextCtrl(), PopUpMode :: integer().

Set whether a pop up menu is displayed automatically when the user presses the
wrong mouse button on certain areas.
The input should be one of the ?wxSTCPOPUP* constants.
Remark: When wxContextMenuEvent is used to create a custom popup menu, this
function should be called with wxSTC_POPUP_NEVER. Otherwise the default menu
will be shown instead of the custom one.

 Link to this function

 userListShow(This, ListType, ItemList)

 View Source

 -spec userListShow(This, ListType, ItemList) -> ok
 when
 This :: wxStyledTextCtrl(),
 ListType :: integer(),
 ItemList :: unicode:chardata().

Display a list of strings and send notification when user chooses one.

 Link to this function

 vCHome(This)

 View Source

 -spec vCHome(This) -> ok when This :: wxStyledTextCtrl().

Move caret to before first visible character on line.
If already there move to first character on line.

 Link to this function

 vCHomeExtend(This)

 View Source

 -spec vCHomeExtend(This) -> ok when This :: wxStyledTextCtrl().

Like VCHome but extending selection to new caret position.

 Link to this function

 vCHomeRectExtend(This)

 View Source

 -spec vCHomeRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to before first visible character on line.
If already there move to first character on line. In either case, extend
rectangular selection to new caret position.

 Link to this function

 vCHomeWrap(This)

 View Source

 -spec vCHomeWrap(This) -> ok when This :: wxStyledTextCtrl().

Like VCHome but when word-wrap is enabled goes first to start of display line
VCHomeDisplay, then behaves like VCHome.

 Link to this function

 vCHomeWrapExtend(This)

 View Source

 -spec vCHomeWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like VCHomeExtend but when word-wrap is enabled extends first to start of
display line VCHomeDisplayExtend, then behaves like VCHomeExtend.

 Link to this function

 visibleFromDocLine(This, DocLine)

 View Source

 -spec visibleFromDocLine(This, DocLine) -> integer()
 when This :: wxStyledTextCtrl(), DocLine :: integer().

Find the display line of a document line taking hidden lines into account.

 Link to this function

 wordEndPosition(This, Pos, OnlyWordCharacters)

 View Source

 -spec wordEndPosition(This, Pos, OnlyWordCharacters) -> integer()
 when
 This :: wxStyledTextCtrl(),
 Pos :: integer(),
 OnlyWordCharacters :: boolean().

Get position of end of word.

 Link to this function

 wordLeft(This)

 View Source

 -spec wordLeft(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word.

 Link to this function

 wordLeftEnd(This)

 View Source

 -spec wordLeftEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word, position cursor at end of word.

 Link to this function

 wordLeftEndExtend(This)

 View Source

 -spec wordLeftEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word, position cursor at end of word, extending selection to
new caret position.

 Link to this function

 wordLeftExtend(This)

 View Source

 -spec wordLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word extending selection to new caret position.

 Link to this function

 wordPartLeft(This)

 View Source

 -spec wordPartLeft(This) -> ok when This :: wxStyledTextCtrl().

Move to the previous change in capitalisation.

 Link to this function

 wordPartLeftExtend(This)

 View Source

 -spec wordPartLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move to the previous change in capitalisation extending selection to new caret
position.

 Link to this function

 wordPartRight(This)

 View Source

 -spec wordPartRight(This) -> ok when This :: wxStyledTextCtrl().

Move to the change next in capitalisation.

 Link to this function

 wordPartRightExtend(This)

 View Source

 -spec wordPartRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move to the next change in capitalisation extending selection to new caret
position.

 Link to this function

 wordRight(This)

 View Source

 -spec wordRight(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word.

 Link to this function

 wordRightEnd(This)

 View Source

 -spec wordRightEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word, position cursor at end of word.

 Link to this function

 wordRightEndExtend(This)

 View Source

 -spec wordRightEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word, position cursor at end of word, extending selection
to new caret position.

 Link to this function

 wordRightExtend(This)

 View Source

 -spec wordRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word extending selection to new caret position.

 Link to this function

 wordStartPosition(This, Pos, OnlyWordCharacters)

 View Source

 -spec wordStartPosition(This, Pos, OnlyWordCharacters) -> integer()
 when
 This :: wxStyledTextCtrl(),
 Pos :: integer(),
 OnlyWordCharacters :: boolean().

Get position of start of word.

 Link to this function

 wrapCount(This, DocLine)

 View Source

 -spec wrapCount(This, DocLine) -> integer() when This :: wxStyledTextCtrl(), DocLine :: integer().

The number of display lines needed to wrap a document line.

 Link to this function

 zoomIn(This)

 View Source

 -spec zoomIn(This) -> ok when This :: wxStyledTextCtrl().

Magnify the displayed text by increasing the sizes by 1 point.

 Link to this function

 zoomOut(This)

 View Source

 -spec zoomOut(This) -> ok when This :: wxStyledTextCtrl().

Make the displayed text smaller by decreasing the sizes by 1 point.

wxStyledTextEvent

Functions for wxStyledTextEvent class
The type of events sent from wxStyledTextCtrl.
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxStyledTextEvent

 Events

Use wxEvtHandler:connect/3 with
wxStyledTextEventType to subscribe to events of
this type.

 Summary

 Types

 wxStyledText()

 wxStyledTextEvent()

 wxStyledTextEventType()

 Functions

 getAlt(This)

 Returns true if the Alt key is pressed.

 getControl(This)

 Returns true if the Control key is pressed.

 getDragAllowMove(This)

 getDragResult(This)

 Returns drag result for this event.

 getDragText(This)

 Deprecated: Use wxCommandEvent:getString/1 instead.

 getFoldLevelNow(This)

 Returns the current fold level for the line.

 getFoldLevelPrev(This)

 Returns previous fold level for the line.

 getKey(This)

 Returns the key code of the key that generated this event.

 getLength(This)

 Returns the length (number of characters) of this event.

 getLine(This)

 Returns zero-based line number for this event.

 getLinesAdded(This)

 Returns the number of lines added or deleted with this event.

 getListType(This)

 Returns the list type for this event.

 getLParam(This)

 Returns the value of the LParam field for this event.

 getMargin(This)

 Returns the zero-based index of the margin that generated this event.

 getMessage(This)

 Returns a message number while a macro is being recorded.

 getModificationType(This)

 Returns the modification type for this event.

 getModifiers(This)

 Returns the modifiers of the key press or mouse click for this event.

 getPosition(This)

 Returns the zero-based text position associated this event.

 getShift(This)

 Returns true if the Shift key is pressed.

 getText(This)

 Deprecated: Use wxCommandEvent:getString/1 instead.

 getWParam(This)

 Returns value of the WParam field for this event.

 getX(This)

 Returns the X coordinate of the mouse for this event.

 getY(This)

 Returns the Y coordinate of the mouse for this event.

 Types

 Link to this type

 wxStyledText()

 View Source

 -type wxStyledText() ::
 #wxStyledText{type :: wxStyledTextEvent:wxStyledTextEventType(),
 position :: integer(),
 key :: integer(),
 modifiers :: integer(),
 modificationType :: integer(),
 text :: unicode:chardata(),
 length :: integer(),
 linesAdded :: integer(),
 line :: integer(),
 foldLevelNow :: integer(),
 foldLevelPrev :: integer(),
 margin :: integer(),
 message :: integer(),
 wParam :: integer(),
 lParam :: integer(),
 listType :: integer(),
 x :: integer(),
 y :: integer(),
 dragText :: unicode:chardata(),
 dragAllowMove :: boolean(),
 dragResult :: wx:wx_enum()}.

 Link to this type

 wxStyledTextEvent()

 View Source

 -type wxStyledTextEvent() :: wx:wx_object().

 Link to this type

 wxStyledTextEventType()

 View Source

 -type wxStyledTextEventType() ::
 stc_autocomp_cancelled | stc_autocomp_char_deleted | stc_autocomp_selection |
 stc_calltip_click | stc_change | stc_charadded | stc_do_drop | stc_doubleclick |
 stc_drag_over | stc_dwellend | stc_dwellstart | stc_hotspot_click | stc_hotspot_dclick |
 stc_hotspot_release_click | stc_indicator_click | stc_indicator_release | stc_macrorecord |
 stc_marginclick | stc_modified | stc_needshown | stc_painted | stc_romodifyattempt |
 stc_savepointleft | stc_savepointreached | stc_start_drag | stc_styleneeded | stc_updateui |
 stc_userlistselection | stc_zoom.

 Functions

 Link to this function

 getAlt(This)

 View Source

 -spec getAlt(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Alt key is pressed.
This method is valid for the following event types:

 Link to this function

 getControl(This)

 View Source

 -spec getControl(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Control key is pressed.
This method is valid for the following event types:

 Link to this function

 getDragAllowMove(This)

 View Source

 -spec getDragAllowMove(This) -> boolean() when This :: wxStyledTextEvent().

 Link to this function

 getDragResult(This)

 View Source

 -spec getDragResult(This) -> wx:wx_enum() when This :: wxStyledTextEvent().

Returns drag result for this event.
This method is valid for wxEVT_STC_DRAG_OVER and wxEVT_STC_DO_DROP events.

 Link to this function

 getDragText(This)

 View Source

 -spec getDragText(This) -> unicode:charlist() when This :: wxStyledTextEvent().

Deprecated: Use wxCommandEvent:getString/1 instead.

 Link to this function

 getFoldLevelNow(This)

 View Source

 -spec getFoldLevelNow(This) -> integer() when This :: wxStyledTextEvent().

Returns the current fold level for the line.
This method is valid for wxEVT_STC_MODIFIED events when the result of
getModificationType/1 includes ?wxSTC_MOD_CHANGEFOLD.

 Link to this function

 getFoldLevelPrev(This)

 View Source

 -spec getFoldLevelPrev(This) -> integer() when This :: wxStyledTextEvent().

Returns previous fold level for the line.
This method is valid for wxEVT_STC_MODIFIED events when the result of
getModificationType/1 includes ?wxSTC_MOD_CHANGEFOLD.

 Link to this function

 getKey(This)

 View Source

 -spec getKey(This) -> integer() when This :: wxStyledTextEvent().

Returns the key code of the key that generated this event.
This method is valid for the following event types:

 Link to this function

 getLength(This)

 View Source

 -spec getLength(This) -> integer() when This :: wxStyledTextEvent().

Returns the length (number of characters) of this event.
This method is valid for wxEVT_STC_MODIFIED and wxEVT_STC_NEEDSHOWN events.

 Link to this function

 getLine(This)

 View Source

 -spec getLine(This) -> integer() when This :: wxStyledTextEvent().

Returns zero-based line number for this event.
This method is valid for wxEVT_STC_DOUBLECLICK and wxEVT_STC_MODIFIED
events.

 Link to this function

 getLinesAdded(This)

 View Source

 -spec getLinesAdded(This) -> integer() when This :: wxStyledTextEvent().

Returns the number of lines added or deleted with this event.
This method is valid for wxEVT_STC_MODIFIED events when the result of
getModificationType/1 includes ?wxSTC_MOD_INSERTTEXT or ?wxSTC_MOD_DELETETEXT.

 Link to this function

 getListType(This)

 View Source

 -spec getListType(This) -> integer() when This :: wxStyledTextEvent().

Returns the list type for this event.
The list type is an integer passed to a list when it is created with the
wxStyledTextCtrl:userListShow/3 method and can be used to distinguish lists if
more than one is used.
This method is valid for wxEVT_STC_AUTOCOMP_SELECTION_CHANGE and
wxEVT_STC_USERLISTSELECTION events.

 Link to this function

 getLParam(This)

 View Source

 -spec getLParam(This) -> integer() when This :: wxStyledTextEvent().

Returns the value of the LParam field for this event.
This method is valid for wxEVT_STC_MACRORECORD events.

 Link to this function

 getMargin(This)

 View Source

 -spec getMargin(This) -> integer() when This :: wxStyledTextEvent().

Returns the zero-based index of the margin that generated this event.
This method is valid for wxEVT_STC_MARGINCLICK and
wxEVT_STC_MARGIN_RIGHT_CLICK events.

 Link to this function

 getMessage(This)

 View Source

 -spec getMessage(This) -> integer() when This :: wxStyledTextEvent().

Returns a message number while a macro is being recorded.
Many of the wxStyledTextCtrl methods such as wxStyledTextCtrl:insertText/3
and wxStyledTextCtrl:paste/1 have an event number associated with them. This
method returns that number while a macro is being recorded so that the macro can
be played back later.
This method is valid for wxEVT_STC_MACRORECORD events.

 Link to this function

 getModificationType(This)

 View Source

 -spec getModificationType(This) -> integer() when This :: wxStyledTextEvent().

Returns the modification type for this event.
The modification type is a bit list that describes the change that generated
this event. It may contain one or more of the following values:
This method is valid for wxEVT_STC_MODIFIED events.

 Link to this function

 getModifiers(This)

 View Source

 -spec getModifiers(This) -> integer() when This :: wxStyledTextEvent().

Returns the modifiers of the key press or mouse click for this event.
The returned value is a bit list that may contain one or more of the following
values:
In addition, the value can be checked for equality with ?wxSTC_KEYMOD_NORM to
test if no modifiers are present.
This method is valid for the following event types:

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> integer() when This :: wxStyledTextEvent().

Returns the zero-based text position associated this event.
This method is valid for the following event types:

 Link to this function

 getShift(This)

 View Source

 -spec getShift(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Shift key is pressed.
This method is valid for the following event types:

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxStyledTextEvent().

Deprecated: Use wxCommandEvent:getString/1 instead.

 Link to this function

 getWParam(This)

 View Source

 -spec getWParam(This) -> integer() when This :: wxStyledTextEvent().

Returns value of the WParam field for this event.
This method is valid for wxEVT_STC_MACRORECORD events.

 Link to this function

 getX(This)

 View Source

 -spec getX(This) -> integer() when This :: wxStyledTextEvent().

Returns the X coordinate of the mouse for this event.
This method is valid for the following event types:

 Link to this function

 getY(This)

 View Source

 -spec getY(This) -> integer() when This :: wxStyledTextEvent().

Returns the Y coordinate of the mouse for this event.
This method is valid for the following event types:

wxSysColourChangedEvent

Functions for wxSysColourChangedEvent class
This class is used for system colour change events, which are generated when the
user changes the colour settings using the control panel. This is only
appropriate under Windows.
Remark: The default event handler for this event propagates the event to child
windows, since Windows only sends the events to top-level windows. If
intercepting this event for a top-level window, remember to call the base class
handler, or to pass the event on to the window's children explicitly.
See:
Overview events
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxSysColourChangedEvent

 Events

Use wxEvtHandler:connect/3 with
wxSysColourChangedEventType to subscribe
to events of this type.

 Summary

 Types

 wxSysColourChanged()

 wxSysColourChangedEvent()

 wxSysColourChangedEventType()

 Types

 Link to this type

 wxSysColourChanged()

 View Source

 -type wxSysColourChanged() ::
 #wxSysColourChanged{type :: wxSysColourChangedEvent:wxSysColourChangedEventType()}.

 Link to this type

 wxSysColourChangedEvent()

 View Source

 -type wxSysColourChangedEvent() :: wx:wx_object().

 Link to this type

 wxSysColourChangedEventType()

 View Source

 -type wxSysColourChangedEventType() :: sys_colour_changed.

wxSystemOptions

Functions for wxSystemOptions class
wxSystemOptions stores option/value pairs that wxWidgets itself or
applications can use to alter behaviour at run-time. It can be used to optimize
behaviour that doesn't deserve a distinct API, but is still important to be able
to configure.
System options can be set by the program itself using setOption/2 method and
they also can be set from the program environment by defining an environment
variable wx_option to set the given option for all wxWidgets applications or
wx_appname_option to set it just for the application with the given name (as
returned by wxApp::GetAppName() (not implemented in wx)). Notice that any
characters not allowed in the environment variables names, such as periods and
dashes, should be replaced with underscores. E.g. to define a system option
"foo-bar" you need to define the environment variable "wx_foo_bar".
The program may use system options for its own needs but they are mostly used to
control the behaviour of wxWidgets library itself.
These options are currently recognised by wxWidgets:
All platforms
Windows
GTK+
Mac
Motif
The compile-time option to include or exclude this functionality is
wxUSE_SYSTEM_OPTIONS.
See: wxSystemSettings
wxWidgets docs:
wxSystemOptions

 Summary

 Types

 wxSystemOptions()

 Functions

 getOption(Name)

 Gets an option.

 getOptionInt(Name)

 Gets an option as an integer.

 hasOption(Name)

 Returns true if the given option is present.

 isFalse(Name)

 Returns true if the option with the given name had been set to 0 value.

 setOption/2

 Sets an option.

 Types

 Link to this type

 wxSystemOptions()

 View Source

 -type wxSystemOptions() :: wx:wx_object().

 Functions

 Link to this function

 getOption(Name)

 View Source

 -spec getOption(Name) -> unicode:charlist() when Name :: unicode:chardata().

Gets an option.
The function is case-insensitive to name. Returns empty string if the option
hasn't been set.
See: setOption/2, getOptionInt/1, hasOption/1

 Link to this function

 getOptionInt(Name)

 View Source

 -spec getOptionInt(Name) -> integer() when Name :: unicode:chardata().

Gets an option as an integer.
The function is case-insensitive to name. If the option hasn't been set, this
function returns 0.
See: setOption/2, getOption/1, hasOption/1

 Link to this function

 hasOption(Name)

 View Source

 -spec hasOption(Name) -> boolean() when Name :: unicode:chardata().

Returns true if the given option is present.
The function is case-insensitive to name.
See: setOption/2, getOption/1, getOptionInt/1

 Link to this function

 isFalse(Name)

 View Source

 -spec isFalse(Name) -> boolean() when Name :: unicode:chardata().

Returns true if the option with the given name had been set to 0 value.
This is mostly useful for boolean options for which you can't use
GetOptionInt(name) == 0 as this would also be true if the option hadn't been
set at all.

 Link to this function

 setOption/2

 View Source

 -spec setOption(Name, Value) -> ok when Name :: unicode:chardata(), Value :: integer();
 (Name, Value) -> ok when Name :: unicode:chardata(), Value :: unicode:chardata().

Sets an option.
The function is case-insensitive to name.

wxSystemSettings

Functions for wxSystemSettings class
wxSystemSettings allows the application to ask for details about the system.
This can include settings such as standard colours, fonts, and user interface
element sizes.
See: wxFont, wx_color(), wxSystemOptions
wxWidgets docs:
wxSystemSettings

 Summary

 Types

 wxSystemSettings()

 Functions

 getColour(Index)

 Returns a system colour.

 getFont(Index)

 Returns a system font.

 getMetric(Index)

 getMetric(Index, Options)

 Returns the value of a system metric, or -1 if the metric is not supported on
the current system.

 getScreenType()

 Returns the screen type.

 Types

 Link to this type

 wxSystemSettings()

 View Source

 -type wxSystemSettings() :: wx:wx_object().

 Functions

 Link to this function

 getColour(Index)

 View Source

 -spec getColour(Index) -> wx:wx_colour4() when Index :: wx:wx_enum().

Returns a system colour.
Return: The returned colour is always valid.

 Link to this function

 getFont(Index)

 View Source

 -spec getFont(Index) -> wxFont:wxFont() when Index :: wx:wx_enum().

Returns a system font.
Return: The returned font is always valid.

 Link to this function

 getMetric(Index)

 View Source

 -spec getMetric(Index) -> integer() when Index :: wx:wx_enum().

 Link to this function

 getMetric(Index, Options)

 View Source

 -spec getMetric(Index, [Option]) -> integer()
 when Index :: wx:wx_enum(), Option :: {win, wxWindow:wxWindow()}.

Returns the value of a system metric, or -1 if the metric is not supported on
the current system.
The value of win determines if the metric returned is a global value or a
wxWindow based value, in which case it might determine the widget, the
display the window is on, or something similar. The window given should be as
close to the metric as possible (e.g. a wxTopLevelWindow in case of the
wxSYS_CAPTION_Y metric).
index can be one of the ?wxSystemMetric enum values.
win is a pointer to the window for which the metric is requested. Specifying
the win parameter is encouraged, because some metrics on some ports are not
supported without one,or they might be capable of reporting better values if
given one. If a window does not make sense for a metric, one should still be
given, as for example it might determine which displays cursor width is
requested with wxSYS_CURSOR_X.

 Link to this function

 getScreenType()

 View Source

 -spec getScreenType() -> wx:wx_enum().

Returns the screen type.
The return value is one of the ?wxSystemScreenType enum values.

wxTaskBarIcon

Functions for wxTaskBarIcon class
This class represents a taskbar icon. A taskbar icon is an icon that appears in
the 'system tray' and responds to mouse clicks, optionally with a tooltip above
it to help provide information.
X Window System Note
Under X Window System, the window manager must support either the "System Tray
Protocol" (see
http://freedesktop.org/wiki/Specifications/systemtray-spec)
by freedesktop.org (WMs used by modern desktop environments such as GNOME >= 2,
KDE >= 3 and XFCE >= 4 all do) or the older methods used in GNOME 1.2 and KDE 1
and 2.
If it doesn't, the icon will appear as a toplevel window on user's desktop.
Because not all window managers have system tray, there's no guarantee that
wxTaskBarIcon will work correctly under X Window System and so the
applications should use it only as an optional component of their user
interface. The user should be required to explicitly enable the taskbar icon on
Unix, it shouldn't be on by default.
This class is derived (and can use functions) from: wxEvtHandler
wxWidgets docs:
wxTaskBarIcon

 Events

Event types emitted from this class: taskbar_move,
taskbar_left_down,
taskbar_left_up,
taskbar_right_down,
taskbar_right_up,
taskbar_left_dclick,
taskbar_right_dclick

 Summary

 Types

 wxTaskBarIcon()

 Functions

 destroy(This)

 Destroys the wxTaskBarIcon object, removing the icon if not already removed.

 new(Options)

 Default constructor.

 popupMenu(This, Menu)

 Pops up a menu at the current mouse position.

 removeIcon(This)

 Removes the icon previously set with setIcon/3.

 setIcon(This, Icon)

 setIcon/3

 Sets the icon, and optional tooltip text.

 Types

 Link to this type

 wxTaskBarIcon()

 View Source

 -type wxTaskBarIcon() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTaskBarIcon()) -> ok.

Destroys the wxTaskBarIcon object, removing the icon if not already removed.

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxTaskBarIcon()
 when Option :: {iconType, wx:wx_enum()} | {createPopupMenu, fun(() -> wxMenu:wxMenu())}.

Default constructor.
The iconType is only applicable on wxOSX/Cocoa.

 Link to this function

 popupMenu(This, Menu)

 View Source

 -spec popupMenu(This, Menu) -> boolean() when This :: wxTaskBarIcon(), Menu :: wxMenu:wxMenu().

Pops up a menu at the current mouse position.
The events can be handled by a class derived from wxTaskBarIcon.
Note: It is recommended to override CreatePopupMenu() (not implemented in wx)
callback instead of calling this method from event handler, because some ports
(e.g. wxCocoa) may not implement popupMenu/2 and mouse click events at all.

 Link to this function

 removeIcon(This)

 View Source

 -spec removeIcon(This) -> boolean() when This :: wxTaskBarIcon().

Removes the icon previously set with setIcon/3.

 Link to this function

 setIcon(This, Icon)

 View Source

 -spec setIcon(This, Icon) -> boolean() when This :: wxTaskBarIcon(), Icon :: wxIcon:wxIcon().

 Link to this function

 setIcon/3

 View Source

 -spec setIcon(This, Icon, [Option]) -> boolean()
 when
 This :: wxTaskBarIcon(),
 Icon :: wxIcon:wxIcon(),
 Option :: {tooltip, unicode:chardata()}.

Sets the icon, and optional tooltip text.

wxTaskBarIconEvent

Functions for wxTaskBarIconEvent class
The event class used by wxTaskBarIcon. For a list of the event macros meant
to be used with wxTaskBarIconEvent, please look at wxTaskBarIcon
description.
This class is derived (and can use functions) from: wxEvent
wxWidgets docs:
wxTaskBarIconEvent

 Summary

 Types

 wxTaskBarIcon()

 wxTaskBarIconEvent()

 wxTaskBarIconEventType()

 Types

 Link to this type

 wxTaskBarIcon()

 View Source

 -type wxTaskBarIcon() :: #wxTaskBarIcon{type :: wxTaskBarIconEvent:wxTaskBarIconEventType()}.

 Link to this type

 wxTaskBarIconEvent()

 View Source

 -type wxTaskBarIconEvent() :: wx:wx_object().

 Link to this type

 wxTaskBarIconEventType()

 View Source

 -type wxTaskBarIconEventType() ::
 taskbar_move | taskbar_left_down | taskbar_left_up | taskbar_right_down | taskbar_right_up |
 taskbar_left_dclick | taskbar_right_dclick.

wxTextAttr

Functions for wxTextAttr class
wxTextAttr represents the character and paragraph attributes, or style, for
a range of text in a wxTextCtrl or wxRichTextCtrl (not implemented in wx).
When setting up a wxTextAttr object, pass a bitlist mask to setFlags/2 to
indicate which style elements should be changed. As a convenience, when you call
a setter such as SetFont, the relevant bit will be set.
See: wxTextCtrl, wxRichTextCtrl (not implemented in wx)
wxWidgets docs:
wxTextAttr

 Summary

 Types

 wxTextAttr()

 Functions

 destroy(This)

 Destroys the object.

 getAlignment(This)

 Returns the alignment flags.

 getBackgroundColour(This)

 Returns the background colour.

 getFlags(This)

 Returns flags indicating which attributes are applicable.

 getFont(This)

 Creates and returns a font specified by the font attributes in the
wxTextAttr object.

 getFontEncoding(This)

 Returns the font encoding.

 getFontFaceName(This)

 Returns the font face name.

 getFontSize(This)

 Returns the font size in points.

 getFontStyle(This)

 Returns the font style.

 getFontUnderlined(This)

 Returns true if the font is underlined.

 getFontWeight(This)

 Returns the font weight.

 getLeftIndent(This)

 Returns the left indent in tenths of a millimetre.

 getLeftSubIndent(This)

 Returns the left sub-indent in tenths of a millimetre.

 getRightIndent(This)

 Returns the right indent in tenths of a millimeter.

 getTabs(This)

 Returns an array of tab stops, each expressed in tenths of a millimeter.

 getTextColour(This)

 Returns the text foreground colour.

 hasBackgroundColour(This)

 Returns true if the attribute object specifies a background colour.

 hasFont(This)

 Returns true if the attribute object specifies any font attributes.

 hasTextColour(This)

 Returns true if the attribute object specifies a text foreground colour.

 isDefault(This)

 Returns false if we have any attributes set, true otherwise.

 new()

 Constructors.

 new/1

 new(ColText, Options)

 setAlignment(This, Alignment)

 Sets the paragraph alignment.

 setBackgroundColour(This, ColBack)

 Sets the background colour.

 setFlags(This, Flags)

 Sets the flags determining which styles are being specified.

 setFont(This, Font)

 setFont/3

 Sets the attributes for the given font.

 setFontEncoding(This, Encoding)

 Sets the font encoding.

 setFontFaceName(This, FaceName)

 Sets the font face name.

 setFontFamily(This, Family)

 Sets the font family.

 setFontPixelSize(This, PixelSize)

 Sets the font size in pixels.

 setFontPointSize(This, PointSize)

 Sets the font size in points.

 setFontSize(This, PointSize)

 Sets the font size in points.

 setFontStyle(This, FontStyle)

 Sets the font style (normal, italic or slanted).

 setFontUnderlined(This, Underlined)

 Sets the font underlining (solid line, text colour).

 setFontWeight(This, FontWeight)

 Sets the font weight.

 setLeftIndent(This, Indent)

 setLeftIndent/3

 Sets the left indent and left subindent in tenths of a millimetre.

 setRightIndent(This, Indent)

 Sets the right indent in tenths of a millimetre.

 setTabs(This, Tabs)

 Sets the tab stops, expressed in tenths of a millimetre.

 setTextColour(This, ColText)

 Sets the text foreground colour.

 Types

 Link to this type

 wxTextAttr()

 View Source

 -type wxTextAttr() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTextAttr()) -> ok.

Destroys the object.

 Link to this function

 getAlignment(This)

 View Source

 -spec getAlignment(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the alignment flags.
See ?wxTextAttrAlignment for a list of available styles.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxTextAttr().

Returns the background colour.

 Link to this function

 getFlags(This)

 View Source

 -spec getFlags(This) -> integer() when This :: wxTextAttr().

Returns flags indicating which attributes are applicable.
See setFlags/2 for a list of available flags.

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxTextAttr().

Creates and returns a font specified by the font attributes in the
wxTextAttr object.
Note that wxTextAttr does not store a wxFont object, so this is only a
temporary font.
For greater efficiency, access the font attributes directly.

 Link to this function

 getFontEncoding(This)

 View Source

 -spec getFontEncoding(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font encoding.

 Link to this function

 getFontFaceName(This)

 View Source

 -spec getFontFaceName(This) -> unicode:charlist() when This :: wxTextAttr().

Returns the font face name.

 Link to this function

 getFontSize(This)

 View Source

 -spec getFontSize(This) -> integer() when This :: wxTextAttr().

Returns the font size in points.

 Link to this function

 getFontStyle(This)

 View Source

 -spec getFontStyle(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font style.

 Link to this function

 getFontUnderlined(This)

 View Source

 -spec getFontUnderlined(This) -> boolean() when This :: wxTextAttr().

Returns true if the font is underlined.

 Link to this function

 getFontWeight(This)

 View Source

 -spec getFontWeight(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font weight.

 Link to this function

 getLeftIndent(This)

 View Source

 -spec getLeftIndent(This) -> integer() when This :: wxTextAttr().

Returns the left indent in tenths of a millimetre.

 Link to this function

 getLeftSubIndent(This)

 View Source

 -spec getLeftSubIndent(This) -> integer() when This :: wxTextAttr().

Returns the left sub-indent in tenths of a millimetre.

 Link to this function

 getRightIndent(This)

 View Source

 -spec getRightIndent(This) -> integer() when This :: wxTextAttr().

Returns the right indent in tenths of a millimeter.

 Link to this function

 getTabs(This)

 View Source

 -spec getTabs(This) -> [integer()] when This :: wxTextAttr().

Returns an array of tab stops, each expressed in tenths of a millimeter.
Each stop is measured from the left margin and therefore each value must be
larger than the last.

 Link to this function

 getTextColour(This)

 View Source

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxTextAttr().

Returns the text foreground colour.

 Link to this function

 hasBackgroundColour(This)

 View Source

 -spec hasBackgroundColour(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies a background colour.

 Link to this function

 hasFont(This)

 View Source

 -spec hasFont(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies any font attributes.

 Link to this function

 hasTextColour(This)

 View Source

 -spec hasTextColour(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies a text foreground colour.

 Link to this function

 isDefault(This)

 View Source

 -spec isDefault(This) -> boolean() when This :: wxTextAttr().

Returns false if we have any attributes set, true otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxTextAttr().

Constructors.

 Link to this function

 new/1

 View Source

 -spec new(ColText) -> wxTextAttr() when ColText :: wx:wx_colour();
 (Attr) -> wxTextAttr() when Attr :: wxTextAttr().

 Link to this function

 new(ColText, Options)

 View Source

 -spec new(ColText, [Option]) -> wxTextAttr()
 when
 ColText :: wx:wx_colour(),
 Option ::
 {colBack, wx:wx_colour()} | {font, wxFont:wxFont()} | {alignment, wx:wx_enum()}.

 Link to this function

 setAlignment(This, Alignment)

 View Source

 -spec setAlignment(This, Alignment) -> ok when This :: wxTextAttr(), Alignment :: wx:wx_enum().

Sets the paragraph alignment.
See ?wxTextAttrAlignment enumeration values.
Of these, wxTEXT_ALIGNMENT_JUSTIFIED is unimplemented. In future justification
may be supported when printing or previewing, only.

 Link to this function

 setBackgroundColour(This, ColBack)

 View Source

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxTextAttr(), ColBack :: wx:wx_colour().

Sets the background colour.

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxTextAttr(), Flags :: integer().

Sets the flags determining which styles are being specified.
The ?wxTextAttrFlags values can be passed in a bitlist.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> ok when This :: wxTextAttr(), Font :: wxFont:wxFont().

 Link to this function

 setFont/3

 View Source

 -spec setFont(This, Font, [Option]) -> ok
 when This :: wxTextAttr(), Font :: wxFont:wxFont(), Option :: {flags, integer()}.

Sets the attributes for the given font.
Note that wxTextAttr does not store an actual wxFont object.

 Link to this function

 setFontEncoding(This, Encoding)

 View Source

 -spec setFontEncoding(This, Encoding) -> ok when This :: wxTextAttr(), Encoding :: wx:wx_enum().

Sets the font encoding.

 Link to this function

 setFontFaceName(This, FaceName)

 View Source

 -spec setFontFaceName(This, FaceName) -> ok when This :: wxTextAttr(), FaceName :: unicode:chardata().

Sets the font face name.

 Link to this function

 setFontFamily(This, Family)

 View Source

 -spec setFontFamily(This, Family) -> ok when This :: wxTextAttr(), Family :: wx:wx_enum().

Sets the font family.

 Link to this function

 setFontPixelSize(This, PixelSize)

 View Source

 -spec setFontPixelSize(This, PixelSize) -> ok when This :: wxTextAttr(), PixelSize :: integer().

Sets the font size in pixels.

 Link to this function

 setFontPointSize(This, PointSize)

 View Source

 -spec setFontPointSize(This, PointSize) -> ok when This :: wxTextAttr(), PointSize :: integer().

Sets the font size in points.

 Link to this function

 setFontSize(This, PointSize)

 View Source

 -spec setFontSize(This, PointSize) -> ok when This :: wxTextAttr(), PointSize :: integer().

Sets the font size in points.

 Link to this function

 setFontStyle(This, FontStyle)

 View Source

 -spec setFontStyle(This, FontStyle) -> ok when This :: wxTextAttr(), FontStyle :: wx:wx_enum().

Sets the font style (normal, italic or slanted).

 Link to this function

 setFontUnderlined(This, Underlined)

 View Source

 -spec setFontUnderlined(This, Underlined) -> ok when This :: wxTextAttr(), Underlined :: boolean().

Sets the font underlining (solid line, text colour).

 Link to this function

 setFontWeight(This, FontWeight)

 View Source

 -spec setFontWeight(This, FontWeight) -> ok when This :: wxTextAttr(), FontWeight :: wx:wx_enum().

Sets the font weight.

 Link to this function

 setLeftIndent(This, Indent)

 View Source

 -spec setLeftIndent(This, Indent) -> ok when This :: wxTextAttr(), Indent :: integer().

 Link to this function

 setLeftIndent/3

 View Source

 -spec setLeftIndent(This, Indent, [Option]) -> ok
 when This :: wxTextAttr(), Indent :: integer(), Option :: {subIndent, integer()}.

Sets the left indent and left subindent in tenths of a millimetre.
The sub-indent is an offset from the left of the paragraph, and is used for all
but the first line in a paragraph.
A positive value will cause the first line to appear to the left of the
subsequent lines, and a negative value will cause the first line to be indented
relative to the subsequent lines.
wxRichTextBuffer (not implemented in wx) uses indentation to render a bulleted
item. The left indent is the distance between the margin and the bullet. The
content of the paragraph, including the first line, starts at leftMargin +
leftSubIndent. So the distance between the left edge of the bullet and the left
of the actual paragraph is leftSubIndent.

