

 mnesia

 v4.23.2

 [image: Logo]

 Table of contents

 	Mnesia Release Notes

 	User's Guides

 	Introduction

 	Overview

 	Getting Started

 	Build a Mnesia Database

 	Transactions and Other Access Contexts

 	Miscellaneous Mnesia Features

 	Mnesia System Information

 	Combine Mnesia with SNMP

 	Appendix A: Backup Callback Interface

 	Appendix B: Activity Access Callback Interface

 	Appendix C: Fragmented Table Hashing Callback Interface

 	

 	Modules

 	mnesia

 	mnesia_frag_hash

 	mnesia_registry

Mnesia Release Notes

This document describes the changes made to the Mnesia system from version to
version. The intention of this document is to list all incompatibilities as well
as all enhancements and bugfixes for every release of Mnesia. Each release of
Mnesia thus constitutes one section in this document. The title of each section
is the version number of Mnesia.

 Mnesia 4.23.2

 Fixed Bugs and Malfunctions

	The mnesia_registry module have been deprecated.
Own Id: OTP-18994

 Improvements and New Features

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 Mnesia 4.23.1

 Fixed Bugs and Malfunctions

	Mnesia could crash during startup if del_table_copy/2 and add_table_copy/3 was invoked when the table was loading.
Own Id: OTP-19076 Aux Id: ERIERL-1073

 Mnesia 4.23

 Fixed Bugs and Malfunctions

	Document mnesia:foldl/4 and mnesia:foldr/4.
Own Id: OTP-18798

	mnesia:add_table_copy/3 no longer fails with reason system_limit when the
node is starting.
Own Id: OTP-18850

 Improvements and New Features

	Restore recreate of disc_only tables could crash if they had an index.
Own Id: OTP-18843 Aux Id: GH-7766

 Mnesia 4.22.1

 Fixed Bugs and Malfunctions

	Do not delete old backup file if the new backup fails.
Own Id: OTP-18711 Aux Id: ERIERL-963

 Mnesia 4.22

 Improvements and New Features

	Added debug statistics for active transactions.
Own Id: OTP-18309 Aux Id: PR-6377

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

 Mnesia 4.21.4.3

 Fixed Bugs and Malfunctions

	Mnesia could crash during startup if del_table_copy/2 and add_table_copy/3 was invoked when the table was loading.
Own Id: OTP-19076 Aux Id: ERIERL-1073

 Mnesia 4.21.4.2

 Fixed Bugs and Malfunctions

	mnesia:add_table_copy/3 no longer fails with reason system_limit when the
node is starting.
Own Id: OTP-18850

 Mnesia 4.21.4.1

 Fixed Bugs and Malfunctions

	Do not delete old backup file if the new backup fails.
Own Id: OTP-18711 Aux Id: ERIERL-963

 Mnesia 4.21.4

 Fixed Bugs and Malfunctions

	Improved consistency for dirty writes when a table was added with
add_table_copy/3.
Fixed a problem with sticky write, which could lead to inconsistent data.
Own Id: OTP-18412

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Mnesia 4.21.3

 Fixed Bugs and Malfunctions

	Fixed crash which could happen during startup if too many decisions where sent
from remote nodes.
Own Id: OTP-18319 Aux Id: ERIERL-875

 Mnesia 4.21.2

 Fixed Bugs and Malfunctions

	Don't fill the logs if mnesia can't connect to all nodes, due to partitioned
network.
Own Id: OTP-18288 Aux Id: ERIERL-868

 Mnesia 4.21.1

 Fixed Bugs and Malfunctions

	Fixed add_table_copy which could leave a table lock if the receiving node
went down during the operation.
Own Id: OTP-18128 Aux Id: PR-6013

 Mnesia 4.21

 Improvements and New Features

	Documentation fixes.
Own Id: OTP-17930

 Mnesia 4.20.4.4

 Fixed Bugs and Malfunctions

	mnesia:add_table_copy/3 no longer fails with reason system_limit when the
node is starting.
Own Id: OTP-18850

 Mnesia 4.20.4.3

 Fixed Bugs and Malfunctions

	Do not delete old backup file if the new backup fails.
Own Id: OTP-18711 Aux Id: ERIERL-963

 Mnesia 4.20.4.2

 Fixed Bugs and Malfunctions

	Don't fill the logs if mnesia can't connect to all nodes, due to partitioned
network.
Own Id: OTP-18288 Aux Id: ERIERL-868

	Fixed crash which could happen during startup if too many decisions where sent
from remote nodes.
Own Id: OTP-18319 Aux Id: ERIERL-875

 Mnesia 4.20.4.1

 Fixed Bugs and Malfunctions

	Fixed add_table_copy which could leave a table lock if the receiving node
went down during the operation.
Own Id: OTP-18128 Aux Id: PR-6013

 Mnesia 4.20.4

 Fixed Bugs and Malfunctions

	Fixed mnesia:add_table_copy/3 so that calling it when mnesia started on
another node does not fail or cause hanging nodes.
Own Id: OTP-18056

 Mnesia 4.20.3

 Improvements and New Features

	Optimize locker to handle many read locks on the same record.
Own Id: OTP-17973 Aux Id: ERIERL-772

 Mnesia 4.20.2

 Improvements and New Features

	Reduce the number of locks taken during table copying, should reduce the
startup time on large systems.
Own Id: OTP-17656 Aux Id: ERIERL-688

 Mnesia 4.20.1

 Fixed Bugs and Malfunctions

	Documentation and minor code cleanup.
Own Id: OTP-17727

 Mnesia 4.20

 Fixed Bugs and Malfunctions

	Fixed that index keys was deleted for set tables when mnesia:delete_object/1
tried to delete a non-existing record.
Own Id: OTP-17564 Aux Id: GH-5040

 Improvements and New Features

	Optimized table loading and added max_transfer_size configuration parameter.
Own Id: OTP-17508

 Mnesia 4.19.1

 Fixed Bugs and Malfunctions

	Suppression of deprecation warnings has been added to the source files of the
Mnesia application.
Own Id: OTP-17217

	Fixed that the backend plugin initialization is done only once.
Own Id: OTP-17294 Aux Id: GH-4525 PR-4674

 Mnesia 4.19

 Fixed Bugs and Malfunctions

	Fixed the type spec for disc_only_copies.
Own Id: OTP-17249 Aux Id: PR-4578

	Do not crash in mnesia:change_config/2 if mnesia is stopping or starting.
Own Id: OTP-17274 Aux Id: GH-4616

 Improvements and New Features

	Optimized table loading time for tables that are updated during the loading.
Own Id: OTP-17271 Aux Id: PR-4575

 Mnesia 4.18.1

 Fixed Bugs and Malfunctions

	Avoid potential performance issue, if the input queue to mnesia_tm is long.
Own Id: OTP-17066 Aux Id: PR-2889

 Mnesia 4.18

 Fixed Bugs and Malfunctions

	FIx mnesia delete object handling in transaction storage. In a transaction
mnesia:read/1 could indicate that exiting objects did not exist after
another object was deleted.
Own Id: OTP-16782 Aux Id: PR-2663

 Improvements and New Features

	Fixed crash during startup, which could happen if a table was deleted on
another node.
Own Id: OTP-16815 Aux Id: ERIERL-500

 Mnesia 4.17

 Fixed Bugs and Malfunctions

	Make mnesia:create_table/2 return correct badarg value.
Own Id: OTP-16072 Aux Id: PR-2320

	Fixed a bug where mnesia was sometimes not waiting during start for a commit
decision on asymmetric transactions.
Own Id: OTP-16634 Aux Id: PR-2610 ERL-1227

 Improvements and New Features

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Avoid using rpc calls to do table reads, which will reduce the load on rpc
server and improve performance.
Own Id: OTP-16189

 Mnesia 4.16.3.1

 Improvements and New Features

	Fixed crash during startup, which could happen if a table was deleted on
another node.
Own Id: OTP-16815 Aux Id: ERIERL-500

 Mnesia 4.16.3

 Fixed Bugs and Malfunctions

	Fixed a timing issue in uninstall fallback functionality.
Own Id: OTP-16468 Aux Id: ERL-1151

 Mnesia 4.16.2

 Fixed Bugs and Malfunctions

	Fixed mnesia crash which could happen when trying to recover from failures in
transactions containing sticky_locks.
Own Id: OTP-16286 Aux Id: ERL-1077

	Fixed mnesia index issue. Could happen when updating records with a index
plugin backend.
Own Id: OTP-16291 Aux Id: ERL-1091

 Mnesia 4.16.1

 Fixed Bugs and Malfunctions

	mnesia:add_table_copy/3 could cause a deadlock if called when a new node was
starting.
Own Id: OTP-15933 Aux Id: ERL-872

	Transactions with sticky locks could with async_asym transactions be committed
in the wrong order, since asym transaction are spawned on the remote nodes.
To fix this bug the communication protocol between mnesia nodes had to be
updated, thus mnesia will no longer be able to connect to nodes earlier than
mnesia-4.14 , OTP-19.0.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15979 Aux Id: ERL-768

 Mnesia 4.16

 Fixed Bugs and Malfunctions

	Optimize mnesia:read/1 if data have been written in the same transaction.
Own Id: OTP-15550 Aux Id: PR-2029

	Fixed bugs in table index plugin handling.
Own Id: OTP-15689 Aux Id: PR-1695 ERL-556

 Improvements and New Features

	Optimized dumping of tables with plugin backends.
Own Id: OTP-15588 Aux Id: PR-2102

	Include stacktrace in exception if a dirty activity errors, thus if user have
matched on the error thrown it may not match any more.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15804 Aux Id: PR-2216

 Mnesia 4.15.6

 Fixed Bugs and Malfunctions

	Avoid overload warnings caused by a race condition.
Own Id: OTP-15619 Aux Id: ERIERL-310

 Mnesia 4.15.5

 Fixed Bugs and Malfunctions

	Fixed type spec for mnesia:change_config/2.
Own Id: OTP-15201 Aux Id: PR-1881

	When master node is set do not force a load from ram_copies replica when there
are no available disc_copies, since that would load an empty table. Wait until
a disk replica is available or until user explicitly force_loads the table.
Own Id: OTP-15221 Aux Id: ERIERL-217

	Allow to add replicas even if all other replicas are down when the other
replicas are not stored on disk.
Own Id: OTP-15226 Aux Id: ERIERL-221

	Fixed mnesia:delete_object/1 bug, where delete_object was deleting the
record if it was written in the same transaction even if it was written to a
different value.
Own Id: OTP-15231 Aux Id: PR-1858

	Fixed a bug where the bag table index data was not deleted when objects were
deleted.
Own Id: OTP-15243

 Mnesia 4.15.4

 Improvements and New Features

	Calls to erlang:get_stacktrace() are removed.
Own Id: OTP-14861

 Mnesia 4.15.3.1

 Fixed Bugs and Malfunctions

	When master node is set do not force a load from ram_copies replica when there
are no available disc_copies, since that would load an empty table. Wait until
a disk replica is available or until user explicitly force_loads the table.
Own Id: OTP-15221 Aux Id: ERIERL-217

	Allow to add replicas even if all other replicas are down when the other
replicase are not stored on disk.
Own Id: OTP-15226 Aux Id: ERIERL-221

 Mnesia 4.15.3

 Fixed Bugs and Malfunctions

	Removed a quadratic behavior in startup. This change implies that backend
plugins (if used) must be set when the schema is created or via configuration
parameters before mnesia is started.
Own Id: OTP-14829 Aux Id: ERIERL-84

	Bad timing could crash mnesia after a checkpoint was deactivated and
reactivated with the same checkpoint name on different tables.
Own Id: OTP-14841 Aux Id: ERIERL-113

 Mnesia 4.15.2

 Fixed Bugs and Malfunctions

	Fix backup error handling, the real failure reason was not returned.
Own Id: OTP-14776 Aux Id: ERIERL-103

 Mnesia 4.15.1

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

 Mnesia 4.15

 Improvements and New Features

	Removed the wrapping of select continuations in extension plugin handling.
This might require the user to rewrite user backend plugin if used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14039

 Mnesia 4.14.3

 Fixed Bugs and Malfunctions

	Fixed crash in checkpoint handling when table was deleted during backup.
Own Id: OTP-14167

 Mnesia 4.14.2

 Fixed Bugs and Malfunctions

	A continuation returned by mnesia:select/[14] should be reusable in
different, non-transactional activities.
Own Id: OTP-13944 Aux Id: PR-1184

	Fixed crash when calling block_table multiple times. Could happen when having
locks for a long time and restarting mnesia.
Own Id: OTP-13970 Aux Id: Seq-13198

	Change mnesia_tm process to have off-heap messages since mnesia_tm can be the
receiver of many non-synchronized message from other nodes.
Own Id: OTP-14074

 Mnesia 4.14.1

 Improvements and New Features

	Correct some minor documentation issues.
Own Id: OTP-13891

 Mnesia 4.14

 Improvements and New Features

	Added experimental external backend plugin api. This adds the possibility for
the user to write other storage backends for data, for example by using shared
memory or ram-cached disk storage.
The plugin api may change in future versions after being battle tested.
Own Id: OTP-13058

 Mnesia 4.13.4

 Fixed Bugs and Malfunctions

	Mnesia transactions could hang while waiting on a response from a node who had
stopped.
Own Id: OTP-13423

 Mnesia 4.13.3

 Fixed Bugs and Malfunctions

	Avoid deadlock possibility in mnesia:del_table_copy/2
Own Id: OTP-13284

 Mnesia 4.13.2

 Fixed Bugs and Malfunctions

	Fixed a process and file descriptor leak in mnesia:restore/2.
Own Id: OTP-13025 Aux Id: seq12957

 Mnesia 4.13.1

 Fixed Bugs and Malfunctions

	Improved index updates to avoid a timing glitch in dirty_index_read.
Own Id: OTP-12972

 Mnesia 4.13

 Fixed Bugs and Malfunctions

	Mnesia's dirty functions did not always exit with {aborted, Reason} as
documented when an error occurred.
Own Id: OTP-12714

	Consider file descriptors limits (emfile) as a fatal error and do not delete
log files. Previously the error was seen as a corrupted disk and the log files
deleted which caused data loss.
Own Id: OTP-12807

 Improvements and New Features

	Make Mnesia DCD dump behavior at start up optional, when turned off mnesia
loads large disc_copies tables faster.
Own Id: OTP-12481

 Mnesia 4.12.5

 Fixed Bugs and Malfunctions

	Fixed race condition in protocol negotiation.
Own Id: OTP-12473

 Improvements and New Features

	Grammar corrections. (Thanks to Derek Brown)
Own Id: OTP-12400

 Mnesia 4.12.4

 Fixed Bugs and Malfunctions

	Fixed a spelling mistake in mnesia documentation.
Own Id: OTP-12278

	Matching data with mnesia:match_object/1 did not work as expected in some
cases, when data was written in the same transaction before the matching was
invoked.
Own Id: OTP-12304 Aux Id: Seq12745

 Mnesia 4.12.3

 Fixed Bugs and Malfunctions

	Various logging fixes, including: Add run queue index to the process dump in
crash dumps.
Add thread index to enomem slogan when crashing.
Remove error logger message for sending messages to old instances of the same
node.
Own Id: OTP-12115

 Mnesia 4.12.2

 Fixed Bugs and Malfunctions

	Fixed a race which could make create_table fail if a node was going down
during the transaction.
Own Id: OTP-12124 Aux Id: seq12694

 Mnesia 4.12.1

 Fixed Bugs and Malfunctions

	Force load table could hang when a node went away during start up.
Own Id: OTP-11948 Aux Id: seq12585

	The time for inserting locks for a transaction with large number of locks is
reduced significantly.
Own Id: OTP-11981

 Mnesia 4.12

 Fixed Bugs and Malfunctions

	Some local implementations of removing the last element from a list are
replaced by lists:droplast/1. Note that this requires at least stdlib-2.0,
which is the stdlib version delivered in OTP 17.0. (Thanks to Hans Svensson)
Own Id: OTP-11678

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	To prevent a race condition if there is a short communication problem when
node-down and node-up events are received. They are now stored and later
checked if the node came up just before mnesia flagged the node as down.
(Thanks to Jonas Falkevik)
Own Id: OTP-11497

	Added mnesia:sync_log/0 to explicit sync mnesias transaction log.
Own Id: OTP-11729

 Mnesia 4.11

 Fixed Bugs and Malfunctions

	Fixed a race in mnesia which could cause hanging transaction when sticky locks
had been used. Thanks janchochol.
Own Id: OTP-11375

	Fixed dirty_update_counter which could return ok, thanks Anton Ryabkov.
Own Id: OTP-11485

 Mnesia 4.10

 Fixed Bugs and Malfunctions

	Fix timing issues in checkpoint creation.
Own Id: OTP-10957

 Improvements and New Features

	Fixed a problem where the fallback BUP file is removed when calling
mnesia:uninstall_fallback and mnesia is not started.
Own Id: OTP-11241

 Mnesia 4.9

 Fixed Bugs and Malfunctions

	If mnesia:clear_table/2 was called during a table load on that table, the
schema record was written to the table instead of clearing table.
Own Id: OTP-11030 Aux Id: seq12267

 Improvements and New Features

	Optimize index creation for Mnesia set tables. Thanks to Nick Marino.
Own Id: OTP-11103

 Mnesia 4.8

 Fixed Bugs and Malfunctions

	Use chained send_after instead of send_interval, to make decrease the number
of messages sent after a sleep (Thanks to James Wheare)
Own Id: OTP-10636

	Fix format of mnesia overload message (Thanks to Ahmed Omar)
Own Id: OTP-10639

 Improvements and New Features

	Added a general framework for executing benchmarks of Erlang/OTP. Benchmarks
for the Erlang VM and mnesia have been incorporated in the framework.
For details about how to add more benchmarks see $ERL_TOP/HOWTO/BENCHMARKS.md
in the source distribution.
Own Id: OTP-10156

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Remove support for the query keyword and query expressions. Thanks to Loïc
Hoguin.
Own Id: OTP-10729

 Mnesia 4.7.1

 Fixed Bugs and Malfunctions

	Add tests showing that trying to delete non-existing object may corrupt the
In case of bag tables, trying to delete a non-existing object leads to the
index becoming corrupt. This happens if the non-existing object we try to
delete happens to share its key and index field value with a single existing
object in the table. Result: The index entry corresponding to the existing
object is removed.
Prevent index from being corrupted if a nonexistent item is deleted
We have to ensure that we actually delete the last object with a given (key,
index) pair before removing the index. Thanks to Bartlomiej Puzon
Own Id: OTP-10220

 Mnesia 4.7

 Fixed Bugs and Malfunctions

	Returns the same value for mnesia_loader:disc_load_table/2 as
mnesia_loader:net_load_table/4 if a table copy cannot be found. (Thanks to Uwe
Dauernheim)
Own Id: OTP-10015