 Link to this function

 setRightIndent(This, Indent)

 View Source

 -spec setRightIndent(This, Indent) -> ok when This :: wxTextAttr(), Indent :: integer().

Sets the right indent in tenths of a millimetre.

 Link to this function

 setTabs(This, Tabs)

 View Source

 -spec setTabs(This, Tabs) -> ok when This :: wxTextAttr(), Tabs :: [integer()].

Sets the tab stops, expressed in tenths of a millimetre.
Each stop is measured from the left margin and therefore each value must be
larger than the last.

 Link to this function

 setTextColour(This, ColText)

 View Source

 -spec setTextColour(This, ColText) -> ok when This :: wxTextAttr(), ColText :: wx:wx_colour().

Sets the text foreground colour.

wxTextCtrl

Functions for wxTextCtrl class
A text control allows text to be displayed and edited.
It may be single line or multi-line. Notice that a lot of methods of the text
controls are found in the base wxTextEntry (not implemented in wx) class which
is a common base class for wxTextCtrl and other controls using a single line
text entry field (e.g. wxComboBox).
Styles
This class supports the following styles:
wxTextCtrl Text Format
The multiline text controls always store the text as a sequence of lines
separated by '\n' characters, i.e. in the Unix text format even on non-Unix
platforms. This allows the user code to ignore the differences between the
platforms but at a price: the indices in the control such as those returned by
getInsertionPoint/1 or getSelection/1 can not be used as indices into the
string returned by getValue/1 as they're going to be slightly off for
platforms using "\\r\\n" as separator (as Windows does).
Instead, if you need to obtain a substring between the 2 indices obtained from
the control with the help of the functions mentioned above, you should use
getRange/3. And the indices themselves can only be passed to other methods,
for example setInsertionPoint/2 or setSelection/3.
To summarize: never use the indices returned by (multiline) wxTextCtrl as
indices into the string it contains, but only as arguments to be passed back to
the other wxTextCtrl methods. This problem doesn't arise for single-line
platforms however where the indices in the control do correspond to the
positions in the value string.
wxTextCtrl Positions and Coordinates
It is possible to use either linear positions, i.e. roughly (but not always
exactly, as explained in the previous section) the index of the character in the
text contained in the control or X-Y coordinates, i.e. column and line of the
character when working with this class and it provides the functions
positionToXY/2 and xYToPosition/3 to convert between the two.
Additionally, a position in the control can be converted to its coordinates in
pixels using PositionToCoords() (not implemented in wx) which can be useful to
e.g. show a popup menu near the given character. And, in the other direction,
HitTest() (not implemented in wx) can be used to find the character under, or
near, the given pixel coordinates.
To be more precise, positions actually refer to the gaps between characters and
not the characters themselves. Thus, position 0 is the one before the very first
character in the control and so is a valid position even when the control is
empty. And if the control contains a single character, it has two valid
positions: 0 before this character and 1 - after it. This, when the
documentation of various functions mentions "invalid position", it doesn't
consider the position just after the last character of the line to be invalid,
only the positions beyond that one (e.g. 2 and greater in the single character
example) are actually invalid.
wxTextCtrl Styles.
Multi-line text controls support styling, i.e. provide a possibility to set
colours and font for individual characters in it (note that under Windows
wxTE_RICH style is required for style support). To use the styles you can
either call setDefaultStyle/2 before inserting the text or call setStyle/4
later to change the style of the text already in the control (the first solution
is much more efficient).
In either case, if the style doesn't specify some of the attributes (for example
you only want to set the text colour but without changing the font nor the text
background), the values of the default style will be used for them. If there is
no default style, the attributes of the text control itself are used.
So the following code correctly describes what it does: the second call to
setDefaultStyle/2 doesn't change the text foreground colour (which stays red)
while the last one doesn't change the background colour (which stays grey):
wxTextCtrl and C++ Streams
This class multiply-inherits from std::streambuf (except for some really old
compilers using non-standard iostream library), allowing code such as the
following:
Note that even if your build of wxWidgets doesn't support this (the symbol
wxHAS_TEXT_WINDOW_STREAM has value of 0 then) you can still use wxTextCtrl
itself in a stream-like manner:
However the possibility to create a std::ostream associated with
wxTextCtrl may be useful if you need to redirect the output of a function
taking a std::ostream as parameter to a text control.
Another commonly requested need is to redirect std::cout to the text control.
This may be done in the following way:
But wxWidgets provides a convenient class to make it even simpler so instead you
may just do
See wxStreamToTextRedirector (not implemented in wx) for more details.
Event Handling.
The following commands are processed by default event handlers in
wxTextCtrl: wxID_CUT, wxID_COPY, wxID_PASTE, wxID_UNDO, wxID_REDO.
The associated UI update events are also processed automatically, when the
control has the focus.
See: create/4, wxValidator (not implemented in wx)
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxTextCtrl

 Events

Event types emitted from this class:
command_text_updated,
command_text_enter, text_maxlen

 Summary

 Types

 wxTextCtrl()

 Functions

 appendText(This, Text)

 Appends the text to the end of the text control.

 canCopy(This)

 Returns true if the selection can be copied to the clipboard.

 canCut(This)

 Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 Returns true if the contents of the clipboard can be pasted into the text
control.

 canRedo(This)

 Returns true if there is a redo facility available and the last operation can be
redone.

 canUndo(This)

 Returns true if there is an undo facility available and the last operation can
be undone.

 changeValue(This, Value)

 Sets the new text control value.

 clear(This)

 Clears the text in the control.

 copy(This)

 Copies the selected text to the clipboard.

 create(This, Parent, Id)

 create/4

 Creates the text control for two-step construction.

 cut(This)

 Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 Destructor, destroying the text control.

 discardEdits(This)

 Resets the internal modified flag as if the current changes had been saved.

 emulateKeyPress(This, Event)

 This function inserts into the control the character which would have been
inserted if the given key event had occurred in the text control.

 getDefaultStyle(This)

 Returns the style currently used for the new text.

 getInsertionPoint(This)

 Returns the insertion point, or cursor, position.

 getLastPosition(This)

 Returns the zero based index of the last position in the text control, which is
equal to the number of characters in the control.

 getLineLength(This, LineNo)

 Gets the length of the specified line, not including any trailing newline
character(s).

 getLineText(This, LineNo)

 Returns the contents of a given line in the text control, not including any
trailing newline character(s).

 getNumberOfLines(This)

 Returns the number of lines in the text control buffer.

 getRange(This, From, To)

 Returns the string containing the text starting in the positions from and up
to to in the control.

 getSelection(This)

 Gets the current selection span.

 getStringSelection(This)

 Gets the text currently selected in the control.

 getStyle(This, Position, Style)

 Returns the style at this position in the text control.

 getValue(This)

 Gets the contents of the control.

 isEditable(This)

 Returns true if the controls contents may be edited by user (note that it always
can be changed by the program).

 isModified(This)

 Returns true if the text has been modified by user.

 isMultiLine(This)

 Returns true if this is a multi line edit control and false otherwise.

 isSingleLine(This)

 Returns true if this is a single line edit control and false otherwise.

 loadFile(This, Filename)

 loadFile/3

 Loads and displays the named file, if it exists.

 markDirty(This)

 Mark text as modified (dirty).

 new()

 Default ctor.

 new(Parent, Id)

 new/3

 Constructor, creating and showing a text control.

 paste(This)

 Pastes text from the clipboard to the text item.

 positionToXY(This, Pos)

 Converts given position to a zero-based column, line number pair.

 redo(This)

 If there is a redo facility and the last operation can be redone, redoes the
last operation.

 remove(This, From, To)

 Removes the text starting at the first given position up to (but not including)
the character at the last position.

 replace(This, From, To, Value)

 Replaces the text starting at the first position up to (but not including) the
character at the last position with the given text.

 saveFile(This)

 saveFile/2

 Saves the contents of the control in a text file.

 setDefaultStyle(This, Style)

 Changes the default style to use for the new text which is going to be added to
the control.

 setEditable(This, Editable)

 Makes the text item editable or read-only, overriding the wxTE_READONLY flag.

 setInsertionPoint(This, Pos)

 Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 Sets the insertion point at the end of the text control.

 setMaxLength(This, Len)

 This function sets the maximum number of characters the user can enter into the
control.

 setSelection(This, From, To)

 Selects the text starting at the first position up to (but not including) the
character at the last position.

 setStyle(This, Start, End, Style)

 Changes the style of the given range.

 setValue(This, Value)

 Sets the new text control value.

 showPosition(This, Pos)

 Makes the line containing the given position visible.

 undo(This)

 If there is an undo facility and the last operation can be undone, undoes the
last operation.

 writeText(This, Text)

 Writes the text into the text control at the current insertion position.

 xYToPosition(This, X, Y)

 Converts the given zero based column and line number to a position.

 Types

 Link to this type

 wxTextCtrl()

 View Source

 -type wxTextCtrl() :: wx:wx_object().

 Functions

 Link to this function

 appendText(This, Text)

 View Source

 -spec appendText(This, Text) -> ok when This :: wxTextCtrl(), Text :: unicode:chardata().

Appends the text to the end of the text control.
Remark: After the text is appended, the insertion point will be at the end of
the text control. If this behaviour is not desired, the programmer should use
getInsertionPoint/1 and setInsertionPoint/2.
See: writeText/2

 Link to this function

 canCopy(This)

 View Source

 -spec canCopy(This) -> boolean() when This :: wxTextCtrl().

Returns true if the selection can be copied to the clipboard.

 Link to this function

 canCut(This)

 View Source

 -spec canCut(This) -> boolean() when This :: wxTextCtrl().

Returns true if the selection can be cut to the clipboard.

 Link to this function

 canPaste(This)

 View Source

 -spec canPaste(This) -> boolean() when This :: wxTextCtrl().

Returns true if the contents of the clipboard can be pasted into the text
control.
On some platforms (Motif, GTK) this is an approximation and returns true if the
control is editable, false otherwise.

 Link to this function

 canRedo(This)

 View Source

 -spec canRedo(This) -> boolean() when This :: wxTextCtrl().

Returns true if there is a redo facility available and the last operation can be
redone.

 Link to this function

 canUndo(This)

 View Source

 -spec canUndo(This) -> boolean() when This :: wxTextCtrl().

Returns true if there is an undo facility available and the last operation can
be undone.

 Link to this function

 changeValue(This, Value)

 View Source

 -spec changeValue(This, Value) -> ok when This :: wxTextCtrl(), Value :: unicode:chardata().

Sets the new text control value.
It also marks the control as not-modified which means that IsModified() would
return false immediately after the call to changeValue/2.
The insertion point is set to the start of the control (i.e. position 0) by this
function.
This functions does not generate the wxEVT_TEXT event but otherwise is
identical to setValue/2.
See overview_events_prog for more information.
Since: 2.7.1

 Link to this function

 clear(This)

 View Source

 -spec clear(This) -> ok when This :: wxTextCtrl().

Clears the text in the control.
Note that this function will generate a wxEVT_TEXT event, i.e. its effect is
identical to calling SetValue("").

 Link to this function

 copy(This)

 View Source

 -spec copy(This) -> ok when This :: wxTextCtrl().

Copies the selected text to the clipboard.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxTextCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxTextCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the text control for two-step construction.
This method should be called if the default constructor was used for the control
creation. Its parameters have the same meaning as for the non-default
constructor.

 Link to this function

 cut(This)

 View Source

 -spec cut(This) -> ok when This :: wxTextCtrl().

Copies the selected text to the clipboard and removes it from the control.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTextCtrl()) -> ok.

Destructor, destroying the text control.

 Link to this function

 discardEdits(This)

 View Source

 -spec discardEdits(This) -> ok when This :: wxTextCtrl().

Resets the internal modified flag as if the current changes had been saved.

 Link to this function

 emulateKeyPress(This, Event)

 View Source

 -spec emulateKeyPress(This, Event) -> boolean()
 when This :: wxTextCtrl(), Event :: wxKeyEvent:wxKeyEvent().

This function inserts into the control the character which would have been
inserted if the given key event had occurred in the text control.
The event object should be the same as the one passed to EVT_KEY_DOWN
handler previously by wxWidgets. Please note that this function doesn't
currently work correctly for all keys under any platform but MSW.
Return: true if the event resulted in a change to the control, false otherwise.

 Link to this function

 getDefaultStyle(This)

 View Source

 -spec getDefaultStyle(This) -> wxTextAttr:wxTextAttr() when This :: wxTextCtrl().

Returns the style currently used for the new text.
See: setDefaultStyle/2

 Link to this function

 getInsertionPoint(This)

 View Source

 -spec getInsertionPoint(This) -> integer() when This :: wxTextCtrl().

Returns the insertion point, or cursor, position.
This is defined as the zero based index of the character position to the right
of the insertion point. For example, if the insertion point is at the end of the
single-line text control, it is equal to getLastPosition/1.
Notice that insertion position is, in general, different from the index of the
character the cursor position at in the string returned by getValue/1. While
this is always the case for the single line controls, multi-line controls can
use two characters "\\r\\n" as line separator (this is notably the case under
MSW) meaning that indices in the control and its string value are offset by 1
for every line.
Hence to correctly get the character at the current cursor position, taking into
account that there can be none if the cursor is at the end of the string, you
could do the following:

 Link to this function

 getLastPosition(This)

 View Source

 -spec getLastPosition(This) -> integer() when This :: wxTextCtrl().

Returns the zero based index of the last position in the text control, which is
equal to the number of characters in the control.

 Link to this function

 getLineLength(This, LineNo)

 View Source

 -spec getLineLength(This, LineNo) -> integer() when This :: wxTextCtrl(), LineNo :: integer().

Gets the length of the specified line, not including any trailing newline
character(s).
Return: The length of the line, or -1 if lineNo was invalid.

 Link to this function

 getLineText(This, LineNo)

 View Source

 -spec getLineText(This, LineNo) -> unicode:charlist() when This :: wxTextCtrl(), LineNo :: integer().

Returns the contents of a given line in the text control, not including any
trailing newline character(s).
Return: The contents of the line.

 Link to this function

 getNumberOfLines(This)

 View Source

 -spec getNumberOfLines(This) -> integer() when This :: wxTextCtrl().

Returns the number of lines in the text control buffer.
The returned number is the number of logical lines, i.e. just the count of the
number of newline characters in the control + 1, for wxGTK and wxOSX/Cocoa ports
while it is the number of physical lines, i.e. the count of lines actually shown
in the control, in wxMSW. Because of this discrepancy, it is not recommended to
use this function.
Remark: Note that even empty text controls have one line (where the insertion
point is), so getNumberOfLines/1 never returns 0.

 Link to this function

 getRange(This, From, To)

 View Source

 -spec getRange(This, From, To) -> unicode:charlist()
 when This :: wxTextCtrl(), From :: integer(), To :: integer().

Returns the string containing the text starting in the positions from and up
to to in the control.
The positions must have been returned by another wxTextCtrl method. Please
note that the positions in a multiline wxTextCtrl do not correspond to the
indices in the string returned by getValue/1 because of the different new line
representations (CR or CR LF) and so this method should be used to obtain
the correct results instead of extracting parts of the entire value. It may also
be more efficient, especially if the control contains a lot of data.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> {From :: integer(), To :: integer()} when This :: wxTextCtrl().

Gets the current selection span.
If the returned values are equal, there was no selection. Please note that the
indices returned may be used with the other wxTextCtrl methods but don't
necessarily represent the correct indices into the string returned by
getValue/1 for multiline controls under Windows (at least,) you should use
getStringSelection/1 to get the selected text.

 Link to this function

 getStringSelection(This)

 View Source

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxTextCtrl().

Gets the text currently selected in the control.
If there is no selection, the returned string is empty.

 Link to this function

 getStyle(This, Position, Style)

 View Source

 -spec getStyle(This, Position, Style) -> boolean()
 when This :: wxTextCtrl(), Position :: integer(), Style :: wxTextAttr:wxTextAttr().

Returns the style at this position in the text control.
Not all platforms support this function.
Return: true on success, false if an error occurred (this may also mean that the
styles are not supported under this platform).
See: setStyle/4, wxTextAttr

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> unicode:charlist() when This :: wxTextCtrl().

Gets the contents of the control.
Notice that for a multiline text control, the lines will be separated by
(Unix-style) \n characters, even under Windows where they are separated by a
\r\n sequence in the native control.

 Link to this function

 isEditable(This)

 View Source

 -spec isEditable(This) -> boolean() when This :: wxTextCtrl().

Returns true if the controls contents may be edited by user (note that it always
can be changed by the program).
In other words, this functions returns true if the control hasn't been put in
read-only mode by a previous call to setEditable/2.

 Link to this function

 isModified(This)

 View Source

 -spec isModified(This) -> boolean() when This :: wxTextCtrl().

Returns true if the text has been modified by user.
Note that calling setValue/2 doesn't make the control modified.
See: markDirty/1

 Link to this function

 isMultiLine(This)

 View Source

 -spec isMultiLine(This) -> boolean() when This :: wxTextCtrl().

Returns true if this is a multi line edit control and false otherwise.
See: isSingleLine/1

 Link to this function

 isSingleLine(This)

 View Source

 -spec isSingleLine(This) -> boolean() when This :: wxTextCtrl().

Returns true if this is a single line edit control and false otherwise.
See: isSingleLine/1, isMultiLine/1

 Link to this function

 loadFile(This, Filename)

 View Source

 -spec loadFile(This, Filename) -> boolean() when This :: wxTextCtrl(), Filename :: unicode:chardata().

 Link to this function

 loadFile/3

 View Source

 -spec loadFile(This, Filename, [Option]) -> boolean()
 when
 This :: wxTextCtrl(),
 Filename :: unicode:chardata(),
 Option :: {fileType, integer()}.

Loads and displays the named file, if it exists.
Return: true if successful, false otherwise.

 Link to this function

 markDirty(This)

 View Source

 -spec markDirty(This) -> ok when This :: wxTextCtrl().

Mark text as modified (dirty).
See: isModified/1

 Link to this function

 new()

 View Source

 -spec new() -> wxTextCtrl().

Default ctor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxTextCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxTextCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a text control.
Remark: The horizontal scrollbar (wxHSCROLL style flag) will only be created for
multi-line text controls. Without a horizontal scrollbar, text lines that don't
fit in the control's size will be wrapped (but no newline character is
inserted). Single line controls don't have a horizontal scrollbar, the text is
automatically scrolled so that the insertion point is always visible.
See: create/4, wxValidator (not implemented in wx)

 Link to this function

 paste(This)

 View Source

 -spec paste(This) -> ok when This :: wxTextCtrl().

Pastes text from the clipboard to the text item.

 Link to this function

 positionToXY(This, Pos)

 View Source

 -spec positionToXY(This, Pos) -> Result
 when
 Result :: {Res :: boolean(), X :: integer(), Y :: integer()},
 This :: wxTextCtrl(),
 Pos :: integer().

Converts given position to a zero-based column, line number pair.
Return: true on success, false on failure (most likely due to a too large
position parameter).
See: xYToPosition/3

 Link to this function

 redo(This)

 View Source

 -spec redo(This) -> ok when This :: wxTextCtrl().

If there is a redo facility and the last operation can be redone, redoes the
last operation.
Does nothing if there is no redo facility.

 Link to this function

 remove(This, From, To)

 View Source

 -spec remove(This, From, To) -> ok when This :: wxTextCtrl(), From :: integer(), To :: integer().

Removes the text starting at the first given position up to (but not including)
the character at the last position.
This function puts the current insertion point position at to as a side
effect.

 Link to this function

 replace(This, From, To, Value)

 View Source

 -spec replace(This, From, To, Value) -> ok
 when
 This :: wxTextCtrl(),
 From :: integer(),
 To :: integer(),
 Value :: unicode:chardata().

Replaces the text starting at the first position up to (but not including) the
character at the last position with the given text.
This function puts the current insertion point position at to as a side
effect.

 Link to this function

 saveFile(This)

 View Source

 -spec saveFile(This) -> boolean() when This :: wxTextCtrl().

 Link to this function

 saveFile/2

 View Source

 -spec saveFile(This, [Option]) -> boolean()
 when
 This :: wxTextCtrl(), Option :: {file, unicode:chardata()} | {fileType, integer()}.

Saves the contents of the control in a text file.
Return: true if the operation was successful, false otherwise.

 Link to this function

 setDefaultStyle(This, Style)

 View Source

 -spec setDefaultStyle(This, Style) -> boolean()
 when This :: wxTextCtrl(), Style :: wxTextAttr:wxTextAttr().

Changes the default style to use for the new text which is going to be added to
the control.
This applies both to the text added programmatically using writeText/2 or
appendText/2 and to the text entered by the user interactively.
If either of the font, foreground, or background colour is not set in style,
the values of the previous default style are used for them. If the previous
default style didn't set them neither, the global font or colours of the text
control itself are used as fall back.
However if the style parameter is the default wxTextAttr, then the default
style is just reset (instead of being combined with the new style which wouldn't
change it at all).
Return: true on success, false if an error occurred (this may also mean that the
styles are not supported under this platform).
See: getDefaultStyle/1

 Link to this function

 setEditable(This, Editable)

 View Source

 -spec setEditable(This, Editable) -> ok when This :: wxTextCtrl(), Editable :: boolean().

Makes the text item editable or read-only, overriding the wxTE_READONLY flag.
See: isEditable/1

 Link to this function

 setInsertionPoint(This, Pos)

 View Source

 -spec setInsertionPoint(This, Pos) -> ok when This :: wxTextCtrl(), Pos :: integer().

Sets the insertion point at the given position.

 Link to this function

 setInsertionPointEnd(This)

 View Source

 -spec setInsertionPointEnd(This) -> ok when This :: wxTextCtrl().

Sets the insertion point at the end of the text control.
This is equivalent to calling setInsertionPoint/2 with getLastPosition/1
argument.

 Link to this function

 setMaxLength(This, Len)

 View Source

 -spec setMaxLength(This, Len) -> ok when This :: wxTextCtrl(), Len :: integer().

This function sets the maximum number of characters the user can enter into the
control.
In other words, it allows limiting the text value length to len not counting
the terminating NUL character.
If len is 0, the previously set max length limit, if any, is discarded and the
user may enter as much text as the underlying native text control widget
supports (typically at least 32Kb). If the user tries to enter more characters
into the text control when it already is filled up to the maximal length, a
wxEVT_TEXT_MAXLEN event is sent to notify the program about it (giving it the
possibility to show an explanatory message, for example) and the extra input is
discarded.
Note that in wxGTK this function may only be used with single line text
controls.

 Link to this function

 setSelection(This, From, To)

 View Source

 -spec setSelection(This, From, To) -> ok when This :: wxTextCtrl(), From :: integer(), To :: integer().

Selects the text starting at the first position up to (but not including) the
character at the last position.
If both parameters are equal to -1 all text in the control is selected.
Notice that the insertion point will be moved to from by this function.
See: SelectAll() (not implemented in wx)

 Link to this function

 setStyle(This, Start, End, Style)

 View Source

 -spec setStyle(This, Start, End, Style) -> boolean()
 when
 This :: wxTextCtrl(),
 Start :: integer(),
 End :: integer(),
 Style :: wxTextAttr:wxTextAttr().

Changes the style of the given range.
If any attribute within style is not set, the corresponding attribute from
getDefaultStyle/1 is used.
Return: true on success, false if an error occurred (this may also mean that the
styles are not supported under this platform).
See: getStyle/3, wxTextAttr

 Link to this function

 setValue(This, Value)

 View Source

 -spec setValue(This, Value) -> ok when This :: wxTextCtrl(), Value :: unicode:chardata().

Sets the new text control value.
It also marks the control as not-modified which means that IsModified() would
return false immediately after the call to setValue/2.
The insertion point is set to the start of the control (i.e. position 0) by this
function unless the control value doesn't change at all, in which case the
insertion point is left at its original position.
Note that, unlike most other functions changing the controls values, this
function generates a wxEVT_TEXT event. To avoid this you can use
changeValue/2 instead.

 Link to this function

 showPosition(This, Pos)

 View Source

 -spec showPosition(This, Pos) -> ok when This :: wxTextCtrl(), Pos :: integer().

Makes the line containing the given position visible.

 Link to this function

 undo(This)

 View Source

 -spec undo(This) -> ok when This :: wxTextCtrl().

If there is an undo facility and the last operation can be undone, undoes the
last operation.
Does nothing if there is no undo facility.

 Link to this function

 writeText(This, Text)

 View Source

 -spec writeText(This, Text) -> ok when This :: wxTextCtrl(), Text :: unicode:chardata().

Writes the text into the text control at the current insertion position.
Remark: Newlines in the text string are the only control characters allowed, and
they will cause appropriate line breaks. See operator<<() and appendText/2 for
more convenient ways of writing to the window. After the write operation, the
insertion point will be at the end of the inserted text, so subsequent write
operations will be appended. To append text after the user may have interacted
with the control, call setInsertionPointEnd/1 before writing.

 Link to this function

 xYToPosition(This, X, Y)

 View Source

 -spec xYToPosition(This, X, Y) -> integer() when This :: wxTextCtrl(), X :: integer(), Y :: integer().

Converts the given zero based column and line number to a position.
Return: The position value, or -1 if x or y was invalid.

wxTextDataObject

Functions for wxTextDataObject class
wxTextDataObject is a specialization of wxDataObjectSimple (not
implemented in wx) for text data. It can be used without change to paste data
into the wxClipboard or a wxDropSource (not implemented in wx). A user may
wish to derive a new class from this class for providing text on-demand in order
to minimize memory consumption when offering data in several formats, such as
plain text and RTF because by default the text is stored in a string in this
class, but it might as well be generated when requested. For this,
getTextLength/1 and getText/1 will have to be overridden.
Note that if you already have the text inside a string, you will not achieve any
efficiency gain by overriding these functions because copying wxStrings is
already a very efficient operation (data is not actually copied because
wxStrings are reference counted).
See:
Overview dnd,
wxDataObject, wxDataObjectSimple (not implemented in wx),
wxFileDataObject, wxBitmapDataObject
This class is derived (and can use functions) from: wxDataObject
wxWidgets docs:
wxTextDataObject

 Summary

 Types

 wxTextDataObject()

 Functions

 destroy(This)

 Destroys the object.

 getText(This)

 Returns the text associated with the data object.

 getTextLength(This)

 Returns the data size.

 new()

 new(Options)

 Constructor, may be used to initialise the text (otherwise setText/2 should be
used later).

 setText(This, StrText)

 Sets the text associated with the data object.

 Types

 Link to this type

 wxTextDataObject()

 View Source

 -type wxTextDataObject() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTextDataObject()) -> ok.

Destroys the object.

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxTextDataObject().

Returns the text associated with the data object.
You may wish to override this method when offering data on-demand, but this is
not required by wxWidgets' internals. Use this method to get data in text form
from the wxClipboard.

 Link to this function

 getTextLength(This)

 View Source

 -spec getTextLength(This) -> integer() when This :: wxTextDataObject().

Returns the data size.
By default, returns the size of the text data set in the constructor or using
setText/2. This can be overridden to provide text size data on-demand. It is
recommended to return the text length plus 1 for a trailing zero, but this is
not strictly required.

 Link to this function

 new()

 View Source

 -spec new() -> wxTextDataObject().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxTextDataObject() when Option :: {text, unicode:chardata()}.

Constructor, may be used to initialise the text (otherwise setText/2 should be
used later).

 Link to this function

 setText(This, StrText)

 View Source

 -spec setText(This, StrText) -> ok when This :: wxTextDataObject(), StrText :: unicode:chardata().

Sets the text associated with the data object.
This method is called when the data object receives the data and, by default,
copies the text into the member variable. If you want to process the text on the
fly you may wish to override this function.

wxTextEntryDialog

Functions for wxTextEntryDialog class
This class represents a dialog that requests a one-line text string from the
user. It is implemented as a generic wxWidgets dialog.
See:
Overview cmndlg
This class is derived (and can use functions) from: wxDialog
wxTopLevelWindow wxWindow wxEvtHandler
wxWidgets docs:
wxTextEntryDialog

 Summary

 Types

 wxTextEntryDialog()

 Functions

 destroy(This)

 Destructor.

 getValue(This)

 Returns the text that the user has entered if the user has pressed OK, or the
original value if the user has pressed Cancel.

 new()

 Default constructor.

 new(Parent, Message)

 new/3

 Constructor.

 setValue(This, Value)

 Sets the default text value.

 Types

 Link to this type

 wxTextEntryDialog()

 View Source

 -type wxTextEntryDialog() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTextEntryDialog()) -> ok.

Destructor.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> unicode:charlist() when This :: wxTextEntryDialog().

Returns the text that the user has entered if the user has pressed OK, or the
original value if the user has pressed Cancel.

 Link to this function

 new()

 View Source

 -spec new() -> wxTextEntryDialog().

Default constructor.
Call Create() (not implemented in wx) to really create the dialog later.
Since: 2.9.5

 Link to this function

 new(Parent, Message)

 View Source

 -spec new(Parent, Message) -> wxTextEntryDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Message, [Option]) -> wxTextEntryDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.
See Create() (not implemented in wx) method for parameter description.

 Link to this function

 setValue(This, Value)

 View Source

 -spec setValue(This, Value) -> ok when This :: wxTextEntryDialog(), Value :: unicode:chardata().

Sets the default text value.

wxToggleButton

Functions for wxToggleButton class
wxToggleButton is a button that stays pressed when clicked by the user. In
other words, it is similar to wxCheckBox in functionality but looks like a
wxButton.
Since wxWidgets version 2.9.0 this control emits an update UI event.
You can see wxToggleButton in action in page_samples_widgets.
See: wxCheckBox, wxButton, wxBitmapToggleButton (not implemented in
wx)
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxToggleButton

 Events

Event types emitted from this class:
command_togglebutton_clicked

 Summary

 Types

 wxToggleButton()

 Functions

 create(This, Parent, Id, Label)

 create/5

 Creates the toggle button for two-step construction.

 destroy(This)

 Destructor, destroying the toggle button.

 getValue(This)

 Gets the state of the toggle button.

 new()

 Default constructor.

 new(Parent, Id, Label)

 new/4

 Constructor, creating and showing a toggle button.

 setValue(This, State)

 Sets the toggle button to the given state.

 Types

 Link to this type

 wxToggleButton()

 View Source

 -type wxToggleButton() :: wx:wx_object().

 Functions

 Link to this function

 create(This, Parent, Id, Label)

 View Source

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxToggleButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

 Link to this function

 create/5

 View Source

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxToggleButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the toggle button for two-step construction.
See new/4 for details.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxToggleButton()) -> ok.

Destructor, destroying the toggle button.

 Link to this function

 getValue(This)

 View Source

 -spec getValue(This) -> boolean() when This :: wxToggleButton().

Gets the state of the toggle button.
Return: Returns true if it is pressed, false otherwise.

 Link to this function

 new()

 View Source

 -spec new() -> wxToggleButton().

Default constructor.

 Link to this function

 new(Parent, Id, Label)

 View Source

 -spec new(Parent, Id, Label) -> wxToggleButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

 Link to this function

 new/4

 View Source

 -spec new(Parent, Id, Label, [Option]) -> wxToggleButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a toggle button.
See: create/5, wxValidator (not implemented in wx)

 Link to this function

 setValue(This, State)

 View Source

 -spec setValue(This, State) -> ok when This :: wxToggleButton(), State :: boolean().

Sets the toggle button to the given state.
This does not cause a EVT_TOGGLEBUTTON event to be emitted.

wxToolBar

Functions for wxToolBar class
A toolbar is a bar of buttons and/or other controls usually placed below the
menu bar in a wxFrame.
You may create a toolbar that is managed by a frame calling
wxFrame:createToolBar/2. Under Pocket PC, you should always use this function
for creating the toolbar to be managed by the frame, so that wxWidgets can use a
combined menubar and toolbar. Where you manage your own toolbars, create
wxToolBar as usual.
There are several different types of tools you can add to a toolbar. These types
are controlled by the ?wxItemKind enumeration.
Note that many methods in wxToolBar such as addTool/6 return a
wxToolBarToolBase* object. This should be regarded as an opaque handle
representing the newly added toolbar item, providing access to its id and
position within the toolbar. Changes to the item's state should be made through
calls to wxToolBar methods, for example enableTool/3. Calls to
wxToolBarToolBase (not implemented in wx) methods (undocumented by purpose)
will not change the visible state of the item within the tool bar.
After you have added all the tools you need, you must call realize/1 to
effectively construct and display the toolbar.
wxMSW note: Note that under wxMSW toolbar paints tools to reflect system-wide
colours. If you use more than 16 colours in your tool bitmaps, you may wish to
suppress this behaviour, otherwise system colours in your bitmaps will
inadvertently be mapped to system colours. To do this, set the msw.remap system
option before creating the toolbar: If you wish to use 32-bit images (which
include an alpha channel for transparency) use: Then colour remapping is
switched off, and a transparent background used. But only use this option under
Windows XP with true colour:
Styles
This class supports the following styles:
See:
Overview toolbar
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxToolBar

 Events

Event types emitted from this class:
command_tool_rclicked,
command_tool_enter,
tool_dropdown

 Summary

 Types

 wxToolBar()

 Functions

 addCheckTool(This, ToolId, Label, Bitmap1)

 addCheckTool/5

 Adds a new check (or toggle) tool to the toolbar.

 addControl(This, Control)

 addControl/3

 Adds any control to the toolbar, typically e.g. a wxComboBox.

 addRadioTool(This, ToolId, Label, Bitmap1)

 addRadioTool/5

 Adds a new radio tool to the toolbar.

 addSeparator(This)

 Adds a separator for spacing groups of tools.

 addStretchableSpace(This)

 Adds a stretchable space to the toolbar.

 addTool(This, Tool)

 Adds a tool to the toolbar.

 addTool(This, ToolId, Label, Bitmap)

 addTool/5

 Adds a tool to the toolbar.

 addTool/6

 Adds a tool to the toolbar.

 deleteTool(This, ToolId)

 Removes the specified tool from the toolbar and deletes it.

 deleteToolByPos(This, Pos)

 This function behaves like deleteTool/2 but it deletes the tool at the
specified position and not the one with the given id.

 enableTool(This, ToolId, Enable)

 Enables or disables the tool.

 findById(This, Id)

 Returns a pointer to the tool identified by id or NULL if no corresponding
tool is found.

 findControl(This, Id)

 Returns a pointer to the control identified by id or NULL if no corresponding
control is found.

 findToolForPosition(This, X, Y)

 Finds a tool for the given mouse position.

 getMargins(This)

 Returns the left/right and top/bottom margins, which are also used for
inter-toolspacing.

 getToolBitmapSize(This)

 Returns the size of bitmap that the toolbar expects to have.

 getToolEnabled(This, ToolId)

 Called to determine whether a tool is enabled (responds to user input).

 getToolLongHelp(This, ToolId)

 Returns the long help for the given tool.

 getToolPacking(This)

 Returns the value used for packing tools.

 getToolPos(This, ToolId)

 Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not
found.

 getToolSeparation(This)

 Returns the default separator size.

 getToolShortHelp(This, ToolId)

 Returns the short help for the given tool.

 getToolSize(This)

 Returns the size of a whole button, which is usually larger than a tool bitmap
because of added 3D effects.

 getToolState(This, ToolId)

 Gets the on/off state of a toggle tool.

 insertControl(This, Pos, Control)

 insertControl/4

 Inserts the control into the toolbar at the given position.

 insertSeparator(This, Pos)

 Inserts the separator into the toolbar at the given position.

 insertStretchableSpace(This, Pos)

 Inserts a stretchable space at the given position.

 insertTool(This, Pos, Tool)

 insertTool(This, Pos, ToolId, Label, Bitmap)

 insertTool/6

 Inserts the tool with the specified attributes into the toolbar at the given
position.

 realize(This)

 This function should be called after you have added tools.

 removeTool(This, Id)

 Removes the given tool from the toolbar but doesn't delete it.

 setMargins(This, X, Y)

 Set the values to be used as margins for the toolbar.

 setToolBitmapSize(This, Size)

 Sets the default size of each tool bitmap.

 setToolLongHelp(This, ToolId, HelpString)

 Sets the long help for the given tool.

 setToolPacking(This, Packing)

 Sets the value used for spacing tools.

 setToolSeparation(This, Separation)

 Sets the default separator size.

 setToolShortHelp(This, ToolId, HelpString)

 Sets the short help for the given tool.

 toggleTool(This, ToolId, Toggle)

 Toggles a tool on or off.

 Types

 Link to this type

 wxToolBar()

 View Source

 -type wxToolBar() :: wx:wx_object().

 Functions

 Link to this function

 addCheckTool(This, ToolId, Label, Bitmap1)

 View Source

 -spec addCheckTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap().

 Link to this function

 addCheckTool/5

 View Source

 -spec addCheckTool(This, ToolId, Label, Bitmap1, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a new check (or toggle) tool to the toolbar.
The parameters are the same as in addTool/6.
See: addTool/6

 Link to this function

 addControl(This, Control)

 View Source

 -spec addControl(This, Control) -> wx:wx_object()
 when This :: wxToolBar(), Control :: wxControl:wxControl().

 Link to this function

 addControl/3

 View Source

 -spec addControl(This, Control, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Control :: wxControl:wxControl(),
 Option :: {label, unicode:chardata()}.

Adds any control to the toolbar, typically e.g. a wxComboBox.
Remark: wxMac: labels are only displayed if wxWidgets is built with
wxMAC_USE_NATIVE_TOOLBAR set to 1

 Link to this function

 addRadioTool(This, ToolId, Label, Bitmap1)

 View Source

 -spec addRadioTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap().

 Link to this function

 addRadioTool/5

 View Source

 -spec addRadioTool(This, ToolId, Label, Bitmap1, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a new radio tool to the toolbar.
Consecutive radio tools form a radio group such that exactly one button in the
group is pressed at any moment, in other words whenever a button in the group is
pressed the previously pressed button is automatically released. You should
avoid having the radio groups of only one element as it would be impossible for
the user to use such button.
By default, the first button in the radio group is initially pressed, the others
are not.
See: addTool/6

 Link to this function

 addSeparator(This)

 View Source

 -spec addSeparator(This) -> wx:wx_object() when This :: wxToolBar().

Adds a separator for spacing groups of tools.
Notice that the separator uses the look appropriate for the current platform so
it can be a vertical line (MSW, some versions of GTK) or just an empty space or
something else.
See: addTool/6, setToolSeparation/2, addStretchableSpace/1

 Link to this function

 addStretchableSpace(This)

 View Source

 -spec addStretchableSpace(This) -> wx:wx_object() when This :: wxToolBar().

Adds a stretchable space to the toolbar.
Any space not taken up by the fixed items (all items except for stretchable
spaces) is distributed in equal measure between the stretchable spaces in the
toolbar. The most common use for this method is to add a single stretchable
space before the items which should be right-aligned in the toolbar, but more
exotic possibilities are possible, e.g. a stretchable space may be added in the
beginning and the end of the toolbar to centre all toolbar items.
See: addTool/6, addSeparator/1, insertStretchableSpace/2
Since: 2.9.1

 Link to this function

 addTool(This, Tool)

 View Source

 -spec addTool(This, Tool) -> wx:wx_object() when This :: wxToolBar(), Tool :: wx:wx_object().

Adds a tool to the toolbar.
Remark: After you have added tools to a toolbar, you must call realize/1 in
order to have the tools appear.
See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6,
deleteTool/2, realize/1, SetDropdownMenu() (not implemented in wx)

 Link to this function

 addTool(This, ToolId, Label, Bitmap)

 View Source

 -spec addTool(This, ToolId, Label, Bitmap) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap().

 Link to this function

 addTool/5

 View Source

 -spec addTool(This, ToolId, Label, Bitmap, BmpDisabled) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 BmpDisabled :: wxBitmap:wxBitmap();
 (This, ToolId, Label, Bitmap, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option :: {shortHelp, unicode:chardata()} | {kind, wx:wx_enum()}.

Adds a tool to the toolbar.
This most commonly used version has fewer parameters than the full version below
which specifies the more rarely used button features.
Remark: After you have added tools to a toolbar, you must call realize/1 in
order to have the tools appear.
See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6,
deleteTool/2, realize/1, SetDropdownMenu() (not implemented in wx)

 Link to this function

 addTool/6

 View Source

 -spec addTool(This, ToolId, Label, Bitmap, BmpDisabled, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 BmpDisabled :: wxBitmap:wxBitmap(),
 Option ::
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a tool to the toolbar.
Remark: After you have added tools to a toolbar, you must call realize/1 in
order to have the tools appear.
See: addSeparator/1, addCheckTool/5, addRadioTool/5, insertTool/6,
deleteTool/2, realize/1, SetDropdownMenu() (not implemented in wx)

 Link to this function

 deleteTool(This, ToolId)

 View Source

 -spec deleteTool(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Removes the specified tool from the toolbar and deletes it.
If you don't want to delete the tool, but just to remove it from the toolbar (to
possibly add it back later), you may use removeTool/2 instead.
Note: It is unnecessary to call realize/1 for the change to take place, it
will happen immediately.
Return: true if the tool was deleted, false otherwise.
See: deleteToolByPos/2

 Link to this function

 deleteToolByPos(This, Pos)

 View Source

 -spec deleteToolByPos(This, Pos) -> boolean() when This :: wxToolBar(), Pos :: integer().

This function behaves like deleteTool/2 but it deletes the tool at the
specified position and not the one with the given id.

 Link to this function

 enableTool(This, ToolId, Enable)

 View Source

 -spec enableTool(This, ToolId, Enable) -> ok
 when This :: wxToolBar(), ToolId :: integer(), Enable :: boolean().

Enables or disables the tool.
Remark: Some implementations will change the visible state of the tool to
indicate that it is disabled.
See: getToolEnabled/2, toggleTool/3

 Link to this function

 findById(This, Id)

 View Source

 -spec findById(This, Id) -> wx:wx_object() when This :: wxToolBar(), Id :: integer().

Returns a pointer to the tool identified by id or NULL if no corresponding
tool is found.

 Link to this function

 findControl(This, Id)

 View Source

 -spec findControl(This, Id) -> wxControl:wxControl() when This :: wxToolBar(), Id :: integer().

Returns a pointer to the control identified by id or NULL if no corresponding
control is found.

 Link to this function

 findToolForPosition(This, X, Y)

 View Source

 -spec findToolForPosition(This, X, Y) -> wx:wx_object()
 when This :: wxToolBar(), X :: integer(), Y :: integer().

Finds a tool for the given mouse position.
Return: A pointer to a tool if a tool is found, or NULL otherwise.
Remark: Currently not implemented in wxGTK (always returns NULL there).

 Link to this function

 getMargins(This)

 View Source

 -spec getMargins(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the left/right and top/bottom margins, which are also used for
inter-toolspacing.
See: setMargins/3

 Link to this function

 getToolBitmapSize(This)

 View Source

 -spec getToolBitmapSize(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the size of bitmap that the toolbar expects to have.
The default bitmap size is platform-dependent: for example, it is 1615 for MSW
and 2424 for GTK. This size does not necessarily indicate the best size to
use for the toolbars on the given platform, for this you should use
wxArtProvider::GetNativeSizeHint(wxART_TOOLBAR) but in any case, as the bitmap
size is deduced automatically from the size of the bitmaps associated with the
tools added to the toolbar, it is usually unnecessary to call
setToolBitmapSize/2 explicitly.
Remark: Note that this is the size of the bitmap you pass to addTool/6, and
not the eventual size of the tool button.
See: setToolBitmapSize/2, getToolSize/1

 Link to this function

 getToolEnabled(This, ToolId)

 View Source

 -spec getToolEnabled(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Called to determine whether a tool is enabled (responds to user input).
Return: true if the tool is enabled, false otherwise.
See: enableTool/3

 Link to this function

 getToolLongHelp(This, ToolId)

 View Source

 -spec getToolLongHelp(This, ToolId) -> unicode:charlist() when This :: wxToolBar(), ToolId :: integer().

Returns the long help for the given tool.
See: setToolLongHelp/3, setToolShortHelp/3

 Link to this function

 getToolPacking(This)

 View Source

 -spec getToolPacking(This) -> integer() when This :: wxToolBar().

Returns the value used for packing tools.
See: setToolPacking/2

 Link to this function

 getToolPos(This, ToolId)

 View Source

 -spec getToolPos(This, ToolId) -> integer() when This :: wxToolBar(), ToolId :: integer().

Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not
found.

 Link to this function

 getToolSeparation(This)

 View Source

 -spec getToolSeparation(This) -> integer() when This :: wxToolBar().

Returns the default separator size.
See: setToolSeparation/2

 Link to this function

 getToolShortHelp(This, ToolId)

 View Source

 -spec getToolShortHelp(This, ToolId) -> unicode:charlist() when This :: wxToolBar(), ToolId :: integer().

Returns the short help for the given tool.
See: getToolLongHelp/2, setToolShortHelp/3

 Link to this function

 getToolSize(This)

 View Source

 -spec getToolSize(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the size of a whole button, which is usually larger than a tool bitmap
because of added 3D effects.
See: setToolBitmapSize/2, getToolBitmapSize/1

 Link to this function

 getToolState(This, ToolId)

 View Source

 -spec getToolState(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Gets the on/off state of a toggle tool.
Return: true if the tool is toggled on, false otherwise.
See: toggleTool/3

 Link to this function

 insertControl(This, Pos, Control)

 View Source

 -spec insertControl(This, Pos, Control) -> wx:wx_object()
 when This :: wxToolBar(), Pos :: integer(), Control :: wxControl:wxControl().

 Link to this function

 insertControl/4

 View Source

 -spec insertControl(This, Pos, Control, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 Control :: wxControl:wxControl(),
 Option :: {label, unicode:chardata()}.

Inserts the control into the toolbar at the given position.
You must call realize/1 for the change to take place.
See: addControl/3, insertTool/6

 Link to this function

 insertSeparator(This, Pos)

 View Source

 -spec insertSeparator(This, Pos) -> wx:wx_object() when This :: wxToolBar(), Pos :: integer().

Inserts the separator into the toolbar at the given position.
You must call realize/1 for the change to take place.
See: addSeparator/1, insertTool/6

 Link to this function

 insertStretchableSpace(This, Pos)

 View Source

 -spec insertStretchableSpace(This, Pos) -> wx:wx_object() when This :: wxToolBar(), Pos :: integer().

Inserts a stretchable space at the given position.
See addStretchableSpace/1 for details about stretchable spaces.
See: insertTool/6, insertSeparator/2
Since: 2.9.1

 Link to this function

 insertTool(This, Pos, Tool)

 View Source

 -spec insertTool(This, Pos, Tool) -> wx:wx_object()
 when This :: wxToolBar(), Pos :: integer(), Tool :: wx:wx_object().

 Link to this function

 insertTool(This, Pos, ToolId, Label, Bitmap)

 View Source

 -spec insertTool(This, Pos, ToolId, Label, Bitmap) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap().

 Link to this function

 insertTool/6

 View Source

 -spec insertTool(This, Pos, ToolId, Label, Bitmap, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {clientData, wx:wx_object()}.

Inserts the tool with the specified attributes into the toolbar at the given
position.
You must call realize/1 for the change to take place.
See: addTool/6, insertControl/4, insertSeparator/2
Return: The newly inserted tool or NULL on failure. Notice that with the
overload taking tool parameter the caller is responsible for deleting the tool
in the latter case.

 Link to this function

 realize(This)

 View Source

 -spec realize(This) -> boolean() when This :: wxToolBar().

This function should be called after you have added tools.

 Link to this function

 removeTool(This, Id)

 View Source

 -spec removeTool(This, Id) -> wx:wx_object() when This :: wxToolBar(), Id :: integer().

Removes the given tool from the toolbar but doesn't delete it.
This allows inserting/adding this tool back to this (or another) toolbar later.
Note: It is unnecessary to call realize/1 for the change to take place, it
will happen immediately.
See: deleteTool/2

 Link to this function

 setMargins(This, X, Y)

 View Source

 -spec setMargins(This, X, Y) -> ok when This :: wxToolBar(), X :: integer(), Y :: integer().

Set the values to be used as margins for the toolbar.
Remark: This must be called before the tools are added if absolute positioning
is to be used, and the default (zero-size) margins are to be overridden.
See: getMargins/1

 Link to this function

 setToolBitmapSize(This, Size)

 View Source

 -spec setToolBitmapSize(This, Size) -> ok
 when This :: wxToolBar(), Size :: {W :: integer(), H :: integer()}.

Sets the default size of each tool bitmap.
The default bitmap size is 16 by 15 pixels.
Remark: This should be called to tell the toolbar what the tool bitmap size is.
Call it before you add tools.
See: getToolBitmapSize/1, getToolSize/1

 Link to this function

 setToolLongHelp(This, ToolId, HelpString)

 View Source

 -spec setToolLongHelp(This, ToolId, HelpString) -> ok
 when This :: wxToolBar(), ToolId :: integer(), HelpString :: unicode:chardata().

Sets the long help for the given tool.
Remark: You might use the long help for displaying the tool purpose on the
status line.
See: getToolLongHelp/2, setToolShortHelp/3

 Link to this function

 setToolPacking(This, Packing)

 View Source

 -spec setToolPacking(This, Packing) -> ok when This :: wxToolBar(), Packing :: integer().

Sets the value used for spacing tools.
The default value is 1.
Remark: The packing is used for spacing in the vertical direction if the toolbar
is horizontal, and for spacing in the horizontal direction if the toolbar is
vertical.
See: getToolPacking/1

 Link to this function

 setToolSeparation(This, Separation)

 View Source

 -spec setToolSeparation(This, Separation) -> ok when This :: wxToolBar(), Separation :: integer().

Sets the default separator size.
The default value is 5.
See: addSeparator/1

 Link to this function

 setToolShortHelp(This, ToolId, HelpString)

 View Source

 -spec setToolShortHelp(This, ToolId, HelpString) -> ok
 when
 This :: wxToolBar(), ToolId :: integer(), HelpString :: unicode:chardata().

Sets the short help for the given tool.
Remark: An application might use short help for identifying the tool purpose in
a tooltip.
See: getToolShortHelp/2, setToolLongHelp/3

 Link to this function

 toggleTool(This, ToolId, Toggle)

 View Source

 -spec toggleTool(This, ToolId, Toggle) -> ok
 when This :: wxToolBar(), ToolId :: integer(), Toggle :: boolean().

Toggles a tool on or off.
This does not cause any event to get emitted.
Remark: Only applies to a tool that has been specified as a toggle tool.

wxToolTip

Functions for wxToolTip class
This class holds information about a tooltip associated with a window (see
wxWindow:setToolTip/2).
The four static methods, enable/1, setDelay/1 wxToolTip::SetAutoPop() (not
implemented in wx) and wxToolTip::SetReshow() (not implemented in wx) can be
used to globally alter tooltips behaviour.
wxWidgets docs:
wxToolTip

 Summary

 Types

 wxToolTip()

 Functions

 destroy(This)

 Destroys the object.

 enable(Flag)

 Enable or disable tooltips globally.

 getTip(This)

 Get the tooltip text.

 getWindow(This)

 Get the associated window.

 new(Tip)

 Constructor.

 setDelay(Msecs)

 Set the delay after which the tooltip appears.

 setTip(This, Tip)

 Set the tooltip text.

 Types

 Link to this type

 wxToolTip()

 View Source

 -type wxToolTip() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxToolTip()) -> ok.

Destroys the object.

 Link to this function

 enable(Flag)

 View Source

 -spec enable(Flag) -> ok when Flag :: boolean().

Enable or disable tooltips globally.
Note: May not be supported on all platforms (eg. wxCocoa).

 Link to this function

 getTip(This)

 View Source

 -spec getTip(This) -> unicode:charlist() when This :: wxToolTip().

Get the tooltip text.

 Link to this function

 getWindow(This)

 View Source

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxToolTip().

Get the associated window.

 Link to this function

 new(Tip)

 View Source

 -spec new(Tip) -> wxToolTip() when Tip :: unicode:chardata().

Constructor.

 Link to this function

 setDelay(Msecs)

 View Source

 -spec setDelay(Msecs) -> ok when Msecs :: integer().

Set the delay after which the tooltip appears.
Note: May not be supported on all platforms.

 Link to this function

 setTip(This, Tip)

 View Source

 -spec setTip(This, Tip) -> ok when This :: wxToolTip(), Tip :: unicode:chardata().

Set the tooltip text.

wxToolbook

Functions for wxToolbook class
wxToolbook is a class similar to wxNotebook but which uses a
wxToolBar to show the labels instead of the tabs.
There is no documentation for this class yet but its usage is identical to
wxNotebook (except for the features clearly related to tabs only), so please
refer to that class documentation for now. You can also use the
page_samples_notebook to see wxToolbook in action.
One feature of this class not supported by wxBookCtrlBase is the support for
disabling some of the pages, see EnablePage() (not implemented in wx).
Styles
This class supports the following styles:
See:
Overview bookctrl,
wxBookCtrlBase, wxNotebook,
Examples
This class is derived (and can use functions) from: wxBookCtrlBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxToolbook

 Events

Event types emitted from this class:
toolbook_page_changed,
toolbook_page_changing

 Summary

 Types

 wxToolbook()

 Functions

 addPage(This, Page, Text)

 addPage/4

 Adds a new page.

 advanceSelection(This)

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 create/4

 Create the tool book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Constructs a choicebook control.

 new(Parent, Id)

 new/3

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 Link to this type

 wxToolbook()

 View Source

 -type wxToolbook() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Text)

 View Source

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxToolbook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been
added to this control previously.
The call to this function will generate the page changing and page changed
events if select is true, but not when inserting the very first page (as there
is no previous page selection to switch from in this case and so it wouldn't
make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 Link to this function

 advanceSelection(This)

 View Source

 -spec advanceSelection(This) -> ok when This :: wxToolbook().

 Link to this function

 advanceSelection/2

 View Source

 -spec advanceSelection(This, [Option]) -> ok when This :: wxToolbook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxToolbook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See: wxImageList, setImageList/2

 Link to this function

 changeSelection(This, Page)

 View Source

 -spec changeSelection(This, Page) -> integer() when This :: wxToolbook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page
changing events.
See overview_events_prog for more information.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxToolbook(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the tool book control that has already been constructed with the default
constructor.

 Link to this function

 deleteAllPages(This)

 View Source

 -spec deleteAllPages(This) -> boolean() when This :: wxToolbook().

Deletes all pages.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxToolbook()) -> ok.

Destroys the object.

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxToolbook().

Returns the currently selected page or NULL.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxToolbook().

Returns the associated image list, may be NULL.
See: wxImageList, setImageList/2

 Link to this function

 getPage(This, Page)

 View Source

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxToolbook(), Page :: integer().

Returns the window at the given page position.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxToolbook().

Returns the number of pages in the control.

 Link to this function

 getPageImage(This, NPage)

 View Source

 -spec getPageImage(This, NPage) -> integer() when This :: wxToolbook(), NPage :: integer().

Returns the image index for the given page.

 Link to this function

 getPageText(This, NPage)

 View Source

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxToolbook(), NPage :: integer().

Returns the string for the given page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxToolbook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page
when called from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the
platform and so wxBookCtrlEvent:getSelection/1 should be used instead in this
case.

 Link to this function

 hitTest(This, Pt)

 View Source

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxToolbook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is
returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at
the specified position.

 Link to this function

 insertPage(This, Index, Page, Text)

 View Source

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxToolbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 Link to this function

 new()

 View Source

 -spec new() -> wxToolbook().

Constructs a choicebook control.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxToolbook() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxToolbook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxToolbook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See: wxImageList, assignImageList/2

 Link to this function

 setPageImage(This, Page, Image)

 View Source

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxToolbook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 Link to this function

 setPageSize(This, Size)

 View Source

 -spec setPageSize(This, Size) -> ok when This :: wxToolbook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxToolbook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> integer() when This :: wxToolbook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use
the changeSelection/2 function if you don't want these events to be generated.
See: getSelection/1

wxTopLevelWindow

Functions for wxTopLevelWindow class
wxTopLevelWindow is a common base class for wxDialog and wxFrame. It
is an abstract base class meaning that you never work with objects of this class
directly, but all of its methods are also applicable for the two classes above.
Note that the instances of wxTopLevelWindow are managed by wxWidgets in the
internal top level window list.
See: wxDialog, wxFrame
This class is derived (and can use functions) from: wxWindow
wxEvtHandler
wxWidgets docs:
wxTopLevelWindow

 Events

Event types emitted from this class: maximize,
move, show

 Summary

 Types

 wxTopLevelWindow()

 Functions

 centerOnScreen(This)

 centerOnScreen(This, Options)

 See: centreOnScreen/2.

 centreOnScreen(This)

 centreOnScreen/2

 Centres the window on screen.

 getIcon(This)

 Returns the standard icon of the window.

 getIcons(This)

 Returns all icons associated with the window, there will be none of them if
neither setIcon/2 nor setIcons/2 had been called before.

 getTitle(This)

 Gets a string containing the window title.

 iconize(This)

 iconize/2

 Iconizes or restores the window.

 isActive(This)

 Returns true if this window is currently active, i.e. if the user is currently
working with it.

 isFullScreen(This)

 Returns true if the window is in fullscreen mode.

 isIconized(This)

 Returns true if the window is iconized.

 isMaximized(This)

 Returns true if the window is maximized.

 maximize(This)

 maximize/2

 Maximizes or restores the window.

 requestUserAttention(This)

 requestUserAttention/2

 Use a system-dependent way to attract users attention to the window when it is
in background.

 setIcon(This, Icon)

 Sets the icon for this window.

 setIcons(This, Icons)

 Sets several icons of different sizes for this window: this allows using
different icons for different situations (e.g.

 setShape(This, Region)

 If the platform supports it, sets the shape of the window to that depicted by
region.

 setTitle(This, Title)

 Sets the window title.

 showFullScreen(This, Show)

 showFullScreen/3

 Depending on the value of show parameter the window is either shown full
screen or restored to its normal state.

 Types

 Link to this type

 wxTopLevelWindow()

 View Source

 -type wxTopLevelWindow() :: wx:wx_object().

 Functions

 Link to this function

 centerOnScreen(This)

 View Source

 -spec centerOnScreen(This) -> ok when This :: wxTopLevelWindow().

 Link to this function

 centerOnScreen(This, Options)

 View Source

 -spec centerOnScreen(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {dir, integer()}.

See: centreOnScreen/2.

 Link to this function

 centreOnScreen(This)

 View Source

 -spec centreOnScreen(This) -> ok when This :: wxTopLevelWindow().

 Link to this function

 centreOnScreen/2

 View Source

 -spec centreOnScreen(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {dir, integer()}.

Centres the window on screen.
See: wxWindow:centreOnParent/2

 Link to this function

 getIcon(This)

 View Source

 -spec getIcon(This) -> wxIcon:wxIcon() when This :: wxTopLevelWindow().

Returns the standard icon of the window.
The icon will be invalid if it hadn't been previously set by setIcon/2.
See: getIcons/1

 Link to this function

 getIcons(This)

 View Source

 -spec getIcons(This) -> wxIconBundle:wxIconBundle() when This :: wxTopLevelWindow().

Returns all icons associated with the window, there will be none of them if
neither setIcon/2 nor setIcons/2 had been called before.
Use getIcon/1 to get the main icon of the window.
See: wxIconBundle

 Link to this function

 getTitle(This)

 View Source

 -spec getTitle(This) -> unicode:charlist() when This :: wxTopLevelWindow().

Gets a string containing the window title.
See: setTitle/2

 Link to this function

 iconize(This)

 View Source

 -spec iconize(This) -> ok when This :: wxTopLevelWindow().

 Link to this function

 iconize/2

 View Source

 -spec iconize(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {iconize, boolean()}.

Iconizes or restores the window.
Note that in wxGTK the change to the window state is not immediate, i.e.
isIconized/1 will typically return false right after a call to iconize/2 and
its return value will only change after the control flow returns to the event
loop and the notification about the window being really iconized is received.
See: isIconized/1, Restore() (not implemented in wx), (), wxIconizeEvent

 Link to this function

 isActive(This)

 View Source

 -spec isActive(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if this window is currently active, i.e. if the user is currently
working with it.

 Link to this function

 isFullScreen(This)

 View Source

 -spec isFullScreen(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is in fullscreen mode.
See: showFullScreen/3

 Link to this function

 isIconized(This)

 View Source

 -spec isIconized(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is iconized.

 Link to this function

 isMaximized(This)

 View Source

 -spec isMaximized(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is maximized.

 Link to this function

 maximize(This)

 View Source

 -spec maximize(This) -> ok when This :: wxTopLevelWindow().

 Link to this function

 maximize/2

 View Source

 -spec maximize(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {maximize, boolean()}.

Maximizes or restores the window.
Note that, just as with iconize/2, the change to the window state is not
immediate in at least wxGTK port.
See: Restore() (not implemented in wx), iconize/2

 Link to this function

 requestUserAttention(This)

 View Source

 -spec requestUserAttention(This) -> ok when This :: wxTopLevelWindow().

 Link to this function

 requestUserAttention/2

 View Source

 -spec requestUserAttention(This, [Option]) -> ok
 when This :: wxTopLevelWindow(), Option :: {flags, integer()}.

Use a system-dependent way to attract users attention to the window when it is
in background.
flags may have the value of either ?wxUSER_ATTENTION_INFO (default) or
?wxUSER_ATTENTION_ERROR which results in a more drastic action. When in doubt,
use the default value.
Note: This function should normally be only used when the application is not
already in foreground.
This function is currently implemented for Win32 where it flashes the window
icon in the taskbar, and for wxGTK with task bars supporting it.

 Link to this function

 setIcon(This, Icon)

 View Source

 -spec setIcon(This, Icon) -> ok when This :: wxTopLevelWindow(), Icon :: wxIcon:wxIcon().

Sets the icon for this window.
Remark: The window takes a 'copy' of icon, but since it uses reference
counting, the copy is very quick. It is safe to delete icon after calling this
function.
Note: In wxMSW, icon must be either 16x16 or 32x32 icon.
See: wxIcon, setIcons/2

 Link to this function

 setIcons(This, Icons)

 View Source

 -spec setIcons(This, Icons) -> ok when This :: wxTopLevelWindow(), Icons :: wxIconBundle:wxIconBundle().

Sets several icons of different sizes for this window: this allows using
different icons for different situations (e.g.
task switching bar, taskbar, window title bar) instead of scaling, with possibly
bad looking results, the only icon set by setIcon/2.
Note: In wxMSW, icons must contain a 16x16 or 32x32 icon, preferably both.
See: wxIconBundle

 Link to this function

 setShape(This, Region)

 View Source

 -spec setShape(This, Region) -> boolean()
 when
 This :: wxTopLevelWindow(),
 Region :: wxRegion:wxRegion() | wxGraphicsPath:wxGraphicsPath().

If the platform supports it, sets the shape of the window to that depicted by
region.
The system will not display or respond to any mouse event for the pixels that
lie outside of the region. To reset the window to the normal rectangular shape
simply call setShape/2 again with an empty wxRegion. Returns true if the
operation is successful.
This method is available in this class only since wxWidgets 2.9.3, previous
versions only provided it in wxTopLevelWindow.
Note that windows with non default shape have a fixed size and can't be resized
using wxWindow:setSize/6.

 Link to this function

 setTitle(This, Title)

 View Source

 -spec setTitle(This, Title) -> ok when This :: wxTopLevelWindow(), Title :: unicode:chardata().

Sets the window title.
See: getTitle/1

 Link to this function

 showFullScreen(This, Show)

 View Source

 -spec showFullScreen(This, Show) -> boolean() when This :: wxTopLevelWindow(), Show :: boolean().

 Link to this function

 showFullScreen/3

 View Source

 -spec showFullScreen(This, Show, [Option]) -> boolean()
 when This :: wxTopLevelWindow(), Show :: boolean(), Option :: {style, integer()}.

Depending on the value of show parameter the window is either shown full
screen or restored to its normal state.
style is a bit list containing some or all of the following values, which
indicate what elements of the window to hide in full-screen mode:
This function has not been tested with MDI frames.
Note: Showing a window full screen also actually wxWindow:show/2s the window
if it isn't shown.
See: EnableFullScreenView() (not implemented in wx), isFullScreen/1

wxTreeCtrl

Functions for wxTreeCtrl class
A tree control presents information as a hierarchy, with items that may be
expanded to show further items. Items in a tree control are referenced by
wxTreeItemId (not implemented in wx) handles, which may be tested for validity
by calling wxTreeItemId::IsOk() (not implemented in wx).
A similar control with a fully native implementation for GTK+ and macOS as well
is wxDataViewTreeCtrl (not implemented in wx).
To intercept events from a tree control, use the event table macros described in
wxTreeEvent.
Styles
This class supports the following styles:
See also overview_windowstyles.
Win32 notes:
wxTreeCtrl class uses the standard common treeview control under Win32
implemented in the system library comctl32.dll. Some versions of this library
are known to have bugs with handling the tree control colours: the usual symptom
is that the expanded items leave black (or otherwise incorrectly coloured)
background behind them, especially for the controls using non-default background
colour. The recommended solution is to upgrade the comctl32.dll to a newer
version: see
http://www.microsoft.com/downloads/details.aspx?familyid=cb2cf3a2-8025-4e8f-8511-9b476a8d35d2
See: wxDataViewTreeCtrl (not implemented in wx), wxTreeEvent,
wxTreeItemData (not implemented in wx),
Overview treectrl,
wxListBox, wxListCtrl, wxImageList
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxTreeCtrl

 Events

Event types emitted from this class:
command_tree_begin_drag,
command_tree_begin_rdrag,
command_tree_end_drag,
command_tree_begin_label_edit,
command_tree_end_label_edit,
command_tree_delete_item,
command_tree_get_info,
command_tree_set_info,
command_tree_item_activated,
command_tree_item_collapsed,
command_tree_item_collapsing,
command_tree_item_expanded,
command_tree_item_expanding,
command_tree_item_right_click,
command_tree_item_middle_click,
command_tree_sel_changed,
command_tree_sel_changing,
command_tree_key_down,
command_tree_item_gettooltip,
command_tree_item_menu,
command_tree_state_image_click

 Summary

 Types

 wxTreeCtrl()

 Functions

 addRoot(This, Text)

 addRoot/3

 Adds the root node to the tree, returning the new item.

 appendItem(This, Parent, Text)

 appendItem/4

 Appends an item to the end of the branch identified by parent, return a new
item id.

 assignImageList(This, ImageList)

 Sets the normal image list.

 assignStateImageList(This, ImageList)

 Sets the state image list.

 collapse(This, Item)

 Collapses the given item.

 collapseAndReset(This, Item)

 Collapses the given item and removes all children.

 create(This, Parent)

 create/3

 Creates the tree control.

 delete(This, Item)

 Deletes the specified item.

 deleteAllItems(This)

 Deletes all items in the control.

 deleteChildren(This, Item)

 Deletes all children of the given item (but not the item itself).

 destroy(This)

 Destructor, destroying the tree control.

 editLabel(This, Item)

 Starts editing the label of the given item.

 ensureVisible(This, Item)

 Scrolls and/or expands items to ensure that the given item is visible.

 expand(This, Item)

 Expands the given item.

 getBoundingRect(This, Item)

 getBoundingRect/3

 Retrieves the rectangle bounding the item.

 getChildrenCount(This, Item)

 getChildrenCount/3

 Returns the number of items in the branch.

 getCount(This)

 Returns the number of items in the control.

 getEditControl(This)

 Returns the edit control being currently used to edit a label.

 getFirstChild(This, Item)

 Returns the first child; call getNextChild/3 for the next child.

 getFirstVisibleItem(This)

 Returns the first visible item.

 getImageList(This)

 Returns the normal image list.

 getIndent(This)

 Returns the current tree control indentation.

 getItemBackgroundColour(This, Item)

 Returns the background colour of the item.

 getItemData(This, Item)

 Returns the tree item data associated with the item.

 getItemFont(This, Item)

 Returns the font of the item label.

 getItemImage(This, Item)

 getItemImage/3

 Gets the specified item image.

 getItemParent(This, Item)

 Returns the item's parent.

 getItemText(This, Item)

 Returns the item label.

 getItemTextColour(This, Item)

 Returns the colour of the item label.

 getLastChild(This, Item)

 Returns the last child of the item (or an invalid tree item if this item has no
children).

 getNextChild(This, Item, Cookie)

 Returns the next child; call getFirstChild/2 for the first child.

 getNextSibling(This, Item)

 Returns the next sibling of the specified item; call getPrevSibling/2 for the
previous sibling.

 getNextVisible(This, Item)

 Returns the next visible item or an invalid item if this item is the last
visible one.

 getPrevSibling(This, Item)

 Returns the previous sibling of the specified item; call getNextSibling/2 for
the next sibling.

 getPrevVisible(This, Item)

 Returns the previous visible item or an invalid item if this item is the first
visible one.

 getRootItem(This)

 Returns the root item for the tree control.

 getSelection(This)

 Returns the selection, or an invalid item if there is no selection.

 getSelections(This)

 Fills the array of tree items passed in with the currently selected items.

 getStateImageList(This)

 Returns the state image list (from which application-defined state images are
taken).

 hitTest(This, Point)

 Calculates which (if any) item is under the given point, returning the tree
item id at this point plus extra information flags.

 insertItem(This, Parent, Previous, Text)

 insertItem/5

 Inserts an item after a given one (previous).

 isBold(This, Item)

 Returns true if the given item is in bold state.

 isExpanded(This, Item)

 Returns true if the item is expanded (only makes sense if it has children).

 isSelected(This, Item)

 Returns true if the item is selected.

 isTreeItemIdOk(Item)

 Returns true if the item is valid.

 isVisible(This, Item)

 Returns true if the item is visible on the screen.

 itemHasChildren(This, Item)

 Returns true if the item has children.

 new()

 Default Constructor.

 new(Parent)

 new/2

 Constructor, creating and showing a tree control.

 prependItem(This, Parent, Text)

 prependItem/4

 Appends an item as the first child of parent, return a new item id.

 scrollTo(This, Item)

 Scrolls the specified item into view.

 selectItem(This, Item)

 selectItem/3

 Selects the given item.

 setImageList(This, ImageList)

 Sets the normal image list.

 setIndent(This, Indent)

 Sets the indentation for the tree control.

 setItemBackgroundColour(This, Item, Col)

 Sets the colour of the item's background.

 setItemBold(This, Item)

 setItemBold/3

 Makes item appear in bold font if bold parameter is true or resets it to the
normal state.

 setItemData(This, Item, Data)

 Sets the item client data.

 setItemDropHighlight(This, Item)

 setItemDropHighlight/3

 Gives the item the visual feedback for Drag'n'Drop actions, which is useful if
something is dragged from the outside onto the tree control (as opposed to a DnD
operation within the tree control, which already is implemented internally).

 setItemFont(This, Item, Font)

 Sets the item's font.

 setItemHasChildren(This, Item)

 setItemHasChildren/3

 Force appearance of the button next to the item.

 setItemImage(This, Item, Image)

 setItemImage/4

 Sets the specified item's image.

 setItemText(This, Item, Text)

 Sets the item label.

 setItemTextColour(This, Item, Col)

 Sets the colour of the item's text.

 setStateImageList(This, ImageList)

 Sets the state image list (from which application-defined state images are
taken).

 setWindowStyle(This, Styles)

 Sets the mode flags associated with the display of the tree control.

 sortChildren(This, Item)

 Sorts the children of the given item using OnCompareItems() (not implemented
in wx).

 toggle(This, Item)

 Toggles the given item between collapsed and expanded states.

 toggleItemSelection(This, Item)

 Toggles the given item between selected and unselected states.

 unselect(This)

 Removes the selection from the currently selected item (if any).

 unselectAll(This)

 This function either behaves the same as unselect/1 if the control doesn't
have wxTR_MULTIPLE style, or removes the selection from all items if it does
have this style.

 unselectItem(This, Item)

 Unselects the given item.