 Improvements and New Features

	Improved table lock algorithm.
Own Id: OTP-9890

 Mnesia 4.6

 Fixed Bugs and Malfunctions

	Reduce calls to phash in key_to_frag_number
Original code calls phash 1..2 times, based on which fragment the hashed key
targets and how many fragments exist. New code always calls phash only once.
Add mnesia_frag_hash test (Thanks to Philip Robinson)
Own Id: OTP-9722

	Fixed a sticky lock bug which caused mnesia:read(Tab, Key, write) return
undefined.
Own Id: OTP-9786

	Use the synchronous log_terms instead of alog_terms in mnesia_log:ets2dcd()
This avoids the situation where mnesia could dump a very large ets table in
its entirety into the message queue of the disk_log process, causing memory
blowup and choking the disk logger. (Thanks to Richard Carlsson)
Own Id: OTP-9804

 Improvements and New Features

	Implemented a new option to mnesia:create_table/2 which allows the user to
assign 'ets' and 'dets' options not available in mnesia.
Own Id: OTP-8970

 Mnesia 4.5.1

 Fixed Bugs and Malfunctions

	Fix deadlock in mnesia:del_table_copy/2.
Own Id: OTP-9689 Aux Id: seq11927

 Improvements and New Features

	Allow schema operations when using different mnesia versions.
Own Id: OTP-9657 Aux Id: seq11926

 Mnesia 4.5

 Fixed Bugs and Malfunctions

	Fix protocol issues. Mnesia-4.4.19 could not communicate with to older nodes.
Own Id: OTP-9473

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Improvements and New Features

	Dump the log even if no transactions have been invoked on local node,
otherwise the log will grow forever with decisions from the other nodes who
have tables on disk. Thanks Marek Majkowski.
Own Id: OTP-9551

	Use dedicated api for clear_table, i.e. instead of match_delete use
delete_all_objects. Thanks KukHyun Lee.
Own Id: OTP-9558

 Mnesia 4.4.19

 Fixed Bugs and Malfunctions

	Mnesia could crash if mnesia:add_table_index/2 was invoked before the table
was loaded on all nodes.
Own Id: OTP-9285 Aux Id: seq11844

	Add {majority, boolean()} per-table option.
With {majority, true} set for a table, write transactions will abort if they
cannot commit to a majority of the nodes that have a copy of the table.
Currently, the implementation hooks into the prepare_commit, and forces an
asymmetric transaction if the commit set affects any table with the majority
flag set. In the commit itself, the transaction will abort if it cannot
satisfy the majority requirement for all tables involved in the
transaction.(Thanks to Ulf Wiger)
Own Id: OTP-9304

 Mnesia 4.4.18

 Fixed Bugs and Malfunctions

	Call chmod without the "-f" flag
"-f" is a non-standard chmod option which at least SGI IRIX and HP UX do not
support. As the only effect of the "-f" flag is to suppress warning messages,
it can be safely omitted. (Thanks to Holger Weiß)
Own Id: OTP-9170

	Mnesia sometimes failed to update meta-information in large systems, which
could cause table content to be inconsistent between nodes.
Own Id: OTP-9186 Aux Id: seq11728

 Mnesia 4.4.17

 Fixed Bugs and Malfunctions

	Calling mnesia:first/1 on empty fragmented table works. Thanks Magnus Henoch.
Own Id: OTP-9108

	If Mnesia detects that the network is not fully connected during start, Mnesia
will not start until all nodes are reachable.
Own Id: OTP-9115 Aux Id: seq-11728

 Improvements and New Features

	Fix issues reported by dialyzer.
Own Id: OTP-9107

 Mnesia 4.4.16

 Fixed Bugs and Malfunctions

	Sometimes a 'log_header' record was added to tables when invoking
mnesia:restore/2 with the option 'recreate_tables'. Thanks Vance Shipley.
Own Id: OTP-8960

 Improvements and New Features

	Compiler warnings were eliminated.
Own Id: OTP-8855

 Mnesia 4.4.15

 Improvements and New Features

	Eliminated warnings for auto-imported BIF clashes.
Own Id: OTP-8840

 Mnesia 4.4.14

 Improvements and New Features

	Added mnesia:subscribe(activity) contributed by Bernard Duggan.
Own Id: OTP-8519

 Mnesia 4.4.13

 Fixed Bugs and Malfunctions

	Transactions could be left hanging if a node went down when invoking
mnesia:sync_transaction/[1,2]. Thanks Igor Ribeiro Sucupira.
Own Id: OTP-8402

 Improvements and New Features

	Igor Ribeiro Sucupira added the option to compress data when copying tables
between Mnesia nodes.
Own Id: OTP-8406

 Mnesia 4.4.12

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

 Mnesia 4.4.11

 Improvements and New Features

	Fixed duplicate results with mnesia:index_read() on ordered_set tables.
Reported by Sam Bobroff.
Fixed locking in mnesia:index_read() which now grabs a read table lock to
ensure correctness, this may slow down the operation or block other processes
trying to reach the same table.
Calling mnesia:dump_log() could crash mnesia, Reported by Igor Ribeiro
Sucupira.
Own Id: OTP-8074

 Mnesia 4.4.10

 Fixed Bugs and Malfunctions

	Mnesia crashed if a qlc query was running inside a transaction when mnesia
stopped at another node. Thanks Teemu Antti-Poika.
Own Id: OTP-7968

	Mnesia could crash when loading local_content tables.
Own Id: OTP-8002 Aux Id: seq11277

 Improvements and New Features

	Minor (smp) optimizations.
Own Id: OTP-7928

 Mnesia 4.4.9

 Fixed Bugs and Malfunctions

	mnesia:clear_table/1 crashed instead of returning {aborted,..} if it was
called inside a transaction.
Own Id: OTP-7911

 Mnesia 4.4.8

 Fixed Bugs and Malfunctions

	With bad timing several api functions could return or exit with a bad error
message when mnesia was shutting down.
Own Id: OTP-7753 Aux Id: seq11179

	mnesia:clear_table/1 cleared all nodes table content even if the table was
local_content only type.
Own Id: OTP-7835

 Mnesia 4.4.7

 Fixed Bugs and Malfunctions

	Disallowed match patterns ('_', and '$n') as argument to
mnesia:delete_object/1 and friends.
Own Id: OTP-7524

 Improvements and New Features

	Introduced a few new functions in Mnesia: mnesia:read/2, mnesia:first/3,
mnesia:last/3, mnesia:prev/4, mnesia:next/4, mnesia_frag:first/1,
mnesia_frag:last/1, mnesia_frag:prev/2, mnesia_frag:next/2.
Own Id: OTP-7625

 Mnesia 4.4.6

 Fixed Bugs and Malfunctions

	mnesia:restore/2 aborted if a EXIT message appeared in the client message
queue.
Own Id: OTP-7585 Aux Id: seq11046

 Mnesia 4.4.5

 Improvements and New Features

	mnesia:clear_table/1 does not require that all replicas of the table are
available anymore.
Own Id: OTP-7466 Aux Id: seq11015

 Mnesia 4.4.4

 Fixed Bugs and Malfunctions

	Mnesia did not garbage collect transaction decisions on disk based nodes if no
transactions where made on the local node.
Own Id: OTP-7419

 Mnesia 4.4.3

 Fixed Bugs and Malfunctions

	Table referred to by foreign key did not have node_pool properly cleaned up
when a node was removed from the schema. Thanks Paul Mineiro.
Own Id: OTP-7340

	Mnesia crashed and generated a core dump if a schema_transaction was running
when mnesia stopped.
Own Id: OTP-7378 Aux Id: seq10964

 Improvements and New Features

	It is now possible to delete a db node even when other disk resident nodes are
down. Thanks Paul Mineiro.
Own Id: OTP-7383

 Mnesia 4.4.2

 Fixed Bugs and Malfunctions

	Sticky locks could lead to hanging transactions.
Own Id: OTP-7205 Aux Id: seq10793

	mnesia:snmp_get_next_index/2 didn't work with partial index keys. Argument
checking is now done according to documentation, in functions
mnesia:snmp_get_row/2, mnesia:snmp_get_mnesia_key/2 and
mnesia:snmp_get_next_index/2. These functions now require that RowIndex is
a list.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7208

 Mnesia 4.4.1

 Fixed Bugs and Malfunctions

	Snmp index tables was not initialized correctly in mnesia-4.4.
Own Id: OTP-7170 Aux Id: seq10870

 Known Bugs and Problems

	Rearranging fragmented tables is an O(N^2) operation.
Own Id: OTP-6300

 Mnesia 4.4

 Fixed Bugs and Malfunctions

	Mnesia ignored the module argument to mnesia:restore/2. Thanks Paul Minerio.
Own Id: OTP-6981

 Improvements and New Features

	Mnesia's snmp operations snmp_get_row/2, snmp_get_next_index/2 and
snmp_get_mnesia_key/2 have been made context aware, i.e. inside a
transaction they will compensate for table updates made in earlier in the same
transaction. This might cause a performance drop if a lot of updates have been
made before the invocation of these functions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6856 Aux Id: seq10671

	Introduced erlang:phash/2 as new default for fragmented tables. Already
existing tables will continue to use whatever hash function they where using.
Own Id: OTP-6923

	Introduced mnesia:is_transaction/0.
Own Id: OTP-6995 Aux Id: seq10812

 Known Bugs and Problems

	Rearranging fragmented tables is an O(N^2) operation.
Own Id: OTP-6300

Introduction

The Mnesia application provides a heavy-duty real-time distributed database.

 Scope

This User's Guide describes how to build Mnesia-backed applications, and how to
integrate and use the Mnesia database management system with OTP. Programming
constructs are described, and numerous programming examples are included to
illustrate the use of Mnesia.
This User's Guide is organized as follows:
	Mnesia provides an introduction to Mnesia.
	Getting Started introduces Mnesia with an example database.
Examples are included on how to start an Erlang session, specify a Mnesia
database directory, initialize a database schema, start Mnesia, and create
tables. Initial prototyping of record definitions is also discussed.
	Build a Mnesia Database more formally describes the steps
introduced in the previous section, namely the Mnesia functions that define a
database schema, start Mnesia, and create the required tables.
	Transactions and Other Access Contexts describes the
transactions properties that make Mnesia into a fault-tolerant, real-time
distributed database management system. This section also describes the
concept of locking to ensure consistency in tables, and "dirty operations", or
shortcuts, which bypass the transaction system to improve speed and reduce
overheads.
	Miscellaneous Mnesia Features describes features that
enable the construction of more complex database applications. These features
include indexing, checkpoints, distribution and fault tolerance, disc-less
nodes, replica manipulation, local content tables, concurrency, and
object-based programming in Mnesia.
	Mnesia System Information describes the files contained in
the Mnesia database directory, database configuration data, core and table
dumps, as well as the functions used for backup, restore, fallback, and
disaster recovery.
	Combine Mnesia with SNMP is a short section that outlines
the integration between Mnesia and SNMP.
	Appendix A: Backup Callback Interface is a program listing
of the default implementation of this facility.
	Appendix B: Activity Access Callback Interface is a program
outlining one possible implementation of this facility.
	Appendix C: Fragmented Table Hashing Callback Interface is
a program outlining one possible implementation of this facility.

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language,
system development principles, and database management systems.

Overview

The management of data in telecommunications systems has many aspects of which
some, but not all, are addressed by traditional Database Management Systems
(DBMSs). In particular, the high level of fault tolerance required in many
nonstop systems, combined with requirements on the DBMS to run in the same
address space as the applications, have led us to implement a new DBMS, called
Mnesia.
Mnesia is implemented in, and tightly coupled to Erlang. It provides the
functionality that is necessary for the implementation of fault-tolerant
telecommunications systems.
Mnesia is a multiuser distributed DBMS specifically designed for
industrial-grade telecommunications applications written in Erlang, which is
also the intended target language. Mnesia tries to address all the data
management issues required for typical telecommunications systems and has a
number of features not normally found in traditional DBMSs.
Telecommunications applications need a mix of a broad range of features
generally not provided by traditional DBMSs. Mnesia is designed to meet
requirements such as:
	Fast real-time key-value lookup
	Complex non-real-time queries (mainly for operation and maintenance tasks)
	Distributed data (due to the distributed nature of the applications)
	High fault tolerance
	Dynamic reconfiguration
	Complex objects

Mnesia addresses the typical data management issues required for
telecommunications applications which sets it apart from most other DBMSs. It
combines many concepts found in traditional DBMSs, such as transactions and
queries, with concepts found in data management systems for telecommunications
applications such as:
	Fast real-time operations
	Configurable replication for fault tolerance
	Dynamic reconfiguration without service disruption

Mnesia is also unique due to its tight coupling to Erlang. It almost turns
Erlang into a database programming language, which yields many benefits. The
foremost is that the impedance mismatch between the data format used by the DBMS
and the data format used by the programming language, which is used to
manipulate the data, completely disappears.

 The Mnesia Database Management System

 Features

Mnesia has the following features that combine to produce a fault-tolerant
distributed database management system (DBMS) written in Erlang:
	Database schema can be dynamically reconfigured at runtime.
	Tables can be declared to have properties such as location, replication, and
persistence.
	Tables can be moved or replicated to several nodes to improve fault tolerance.
Other nodes in the system can still access the tables to read, write, and
delete records.
	Table locations are transparent to the programmer. Programs address table
names and the system itself keeps track of table locations.
	Transactions can be distributed and multiple operations can be executed within
a single transaction.
	Multiple transactions can run concurrently and their execution is fully
synchronized by Mnesia, ensuring that no two processes manipulate the same
data simultaneously.
	Transactions can be assigned the property of being executed on all nodes in
the system, or on none.
	Transactions can be bypassed using dirty operations, which reduce overheads
and run fast.

All of the above features are described in detail in the coming sections.

 Query List Comprehension

Query List Comprehension (QLC) can be used with Mnesia to produce specialized
functions that enhance its operational ability. QLC has its own documentation as
part of the OTP documentation set. The main QLC advantages when used with Mnesia
are:
	QLC can optimize the query compiler for Mnesia, essentially making the system
more efficient.
	QLC can be used as a database programming language for Mnesia. It includes a
notation called list comprehensions which can be used to execute complex
database queries over a set of tables.

For more information about QLC, please see the qlc manual page in STDLIB.

 When to Use Mnesia

Mnesia is a great fit for applications that:
	Need to replicate data.
	Perform complex data queries.
	Need to use atomic transactions to safely update several records
simultaneously.
	Require soft real-time characteristics.

Mnesia is not as appropriate for applications that:
	Process plain text or binary data files.
	Merely need a lookup dictionary that can be stored on disc. Such applications
may use the standard library module dets, which is a disc-based version of
the ets module. For more information about dets, please see the dets
manual page in STDLIB.
	Need disc logging facilities. Such applications may use the module disk_log.
For more information about disk_log, please see the disk_log manual page
in Kernel.
	Require hard real-time characteristics.

Getting Started

This section introduces Mnesia with an example database. This example is
referenced in the following sections, where the example is modified to
illustrate various program constructs. This section illustrates the following
mandatory procedures through examples:
	Starting the Erlang session.
	Specifying the Mnesia directory where the database is to be stored.
	Initializing a new database schema with an attribute that specifies on which
node, or nodes, that database is to operate.
	Starting Mnesia.
	Creating and populating the database tables.

 Starting Mnesia for the First Time

This section provides a simplified demonstration of a Mnesia system startup.
The dialogue from the Erlang shell is as follows:
unix> erl -mnesia dir '"/tmp/funky"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1>
1> mnesia:create_schema([node()]).
ok
2> mnesia:start().
ok
3> mnesia:create_table(funky, []).
{atomic,ok}
4> mnesia:info().
---> Processes holding locks <---
---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---
---> Active tables <---
funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt_disc. Directory "/tmp/funky" is used.
use fall-back at restart = false
running db nodes = [nonode@nohost]
stopped db nodes = []
remote = []
ram_copies = [funky]
disc_copies = [schema]
disc_only_copies = []
[{nonode@nohost,disc_copies}] = [schema]
[{nonode@nohost,ram_copies}] = [funky]
1 transactions committed, 0 aborted, 0 restarted, 1 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok
In this example, the following actions are performed:
	Step 1: The Erlang system is started from the UNIX prompt with a flag
-mnesia dir '"/tmp/funky"', which indicates in which directory to store the
data.
	Step 2: A new empty schema is initialized on the local node by evaluating
mnesia:create_schema([node()]). The schema
contains information about the database in general. This is explained in
detail later.
	Step 3: The DBMS is started by evaluating
mnesia:start().
	Step 4: A first table is created, called funky, by evaluating the
expression mnesia:create_table(funky, []). The
table is given default properties.
	Step 5: mnesia:info() is evaluated to display information
on the terminal about the status of the database.

 Example

A Mnesia database is organized as a set of tables. Each table is populated
with instances (Erlang records). A table has also a number of properties, such
as location and persistence.

 Database

This example shows how to create a database called Company and the
relationships shown in the following diagram:

title: Company Entity-Relation Diagram

erDiagram
 Dept {
 atom id
 string name
 }

 Employee {
 int emp_no
 string name
 int salary
 atom sex
 int phone
 tuple room_no

 }

 Project {
 atom name
 int number
 }

 Dept ||--|| Employee: Manager
 Employee }|--|| Dept: At_dep
 Employee }|--|{ Project: in_proj
The database model is as follows:
	There are three entities: department, employee, and project.
	There are three relationships between these entities:	A department is managed by an employee, hence the manager relationship.
	An employee works at a department, hence the at_dep relationship.
	Each employee works on a number of projects, hence the in_proj
relationship.

 Defining Structure and Content

First the record definitions are entered into a text file named company.hrl.
This file defines the following structure for the example database:
-record(employee, {emp_no,
 name,
 salary,
 sex,
 phone,
 room_no}).

-record(dept, {id,
 name}).

-record(project, {name,
 number}).

-record(manager, {emp,
 dept}).

-record(at_dep, {emp,
 dept_id}).

-record(in_proj, {emp,
 proj_name}).
The structure defines six tables in the database. In Mnesia, the function
mnesia:create_table(Name, ArgList) creates tables.
Name is the table name.
Note
The current version of Mnesia does not require that the name of the table is
the same as the record name, see
Record Names versus Table Names..
For example, the table for employees is created with the function
mnesia:create_table(employee, [{attributes, record_info(fields, employee)}]).
The table name employee matches the name for records specified in ArgList.
The expression record_info(fields, RecordName) is processed by the Erlang
preprocessor and evaluates to a list containing the names of the different
fields for a record.