 Types

 Link to this type

 wxTreeCtrl()

 View Source

 -type wxTreeCtrl() :: wx:wx_object().

 Functions

 Link to this function

 addRoot(This, Text)

 View Source

 -spec addRoot(This, Text) -> integer() when This :: wxTreeCtrl(), Text :: unicode:chardata().

 Link to this function

 addRoot/3

 View Source

 -spec addRoot(This, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Adds the root node to the tree, returning the new item.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If
image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

 Link to this function

 appendItem(This, Parent, Text)

 View Source

 -spec appendItem(This, Parent, Text) -> integer()
 when This :: wxTreeCtrl(), Parent :: integer(), Text :: unicode:chardata().

 Link to this function

 appendItem/4

 View Source

 -spec appendItem(This, Parent, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Appends an item to the end of the branch identified by parent, return a new
item id.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If
image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the normal image list.
The image list assigned with this method will be automatically deleted by
wxTreeCtrl as appropriate (i.e. it takes ownership of the list).
See: setImageList/2

 Link to this function

 assignStateImageList(This, ImageList)

 View Source

 -spec assignStateImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the state image list.
Image list assigned with this method will be automatically deleted by
wxTreeCtrl as appropriate (i.e. it takes ownership of the list).
See: setStateImageList/2

 Link to this function

 collapse(This, Item)

 View Source

 -spec collapse(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Collapses the given item.

 Link to this function

 collapseAndReset(This, Item)

 View Source

 -spec collapseAndReset(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Collapses the given item and removes all children.

 Link to this function

 create(This, Parent)

 View Source

 -spec create(This, Parent) -> boolean() when This :: wxTreeCtrl(), Parent :: wxWindow:wxWindow().

 Link to this function

 create/3

 View Source

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxTreeCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the tree control.
See new/2 for further details.

 Link to this function

 delete(This, Item)

 View Source

 -spec delete(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Deletes the specified item.
A EVT_TREE_DELETE_ITEM event will be generated.
This function may cause a subsequent call to getNextChild/3 to fail.

 Link to this function

 deleteAllItems(This)

 View Source

 -spec deleteAllItems(This) -> ok when This :: wxTreeCtrl().

Deletes all items in the control.
This function generates wxEVT_TREE_DELETE_ITEM events for each item being
deleted, including the root one if it is shown, i.e. unless wxTR_HIDE_ROOT style
is used.

 Link to this function

 deleteChildren(This, Item)

 View Source

 -spec deleteChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Deletes all children of the given item (but not the item itself).
A wxEVT_TREE_DELETE_ITEM event will be generated for every item being deleted.
If you have called setItemHasChildren/3, you may need to call it again since
deleteChildren/2 does not automatically clear the setting.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTreeCtrl()) -> ok.

Destructor, destroying the tree control.

 Link to this function

 editLabel(This, Item)

 View Source

 -spec editLabel(This, Item) -> wxTextCtrl:wxTextCtrl() when This :: wxTreeCtrl(), Item :: integer().

Starts editing the label of the given item.
This function generates a EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed
so that no text control will appear for in-place editing.
If the user changed the label (i.e. s/he does not press ESC or leave the text
control without changes, a EVT_TREE_END_LABEL_EDIT event will be sent which
can be vetoed as well.
See: EndEditLabel() (not implemented in wx), wxTreeEvent

 Link to this function

 ensureVisible(This, Item)

 View Source

 -spec ensureVisible(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Scrolls and/or expands items to ensure that the given item is visible.
This method can be used, and will work, even while the window is frozen (see
wxWindow:freeze/1).

 Link to this function

 expand(This, Item)

 View Source

 -spec expand(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Expands the given item.

 Link to this function

 getBoundingRect(This, Item)

 View Source

 -spec getBoundingRect(This, Item) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxTreeCtrl(),
 Item :: integer().

 Link to this function

 getBoundingRect/3

 View Source

 -spec getBoundingRect(This, Item, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {textOnly, boolean()}.

Retrieves the rectangle bounding the item.
If textOnly is true, only the rectangle around the item's label will be
returned, otherwise the item's image is also taken into account.
The return value is true if the rectangle was successfully retrieved or false if
it was not (in this case rect is not changed) - for example, if the item is
currently invisible.
Notice that the rectangle coordinates are logical, not physical ones. So, for
example, the x coordinate may be negative if the tree has a horizontal scrollbar
and its position is not 0.

 Link to this function

 getChildrenCount(This, Item)

 View Source

 -spec getChildrenCount(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 getChildrenCount/3

 View Source

 -spec getChildrenCount(This, Item, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {recursively, boolean()}.

Returns the number of items in the branch.
If recursively is true, returns the total number of descendants, otherwise
only one level of children is counted.

 Link to this function

 getCount(This)

 View Source

 -spec getCount(This) -> integer() when This :: wxTreeCtrl().

Returns the number of items in the control.

 Link to this function

 getEditControl(This)

 View Source

 -spec getEditControl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxTreeCtrl().

Returns the edit control being currently used to edit a label.
Returns NULL if no label is being edited.
Note: This is currently only implemented for wxMSW.

 Link to this function

 getFirstChild(This, Item)

 View Source

 -spec getFirstChild(This, Item) -> Result
 when
 Result :: {Res :: integer(), Cookie :: integer()},
 This :: wxTreeCtrl(),
 Item :: integer().

Returns the first child; call getNextChild/3 for the next child.
For this enumeration function you must pass in a 'cookie' parameter which is
opaque for the application but is necessary for the library to make these
functions reentrant (i.e. allow more than one enumeration on one and the same
object simultaneously). The cookie passed to getFirstChild/2 and
getNextChild/3 should be the same variable.
Returns an invalid tree item (i.e. wxTreeItemId::IsOk() (not implemented in
wx) returns false) if there are no further children.
See: getNextChild/3, getNextSibling/2

 Link to this function

 getFirstVisibleItem(This)

 View Source

 -spec getFirstVisibleItem(This) -> integer() when This :: wxTreeCtrl().

Returns the first visible item.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxTreeCtrl().

Returns the normal image list.

 Link to this function

 getIndent(This)

 View Source

 -spec getIndent(This) -> integer() when This :: wxTreeCtrl().

Returns the current tree control indentation.

 Link to this function

 getItemBackgroundColour(This, Item)

 View Source

 -spec getItemBackgroundColour(This, Item) -> wx:wx_colour4()
 when This :: wxTreeCtrl(), Item :: integer().

Returns the background colour of the item.

 Link to this function

 getItemData(This, Item)

 View Source

 -spec getItemData(This, Item) -> term() when This :: wxTreeCtrl(), Item :: integer().

Returns the tree item data associated with the item.
See: wxTreeItemData (not implemented in wx)

 Link to this function

 getItemFont(This, Item)

 View Source

 -spec getItemFont(This, Item) -> wxFont:wxFont() when This :: wxTreeCtrl(), Item :: integer().

Returns the font of the item label.
If the font hadn't been explicitly set for the specified item with
setItemFont/3, returns an invalid ?wxNullFont font. wxWindow:getFont/1 can
be used to retrieve the global tree control font used for the items without any
specific font.

 Link to this function

 getItemImage(This, Item)

 View Source

 -spec getItemImage(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 getItemImage/3

 View Source

 -spec getItemImage(This, Item, [Option]) -> integer()
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {which, wx:wx_enum()}.

Gets the specified item image.
The value of which may be:

 Link to this function

 getItemParent(This, Item)

 View Source

 -spec getItemParent(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the item's parent.

 Link to this function

 getItemText(This, Item)

 View Source

 -spec getItemText(This, Item) -> unicode:charlist() when This :: wxTreeCtrl(), Item :: integer().

Returns the item label.

 Link to this function

 getItemTextColour(This, Item)

 View Source

 -spec getItemTextColour(This, Item) -> wx:wx_colour4() when This :: wxTreeCtrl(), Item :: integer().

Returns the colour of the item label.

 Link to this function

 getLastChild(This, Item)

 View Source

 -spec getLastChild(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the last child of the item (or an invalid tree item if this item has no
children).
See: getFirstChild/2, getNextSibling/2, getLastChild/2

 Link to this function

 getNextChild(This, Item, Cookie)

 View Source

 -spec getNextChild(This, Item, Cookie) -> Result
 when
 Result :: {Res :: integer(), Cookie :: integer()},
 This :: wxTreeCtrl(),
 Item :: integer(),
 Cookie :: integer().

Returns the next child; call getFirstChild/2 for the first child.
For this enumeration function you must pass in a 'cookie' parameter which is
opaque for the application but is necessary for the library to make these
functions reentrant (i.e. allow more than one enumeration on one and the same
object simultaneously). The cookie passed to getFirstChild/2 and
getNextChild/3 should be the same.
Returns an invalid tree item if there are no further children.
See: getFirstChild/2

 Link to this function

 getNextSibling(This, Item)

 View Source

 -spec getNextSibling(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the next sibling of the specified item; call getPrevSibling/2 for the
previous sibling.
Returns an invalid tree item if there are no further siblings.
See: getPrevSibling/2

 Link to this function

 getNextVisible(This, Item)

 View Source

 -spec getNextVisible(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the next visible item or an invalid item if this item is the last
visible one.
Note: The item itself must be visible.

 Link to this function

 getPrevSibling(This, Item)

 View Source

 -spec getPrevSibling(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the previous sibling of the specified item; call getNextSibling/2 for
the next sibling.
Returns an invalid tree item if there are no further children.
See: getNextSibling/2

 Link to this function

 getPrevVisible(This, Item)

 View Source

 -spec getPrevVisible(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the previous visible item or an invalid item if this item is the first
visible one.
Note: The item itself must be visible.

 Link to this function

 getRootItem(This)

 View Source

 -spec getRootItem(This) -> integer() when This :: wxTreeCtrl().

Returns the root item for the tree control.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxTreeCtrl().

Returns the selection, or an invalid item if there is no selection.
This function only works with the controls without wxTR_MULTIPLE style, use
getSelections/1 for the controls which do have this style or, if a single item
is wanted, use GetFocusedItem() (not implemented in wx).

 Link to this function

 getSelections(This)

 View Source

 -spec getSelections(This) -> Result
 when Result :: {Res :: integer(), Selection :: [integer()]}, This :: wxTreeCtrl().

Fills the array of tree items passed in with the currently selected items.
This function can be called only if the control has the wxTR_MULTIPLE style.
Returns the number of selected items.

 Link to this function

 getStateImageList(This)

 View Source

 -spec getStateImageList(This) -> wxImageList:wxImageList() when This :: wxTreeCtrl().

Returns the state image list (from which application-defined state images are
taken).

 Link to this function

 hitTest(This, Point)

 View Source

 -spec hitTest(This, Point) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxTreeCtrl(),
 Point :: {X :: integer(), Y :: integer()}.

Calculates which (if any) item is under the given point, returning the tree
item id at this point plus extra information flags.
flags is a bitlist of the following:

 Link to this function

 insertItem(This, Parent, Previous, Text)

 View Source

 -spec insertItem(This, Parent, Previous, Text) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Previous :: integer(),
 Text :: unicode:chardata().

 Link to this function

 insertItem/5

 View Source

 -spec insertItem(This, Parent, Previous, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Previous :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selImage, integer()} | {data, term()}.

Inserts an item after a given one (previous).
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If
image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

 Link to this function

 isBold(This, Item)

 View Source

 -spec isBold(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the given item is in bold state.
See: setItemBold/3

 Link to this function

 isExpanded(This, Item)

 View Source

 -spec isExpanded(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is expanded (only makes sense if it has children).

 Link to this function

 isSelected(This, Item)

 View Source

 -spec isSelected(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is selected.

 Link to this function

 isTreeItemIdOk(Item)

 View Source

 -spec isTreeItemIdOk(Item) -> boolean() when Item :: integer().

Returns true if the item is valid.

 Link to this function

 isVisible(This, Item)

 View Source

 -spec isVisible(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is visible on the screen.

 Link to this function

 itemHasChildren(This, Item)

 View Source

 -spec itemHasChildren(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item has children.

 Link to this function

 new()

 View Source

 -spec new() -> wxTreeCtrl().

Default Constructor.

 Link to this function

 new(Parent)

 View Source

 -spec new(Parent) -> wxTreeCtrl() when Parent :: wxWindow:wxWindow().

 Link to this function

 new/2

 View Source

 -spec new(Parent, [Option]) -> wxTreeCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a tree control.
See: create/3, wxValidator (not implemented in wx)

 Link to this function

 prependItem(This, Parent, Text)

 View Source

 -spec prependItem(This, Parent, Text) -> integer()
 when This :: wxTreeCtrl(), Parent :: integer(), Text :: unicode:chardata().

 Link to this function

 prependItem/4

 View Source

 -spec prependItem(This, Parent, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Appends an item as the first child of parent, return a new item id.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If
image > -1 and selImage is -1, the same image is used for both selected and
unselected items.

 Link to this function

 scrollTo(This, Item)

 View Source

 -spec scrollTo(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Scrolls the specified item into view.
Note that this method doesn't work while the window is frozen (See
wxWindow:freeze/1), at least under MSW.
See: ensureVisible/2

 Link to this function

 selectItem(This, Item)

 View Source

 -spec selectItem(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 selectItem/3

 View Source

 -spec selectItem(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {select, boolean()}.

Selects the given item.
In multiple selection controls, can be also used to deselect a currently
selected item if the value of select is false.
Notice that calling this method will generate wxEVT_TREE_SEL_CHANGING and
wxEVT_TREE_SEL_CHANGED events and that the change could be vetoed by the
former event handler.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the normal image list.
The image list assigned with this method will not be deleted by
wxTreeCtrl's destructor, you must delete it yourself.
See: assignImageList/2

 Link to this function

 setIndent(This, Indent)

 View Source

 -spec setIndent(This, Indent) -> ok when This :: wxTreeCtrl(), Indent :: integer().

Sets the indentation for the tree control.

 Link to this function

 setItemBackgroundColour(This, Item, Col)

 View Source

 -spec setItemBackgroundColour(This, Item, Col) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour of the item's background.

 Link to this function

 setItemBold(This, Item)

 View Source

 -spec setItemBold(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 setItemBold/3

 View Source

 -spec setItemBold(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {bold, boolean()}.

Makes item appear in bold font if bold parameter is true or resets it to the
normal state.
See: isBold/2

 Link to this function

 setItemData(This, Item, Data)

 View Source

 -spec setItemData(This, Item, Data) -> ok when This :: wxTreeCtrl(), Item :: integer(), Data :: term().

Sets the item client data.
Notice that the client data previously associated with the item (if any) is
not freed by this function and so calling this function multiple times for the
same item will result in memory leaks unless you delete the old item data
pointer yourself.

 Link to this function

 setItemDropHighlight(This, Item)

 View Source

 -spec setItemDropHighlight(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 setItemDropHighlight/3

 View Source

 -spec setItemDropHighlight(This, Item, [Option]) -> ok
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {highlight, boolean()}.

Gives the item the visual feedback for Drag'n'Drop actions, which is useful if
something is dragged from the outside onto the tree control (as opposed to a DnD
operation within the tree control, which already is implemented internally).

 Link to this function

 setItemFont(This, Item, Font)

 View Source

 -spec setItemFont(This, Item, Font) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Font :: wxFont:wxFont().

Sets the item's font.
All items in the tree should have the same height to avoid text clipping, so the
fonts height should be the same for all of them, although font attributes may
vary.
See: setItemBold/3

 Link to this function

 setItemHasChildren(This, Item)

 View Source

 -spec setItemHasChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

 Link to this function

 setItemHasChildren/3

 View Source

 -spec setItemHasChildren(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {has, boolean()}.

Force appearance of the button next to the item.
This is useful to allow the user to expand the items which don't have any
children now, but instead adding them only when needed, thus minimizing memory
usage and loading time.

 Link to this function

 setItemImage(This, Item, Image)

 View Source

 -spec setItemImage(This, Item, Image) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Image :: integer().

 Link to this function

 setItemImage/4

 View Source

 -spec setItemImage(This, Item, Image, [Option]) -> ok
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Image :: integer(),
 Option :: {which, wx:wx_enum()}.

Sets the specified item's image.
See getItemImage/3 for the description of the which parameter.

 Link to this function

 setItemText(This, Item, Text)

 View Source

 -spec setItemText(This, Item, Text) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Text :: unicode:chardata().

Sets the item label.

 Link to this function

 setItemTextColour(This, Item, Col)

 View Source

 -spec setItemTextColour(This, Item, Col) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour of the item's text.

 Link to this function

 setStateImageList(This, ImageList)

 View Source

 -spec setStateImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the state image list (from which application-defined state images are
taken).
Image list assigned with this method will not be deleted by wxTreeCtrl's
destructor, you must delete it yourself.
See: assignStateImageList/2

 Link to this function

 setWindowStyle(This, Styles)

 View Source

 -spec setWindowStyle(This, Styles) -> ok when This :: wxTreeCtrl(), Styles :: integer().

Sets the mode flags associated with the display of the tree control.
The new mode takes effect immediately.
Note: Generic only; MSW ignores changes.

 Link to this function

 sortChildren(This, Item)

 View Source

 -spec sortChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Sorts the children of the given item using OnCompareItems() (not implemented
in wx).
You should override that method to change the sort order (the default is
ascending case-sensitive alphabetical order).
See: wxTreeItemData (not implemented in wx), OnCompareItems() (not
implemented in wx)

 Link to this function

 toggle(This, Item)

 View Source

 -spec toggle(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Toggles the given item between collapsed and expanded states.

 Link to this function

 toggleItemSelection(This, Item)

 View Source

 -spec toggleItemSelection(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Toggles the given item between selected and unselected states.
For multiselection controls only.

 Link to this function

 unselect(This)

 View Source

 -spec unselect(This) -> ok when This :: wxTreeCtrl().

Removes the selection from the currently selected item (if any).

 Link to this function

 unselectAll(This)

 View Source

 -spec unselectAll(This) -> ok when This :: wxTreeCtrl().

This function either behaves the same as unselect/1 if the control doesn't
have wxTR_MULTIPLE style, or removes the selection from all items if it does
have this style.

 Link to this function

 unselectItem(This, Item)

 View Source

 -spec unselectItem(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Unselects the given item.
This works in multiselection controls only.

wxTreeEvent

Functions for wxTreeEvent class
A tree event holds information about events associated with wxTreeCtrl
objects.
To process input from a tree control, use these event handler macros to direct
input to member functions that take a wxTreeEvent argument.
See: wxTreeCtrl
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxTreeEvent

 Events

Use wxEvtHandler:connect/3 with wxTreeEventType to
subscribe to events of this type.

 Summary

 Types

 wxTree()

 wxTreeEvent()

 wxTreeEventType()

 Functions

 getItem(This)

 Returns the item (valid for all events).

 getKeyCode(This)

 Returns the key code if the event is a key event.

 getKeyEvent(This)

 Returns the key event for EVT_TREE_KEY_DOWN events.

 getLabel(This)

 Returns the label if the event is a begin or end edit label event.

 getOldItem(This)

 Returns the old item index (valid for EVT_TREE_SEL_CHANGING and
EVT_TREE_SEL_CHANGED events).

 getPoint(This)

 Returns the position of the mouse pointer if the event is a drag or menu-context
event.

 isEditCancelled(This)

 Returns true if the label edit was cancelled.

 setToolTip(This, Tooltip)

 Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events).

 Types

 Link to this type

 wxTree()

 View Source

 -type wxTree() ::
 #wxTree{type :: wxTreeEvent:wxTreeEventType(),
 item :: integer(),
 itemOld :: integer(),
 pointDrag :: {X :: integer(), Y :: integer()}}.

 Link to this type

 wxTreeEvent()

 View Source

 -type wxTreeEvent() :: wx:wx_object().

 Link to this type

 wxTreeEventType()

 View Source

 -type wxTreeEventType() ::
 command_tree_begin_drag | command_tree_begin_rdrag | command_tree_begin_label_edit |
 command_tree_end_label_edit | command_tree_delete_item | command_tree_get_info |
 command_tree_set_info | command_tree_item_expanded | command_tree_item_expanding |
 command_tree_item_collapsed | command_tree_item_collapsing | command_tree_sel_changed |
 command_tree_sel_changing | command_tree_key_down | command_tree_item_activated |
 command_tree_item_right_click | command_tree_item_middle_click | command_tree_end_drag |
 command_tree_state_image_click | command_tree_item_gettooltip | command_tree_item_menu |
 dirctrl_selectionchanged | dirctrl_fileactivated.

 Functions

 Link to this function

 getItem(This)

 View Source

 -spec getItem(This) -> integer() when This :: wxTreeEvent().

Returns the item (valid for all events).

 Link to this function

 getKeyCode(This)

 View Source

 -spec getKeyCode(This) -> integer() when This :: wxTreeEvent().

Returns the key code if the event is a key event.
Use getKeyEvent/1 to get the values of the modifier keys for this event (i.e.
Shift or Ctrl).

 Link to this function

 getKeyEvent(This)

 View Source

 -spec getKeyEvent(This) -> wxKeyEvent:wxKeyEvent() when This :: wxTreeEvent().

Returns the key event for EVT_TREE_KEY_DOWN events.

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxTreeEvent().

Returns the label if the event is a begin or end edit label event.

 Link to this function

 getOldItem(This)

 View Source

 -spec getOldItem(This) -> integer() when This :: wxTreeEvent().

Returns the old item index (valid for EVT_TREE_SEL_CHANGING and
EVT_TREE_SEL_CHANGED events).

 Link to this function

 getPoint(This)

 View Source

 -spec getPoint(This) -> {X :: integer(), Y :: integer()} when This :: wxTreeEvent().

Returns the position of the mouse pointer if the event is a drag or menu-context
event.
In both cases the position is in client coordinates - i.e. relative to the
wxTreeCtrl window (so that you can pass it directly to e.g.
wxWindow:popupMenu/4).

 Link to this function

 isEditCancelled(This)

 View Source

 -spec isEditCancelled(This) -> boolean() when This :: wxTreeEvent().

Returns true if the label edit was cancelled.
This should be called from within an EVT_TREE_END_LABEL_EDIT handler.

 Link to this function

 setToolTip(This, Tooltip)

 View Source

 -spec setToolTip(This, Tooltip) -> ok when This :: wxTreeEvent(), Tooltip :: unicode:chardata().

Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events).
Windows only.

wxTreebook

Functions for wxTreebook class
This class is an extension of the wxNotebook class that allows a tree
structured set of pages to be shown in a control. A classic example is a
netscape preferences dialog that shows a tree of preference sections on the left
and select section page on the right.
To use the class simply create it and populate with pages using insertPage/5,
insertSubPage/5, addPage/4, AddSubPage() (not implemented in wx).
If your tree is no more than 1 level in depth then you could simply use
addPage/4 and AddSubPage() (not implemented in wx) to sequentially populate
your tree by adding at every step a page or a subpage to the end of the tree.
See: ?wxBookCtrl, wxBookCtrlEvent, wxNotebook, wxTreeCtrl,
wxImageList,
Overview bookctrl,
Examples
This class is derived (and can use functions) from: wxBookCtrlBase
wxControl wxWindow wxEvtHandler
wxWidgets docs:
wxTreebook

 Events

Event types emitted from this class:
treebook_page_changed,
treebook_page_changing

 Summary

 Types

 wxTreebook()

 Functions

 addPage(This, Page, Text)

 addPage/4

 Adds a new page.

 advanceSelection(This)

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 create/4

 Creates a treebook control.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the wxTreebook object.

 expandNode(This, PageId)

 expandNode/3

 Expands (collapses) the pageId node.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, PagePos, Page, Text)

 insertPage/5

 Inserts a new page just before the page indicated by pagePos.

 insertSubPage(This, PagePos, Page, Text)

 insertSubPage/5

 Inserts a sub page under the specified page.

 isNodeExpanded(This, PageId)

 Returns true if the page represented by pageId is expanded.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Creates an empty wxTreebook.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 Link to this type

 wxTreebook()

 View Source

 -type wxTreebook() :: wx:wx_object().

 Functions

 Link to this function

 addPage(This, Page, Text)

 View Source

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxTreebook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

 Link to this function

 addPage/4

 View Source

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page is placed at the topmost level after all other pages. NULL could be
specified for page to create an empty page.

 Link to this function

 advanceSelection(This)

 View Source

 -spec advanceSelection(This) -> ok when This :: wxTreebook().

 Link to this function

 advanceSelection/2

 View Source

 -spec advanceSelection(This, [Option]) -> ok when This :: wxTreebook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 Link to this function

 assignImageList(This, ImageList)

 View Source

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxTreebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See: wxImageList, setImageList/2

 Link to this function

 changeSelection(This, Page)

 View Source

 -spec changeSelection(This, Page) -> integer() when This :: wxTreebook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page
changing events.
See overview_events_prog for more information.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxTreebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates a treebook control.
See new/3 for the description of the parameters.

 Link to this function

 deleteAllPages(This)

 View Source

 -spec deleteAllPages(This) -> boolean() when This :: wxTreebook().

Deletes all pages.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxTreebook()) -> ok.

Destroys the wxTreebook object.
Also deletes all the pages owned by the control (inserted previously into it).

 Link to this function

 expandNode(This, PageId)

 View Source

 -spec expandNode(This, PageId) -> boolean() when This :: wxTreebook(), PageId :: integer().

 Link to this function

 expandNode/3

 View Source

 -spec expandNode(This, PageId, [Option]) -> boolean()
 when This :: wxTreebook(), PageId :: integer(), Option :: {expand, boolean()}.

Expands (collapses) the pageId node.
Returns the previous state. May generate page changing events (if selected page
is under the collapsed branch, then its parent is autoselected).

 Link to this function

 getCurrentPage(This)

 View Source

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxTreebook().

Returns the currently selected page or NULL.

 Link to this function

 getImageList(This)

 View Source

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxTreebook().

Returns the associated image list, may be NULL.
See: wxImageList, setImageList/2

 Link to this function

 getPage(This, Page)

 View Source

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxTreebook(), Page :: integer().

Returns the window at the given page position.

 Link to this function

 getPageCount(This)

 View Source

 -spec getPageCount(This) -> integer() when This :: wxTreebook().

Returns the number of pages in the control.

 Link to this function

 getPageImage(This, NPage)

 View Source

 -spec getPageImage(This, NPage) -> integer() when This :: wxTreebook(), NPage :: integer().

Returns the image index for the given page.

 Link to this function

 getPageText(This, NPage)

 View Source

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxTreebook(), NPage :: integer().

Returns the string for the given page.

 Link to this function

 getSelection(This)

 View Source

 -spec getSelection(This) -> integer() when This :: wxTreebook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: This method may return either the previously or newly selected page when
called from the EVT_TREEBOOK_PAGE_CHANGED() handler depending on the platform
and so wxBookCtrlEvent:getSelection/1 should be used instead in this case.

 Link to this function

 hitTest(This, Pt)

 View Source

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxTreebook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is
returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at
the specified position.

 Link to this function

 insertPage(This, PagePos, Page, Text)

 View Source

 -spec insertPage(This, PagePos, Page, Text) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertPage/5

 View Source

 -spec insertPage(This, PagePos, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page just before the page indicated by pagePos.
The new page is placed before pagePos page and on the same level. NULL could
be specified for page to create an empty page.

 Link to this function

 insertSubPage(This, PagePos, Page, Text)

 View Source

 -spec insertSubPage(This, PagePos, Page, Text) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

 Link to this function

 insertSubPage/5

 View Source

 -spec insertSubPage(This, PagePos, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a sub page under the specified page.
NULL could be specified for page to create an empty page.

 Link to this function

 isNodeExpanded(This, PageId)

 View Source

 -spec isNodeExpanded(This, PageId) -> boolean() when This :: wxTreebook(), PageId :: integer().

Returns true if the page represented by pageId is expanded.

 Link to this function

 new()

 View Source

 -spec new() -> wxTreebook().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxTreebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxTreebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates an empty wxTreebook.

 Link to this function

 setImageList(This, ImageList)

 View Source

 -spec setImageList(This, ImageList) -> ok
 when This :: wxTreebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See: wxImageList, assignImageList/2

 Link to this function

 setPageImage(This, Page, Image)

 View Source

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxTreebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 Link to this function

 setPageSize(This, Size)

 View Source

 -spec setPageSize(This, Size) -> ok when This :: wxTreebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 Link to this function

 setPageText(This, Page, Text)

 View Source

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxTreebook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 Link to this function

 setSelection(This, Page)

 View Source

 -spec setSelection(This, Page) -> integer() when This :: wxTreebook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use
the changeSelection/2 function if you don't want these events to be generated.
See: wxBookCtrlBase:getSelection/1

wxUpdateUIEvent

Functions for wxUpdateUIEvent class
This class is used for pseudo-events which are called by wxWidgets to give an
application the chance to update various user interface elements.
Without update UI events, an application has to work hard to check/uncheck,
enable/disable, show/hide, and set the text for elements such as menu items and
toolbar buttons. The code for doing this has to be mixed up with the code that
is invoked when an action is invoked for a menu item or button.
With update UI events, you define an event handler to look at the state of the
application and change UI elements accordingly. wxWidgets will call your member
functions in idle time, so you don't have to worry where to call this code.
In addition to being a clearer and more declarative method, it also means you
don't have to worry whether you're updating a toolbar or menubar identifier. The
same handler can update a menu item and toolbar button, if the identifier is the
same. Instead of directly manipulating the menu or button, you call functions in
the event object, such as check/2. wxWidgets will determine whether such a
call has been made, and which UI element to update.
These events will work for popup menus as well as menubars. Just before a menu
is popped up, wxMenu::UpdateUI (not implemented in wx) is called to process
any UI events for the window that owns the menu.
If you find that the overhead of UI update processing is affecting your
application, you can do one or both of the following:
Note that although events are sent in idle time, defining a wxIdleEvent
handler for a window does not affect this because the events are sent from
wxWindow::OnInternalIdle (not implemented in wx) which is always called in
idle time.
wxWidgets tries to optimize update events on some platforms. On Windows and
GTK+, events for menubar items are only sent when the menu is about to be shown,
and not in idle time.
See:
Overview events
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxUpdateUIEvent

 Events

Use wxEvtHandler:connect/3 with
wxUpdateUIEventType to subscribe to events of
this type.

 Summary

 Types

 wxUpdateUI()

 wxUpdateUIEvent()

 wxUpdateUIEventType()

 Functions

 canUpdate(Window)

 Returns true if it is appropriate to update (send UI update events to) this
window.

 check(This, Check)

 Check or uncheck the UI element.

 enable(This, Enable)

 Enable or disable the UI element.

 getChecked(This)

 Returns true if the UI element should be checked.

 getEnabled(This)

 Returns true if the UI element should be enabled.

 getMode()

 Static function returning a value specifying how wxWidgets will send update
events: to all windows, or only to those which specify that they will process
the events.

 getSetChecked(This)

 Returns true if the application has called check/2.

 getSetEnabled(This)

 Returns true if the application has called enable/2.

 getSetShown(This)

 Returns true if the application has called show/2.

 getSetText(This)

 Returns true if the application has called setText/2.

 getShown(This)

 Returns true if the UI element should be shown.

 getText(This)

 Returns the text that should be set for the UI element.

 getUpdateInterval()

 Returns the current interval between updates in milliseconds.

 resetUpdateTime()

 Used internally to reset the last-updated time to the current time.

 setMode(Mode)

 Specify how wxWidgets will send update events: to all windows, or only to those
which specify that they will process the events.

 setText(This, Text)

 Sets the text for this UI element.

 setUpdateInterval(UpdateInterval)

 Sets the interval between updates in milliseconds.

 show(This, Show)

 Show or hide the UI element.

 Types

 Link to this type

 wxUpdateUI()

 View Source

 -type wxUpdateUI() :: #wxUpdateUI{type :: wxUpdateUIEvent:wxUpdateUIEventType()}.

 Link to this type

 wxUpdateUIEvent()

 View Source

 -type wxUpdateUIEvent() :: wx:wx_object().

 Link to this type

 wxUpdateUIEventType()

 View Source

 -type wxUpdateUIEventType() :: update_ui.

 Functions

 Link to this function

 canUpdate(Window)

 View Source

 -spec canUpdate(Window) -> boolean() when Window :: wxWindow:wxWindow().

Returns true if it is appropriate to update (send UI update events to) this
window.
This function looks at the mode used (see setMode/1), the
wxWS_EX_PROCESS_UI_UPDATES flag in window, the time update events were last
sent in idle time, and the update interval, to determine whether events should
be sent to this window now. By default this will always return true because the
update mode is initially wxUPDATE_UI_PROCESS_ALL and the interval is set to 0;
so update events will be sent as often as possible. You can reduce the frequency
that events are sent by changing the mode and/or setting an update interval.
See: resetUpdateTime/0, setUpdateInterval/1, setMode/1

 Link to this function

 check(This, Check)

 View Source

 -spec check(This, Check) -> ok when This :: wxUpdateUIEvent(), Check :: boolean().

Check or uncheck the UI element.

 Link to this function

 enable(This, Enable)

 View Source

 -spec enable(This, Enable) -> ok when This :: wxUpdateUIEvent(), Enable :: boolean().

Enable or disable the UI element.

 Link to this function

 getChecked(This)

 View Source

 -spec getChecked(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be checked.

 Link to this function

 getEnabled(This)

 View Source

 -spec getEnabled(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be enabled.

 Link to this function

 getMode()

 View Source

 -spec getMode() -> wx:wx_enum().

Static function returning a value specifying how wxWidgets will send update
events: to all windows, or only to those which specify that they will process
the events.
See: setMode/1

 Link to this function

 getSetChecked(This)

 View Source

 -spec getSetChecked(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called check/2.
For wxWidgets internal use only.

 Link to this function

 getSetEnabled(This)

 View Source

 -spec getSetEnabled(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called enable/2.
For wxWidgets internal use only.

 Link to this function

 getSetShown(This)

 View Source

 -spec getSetShown(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called show/2.
For wxWidgets internal use only.

 Link to this function

 getSetText(This)

 View Source

 -spec getSetText(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called setText/2.
For wxWidgets internal use only.

 Link to this function

 getShown(This)

 View Source

 -spec getShown(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be shown.

 Link to this function

 getText(This)

 View Source

 -spec getText(This) -> unicode:charlist() when This :: wxUpdateUIEvent().

Returns the text that should be set for the UI element.

 Link to this function

 getUpdateInterval()

 View Source

 -spec getUpdateInterval() -> integer().

Returns the current interval between updates in milliseconds.
The value -1 disables updates, 0 updates as frequently as possible.
See: setUpdateInterval/1

 Link to this function

 resetUpdateTime()

 View Source

 -spec resetUpdateTime() -> ok.