 Program

The following shell interaction starts Mnesia and initializes the schema for
the Company database:
% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:create_schema([node()]).
ok
2> mnesia:start().
ok
The following program module creates and populates previously defined tables:
-include_lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
 mnesia:create_table(employee,
 [{attributes, record_info(fields, employee)}]),
 mnesia:create_table(dept,
 [{attributes, record_info(fields, dept)}]),
 mnesia:create_table(project,
 [{attributes, record_info(fields, project)}]),
 mnesia:create_table(manager, [{type, bag},
 {attributes, record_info(fields, manager)}]),
 mnesia:create_table(at_dep,
 [{attributes, record_info(fields, at_dep)}]),
 mnesia:create_table(in_proj, [{type, bag},
 {attributes, record_info(fields, in_proj)}]).

 Program Explained

The following commands and functions are used to initiate the Company
database:
	% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'. This is a UNIX
command-line entry that starts the Erlang system. The flag -mnesia dir Dir
specifies the location of the database directory. The system responds and
waits for further input with the prompt 1>.
	mnesia:create_schema([node()]). This function has
the format mnesia:create_schema(DiscNodeList) and initiates a new schema. In
this example, a non-distributed system using only one node is created. Schemas
are fully explained in Define a Schema.
	mnesia:start(). This function starts Mnesia and is fully
explained in Start Mnesia.

Continuing the dialogue with the Erlang shell produces the following:
3> company:init().
{atomic,ok}
4> mnesia:info().
---> Processes holding locks <---
---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---
---> Active tables <---
in_proj : with 0 records occuping 269 words of mem
at_dep : with 0 records occuping 269 words of mem
manager : with 0 records occuping 269 words of mem
project : with 0 records occuping 269 words of mem
dept : with 0 records occuping 269 words of mem
employee : with 0 records occuping 269 words of mem
schema : with 7 records occuping 571 words of mem
===> System info in version "1.0", debug level = none <===
opt_disc. Directory "/ldisc/scratch/Mnesia.Company" is used.
use fall-back at restart = false
running db nodes = [nonode@nohost]
stopped db nodes = []
remote = []
ram_copies =
 [at_dep,dept,employee,in_proj,manager,project]
disc_copies = [schema]
disc_only_copies = []
[{nonode@nohost,disc_copies}] = [schema]
[{nonode@nohost,ram_copies}] =
 [employee,dept,project,manager,at_dep,in_proj]
6 transactions committed, 0 aborted, 0 restarted, 6 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok
A set of tables is created. The function
mnesia:create_table(Name, ArgList) creates the
required database tables. The options available with ArgList are explained in
Create New Tables.
The function company:init/0 creates the tables. Two tables are of type bag.
This is the manager relation as well the in_proj relation. This is
interpreted as: an employee can be manager over several departments, and an
employee can participate in several projects. However, the at_dep relation is
set, as an employee can only work in one department. In this data model, there
are examples of relations that are 1-to-1 (set) and 1-to-many (bag).
mnesia:info() now indicates that a database has seven local
tables, where six are the user-defined tables and one is the schema. Six
transactions have been committed, as six successful transactions were run when
creating the tables.
To write a function that inserts an employee record into the database, there
must be an at_dep record and a set of in_proj records inserted. Examine the
following code used to complete this action:
insert_emp(Emp, DeptId, ProjNames) ->
 Ename = Emp#employee.name,
 Fun = fun() ->
 mnesia:write(Emp),
 AtDep = #at_dep{emp = Ename, dept_id = DeptId},
 mnesia:write(AtDep),
 mk_projs(Ename, ProjNames)
 end,
 mnesia:transaction(Fun).

mk_projs(Ename, [ProjName|Tail]) ->
 mnesia:write(#in_proj{emp = Ename, proj_name = ProjName}),
 mk_projs(Ename, Tail);
mk_projs(_, []) -> ok.
	The insert_emp/3 arguments are as follows:	Emp is an employee record.
	DeptId is the identity of the department where the employee works.
	ProjNames is a list of the names of the projects where the employee
works.

The function insert_emp/3 creates a Functional Object (Fun). Fun is passed
as a single argument to the function
mnesia:transaction(Fun). This means that Fun is run
as a transaction with the following properties:
	A Fun either succeeds or fails.
	Code that manipulates the same data records can be run concurrently without
the different processes interfering with each other.

The function can be used as follows:
Emp = #employee{emp_no = 104732,
 name = klacke,
 salary = 7,
 sex = male,
 phone = 98108,
 room_no = {221, 015}},
insert_emp(Emp, 'B/SFR', [Erlang, mnesia, otp]).
Note
For information about Funs, see "Fun Expressions" in section
Erlang Reference Manual in System Documentation..

 Initial Database Content

After the insertion of the employee named klacke, the database has the
following records:
	emp_no	name	salary	sex	phone	room_no
	104732	klacke	7	male	98108	{221, 015}

Table: employee Database Record
This employee record has the Erlang record/tuple representation
{employee, 104732, klacke, 7, male, 98108, {221, 015}}.
	emp	dept_name
	klacke	B/SFR

Table: at_dep Database Record
This at_dep record has the Erlang tuple representation
{at_dep, klacke, 'B/SFR'}.
	emp	proj_name
	klacke	Erlang
	klacke	otp
	klacke	mnesia

Table: in_proj Database Record
This in_proj record has the Erlang tuple representation
{in_proj, klacke, 'Erlang', klacke, 'otp', klacke, 'mnesia'}.
There is no difference between rows in a table and Mnesia records. Both
concepts are the same and are used interchangeably throughout this User's Guide.
A Mnesia table is populated by Mnesia records. For example, the tuple
{boss, klacke, bjarne} is a record. The second element in this tuple is the
key. To identify a table uniquely, both the key and the table name is needed.
The term Object Identifier (OID) is sometimes used for the arity two tuple
{Tab, Key}. The OID for the record {boss, klacke, bjarne} is the arity two
tuple {boss, klacke}. The first element of the tuple is the type of the record
and the second element is the key. An OID can lead to zero, one, or more records
depending on whether the table type is set or bag.
The record {boss, klacke, bjarne} can also be inserted. This record contains
an implicit reference to another employee that does not yet exist in the
database. Mnesia does not enforce this.

 Adding Records and Relationships to Database

After adding more records to the Company database, the result can be the
following records:
employees:
{employee, 104465, "Johnson Torbjorn", 1, male, 99184, {242,038}}.
{employee, 107912, "Carlsson Tuula", 2, female,94556, {242,056}}.
{employee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
{employee, 104531, "Nilsson Hans", 3, male, 99495, {222,026}}.
{employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
{employee, 104732, "Wikstrom Claes", 2, male, 99586, {221,015}}.
{employee, 117716, "Fedoriw Anna", 1, female,99143, {221,031}}.
{employee, 115018, "Mattsson Hakan", 3, male, 99251, {203,348}}.
dept:
{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.
{dept, 'B/SFR', "Computer Science Laboratory"}.
projects:
%% projects
{project, erlang, 1}.
{project, otp, 2}.
{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.
These three tables, employees, dept, and projects, are made up of real
records. The following database content is stored in the tables and is built on
relationships. These tables are manager, at_dep, and in_proj.
manager:
{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.
at_dep:
{at_dep, 104465, 'B/SF'}.
{at_dep, 107912, 'B/SF'}.
{at_dep, 114872, 'B/SFR'}.
{at_dep, 104531, 'B/SFR'}.
{at_dep, 104659, 'B/SFR'}.
{at_dep, 104732, 'B/SFR'}.
{at_dep, 117716, 'B/SFP'}.
{at_dep, 115018, 'B/SFP'}.
in_proj:
{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in_proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.
{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.
The room number is an attribute of the employee record. This is a structured
attribute that consists of a tuple. The first element of the tuple identifies a
corridor, and the second element identifies the room in that corridor. An
alternative is to represent this as a record -record(room, {corr, no}).
instead of an anonymous tuple representation.
The Company database is now initialized and contains data.

 Writing Queries

Retrieving data from DBMS is usually to be done with the functions
mnesia:read/3 or mnesia:read/1. The following function
raises the salary:
raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read(employee, Eno, write),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 mnesia:write(New)
 end,
 mnesia:transaction(F).
Since it is desired to update the record using the function mnesia:write/1
after the salary has been increased, a write lock (third argument to read) is
acquired when the record from the table is read.
To read the values from the table directly is not always possible. It can be
needed to search one or more tables to get the wanted data, and this is done by
writing database queries. Queries are always more expensive operations than
direct lookups done with mnesia:read/1. Therefore, avoid queries in
performance-critical code.
Two methods are available for writing database queries:
	Mnesia functions
	QLC

Using Mnesia Functions
The following function extracts the names of the female employees stored in the
database:
mnesia:select(employee, [{#employee{sex = female, name = '$1', _ = '_'},[], ['$1']}]).
select must always run within an activity, such as a transaction. The
following function can be constructed to call from the shell:
all_females() ->
 F = fun() ->
		Female = #employee{sex = female, name = '$1', _ = '_'},
		mnesia:select(employee, [{Female, [], ['$1']}])
 end,
 mnesia:transaction(F).
The select expression matches all entries in table employee with the field
sex set to female.
This function can be called from the shell as follows:
(klacke@gin)1> company:all_females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}
For a description of select and its syntax, see
Pattern Matching.
Using QLC
This section contains simple introductory examples only. For a full description
of the QLC query language, see the qlc manual page in STDLIB.
Using QLC can be more expensive than using Mnesia functions directly but
offers a nice syntax.
The following function extracts a list of female employees from the database:
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
 E#employee.sex == female]),
qlc:e(Q),
Accessing Mnesia tables from a QLC list comprehension must always be done
within a transaction. Consider the following function:
females() ->
 F = fun() ->
		Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
					 E#employee.sex == female]),
		qlc:e(Q)
	end,
 mnesia:transaction(F).
This function can be called from the shell as follows:
(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}
In traditional relational database terminology, this operation is called a
selection, followed by a projection.
The previous list comprehension expression contains a number of syntactical
elements:
	The first [bracket is read as "build the list".
	The || "such that" and the arrow <- is read as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list
E#employee.name such that E is taken from the table of employees, and
attribute sex of each record is equal to the atom female.
The whole list comprehension must be given to the function qlc:q/1.
List comprehensions with low-level Mnesia functions can be combined in the
same transaction. To raise the salary of all female employees, execute the
following:
raise_females(Amount) ->
 F = fun() ->
 Q = qlc:q([E || E <- mnesia:table(employee),
 E#employee.sex == female]),
		Fs = qlc:e(Q),
 over_write(Fs, Amount)
 end,
 mnesia:transaction(F).

over_write([E|Tail], Amount) ->
 Salary = E#employee.salary + Amount,
 New = E#employee{salary = Salary},
 mnesia:write(New),
 1 + over_write(Tail, Amount);
over_write([], _) ->
 0.
The function raise_females/1 returns the tuple {atomic, Number}, where
Number is the number of female employees who received a salary increase. If an
error occurs, the value {aborted, Reason} is returned, and Mnesia guarantees
that the salary is not raised for any employee.
Example:
33> company:raise_females(33).
{atomic,2}

Build a Mnesia Database

This section describes the basic steps when designing a Mnesia database and
the programming constructs that make different solutions available to the
programmer. The following topics are included:
	Define a schema
	Data model
	Start Mnesia
	Create tables

 Define a Schema

The configuration of a Mnesia system is described in a schema. The schema is a
special table that includes information such as the table names and the storage
type of each table (that is, whether a table is to be stored in RAM, on disc, or
on both, as well as its location).
Unlike data tables, information in schema tables can only be accessed and
modified by using the schema-related functions described in this section.
Mnesia has various functions for defining the database schema. Tables can be
moved or deleted, and the table layout can be reconfigured.
An important aspect of these functions is that the system can access a table
while it is being reconfigured. For example, it is possible to move a table and
simultaneously perform write operations to the same table. This feature is
essential for applications that require continuous service.
This section describes the functions available for schema management, all which
return either of the following tuples:
	{atomic, ok} if successful
	{aborted, Reason} if unsuccessful

 Schema Functions

The schema functions are as follows:
	mnesia:create_schema(NodeList) initializes a new,
empty schema. This is a mandatory requirement before Mnesia can be started.
Mnesia is a truly distributed DBMS and the schema is a system table that is
replicated on all nodes in a Mnesia system. This function fails if a schema
is already present on any of the nodes in NodeList. The function requires
Mnesia to be stopped on the all db_nodes contained in parameter
NodeList. Applications call this function only once, as it is usually a
one-time activity to initialize a new database.

	mnesia:delete_schema(DiscNodeList) erases any old
schemas on the nodes in DiscNodeList. It also removes all old tables
together with all data. This function requires Mnesia to be stopped on all
db_nodes.

	mnesia:delete_table(Tab) permanently deletes all
replicas of table Tab.

	mnesia:clear_table(Tab) permanently deletes all
entries in table Tab.

	mnesia:move_table_copy(Tab, From, To) moves the
copy of table Tab from node From to node To. The table storage type
{type} is preserved, so if a RAM table is moved from one node to another, it
remains a RAM table on the new node. Other transactions can still perform read
and write operation to the table while it is being moved.

	mnesia:add_table_copy(Tab, Node, Type) creates a
replica of table Tab at node Node. Argument Type must be either of the
atoms ram_copies, disc_copies, or disc_only_copies. If you add a copy of
the system table schema to a node, you want the Mnesia schema to reside
there as well. This action extends the set of nodes that comprise this
particular Mnesia system.

	mnesia:del_table_copy(Tab, Node) deletes the
replica of table Tab at node Node. When the last replica of a table is
removed, the table is deleted.

	mnesia:transform_table(Tab, Fun, NewAttributeList, NewRecordName)
changes the format on all records in table Tab. It applies argument Fun to
all records in the table. Fun must be a function that takes a record of the
old type, and returns the record of the new type. The table key must not be
changed.
Example:
-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
 fun(X) when record(X, old) ->
 #new{key = X#old.key,
 val = X#old.val,
 extra = 42}
 end,
{atomic, ok} = mnesia:transform_table(foo, Transformer,
 record_info(fields, new),
 new),
Argument Fun can also be the atom ignore, which indicates that only the
metadata about the table is updated. Use of ignore is not recommended (as it
creates inconsistencies between the metadata and the actual data) but it is
included as a possibility for the user do to an own (offline) transform.

	mnesia:change_table_copy_type(Tab, Node, ToType)
changes the storage type of a table. For example, a RAM table is changed to a
disc_table at the node specified as Node.

 Data Model

The data model employed by Mnesia is an extended relational data model. Data
is organized as a set of tables and relations between different data records can
be modeled as more tables describing the relationships. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.
Each Object Identifier (OID) is made up of a table name and a key. For example,
if an employee record is represented by the tuple
{employee, 104732, klacke, 7, male, 98108, {221, 015}}, this record has an
OID, which is the tuple {employee, 104732}.
Thus, each table is made up of records, where the first element is a record name
and the second element of the table is a key, which identifies the particular
record in that table. The combination of the table name and a key is an arity
two tuple {Tab, Key} called the OID. For more information about the
relationship between the record name and the table name, see
Record Names versus Table Names.
What makes the Mnesia data model an extended relational model is the ability
to store arbitrary Erlang terms in the attribute fields. One attribute value
can, for example, be a whole tree of OIDs leading to other terms in other
tables. This type of record is difficult to model in traditional relational
DBMSs.

 Start Mnesia

Before starting Mnesia, the following must be done:
	An empty schema must be initialized on all the participating nodes.
	The Erlang system must be started.
	Nodes with disc database schema must be defined and implemented with the
function mnesia:create_schema(NodeList).

When running a distributed system with two or more participating nodes, the
function mnesia:start() must be executed on each
participating node. This would typically be part of the boot script in an
embedded environment. In a test environment or an interactive environment,
mnesia:start() can also be used either from the Erlang shell or another
program.

 Initialize a Schema and Start Mnesia

Let us use the example database Company, described in
Getting Started to illustrate how to run a
database on two separate nodes, called a@gin and b@skeppet. Each of these
nodes must have a Mnesia directory and an initialized schema before Mnesia
can be started. There are two ways to specify the Mnesia directory to be used:
	Specify the Mnesia directory by providing an application parameter either
when starting the Erlang shell or in the application script. Previously, the
following example was used to create the directory for the Company database:
% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

	If no command-line flag is entered, the Mnesia directory becomes the current
working directory on the node where the Erlang shell is started.

To start the Company database and get it running on the two specified nodes,
enter the following commands:
	On the node a@gin:

 gin % erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company"'
	On the node b@skeppet:

skeppet % erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company"'
	On one of the two nodes:

(a@gin)1> mnesia:create_schema([a@gin, b@skeppet]).
	The function mnesia:start() is called on both nodes.
	To initialize the database, execute the following code on one of the two
nodes:

dist_init() ->
 mnesia:create_table(employee,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields,
						 employee)}]),
 mnesia:create_table(dept,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, dept)}]),
 mnesia:create_table(project,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, project)}]),
 mnesia:create_table(manager, [{type, bag},
 {ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields,
							 manager)}]),
 mnesia:create_table(at_dep,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, at_dep)}]),
 mnesia:create_table(in_proj,
 [{type, bag},
 {ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, in_proj)}]).
As illustrated, the two directories reside on different nodes, because
/ldisc/scratch (the "local" disc) exists on the two different nodes.
By executing these commands, two Erlang nodes are configured to run the
Company database, and therefore, initialize the database. This is required
only once when setting up. The next time the system is started,
mnesia:start() is called on both nodes, to initialize the
system from disc.
In a system of Mnesia nodes, every node is aware of the current location of
all tables. In this example, data is replicated on both nodes and functions that
manipulate the data in the tables can be executed on either of the two nodes.
Code that manipulate Mnesia data behaves identically regardless of where the
data resides.
The function mnesia:stop() stops Mnesia on the node where
the function is executed. The functions mnesia:start/0 and mnesia:stop/0
work on the "local" Mnesia system. No functions start or stop a set of nodes.

 Startup Procedure

Start Mnesia by calling the following function:
mnesia:start().
This function initiates the DBMS locally.
The choice of configuration alters the location and load order of the tables.
The alternatives are as follows:
	Tables that are only stored locally are initialized from the local Mnesia
directory.
	Replicated tables that reside locally as well as somewhere else are either
initiated from disc or by copying the entire table from the other node,
depending on which of the different replicas are the most recent. Mnesia
determines which of the tables are the most recent.
	Tables that reside on remote nodes are available to other nodes as soon as
they are loaded.