Used internally to reset the last-updated time to the current time.
It is assumed that update events are normally sent in idle time, so this is
called at the end of idle processing.
See: canUpdate/1, setUpdateInterval/1, setMode/1

 Link to this function

 setMode(Mode)

 View Source

 -spec setMode(Mode) -> ok when Mode :: wx:wx_enum().

Specify how wxWidgets will send update events: to all windows, or only to those
which specify that they will process the events.

 Link to this function

 setText(This, Text)

 View Source

 -spec setText(This, Text) -> ok when This :: wxUpdateUIEvent(), Text :: unicode:chardata().

Sets the text for this UI element.

 Link to this function

 setUpdateInterval(UpdateInterval)

 View Source

 -spec setUpdateInterval(UpdateInterval) -> ok when UpdateInterval :: integer().

Sets the interval between updates in milliseconds.
Set to -1 to disable updates, or to 0 to update as frequently as possible. The
default is 0.
Use this to reduce the overhead of UI update events if your application has a
lot of windows. If you set the value to -1 or greater than 0, you may also need
to call wxWindow:updateWindowUI/2 at appropriate points in your application,
such as when a dialog is about to be shown.

 Link to this function

 show(This, Show)

 View Source

 -spec show(This, Show) -> ok when This :: wxUpdateUIEvent(), Show :: boolean().

Show or hide the UI element.

wxWebView

Functions for wxWebView class
This control may be used to render web (HTML / CSS / javascript) documents. It
is designed to allow the creation of multiple backends for each port, although
currently just one is available. It differs from wxHtmlWindow in that each
backend is actually a full rendering engine, Trident on MSW and Webkit on macOS
and GTK. This allows the correct viewing of complex pages with javascript and
css.
Backend Descriptions
Par: The IE backend uses Microsoft's Trident rendering engine, specifically the
version used by the locally installed copy of Internet Explorer. As such it is
only available for the MSW port. By default recent versions of the
WebBrowser
control, which this backend uses, emulate Internet Explorer 7. This can be
changed with a registry setting by wxWebView::MSWSetEmulationLevel() see
this
article for more information. This backend has full support for custom schemes
and virtual file systems.
Par: The Edge (Chromium) backend uses Microsoft's
Edge WebView2.
It is available for Windows 7 and newer. The following features are currently
unsupported with this backend: virtual filesystems, custom urls, find.
This backend is not enabled by default, to build it follow these steps:
Par: Under GTK the WebKit backend uses WebKitGTK+. The
current minimum version required is 1.3.1 which ships by default with Ubuntu
Natty and Debian Wheezy and has the package name libwebkitgtk-dev. Custom
schemes and virtual files systems are supported under this backend, however
embedded resources such as images and stylesheets are currently loaded using the
data:// scheme.
Par: Under GTK3 the WebKit2 version of WebKitGTK+ is
used. In Ubuntu the required package name is libwebkit2gtk-4.0-dev and under
Fedora it is webkitgtk4-devel. All wxWEBVIEW_WEBKIT features are supported
except for clearing and enabling / disabling the history.
Par: The macOS WebKit backend uses Apple's
WebView
class. This backend has full support for custom schemes and virtual file
systems.
Asynchronous Notifications
Many of the methods in wxWebView are asynchronous, i.e. they return
immediately and perform their work in the background. This includes functions
such as loadURL/2 and reload/2. To receive notification of the progress and
completion of these functions you need to handle the events that are provided.
Specifically wxEVT_WEBVIEW_LOADED notifies when the page or a sub-frame has
finished loading and wxEVT_WEBVIEW_ERROR notifies that an error has occurred.
Virtual File Systems and Custom Schemes
wxWebView supports the registering of custom scheme handlers, for example
file or http. To do this create a new class which inherits from
wxWebViewHandler (not implemented in wx), where wxWebHandler::GetFile()
returns a pointer to a wxFSFile (not implemented in wx) which represents the
given url. You can then register your handler with RegisterHandler() (not
implemented in wx) it will be called for all pages and resources.
wxWebViewFSHandler (not implemented in wx) is provided to access the virtual
file system encapsulated by wxFileSystem (not implemented in wx). The
wxMemoryFSHandler (not implemented in wx) documentation gives an example of
how this may be used.
wxWebViewArchiveHandler (not implemented in wx) is provided to allow the
navigation of pages inside a zip archive. It supports paths of the form:
scheme:///C:/example/docs.zip;protocol=zip/main.htm
Since: 2.9.3
See: wxWebViewHandler (not implemented in wx), wxWebViewEvent
This class is derived (and can use functions) from: wxControl wxWindow
wxEvtHandler
wxWidgets docs:
wxWebView

 Events

Event types emitted from this class: webview_navigating,
webview_navigated,
webview_loaded, webview_error,
webview_newwindow,
webview_title_changed

 Summary

 Types

 wxWebView()

 Functions

 canCopy(This)

 Returns true if the current selection can be copied.

 canCut(This)

 Returns true if the current selection can be cut.

 canGoBack(This)

 Returns true if it is possible to navigate backward in the history of visited
pages.

 canGoForward(This)

 Returns true if it is possible to navigate forward in the history of visited
pages.

 canPaste(This)

 Returns true if data can be pasted.

 canRedo(This)

 Returns true if there is an action to redo.

 canSetZoomType(This, Type)

 Retrieve whether the current HTML engine supports a zoom type.

 canUndo(This)

 Returns true if there is an action to undo.

 clearHistory(This)

 Clear the history, this will also remove the visible page.

 clearSelection(This)

 Clears the current selection.

 copy(This)

 Copies the current selection.

 cut(This)

 Cuts the current selection.

 deleteSelection(This)

 Deletes the current selection.

 enableContextMenu(This)

 enableContextMenu/2

 Enable or disable the right click context menu.

 enableHistory(This)

 enableHistory/2

 Enable or disable the history.

 find(This, Text)

 find/3

 Finds a phrase on the current page and if found, the control will scroll the
phrase into view and select it.

 getCurrentTitle(This)

 Get the title of the current web page, or its URL/path if title is not
available.

 getCurrentURL(This)

 Get the URL of the currently displayed document.

 getPageSource(This)

 Get the HTML source code of the currently displayed document.

 getPageText(This)

 Get the text of the current page.

 getSelectedSource(This)

 Returns the currently selected source, if any.

 getSelectedText(This)

 Returns the currently selected text, if any.

 getZoom(This)

 Get the zoom level of the page.

 getZoomFactor(This)

 Get the zoom factor of the page.

 getZoomType(This)

 Get how the zoom factor is currently interpreted.

 goBack(This)

 Navigate back in the history of visited pages.

 goForward(This)

 Navigate forward in the history of visited pages.

 hasSelection(This)

 Returns true if there is a current selection.

 isBackendAvailable(Backend)

 Allows to check if a specific backend is currently available.

 isBusy(This)

 Returns whether the web control is currently busy (e.g. loading a page).

 isContextMenuEnabled(This)

 Returns true if a context menu will be shown on right click.

 isEditable(This)

 Returns whether the web control is currently editable.

 loadURL(This, Url)

 Load a web page from a URL.

 new(Parent, Id)

 new/3

 Factory function to create a new wxWebView using a wxWebViewFactory (not
implemented in wx).

 paste(This)

 Pastes the current data.

 print(This)

 Opens a print dialog so that the user may print the currently displayed page.

 redo(This)

 Redos the last action.

 reload(This)

 reload/2

 Reload the currently displayed URL.

 runScript(This, Javascript)

 Runs the given JavaScript code.

 selectAll(This)

 Selects the entire page.

 setEditable(This)

 setEditable/2

 Set the editable property of the web control.

 setPage(This, Html, BaseUrl)

 Set the displayed page source to the contents of the given string.

 setZoom(This, Zoom)

 Set the zoom level of the page.

 setZoomFactor(This, Zoom)

 Set the zoom factor of the page.

 setZoomType(This, ZoomType)

 Set how to interpret the zoom factor.

 stop(This)

 Stop the current page loading process, if any.

 undo(This)

 Undos the last action.

 Types

 Link to this type

 wxWebView()

 View Source

 -type wxWebView() :: wx:wx_object().

 Functions

 Link to this function

 canCopy(This)

 View Source

 -spec canCopy(This) -> boolean() when This :: wxWebView().

Returns true if the current selection can be copied.
Note: This always returns true on the macOS WebKit backend.

 Link to this function

 canCut(This)

 View Source

 -spec canCut(This) -> boolean() when This :: wxWebView().

Returns true if the current selection can be cut.
Note: This always returns true on the macOS WebKit backend.

 Link to this function

 canGoBack(This)

 View Source

 -spec canGoBack(This) -> boolean() when This :: wxWebView().

Returns true if it is possible to navigate backward in the history of visited
pages.

 Link to this function

 canGoForward(This)

 View Source

 -spec canGoForward(This) -> boolean() when This :: wxWebView().

Returns true if it is possible to navigate forward in the history of visited
pages.

 Link to this function

 canPaste(This)

 View Source

 -spec canPaste(This) -> boolean() when This :: wxWebView().

Returns true if data can be pasted.
Note: This always returns true on the macOS WebKit backend.

 Link to this function

 canRedo(This)

 View Source

 -spec canRedo(This) -> boolean() when This :: wxWebView().

Returns true if there is an action to redo.

 Link to this function

 canSetZoomType(This, Type)

 View Source

 -spec canSetZoomType(This, Type) -> boolean() when This :: wxWebView(), Type :: wx:wx_enum().

Retrieve whether the current HTML engine supports a zoom type.
Return: Whether this type of zoom is supported by this HTML engine (and thus can
be set through setZoomType/2).

 Link to this function

 canUndo(This)

 View Source

 -spec canUndo(This) -> boolean() when This :: wxWebView().

Returns true if there is an action to undo.

 Link to this function

 clearHistory(This)

 View Source

 -spec clearHistory(This) -> ok when This :: wxWebView().

Clear the history, this will also remove the visible page.
Note: This is not implemented on the WebKit2GTK+ backend.

 Link to this function

 clearSelection(This)

 View Source

 -spec clearSelection(This) -> ok when This :: wxWebView().

Clears the current selection.

 Link to this function

 copy(This)

 View Source

 -spec copy(This) -> ok when This :: wxWebView().

Copies the current selection.

 Link to this function

 cut(This)

 View Source

 -spec cut(This) -> ok when This :: wxWebView().

Cuts the current selection.

 Link to this function

 deleteSelection(This)

 View Source

 -spec deleteSelection(This) -> ok when This :: wxWebView().

Deletes the current selection.
Note that for wxWEBVIEW_BACKEND_WEBKIT the selection must be editable, either
through SetEditable or the correct HTML attribute.

 Link to this function

 enableContextMenu(This)

 View Source

 -spec enableContextMenu(This) -> ok when This :: wxWebView().

 Link to this function

 enableContextMenu/2

 View Source

 -spec enableContextMenu(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Enable or disable the right click context menu.
By default the standard context menu is enabled, this method can be used to
disable it or re-enable it later.
Since: 2.9.5

 Link to this function

 enableHistory(This)

 View Source

 -spec enableHistory(This) -> ok when This :: wxWebView().

 Link to this function

 enableHistory/2

 View Source

 -spec enableHistory(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Enable or disable the history.
This will also clear the history.
Note: This is not implemented on the WebKit2GTK+ backend.

 Link to this function

 find(This, Text)

 View Source

 -spec find(This, Text) -> integer() when This :: wxWebView(), Text :: unicode:chardata().

 Link to this function

 find/3

 View Source

 -spec find(This, Text, [Option]) -> integer()
 when This :: wxWebView(), Text :: unicode:chardata(), Option :: {flags, wx:wx_enum()}.

Finds a phrase on the current page and if found, the control will scroll the
phrase into view and select it.
Return: If search phrase was not found in combination with the flags then
wxNOT_FOUND is returned. If called for the first time with search phrase then
the total number of results will be returned. Then for every time its called
with the same search phrase it will return the number of the current match.
Note: This function will restart the search if the flags
wxWEBVIEW_FIND_ENTIRE_WORD or wxWEBVIEW_FIND_MATCH_CASE are changed, since
this will require a new search. To reset the search, for example resetting the
highlights call the function with an empty search phrase. This always returns
wxNOT_FOUND on the macOS WebKit backend.
Since: 2.9.5

 Link to this function

 getCurrentTitle(This)

 View Source

 -spec getCurrentTitle(This) -> unicode:charlist() when This :: wxWebView().

Get the title of the current web page, or its URL/path if title is not
available.

 Link to this function

 getCurrentURL(This)

 View Source

 -spec getCurrentURL(This) -> unicode:charlist() when This :: wxWebView().

Get the URL of the currently displayed document.

 Link to this function

 getPageSource(This)

 View Source

 -spec getPageSource(This) -> unicode:charlist() when This :: wxWebView().

Get the HTML source code of the currently displayed document.
Return: The HTML source code, or an empty string if no page is currently shown.

 Link to this function

 getPageText(This)

 View Source

 -spec getPageText(This) -> unicode:charlist() when This :: wxWebView().

Get the text of the current page.

 Link to this function

 getSelectedSource(This)

 View Source

 -spec getSelectedSource(This) -> unicode:charlist() when This :: wxWebView().

Returns the currently selected source, if any.

 Link to this function

 getSelectedText(This)

 View Source

 -spec getSelectedText(This) -> unicode:charlist() when This :: wxWebView().

Returns the currently selected text, if any.

 Link to this function

 getZoom(This)

 View Source

 -spec getZoom(This) -> wx:wx_enum() when This :: wxWebView().

Get the zoom level of the page.
See getZoomFactor/1 to get more precise zoom scale value other than as
provided by wxWebViewZoom.
Return: The current level of zoom.

 Link to this function

 getZoomFactor(This)

 View Source

 -spec getZoomFactor(This) -> number() when This :: wxWebView().

Get the zoom factor of the page.
Return: The current factor of zoom.
Since: 3.1.4

 Link to this function

 getZoomType(This)

 View Source

 -spec getZoomType(This) -> wx:wx_enum() when This :: wxWebView().

Get how the zoom factor is currently interpreted.
Return: How the zoom factor is currently interpreted by the HTML engine.

 Link to this function

 goBack(This)

 View Source

 -spec goBack(This) -> ok when This :: wxWebView().

Navigate back in the history of visited pages.
Only valid if canGoBack/1 returns true.

 Link to this function

 goForward(This)

 View Source

 -spec goForward(This) -> ok when This :: wxWebView().

Navigate forward in the history of visited pages.
Only valid if canGoForward/1 returns true.

 Link to this function

 hasSelection(This)

 View Source

 -spec hasSelection(This) -> boolean() when This :: wxWebView().

Returns true if there is a current selection.

 Link to this function

 isBackendAvailable(Backend)

 View Source

 -spec isBackendAvailable(Backend) -> boolean() when Backend :: unicode:chardata().

Allows to check if a specific backend is currently available.
Since: 3.1.4

 Link to this function

 isBusy(This)

 View Source

 -spec isBusy(This) -> boolean() when This :: wxWebView().

Returns whether the web control is currently busy (e.g. loading a page).

 Link to this function

 isContextMenuEnabled(This)

 View Source

 -spec isContextMenuEnabled(This) -> boolean() when This :: wxWebView().

Returns true if a context menu will be shown on right click.
Since: 2.9.5

 Link to this function

 isEditable(This)

 View Source

 -spec isEditable(This) -> boolean() when This :: wxWebView().

Returns whether the web control is currently editable.

 Link to this function

 loadURL(This, Url)

 View Source

 -spec loadURL(This, Url) -> ok when This :: wxWebView(), Url :: unicode:chardata().

Load a web page from a URL.
Note: Web engines generally report errors asynchronously, so if you wish to know
whether loading the URL was successful, register to receive navigation error
events.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxWebView() when Parent :: wxWindow:wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxWebView()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {url, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {backend, unicode:chardata()} |
 {style, integer()}.

Factory function to create a new wxWebView using a wxWebViewFactory (not
implemented in wx).
Return: The created wxWebView, or NULL if the requested backend is not
available
Since: 2.9.5

 Link to this function

 paste(This)

 View Source

 -spec paste(This) -> ok when This :: wxWebView().

Pastes the current data.

 Link to this function

 print(This)

 View Source

 -spec print(This) -> ok when This :: wxWebView().

Opens a print dialog so that the user may print the currently displayed page.

 Link to this function

 redo(This)

 View Source

 -spec redo(This) -> ok when This :: wxWebView().

Redos the last action.

 Link to this function

 reload(This)

 View Source

 -spec reload(This) -> ok when This :: wxWebView().

 Link to this function

 reload/2

 View Source

 -spec reload(This, [Option]) -> ok when This :: wxWebView(), Option :: {flags, wx:wx_enum()}.

Reload the currently displayed URL.
Note: The flags are ignored by the edge backend.

 Link to this function

 runScript(This, Javascript)

 View Source

 -spec runScript(This, Javascript) -> Result
 when
 Result :: {Res :: boolean(), Output :: unicode:charlist()},
 This :: wxWebView(),
 Javascript :: unicode:chardata().

Runs the given JavaScript code.
JavaScript code is executed inside the browser control and has full access to
DOM and other browser-provided functionality. For example, this code will
replace the current page contents with the provided string.
If output is non-null, it is filled with the result of executing this code on
success, e.g. a JavaScript value such as a string, a number (integer or floating
point), a boolean or JSON representation for non-primitive types such as arrays
and objects. For example:
This function has a few platform-specific limitations:
Also notice that under MSW converting JavaScript objects to JSON is not
supported in the default emulation mode. wxWebView implements its own
object-to-JSON conversion as a fallback for this case, however it is not as
full-featured, well-tested or performing as the implementation of this
functionality in the browser control itself, so it is recommended to use
MSWSetEmulationLevel() to change emulation level to a more modern one in which
JSON conversion is done by the control itself.
Return: true if there is a result, false if there is an error.

 Link to this function

 selectAll(This)

 View Source

 -spec selectAll(This) -> ok when This :: wxWebView().

Selects the entire page.

 Link to this function

 setEditable(This)

 View Source

 -spec setEditable(This) -> ok when This :: wxWebView().

 Link to this function

 setEditable/2

 View Source

 -spec setEditable(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Set the editable property of the web control.
Enabling allows the user to edit the page even if the contenteditable
attribute is not set. The exact capabilities vary with the backend being used.

 Link to this function

 setPage(This, Html, BaseUrl)

 View Source

 -spec setPage(This, Html, BaseUrl) -> ok
 when This :: wxWebView(), Html :: unicode:chardata(), BaseUrl :: unicode:chardata().

Set the displayed page source to the contents of the given string.
Note: When using wxWEBVIEW_BACKEND_IE you must wait for the current page to
finish loading before calling setPage/3. The baseURL parameter is not used in
this backend and the edge backend.

 Link to this function

 setZoom(This, Zoom)

 View Source

 -spec setZoom(This, Zoom) -> ok when This :: wxWebView(), Zoom :: wx:wx_enum().

Set the zoom level of the page.
See setZoomFactor/2 for more precise scaling other than the measured steps
provided by wxWebViewZoom.

 Link to this function

 setZoomFactor(This, Zoom)

 View Source

 -spec setZoomFactor(This, Zoom) -> ok when This :: wxWebView(), Zoom :: number().

Set the zoom factor of the page.
Note: zoom scale in IE will be converted into wxWebViewZoom levels for
wxWebViewZoomType of wxWEBVIEW_ZOOM_TYPE_TEXT.
Since: 3.1.4

 Link to this function

 setZoomType(This, ZoomType)

 View Source

 -spec setZoomType(This, ZoomType) -> ok when This :: wxWebView(), ZoomType :: wx:wx_enum().

Set how to interpret the zoom factor.
Note: invoke canSetZoomType/2 first, some HTML renderers may not support all
zoom types.

 Link to this function

 stop(This)

 View Source

 -spec stop(This) -> ok when This :: wxWebView().

Stop the current page loading process, if any.
May trigger an error event of type wxWEBVIEW_NAV_ERR_USER_CANCELLED. TODO:
make wxWEBVIEW_NAV_ERR_USER_CANCELLED errors uniform across ports.

 Link to this function

 undo(This)

 View Source

 -spec undo(This) -> ok when This :: wxWebView().

Undos the last action.

wxWebViewEvent

Functions for wxWebViewEvent class
A navigation event holds information about events associated with wxWebView
objects.
Since: 2.9.3
See: wxWebView
This class is derived (and can use functions) from: wxNotifyEvent
wxCommandEvent wxEvent
wxWidgets docs:
wxWebViewEvent

 Events

Use wxEvtHandler:connect/3 with
wxWebViewEventType to subscribe to events of this
type.

 Summary

 Types

 wxWebView()

 wxWebViewEvent()

 wxWebViewEventType()

 Functions

 getInt(This)

 Returns the integer identifier corresponding to a listbox, choice or radiobox
selection (only if the event was a selection, not a deselection), or a boolean
value representing the value of a checkbox.

 getString(This)

 Returns item string for a listbox or choice selection event.

 getTarget(This)

 Get the name of the target frame which the url of this event has been or will be
loaded into.

 getURL(This)

 Get the URL being visited.

 Types

 Link to this type

 wxWebView()

 View Source

 -type wxWebView() ::
 #wxWebView{type :: wxWebViewEvent:wxWebViewEventType(),
 string :: unicode:chardata(),
 int :: integer(),
 target :: unicode:chardata(),
 url :: unicode:chardata()}.

 Link to this type

 wxWebViewEvent()

 View Source

 -type wxWebViewEvent() :: wx:wx_object().

 Link to this type

 wxWebViewEventType()

 View Source

 -type wxWebViewEventType() ::
 webview_navigating | webview_navigated | webview_loaded | webview_error | webview_newwindow |
 webview_title_changed.

 Functions

 Link to this function

 getInt(This)

 View Source

 -spec getInt(This) -> integer() when This :: wxWebViewEvent().

Returns the integer identifier corresponding to a listbox, choice or radiobox
selection (only if the event was a selection, not a deselection), or a boolean
value representing the value of a checkbox.
For a menu item, this method returns -1 if the item is not checkable or a
boolean value (true or false) for checkable items indicating the new state of
the item.

 Link to this function

 getString(This)

 View Source

 -spec getString(This) -> unicode:charlist() when This :: wxWebViewEvent().

Returns item string for a listbox or choice selection event.
If one or several items have been deselected, returns the index of the first
deselected item. If some items have been selected and others deselected at the
same time, it will return the index of the first selected item.

 Link to this function

 getTarget(This)

 View Source

 -spec getTarget(This) -> unicode:charlist() when This :: wxWebViewEvent().

Get the name of the target frame which the url of this event has been or will be
loaded into.
This may return an empty string if the frame is not available.

 Link to this function

 getURL(This)

 View Source

 -spec getURL(This) -> unicode:charlist() when This :: wxWebViewEvent().

Get the URL being visited.

wxWindow

Functions for wxWindow class
wxWindow is the base class for all windows and represents any visible object
on screen. All controls, top level windows and so on are windows. Sizers and
device contexts are not, however, as they don't appear on screen themselves.
Please note that all children of the window will be deleted automatically by the
destructor before the window itself is deleted which means that you don't have
to worry about deleting them manually. Please see the window deletion overview
for more information.
Also note that in this, and many others, wxWidgets classes some GetXXX()
methods may be overloaded (as, for example, getSize/1 or getClientSize/1).
In this case, the overloads are non-virtual because having multiple virtual
functions with the same name results in a virtual function name hiding at the
derived class level (in English, this means that the derived class has to
override all overloaded variants if it overrides any of them). To allow
overriding them in the derived class, wxWidgets uses a unique protected virtual
DoGetXXX() method and all GetXXX() ones are forwarded to it, so overriding
the former changes the behaviour of the latter.
Styles
This class supports the following styles:
Extra Styles
This class supports the following extra styles:
See:
Overview events,
Overview windowsizing
This class is derived (and can use functions) from: wxEvtHandler
wxWidgets docs: wxWindow

 Events

Event types emitted from this class: activate,
child_focus,
context_menu, help,
drop_files, erase_background,
set_focus, kill_focus,
idle, joy_button_down,
joy_button_up, joy_move,
joy_zmove, key_down,
key_up, char,
char_hook,
mouse_capture_lost,
mouse_capture_changed,
left_down, left_up,
middle_down, middle_up,
right_down, right_up,
motion, enter_window,
leave_window, left_dclick,
middle_dclick, right_dclick,
mousewheel, aux1_down,
aux1_up, aux1_dclick,
aux2_down, aux2_up,
aux2_dclick, paint,
scrollwin_top,
scrollwin_bottom,
scrollwin_lineup,
scrollwin_linedown,
scrollwin_pageup,
scrollwin_pagedown,
scrollwin_thumbtrack,
scrollwin_thumbrelease,
set_cursor, size,
sys_colour_changed

 Summary

 Types

 wxWindow()

 Functions

 cacheBestSize(This, Size)

 Sets the cached best size value.

 canSetTransparent(This)

 Returns true if the system supports transparent windows and calling
setTransparent/2 may succeed.

 captureMouse(This)

 Directs all mouse input to this window.

 center(This)

 center(This, Options)

 See: centre/2.

 centerOnParent(This)

 centerOnParent(This, Options)

 See: centreOnParent/2.

 centre(This)

 centre/2

 Centres the window.

 centreOnParent(This)

 centreOnParent/2

 Centres the window on its parent.

 clearBackground(This)

 Clears the window by filling it with the current background colour.

 clientToScreen(This, Pt)

 Converts to screen coordinates from coordinates relative to this window.

 clientToScreen(This, X, Y)

 Converts to screen coordinates from coordinates relative to this window.

 close(This)

 close/2

 This function simply generates a wxCloseEvent whose handler usually tries to
close the window.

 convertDialogToPixels(This, Sz)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 convertPixelsToDialog(This, Sz)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 create(This, Parent, Id)

 create/4

 Construct the actual window object after creating the C++ object.

 'Destroy'(This)

 Destroys the window safely.

 destroy(This)

 Destructor.

 destroyChildren(This)

 Destroys all children of a window.

 disable(This)

 Disables the window.

 dragAcceptFiles(This, Accept)

 Enables or disables eligibility for drop file events (OnDropFiles).

 enable(This)

 enable/2

 Enable or disable the window for user input.

 findFocus()

 Finds the window or control which currently has the keyboard focus.

 findWindow/2

 Find a child of this window, by name.

 findWindowById(Id)

 findWindowById(Id, Options)

 Find the first window with the given id.

 findWindowByLabel(Label)

 findWindowByLabel(Label, Options)

 Find a window by its label.

 findWindowByName(Name)

 findWindowByName(Name, Options)

 Find a window by its name (as given in a window constructor or create/4
function call).

 fit(This)

 Sizes the window to fit its best size.

 fitInside(This)

 Similar to fit/1, but sizes the interior (virtual) size of a window.

 freeze(This)

 Freezes the window or, in other words, prevents any updates from taking place on
screen, the window is not redrawn at all.

 fromDIP/2

 Convert DPI-independent pixel values to the value in pixels appropriate for the
current toolkit.

 getAcceleratorTable(This)

 Gets the accelerator table for this window.

 getBackgroundColour(This)

 Returns the background colour of the window.

 getBackgroundStyle(This)

 Returns the background style of the window.

 getBestSize(This)

 This functions returns the best acceptable minimal size for the window.

 getCapture()

 Returns the currently captured window.

 getCaret(This)

 Returns the caret() associated with the window.

 getCharHeight(This)

 Returns the character height for this window.

 getCharWidth(This)

 Returns the average character width for this window.

 getChildren(This)

 Returns a const reference to the list of the window's children.

 getClientSize(This)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 getContainingSizer(This)

 Returns the sizer of which this window is a member, if any, otherwise NULL.

 getContentScaleFactor(This)

 Returns the factor mapping logical pixels of this window to physical pixels.

 getCursor(This)

 Return the cursor associated with this window.

 getDPI(This)

 Return the DPI of the display used by this window.

 getDPIScaleFactor(This)

 Returns the ratio of the DPI used by this window to the standard DPI.

 getDropTarget(This)

 Returns the associated drop target, which may be NULL.

 getExtraStyle(This)

 Returns the extra style bits for the window.

 getFont(This)

 Returns the font for this window.

 getForegroundColour(This)

 Returns the foreground colour of the window.

 getGrandParent(This)

 Returns the grandparent of a window, or NULL if there isn't one.

 getHandle(This)

 Returns the platform-specific handle of the physical window.

 getHelpText(This)

 Gets the help text to be used as context-sensitive help for this window.

 getId(This)

 Returns the identifier of the window.

 getLabel(This)

 Generic way of getting a label from any window, for identification purposes.

 getMaxSize(This)

 Returns the maximum size of the window.

 getMinSize(This)

 Returns the minimum size of the window, an indication to the sizer layout
mechanism that this is the minimum required size.

 getName(This)

 Returns the window's name.

 getParent(This)

 Returns the parent of the window, or NULL if there is no parent.

 getPosition(This)

 This gets the position of the window in pixels, relative to the parent window
for the child windows or relative to the display origin for the top level
windows.

 getRect(This)

 Returns the position and size of the window as a {X,Y,W,H} object.

 getScreenPosition(This)

 Returns the window position in screen coordinates, whether the window is a child
window or a top level one.

 getScreenRect(This)

 Returns the position and size of the window on the screen as a {X,Y,W,H}
object.

 getScrollPos(This, Orientation)

 Returns the built-in scrollbar position.

 getScrollRange(This, Orientation)

 Returns the built-in scrollbar range.

 getScrollThumb(This, Orientation)

 Returns the built-in scrollbar thumb size.

 getSize(This)

 See the GetSize(int,int) overload for more info.

 getSizer(This)

 Returns the sizer associated with the window by a previous call to setSizer/3,
or NULL.

 getTextExtent(This, String)

 getTextExtent/3

 Gets the dimensions of the string as it would be drawn on the window with the
currently selected font.

 getThemeEnabled(This)

 Returns true if the window uses the system theme for drawing its background.

 getToolTip(This)

 Get the associated tooltip or NULL if none.

 getUpdateRegion(This)

 Gets the dimensions of the string as it would be drawn on the window with the
currently selected font.

 getVirtualSize(This)

 This gets the virtual size of the window in pixels.

 getWindowStyleFlag(This)

 Gets the window style that was passed to the constructor or create/4 method.

 getWindowVariant(This)

 Returns the value previously passed to setWindowVariant/2.

 hasCapture(This)

 Returns true if this window has the current mouse capture.

 hasScrollbar(This, Orient)

 Returns true if this window currently has a scroll bar for this orientation.

 hasTransparentBackground(This)

 Returns true if this window background is transparent (as, for example, for
wxStaticText) and should show the parent window background.

 hide(This)

 Equivalent to calling show/2(false).

 inheritAttributes(This)

 This function is (or should be, in case of custom controls) called during window
creation to intelligently set up the window visual attributes, that is the font
and the foreground and background colours.

 initDialog(This)

 Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the
dialog via validators.

 invalidateBestSize(This)

 Resets the cached best size value so it will be recalculated the next time it is
needed.

 isDoubleBuffered(This)

 Returns true if the window contents is double-buffered by the system, i.e. if
any drawing done on the window is really done on a temporary backing surface and
transferred to the screen all at once later.

 isEnabled(This)

 Returns true if the window is enabled, i.e. if it accepts user input, false
otherwise.

 isExposed/2

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 isExposed(This, X, Y)

 Returns true if the given point or rectangle area has been exposed since the
last repaint.

 isExposed(This, X, Y, W, H)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 isFrozen(This)

 Returns true if the window is currently frozen by a call to freeze/1.

 isRetained(This)

 Returns true if the window is retained, false otherwise.

 isShown(This)

 Returns true if the window is shown, false if it has been hidden.

 isShownOnScreen(This)

 Returns true if the window is physically visible on the screen, i.e. it is shown
and all its parents up to the toplevel window are shown as well.

 isTopLevel(This)

 Returns true if the given window is a top-level one.

 layout(This)

 Lays out the children of this window using the associated sizer.

 lineDown(This)

 Same as scrollLines/2 (1).

 lineUp(This)

 Same as scrollLines/2 (-1).

 lower(This)

 Lowers the window to the bottom of the window hierarchy (Z-order).

 move(This, Pt)

 move/3

 Moves the window to the given position.

 move/4

 Moves the window to the given position.

 moveAfterInTabOrder(This, Win)

 Moves this window in the tab navigation order after the specified win.

 moveBeforeInTabOrder(This, Win)

 Same as moveAfterInTabOrder/2 except that it inserts this window just before
win instead of putting it right after it.

 navigate(This)

 navigate/2

 Performs a keyboard navigation action starting from this window.

 new()

 Default constructor.

 new(Parent, Id)

 new/3

 Constructs a window, which can be a child of a frame, dialog or any other
non-control window.

 pageDown(This)

 Same as scrollPages/2 (1).

 pageUp(This)

 Same as scrollPages/2 (-1).

 popupMenu(This, Menu)

 popupMenu/3

 Pops up the given menu at the specified coordinates, relative to this window,
and returns control when the user has dismissed the menu.

 popupMenu(This, Menu, X, Y)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 raise(This)

 Raises the window to the top of the window hierarchy (Z-order).

 refresh(This)

 refresh/2

 Causes this window, and all of its children recursively (except under wxGTK1
where this is not implemented), to be repainted.

 refreshRect(This, Rect)

 refreshRect/3

 Redraws the contents of the given rectangle: only the area inside it will be
repainted.

 releaseMouse(This)

 Releases mouse input captured with captureMouse/1.

 removeChild(This, Child)

 Removes a child window.

 reparent(This, NewParent)

 Reparents the window, i.e. the window will be removed from its current parent
window (e.g.

 screenToClient(This)

 Converts from screen to client window coordinates.

 screenToClient(This, Pt)

 Converts from screen to client window coordinates.

 scrollLines(This, Lines)

 Scrolls the window by the given number of lines down (if lines is positive) or
up.

 scrollPages(This, Pages)

 Scrolls the window by the given number of pages down (if pages is positive) or
up.

 scrollWindow(This, Dx, Dy)

 scrollWindow/4

 Physically scrolls the pixels in the window and move child windows accordingly.

 setAcceleratorTable(This, Accel)

 Sets the accelerator table for this window.

 setAutoLayout(This, AutoLayout)

 Determines whether the layout/1 function will be called automatically when the
window is resized.

 setBackgroundColour(This, Colour)

 Sets the background colour of the window.

 setBackgroundStyle(This, Style)

 Sets the background style of the window.

 setCaret(This, Caret)

 Sets the caret() associated with the window.

 setClientSize/2

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setClientSize(This, Width, Height)

 This sets the size of the window client area in pixels.

 setContainingSizer(This, Sizer)

 Used by wxSizer internally to notify the window about being managed by the
given sizer.

 setCursor(This, Cursor)

 Sets the window's cursor.

 setDoubleBuffered(This, On)

 Turn on or off double buffering of the window if the system supports it.

 setDropTarget(This, Target)

 Associates a drop target with this window.

 setExtraStyle(This, ExStyle)

 Sets the extra style bits for the window.

 setFocus(This)

 This sets the window to receive keyboard input.

 setFocusFromKbd(This)

 This function is called by wxWidgets keyboard navigation code when the user
gives the focus to this window from keyboard (e.g. using TAB key).

 setFont(This, Font)

 Sets the font for this window.

 setForegroundColour(This, Colour)

 Sets the foreground colour of the window.

 setHelpText(This, HelpText)

 Sets the help text to be used as context-sensitive help for this window.

 setId(This, Winid)

 Sets the identifier of the window.

 setLabel(This, Label)

 Sets the window's label.

 setMaxSize(This, Size)

 Sets the maximum size of the window, to indicate to the sizer layout mechanism
that this is the maximum possible size.

 setMinSize(This, Size)

 Sets the minimum size of the window, to indicate to the sizer layout mechanism
that this is the minimum required size.

 setName(This, Name)

 Sets the window's name.

 setOwnBackgroundColour(This, Colour)

 Sets the background colour of the window but prevents it from being inherited by
the children of this window.

 setOwnFont(This, Font)

 Sets the font of the window but prevents it from being inherited by the children
of this window.

 setOwnForegroundColour(This, Colour)

 Sets the foreground colour of the window but prevents it from being inherited by
the children of this window.

 setPalette(This, Pal)

 Deprecated: use wxDC:setPalette/2 instead.

 setScrollbar(This, Orientation, Position, ThumbSize, Range)

 setScrollbar/6

 Sets the scrollbar properties of a built-in scrollbar.

 setScrollPos(This, Orientation, Pos)

 setScrollPos/4

 Sets the position of one of the built-in scrollbars.

 setSize/2

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setSize/3

 Sets the size of the window in pixels.

 setSize(This, X, Y, Width, Height)

 setSize/6

 Sets the size of the window in pixels.

 setSizeHints(This, MinSize)

 setSizeHints/3

 Use of this function for windows which are not toplevel windows (such as
wxDialog or wxFrame) is discouraged.

 setSizeHints/4

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setSizer(This, Sizer)

 setSizer/3

 Sets the window to have the given layout sizer.

 setSizerAndFit(This, Sizer)

 setSizerAndFit/3

 Associate the sizer with the window and set the window size and minimal size
accordingly.

 setThemeEnabled(This, Enable)

 This function tells a window if it should use the system's "theme" code to draw
the windows' background instead of its own background drawing code.

 setToolTip/2

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setTransparent(This, Alpha)

 Set the transparency of the window.

 setVirtualSize(This, Size)

 This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 setVirtualSize(This, Width, Height)

 Sets the virtual size of the window in pixels.

 setWindowStyle(This, Style)

 See setWindowStyleFlag/2 for more info.

 setWindowStyleFlag(This, Style)

 Sets the style of the window.

 setWindowVariant(This, Variant)

 Chooses a different variant of the window display to use.

 shouldInheritColours(This)

 Return true from here to allow the colours of this window to be changed by
inheritAttributes/1.

 show(This)

 show/2

 Shows or hides the window.

 thaw(This)

 Re-enables window updating after a previous call to freeze/1.

 toDIP/2

 Convert pixel values of the current toolkit to DPI-independent pixel values.

 transferDataFromWindow(This)

 Transfers values from child controls to data areas specified by their
validators.

 transferDataToWindow(This)

 Transfers values to child controls from data areas specified by their
validators.

 update(This)

 Calling this method immediately repaints the invalidated area of the window and
all of its children recursively (this normally only happens when the flow of
control returns to the event loop).

 updateWindowUI(This)

 updateWindowUI/2

 This function sends one or more wxUpdateUIEvent to the window.

 validate(This)

 Validates the current values of the child controls using their validators.

 warpPointer(This, X, Y)

 Moves the pointer to the given position on the window.