Table initialization is asynchronous. The function call
mnesia:start() returns the atom ok and then starts to
initialize the different tables. Depending on the size of the database, this can
take some time, and the application programmer must wait for the tables that the
application needs before they can be used. This is achieved by using the
function mnesia:wait_for_tables(TabList, Timeout),
which suspends the caller until all tables specified in TabList are properly
initiated.
A problem can arise if a replicated table on one node is initiated, but Mnesia
deduces that another (remote) replica is more recent than the replica existing
on the local node, and the initialization procedure does not proceed. In this
situation, a call to mnesia:wait_for_tables/2, suspends the caller until the
remote node has initialized the table from its local disc and the node has
copied the table over the network to the local node.
However, this procedure can be time-consuming, the shortcut function
mnesia:force_load_table(Tab) loads all the tables
from disc at a faster rate. The function forces tables to be loaded from disc
regardless of the network situation.
Thus, it can be assumed that if an application wants to use tables a and b,
the application must perform some action similar to following before it can use
the tables:
case mnesia:wait_for_tables([a, b], 20000) of
 {timeout, RemainingTabs} ->
 panic(RemainingTabs);
 ok ->
 synced
end.
Warning
When tables are forcefully loaded from the local disc, all operations that
were performed on the replicated table while the local node was down, and the
remote replica was alive, are lost. This can cause the database to become
inconsistent.
If the startup procedure fails, the function mnesia:start()
returns the cryptic tuple
{error,{shutdown, {mnesia_sup,start_link,[normal,[]]}}}. To get more
information about the start failure, use command-line arguments
-boot start_sasl as argument to the erl script.

 Create Tables

The function mnesia:create_table(Name, ArgList)
creates tables. When executing this function, it returns one of the following
responses:
	{atomic, ok} if the function executes successfully
	{aborted, Reason} if the function fails

The function arguments are as follows:
	Name is the name of the table. It is usually the same name as the name of
the records that constitute the table. For details, see record_name.
	ArgList is a list of {Key,Value} tuples. The following arguments are
valid:	{type, Type}, where Type must be either of the atoms set,
ordered_set, or bag. Default is set.
Notice that currently ordered_set is not supported for disc_only_copies
tables.
A table of type set or ordered_set has either zero or one record per
key, whereas a table of type bag can have an arbitrary number of records
per key. The key for each record is always the first attribute of the
record.
The following example illustrates the difference between type set and
bag:
 f() ->
 F = fun() ->
 mnesia:write({foo, 1, 2}),
 mnesia:write({foo, 1, 3}),
 mnesia:read({foo, 1})
 end,
 mnesia:transaction(F).
This transaction returns the list [{foo,1,3}] if table foo is of type
set. However, the list [{foo,1,2}, {foo,1,3}] is returned if the table
is of type bag.
Mnesia tables can never contain duplicates of the same record in the same
table. Duplicate records have attributes with the same contents and key.

	{disc_copies, NodeList}, where NodeList is a list of the nodes where
this table is to reside on disc.
Write operations to a table replica of type disc_copies write data to the
disc copy and to the RAM copy of the table.
It is possible to have a replicated table of type disc_copies on one node,
and the same table stored as a different type on another node. Default is
[]. This arrangement is desirable if the following operational
characteristics are required:
	Read operations must be fast and performed in RAM.
	All write operations must be written to persistent storage.

A write operation on a disc_copies table replica is performed in two
steps. First the write operation is appended to a log file, then the actual
operation is performed in RAM.

	{ram_copies, NodeList}, where NodeList is a list of the nodes where this
table is stored in RAM. Default is [node()]. If the default value is used
to create a table, it is located on the local node only.
Table replicas of type ram_copies can be dumped to disc with the function
mnesia:dump_tables(TabList).

	{disc_only_copies, NodeList}. These table replicas are stored on disc only
and are therefore slower to access. However, a disc-only replica consumes
less memory than a table replica of the other two storage types.

	{index, AttributeNameList}, where AttributeNameList is a list of atoms
specifying the names of the attributes Mnesia is to build and maintain. An
index table exists for every element in the list. The first field of a
Mnesia record is the key and thus need no extra index.
The first field of a record is the second element of the tuple, which is the
representation of the record.

	{snmp, SnmpStruct}. SnmpStruct is described in the
SNMP User's Guide. Basically, if this attribute is
present in ArgList of mnesia:create_table/2, the table is immediately
accessible the SNMP.
It is easy to design applications that use SNMP to manipulate and control
the system. Mnesia provides a direct mapping between the logical tables
that make up an SNMP control application and the physical data that makes up
a Mnesia table. The default value is [].

	{local_content, true}. When an application needs a table whose contents is
to be locally unique on each node, local_content tables can be used. The
name of the table is known to all Mnesia nodes, but its contents is unique
for each node. Access to this type of table must be done locally.

	{attributes, AtomList} is a list of the attribute names for the records
that are supposed to populate the table. Default is the list [key, val].
The table must at least have one extra attribute besides the key. When
accessing single attributes in a record, it is not recommended to hard code
the attribute names as atoms. Use the construct
record_info(fields, record_name) instead.
The expression record_info(fields, record_name) is processed by the Erlang
preprocessor and returns a list of the record field names. With the record
definition -record(foo, {x,y,z})., the expression
record_info(fields,foo) is expanded to the list [x,y,z]. It is therefore
possible for you to provide the attribute names or to use the
record_info/2 notation.
It is recommended to use the record_info/2 notation, as it becomes easier
to maintain the program and the program becomes more robust with regards to
future record changes.

	{record_name, Atom} specifies the common name of all records stored in the
table. All records stored in the table must have this name as their first
element. record_name defaults to the name of the table. For more
information, see
Record Names versus Table Names.

As an example, consider the following record definition:
-record(funky, {x, y}).
The following call would create a table that is replicated on two nodes, has an
extra index on attribute y, and is of type bag.
mnesia:create_table(funky, [{disc_copies, [N1, N2]}, {index, [y]},
 {type, bag}, {attributes, record_info(fields, funky)}]).
Whereas a call to the following default code values would return a table with a
RAM copy on the local node, no extra indexes, and the attributes defaulted to
the list [key,val].
mnesia:create_table(stuff, [])

Transactions and Other Access Contexts

This section describes the Mnesia transaction system and the transaction
properties that make Mnesia a fault-tolerant, distributed Database Management
System (DBMS).
This section also describes the locking functions, including table locks and
sticky locks, as well as alternative functions that bypass the transaction
system in favor of improved speed and reduced overhead. These functions are
called "dirty operations". The use of nested transactions is also described. The
following topics are included:
	Transaction properties, which include atomicity, consistency, isolation, and
durability
	Locking
	Dirty operations
	Record names versus table names
	Activity concept and various access contexts
	Nested transactions
	Pattern matching
	Iteration

 Transaction Properties

Transactions are important when designing fault-tolerant, distributed systems. A
Mnesia transaction is a mechanism by which a series of database operations can
be executed as one functional block. The functional block that is run as a
transaction is called a Functional Object (Fun), and this code can read, write,
and delete Mnesia records. The Fun is evaluated as a transaction that either
commits or terminates. If a transaction succeeds in executing the Fun, it
replicates the action on all nodes involved, or terminates if an error occurs.
The following example shows a transaction that raises the salary of certain
employee numbers:
raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read(employee, Eno, write),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 mnesia:write(New)
 end,
 mnesia:transaction(F).
The function raise/2 contains a Fun made up of four code lines. This Fun is
called by the statement mnesia:transaction(F) and returns a value.
The Mnesia transaction system facilitates the construction of reliable,
distributed systems by providing the following important properties:
	The transaction handler ensures that a Fun, which is placed inside a
transaction, does not interfere with operations embedded in other transactions
when it executes a series of operations on tables.
	The transaction handler ensures that either all operations in the transaction
are performed successfully on all nodes atomically, or the transaction fails
without permanent effect on any node.
	The Mnesia transactions have four important properties, called Atomicity,
Consistency, Isolation, and Durability (ACID). These properties are
described in the following sections.

 Atomicity

Atomicity means that database changes that are executed by a transaction take
effect on all nodes involved, or on none of the nodes. That is, the transaction
either succeeds entirely, or it fails entirely.
Atomicity is important when it is needed to write atomically more than one
record in the same transaction. The function raise/2, shown in the previous
example, writes one record only. The function insert_emp/3, shown in the
program listing in Getting Started, writes
the record employee as well as employee relations, such as at_dep and
in_proj, into the database. If this latter code is run inside a transaction,
the transaction handler ensures that the transaction either succeeds completely,
or not at all.
Mnesia is a distributed DBMS where data can be replicated on several nodes. In
many applications, it is important that a series of write operations are
performed atomically inside a transaction. The atomicity property ensures that a
transaction takes effect on all nodes, or none.

 Consistency

The consistency property ensures that a transaction always leaves the DBMS in a
consistent state. For example, Mnesia ensures that no inconsistencies occur if
Erlang, Mnesia, or the computer crashes while a write operation is in
progress.

 Isolation

The isolation property ensures that transactions that execute on different nodes
in a network, and access and manipulate the same data records, do not interfere
with each other. The isolation property makes it possible to execute the
function raise/2 concurrently. A classical problem in concurrency control
theory is the "lost update problem".
The isolation property is in particular useful if the following circumstances
occur where an employee (with employee number 123) and two processes (P1 and P2)
are concurrently trying to raise the salary for the employee:
	Step 1: The initial value of the employees salary is, for example, 5.
Process P1 starts to execute, reads the employee record, and adds 2 to the
salary.
	Step 2: Process P1 is for some reason pre-empted and process P2 has the
opportunity to run.
	Step 3: Process P2 reads the record, adds 3 to the salary, and finally
writes a new employee record with the salary set to 8.
	Step 4: Process P1 starts to run again and writes its employee record with
salary set to 7, thus effectively overwriting and undoing the work performed
by process P2. The update performed by P2 is lost.

A transaction system makes it possible to execute two or more processes
concurrently that manipulate the same record. The programmer does not need to
check that the updates are synchronous; this is overseen by the transaction
handler. All programs accessing the database through the transaction system can
be written as if they had sole access to the data.

 Durability

The durability property ensures that changes made to the DBMS by a transaction
are permanent. Once a transaction is committed, all changes made to the database
are durable, that is, they are written safely to disc and do not become
corrupted and do not disappear.
Note
The described durability feature does not entirely apply to situations where
Mnesia is configured as a "pure" primary memory database.

 Locking

Different transaction managers employ different strategies to satisfy the
isolation property. Mnesia uses the standard technique of two phase locking.
That is, locks are set on records before they are read or written. Mnesia uses
the following lock types:
	Read locks. A read lock is set on one replica of a record before it can be
read.
	Write locks. Whenever a transaction writes to a record, write locks are
first set on all replicas of that particular record.
	Read table locks. If a transaction traverses an entire table in search for a
record that satisfies some particular property, it is most inefficient to set
read locks on the records one by one. It is also memory consuming, as the read
locks themselves can take up considerable space if the table is large.
Therefore, Mnesia can set a read lock on an entire table.
	Write table locks. If a transaction writes many records to one table, a
write lock can be set on the entire table.
	Sticky locks. These are write locks that stay in place at a node after the
transaction that initiated the lock has terminated.

Mnesia employs a strategy whereby functions, such as mnesia:read/1 acquire
the necessary locks dynamically as the transactions execute. Mnesia
automatically sets and releases the locks and the programmer does not need to
code these operations.
Deadlocks can occur when concurrent processes set and release locks on the same
records. Mnesia employs a "wait-die" strategy to resolve these situations. If
Mnesia suspects that a deadlock can occur when a transaction tries to set a
lock, the transaction is forced to release all its locks and sleep for a while.
The Fun in the transaction is evaluated once more.
It is therefore important that the code inside the Fun given to
mnesia:transaction/1 is pure. Some strange results can occur if, for example,
messages are sent by the transaction Fun. The following example illustrates this
situation:
bad_raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read({employee, Eno}),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 io:format("Trying to write ... ~n", []),
 mnesia:write(New)
 end,
 mnesia:transaction(F).
This transaction can write the text "Trying to write ... " 1000 times to the
terminal. However, Mnesia guarantees that each transaction will eventually
run. As a result, Mnesia is not only deadlock free, but also livelock free.
The Mnesia programmer cannot prioritize one particular transaction to execute
before other transactions that are waiting to execute. As a result, the Mnesia
DBMS transaction system is not suitable for hard real-time applications.
However, Mnesia contains other features that have real-time properties.
Mnesia dynamically sets and releases locks as transactions execute. It is
therefore dangerous to execute code with transaction side-effects. In
particular, a receive statement inside a transaction can lead to a situation
where the transaction hangs and never returns, which in turn can cause locks not
to release. This situation can bring the whole system to a standstill, as other
transactions that execute in other processes, or on other nodes, are forced to
wait for the defective transaction.
If a transaction terminates abnormally, Mnesia automatically releases the
locks held by the transaction.
Up to now, examples of a number of functions that can be used inside a
transaction have been shown. The following list shows the simplest Mnesia
functions that work with transactions. Notice that these functions must be
embedded in a transaction. If no enclosing transaction (or other enclosing
Mnesia activity) exists, they all fail.
	mnesia:transaction(Fun) -> {aborted, Reason} | {atomic, Value}
executes one transaction with the functional object Fun as the single
parameter.

	mnesia:read({Tab, Key}) -> transaction abort | RecordList
reads all records with Key as key from table Tab. This function has the
same semantics regardless of the location of Table. If the table is of type
bag, read({Tab, Key}) can return an arbitrarily long list. If the table is
of type set, the list is either of length one or [].

	mnesia:wread({Tab, Key}) -> transaction abort | RecordList
behaves the same way as the previously listed function read/1, except that
it acquires a write lock instead of a read lock. To execute a transaction that
reads a record, modifies the record, and then writes the record, it is
slightly more efficient to set the write lock immediately. When a
mnesia:read/1 is issued, followed by a mnesia:write/1 the first read lock
must be upgraded to a write lock when the write operation is executed.

	mnesia:write(Record) -> transaction abort | ok writes a
record into the database. Argument Record is an instance of a record. The
function returns ok, or terminates the transaction if an error occurs.

	mnesia:delete({Tab, Key}) -> transaction abort | ok
deletes all records with the given key.

	mnesia:delete_object(Record) -> transaction abort | ok
deletes records with the OID Record. Use this function to delete only some
records in a table of type bag.

 Sticky Locks

As previously stated, the locking strategy used by Mnesia is to lock one
record when reading a record, and lock all replicas of a record when writing a
record. However, some applications use Mnesia mainly for its fault-tolerant
qualities. These applications can be configured with one node doing all the
heavy work, and a standby node that is ready to take over if the main node
fails. Such applications can benefit from using sticky locks instead of the
normal locking scheme.
A sticky lock is a lock that stays in place at a node, after the transaction
that first acquired the lock has terminated. To illustrate this, assume that the
following transaction is executed:
F = fun() ->
 mnesia:write(#foo{a = kalle})
 end,
mnesia:transaction(F).
The foo table is replicated on the two nodes N1 and N2.
Normal locking requires the following:
	One network RPC (two messages) to acquire the write lock
	Three network messages to execute the two-phase commit protocol

If sticky locks are used, the code must first be changed as follows:
F = fun() ->
 mnesia:s_write(#foo{a = kalle})
 end,
mnesia:transaction(F).
This code uses the function s_write/1 instead of the
function write/1 The function s_write/1 sets a sticky lock
instead of a normal lock. If the table is not replicated, sticky locks have no
special effect. If the table is replicated, and a sticky lock is set on node
N1, this lock then sticks to node N1. The next time you try to set a sticky
lock on the same record at node N1, Mnesia detects that the lock is already
set and do no network operation to acquire the lock.
It is more efficient to set a local lock than it is to set a networked lock.
Sticky locks can therefore benefit an application that uses a replicated table
and perform most of the work on only one of the nodes.
If a record is stuck at node N1 and you try to set a sticky lock for the
record on node N2, the record must be unstuck. This operation is expensive and
reduces performance. The unsticking is done automatically if you issue
s_write/1 requests at N2.

 Table Locks

Mnesia supports read and write locks on whole tables as a complement to the
normal locks on single records. As previously stated, Mnesia sets and releases
locks automatically, and the programmer does not need to code these operations.
However, transactions that read and write many records in a specific table
execute more efficiently if the transaction is started by setting a table lock
on this table. This blocks other concurrent transactions from the table. The
following two functions are used to set explicit table locks for read and write
operations:
	mnesia:read_lock_table(Tab) sets a read lock on
table Tab.
	mnesia:write_lock_table(Tab) sets a write lock
on table Tab.

Alternative syntax for acquisition of table locks is as follows:
mnesia:lock({table, Tab}, read)
mnesia:lock({table, Tab}, write)
The matching operations in Mnesia can either lock the entire table or only a
single record (when the key is bound in the pattern).

 Global Locks

Write locks are normally acquired on all nodes where a replica of the table
resides (and is active). Read locks are acquired on one node (the local one if a
local replica exists).
The function mnesia:lock/2 is intended to support table locks (as mentioned
previously) but also for situations when locks need to be acquired regardless of
how tables have been replicated:
mnesia:lock({global, GlobalKey, Nodes}, LockKind)

LockKind ::= read | write | ...
The lock is acquired on LockItem on all nodes in the node list.

 Dirty Operations

In many applications, the overhead of processing a transaction can result in a
loss of performance. Dirty operation are short cuts that bypass much of the
processing and increase the speed of the transaction.
Dirty operation are often useful, for example, in a datagram routing application
where Mnesia stores the routing table, and it is time consuming to start a
whole transaction every time a packet is received. Mnesia has therefore
functions that manipulate tables without using transactions. This alternative to
processing is known as a dirty operation. However, notice the trade-off in
avoiding the overhead of transaction processing:
	The atomicity and the isolation properties of Mnesia are lost.
	The isolation property is compromised, because other Erlang processes, which
use transaction to manipulate the data, do not get the benefit of isolation if
dirty operations simultaneously are used to read and write records from the
same table.

The major advantage of dirty operations is that they execute much faster than
equivalent operations that are processed as functional objects within a
transaction.
Dirty operations are written to disc if they are performed on a table of type
disc_copies or type disc_only_copies. Mnesia also ensures that all
replicas of a table are updated if a dirty write operation is performed on a
table.
A dirty operation ensures a certain level of consistency. For example, dirty
operations cannot return garbled records. Hence, each individual read or write
operation is performed in an atomic manner.
All dirty functions execute a call to exit({aborted, Reason}) on
failure. Even if the following functions are executed inside a transaction no
locks are acquired. The following functions are available:
	mnesia:dirty_read({Tab, Key}) reads one or more
records from Mnesia.

	mnesia:dirty_write(Record) writes the record
Record.

	mnesia:dirty_delete({Tab, Key}) deletes one or
more records with key Key.

	mnesia:dirty_delete_object(Record) is the
dirty operation alternative to the function
delete_object/1.

	mnesia:dirty_first(Tab) returns the "first" key in
table Tab.
Records in set or bag tables are not sorted. However, there is a record
order that is unknown to the user. This means that a table can be traversed by
this function with the function mnesia:dirty_next/2.
If there are no records in the table, this function returns the atom
'$end_of_table'. It is not recommended to use this atom as the key for any
user records.

	mnesia:dirty_next(Tab, Key) returns the "next" key in
table Tab. This function makes it possible to traverse a table and perform
some operation on all records in the table. When the end of the table is
reached, the special key '$end_of_table' is returned. Otherwise, the
function returns a key that can be used to read the actual record.
The behavior is undefined if any process performs a write operation on the
table while traversing the table with the function
dirty_next/2 This is because write operations on a
Mnesia table can lead to internal reorganizations of the table itself. This
is an implementation detail, but remember that the dirty functions are
low-level functions.

	mnesia:dirty_last(Tab) works exactly like
mnesia:dirty_first/1 but returns the last object in Erlang term order for
the table type ordered_set. For all other table types,
mnesia:dirty_first/1 and mnesia:dirty_last/1 are synonyms.

	mnesia:dirty_prev(Tab, Key) works exactly like
mnesia:dirty_next/2 but returns the previous object in Erlang term order for
the table type ordered_set. For all other table types, mnesia:dirty_next/2
and mnesia:dirty_prev/2 are synonyms.

	The behavior of this function is undefined if the table is written on while
being traversed. The function
mnesia:read_lock_table(Tab) can be used to
ensure that no transaction-protected writes are performed during the
iteration.

	mnesia:dirty_update_counter({Tab, Key}, Val).
Counters are positive integers with a value greater than or equal to zero.
Updating a counter adds Val and the counter where Val is a positive or
negative integer.
Mnesia has no special counter records. However, records of the form
{TabName, Key, Integer} can be used as counters, and can be persistent.
Transaction-protected updates of counter records are not possible.
There are two significant differences when using this function instead of
reading the record, performing the arithmetic, and writing the record:
	It is much more efficient.
	The function dirty_update_counter/2 is
performed as an atomic operation although it is not protected by a
transaction. Therefore no table update is lost if two processes
simultaneously execute the function dirty_update_counter/2.

	mnesia:dirty_match_object(Pat) is the dirty
equivalent of mnesia:match_object/1.

	mnesia:dirty_select(Tab, Pat) is the dirty
equivalent of mnesia:select/2.

	mnesia:dirty_index_match_object(Pat, Pos)
is the dirty equivalent of mnesia:index_match_object/2.

	mnesia:dirty_index_read(Tab, SecondaryKey, Pos)
is the dirty equivalent of mnesia:index_read/3.

	mnesia:dirty_all_keys(Tab) is the dirty
equivalent of mnesia:all_keys/1.

 Record Names versus Table Names

In Mnesia, all records in a table must have the same name. All the records
must be instances of the same record type. The record name, however, does not
necessarily have to be the same as the table name, although this is the case in
most of the examples in this User's Guide. If a table is created without
property record_name, the following code ensures that all records in the
tables have the same name as the table:
mnesia:create_table(subscriber, [])
However, if the table is created with an explicit record name as argument, as
shown in the following example, subscriber records can be stored in both of the
tables regardless of the table names:
TabDef = [{record_name, subscriber}],
mnesia:create_table(my_subscriber, TabDef),
mnesia:create_table(your_subscriber, TabDef).
To access such tables, simplified access functions (as described earlier) cannot
be used. For example, writing a subscriber record into a table requires the
function mnesia:write/3 instead of the simplified functions mnesia:write/1
and mnesia:s_write/1:
mnesia:write(subscriber, #subscriber{}, write)
mnesia:write(my_subscriber, #subscriber{}, sticky_write)
mnesia:write(your_subscriber, #subscriber{}, write)
The following simple code illustrates the relationship between the simplified
access functions used in most of the examples and their more flexible
counterparts:
mnesia:dirty_write(Record) ->
 Tab = element(1, Record),
 mnesia:dirty_write(Tab, Record).

mnesia:dirty_delete({Tab, Key}) ->
 mnesia:dirty_delete(Tab, Key).

mnesia:dirty_delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:dirty_delete_object(Tab, Record)

mnesia:dirty_update_counter({Tab, Key}, Incr) ->
 mnesia:dirty_update_counter(Tab, Key, Incr).

mnesia:dirty_read({Tab, Key}) ->
 Tab = element(1, Record),
 mnesia:dirty_read(Tab, Key).

mnesia:dirty_match_object(Pattern) ->
 Tab = element(1, Pattern),
 mnesia:dirty_match_object(Tab, Pattern).

mnesia:dirty_index_match_object(Pattern, Attr)
 Tab = element(1, Pattern),
 mnesia:dirty_index_match_object(Tab, Pattern, Attr).

mnesia:write(Record) ->
 Tab = element(1, Record),
 mnesia:write(Tab, Record, write).

mnesia:s_write(Record) ->
 Tab = element(1, Record),
 mnesia:write(Tab, Record, sticky_write).

mnesia:delete({Tab, Key}) ->
 mnesia:delete(Tab, Key, write).

mnesia:s_delete({Tab, Key}) ->
 mnesia:delete(Tab, Key, sticky_write).

mnesia:delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:delete_object(Tab, Record, write).

mnesia:s_delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:delete_object(Tab, Record, sticky_write).

mnesia:read({Tab, Key}) ->
 mnesia:read(Tab, Key, read).

mnesia:wread({Tab, Key}) ->
 mnesia:read(Tab, Key, write).

mnesia:match_object(Pattern) ->
 Tab = element(1, Pattern),
 mnesia:match_object(Tab, Pattern, read).

mnesia:index_match_object(Pattern, Attr) ->
 Tab = element(1, Pattern),
 mnesia:index_match_object(Tab, Pattern, Attr, read).

 Activity Concept and Various Access Contexts

As previously described, a Functional Object (Fun) performing table access
operations, as listed here, can be passed on as arguments to the function
mnesia:transaction/1,2,3:
	mnesia:write/3 (write/1, s_write/1)
	mnesia:delete/3 (mnesia:delete/1, mnesia:s_delete/1)
	mnesia:delete_object/3 (mnesia:delete_object/1,
mnesia:s_delete_object/1)
	mnesia:read/3 (mnesia:read/1, mnesia:wread/1)
	mnesia:match_object/2 (mnesia:match_object/1)
	mnesia:select/3 (mnesia:select/2)
	mnesia:foldl/3 (mnesia:foldl/4, mnesia:foldr/3, mnesia:foldr/4)
	mnesia:all_keys/1
	mnesia:index_match_object/4 (mnesia:index_match_object/2)
	mnesia:index_read/3
	mnesia:lock/2 (mnesia:read_lock_table/1, mnesia:write_lock_table/1)
	mnesia:table_info/2

These functions are performed in a transaction context involving mechanisms,
such as locking, logging, replication, checkpoints, subscriptions, and commit
protocols. However, the same function can also be evaluated in other activity
contexts.
The following activity access contexts are currently supported:
	transaction
	sync_transaction
	async_dirty
	sync_dirty
	ets

By passing the same "fun" as argument to the function
mnesia:sync_transaction(Fun [, Args]) it is
performed in synced transaction context. Synced transactions wait until all
active replicas has committed the transaction (to disc) before returning from
the mnesia:sync_transaction call. Using sync_transaction is useful in the
following cases:
	When an application executes on several nodes and wants to be sure that the
update is performed on the remote nodes before a remote process is spawned or
a message is sent to a remote process.
	When a combining transaction writes with "dirty reads", that is, the functions
dirty_match_object, dirty_read, dirty_index_read, dirty_select, and so
on.
	When an application performs frequent or voluminous updates that can overload
Mnesia on other nodes.

By passing the same "fun" as argument to the function mnesia:async_dirty(Fun [, Args]), it is performed in dirty context. The
function calls are mapped to the corresponding dirty functions. This still
involves logging, replication, and subscriptions but no locking, local
transaction storage, or commit protocols are involved. Checkpoint retainers are
updated but updated "dirty". Thus, they are updated asynchronously. The
functions wait for the operation to be performed on one node but not the others.
If the table resides locally, no waiting occurs.
By passing the same "fun" as an argument to the function mnesia:sync_dirty(Fun [, Args]), it is performed in almost the same context
as the function mnesia:async_dirty/1,2. The difference
is that the operations are performed synchronously. The caller waits for the
updates to be performed on all active replicas. Using mnesia:sync_dirty/1,2 is
useful in the following cases:
	When an application executes on several nodes and wants to be sure that the
update is performed on the remote nodes before a remote process is spawned or
a message is sent to a remote process.
	When an application performs frequent or voluminous updates that can overload
Mnesia on the nodes.

To check if your code is executed within a transaction, use the function
mnesia:is_transaction/0. It returns true when called inside a transaction
context, otherwise false.
Mnesia tables with storage type RAM_copies and disc_copies are implemented
internally as ets tables. Applications can access the these tables directly.
This is only recommended if all options have been weighed and the possible
outcomes are understood. By passing the earlier mentioned "fun" to the function
mnesia:ets(Fun [, Args]), it is performed but in a raw
context. The operations are performed directly on the local ets tables,
assuming that the local storage type is RAM_copies and that the table is not
replicated on other nodes.
Subscriptions are not triggered and no checkpoints are updated, but this
operation is blindingly fast. Disc resident tables are not to be updated with
the ets function, as the disc is not updated.
The Fun can also be passed as an argument to the function
mnesia:activity/2,3,4, which enables use of customized
activity access callback modules. It can either be obtained directly by stating
the module name as argument, or implicitly by use of configuration parameter
access_module. A customized callback module can be used for several purposes,
such as providing triggers, integrity constraints, runtime statistics, or
virtual tables.
The callback module does not have to access real Mnesia tables, it is free to
do whatever it wants as long as the callback interface is fulfilled.
Appendix B, Activity Access Callback Interface provides the
source code, mnesia_frag.erl, for one alternative implementation. The
context-sensitive function mnesia:table_info/2 can be used to provide virtual
information about a table. One use of this is to perform QLC queries within an
activity context with a customized callback module. By providing table
information about table indexes and other QLC requirements, QLC can be used
as a generic query language to access virtual tables.
QLC queries can be performed in all these activity contexts (transaction,
sync_transaction, async_dirty, sync_dirty, and ets). The ets activity
only works if the table has no indexes.
Note
The function mnesia:dirty_* always executes with async_dirty semantics
regardless of which activity access contexts that are started. It can even
start contexts without any enclosing activity access context.

 Nested Transactions

Transactions can be nested in an arbitrary fashion. A child transaction must run
in the same process as its parent. When a child transaction terminates, the
caller of the child transaction gets return value {aborted, Reason} and any
work performed by the child is erased. If a child transaction commits, the
records written by the child are propagated to the parent.
No locks are released when child transactions terminate. Locks created by a
sequence of nested transactions are kept until the topmost transaction
terminates. Furthermore, any update performed by a nested transaction is only
propagated in such a manner so that the parent of the nested transaction sees
the updates. No final commitment is done until the top-level transaction
terminates. So, although a nested transaction returns {atomic, Val}, if the
enclosing parent transaction terminates, the entire nested operation terminates.
The ability to have nested transaction with identical semantics as top-level
transaction makes it easier to write library functions that manipulate Mnesia
tables.
Consider a function that adds a subscriber to a telephony system:
add_subscriber(S) ->
 mnesia:transaction(fun() ->
 case mnesia:read(..........
This function needs to be called as a transaction. Assume that you wish to write
a function that both calls the function add_subscriber/1 and is in itself
protected by the context of a transaction. By calling add_subscriber/1 from
within another transaction, a nested transaction is created.
Also, different activity access contexts can be mixed while nesting. However,
the dirty ones (async_dirty, sync_dirty, and ets) inherit the transaction
semantics if they are called inside a transaction and thus grab locks and use
two or three phase commit.
Example:
add_subscriber(S) ->
 mnesia:transaction(fun() ->
 %% Transaction context
 mnesia:read({some_tab, some_data}),
 mnesia:sync_dirty(fun() ->
 %% Still in a transaction context.
 case mnesia:read(..) ..end), end).
add_subscriber2(S) ->
 mnesia:sync_dirty(fun() ->
 %% In dirty context
 mnesia:read({some_tab, some_data}),
 mnesia:transaction(fun() ->
 %% In a transaction context.
 case mnesia:read(..) ..end), end).

 Pattern Matching

When the function mnesia:read/3 cannot be used, Mnesia provides the
programmer with several functions for matching records against a pattern. The
most useful ones are the following:
mnesia:select(Tab, MatchSpecification, LockKind) ->
 transaction abort | [ObjectList]
mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->
 transaction abort | {[Object],Continuation} | '$end_of_table'
mnesia:select(Cont) ->
 transaction abort | {[Object],Continuation} | '$end_of_table'
mnesia:match_object(Tab, Pattern, LockKind) ->
 transaction abort | RecordList
These functions match a Pattern against all records in table Tab. In a
mnesia:select call, Pattern is a part of
MatchSpecification described in the following. It is not necessarily performed
as an exhaustive search of the entire table. By using indexes and bound values
in the key of the pattern, the actual work done by the function can be condensed
into a few hash lookups. Using ordered_set tables can reduce the search space
if the keys are partially bound.
The pattern provided to the functions must be a valid record, and the first
element of the provided tuple must be the record_name of the table. The
special element '_' matches any data structure in Erlang (also known as an
Erlang term). The special elements '$<number>' behave as Erlang variables,
that is, they match anything, bind the first occurrence, and match the coming
occurrences of that variable against the bound value.
Use function mnesia:table_info(Tab, wild_pattern) to
obtain a basic pattern, which matches all records in a table, or use the default
value in record creation. Do not make the pattern hard-coded, as this makes the
code more vulnerable to future changes of the record definition.
Example:
Wildpattern = mnesia:table_info(employee, wild_pattern),
%% Or use
Wildpattern = #employee{_ = '_'},
For the employee table, the wild pattern looks as follows:
{employee, '_', '_', '_', '_', '_',' _'}.
To constrain the match, it is needed to replace some of the '_' elements. The
code for matching out all female employees looks as follows:
Pat = #employee{sex = female, _ = '_'},
F = fun() -> mnesia:match_object(Pat) end,
Females = mnesia:transaction(F).
The match function can also be used to check the equality of different
attributes. For example, to find all employees with an employee number equal to
their room number:
Pat = #employee{emp_no = '$1', room_no = '$1', _ = '_'},
F = fun() -> mnesia:match_object(Pat) end,
Odd = mnesia:transaction(F).
The function mnesia:match_object/3 lacks some important features that
mnesia:select/3 have. For example, mnesia:match_object/3
can only return the matching records, and it cannot express constraints other
than equality. To find the names of the male employees on the second floor:
MatchHead = #employee{name='$1', sex=male, room_no={'$2', '_'}, _='_'},
Guard = [{'>=', '$2', 220},{'<', '$2', 230}],
Result = '$1',
mnesia:select(employee,[{MatchHead, Guard, [Result]}])
The function select can be used to add more constraints and create output that
cannot be done with mnesia:match_object/3.
The second argument to select is a MatchSpecification. A
MatchSpecification is a list of MatchFunctions, where each MatchFunction
consists of a tuple containing {MatchHead, MatchCondition, MatchBody}:
	MatchHead is the same pattern as used in mnesia:match_object/3 described
earlier.
	MatchCondition is a list of extra constraints applied to each record.
	MatchBody constructs the return values.

For details about the match specifications, see "Match Specifications in Erlang"
in ERTS User's Guide. For more information, see the
ets and dets manual pages in STDLIB.
The functions select/4 and select/1
are used to get a limited number of results, where Continuation gets the next
chunk of results. Mnesia uses NObjects as a recommendation only. Thus, more
or less results than specified with NObjects can be returned in the result
list, even the empty list can be returned even if there are more results to
collect.
Warning
There is a severe performance penalty in using mnesia:select/1,2,3,4 after
any modifying operation is done on that table in the same transaction. That
is, avoid using mnesia:write/1 or mnesia:delete/1 before mnesia:select
in the same transaction.
If the key attribute is bound in a pattern, the match operation is efficient.
However, if the key attribute in a pattern is given as '_' or '$1', the
whole employee table must be searched for records that match. Hence if the
table is large, this can become a time-consuming operation, but it can be
remedied with indexes (see Indexing) if the function
mnesia:match_object is used.
QLC queries can also be used to search Mnesia tables. By using the function
mnesia:table/1,2 as the generator inside a QLC query, you
let the query operate on a Mnesia table. Mnesia-specific options to
mnesia:table/2 are {lock, Lock}, {n_objects, Integer}, and
{traverse, SelMethod}:
	lock specifies whether Mnesia is to acquire a read or write lock on the
table.
	n_objects specifies how many results are to be returned in each chunk to
QLC.
	traverse specifies which function Mnesia is to use to traverse the table.
Default select is used, but by using
{traverse, {select, MatchSpecification}} as an option to
mnesia:table/2 the user can specify its own view of the
table.

If no options are specified, a read lock is acquired, 100 results are returned
in each chunk, and select is used to traverse the table, that is:
mnesia:table(Tab) ->
 mnesia:table(Tab, [{n_objects, 100},{lock, read}, {traverse, select}]).
The function mnesia:all_keys(Tab) returns all keys in a
table.

 Iteration

Mnesia provides the following functions that iterate over all the records in a
table:
mnesia:foldl(Fun, Acc0, Tab) -> NewAcc | transaction abort
mnesia:foldr(Fun, Acc0, Tab) -> NewAcc | transaction abort
mnesia:foldl(Fun, Acc0, Tab, LockType) -> NewAcc | transaction abort
mnesia:foldr(Fun, Acc0, Tab, LockType) -> NewAcc | transaction abort
These functions iterate over the Mnesia table Tab and apply the function
Fun to each record. Fun takes two arguments, the first is a record from the
table, and the second is the accumulator. Fun returns a new accumulator.
The first time Fun is applied, Acc0 is the second argument. The next time
Fun is called, the return value from the previous call is used as the second
argument. The term the last call to Fun returns is the return value of the
function mnesia:foldl/3 or mnesia:foldr/3.
The difference between these functions is the order the table is accessed for
ordered_set tables. For other table types the functions are equivalent.
LockType specifies what type of lock that is to be acquired for the iteration,
default is read. If records are written or deleted during the iteration, a
write lock is to be acquired.
These functions can be used to find records in a table when it is impossible to
write constraints for the function mnesia:match_object/3, or when you want to
perform some action on certain records.
For example, finding all the employees who have a salary less than 10 can look
as follows:
find_low_salaries() ->
 Constraint =
 fun(Emp, Acc) when Emp#employee.salary < 10 ->
 [Emp | Acc];
 (_, Acc) ->
 Acc
 end,
 Find = fun() -> mnesia:foldl(Constraint, [], employee) end,
 mnesia:transaction(Find).
To raise the salary to 10 for everyone with a salary less than 10 and return the
sum of all raises:
increase_low_salaries() ->
 Increase =
 fun(Emp, Acc) when Emp#employee.salary < 10 ->
 OldS = Emp#employee.salary,
 ok = mnesia:write(Emp#employee{salary = 10}),
 Acc + 10 - OldS;
 (_, Acc) ->
 Acc
 end,
 IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
 mnesia:transaction(IncLow).
Many nice things can be done with the iterator functions but take some caution
about performance and memory use for large tables.
Call these iteration functions on nodes that contain a replica of the table.
Each call to the function Fun access the table and if the table resides on
another node it generates much unnecessary network traffic.
Mnesia also provides some functions that make it possible for the user to
iterate over the table. The order of the iteration is unspecified if the table
is not of type ordered_set:
mnesia:first(Tab) -> Key | transaction abort
mnesia:last(Tab) -> Key | transaction abort
mnesia:next(Tab,Key) -> Key | transaction abort
mnesia:prev(Tab,Key) -> Key | transaction abort
mnesia:snmp_get_next_index(Tab,Index) -> {ok, NextIndex} | endOfTable
The order of first/last and next/prev is only valid for ordered_set
tables, they are synonyms for other tables. When the end of the table is
reached, the special key '$end_of_table' is returned.
If records are written and deleted during the traversal, use the function
mnesia:foldl/3 or mnesia:foldr/3 with a write lock. Or the function
mnesia:write_lock_table/1 when using first and next.
Writing or deleting in transaction context creates a local copy of each modified
record. Thus, modifying each record in a large table uses much memory. Mnesia
compensates for every written or deleted record during the iteration in a
transaction context, which can reduce the performance. If possible, avoid
writing or deleting records in the same transaction before iterating over the
table.
In dirty context, that is, sync_dirty or async_dirty, the modified records
are not stored in a local copy; instead, each record is updated separately. This
generates much network traffic if the table has a replica on another node and
has all the other drawbacks that dirty operations have. Especially for commands
mnesia:first/1 and mnesia:next/2, the same drawbacks as described previously
for mnesia:dirty_first/1 and mnesia:dirty_next/2 applies, that is, no
writing to the table is to be done during iteration.