 Types

 Link to this type

 wxWindow()

 View Source

 -type wxWindow() :: wx:wx_object().

 Functions

 Link to this function

 cacheBestSize(This, Size)

 View Source

 -spec cacheBestSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the cached best size value.
See: getBestSize/1

 Link to this function

 canSetTransparent(This)

 View Source

 -spec canSetTransparent(This) -> boolean() when This :: wxWindow().

Returns true if the system supports transparent windows and calling
setTransparent/2 may succeed.
If this function returns false, transparent windows are definitely not supported
by the current system.

 Link to this function

 captureMouse(This)

 View Source

 -spec captureMouse(This) -> ok when This :: wxWindow().

Directs all mouse input to this window.
Call releaseMouse/1 to release the capture.
Note that wxWidgets maintains the stack of windows having captured the mouse and
when the mouse is released the capture returns to the window which had had
captured it previously and it is only really released if there were no previous
window. In particular, this means that you must release the mouse as many times
as you capture it, unless the window receives the wxMouseCaptureLostEvent
event.
Any application which captures the mouse in the beginning of some operation must
handle wxMouseCaptureLostEvent and cancel this operation when it receives
the event. The event handler must not recapture mouse.
See: releaseMouse/1, wxMouseCaptureLostEvent

 Link to this function

 center(This)

 View Source

 -spec center(This) -> ok when This :: wxWindow().

 Link to this function

 center(This, Options)

 View Source

 -spec center(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

See: centre/2.

 Link to this function

 centerOnParent(This)

 View Source

 -spec centerOnParent(This) -> ok when This :: wxWindow().

 Link to this function

 centerOnParent(This, Options)

 View Source

 -spec centerOnParent(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

See: centreOnParent/2.

 Link to this function

 centre(This)

 View Source

 -spec centre(This) -> ok when This :: wxWindow().

 Link to this function

 centre/2

 View Source

 -spec centre(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Centres the window.
Remark: If the window is a top level one (i.e. doesn't have a parent), it will
be centred relative to the screen anyhow.
See: center/2

 Link to this function

 centreOnParent(This)

 View Source

 -spec centreOnParent(This) -> ok when This :: wxWindow().

 Link to this function

 centreOnParent/2

 View Source

 -spec centreOnParent(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Centres the window on its parent.
This is a more readable synonym for centre/2.
Remark: This methods provides for a way to centre top level windows over their
parents instead of the entire screen. If there is no parent or if the window is
not a top level window, then behaviour is the same as centre/2.
See: wxTopLevelWindow:centreOnScreen/2

 Link to this function

 clearBackground(This)

 View Source

 -spec clearBackground(This) -> ok when This :: wxWindow().

Clears the window by filling it with the current background colour.
Does not cause an erase background event to be generated.
Notice that this uses wxClientDC to draw on the window and the results of
doing it while also drawing on wxPaintDC for this window are undefined.
Hence this method shouldn't be used from EVT_PAINT handlers, just use
wxDC:clear/1 on the wxPaintDC you already use there instead.

 Link to this function

 clientToScreen(This, Pt)

 View Source

 -spec clientToScreen(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

Converts to screen coordinates from coordinates relative to this window.

 Link to this function

 clientToScreen(This, X, Y)

 View Source

 -spec clientToScreen(This, X, Y) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), X :: integer(), Y :: integer().

Converts to screen coordinates from coordinates relative to this window.

 Link to this function

 close(This)

 View Source

 -spec close(This) -> boolean() when This :: wxWindow().

 Link to this function

 close/2

 View Source

 -spec close(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {force, boolean()}.

This function simply generates a wxCloseEvent whose handler usually tries to
close the window.
It doesn't close the window itself, however.
Return: true if the event was handled and not vetoed, false otherwise.
Remark: Close calls the close handler for the window, providing an opportunity
for the window to choose whether to destroy the window. Usually it is only used
with the top level windows (wxFrame and wxDialog classes) as the others
are not supposed to have any special OnClose() logic. The close handler should
check whether the window is being deleted forcibly, using
wxCloseEvent:canVeto/1, in which case it should destroy the window using
'Destroy'/1. Note that calling Close does not guarantee that the window will
be destroyed; but it provides a way to simulate a manual close of a window,
which may or may not be implemented by destroying the window. The default
implementation of wxDialog::OnCloseWindow does not necessarily delete the
dialog, since it will simply simulate an wxID_CANCEL event which is handled by
the appropriate button event handler and may do anything at all. To guarantee
that the window will be destroyed, call 'Destroy'/1 instead
See: Window Deletion Overview, 'Destroy'/1, wxCloseEvent

 Link to this function

 convertDialogToPixels(This, Sz)

 View Source

 -spec convertDialogToPixels(This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 convertPixelsToDialog(This, Sz)

 View Source

 -spec convertPixelsToDialog(This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 create(This, Parent, Id)

 View Source

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxWindow(), Parent :: wxWindow(), Id :: integer().

 Link to this function

 create/4

 View Source

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxWindow(),
 Parent :: wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Construct the actual window object after creating the C++ object.
The non-default constructor of wxWindow class does two things: it
initializes the C++ object and it also creates the window object in the
underlying graphical toolkit. The create/4 method can be used to perform the
second part later, while the default constructor can be used to perform the
first part only.
Please note that the underlying window must be created exactly once, i.e. if you
use the default constructor, which doesn't do this, you must call create/4
before using the window and if you use the non-default constructor, you can
not call create/4, as the underlying window is already created.
Note that it is possible and, in fact, useful, to call some methods on the
object between creating the C++ object itself and calling create/4 on it, e.g.
a common pattern to avoid showing the contents of a window before it is fully
initialized is:
Also note that it is possible to create an object of a derived type and then
call create/4 on it: This is notably used by overview_xrc.
The parameters of this method have exactly the same meaning as the non-default
constructor parameters, please refer to them for their description.
Return: true if window creation succeeded or false if it failed

 Link to this function

 'Destroy'(This)

 View Source

 -spec 'Destroy'(This) -> boolean() when This :: wxWindow().

Destroys the window safely.
Use this function instead of the delete operator, since different window classes
can be destroyed differently. Frames and dialogs are not destroyed immediately
when this function is called - they are added to a list of windows to be deleted
on idle time, when all the window's events have been processed. This prevents
problems with events being sent to non-existent windows.
Return: true if the window has either been successfully deleted, or it has been
added to the list of windows pending real deletion.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxWindow()) -> ok.

Destructor.
Deletes all sub-windows, then deletes itself. Instead of using the delete
operator explicitly, you should normally use 'Destroy'/1 so that wxWidgets can
delete a window only when it is safe to do so, in idle time.
See: Window Deletion Overview, 'Destroy'/1, wxCloseEvent

 Link to this function

 destroyChildren(This)

 View Source

 -spec destroyChildren(This) -> boolean() when This :: wxWindow().

Destroys all children of a window.
Called automatically by the destructor.

 Link to this function

 disable(This)

 View Source

 -spec disable(This) -> boolean() when This :: wxWindow().

Disables the window.
Same as enable/2 Enable(false).
Return: Returns true if the window has been disabled, false if it had been
already disabled before the call to this function.

 Link to this function

 dragAcceptFiles(This, Accept)

 View Source

 -spec dragAcceptFiles(This, Accept) -> ok when This :: wxWindow(), Accept :: boolean().

Enables or disables eligibility for drop file events (OnDropFiles).
Remark: Windows only until version 2.8.9, available on all platforms since
2.8.10. Cannot be used together with setDropTarget/2 on non-Windows platforms.
See: setDropTarget/2

 Link to this function

 enable(This)

 View Source

 -spec enable(This) -> boolean() when This :: wxWindow().

 Link to this function

 enable/2

 View Source

 -spec enable(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {enable, boolean()}.

Enable or disable the window for user input.
Note that when a parent window is disabled, all of its children are disabled as
well and they are re-enabled again when the parent is.
A window can be created initially disabled by calling this method on it before
calling create/4 to create the actual underlying window, e.g.
Return: Returns true if the window has been enabled or disabled, false if
nothing was done, i.e. if the window had already been in the specified state.
See: isEnabled/1, disable/1, wxRadioBox:enable/3

 Link to this function

 findFocus()

 View Source

 -spec findFocus() -> wxWindow().

Finds the window or control which currently has the keyboard focus.
Remark: Note that this is a static function, so it can be called without needing
a wxWindow pointer.
See: setFocus/1, HasFocus() (not implemented in wx)

 Link to this function

 findWindow/2

 View Source

 -spec findWindow(This, Id) -> wxWindow() when This :: wxWindow(), Id :: integer();
 (This, Name) -> wxWindow() when This :: wxWindow(), Name :: unicode:chardata().

Find a child of this window, by name.
May return this if it matches itself.
Notice that only real children, not top level windows using this window as
parent, are searched by this function.

 Link to this function

 findWindowById(Id)

 View Source

 -spec findWindowById(Id) -> wxWindow() when Id :: integer().

 Link to this function

 findWindowById(Id, Options)

 View Source

 -spec findWindowById(Id, [Option]) -> wxWindow() when Id :: integer(), Option :: {parent, wxWindow()}.

Find the first window with the given id.
If parent is NULL, the search will start from all top-level frames and dialog
boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases.
See: findWindow/2
Return: Window with the given id or NULL if not found.

 Link to this function

 findWindowByLabel(Label)

 View Source

 -spec findWindowByLabel(Label) -> wxWindow() when Label :: unicode:chardata().

 Link to this function

 findWindowByLabel(Label, Options)

 View Source

 -spec findWindowByLabel(Label, [Option]) -> wxWindow()
 when Label :: unicode:chardata(), Option :: {parent, wxWindow()}.

Find a window by its label.
Depending on the type of window, the label may be a window title or panel item
label. If parent is NULL, the search will start from all top-level frames and
dialog boxes; if non-NULL, the search will be limited to the given window
hierarchy.
The search is recursive in both cases and, unlike with findWindow/2, recurses
into top level child windows too.
See: findWindow/2
Return: Window with the given label or NULL if not found.

 Link to this function

 findWindowByName(Name)

 View Source

 -spec findWindowByName(Name) -> wxWindow() when Name :: unicode:chardata().

 Link to this function

 findWindowByName(Name, Options)

 View Source

 -spec findWindowByName(Name, [Option]) -> wxWindow()
 when Name :: unicode:chardata(), Option :: {parent, wxWindow()}.

Find a window by its name (as given in a window constructor or create/4
function call).
If parent is NULL, the search will start from all top-level frames and dialog
boxes; if non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases and, unlike findWindow/2, recurses into
top level child windows too.
If no window with such name is found, findWindowByLabel/2 is called, i.e. the
name is interpreted as (internal) name first but if this fails, it's internal as
(user-visible) label. As this behaviour may be confusing, it is usually better
to use either the findWindow/2 overload taking the name or
findWindowByLabel/2 directly.
Return: Window with the given name or NULL if not found.

 Link to this function

 fit(This)

 View Source

 -spec fit(This) -> ok when This :: wxWindow().

Sizes the window to fit its best size.
Using this function is equivalent to setting window size to the return value of
getBestSize/1.
Note that, unlike setSizerAndFit/3, this function only changes the current
window size and doesn't change its minimal size.
See:
Overview windowsizing

 Link to this function

 fitInside(This)

 View Source

 -spec fitInside(This) -> ok when This :: wxWindow().

Similar to fit/1, but sizes the interior (virtual) size of a window.
Mainly useful with scrolled windows to reset scrollbars after sizing changes
that do not trigger a size event, and/or scrolled windows without an interior
sizer. This function similarly won't do anything if there are no subwindows.

 Link to this function

 freeze(This)

 View Source

 -spec freeze(This) -> ok when This :: wxWindow().

Freezes the window or, in other words, prevents any updates from taking place on
screen, the window is not redrawn at all.
thaw/1 must be called to re-enable window redrawing. Calls to these two
functions may be nested but to ensure that the window is properly repainted
again, you must thaw it exactly as many times as you froze it.
If the window has any children, they are recursively frozen too.
This method is useful for visual appearance optimization (for example, it is a
good idea to use it before doing many large text insertions in a row into a
wxTextCtrl under wxGTK) but is not implemented on all platforms nor for all
controls so it is mostly just a hint to wxWidgets and not a mandatory directive.
See: wxWindowUpdateLocker (not implemented in wx), thaw/1, isFrozen/1

 Link to this function

 fromDIP/2

 View Source

 -spec fromDIP(D, W) -> integer() when D :: integer(), W :: wxWindow();
 (Sz, W) -> {W :: integer(), H :: integer()}
 when Sz :: {W :: integer(), H :: integer()}, W :: wxWindow();
 (This, D) -> integer() when This :: wxWindow(), D :: integer();
 (This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

Convert DPI-independent pixel values to the value in pixels appropriate for the
current toolkit.
A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To
keep the same physical size at higher resolution, the physical pixel value must
be scaled by getDPIScaleFactor/1 but this scaling may be already done by the
underlying toolkit (GTK+, Cocoa, ...) automatically. This method performs the
conversion only if it is not already done by the lower level toolkit and so by
using it with pixel values you can guarantee that the physical size of the
corresponding elements will remain the same in all resolutions under all
platforms. For example, instead of creating a bitmap of the hard coded size of
32 pixels you should use to avoid using tiny bitmaps on high DPI screens.
Notice that this function is only needed when using hard coded pixel values. It
is not necessary if the sizes are already based on the DPI-independent units
such as dialog units or if you are relying on the controls automatic best size
determination and using sizers to lay out them.
Also note that if either component of sz has the special value of -1, it is
returned unchanged independently of the current DPI, to preserve the special
value of -1 in wxWidgets API (it is often used to mean "unspecified").
Since: 3.1.0

 Link to this function

 getAcceleratorTable(This)

 View Source

 -spec getAcceleratorTable(This) -> wxAcceleratorTable:wxAcceleratorTable() when This :: wxWindow().

Gets the accelerator table for this window.
See wxAcceleratorTable.

 Link to this function

 getBackgroundColour(This)

 View Source

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxWindow().

Returns the background colour of the window.
See: setBackgroundColour/2, setForegroundColour/2, getForegroundColour/1

 Link to this function

 getBackgroundStyle(This)

 View Source

 -spec getBackgroundStyle(This) -> wx:wx_enum() when This :: wxWindow().

Returns the background style of the window.
See: setBackgroundColour/2, getForegroundColour/1, setBackgroundStyle/2,
setTransparent/2

 Link to this function

 getBestSize(This)

 View Source

 -spec getBestSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This functions returns the best acceptable minimal size for the window.
For example, for a static control, it will be the minimal size such that the
control label is not truncated. For windows containing subwindows (typically
wxPanel), the size returned by this function will be the same as the size
the window would have had after calling fit/1.
Override virtual DoGetBestSize() (not implemented in wx) or, better, because
it's usually more convenient, DoGetBestClientSize() (not implemented in wx)
when writing your own custom window class to change the value returned by this
public non-virtual method.
Notice that the best size respects the minimal and maximal size explicitly set
for the window, if any. So even if some window believes that it needs 200 pixels
horizontally, calling setMaxSize/2 with a width of 100 would ensure that
getBestSize/1 returns the width of at most 100 pixels.
See: cacheBestSize/2,
Overview windowsizing

 Link to this function

 getCapture()

 View Source

 -spec getCapture() -> wxWindow().

Returns the currently captured window.
See: hasCapture/1, captureMouse/1, releaseMouse/1,
wxMouseCaptureLostEvent, wxMouseCaptureChangedEvent

 Link to this function

 getCaret(This)

 View Source

 -spec getCaret(This) -> wxCaret:wxCaret() when This :: wxWindow().

Returns the caret() associated with the window.

 Link to this function

 getCharHeight(This)

 View Source

 -spec getCharHeight(This) -> integer() when This :: wxWindow().

Returns the character height for this window.

 Link to this function

 getCharWidth(This)

 View Source

 -spec getCharWidth(This) -> integer() when This :: wxWindow().

Returns the average character width for this window.

 Link to this function

 getChildren(This)

 View Source

 -spec getChildren(This) -> [wxWindow()] when This :: wxWindow().

Returns a const reference to the list of the window's children.
wxWindowList is a type-safe wxList-like class whose elements are of type
wxWindow*.

 Link to this function

 getClientSize(This)

 View Source

 -spec getClientSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 getContainingSizer(This)

 View Source

 -spec getContainingSizer(This) -> wxSizer:wxSizer() when This :: wxWindow().

Returns the sizer of which this window is a member, if any, otherwise NULL.

 Link to this function

 getContentScaleFactor(This)

 View Source

 -spec getContentScaleFactor(This) -> number() when This :: wxWindow().

Returns the factor mapping logical pixels of this window to physical pixels.
This function can be used to portably determine the number of physical pixels in
a window of the given size, by multiplying the window size by the value returned
from it. I.e. it returns the factor converting window coordinates to "content
view" coordinates, where the view can be just a simple window displaying a
wxBitmap or wxGLCanvas or any other kind of window rendering arbitrary
"content" on screen.
For the platforms not doing any pixel mapping, i.e. where logical and physical
pixels are one and the same, this function always returns 1.0 and so using it
is, in principle, unnecessary and could be avoided by using preprocessor check
for wxHAVE_DPI_INDEPENDENT_PIXELS not being defined, however using this
function unconditionally under all platforms is usually simpler and so
preferable.
Note: Current behaviour of this function is compatible with wxWidgets 3.0, but
different from its behaviour in versions 3.1.0 to 3.1.3, where it returned the
same value as getDPIScaleFactor/1. Please use the other function if you need
to use a scaling factor greater than 1.0 even for the platforms without
wxHAVE_DPI_INDEPENDENT_PIXELS, such as wxMSW.
Since: 2.9.5

 Link to this function

 getCursor(This)

 View Source

 -spec getCursor(This) -> wxCursor:wxCursor() when This :: wxWindow().

Return the cursor associated with this window.
See: setCursor/2

 Link to this function

 getDPI(This)

 View Source

 -spec getDPI(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Return the DPI of the display used by this window.
The returned value can be different for different windows on systems with
support for per-monitor DPI values, such as Microsoft Windows 10.
If the DPI is not available, returns {Width,Height} object.
See: wxDisplay:getPPI/1, wxDPIChangedEvent (not implemented in wx)
Since: 3.1.3

 Link to this function

 getDPIScaleFactor(This)

 View Source

 -spec getDPIScaleFactor(This) -> number() when This :: wxWindow().

Returns the ratio of the DPI used by this window to the standard DPI.
The returned value is 1 for standard DPI screens or 2 for "200% scaling" and,
unlike for getContentScaleFactor/1, is the same under all platforms.
This factor should be used to increase the size of icons and similar windows
whose best size is not based on text metrics when using DPI scaling.
E.g. the program may load a 32px bitmap if the content scale factor is 1.0 or
64px version of the same bitmap if it is 2.0 or bigger.
Notice that this method should not be used for window sizes expressed in
pixels, as they are already scaled by this factor by the underlying toolkit
under some platforms. Use fromDIP/2 for anything window-related instead.
Since: 3.1.4

 Link to this function

 getDropTarget(This)

 View Source

 -spec getDropTarget(This) -> wx:wx_object() when This :: wxWindow().

Returns the associated drop target, which may be NULL.
See: setDropTarget/2,
Overview dnd

 Link to this function

 getExtraStyle(This)

 View Source

 -spec getExtraStyle(This) -> integer() when This :: wxWindow().

Returns the extra style bits for the window.

 Link to this function

 getFont(This)

 View Source

 -spec getFont(This) -> wxFont:wxFont() when This :: wxWindow().

Returns the font for this window.
See: setFont/2

 Link to this function

 getForegroundColour(This)

 View Source

 -spec getForegroundColour(This) -> wx:wx_colour4() when This :: wxWindow().

Returns the foreground colour of the window.
Remark: The meaning of foreground colour varies according to the window class;
it may be the text colour or other colour, or it may not be used at all.
See: setForegroundColour/2, setBackgroundColour/2, getBackgroundColour/1

 Link to this function

 getGrandParent(This)

 View Source

 -spec getGrandParent(This) -> wxWindow() when This :: wxWindow().

Returns the grandparent of a window, or NULL if there isn't one.

 Link to this function

 getHandle(This)

 View Source

 -spec getHandle(This) -> integer() when This :: wxWindow().

Returns the platform-specific handle of the physical window.
Cast it to an appropriate handle, such as HWND for Windows, Widget for Motif
or GtkWidget for GTK.

 Link to this function

 getHelpText(This)

 View Source

 -spec getHelpText(This) -> unicode:charlist() when This :: wxWindow().

Gets the help text to be used as context-sensitive help for this window.
Note that the text is actually stored by the current wxHelpProvider (not
implemented in wx) implementation, and not in the window object itself.
See: setHelpText/2, GetHelpTextAtPoint() (not implemented in wx),
wxHelpProvider (not implemented in wx)

 Link to this function

 getId(This)

 View Source

 -spec getId(This) -> integer() when This :: wxWindow().

Returns the identifier of the window.
Remark: Each window has an integer identifier. If the application has not
provided one (or the default wxID_ANY) a unique identifier with a negative value
will be generated.
See: setId/2,
Overview windowids

 Link to this function

 getLabel(This)

 View Source

 -spec getLabel(This) -> unicode:charlist() when This :: wxWindow().

Generic way of getting a label from any window, for identification purposes.
Remark: The interpretation of this function differs from class to class. For
frames and dialogs, the value returned is the title. For buttons or static text
controls, it is the button text. This function can be useful for meta-programs
(such as testing tools or special-needs access programs) which need to identify
windows by name.

 Link to this function

 getMaxSize(This)

 View Source

 -spec getMaxSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Returns the maximum size of the window.
This is an indication to the sizer layout mechanism that this is the maximum
possible size as well as the upper bound on window's size settable using
setSize/6.
See: GetMaxClientSize() (not implemented in wx),
Overview windowsizing

 Link to this function

 getMinSize(This)

 View Source

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Returns the minimum size of the window, an indication to the sizer layout
mechanism that this is the minimum required size.
This method normally just returns the value set by setMinSize/2, but it can be
overridden to do the calculation on demand.
See: GetMinClientSize() (not implemented in wx),
Overview windowsizing

 Link to this function

 getName(This)

 View Source

 -spec getName(This) -> unicode:charlist() when This :: wxWindow().

Returns the window's name.
Remark: This name is not guaranteed to be unique; it is up to the programmer to
supply an appropriate name in the window constructor or via setName/2.
See: setName/2

 Link to this function

 getParent(This)

 View Source

 -spec getParent(This) -> wxWindow() when This :: wxWindow().

Returns the parent of the window, or NULL if there is no parent.

 Link to this function

 getPosition(This)

 View Source

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

This gets the position of the window in pixels, relative to the parent window
for the child windows or relative to the display origin for the top level
windows.
See: getScreenPosition/1

 Link to this function

 getRect(This)

 View Source

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxWindow().

Returns the position and size of the window as a {X,Y,W,H} object.
See: getScreenRect/1

 Link to this function

 getScreenPosition(This)

 View Source

 -spec getScreenPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

Returns the window position in screen coordinates, whether the window is a child
window or a top level one.
See: getPosition/1

 Link to this function

 getScreenRect(This)

 View Source

 -spec getScreenRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxWindow().

Returns the position and size of the window on the screen as a {X,Y,W,H}
object.
See: getRect/1

 Link to this function

 getScrollPos(This, Orientation)

 View Source

 -spec getScrollPos(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar position.
See: setScrollbar/6

 Link to this function

 getScrollRange(This, Orientation)

 View Source

 -spec getScrollRange(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar range.
See: setScrollbar/6

 Link to this function

 getScrollThumb(This, Orientation)

 View Source

 -spec getScrollThumb(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar thumb size.
See: setScrollbar/6

 Link to this function

 getSize(This)

 View Source

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

See the GetSize(int,int) overload for more info.

 Link to this function

 getSizer(This)

 View Source

 -spec getSizer(This) -> wxSizer:wxSizer() when This :: wxWindow().

Returns the sizer associated with the window by a previous call to setSizer/3,
or NULL.

 Link to this function

 getTextExtent(This, String)

 View Source

 -spec getTextExtent(This, String) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxWindow(),
 String :: unicode:chardata().

 Link to this function

 getTextExtent/3

 View Source

 -spec getTextExtent(This, String, [Option]) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxWindow(),
 String :: unicode:chardata(),
 Option :: {theFont, wxFont:wxFont()}.

Gets the dimensions of the string as it would be drawn on the window with the
currently selected font.
The text extent is returned in the w and h pointers.

 Link to this function

 getThemeEnabled(This)

 View Source

 -spec getThemeEnabled(This) -> boolean() when This :: wxWindow().

Returns true if the window uses the system theme for drawing its background.
See: setThemeEnabled/2

 Link to this function

 getToolTip(This)

 View Source

 -spec getToolTip(This) -> wxToolTip:wxToolTip() when This :: wxWindow().

Get the associated tooltip or NULL if none.

 Link to this function

 getUpdateRegion(This)

 View Source

 -spec getUpdateRegion(This) -> wxRegion:wxRegion() when This :: wxWindow().

Gets the dimensions of the string as it would be drawn on the window with the
currently selected font.
Returns the region specifying which parts of the window have been damaged.
Should only be called within an wxPaintEvent handler.
See: wxRegion, wxRegionIterator (not implemented in wx)

 Link to this function

 getVirtualSize(This)

 View Source

 -spec getVirtualSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This gets the virtual size of the window in pixels.
By default it returns the client size of the window, but after a call to
setVirtualSize/3 it will return the size set with that method.
See:
Overview windowsizing

 Link to this function

 getWindowStyleFlag(This)

 View Source

 -spec getWindowStyleFlag(This) -> integer() when This :: wxWindow().

Gets the window style that was passed to the constructor or create/4 method.
GetWindowStyle() (not implemented in wx) is another name for the same
function.

 Link to this function

 getWindowVariant(This)

 View Source

 -spec getWindowVariant(This) -> wx:wx_enum() when This :: wxWindow().

Returns the value previously passed to setWindowVariant/2.

 Link to this function

 hasCapture(This)

 View Source

 -spec hasCapture(This) -> boolean() when This :: wxWindow().

Returns true if this window has the current mouse capture.
See: captureMouse/1, releaseMouse/1, wxMouseCaptureLostEvent,
wxMouseCaptureChangedEvent

 Link to this function

 hasScrollbar(This, Orient)

 View Source

 -spec hasScrollbar(This, Orient) -> boolean() when This :: wxWindow(), Orient :: integer().

Returns true if this window currently has a scroll bar for this orientation.
This method may return false even when CanScroll() (not implemented in wx) for
the same orientation returns true, but if CanScroll() (not implemented in wx)
returns false, i.e. scrolling in this direction is not enabled at all,
hasScrollbar/2 always returns false as well.

 Link to this function

 hasTransparentBackground(This)

 View Source

 -spec hasTransparentBackground(This) -> boolean() when This :: wxWindow().

Returns true if this window background is transparent (as, for example, for
wxStaticText) and should show the parent window background.
This method is mostly used internally by the library itself and you normally
shouldn't have to call it. You may, however, have to override it in your
wxWindow-derived class to ensure that background is painted correctly.

 Link to this function

 hide(This)

 View Source

 -spec hide(This) -> boolean() when This :: wxWindow().

Equivalent to calling show/2(false).

 Link to this function

 inheritAttributes(This)

 View Source

 -spec inheritAttributes(This) -> ok when This :: wxWindow().

This function is (or should be, in case of custom controls) called during window
creation to intelligently set up the window visual attributes, that is the font
and the foreground and background colours.
By "intelligently" the following is meant: by default, all windows use their own
GetClassDefaultAttributes() (not implemented in wx) default attributes.
However if some of the parents attributes are explicitly (that is, using
setFont/2 and not setOwnFont/2) changed and if the corresponding attribute
hadn't been explicitly set for this window itself, then this window takes the
same value as used by the parent. In addition, if the window overrides
shouldInheritColours/1 to return false, the colours will not be changed no
matter what and only the font might.
This rather complicated logic is necessary in order to accommodate the different
usage scenarios. The most common one is when all default attributes are used and
in this case, nothing should be inherited as in modern GUIs different controls
use different fonts (and colours) than their siblings so they can't inherit the
same value from the parent. However it was also deemed desirable to allow to
simply change the attributes of all children at once by just changing the font
or colour of their common parent, hence in this case we do inherit the parents
attributes.

 Link to this function

 initDialog(This)

 View Source

 -spec initDialog(This) -> ok when This :: wxWindow().

Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the
dialog via validators.

 Link to this function

 invalidateBestSize(This)

 View Source

 -spec invalidateBestSize(This) -> ok when This :: wxWindow().

Resets the cached best size value so it will be recalculated the next time it is
needed.
See: cacheBestSize/2

 Link to this function

 isDoubleBuffered(This)

 View Source

 -spec isDoubleBuffered(This) -> boolean() when This :: wxWindow().

Returns true if the window contents is double-buffered by the system, i.e. if
any drawing done on the window is really done on a temporary backing surface and
transferred to the screen all at once later.
See: wxBufferedDC

 Link to this function

 isEnabled(This)

 View Source

 -spec isEnabled(This) -> boolean() when This :: wxWindow().

Returns true if the window is enabled, i.e. if it accepts user input, false
otherwise.
Notice that this method can return false even if this window itself hadn't been
explicitly disabled when one of its parent windows is disabled. To get the
intrinsic status of this window, use IsThisEnabled() (not implemented in wx)
See: enable/2

 Link to this function

 isExposed/2

 View Source

 -spec isExposed(This, Pt) -> boolean() when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()};
 (This, Rect) -> boolean()
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 isExposed(This, X, Y)

 View Source

 -spec isExposed(This, X, Y) -> boolean() when This :: wxWindow(), X :: integer(), Y :: integer().

Returns true if the given point or rectangle area has been exposed since the
last repaint.
Call this in an paint event handler to optimize redrawing by only redrawing
those areas, which have been exposed.

 Link to this function

 isExposed(This, X, Y, W, H)

 View Source

 -spec isExposed(This, X, Y, W, H) -> boolean()
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 isFrozen(This)

 View Source

 -spec isFrozen(This) -> boolean() when This :: wxWindow().

Returns true if the window is currently frozen by a call to freeze/1.
See: freeze/1, thaw/1

 Link to this function

 isRetained(This)

 View Source

 -spec isRetained(This) -> boolean() when This :: wxWindow().

Returns true if the window is retained, false otherwise.
Remark: Retained windows are only available on X platforms.

 Link to this function

 isShown(This)

 View Source

 -spec isShown(This) -> boolean() when This :: wxWindow().

Returns true if the window is shown, false if it has been hidden.
See: isShownOnScreen/1

 Link to this function

 isShownOnScreen(This)

 View Source

 -spec isShownOnScreen(This) -> boolean() when This :: wxWindow().

Returns true if the window is physically visible on the screen, i.e. it is shown
and all its parents up to the toplevel window are shown as well.
See: isShown/1

 Link to this function

 isTopLevel(This)

 View Source

 -spec isTopLevel(This) -> boolean() when This :: wxWindow().

Returns true if the given window is a top-level one.
Currently all frames and dialogs are considered to be top-level windows (even if
they have a parent window).

 Link to this function

 layout(This)

 View Source

 -spec layout(This) -> boolean() when This :: wxWindow().

Lays out the children of this window using the associated sizer.
If a sizer hadn't been associated with this window (see setSizer/3), this
function doesn't do anything, unless this is a top level window (see
layout/1).
Note that this method is called automatically when the window size changes if it
has the associated sizer (or if setAutoLayout/2 with true argument had been
explicitly called), ensuring that it is always laid out correctly.
See:
Overview windowsizing
Return: Always returns true, the return value is not useful.

 Link to this function

 lineDown(This)

 View Source

 -spec lineDown(This) -> boolean() when This :: wxWindow().

Same as scrollLines/2 (1).

 Link to this function

 lineUp(This)

 View Source

 -spec lineUp(This) -> boolean() when This :: wxWindow().

Same as scrollLines/2 (-1).

 Link to this function

 lower(This)

 View Source

 -spec lower(This) -> ok when This :: wxWindow().