Miscellaneous Mnesia Features

The previous sections describe how to get started with Mnesia and how to build
a Mnesia database. This section describes the more advanced features available
when building a distributed, fault-tolerant Mnesia database. The following
topics are included:
	Indexing
	Distribution and fault tolerance
	Table fragmentation
	Local content tables
	Disc-less nodes
	More about schema management
	Mnesia event handling
	Debugging Mnesia applications
	Concurrent processes in Mnesia
	Prototyping
	Object-based programming with Mnesia

 Indexing

Data retrieval and matching can be performed efficiently if the key for the
record is known. Conversely, if the key is unknown, all records in a table must
be searched. The larger the table, the more time consuming it becomes. To remedy
this problem, Mnesia indexing capabilities are used to improve data retrieval
and matching of records.
The following two functions manipulate indexes on existing tables:
	mnesia:add_table_index(Tab, AttributeName) -> {aborted, R} | {atomic, ok}

	mnesia:del_table_index(Tab, AttributeName) -> {aborted, R} | {atomic, ok}

These functions create or delete a table index on a field defined by
AttributeName. To illustrate this, add an index to the table definition
(employee, {emp_no, name, salary, sex, phone, room_no}), which is the example
table from the Company database. The function that adds an index on element
salary can be expressed as mnesia:add_table_index(employee, salary).
The indexing capabilities of Mnesia are used with the following three
functions, which retrieve and match records based on index entries in the
database:
	mnesia:index_read(Tab, SecondaryKey, AttributeName) -> transaction abort | RecordList
avoids an exhaustive search of the entire table, by looking up SecondaryKey
in the index to find the primary keys.

	mnesia:index_match_object(Pattern, AttributeName) -> transaction abort | RecordList
avoids an exhaustive search of the entire table, by looking up the secondary
key in the index to find the primary keys. The secondary key is found in field
AttributeName of Pattern. The secondary key must be bound.

	mnesia:match_object(Pattern) -> transaction abort | RecordList
uses indexes to avoid exhaustive search of the entire table. Unlike the
previous functions, this function can use any index as long as the secondary
key is bound.

These functions are further described and exemplified in
Pattern Matching.

 Distribution and Fault Tolerance

Mnesia is a distributed, fault-tolerant DBMS. Tables can be replicated on
different Erlang nodes in various ways. The Mnesia programmer does not need to
state where the different tables reside, only the names of the different tables
need to be specified in the program code. This is known as "location
transparency" and is an important concept. In particular:
	A program works regardless of the data location. It makes no difference
whether the data resides on the local node or on a remote node.
Notice that the program runs slower if the data is located on a remote node.

	The database can be reconfigured, and tables can be moved between nodes. These
operations do not affect the user programs.

It has previously been shown that each table has a number of system attributes,
such as index and type.
Table attributes are specified when the table is created. For example, the
following function creates a table with two RAM replicas:
mnesia:create_table(foo,
 [{ram_copies, [N1, N2]},
 {attributes, record_info(fields, foo)}]).
Tables can also have the following properties, where each attribute has a list
of Erlang nodes as its value:
	ram_copies. The value of the node list is a list of Erlang nodes, and a RAM
replica of the table resides on each node in the list.
Notice that no disc operations are performed when a program executes write
operations to these replicas. However, if permanent RAM replicas are required,
the following alternatives are available:
	The function mnesia:dump_tables/1 can be used to dump RAM table replicas
to disc.
	The table replicas can be backed up, either from RAM, or from disc if
dumped there with this function.

	disc_copies. The value of the attribute is a list of Erlang nodes, and a
replica of the table resides both in RAM and on disc on each node in the list.
Write operations addressed to the table address both the RAM and the disc copy
of the table.

	disc_only_copies. The value of the attribute is a list of Erlang nodes, and
a replica of the table resides only as a disc copy on each node in the list.
The major disadvantage of this type of table replica is the access speed. The
major advantage is that the table does not occupy space in memory.

In addition, table properties can be set and changed. For details, see
Define a Schema.
There are basically two reasons for using more than one table replica: fault
tolerance and speed. Notice that table replication provides a solution to both
of these system requirements.
If there are two active table replicas, all information is still available if
one replica fails. This can be an important property in many applications.
Furthermore, if a table replica exists at two specific nodes, applications that
execute at either of these nodes can read data from the table without accessing
the network. Network operations are considerably slower and consume more
resources than local operations.
It can be advantageous to create table replicas for a distributed application
that reads data often, but writes data seldom, to achieve fast read operations
on the local node. The major disadvantage with replication is the increased time
to write data. If a table has two replicas, every write operation must access
both table replicas. Since one of these write operations must be a network
operation, it is considerably more expensive to perform a write operation to a
replicated table than to a non-replicated table.

 Table Fragmentation

 Concept

A concept of table fragmentation has been introduced to cope with large tables.
The idea is to split a table into several manageable fragments. Each fragment is
implemented as a first class Mnesia table and can be replicated, have indexes,
and so on, as any other table. But the tables cannot have local_content or
have the snmp connection activated.
To be able to access a record in a fragmented table, Mnesia must determine to
which fragment the actual record belongs. This is done by module mnesia_frag,
which implements the mnesia_access callback behavior. It is recommended to
read the documentation about the function mnesia:activity/4 to see how
mnesia_frag can be used as a mnesia_access callback module.
At each record access, mnesia_frag first computes a hash value from the record
key. Second, the name of the table fragment is determined from the hash value.
Finally the actual table access is performed by the same functions as for
non-fragmented tables. When the key is not known beforehand, all fragments are
searched for matching records.
Notice that in ordered_set tables, the records are ordered per fragment, and
the order is undefined in results returned by select and match_object, as
well as first, next, prev and last.
The following code illustrates how a Mnesia table is converted to be a
fragmented table and how more fragments are added later:
Eshell V4.7.3.3 (abort with ^G)
(a@sam)1> mnesia:start().
ok
(a@sam)2> mnesia:system_info(running_db_nodes).
[b@sam,c@sam,a@sam]
(a@sam)3> Tab = dictionary.
dictionary
(a@sam)4> mnesia:create_table(Tab, [{ram_copies, [a@sam, b@sam]}]).
{atomic,ok}
(a@sam)5> Write = fun(Keys) -> [mnesia:write({Tab,K,-K}) || K <- Keys], ok end.
#Fun<erl_eval>
(a@sam)6> mnesia:activity(sync_dirty, Write, [lists:seq(1, 256)], mnesia_frag).
ok
(a@sam)7> mnesia:change_table_frag(Tab, {activate, []}).
{atomic,ok}
(a@sam)8> mnesia:table_info(Tab, frag_properties).
[{base_table,dictionary},
 {foreign_key,undefined},
 {n_doubles,0},
 {n_fragments,1},
 {next_n_to_split,1},
 {node_pool,[a@sam,b@sam,c@sam]}]
(a@sam)9> Info = fun(Item) -> mnesia:table_info(Tab, Item) end.
#Fun<erl_eval>
(a@sam)10> Dist = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{c@sam,0},{a@sam,1},{b@sam,1}]
(a@sam)11> mnesia:change_table_frag(Tab, {add_frag, Dist}).
{atomic,ok}
(a@sam)12> Dist2 = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{b@sam,1},{c@sam,1},{a@sam,2}]
(a@sam)13> mnesia:change_table_frag(Tab, {add_frag, Dist2}).
{atomic,ok}
(a@sam)14> Dist3 = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{a@sam,2},{b@sam,2},{c@sam,2}]
(a@sam)15> mnesia:change_table_frag(Tab, {add_frag, Dist3}).
{atomic,ok}
(a@sam)16> Read = fun(Key) -> mnesia:read({Tab, Key}) end.
#Fun<erl_eval>
(a@sam)17> mnesia:activity(transaction, Read, [12], mnesia_frag).
[{dictionary,12,-12}]
(a@sam)18> mnesia:activity(sync_dirty, Info, [frag_size], mnesia_frag).
[{dictionary,64},
 {dictionary_frag2,64},
 {dictionary_frag3,64},
 {dictionary_frag4,64}]
(a@sam)19>

 Fragmentation Properties

The table property frag_properties can be read with the function
mnesia:table_info(Tab, frag_properties). The
fragmentation properties are a list of tagged tuples with arity 2. By default
the list is empty, but when it is non-empty it triggers Mnesia to regard the
table as fragmented. The fragmentation properties are as follows:
	{n_fragments, Int} - n_fragments regulates how many fragments that the
table currently has. This property can explicitly be set at table creation and
later be changed with {add_frag, NodesOrDist} or del_frag. n_fragments
defaults to 1.

	{node_pool, List} - The node pool contains a list of nodes and can
explicitly be set at table creation and later be changed with
{add_node, Node} or {del_node, Node}. At table creation Mnesia tries to
distribute the replicas of each fragment evenly over all the nodes in the node
pool. Hopefully all nodes end up with the same number of replicas. node_pool
defaults to the return value from the function
mnesia:system_info(db_nodes).

	{n_ram_copies, Int} - Regulates how many ram_copies replicas that each
fragment is to have. This property can explicitly be set at table creation.
Defaults is 0, but if n_disc_copies and n_disc_only_copies also are 0,
n_ram_copies defaults to 1.

	{n_disc_copies, Int} - Regulates how many disc_copies replicas that
each fragment is to have. This property can explicitly be set at table
creation. Default is 0.

	{n_disc_only_copies, Int} - Regulates how many disc_only_copies
replicas that each fragment is to have. This property can explicitly be set at
table creation. Defaults is 0.

	{foreign_key, ForeignKey} - ForeignKey can either be the atom
undefined or the tuple {ForeignTab, Attr}, where Attr denotes an
attribute that is to be interpreted as a key in another fragmented table named
ForeignTab. Mnesia ensures that the number of fragments in this table and
in the foreign table are always the same.
When fragments are added or deleted, Mnesia automatically propagates the
operation to all fragmented tables that have a foreign key referring to this
table. Instead of using the record key to determine which fragment to access,
the value of field Attr is used. This feature makes it possible to colocate
records automatically in different tables to the same node. foreign_key
defaults to undefined. However, if the foreign key is set to something else,
it causes the default values of the other fragmentation properties to be the
same values as the actual fragmentation properties of the foreign table.

	{hash_module, Atom} - Enables definition of an alternative hashing
scheme. The module must implement the mnesia_frag_hash callback behavior.
This property can explicitly be set at table creation. Default is
mnesia_frag_hash.

	{hash_state, Term} - Enables a table-specific parameterization of a
generic hash module. This property can explicitly be set at table creation.
Default is undefined.
Eshell V4.7.3.3 (abort with ^G)
(a@sam)1> mnesia:start().
ok
(a@sam)2> PrimProps = [{n_fragments, 7}, {node_pool, [node()]}].
[{n_fragments,7},{node_pool,[a@sam]}]
(a@sam)3> mnesia:create_table(prim_dict,
 [{frag_properties, PrimProps},
 {attributes,[prim_key,prim_val]}]).
{atomic,ok}
(a@sam)4> SecProps = [{foreign_key, {prim_dict, sec_val}}].
[{foreign_key,{prim_dict,sec_val}}]
(a@sam)5> mnesia:create_table(sec_dict,
 [{frag_properties, SecProps},
(a@sam)5> {attributes, [sec_key, sec_val]}]).
{atomic,ok}
(a@sam)6> Write = fun(Rec) -> mnesia:write(Rec) end.
#Fun<erl_eval>
(a@sam)7> PrimKey = 11.
11
(a@sam)8> SecKey = 42.
42
(a@sam)9> mnesia:activity(sync_dirty, Write,
 [{prim_dict, PrimKey, -11}], mnesia_frag).
ok
(a@sam)10> mnesia:activity(sync_dirty, Write,
 [{sec_dict, SecKey, PrimKey}], mnesia_frag).
ok
(a@sam)11> mnesia:change_table_frag(prim_dict, {add_frag, [node()]}).
{atomic,ok}
(a@sam)12> SecRead = fun(PrimKey, SecKey) ->
 mnesia:read({sec_dict, PrimKey}, SecKey, read) end.
#Fun<erl_eval>
(a@sam)13> mnesia:activity(transaction, SecRead,
 [PrimKey, SecKey], mnesia_frag).
[{sec_dict,42,11}]
(a@sam)14> Info = fun(Tab, Item) -> mnesia:table_info(Tab, Item) end.
#Fun<erl_eval>
(a@sam)15> mnesia:activity(sync_dirty, Info,
 [prim_dict, frag_size], mnesia_frag).
[{prim_dict,0},
 {prim_dict_frag2,0},
 {prim_dict_frag3,0},
 {prim_dict_frag4,1},
 {prim_dict_frag5,0},
 {prim_dict_frag6,0},
 {prim_dict_frag7,0},
 {prim_dict_frag8,0}]
(a@sam)16> mnesia:activity(sync_dirty, Info,
 [sec_dict, frag_size], mnesia_frag).
[{sec_dict,0},
 {sec_dict_frag2,0},
 {sec_dict_frag3,0},
 {sec_dict_frag4,1},
 {sec_dict_frag5,0},
 {sec_dict_frag6,0},
 {sec_dict_frag7,0},
 {sec_dict_frag8,0}]
(a@sam)17>

 Management of Fragmented Tables

The function mnesia:change_table_frag(Tab, Change) is intended to be used for
reconfiguration of fragmented tables. Argument Change is to have one of the
following values:
	{activate, FragProps} - Activates the fragmentation properties of an
existing table. FragProps is either to contain {node_pool, Nodes} or be
empty.

	deactivate - Deactivates the fragmentation properties of a table. The
number of fragments must be 1. No other table can refer to this table in its
foreign key.

	{add_frag, NodesOrDist} - Adds a fragment to a fragmented table. All
records in one of the old fragments are rehashed and about half of them are
moved to the new (last) fragment. All other fragmented tables, which refer to
this table in their foreign key, automatically get a new fragment. Also, their
records are dynamically rehashed in the same manner as for the main table.
Argument NodesOrDist can either be a list of nodes or the result from the
function mnesia:table_info(Tab, frag_dist). Argument
NodesOrDist is assumed to be a sorted list with the best nodes to host new
replicas first in the list. The new fragment gets the same number of replicas
as the first fragment (see n_ram_copies, n_disc_copies, and
n_disc_only_copies). The NodesOrDist list must at least contain one
element for each replica that needs to be allocated.

	del_frag - Deletes a fragment from a fragmented table. All records in
the last fragment are moved to one of the other fragments. All other
fragmented tables, which refer to this table in their foreign key,
automatically lose their last fragment. Also, their records are dynamically
rehashed in the same manner as for the main table.

	{add_node, Node} - Adds a node to node_pool. The new node pool affects
the list returned from the function
mnesia:table_info(Tab, frag_dist).

	{del_node, Node} - Deletes a node from node_pool. The new node pool
affects the list returned from the function
mnesia:table_info(Tab, frag_dist).

 Extensions of Existing Functions

The function mnesia:create_table/2 creates a brand new fragmented table, by
setting table property frag_properties to some proper values.
The function mnesia:delete_table/1 deletes a fragmented table including all
its fragments. There must however not exist any other fragmented tables that
refer to this table in their foreign key.
The function mnesia:table_info/2 now understands item frag_properties.
If the function mnesia:table_info/2 is started in the activity context of
module mnesia_frag, information of several new items can be obtained:
	base_table - The name of the fragmented table

	n_fragments - The actual number of fragments

	node_pool - The pool of nodes

	n_ram_copies

	n_disc_copies

	n_disc_only_copies - The number of replicas with storage type
ram_copies, disc_copies, and disc_only_copies, respectively. The actual
values are dynamically derived from the first fragment. The first fragment
serves as a protype. When the actual values need to be computed (for example,
when adding new fragments) they are determined by counting the number of each
replica for each storage type. This means that when the functions
mnesia:add_table_copy/3, mnesia:del_table_copy/2, and
mnesia:change_table_copy_type/2 are
applied on the first fragment, it affects the settings on n_ram_copies,
n_disc_copies, and n_disc_only_copies.

	foreign_key - The foreign key

	foreigners - All other tables that refer to this table in their foreign
key

	frag_names - The names of all fragments

	frag_dist - A sorted list of {Node, Count} tuples that are sorted in
increasing Count order. Count is the total number of replicas that this
fragmented table hosts on each Node. The list always contains at least all
nodes in node_pool. Nodes that do not belong to node_pool are put last in
the list even if their Count is lower.

	frag_size - A list of {Name, Size} tuples, where Name is a fragment
Name, and Size is how many records it contains

	frag_memory - A list of {Name, Memory} tuples, where Name is a
fragment Name, and Memory is how much memory it occupies

	size - Total size of all fragments

	memory - Total memory of all fragments

 Load Balancing

There are several algorithms for distributing records in a fragmented table
evenly over a pool of nodes. No one is best, it depends on the application
needs. The following examples of situations need some attention:
	permanent change of nodes. When a new permanent db_node is introduced or
dropped, it can be time to change the pool of nodes and redistribute the
replicas evenly over the new pool of nodes. It can also be time to add or
delete a fragment before the replicas are redistributed.
	size/memory threshold. When the total size or total memory of a fragmented
table (or a single fragment) exceeds some application-specific threshold, it
can be time to add a new fragment dynamically to obtain a better distribution
of records.
	temporary node down. When a node temporarily goes down, it can be time to
compensate some fragments with new replicas to keep the desired level of
redundancy. When the node comes up again, it can be time to remove the
superfluous replica.
	overload threshold. When the load on some node exceeds some
application-specific threshold, it can be time to either add or move some
fragment replicas to nodes with lower load. Take extra care if the table has a
foreign key relation to some other table. To avoid severe performance
penalties, the same redistribution must be performed for all the related
tables.