Lowers the window to the bottom of the window hierarchy (Z-order).
Remark: This function only works for wxTopLevelWindow-derived classes.
See: raise/1

 Link to this function

 move(This, Pt)

 View Source

 -spec move(This, Pt) -> ok when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

 Link to this function

 move/3

 View Source

 -spec move(This, X, Y) -> ok when This :: wxWindow(), X :: integer(), Y :: integer();
 (This, Pt, [Option]) -> ok
 when
 This :: wxWindow(),
 Pt :: {X :: integer(), Y :: integer()},
 Option :: {flags, integer()}.

Moves the window to the given position.
Remark: Implementations of setSize/6 can also implicitly implement the
move/4 function, which is defined in the base wxWindow class as the call:
See: setSize/6

 Link to this function

 move/4

 View Source

 -spec move(This, X, Y, [Option]) -> ok
 when This :: wxWindow(), X :: integer(), Y :: integer(), Option :: {flags, integer()}.

Moves the window to the given position.
Remark: Implementations of SetSize can also implicitly implement the move/4
function, which is defined in the base wxWindow class as the call:
See: setSize/6

 Link to this function

 moveAfterInTabOrder(This, Win)

 View Source

 -spec moveAfterInTabOrder(This, Win) -> ok when This :: wxWindow(), Win :: wxWindow().

Moves this window in the tab navigation order after the specified win.
This means that when the user presses TAB key on that other window, the focus
switches to this window.
Default tab order is the same as creation order, this function and
moveBeforeInTabOrder/2 allow to change it after creating all the windows.

 Link to this function

 moveBeforeInTabOrder(This, Win)

 View Source

 -spec moveBeforeInTabOrder(This, Win) -> ok when This :: wxWindow(), Win :: wxWindow().

Same as moveAfterInTabOrder/2 except that it inserts this window just before
win instead of putting it right after it.

 Link to this function

 navigate(This)

 View Source

 -spec navigate(This) -> boolean() when This :: wxWindow().

 Link to this function

 navigate/2

 View Source

 -spec navigate(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {flags, integer()}.

Performs a keyboard navigation action starting from this window.
This method is equivalent to calling NavigateIn() (not implemented in wx)
method on the parent window.
Return: Returns true if the focus was moved to another window or false if
nothing changed.
Remark: You may wish to call this from a text control custom keypress handler to
do the default navigation behaviour for the tab key, since the standard default
behaviour for a multiline text control with the wxTE_PROCESS_TAB style is to
insert a tab and not navigate to the next control. See also
wxNavigationKeyEvent and HandleAsNavigationKey.

 Link to this function

 new()

 View Source

 -spec new() -> wxWindow().

Default constructor.

 Link to this function

 new(Parent, Id)

 View Source

 -spec new(Parent, Id) -> wxWindow() when Parent :: wxWindow(), Id :: integer().

 Link to this function

 new/3

 View Source

 -spec new(Parent, Id, [Option]) -> wxWindow()
 when
 Parent :: wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a window, which can be a child of a frame, dialog or any other
non-control window.

 Link to this function

 pageDown(This)

 View Source

 -spec pageDown(This) -> boolean() when This :: wxWindow().

Same as scrollPages/2 (1).

 Link to this function

 pageUp(This)

 View Source

 -spec pageUp(This) -> boolean() when This :: wxWindow().

Same as scrollPages/2 (-1).

 Link to this function

 popupMenu(This, Menu)

 View Source

 -spec popupMenu(This, Menu) -> boolean() when This :: wxWindow(), Menu :: wxMenu:wxMenu().

 Link to this function

 popupMenu/3

 View Source

 -spec popupMenu(This, Menu, [Option]) -> boolean()
 when
 This :: wxWindow(),
 Menu :: wxMenu:wxMenu(),
 Option :: {pos, {X :: integer(), Y :: integer()}}.

Pops up the given menu at the specified coordinates, relative to this window,
and returns control when the user has dismissed the menu.
If a menu item is selected, the corresponding menu event is generated and will
be processed as usual. If coordinates are not specified, the current mouse
cursor position is used.
menu is the menu to pop up.
The position where the menu will appear can be specified either as a {X,Y}
pos or by two integers (x and y).
Note that this function switches focus to this window before showing the menu.
Remark: Just before the menu is popped up, wxMenu::UpdateUI (not implemented
in wx) is called to ensure that the menu items are in the correct state. The
menu does not get deleted by the window. It is recommended to not explicitly
specify coordinates when calling PopupMenu in response to mouse click, because
some of the ports (namely, wxGTK) can do a better job of positioning the menu in
that case.
See: wxMenu

 Link to this function

 popupMenu(This, Menu, X, Y)

 View Source

 -spec popupMenu(This, Menu, X, Y) -> boolean()
 when This :: wxWindow(), Menu :: wxMenu:wxMenu(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 raise(This)

 View Source

 -spec raise(This) -> ok when This :: wxWindow().

Raises the window to the top of the window hierarchy (Z-order).
Notice that this function only requests the window manager to raise this window
to the top of Z-order. Depending on its configuration, the window manager may
raise the window, not do it at all or indicate that a window requested to be
raised in some other way, e.g. by flashing its icon if it is minimized.
Remark: This function only works for wxTopLevelWindow-derived classes.
See: lower/1

 Link to this function

 refresh(This)

 View Source

 -spec refresh(This) -> ok when This :: wxWindow().

 Link to this function

 refresh/2

 View Source

 -spec refresh(This, [Option]) -> ok
 when
 This :: wxWindow(),
 Option ::
 {eraseBackground, boolean()} |
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Causes this window, and all of its children recursively (except under wxGTK1
where this is not implemented), to be repainted.
Note that repainting doesn't happen immediately but only during the next event
loop iteration, if you need to update the window immediately you should use
update/1 instead.
See: refreshRect/3

 Link to this function

 refreshRect(This, Rect)

 View Source

 -spec refreshRect(This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

 Link to this function

 refreshRect/3

 View Source

 -spec refreshRect(This, Rect, [Option]) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {eraseBackground, boolean()}.

Redraws the contents of the given rectangle: only the area inside it will be
repainted.
This is the same as refresh/2 but has a nicer syntax as it can be called with
a temporary {X,Y,W,H} object as argument like this
RefreshRect(wxRect(x, y, w, h)).

 Link to this function

 releaseMouse(This)

 View Source

 -spec releaseMouse(This) -> ok when This :: wxWindow().

Releases mouse input captured with captureMouse/1.
See: captureMouse/1, hasCapture/1, releaseMouse/1,
wxMouseCaptureLostEvent, wxMouseCaptureChangedEvent

 Link to this function

 removeChild(This, Child)

 View Source

 -spec removeChild(This, Child) -> ok when This :: wxWindow(), Child :: wxWindow().

Removes a child window.
This is called automatically by window deletion functions so should not be
required by the application programmer. Notice that this function is mostly
internal to wxWidgets and shouldn't be called by the user code.

 Link to this function

 reparent(This, NewParent)

 View Source

 -spec reparent(This, NewParent) -> boolean() when This :: wxWindow(), NewParent :: wxWindow().

Reparents the window, i.e. the window will be removed from its current parent
window (e.g.
a non-standard toolbar in a wxFrame) and then re-inserted into another.
Notice that currently you need to explicitly call wxBookCtrlBase:removePage/2
before reparenting a notebook page.

 Link to this function

 screenToClient(This)

 View Source

 -spec screenToClient(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

Converts from screen to client window coordinates.

 Link to this function

 screenToClient(This, Pt)

 View Source

 -spec screenToClient(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

Converts from screen to client window coordinates.

 Link to this function

 scrollLines(This, Lines)

 View Source

 -spec scrollLines(This, Lines) -> boolean() when This :: wxWindow(), Lines :: integer().

Scrolls the window by the given number of lines down (if lines is positive) or
up.
Return: Returns true if the window was scrolled, false if it was already on
top/bottom and nothing was done.
Remark: This function is currently only implemented under MSW and wxTextCtrl
under wxGTK (it also works for wxScrolled (not implemented in wx) classes
under all platforms).
See: scrollPages/2

 Link to this function

 scrollPages(This, Pages)

 View Source

 -spec scrollPages(This, Pages) -> boolean() when This :: wxWindow(), Pages :: integer().

Scrolls the window by the given number of pages down (if pages is positive) or
up.
Return: Returns true if the window was scrolled, false if it was already on
top/bottom and nothing was done.
Remark: This function is currently only implemented under MSW and wxGTK.
See: scrollLines/2

 Link to this function

 scrollWindow(This, Dx, Dy)

 View Source

 -spec scrollWindow(This, Dx, Dy) -> ok when This :: wxWindow(), Dx :: integer(), Dy :: integer().

 Link to this function

 scrollWindow/4

 View Source

 -spec scrollWindow(This, Dx, Dy, [Option]) -> ok
 when
 This :: wxWindow(),
 Dx :: integer(),
 Dy :: integer(),
 Option ::
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Physically scrolls the pixels in the window and move child windows accordingly.
Remark: Note that you can often use wxScrolled (not implemented in wx) instead
of using this function directly.

 Link to this function

 setAcceleratorTable(This, Accel)

 View Source

 -spec setAcceleratorTable(This, Accel) -> ok
 when This :: wxWindow(), Accel :: wxAcceleratorTable:wxAcceleratorTable().

Sets the accelerator table for this window.
See wxAcceleratorTable.

 Link to this function

 setAutoLayout(This, AutoLayout)

 View Source

 -spec setAutoLayout(This, AutoLayout) -> ok when This :: wxWindow(), AutoLayout :: boolean().

Determines whether the layout/1 function will be called automatically when the
window is resized.
This method is called implicitly by setSizer/3 but if you use
SetConstraints() (not implemented in wx) you should call it manually or
otherwise the window layout won't be correctly updated when its size changes.
See: setSizer/3, SetConstraints() (not implemented in wx)

 Link to this function

 setBackgroundColour(This, Colour)

 View Source

 -spec setBackgroundColour(This, Colour) -> boolean() when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the background colour of the window.
Notice that as with setForegroundColour/2, setting the background colour of a
native control may not affect the entire control and could be not supported at
all depending on the control and platform.
Please see inheritAttributes/1 for explanation of the difference between this
method and setOwnBackgroundColour/2.
Remark: The background colour is usually painted by the default wxEraseEvent
event handler function under Windows and automatically under GTK. Note that
setting the background colour does not cause an immediate refresh, so you may
wish to call clearBackground/1 or refresh/2 after calling this function.
Using this function will disable attempts to use themes for this window, if the
system supports them. Use with care since usually the themes represent the
appearance chosen by the user to be used for all applications on the system.
Return: true if the colour was really changed, false if it was already set to
this colour and nothing was done.
See: getBackgroundColour/1, setForegroundColour/2, getForegroundColour/1,
clearBackground/1, refresh/2, wxEraseEvent, wxSystemSettings

 Link to this function

 setBackgroundStyle(This, Style)

 View Source

 -spec setBackgroundStyle(This, Style) -> boolean() when This :: wxWindow(), Style :: wx:wx_enum().

Sets the background style of the window.
The default background style is wxBG_STYLE_ERASE which indicates that the
window background may be erased in EVT_ERASE_BACKGROUND handler. This is a
safe, compatibility default; however you may want to change it to
wxBG_STYLE_SYSTEM if you don't define any erase background event handlers at
all, to avoid unnecessary generation of erase background events and always let
system erase the background. And you should change the background style to
wxBG_STYLE_PAINT if you define an EVT_PAINT handler which completely
overwrites the window background as in this case erasing it previously, either
in EVT_ERASE_BACKGROUND handler or in the system default handler, would result
in flicker as the background pixels will be repainted twice every time the
window is redrawn. Do ensure that the background is entirely erased by your
EVT_PAINT handler in this case however as otherwise garbage may be left on
screen.
Notice that in previous versions of wxWidgets a common way to work around the
above mentioned flickering problem was to define an empty EVT_ERASE_BACKGROUND
handler. Setting background style to wxBG_STYLE_PAINT is a simpler and more
efficient solution to the same problem.
Under wxGTK and wxOSX, you can use ?wxBG_STYLE_TRANSPARENT to obtain full
transparency of the window background. Note that wxGTK supports this only since
GTK 2.12 with a compositing manager enabled, call
IsTransparentBackgroundSupported() (not implemented in wx) to check whether
this is the case.
Also, in order for SetBackgroundStyle(wxBG_STYLE_TRANSPARENT) to work, it must
be called before create/4. If you're using your own wxWindow-derived class you
should write your code in the following way:
See: setBackgroundColour/2, getForegroundColour/1, setTransparent/2,
IsTransparentBackgroundSupported() (not implemented in wx)

 Link to this function

 setCaret(This, Caret)

 View Source

 -spec setCaret(This, Caret) -> ok when This :: wxWindow(), Caret :: wxCaret:wxCaret().

Sets the caret() associated with the window.

 Link to this function

 setClientSize/2

 View Source

 -spec setClientSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()};
 (This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setClientSize(This, Width, Height)

 View Source

 -spec setClientSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer().

This sets the size of the window client area in pixels.
Using this function to size a window tends to be more device-independent than
setSize/6, since the application need not worry about what dimensions the
border or title bar have when trying to fit the window around panel items, for
example.
See:
Overview windowsizing

 Link to this function

 setContainingSizer(This, Sizer)

 View Source

 -spec setContainingSizer(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

Used by wxSizer internally to notify the window about being managed by the
given sizer.
This method should not be called from outside the library, unless you're
implementing a custom sizer class - and in the latter case you must call this
method with the pointer to the sizer itself whenever a window is added to it and
with NULL argument when the window is removed from it.

 Link to this function

 setCursor(This, Cursor)

 View Source

 -spec setCursor(This, Cursor) -> boolean() when This :: wxWindow(), Cursor :: wxCursor:wxCursor().

Sets the window's cursor.
Notice that the window cursor also sets it for the children of the window
implicitly.
The cursor may be wxNullCursor in which case the window cursor will be reset
back to default.
See: wx_misc:setCursor/1, wxCursor

 Link to this function

 setDoubleBuffered(This, On)

 View Source

 -spec setDoubleBuffered(This, On) -> ok when This :: wxWindow(), On :: boolean().

Turn on or off double buffering of the window if the system supports it.

 Link to this function

 setDropTarget(This, Target)

 View Source

 -spec setDropTarget(This, Target) -> ok when This :: wxWindow(), Target :: wx:wx_object().

Associates a drop target with this window.
If the window already has a drop target, it is deleted.
See: getDropTarget/1,
Overview dnd

 Link to this function

 setExtraStyle(This, ExStyle)

 View Source

 -spec setExtraStyle(This, ExStyle) -> ok when This :: wxWindow(), ExStyle :: integer().

Sets the extra style bits for the window.
The currently defined extra style bits are reported in the class description.

 Link to this function

 setFocus(This)

 View Source

 -spec setFocus(This) -> ok when This :: wxWindow().

This sets the window to receive keyboard input.
See: HasFocus() (not implemented in wx), wxFocusEvent, setFocus/1,
wxPanel:setFocusIgnoringChildren/1

 Link to this function

 setFocusFromKbd(This)

 View Source

 -spec setFocusFromKbd(This) -> ok when This :: wxWindow().

This function is called by wxWidgets keyboard navigation code when the user
gives the focus to this window from keyboard (e.g. using TAB key).
By default this method simply calls setFocus/1 but can be overridden to do
something in addition to this in the derived classes.

 Link to this function

 setFont(This, Font)

 View Source

 -spec setFont(This, Font) -> boolean() when This :: wxWindow(), Font :: wxFont:wxFont().

Sets the font for this window.
This function should not be called for the parent window if you don't want its
font to be inherited by its children, use setOwnFont/2 instead in this case
and see inheritAttributes/1 for more explanations.
Please notice that the given font is not automatically used for wxPaintDC
objects associated with this window, you need to call wxDC:setFont/2 too.
However this font is used by any standard controls for drawing their text as
well as by getTextExtent/3.
Return: true if the font was really changed, false if it was already set to this
font and nothing was done.
See: getFont/1, inheritAttributes/1

 Link to this function

 setForegroundColour(This, Colour)

 View Source

 -spec setForegroundColour(This, Colour) -> boolean() when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the foreground colour of the window.
The meaning of foreground colour varies according to the window class; it may be
the text colour or other colour, or it may not be used at all. Additionally, not
all native controls support changing their foreground colour so this method may
change their colour only partially or even not at all.
Please see inheritAttributes/1 for explanation of the difference between this
method and setOwnForegroundColour/2.
Return: true if the colour was really changed, false if it was already set to
this colour and nothing was done.
See: getForegroundColour/1, setBackgroundColour/2, getBackgroundColour/1,
shouldInheritColours/1

 Link to this function

 setHelpText(This, HelpText)

 View Source

 -spec setHelpText(This, HelpText) -> ok when This :: wxWindow(), HelpText :: unicode:chardata().

Sets the help text to be used as context-sensitive help for this window.
Note that the text is actually stored by the current wxHelpProvider (not
implemented in wx) implementation, and not in the window object itself.
See: getHelpText/1, wxHelpProvider::AddHelp() (not implemented in wx)

 Link to this function

 setId(This, Winid)

 View Source

 -spec setId(This, Winid) -> ok when This :: wxWindow(), Winid :: integer().

Sets the identifier of the window.
Remark: Each window has an integer identifier. If the application has not
provided one, an identifier will be generated. Normally, the identifier should
be provided on creation and should not be modified subsequently.
See: getId/1,
Overview windowids

 Link to this function

 setLabel(This, Label)

 View Source

 -spec setLabel(This, Label) -> ok when This :: wxWindow(), Label :: unicode:chardata().

Sets the window's label.
See: getLabel/1

 Link to this function

 setMaxSize(This, Size)

 View Source

 -spec setMaxSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the maximum size of the window, to indicate to the sizer layout mechanism
that this is the maximum possible size.
See: SetMaxClientSize() (not implemented in wx),
Overview windowsizing

 Link to this function

 setMinSize(This, Size)

 View Source

 -spec setMinSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the minimum size of the window, to indicate to the sizer layout mechanism
that this is the minimum required size.
You may need to call this if you change the window size after construction and
before adding to its parent sizer.
Notice that calling this method doesn't prevent the program from making the
window explicitly smaller than the specified size by calling setSize/6, it
just ensures that it won't become smaller than this size during the automatic
layout.
See: SetMinClientSize() (not implemented in wx),
Overview windowsizing

 Link to this function

 setName(This, Name)

 View Source

 -spec setName(This, Name) -> ok when This :: wxWindow(), Name :: unicode:chardata().

Sets the window's name.
See: getName/1

 Link to this function

 setOwnBackgroundColour(This, Colour)

 View Source

 -spec setOwnBackgroundColour(This, Colour) -> ok when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the background colour of the window but prevents it from being inherited by
the children of this window.
See: setBackgroundColour/2, inheritAttributes/1

 Link to this function

 setOwnFont(This, Font)

 View Source

 -spec setOwnFont(This, Font) -> ok when This :: wxWindow(), Font :: wxFont:wxFont().

Sets the font of the window but prevents it from being inherited by the children
of this window.
See: setFont/2, inheritAttributes/1

 Link to this function

 setOwnForegroundColour(This, Colour)

 View Source

 -spec setOwnForegroundColour(This, Colour) -> ok when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the foreground colour of the window but prevents it from being inherited by
the children of this window.
See: setForegroundColour/2, inheritAttributes/1

 Link to this function

 setPalette(This, Pal)

 View Source

 -spec setPalette(This, Pal) -> ok when This :: wxWindow(), Pal :: wxPalette:wxPalette().

Deprecated: use wxDC:setPalette/2 instead.

 Link to this function

 setScrollbar(This, Orientation, Position, ThumbSize, Range)

 View Source

 -spec setScrollbar(This, Orientation, Position, ThumbSize, Range) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer().

 Link to this function

 setScrollbar/6

 View Source

 -spec setScrollbar(This, Orientation, Position, ThumbSize, Range, [Option]) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 Option :: {refresh, boolean()}.

Sets the scrollbar properties of a built-in scrollbar.
Remark: Let's say you wish to display 50 lines of text, using the same font. The
window is sized so that you can only see 16 lines at a time. You would use: Note
that with the window at this size, the thumb position can never go above 50
minus 16, or 34. You can determine how many lines are currently visible by
dividing the current view size by the character height in pixels. When defining
your own scrollbar behaviour, you will always need to recalculate the scrollbar
settings when the window size changes. You could therefore put your scrollbar
calculations and SetScrollbar call into a function named AdjustScrollbars, which
can be called initially and also from your wxSizeEvent handler function.
See:
Overview scrolling,
wxScrollBar, wxScrolled (not implemented in wx), wxScrollWinEvent

 Link to this function

 setScrollPos(This, Orientation, Pos)

 View Source

 -spec setScrollPos(This, Orientation, Pos) -> ok
 when This :: wxWindow(), Orientation :: integer(), Pos :: integer().

 Link to this function

 setScrollPos/4

 View Source

 -spec setScrollPos(This, Orientation, Pos, [Option]) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Pos :: integer(),
 Option :: {refresh, boolean()}.

Sets the position of one of the built-in scrollbars.
Remark: This function does not directly affect the contents of the window: it is
up to the application to take note of scrollbar attributes and redraw contents
accordingly.
See: setScrollbar/6, getScrollPos/2, getScrollThumb/2, wxScrollBar,
wxScrolled (not implemented in wx)

 Link to this function

 setSize/2

 View Source

 -spec setSize(This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setSize/3

 View Source

 -spec setSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer();
 (This, Rect, [Option]) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {sizeFlags, integer()}.

Sets the size of the window in pixels.
The size is specified using a {X,Y,W,H}, {Width,Height} or by a couple of
int objects.
Remark: This form must be used with non-default width and height values.
See: move/4,
Overview windowsizing

 Link to this function

 setSize(This, X, Y, Width, Height)

 View Source

 -spec setSize(This, X, Y, Width, Height) -> ok
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

 Link to this function

 setSize/6

 View Source

 -spec setSize(This, X, Y, Width, Height, [Option]) -> ok
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer(),
 Option :: {sizeFlags, integer()}.

Sets the size of the window in pixels.
Remark: This overload sets the position and optionally size, of the window.
Parameters may be wxDefaultCoord to indicate either that a default should be
supplied by wxWidgets, or that the current value of the dimension should be
used.
See: move/4,
Overview windowsizing

 Link to this function

 setSizeHints(This, MinSize)

 View Source

 -spec setSizeHints(This, MinSize) -> ok
 when This :: wxWindow(), MinSize :: {W :: integer(), H :: integer()}.

 Link to this function

 setSizeHints/3

 View Source

 -spec setSizeHints(This, MinW, MinH) -> ok when This :: wxWindow(), MinW :: integer(), MinH :: integer();
 (This, MinSize, [Option]) -> ok
 when
 This :: wxWindow(),
 MinSize :: {W :: integer(), H :: integer()},
 Option ::
 {maxSize, {W :: integer(), H :: integer()}} |
 {incSize, {W :: integer(), H :: integer()}}.

Use of this function for windows which are not toplevel windows (such as
wxDialog or wxFrame) is discouraged.
Please use setMinSize/2 and setMaxSize/2 instead.
See: setSizeHints/4,
Overview windowsizing

 Link to this function

 setSizeHints/4

 View Source

 -spec setSizeHints(This, MinW, MinH, [Option]) -> ok
 when
 This :: wxWindow(),
 MinW :: integer(),
 MinH :: integer(),
 Option ::
 {maxW, integer()} |
 {maxH, integer()} |
 {incW, integer()} |
 {incH, integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setSizer(This, Sizer)

 View Source

 -spec setSizer(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

 Link to this function

 setSizer/3

 View Source

 -spec setSizer(This, Sizer, [Option]) -> ok
 when This :: wxWindow(), Sizer :: wxSizer:wxSizer(), Option :: {deleteOld, boolean()}.

Sets the window to have the given layout sizer.
The window will then own the object, and will take care of its deletion. If an
existing layout constraints object is already owned by the window, it will be
deleted if the deleteOld parameter is true.
Note that this function will also call setAutoLayout/2 implicitly with true
parameter if the sizer is non-NULL and false otherwise so that the sizer will
be effectively used to layout the window children whenever it is resized.
Remark: SetSizer enables and disables Layout automatically.

 Link to this function

 setSizerAndFit(This, Sizer)

 View Source

 -spec setSizerAndFit(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

 Link to this function

 setSizerAndFit/3

 View Source

 -spec setSizerAndFit(This, Sizer, [Option]) -> ok
 when
 This :: wxWindow(),
 Sizer :: wxSizer:wxSizer(),
 Option :: {deleteOld, boolean()}.

Associate the sizer with the window and set the window size and minimal size
accordingly.
This method calls setSizer/3 and then wxSizer:setSizeHints/2 which sets the
initial window size to the size needed to accommodate all sizer elements and
sets the minimal size to the same size, this preventing the user from resizing
this window to be less than this minimal size (if it's a top-level window which
can be directly resized by the user).

 Link to this function

 setThemeEnabled(This, Enable)

 View Source

 -spec setThemeEnabled(This, Enable) -> ok when This :: wxWindow(), Enable :: boolean().

This function tells a window if it should use the system's "theme" code to draw
the windows' background instead of its own background drawing code.
This does not always have any effect since the underlying platform obviously
needs to support the notion of themes in user defined windows. One such platform
is GTK+ where windows can have (very colourful) backgrounds defined by a user's
selected theme.
Dialogs, notebook pages and the status bar have this flag set to true by default
so that the default look and feel is simulated best.
See: getThemeEnabled/1

 Link to this function

 setToolTip/2

 View Source

 -spec setToolTip(This, TipString) -> ok when This :: wxWindow(), TipString :: unicode:chardata();
 (This, Tip) -> ok when This :: wxWindow(), Tip :: wxToolTip:wxToolTip().

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setTransparent(This, Alpha)

 View Source

 -spec setTransparent(This, Alpha) -> boolean() when This :: wxWindow(), Alpha :: integer().

Set the transparency of the window.
If the system supports transparent windows, returns true, otherwise returns
false and the window remains fully opaque. See also canSetTransparent/1.
The parameter alpha is in the range 0..255 where 0 corresponds to a fully
transparent window and 255 to the fully opaque one. The constants
wxIMAGE_ALPHA_TRANSPARENT and wxIMAGE_ALPHA_OPAQUE can be used.

 Link to this function

 setVirtualSize(This, Size)

 View Source

 -spec setVirtualSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from
the above function only in what argument(s) it accepts.

 Link to this function

 setVirtualSize(This, Width, Height)

 View Source

 -spec setVirtualSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer().

Sets the virtual size of the window in pixels.
See:
Overview windowsizing

 Link to this function

 setWindowStyle(This, Style)

 View Source

 -spec setWindowStyle(This, Style) -> ok when This :: wxWindow(), Style :: integer().

See setWindowStyleFlag/2 for more info.

 Link to this function

 setWindowStyleFlag(This, Style)

 View Source

 -spec setWindowStyleFlag(This, Style) -> ok when This :: wxWindow(), Style :: integer().

Sets the style of the window.
Please note that some styles cannot be changed after the window creation and
that refresh/2 might need to be called after changing the others for the
change to take place immediately.
See Window styles for more information about flags.
See: getWindowStyleFlag/1

 Link to this function

 setWindowVariant(This, Variant)

 View Source

 -spec setWindowVariant(This, Variant) -> ok when This :: wxWindow(), Variant :: wx:wx_enum().

Chooses a different variant of the window display to use.
Window variants currently just differ in size, as can be seen from
?wxWindowVariant documentation. Under all platforms but macOS, this function
does nothing more than change the font used by the window. However under macOS
it is implemented natively and selects the appropriate variant of the native
widget, which has better appearance than just scaled down or up version of the
normal variant, so it should be preferred to directly tweaking the font size.
By default the controls naturally use the normal variant.

 Link to this function

 shouldInheritColours(This)

 View Source

 -spec shouldInheritColours(This) -> boolean() when This :: wxWindow().

Return true from here to allow the colours of this window to be changed by
inheritAttributes/1.
Returning false forbids inheriting them from the parent window.
The base class version returns false, but this method is overridden in
wxControl where it returns true.

 Link to this function

 show(This)

 View Source

 -spec show(This) -> boolean() when This :: wxWindow().

 Link to this function

 show/2

 View Source

 -spec show(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {show, boolean()}.

Shows or hides the window.
You may need to call raise/1 for a top level window if you want to bring it to
top, although this is not needed if show/2 is called immediately after the
frame creation.
Notice that the default state of newly created top level windows is hidden (to
allow you to create their contents without flicker) unlike for all the other,
not derived from wxTopLevelWindow, windows that are by default created in
the shown state.
Return: true if the window has been shown or hidden or false if nothing was done
because it already was in the requested state.
See: isShown/1, hide/1, wxRadioBox:show/3, wxShowEvent

 Link to this function

 thaw(This)

 View Source

 -spec thaw(This) -> ok when This :: wxWindow().

Re-enables window updating after a previous call to freeze/1.
To really thaw the control, it must be called exactly the same number of times
as freeze/1.
If the window has any children, they are recursively thawed too.
See: wxWindowUpdateLocker (not implemented in wx), freeze/1, isFrozen/1

 Link to this function

 toDIP/2

 View Source

 -spec toDIP(D, W) -> integer() when D :: integer(), W :: wxWindow();
 (Sz, W) -> {W :: integer(), H :: integer()}
 when Sz :: {W :: integer(), H :: integer()}, W :: wxWindow();
 (This, D) -> integer() when This :: wxWindow(), D :: integer();
 (This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

Convert pixel values of the current toolkit to DPI-independent pixel values.
A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To
keep the same physical size at higher resolution, the physical pixel value must
be scaled by getDPIScaleFactor/1 but this scaling may be already done by the
underlying toolkit (GTK+, Cocoa, ...) automatically. This method performs the
conversion only if it is not already done by the lower level toolkit, For
example, you may want to use this to store window sizes and positions so that
they can be re-used regardless of the display DPI:
Also note that if either component of sz has the special value of -1, it is
returned unchanged independently of the current DPI, to preserve the special
value of -1 in wxWidgets API (it is often used to mean "unspecified").
Since: 3.1.0

 Link to this function

 transferDataFromWindow(This)

 View Source

 -spec transferDataFromWindow(This) -> boolean() when This :: wxWindow().

Transfers values from child controls to data areas specified by their
validators.
Returns false if a transfer failed.
Notice that this also calls transferDataFromWindow/1 for all children
recursively.
See: transferDataToWindow/1, wxValidator (not implemented in wx),
validate/1

 Link to this function

 transferDataToWindow(This)

 View Source

 -spec transferDataToWindow(This) -> boolean() when This :: wxWindow().

Transfers values to child controls from data areas specified by their
validators.
Notice that this also calls transferDataToWindow/1 for all children
recursively.
Return: Returns false if a transfer failed.
See: transferDataFromWindow/1, wxValidator (not implemented in wx),
validate/1

 Link to this function

 update(This)

 View Source

 -spec update(This) -> ok when This :: wxWindow().

Calling this method immediately repaints the invalidated area of the window and
all of its children recursively (this normally only happens when the flow of
control returns to the event loop).
Notice that this function doesn't invalidate any area of the window so nothing
happens if nothing has been invalidated (i.e. marked as requiring a redraw). Use
refresh/2 first if you want to immediately redraw the window unconditionally.

 Link to this function

 updateWindowUI(This)

 View Source

 -spec updateWindowUI(This) -> ok when This :: wxWindow().

 Link to this function

 updateWindowUI/2

 View Source

 -spec updateWindowUI(This, [Option]) -> ok when This :: wxWindow(), Option :: {flags, integer()}.

This function sends one or more wxUpdateUIEvent to the window.
The particular implementation depends on the window; for example a wxToolBar
will send an update UI event for each toolbar button, and a wxFrame will
send an update UI event for each menubar menu item.
You can call this function from your application to ensure that your UI is
up-to-date at this point (as far as your wxUpdateUIEvent handlers are
concerned). This may be necessary if you have called wxUpdateUIEvent:setMode/1
or wxUpdateUIEvent:setUpdateInterval/1 to limit the overhead that wxWidgets
incurs by sending update UI events in idle time. flags should be a bitlist of
one or more of the ?wxUpdateUI enumeration.
If you are calling this function from an OnInternalIdle or OnIdle function, make
sure you pass the wxUPDATE_UI_FROMIDLE flag, since this tells the window to only
update the UI elements that need to be updated in idle time. Some windows update
their elements only when necessary, for example when a menu is about to be
shown. The following is an example of how to call UpdateWindowUI from an idle
function.
See: wxUpdateUIEvent, DoUpdateWindowUI() (not implemented in wx),
OnInternalIdle() (not implemented in wx)

 Link to this function

 validate(This)

 View Source

 -spec validate(This) -> boolean() when This :: wxWindow().

Validates the current values of the child controls using their validators.
Notice that this also calls validate/1 for all children recursively.
Return: Returns false if any of the validations failed.
See: transferDataFromWindow/1, transferDataToWindow/1, wxValidator (not
implemented in wx)

 Link to this function

 warpPointer(This, X, Y)

 View Source

 -spec warpPointer(This, X, Y) -> ok when This :: wxWindow(), X :: integer(), Y :: integer().

Moves the pointer to the given position on the window.
Note: Apple Human Interface Guidelines forbid moving the mouse cursor
programmatically so you should avoid using this function in Mac applications
(and probably avoid using it under the other platforms without good reason as
well).

wxWindowCreateEvent

Functions for wxWindowCreateEvent class
This event is sent just after the actual window associated with a wxWindow
object has been created.
Since it is derived from wxCommandEvent, the event propagates up the window
hierarchy.
See:
Overview events,
wxWindowDestroyEvent
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxWindowCreateEvent

 Events

Use wxEvtHandler:connect/3 with
wxWindowCreateEventType to subscribe to
events of this type.

 Summary

 Types

 wxWindowCreate()

 wxWindowCreateEvent()

 wxWindowCreateEventType()

 Types

 Link to this type

 wxWindowCreate()

 View Source

 -type wxWindowCreate() :: #wxWindowCreate{type :: wxWindowCreateEvent:wxWindowCreateEventType()}.

 Link to this type

 wxWindowCreateEvent()

 View Source

 -type wxWindowCreateEvent() :: wx:wx_object().

 Link to this type

 wxWindowCreateEventType()

 View Source

 -type wxWindowCreateEventType() :: create.

wxWindowDC

Functions for wxWindowDC class
A wxWindowDC must be constructed if an application wishes to paint on the
whole area of a window (client and decorations). This should normally be
constructed as a temporary stack object; don't store a wxWindowDC object.
To draw on a window from inside an EVT_PAINT() handler, construct a
wxPaintDC object instead.
To draw on the client area of a window from outside an EVT_PAINT() handler,
construct a wxClientDC object.
A wxWindowDC object is initialized to use the same font and colours as the
window it is associated with.
See: wxDC, wxMemoryDC, wxPaintDC, wxClientDC, wxScreenDC
This class is derived (and can use functions) from: wxDC
wxWidgets docs:
wxWindowDC

 Summary

 Types

 wxWindowDC()

 Functions

 destroy(This)

 Destroys the object.

 new(Window)

 Constructor.

 Types

 Link to this type

 wxWindowDC()

 View Source

 -type wxWindowDC() :: wx:wx_object().

 Functions

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxWindowDC()) -> ok.

Destroys the object.