Use the function mnesia:change_table_frag/2 to add new fragments and apply the
usual schema manipulation functions (such as mnesia:add_table_copy/3,
mnesia:del_table_copy/2, and
mnesia:change_table_copy_type/2) on each
fragment to perform the actual redistribution.

 Local Content Tables

Replicated tables have the same content on all nodes where they are replicated.
However, it is sometimes advantageous to have tables, but different content on
different nodes.
If attribute {local_content, true} is specified when you create the table, the
table resides on the nodes where you specify the table to exist, but the write
operations on the table are only performed on the local copy.
Furthermore, when the table is initialized at startup, the table is only
initialized locally, and the table content is not copied from another node.

 Disc-Less Nodes

Mnesia can be run on nodes that do not have a disc. Replicas of disc_copies
or disc_only_copies are not possible on such nodes. This is especially
troublesome for the schema table, as Mnesia needs the schema to initialize
itself.
The schema table can, as other tables, reside on one or more nodes. The storage
type of the schema table can either be disc_copies or ram_copies (but not
disc_only_copies). At startup, Mnesia uses its schema to determine with
which nodes it is to try to establish contact. If any other node is started
already, the starting node merges its table definitions with the table
definitions brought from the other nodes. This also applies to the definition of
the schema table itself. Application parameter extra_db_nodes contains a list
of nodes that Mnesia also is to establish contact with besides those found in
the schema. Default is [] (empty list).
Hence, when a disc-less node needs to find the schema definitions from a remote
node on the network, this information must be supplied through application
parameter -mnesia extra_db_nodes NodeList. Without this configuration
parameter set, Mnesia starts as a single node system. Also, the function
mnesia:change_config/2 can be used to assign a value to extra_db_nodes and
force a connection after Mnesia has been started, that is,
mnesia:change_config(extra_db_nodes, NodeList).
Application parameter schema_location controls where Mnesia searches for its
schema. The parameter can be one of the following atoms:
	disc - Mandatory disc. The schema is assumed to be located in the
Mnesia directory. If the schema cannot be found, Mnesia refuses to start.

	ram - Mandatory RAM. The schema resides in RAM only. At startup, a tiny
new schema is generated. This default schema contains only the definition of
the schema table and resides on the local node only. Since no other nodes are
found in the default schema, configuration parameter extra_db_nodes must be
used to let the node share its table definitions with other nodes. (Parameter
extra_db_nodes can also be used on disc-full nodes.)

	opt_disc - Optional disc. The schema can reside on either disc or RAM.
If the schema is found on disc, Mnesia starts as a disc-full node (the
storage type of the schema table is disc_copies). If no schema is found on
disc, Mnesia starts as a disc-less node (the storage type of the schema
table is ram_copies). The default for the application parameter is
opt_disc.

When schema_location is set to opt_disc, the function
mnesia:change_table_copy_type/3 can be used to change the storage type of the
schema. This is illustrated as follows:
1> mnesia:start().
ok
2> mnesia:change_table_copy_type(schema, node(), disc_copies).
{atomic, ok}
Assuming that the call to mnesia:start/0 does not find any schema to read on
the disc, Mnesia starts as a disc-less node, and then change it to a node that
use the disc to store the schema locally.

 More about Schema Management

Nodes can be added to and removed from a Mnesia system. This can be done by
adding a copy of the schema to those nodes.
The functions mnesia:add_table_copy/3 and mnesia:del_table_copy/2 can be
used to add and delete replicas of the schema table. Adding a node to the list
of nodes where the schema is replicated affects the following:
	It allows other tables to be replicated to this node.
	It causes Mnesia to try to contact the node at startup of disc-full nodes.

The function call mnesia:del_table_copy(schema, mynode@host) deletes node
mynode@host from the Mnesia system. The call fails if Mnesia is running on
mynode@host. The other Mnesia nodes never try to connect to that node again.
Notice that if there is a disc resident schema on node mynode@host, the entire
Mnesia directory is to be deleted. This is done with the function
mnesia:delete_schema/1. If Mnesia is started again on node mynode@host and
the directory has not been cleared, the behavior of Mnesia is undefined.
If the storage type of the schema is ram_copies, that is, a disc-less node,
Mnesia does not use the disc on that particular node. The disc use is enabled
by changing the storage type of table schema to disc_copies.
New schemas are created explicitly with the function mnesia:create_schema/1 or
implicitly by starting Mnesia without a disc resident schema. Whenever a table
(including the schema table) is created, it is assigned its own unique cookie.
The schema table is not created with the function mnesia:create_table/2 as
normal tables.
At startup, Mnesia connects different nodes to each other, then they exchange
table definitions with each other, and the table definitions are merged. During
the merge procedure, Mnesia performs a sanity test to ensure that the table
definitions are compatible with each other. If a table exists on several nodes,
the cookie must be the same, otherwise Mnesia shut down one of the nodes. This
unfortunate situation occurs if a table has been created on two nodes
independently of each other while they were disconnected. To solve this, one of
the tables must be deleted (as the cookies differ, it is regarded to be two
different tables even if they have the same name).
Merging different versions of the schema table does not always require the
cookies to be the same. If the storage type of the schema table is
disc_copies, the cookie is immutable, and all other db_nodes must have the
same cookie. When the schema is stored as type ram_copies, its cookie can be
replaced with a cookie from another node (ram_copies or disc_copies). The
cookie replacement (during merge of the schema table definition) is performed
each time a RAM node connects to another node.
Further, the following applies:
	mnesia:system_info(schema_location) and
mnesia:system_info(extra_db_nodes) can be used to
determine the actual values of schema_location and extra_db_nodes,
respectively.
	mnesia:system_info(use_dir) can be used to determine
whether Mnesia is actually using the Mnesia directory.
	use_dir can be determined even before Mnesia is started.

The function mnesia:info/0 can now be used to print some system information
even before Mnesia is started. When Mnesia is started, the function prints
more information.
Transactions that update the definition of a table requires that Mnesia is
started on all nodes where the storage type of the schema is disc_copies. All
replicas of the table on these nodes must also be loaded. There are a few
exceptions to these availability rules:
	Tables can be created and new replicas can be added without starting all the
disc-full nodes.
	New replicas can be added before all other replicas of the table have been
loaded, provided that at least one other replica is active.

 Mnesia Event Handling

System events and table events are the two event categories that Mnesia
generates in various situations.
A user process can subscribe on the events generated by Mnesia. The following
two functions are provided:
	mnesia:subscribe(Event-Category) - Ensures that a
copy of all events of type Event-Category are sent to the calling process

	mnesia:unsubscribe(Event-Category) - Removes the
subscription on events of type Event-Category

Event-Category can be either of the following:
	The atom system
	The atom activity
	The tuple {table, Tab, simple}
	The tuple {table, Tab, detailed}

The old event category {table, Tab} is the same event category as
{table, Tab, simple}.
The subscribe functions activate a subscription of events. The events are
delivered as messages to the process evaluating the function
mnesia:subscribe/1 The syntax is as follows:
	{mnesia_system_event, Event} for system events
	{mnesia_activity_event, Event} for activity events
	{mnesia_table_event, Event} for table events

The event types are described in the next sections.
All system events are subscribed by the Mnesia gen_event handler. The
default gen_event handler is mnesia_event, but it can be changed by using
application parameter event_module. The value of this parameter must be the
name of a module implementing a complete handler, as specified by the
gen_event module in STDLIB.
mnesia:system_info(subscribers) and
mnesia:table_info(Tab, subscribers) can be used to
determine which processes are subscribed to various events.

 System Events

The system events are as follows:
	{mnesia_up, Node} - Mnesia is started on a node. Node is the node
name. By default this event is ignored.

	{mnesia_down, Node} - Mnesia is stopped on a node. Node is the node
name. By default this event is ignored.

	{mnesia_checkpoint_activated, Checkpoint} - A checkpoint with the name
Checkpoint is activated and the current node is involved in the checkpoint.
Checkpoints can be activated explicitly with the function
mnesia:activate_checkpoint/1 or implicitly at backup, when adding table
replicas, at internal transfer of data between nodes, and so on. By default
this event is ignored.

	{mnesia_checkpoint_deactivated, Checkpoint} - A checkpoint with the name
Checkpoint is deactivated and the current node is involved in the
checkpoint. Checkpoints can be deactivated explicitly with the function
mnesia:deactivate/1 or implicitly when the
last replica of a table (involved in the checkpoint) becomes unavailable, for
example, at node-down. By default this event is ignored.

	{mnesia_overload, Details} - Mnesia on the current node is overloaded
and the subscriber is to take action.
A typical overload situation occurs when the applications perform more updates
on disc resident tables than Mnesia can handle. Ignoring this kind of
overload can lead to a situation where the disc space is exhausted (regardless
of the size of the tables stored on disc).
Each update is appended to the transaction log and occasionally (depending on
how it is configured) dumped to the tables files. The table file storage is
more compact than the transaction log storage, especially if the same record
is updated repeatedly. If the thresholds for dumping the transaction log are
reached before the previous dump is finished, an overload event is triggered.
Another typical overload situation is when the transaction manager cannot
commit transactions at the same pace as the applications perform updates of
disc resident tables. When this occurs, the message queue of the transaction
manager continues to grow until the memory is exhausted or the load decreases.
The same problem can occur for dirty updates. The overload is detected locally
on the current node, but its cause can be on another node. Application
processes can cause high load if any table resides on another node (replicated
or not). By default this event is reported to error_logger.

	{inconsistent_database, Context, Node} - Mnesia regards the database
as potential inconsistent and gives its applications a chance to recover from
the inconsistency. For example, by installing a consistent backup as fallback
and then restart the system. An alternative is to pick a MasterNode from
mnesia:system_info(db_nodes) and invoke
mnesia:set_master_nodes([MasterNode]). By
default an error is reported to error_logger.

	{mnesia_fatal, Format, Args, BinaryCore} - Mnesia detected a fatal
error and terminates soon. The fault reason is explained in Format and
Args, which can be given as input to io:format/2 or sent to
error_logger. By default it is sent to error_logger.
BinaryCore is a binary containing a summary of the Mnesia internal state
at the time when the fatal error was detected. By default the binary is
written to a unique filename on the current directory. On RAM nodes, the core
is ignored.

	{mnesia_info, Format, Args} - Mnesia detected something that can be of
interest when debugging the system. This is explained in Format and Args,
which can appear as input to io:format/2 or sent to error_logger. By
default this event is printed with io:format/2.

	{mnesia_error, Format, Args} - Mnesia has detected an error. The fault
reason is explained in Format and Args, which can be given as input to
io:format/2 or sent to error_logger. By default this event is reported to
error_logger.

	{mnesia_user, Event} - An application started the function
mnesia:report_event(Event). Event can be any
Erlang data structure. When tracing a system of Mnesia applications, it is
useful to be able to interleave own events of Mnesia with
application-related events that give information about the application
context. Whenever the application starts with a new and demanding Mnesia
activity, or enters a new and interesting phase in its execution, it can be a
good idea to use mnesia:report_event/1.

 Activity Events

Currently, there is only one type of activity event:
	{complete, ActivityID} - This event occurs when a transaction that
caused a modification to the database is completed. It is useful for
determining when a set of table events (see the next section), caused by a
given activity, have been sent. Once this event is received, it is guaranteed
that no further table events with the same ActivityID will be received.
Notice that this event can still be received even if no table events with a
corresponding ActivityID were received, depending on the tables to which the
receiving process is subscribed.
Dirty operations always contain only one update and thus no activity event is
sent.

 Table Events

Table events are events related to table updates. There are two types of table
events, simple and detailed.
The simple table events are tuples like {Oper, Record, ActivityId}, where:
	Oper is the operation performed.
	Record is the record involved in the operation.
	ActivityId is the identity of the transaction performing the operation.

Notice that the record name is the table name even when record_name has
another setting.
The table-related events that can occur are as follows:
	{write, NewRecord, ActivityId} - A new record has been written.
NewRecord contains the new record value.

	{delete_object, OldRecord, ActivityId} - A record has possibly been
deleted with mnesia:delete_object/1. OldRecord contains the value of the
old record, as stated as argument by the application. Notice that other
records with the same key can remain in the table if it is of type bag.

	{delete, {Tab, Key}, ActivityId} - One or more records have possibly
been deleted. All records with the key Key in the table Tab have been
deleted.

The detailed table events are tuples like
{Oper, Table, Data, [OldRecs], ActivityId}, where:
	Oper is the operation performed.
	Table is the table involved in the operation.
	Data is the record/OID written/deleted.
	OldRecs is the contents before the operation.
	ActivityId is the identity of the transaction performing the operation.

The table-related events that can occur are as follows:
	{write, Table, NewRecord, [OldRecords], ActivityId} - A new record has
been written. NewRecord contains the new record value and OldRecords
contains the records before the operation is performed. Notice that the new
content depends on the table type.

	{delete, Table, What, [OldRecords], ActivityId} - Records have possibly
been deleted. What is either {Table, Key} or a record
{RecordName, Key, ...} that was deleted. Notice that the new content depends
on the table type.

 Debugging Mnesia Applications

Debugging a Mnesia application can be difficult for various reasons, primarily
related to difficulties in understanding how the transaction and table load
mechanisms work. Another source of confusion can be the semantics of nested
transactions.
The debug level of Mnesia is set by calling the function
mnesia:set_debug_level(Level), where Level is
one of the following:
	none - No trace outputs. This is the default.

	verbose - Activates tracing of important debug events. These events
generate {mnesia_info, Format, Args} system events. Processes can subscribe
to these events with the function mnesia:subscribe/1. The events are always
sent to the Mnesia event handler.

	debug - Activates all events at the verbose level plus traces of all
debug events. These debug events generate {mnesia_info, Format, Args} system
events. Processes can subscribe to these events with mnesia:subscribe/1. The
events are always sent to the Mnesia event handler. On this debug level, the
Mnesia event handler starts subscribing to updates in the schema table.

	trace - Activates all events at the debug level. On this level, the
Mnesia event handler starts subscribing to updates on all Mnesia tables.
This level is intended only for debugging small toy systems, as many large
events can be generated.

	false - An alias for none.

	true - An alias for debug.

The debug level of Mnesia itself is also an application parameter, making it
possible to start an Erlang system to turn on Mnesia debug in the initial
startup phase by using the following code:
% erl -mnesia debug verbose

 Concurrent Processes in Mnesia

Programming concurrent Erlang systems is the subject of a separate book.
However, it is worthwhile to draw attention to the following features, which
permit concurrent processes to exist in a Mnesia system:
	A group of functions or processes can be called within a transaction. A
transaction can include statements that read, write, or delete data from the
DBMS. Many such transactions can run concurrently, and the programmer does not
need to explicitly synchronize the processes that manipulate the data.
All programs accessing the database through the transaction system can be
written as if they had sole access to the data. This is a desirable property,
as all synchronization is taken care of by the transaction handler. If a
program reads or writes data, the system ensures that no other program tries
to manipulate the same data at the same time.

	Tables can be moved or deleted, and the layout of a table can be reconfigured
in various ways. An important aspect of the implementation of these functions
is that user programs can continue to use a table while it is being
reconfigured. For example, it is possible to move a table and perform write
operations to the table at the same time. This is important for many
applications that require continuously available services. For more
information, see
Transactions and Other Access Contexts.

 Prototyping

If and when you would like to start and manipulate Mnesia, it is often easier
to write the definitions and data into an ordinary text file. Initially, no
tables and no data exist, or which tables are required. At the initial stages of
prototyping, it is prudent to write all data into one file, process that file,
and have the data in the file inserted into the database. Mnesia can be
initialized with data read from a text file. The following two functions can be
used to work with text files.
	mnesia:load_textfile(Filename) loads a series of
local table definitions and data found in the file into Mnesia. This
function also starts Mnesia and possibly creates a new schema. The function
operates on the local node only.
	mnesia:dump_to_textfile(Filename) dumps all
local tables of a Mnesia system into a text file, which can be edited (with
a normal text editor) and later reloaded.

These functions are much slower than the ordinary store and load functions of
Mnesia. However, this is mainly intended for minor experiments and initial
prototyping. The major advantage of these functions is that they are easy to
use.
The format of the text file is as follows:
{tables, [{Typename, [Options]},
{Typename2}]}.

{Typename, Attribute1, Attribute2}.
{Typename, Attribute1, Attribute2}.
Options is a list of {Key,Value} tuples conforming to the options that you
can give to mnesia:create_table/2.
For example, to start playing with a small database for healthy foods, enter the
following data into file FRUITS:
{tables,
 [{fruit, [{attributes, [name, color, taste]}]},
 {vegetable, [{attributes, [name, color, taste, price]}]}]}.

{fruit, orange, orange, sweet}.
{fruit, apple, green, sweet}.
{vegetable, carrot, orange, carrotish, 2.55}.
{vegetable, potato, yellow, none, 0.45}.
The following session with the Erlang shell shows how to load the FRUITS
database:
% erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> mnesia:load_textfile("FRUITS").
New table fruit
New table vegetable
{atomic,ok}
2> mnesia:info().
---> Processes holding locks <---
---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---
---> Active tables <---
vegetable : with 2 records occuping 299 words of mem
fruit : with 2 records occuping 291 words of mem
schema : with 3 records occuping 401 words of mem
===> System info in version "1.1", debug level = none <===
opt_disc. Directory "/var/tmp/Mnesia.nonode@nohost" is used.
use fallback at restart = false
running db nodes = [nonode@nohost]
stopped db nodes = []
remote = []
ram_copies = [fruit,vegetable]
disc_copies = [schema]
disc_only_copies = []
[{nonode@nohost,disc_copies}] = [schema]
[{nonode@nohost,ram_copies}] = [fruit,vegetable]
3 transactions committed, 0 aborted, 0 restarted, 2 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
ok
3>
It can be seen that the DBMS was initiated from a regular text file.