 Link to this function

 new(Window)

 View Source

 -spec new(Window) -> wxWindowDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxWindowDestroyEvent

Functions for wxWindowDestroyEvent class
This event is sent as early as possible during the window destruction process.
For the top level windows, as early as possible means that this is done by
wxFrame or wxDialog destructor, i.e. after the destructor of the derived
class was executed and so any methods specific to the derived class can't be
called any more from this event handler. If you need to do this, you must call
wxWindow::SendDestroyEvent() (not implemented in wx) from your derived class
destructor.
For the child windows, this event is generated just before deleting the window
from wxWindow:'Destroy'/1 (which is also called when the parent window is
deleted) or from the window destructor if operator delete was used directly
(which is not recommended for this very reason).
It is usually pointless to handle this event in the window itself but it ca be
very useful to receive notifications about the window destruction in the parent
window or in any other object interested in this window.
See:
Overview events,
wxWindowCreateEvent
This class is derived (and can use functions) from: wxCommandEvent
wxEvent
wxWidgets docs:
wxWindowDestroyEvent

 Summary

 Types

 wxWindowDestroy()

 wxWindowDestroyEvent()

 wxWindowDestroyEventType()

 Types

 Link to this type

 wxWindowDestroy()

 View Source

 -type wxWindowDestroy() :: #wxWindowDestroy{type :: wxWindowDestroyEvent:wxWindowDestroyEventType()}.

 Link to this type

 wxWindowDestroyEvent()

 View Source

 -type wxWindowDestroyEvent() :: wx:wx_object().

 Link to this type

 wxWindowDestroyEventType()

 View Source

 -type wxWindowDestroyEventType() :: destroy.

wxXmlResource

Functions for wxXmlResource class
This is the main class for interacting with the XML-based resource system.
The class holds XML resources from one or more .xml files, binary files or zip
archive files.
Note that this is a singleton class and you'll never allocate/deallocate it.
Just use the static get/0 getter.
See:
Overview xrc,
Overview xrcformat
wxWidgets docs:
wxXmlResource

 Summary

 Types

 wxXmlResource()

 Functions

 attachUnknownControl(This, Name, Control)

 attachUnknownControl/4

 Attaches an unknown control to the given panel/window/dialog.

 clearHandlers(This)

 Removes all handlers and deletes them (this means that any handlers added using
AddHandler() (not implemented in wx) must be allocated on the heap).

 compareVersion(This, Major, Minor, Release, Revision)

 Compares the XRC version to the argument.

 destroy(This)

 Destructor.

 get()

 Gets the global resources object or creates one if none exists.

 getFlags(This)

 Returns flags, which may be a bitlist of ?wxXmlResourceFlags enumeration values.

 getVersion(This)

 Returns version information (a.b.c.d = d + 256c + 2562b + 2563*a).

 getXRCID(Str_id)

 getXRCID(Str_id, Options)

 Returns a numeric ID that is equivalent to the string ID used in an XML
resource.

 initAllHandlers(This)

 Initializes handlers for all supported controls/windows.

 load(This, Filemask)

 Loads resources from XML files that match given filemask.

 loadBitmap(This, Name)

 Loads a bitmap resource from a file.

 loadDialog(This, Parent, Name)

 Loads a dialog.

 loadDialog(This, Dlg, Parent, Name)

 Loads a dialog.

 loadFrame(This, Parent, Name)

 Loads a frame from the resource.

 loadFrame(This, Frame, Parent, Name)

 Loads the contents of a frame onto an existing wxFrame.

 loadIcon(This, Name)

 Loads an icon resource from a file.

 loadMenu(This, Name)

 Loads menu from resource.

 loadMenuBar(This, Name)

 loadMenuBar(This, Parent, Name)

 Loads a menubar from resource.

 loadPanel(This, Parent, Name)

 Loads a panel.

 loadPanel(This, Panel, Parent, Name)

 Loads a panel.

 loadToolBar(This, Parent, Name)

 Loads a toolbar.

 new()

 new(Options)

 Constructor.

 new(Filemask, Options)

 Constructor.

 set(Res)

 Sets the global resources object and returns a pointer to the previous one (may
be NULL).

 setFlags(This, Flags)

 Sets flags (bitlist of ?wxXmlResourceFlags enumeration values).

 unload(This, Filename)

 This function unloads a resource previously loaded by load/2.

 xrcctrl(Window, Name, Type)

 Looks up a control.

 Types

 Link to this type

 wxXmlResource()

 View Source

 -type wxXmlResource() :: wx:wx_object().

 Functions

 Link to this function

 attachUnknownControl(This, Name, Control)

 View Source

 -spec attachUnknownControl(This, Name, Control) -> boolean()
 when
 This :: wxXmlResource(),
 Name :: unicode:chardata(),
 Control :: wxWindow:wxWindow().

 Link to this function

 attachUnknownControl/4

 View Source

 -spec attachUnknownControl(This, Name, Control, [Option]) -> boolean()
 when
 This :: wxXmlResource(),
 Name :: unicode:chardata(),
 Control :: wxWindow:wxWindow(),
 Option :: {parent, wxWindow:wxWindow()}.

Attaches an unknown control to the given panel/window/dialog.
Unknown controls are used in conjunction with <object class="unknown">.

 Link to this function

 clearHandlers(This)

 View Source

 -spec clearHandlers(This) -> ok when This :: wxXmlResource().

Removes all handlers and deletes them (this means that any handlers added using
AddHandler() (not implemented in wx) must be allocated on the heap).

 Link to this function

 compareVersion(This, Major, Minor, Release, Revision)

 View Source

 -spec compareVersion(This, Major, Minor, Release, Revision) -> integer()
 when
 This :: wxXmlResource(),
 Major :: integer(),
 Minor :: integer(),
 Release :: integer(),
 Revision :: integer().

Compares the XRC version to the argument.
Returns -1 if the XRC version is less than the argument, +1 if greater, and 0 if
they are equal.

 Link to this function

 destroy(This)

 View Source

 -spec destroy(This :: wxXmlResource()) -> ok.

Destructor.

 Link to this function

 get()

 View Source

 -spec get() -> wxXmlResource().

Gets the global resources object or creates one if none exists.

 Link to this function

 getFlags(This)

 View Source

 -spec getFlags(This) -> integer() when This :: wxXmlResource().

Returns flags, which may be a bitlist of ?wxXmlResourceFlags enumeration values.

 Link to this function

 getVersion(This)

 View Source

 -spec getVersion(This) -> integer() when This :: wxXmlResource().

Returns version information (a.b.c.d = d + 256c + 2562b + 2563*a).

 Link to this function

 getXRCID(Str_id)

 View Source

 -spec getXRCID(Str_id) -> integer() when Str_id :: unicode:chardata().

 Link to this function

 getXRCID(Str_id, Options)

 View Source

 -spec getXRCID(Str_id, [Option]) -> integer()
 when Str_id :: unicode:chardata(), Option :: {value_if_not_found, integer()}.

Returns a numeric ID that is equivalent to the string ID used in an XML
resource.
If an unknown str_id is requested (i.e. other than wxID_XXX or integer), a new
record is created which associates the given string with a number.
If value_if_not_found is wxID_NONE, the number is obtained via
wx_misc:newId/0. Otherwise value_if_not_found is used.
Macro XRCID(name) is provided for convenient use in event tables.
Note: IDs returned by XRCID() cannot be used with the EVT_*_RANGE macros,
because the order in which they are assigned to symbolic name values is not
guaranteed.

 Link to this function

 initAllHandlers(This)

 View Source

 -spec initAllHandlers(This) -> ok when This :: wxXmlResource().

Initializes handlers for all supported controls/windows.
This will make the executable quite big because it forces linking against most
of the wxWidgets library.

 Link to this function

 load(This, Filemask)

 View Source

 -spec load(This, Filemask) -> boolean() when This :: wxXmlResource(), Filemask :: unicode:chardata().

Loads resources from XML files that match given filemask.
Example:
Note: If wxUSE_FILESYS is enabled, this method understands wxFileSystem (not
implemented in wx) URLs (see wxFileSystem::FindFirst() (not implemented in
wx)).
Note: If you are sure that the argument is name of single XRC file (rather than
an URL or a wildcard), use LoadFile() (not implemented in wx) instead.
See: LoadFile() (not implemented in wx), LoadAllFiles() (not implemented in
wx)

 Link to this function

 loadBitmap(This, Name)

 View Source

 -spec loadBitmap(This, Name) -> wxBitmap:wxBitmap()
 when This :: wxXmlResource(), Name :: unicode:chardata().

Loads a bitmap resource from a file.

 Link to this function

 loadDialog(This, Parent, Name)

 View Source

 -spec loadDialog(This, Parent, Name) -> wxDialog:wxDialog()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a dialog.
parent points to parent window (if any).

 Link to this function

 loadDialog(This, Dlg, Parent, Name)

 View Source

 -spec loadDialog(This, Dlg, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Dlg :: wxDialog:wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a dialog.
parent points to parent window (if any).
This form is used to finish creation of an already existing instance (the main
reason for this is that you may want to use derived class with a new event
table). Example:

 Link to this function

 loadFrame(This, Parent, Name)

 View Source

 -spec loadFrame(This, Parent, Name) -> wxFrame:wxFrame()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a frame from the resource.
parent points to parent window (if any).

 Link to this function

 loadFrame(This, Frame, Parent, Name)

 View Source

 -spec loadFrame(This, Frame, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Frame :: wxFrame:wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads the contents of a frame onto an existing wxFrame.
This form is used to finish creation of an already existing instance (the main
reason for this is that you may want to use derived class with a new event
table).

 Link to this function

 loadIcon(This, Name)

 View Source

 -spec loadIcon(This, Name) -> wxIcon:wxIcon() when This :: wxXmlResource(), Name :: unicode:chardata().

Loads an icon resource from a file.

 Link to this function

 loadMenu(This, Name)

 View Source

 -spec loadMenu(This, Name) -> wxMenu:wxMenu() when This :: wxXmlResource(), Name :: unicode:chardata().

Loads menu from resource.
Returns NULL on failure.

 Link to this function

 loadMenuBar(This, Name)

 View Source

 -spec loadMenuBar(This, Name) -> wxMenuBar:wxMenuBar()
 when This :: wxXmlResource(), Name :: unicode:chardata().

 Link to this function

 loadMenuBar(This, Parent, Name)

 View Source

 -spec loadMenuBar(This, Parent, Name) -> wxMenuBar:wxMenuBar()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a menubar from resource.
Returns NULL on failure.

 Link to this function

 loadPanel(This, Parent, Name)

 View Source

 -spec loadPanel(This, Parent, Name) -> wxPanel:wxPanel()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a panel.
parent points to the parent window.

 Link to this function

 loadPanel(This, Panel, Parent, Name)

 View Source

 -spec loadPanel(This, Panel, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Panel :: wxPanel:wxPanel(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a panel.
parent points to the parent window. This form is used to finish creation of an
already existing instance.

 Link to this function

 loadToolBar(This, Parent, Name)

 View Source

 -spec loadToolBar(This, Parent, Name) -> wxToolBar:wxToolBar()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a toolbar.

 Link to this function

 new()

 View Source

 -spec new() -> wxXmlResource().

 Link to this function

 new(Options)

 View Source

 -spec new([Option]) -> wxXmlResource() when Option :: {flags, integer()} | {domain, unicode:chardata()}.

Constructor.

 Link to this function

 new(Filemask, Options)

 View Source

 -spec new(Filemask, [Option]) -> wxXmlResource()
 when
 Filemask :: unicode:chardata(),
 Option :: {flags, integer()} | {domain, unicode:chardata()}.

Constructor.

 Link to this function

 set(Res)

 View Source

 -spec set(Res) -> wxXmlResource() when Res :: wxXmlResource().

Sets the global resources object and returns a pointer to the previous one (may
be NULL).

 Link to this function

 setFlags(This, Flags)

 View Source

 -spec setFlags(This, Flags) -> ok when This :: wxXmlResource(), Flags :: integer().

Sets flags (bitlist of ?wxXmlResourceFlags enumeration values).

 Link to this function

 unload(This, Filename)

 View Source

 -spec unload(This, Filename) -> boolean() when This :: wxXmlResource(), Filename :: unicode:chardata().

This function unloads a resource previously loaded by load/2.
Returns true if the resource was successfully unloaded and false if it hasn't
been found in the list of loaded resources.

 Link to this function

 xrcctrl(Window, Name, Type)

 View Source

 -spec xrcctrl(Window, Name, Type) -> wx:wx_object()
 when Window :: wxWindow:wxWindow(), Name :: string(), Type :: atom().

Looks up a control.
Get a control with Name in a window created with XML resources. You can use it
to set/get values from controls. The object is type casted to Type. Example:

wx_misc

Miscellaneous functions.
Miscellaneous functions.

 Summary

 Functions

 beginBusyCursor()

 beginBusyCursor(Options)

 Changes the cursor to the given cursor for all windows in the application.

 bell()

 Ring the system bell.

 displaySize()

 Returns the display size in pixels.

 endBusyCursor()

 Changes the cursor back to the original cursor, for all windows in the
application.

 findMenuItemId(Frame, MenuString, ItemString)

 Find a menu item identifier associated with the given frame's menu bar.

 findWindowAtPoint(Pt)

 Find the deepest window at the given mouse position in screen coordinates,
returning the window if found, or NULL if not.

 getCurrentId()

 Returns the current id.

 getEmailAddress()

 Copies the user's email address into the supplied buffer, by concatenating the
values returned by wxGetFullHostName() (not implemented in wx) and
getUserId/0.

 getHomeDir()

 Return the (current) user's home directory.

 getKeyState(Key)

 For normal keys, returns true if the specified key is currently down.

 getMousePosition()

 Returns the mouse position in screen coordinates.

 getMouseState()

 Returns the current state of the mouse.

 getOsDescription()

 Returns the string containing the description of the current platform in a
user-readable form.

 getUserId()

 This function returns the "user id" also known as "login name" under Unix (i.e.

 isBusy()

 Returns true if between two beginBusyCursor/1 and endBusyCursor/0 calls.

 isPlatform64Bit()

 Returns true if the operating system the program is running under is 64 bit.

 isPlatformLittleEndian()

 Returns true if the current platform is little endian (instead of big endian).

 launchDefaultBrowser(Url)

 launchDefaultBrowser(Url, Options)

 Opens the url in user's default browser.

 newId()

 Deprecated: Ids generated by it can conflict with the Ids defined by the user
code, use wxID_ANY to assign ids which are guaranteed to not conflict with the
user-defined ids for the controls and menu items you create instead of using
this function.

 registerId(Id)

 Ensures that Ids subsequently generated by newId/0 do not clash with the given
id.

 setCursor(Cursor)

 Globally sets the cursor; only has an effect on Windows, Mac and GTK+.

 setDetectableAutoRepeat(Flag)

 Don't synthesize KeyUp events holding down a key and producing KeyDown events
with autorepeat.

 shell()

 shell(Options)

 Executes a command in an interactive shell window.

 shutdown()

 shutdown(Options)

 This function shuts down or reboots the computer depending on the value of the
flags.

 Functions

 Link to this function

 beginBusyCursor()

 View Source

 -spec beginBusyCursor() -> ok.

 Link to this function

 beginBusyCursor(Options)

 View Source

 -spec beginBusyCursor([Option]) -> ok when Option :: {cursor, wxCursor:wxCursor()}.

Changes the cursor to the given cursor for all windows in the application.
Use endBusyCursor/0 to revert the cursor back to its previous state. These two
calls can be nested, and a counter ensures that only the outer calls take
effect.
See: isBusy/0, wxBusyCursor (not implemented in wx)

 Link to this function

 bell()

 View Source

 -spec bell() -> ok.

Ring the system bell.
Note: This function is categorized as a GUI one and so is not thread-safe.

 Link to this function

 displaySize()

 View Source

 -spec displaySize() -> {Width :: integer(), Height :: integer()}.

Returns the display size in pixels.
Note: Use of this function is not recommended in the new code as it only works
for the primary display. Use wxDisplay:getGeometry/1 to retrieve the size of
the appropriate display instead.
Either of output pointers can be NULL if the caller is not interested in the
corresponding value.
See: wxGetDisplaySize() (not implemented in wx), wxDisplay

 Link to this function

 endBusyCursor()

 View Source

 -spec endBusyCursor() -> ok.

Changes the cursor back to the original cursor, for all windows in the
application.
Use with beginBusyCursor/1.
See: isBusy/0, wxBusyCursor (not implemented in wx)

 Link to this function

 findMenuItemId(Frame, MenuString, ItemString)

 View Source

 -spec findMenuItemId(Frame, MenuString, ItemString) -> integer()
 when
 Frame :: wxFrame:wxFrame(),
 MenuString :: unicode:chardata(),
 ItemString :: unicode:chardata().

Find a menu item identifier associated with the given frame's menu bar.

 Link to this function

 findWindowAtPoint(Pt)

 View Source

 -spec findWindowAtPoint(Pt) -> wxWindow:wxWindow() when Pt :: {X :: integer(), Y :: integer()}.

Find the deepest window at the given mouse position in screen coordinates,
returning the window if found, or NULL if not.
This function takes child windows at the given position into account even if
they are disabled. The hidden children are however skipped by it.

 Link to this function

 getCurrentId()

 View Source

 -spec getCurrentId() -> integer().

Returns the current id.

 Link to this function

 getEmailAddress()

 View Source

 -spec getEmailAddress() -> unicode:charlist().

Copies the user's email address into the supplied buffer, by concatenating the
values returned by wxGetFullHostName() (not implemented in wx) and
getUserId/0.
Return: true if successful, false otherwise.

 Link to this function

 getHomeDir()

 View Source

 -spec getHomeDir() -> unicode:charlist().

Return the (current) user's home directory.
See: wxGetUserHome() (not implemented in wx), wxStandardPaths (not
implemented in wx)

 Link to this function

 getKeyState(Key)

 View Source

 -spec getKeyState(Key) -> boolean() when Key :: wx:wx_enum().

For normal keys, returns true if the specified key is currently down.
For togglable keys (Caps Lock, Num Lock and Scroll Lock), returns true if the
key is toggled such that its LED indicator is lit. There is currently no way to
test whether togglable keys are up or down.
Even though there are virtual key codes defined for mouse buttons, they cannot
be used with this function currently.
In wxGTK, this function can be only used with modifier keys (WXK_ALT,
WXK_CONTROL and WXK_SHIFT) when not using X11 backend currently.

 Link to this function

 getMousePosition()

 View Source

 -spec getMousePosition() -> {X :: integer(), Y :: integer()}.

Returns the mouse position in screen coordinates.

 Link to this function

 getMouseState()

 View Source

 -spec getMouseState() -> wx:wx_wxMouseState().

Returns the current state of the mouse.
Returns a wx_wxMouseState() instance that contains
the current position of the mouse pointer in screen coordinates, as well as
boolean values indicating the up/down status of the mouse buttons and the
modifier keys.

 Link to this function

 getOsDescription()

 View Source

 -spec getOsDescription() -> unicode:charlist().

Returns the string containing the description of the current platform in a
user-readable form.
For example, this function may return strings like "Windows 10 (build 10240),
64-bit edition" or "Linux 4.1.4 i386".
See: wxGetOsVersion() (not implemented in wx)

 Link to this function

 getUserId()

 View Source

 -spec getUserId() -> unicode:charlist().

This function returns the "user id" also known as "login name" under Unix (i.e.
something like "jsmith"). It uniquely identifies the current user (on this
system). Under Windows or NT, this function first looks in the environment
variables USER and LOGNAME; if neither of these is found, the entry UserId in
the wxWidgets section of the WIN.INI file is tried.
Return: The login name if successful or an empty string otherwise.
See: wxGetUserName() (not implemented in wx)

 Link to this function

 isBusy()

 View Source

 -spec isBusy() -> boolean().

Returns true if between two beginBusyCursor/1 and endBusyCursor/0 calls.
See: wxBusyCursor (not implemented in wx)

 Link to this function

 isPlatform64Bit()

 View Source

 -spec isPlatform64Bit() -> boolean().

Returns true if the operating system the program is running under is 64 bit.
The check is performed at run-time and may differ from the value available at
compile-time (at compile-time you can just check if sizeof(void*) == 8) since
the program could be running in emulation mode or in a mixed 32/64 bit system
(bi-architecture operating system).
Note: This function is not 100% reliable on some systems given the fact that
there isn't always a standard way to do a reliable check on the OS architecture.

 Link to this function

 isPlatformLittleEndian()

 View Source

 -spec isPlatformLittleEndian() -> boolean().

Returns true if the current platform is little endian (instead of big endian).
The check is performed at run-time.

 Link to this function

 launchDefaultBrowser(Url)

 View Source

 -spec launchDefaultBrowser(Url) -> boolean() when Url :: unicode:chardata().

 Link to this function

 launchDefaultBrowser(Url, Options)

 View Source

 -spec launchDefaultBrowser(Url, [Option]) -> boolean()
 when Url :: unicode:chardata(), Option :: {flags, integer()}.

Opens the url in user's default browser.
If the flags parameter contains wxBROWSER_NEW_WINDOW flag, a new window is
opened for the URL (currently this is only supported under Windows).
And unless the flags parameter contains wxBROWSER_NOBUSYCURSOR flag, a busy
cursor is shown while the browser is being launched (using wxBusyCursor (not
implemented in wx)).
The parameter url is interpreted as follows:
Returns true if the application was successfully launched.
Note: For some configurations of the running user, the application which is
launched to open the given URL may be URL-dependent (e.g. a browser may be used
for local URLs while another one may be used for remote URLs).
See: wxLaunchDefaultApplication() (not implemented in wx), wxExecute() (not
implemented in wx)

 Link to this function

 newId()

 View Source

 -spec newId() -> integer().

Deprecated: Ids generated by it can conflict with the Ids defined by the user
code, use wxID_ANY to assign ids which are guaranteed to not conflict with the
user-defined ids for the controls and menu items you create instead of using
this function.
Generates an integer identifier unique to this run of the program.

 Link to this function

 registerId(Id)

 View Source

 -spec registerId(Id) -> ok when Id :: integer().

Ensures that Ids subsequently generated by newId/0 do not clash with the given
id.

 Link to this function

 setCursor(Cursor)

 View Source

 -spec setCursor(Cursor) -> ok when Cursor :: wxCursor:wxCursor().

Globally sets the cursor; only has an effect on Windows, Mac and GTK+.
You should call this function with wxNullCursor to restore the system cursor.
See: wxCursor, wxWindow:setCursor/2

 Link to this function

 setDetectableAutoRepeat(Flag)

 View Source

 -spec setDetectableAutoRepeat(Flag) -> boolean() when Flag :: boolean().

Don't synthesize KeyUp events holding down a key and producing KeyDown events
with autorepeat.
On by default and always on in wxMSW.

 Link to this function

 shell()

 View Source

 -spec shell() -> boolean().

 Link to this function

 shell(Options)

 View Source

 -spec shell([Option]) -> boolean() when Option :: {command, unicode:chardata()}.

Executes a command in an interactive shell window.
If no command is specified, then just the shell is spawned.
See: wxExecute() (not implemented in wx),
Examples

 Link to this function

 shutdown()

 View Source

 -spec shutdown() -> boolean().

 Link to this function

 shutdown(Options)

 View Source

 -spec shutdown([Option]) -> boolean() when Option :: {flags, integer()}.

This function shuts down or reboots the computer depending on the value of the
flags.
Note: Note that performing the shutdown requires the corresponding access rights
(superuser under Unix, SE_SHUTDOWN privilege under Windows) and that this
function is only implemented under Unix and MSW.
Return: true on success, false if an error occurred.

wx_object behaviour

wx_object - Generic wx object behaviour.
wx_object - Generic wx object behaviour
This is a behaviour module that can be used for "sub classing" wx objects. It
works like a regular gen_server module and creates a server per object.
NOTE: Currently no form of inheritance is implemented.
The user module should export:
init(Args) should return
{wxWindow, State} | {wxWindow, State, Timeout} | ignore | {stop, Reason}
Asynchronous window event handling:
handle_event(#wx{}, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
The user module can export the following callback functions:
handle_call(Msg, {From, Tag}, State) should return
{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State}
| {noreply, State, Timeout} | {stop, Reason, Reply, State}
handle_cast(Msg, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
If the above are not exported but called, the wx_object process will crash. The
user module can also export:
Info is message e.g. {'EXIT', P, R}, {nodedown, N}, ...
handle_info(Info, State) should return , ...
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
If a message is sent to the wx_object process when handle_info is not exported,
the message will be dropped and ignored.
When stop is returned in one of the functions above with Reason = normal |
shutdown | Term, terminate(State) is called. It lets the user module clean up,
it is always called when server terminates or when wx_object() in the driver is
deleted. If the Parent process terminates the Module:terminate/2 function is
called.
terminate(Reason, State)
Example:
 -module(myDialog).
 -export([new/2, show/1, destroy/1]). %% API
 -export([init/1, handle_call/3, handle_event/2,
 handle_info/2, code_change/3, terminate/2]).
 new/2, showModal/1, destroy/1]). %% Callbacks

 %% Client API
 new(Parent, Msg) ->
 wx_object:start(?MODULE, [Parent,Id], []).

 show(Dialog) ->
 wx_object:call(Dialog, show_modal).

 destroy(Dialog) ->
 wx_object:call(Dialog, destroy).

 %% Server Implementation ala gen_server
 init([Parent, Str]) ->
 Dialog = wxDialog:new(Parent, 42, "Testing", []),
 ...
 wxDialog:connect(Dialog, command_button_clicked),
 {Dialog, MyState}.

 handle_call(show, _From, State) ->
 wxDialog:show(State#state.win),
 {reply, ok, State};
 ...
 handle_event(#wx{}, State) ->
 io:format("Users clicked button~n",[]),
 {noreply, State};
 ...

 DATA TYPES

	 request_id() = term()

	 server_ref() =
wx:wx_object() | atom() | pid()

 Summary

 Types

 event()

 request_id()

 server_ref()

 Callbacks

 code_change(OldVsn, State, Extra)

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_event(Request, State)

 handle_info(Info, State)

 handle_sync_event(Request, Ref, State)

 init(Args)

 terminate(Reason, State)

 Functions

 call(Obj, Request)

 call(Obj, Request) -> term()

 call(Obj, Request, Timeout)

 call(Obj, Request, Timeout) -> term()

 cast(Obj, Request)

 cast(Obj, Request) -> ok

 check_response(Msg, Key)

 check_response(Msg::term(), Key::request_id()) -> {reply, Reply::term()} | false
| {error, {term(), server_ref()}}

 get_pid(Obj)

 get_pid(Obj) -> pid()

 reply/2

 reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()

 send_request(Obj, Request)

 send_request(Obj, Request::term()) -> request_id()

 set_pid/2

 set_pid(Obj, Pid::pid()) -> wx:wx_object()

 start(Name, Mod, Args, Options)

 start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

 start_link(Mod, Args, Options)

 start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

 start_link(Name, Mod, Args, Options)

 start_link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

 stop(Obj)

 stop(Obj) -> ok

 stop(Obj, Reason, Timeout)

 stop(Obj, Reason, Timeout) -> ok

 wait_response(RequestId)

 wait_response(RequestId::request_id()) -> {reply, Reply::term()} | {error,
{term(), server_ref()}}

 wait_response(RequestId, Timeout)

 wait_response(Key::request_id(), Timeout::timeout()) -> {reply, Reply::term()} |
timeout | {error, {term(), server_ref()}}

 Types

 Link to this type

 event()

 View Source

 (not exported)

 -type event() ::
 wxActivateEvent:wxActivate() |
 wxAuiManagerEvent:wxAuiManager() |
 wxAuiNotebookEvent:wxAuiNotebook() |
 wxBookCtrlEvent:wxBookCtrl() |
 wxCalendarEvent:wxCalendar() |
 wxChildFocusEvent:wxChildFocus() |
 wxClipboardTextEvent:wxClipboardText() |
 wxCloseEvent:wxClose() |
 wxColourPickerEvent:wxColourPicker() |
 wxCommandEvent:wxCommand() |
 wxContextMenuEvent:wxContextMenu() |
 wxDateEvent:wxDate() |
 wxDisplayChangedEvent:wxDisplayChanged() |
 wxDropFilesEvent:wxDropFiles() |
 wxEraseEvent:wxErase() |
 wxFileDirPickerEvent:wxFileDirPicker() |
 wxFocusEvent:wxFocus() |
 wxFontPickerEvent:wxFontPicker() |
 wxGridEvent:wxGrid() |
 wxHelpEvent:wxHelp() |
 wxHtmlLinkEvent:wxHtmlLink() |
 wxIconizeEvent:wxIconize() |
 wxIdleEvent:wxIdle() |
 wxInitDialogEvent:wxInitDialog() |
 wxJoystickEvent:wxJoystick() |
 wxKeyEvent:wxKey() |
 wxListEvent:wxList() |
 wxMaximizeEvent:wxMaximize() |
 wxMenuEvent:wxMenu() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
 wxMouseCaptureLostEvent:wxMouseCaptureLost() |
 wxMouseEvent:wxMouse() |
 wxMoveEvent:wxMove() |
 wxNavigationKeyEvent:wxNavigationKey() |
 wxPaintEvent:wxPaint() |
 wxPaletteChangedEvent:wxPaletteChanged() |
 wxQueryNewPaletteEvent:wxQueryNewPalette() |
 wxSashEvent:wxSash() |
 wxScrollEvent:wxScroll() |
 wxScrollWinEvent:wxScrollWin() |
 wxSetCursorEvent:wxSetCursor() |
 wxShowEvent:wxShow() |
 wxSizeEvent:wxSize() |
 wxSpinEvent:wxSpin() |
 wxSplitterEvent:wxSplitter() |
 wxStyledTextEvent:wxStyledText() |
 wxSysColourChangedEvent:wxSysColourChanged() |
 wxTaskBarIconEvent:wxTaskBarIcon() |
 wxTreeEvent:wxTree() |
 wxUpdateUIEvent:wxUpdateUI() |
 wxWebViewEvent:wxWebView() |
 wxWindowCreateEvent:wxWindowCreate() |
 wxWindowDestroyEvent:wxWindowDestroy().

 Link to this type

 request_id()

 View Source

 (not exported)

 -type request_id() :: term().

 Link to this type

 server_ref()

 View Source

 (not exported)

 -type server_ref() :: Obj :: wx:wx_object() | atom() | pid().

 Callbacks

 Link to this callback

 code_change(OldVsn, State, Extra)

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()}, State :: term(), Extra :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 Link to this callback

 handle_call(Request, From, State)

 View Source

 (optional)

 -callback handle_call(Request :: term(), From :: {pid(), Tag :: term()}, State :: term()) ->
 {reply, Reply :: term(), NewState :: term()} |
 {reply, Reply :: term(), NewState :: term(), timeout() | hibernate} |
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), Reply :: term(), NewState :: term()} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_cast(Request, State)

 View Source

 (optional)

 -callback handle_cast(Request :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_event(Request, State)

 View Source

 -callback handle_event(Request ::
 #wx{id :: integer(), obj :: wx:wx_object(), userData :: term(), event :: event()},
 State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_info(Info, State)

 View Source

 (optional)

 -callback handle_info(Info :: timeout() | term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_sync_event(Request, Ref, State)

 View Source

 (optional)

 -callback handle_sync_event(Request ::
 #wx{id :: integer(),
 obj :: wx:wx_object(),
 userData :: term(),
 event :: event()},
 Ref :: #wx_ref{ref :: term(), type :: term(), state :: term()},
 State :: term()) ->
 ok.

 Link to this callback

 init(Args)

 View Source

 -callback init(Args :: term()) ->
 {#wx_ref{ref :: term(), type :: term(), state :: term()}, State :: term()} |
 {#wx_ref{ref :: term(), type :: term(), state :: term()},
 State :: term(),
 timeout() | hibernate} |
 {stop, Reason :: term()} |
 ignore.

 Link to this callback

 terminate(Reason, State)

 View Source

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(), State :: term()) -> term().

 Functions

 Link to this function

 call(Obj, Request)

 View Source

 -spec call(Obj, Request) -> term() when Obj :: wx:wx_object() | atom() | pid(), Request :: term().

call(Obj, Request) -> term()
Make a call to a wx_object server. The call waits until it gets a result.
Invokes handle_call(Request, From, State) in the server

 Link to this function

 call(Obj, Request, Timeout)

 View Source

 -spec call(Obj, Request, Timeout) -> term()
 when Obj :: wx:wx_object() | atom() | pid(), Request :: term(), Timeout :: integer().

call(Obj, Request, Timeout) -> term()
Make a call to a wx_object server with a timeout. Invokes handle_call(Request,
From, State) in server

 Link to this function

 cast(Obj, Request)

 View Source

 -spec cast(Obj, Request) -> ok when Obj :: wx:wx_object() | atom() | pid(), Request :: term().

cast(Obj, Request) -> ok
Make a cast to a wx_object server. Invokes handle_cast(Request, State) in the
server

 Link to this function

 check_response(Msg, Key)

 View Source

 -spec check_response(Msg :: term(), Key :: request_id()) ->
 {reply, Reply :: term()} | false | {error, {term(), server_ref()}}.

check_response(Msg::term(), Key::request_id()) -> {reply, Reply::term()} | false
| {error, {term(), server_ref()}}
Check if a received message was a reply to a RequestId

 Link to this function

 get_pid(Obj)

 View Source

 -spec get_pid(Obj) -> pid() when Obj :: wx:wx_object() | atom() | pid().

get_pid(Obj) -> pid()
Get the pid of the object handle.

 Link to this function

 reply/2

 View Source

 -spec reply({pid(), Tag :: term()}, Reply :: term()) -> pid().

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

 Link to this function

 send_request(Obj, Request)

 View Source

 -spec send_request(Obj, Request :: term()) -> request_id() when Obj :: wx:wx_object() | atom() | pid().

send_request(Obj, Request::term()) -> request_id()
Make an send_request to a generic server. and return a RequestId which
can/should be used with wait_response/[1|2]. Invokes handle_call(Request, From,
State) in server.

 Link to this function

 set_pid/2

 View Source

 -spec set_pid(Obj, pid()) -> wx:wx_object() when Obj :: wx:wx_object() | atom() | pid().

set_pid(Obj, Pid::pid()) -> wx:wx_object()
Sets the controlling process of the object handle.

 Link to this function

 start(Name, Mod, Args, Options)

 View Source

 -spec start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Name :: {local, atom()},
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 Link to this function

 start_link(Mod, Args, Options)

 View Source

 -spec start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 Link to this function

 start_link(Name, Mod, Args, Options)

 View Source

 -spec start_link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Name :: {local, atom()},
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

start_link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 Link to this function

 stop(Obj)

 View Source

 -spec stop(Obj) -> ok when Obj :: wx:wx_object() | atom() | pid().

stop(Obj) -> ok
Stops a generic wx_object server with reason 'normal'. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the process does not exist, an exception is raised.

 Link to this function

 stop(Obj, Reason, Timeout)

 View Source

 -spec stop(Obj, Reason, Timeout) -> ok
 when Obj :: wx:wx_object() | atom() | pid(), Reason :: term(), Timeout :: timeout().

stop(Obj, Reason, Timeout) -> ok
Stops a generic wx_object server with the given Reason. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the call times out, or if the process does not exist, an
exception is raised.

 Link to this function

 wait_response(RequestId)

 View Source

 -spec wait_response(RequestId :: request_id()) ->
 {reply, Reply :: term()} | {error, {term(), server_ref()}}.

wait_response(RequestId::request_id()) -> {reply, Reply::term()} | {error,
{term(), server_ref()}}
Wait infinitely for a reply from a generic server.

 Link to this function

 wait_response(RequestId, Timeout)

 View Source

 -spec wait_response(Key :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

wait_response(Key::request_id(), Timeout::timeout()) -> {reply, Reply::term()} |
timeout | {error, {term(), server_ref()}}
Wait 'timeout' for a reply from a generic server.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

OEBPS/assets/logo.png
EEEEEE