 Object-Based Programming with Mnesia

The Company database, introduced in
Getting Started, has three tables that store
records (employee, dept, project), and three tables that store
relationships (manager, at_dep, in_proj). This is a normalized data model,
which has some advantages over a non-normalized data model.
It is more efficient to do a generalized search in a normalized database. Some
operations are also easier to perform on a normalized data model. For example,
one project can easily be removed, as the following example illustrates:
remove_proj(ProjName) ->
 F = fun() ->
 Ip = qlc:e(qlc:q([X || X <- mnesia:table(in_proj),
				 X#in_proj.proj_name == ProjName]
)),
 mnesia:delete({project, ProjName}),
 del_in_projs(Ip)
 end,
 mnesia:transaction(F).

del_in_projs([Ip|Tail]) ->
 mnesia:delete_object(Ip),
 del_in_projs(Tail);
del_in_projs([]) ->
 done.
In reality, data models are seldom fully normalized. A realistic alternative to
a normalized database model would be a data model that is not even in first
normal form. Mnesia is suitable for applications such as telecommunications,
because it is easy to organize data in a flexible manner. A Mnesia database is
always organized as a set of tables. Each table is filled with rows, objects,
and records. What sets Mnesia apart is that individual fields in a record can
contain any type of compound data structures. An individual field in a record
can contain lists, tuples, functions, and even record code.
Many telecommunications applications have unique requirements on lookup times
for certain types of records. If the Company database had been a part of a
telecommunications system, it could be to minimize the lookup time of an
employee together with a list of the projects the employee is working on. If
this is the case, a drastically different data model without direct
relationships can be chosen. You would then have only the records themselves,
and different records could contain either direct references to other records,
or contain other records that are not part of the Mnesia schema.
The following record definitions can be created:
-record(employee, {emp_no,
		 name,
		 salary,
		 sex,
		 phone,
		 room_no,
		 dept,
		 projects,
		 manager}).

-record(dept, {id,
 name}).

-record(project, {name,
 number,
 location}).
A record that describes an employee can look as follows:
Me = #employee{emp_no = 104732,
 name = klacke,
 salary = 7,
 sex = male,
 phone = 99586,
 room_no = {221, 015},
 dept = 'B/SFR',
 projects = [erlang, mnesia, otp],
 manager = 114872},
This model has only three different tables, and the employee records contain
references to other records. The record has the following references:
	'B/SFR' refers to a dept record.
	[erlang, mnesia, otp] is a list of three direct references to three
different projects records.
	114872 refers to another employee record.

The Mnesia record identifiers ({Tab, Key}) can also be used as references.
In this case, attribute dept would be set to value {dept, 'B/SFR'} instead
of 'B/SFR'.
With this data model, some operations execute considerably faster than they do
with the normalized data model in the Company database. However, some other
operations become much more complicated. In particular, it becomes more
difficult to ensure that records do not contain dangling pointers to other
non-existent, or deleted, records.
The following code exemplifies a search with a non-normalized data model. To
find all employees at department Dep with a salary higher than Salary, use
the following code:
get_emps(Salary, Dep) ->
 Q = qlc:q(
 [E || E <- mnesia:table(employee),
 E#employee.salary > Salary,
 E#employee.dept == Dep]
),
 F = fun() -> qlc:e(Q) end,
 transaction(F).
This code is easier to write and to understand, and it also executes much
faster.
It is easy to show examples of code that executes faster if a non-normalized
data model is used, instead of a normalized model. The main reason is that fewer
tables are required. Therefore, data from different tables can more easily be
combined in join operations. In the previous example, the function get_emps/2
is transformed from a join operation into a simple query, which consists of a
selection and a projection on one single table.

Mnesia System Information

The following topics are included:
	Database configuration data
	Core dumps
	Dumping tables
	Checkpoints
	Startup files, log file, and data files
	Loading tables at startup
	Recovery from communication failure
	Recovery of transactions
	Backup, restore, fallback, and disaster recovery

 Database Configuration Data

The following two functions can be used to retrieve system information. For
details, see the Reference Manual.
	mnesia:table_info(Tab, Key) -> Info | exit({aborted, Reason})
returns information about one table, for example, the current size of the
table and on which nodes it resides.

	mnesia:system_info(Key) -> Info | exit({aborted, Reason})
returns information about the Mnesia system, for example, transaction
statistics, db_nodes, and configuration parameters.

 Core Dumps

If Mnesia malfunctions, system information is dumped to file
MnesiaCore.Node.When. The type of system information contained in this file
can also be generated with the function mnesia_lib:coredump(). If a Mnesia
system behaves strangely, it is recommended that a Mnesia core dump file is
included in the bug report.

 Dumping Tables

Tables of type ram_copies are by definition stored in memory only. However,
these tables can be dumped to disc, either at regular intervals or before the
system is shut down. The function
mnesia:dump_tables(TabList) dumps all replicas of a
set of RAM tables to disc. The tables can be accessed while being dumped to
disc. To dump the tables to disc, all replicas must have the storage type
ram_copies.
The table content is placed in a .DCD file on the disc. When the Mnesia
system is started, the RAM table is initially loaded with data from its .DCD
file.

 Checkpoints

A checkpoint is a transaction consistent state that spans over one or more
tables. When a checkpoint is activated, the system remembers the current content
of the set of tables. The checkpoint retains a transaction consistent state of
the tables, allowing the tables to be read and updated while the checkpoint is
active. A checkpoint is typically used to back up tables to external media, but
they are also used internally in Mnesia for other purposes. Each checkpoint is
independent and a table can be involved in several checkpoints simultaneously.
Each table retains its old contents in a checkpoint retainer. For performance
critical applications, it can be important to realize the processing overhead
associated with checkpoints. In a worst case scenario, the checkpoint retainer
consumes more memory than the table itself. Also, each update becomes slightly
slower on those nodes where checkpoint retainers are attached to the tables.
For each table, it is possible to choose if there is to be one checkpoint
retainer attached to all replicas of the table, or if it is enough to have only
one checkpoint retainer attached to a single replica. With a single checkpoint
retainer per table, the checkpoint consumes less memory, but it is vulnerable to
node crashes. With several redundant checkpoint retainers, the checkpoint
survives as long as there is at least one active checkpoint retainer attached to
each table.
Checkpoints can be explicitly deactivated with the function
mnesia:deactivate_checkpoint(Name), where
Name is the name of an active checkpoint. This function returns ok if
successful or {error, Reason} if there is an error. All tables in a checkpoint
must be attached to at least one checkpoint retainer. The checkpoint is
automatically deactivated by Mnesia, when any table lacks a checkpoint
retainer. This can occur when a node goes down or when a replica is deleted. Use
arguments min and max (described in the following list) to control the
degree of checkpoint retainer redundancy.

Checkpoints are activated with the function
mnesia:activate_checkpoint(Args), where Args
is a list of the following tuples:
	{name, Name}, where Name specifies a temporary name of the checkpoint. The
name can be reused when the checkpoint has been deactivated. If no name is
specified, a name is generated automatically.
	{max, MaxTabs}, where MaxTabs is a list of tables that are to be included
in the checkpoint. Default is [] (empty list). For these tables, the
redundancy is maximized. The old content of the table is retained in the
checkpoint retainer when the main table is updated by the applications. The
checkpoint is more fault tolerant if the tables have several replicas. When
new replicas are added by the schema manipulation function
mnesia:add_table_copy/3 it also attaches a local checkpoint retainer.
	{min, MinTabs}, where MinTabs is a list of tables that are to be included
in the checkpoint. Default is []. For these tables, the redundancy is
minimized, and there is to be single checkpoint retainer per table, preferably
at the local node.
	{allow_remote, Bool}, where false means that all checkpoint retainers must
be local. If a table does not reside locally, the checkpoint cannot be
activated. true allows checkpoint retainers to be allocated on any node.
Default is true.
	{ram_overrides_dump, Bool}. This argument only applies to tables of type
ram_copies. Bool specifies if the table state in RAM is to override the
table state on disc. true means that the latest committed records in RAM are
included in the checkpoint retainer. These are the records that the
application accesses. false means that the records on the disc .DAT file
are included in the checkpoint retainer. These records are loaded on startup.
Default is false.

The function mnesia:activate_checkpoint(Args)
returns one of the following values:
	{ok, Name, Nodes}
	{error, Reason}

Name is the checkpoint name. Nodes are the nodes where the checkpoint is
known.
A list of active checkpoints can be obtained with the following functions:
	mnesia:system_info(checkpoints) returns all active
checkpoints on the current node.
	mnesia:table_info(Tab, checkpoints) returns active
checkpoints on a specific table.

 Startup Files, Log File, and Data Files

This section describes the internal files that are created and maintained by the
Mnesia system. In particular, the workings of the Mnesia log are described.

 Startup Files

Start Mnesia states the following prerequisites
for starting Mnesia:
	An Erlang session must be started and a Mnesia directory must be specified
for the database.
	A database schema must be initiated, using the function
mnesia:create_schema/1.

The following example shows how these tasks are performed:
Step 1: Start an Erlang session and specify a Mnesia directory for the
database:
% erl -sname klacke -mnesia dir '"/ldisc/scratch/klacke"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
(klacke@gin)1> mnesia:create_schema([node()]).
ok
(klacke@gin)2>
^Z
Suspended
Step 2: You can inspect the Mnesia directory to see what files have been
created:
% ls -l /ldisc/scratch/klacke
-rw-rw-r-- 1 klacke staff 247 Aug 12 15:06 FALLBACK.BUP
The response shows that the file FALLBACK.BUP has been created. This is called
a backup file, and it contains an initial schema. If more than one node in the
function mnesia:create_schema/1 had been specified, identical backup files
would have been created on all nodes.
Step 3: Start Mnesia:
(klacke@gin)3>mnesia:start().
ok
Step 4: You can see the following listing in the Mnesia directory:
-rw-rw-r-- 1 klacke staff 86 May 26 19:03 LATEST.LOG
-rw-rw-r-- 1 klacke staff 34507 May 26 19:03 schema.DAT
The schema in the backup file FALLBACK.BUP has been used to generate the file
schema.DAT. Since there are no other disc resident tables than the schema, no
other data files were created. The file FALLBACK.BUP was removed after the
successful "restoration". You also see some files that are for internal use by
Mnesia.
Step 5: Create a table:
(klacke@gin)4> mnesia:create_table(foo,[{disc_copies, [node()]}]).
{atomic,ok}
Step 6: You can see the following listing in the Mnesia directory:
% ls -l /ldisc/scratch/klacke
-rw-rw-r-- 1 klacke staff 86 May 26 19:07 LATEST.LOG
-rw-rw-r-- 1 klacke staff 94 May 26 19:07 foo.DCD
-rw-rw-r-- 1 klacke staff 6679 May 26 19:07 schema.DAT
The file foo.DCD has been created. This file will eventually store all data
that is written into the foo table.

 Log File

When starting Mnesia, a .LOG file called LATEST.LOG is created and placed
in the database directory. This file is used by Mnesia to log disc-based
transactions. This includes all transactions that write at least one record in a
table that is of storage type disc_copies or disc_only_copies. The file also
includes all operations that manipulate the schema itself, such as creating new
tables. The log format can vary with different implementations of Mnesia. The
Mnesia log is currently implemented in the standard library module
disk_log in Kernel.
The log file grows continuously and must be dumped at regular intervals.
"Dumping the log file" means that Mnesia performs all the operations listed in
the log and place the records in the corresponding .DAT, .DCD, and .DCL
data files. For example, if the operation "write record {foo, 4, elvis, 6}" is
listed in the log, Mnesia inserts the operation into the file foo.DCL.
Later, when Mnesia thinks that the .DCL file is too large, the data is moved
to the .DCD file. The dumping operation can be time consuming if the log is
large. Notice that the Mnesia system continues to operate during log dumps.
By default Mnesia either dumps the log whenever 1000 records have been written
in the log or when three minutes have passed. This is controlled by the two
application parameters -mnesia dump_log_write_threshold WriteOperations and
-mnesia dump_log_time_threshold MilliSecs.
Before the log is dumped, the file LATEST.LOG is renamed to PREVIOUS.LOG,
and a new LATEST.LOG file is created. Once the log has been successfully
dumped, the file PREVIOUS.LOG is deleted.
The log is also dumped at startup and whenever a schema operation is performed.

 Data Files

The directory listing also contains one .DAT file, which contains the schema
itself, contained in the schema.DAT file. The DAT files are indexed files,
and it is efficient to insert and search for records in these files with a
specific key. The .DAT files are used for the schema and for
disc_only_copies tables. The Mnesia data files are currently implemented in
the standard library module dets in STDLIB.
All operations that can be performed on dets files can also be performed on
the Mnesia data files. For example, dets contains the function
dets:traverse/2, which can be used to view the contents of a Mnesia DAT
file. However, this can only be done when Mnesia is not running. So, to view
the schema file, do as follows;
{ok, N} = dets:open_file(schema, [{file, "./schema.DAT"},{repair,false},
{keypos, 2}]),
F = fun(X) -> io:format("~p~n", [X]), continue end,
dets:traverse(N, F),
dets:close(N).
Warning
The DAT files must always be opened with option {repair, false}. This
ensures that these files are not automatically repaired. Without this option,
the database can become inconsistent, because Mnesia can believe that the
files were properly closed. For information about configuration parameter
auto_repair, see the Reference Manual.
Warning
It is recommended that the data files are not tampered with while Mnesia is
running. While not prohibited, the behavior of Mnesia is unpredictable.
The disc_copies tables are stored on disk with .DCL and .DCD files, which
are standard disk_log files.

 Loading Tables at Startup

At startup, Mnesia loads tables to make them accessible for its applications.
Sometimes Mnesia decides to load all tables that reside locally, and sometimes
the tables are not accessible until Mnesia brings a copy of the table from
another node.
To understand the behavior of Mnesia at startup, it is essential to understand
how Mnesia reacts when it loses contact with Mnesia on another node. At this
stage, Mnesia cannot distinguish between a communication failure and a
"normal" node-down. When this occurs, Mnesia assumes that the other node is no
longer running, whereas, in reality, the communication between the nodes has
failed.
To overcome this situation, try to restart the ongoing transactions that are
accessing tables on the failing node, and write a mnesia_down entry to a log
file.
At startup, notice that all tables residing on nodes without a mnesia_down
entry can have fresher replicas. Their replicas can have been updated after the
termination of Mnesia on the current node. To catch up with the latest
updates, transfer a copy of the table from one of these other "fresh" nodes. If
you are unlucky, other nodes can be down and you must wait for the table to be
loaded on one of these nodes before receiving a fresh copy of the table.
Before an application makes its first access to a table,
mnesia:wait_for_tables(TabList, Timeout) is to be
executed to ensure that the table is accessible from the local node. If the
function times out, the application can choose to force a load of the local
replica with mnesia:force_load_table(Tab) and
deliberately lose all updates that can have been performed on the other nodes
while the local node was down. If Mnesia has loaded the table on another node
already, or intends to do so, copy the table from that node to avoid unnecessary
inconsistency.
Warning
Only one table is loaded by
mnesia:force_load_table(Tab). Since committed
transactions can have caused updates in several tables, the tables can become
inconsistent because of the forced load.
The allowed AccessMode of a table can be defined to be read_only or
read_write. It can be toggled with the function
mnesia:change_table_access_mode(Tab, AccessMode)
in runtime. read_only tables and local_content tables are always loaded
locally, as there is no need for copying the table from other nodes. Other
tables are primarily loaded remotely from active replicas on other nodes if the
table has been loaded there already, or if the running Mnesia has decided to
load the table there already.
At startup, Mnesia assumes that its local replica is the most recent version
and loads the table from disc if either of the following situations is detected:
	mnesia_down is returned from all other nodes that hold a disc resident
replica of the table.
	All replicas are ram_copies.

This is normally a wise decision, but it can be disastrous if the nodes have
been disconnected because of a communication failure, as the Mnesia normal
table load mechanism does not cope with communication failures.
When Mnesia loads many tables, the default load order is used. However, the
load order can be affected, by explicitly changing property load_order for the
tables, with the function
mnesia:change_table_load_order(Tab, LoadOrder).
LoadOrder is by default 0 for all tables, but it can be set to any integer.
The table with the highest load_order is loaded first. Changing the load order
is especially useful for applications that need to ensure early availability of
fundamental tables. Large peripheral tables are to have a low load order value,
perhaps less than 0

 Recovery from Communication Failure

There are several occasions when Mnesia can detect that the network has been
partitioned because of a communication failure, for example:
	Mnesia is operational already and the Erlang nodes gain contact again. Then
Mnesia tries to contact Mnesia on the other node to see if it also thinks
that the network has been partitioned for a while. If Mnesia on both nodes
has logged mnesia_down entries from each other, Mnesia generates a system
event, called {inconsistent_database, running_partitioned_network, Node},
which is sent to the Mnesia event handler and other possible subscribers.
The default event handler reports an error to the error logger.
	If Mnesia detects at startup that both the local node and another node
received mnesia_down from each other, Mnesia generates an
{inconsistent_database, starting_partitioned_network, Node} system event and
acts as described in the previous item.

If the application detects that there has been a communication failure that can
have caused an inconsistent database, it can use the function
mnesia:set_master_nodes(Tab, Nodes) to pinpoint
from which nodes each table can be loaded.
At startup, the Mnesia normal table load algorithm is bypassed and the table
is loaded from one of the master nodes defined for the table, regardless of
potential mnesia_down entries in the log. Nodes can only contain nodes where
the table has a replica. If Nodes is empty, the master node recovery mechanism
for the particular table is reset and the normal load mechanism is used at the
next restart.
The function mnesia:set_master_nodes(Nodes) sets
master nodes for all tables. For each table it determines its replica nodes and
starts mnesia:set_master_nodes(Tab, TabNodes)
with those replica nodes that are included in the Nodes list (that is,
TabNodes is the intersection of Nodes and the replica nodes of the table).
If the intersection is empty, the master node recovery mechanism for the
particular table is reset and the normal load mechanism is used at the next
restart.
The functions mnesia:system_info(master_node_tables)
and mnesia:table_info(Tab, master_nodes) can be used to
obtain information about the potential master nodes.
Determining what data to keep after a communication failure is outside the scope
of Mnesia. One approach is to determine which "island" contains most of the
nodes. Using option {majority,true} for critical tables can be a way to ensure
that nodes that are not part of a "majority island" cannot update those tables.
Notice that this constitutes a reduction in service on the minority nodes. This
would be a tradeoff in favor of higher consistency guarantees.
The function mnesia:force_load_table(Tab) can be
used to force load the table regardless of which table load mechanism that is
activated.

 Recovery of Transactions

A Mnesia table can reside on one or more nodes. When a table is updated,
Mnesia ensures that the updates are replicated to all nodes where the table
resides. If a replica is inaccessible (for example, because of a temporary
node-down), Mnesia performs the replication later.
On the node where the application is started, there is a transaction coordinator
process. If the transaction is distributed, there is also a transaction
participant process on all the other nodes where commit-work needs to be
performed.
Internally Mnesia uses several commit protocols. The selected protocol depends
on which table that has been updated in the transaction. If all the involved
tables are symmetrically replicated (that is, they all have the same
ram_nodes, disc_nodes, and disc_only_nodes currently accessible from the
coordinator node), a lightweight transaction commit protocol is used.
The number of messages that the transaction coordinator and its participants
need to exchange is few, as the Mnesia table load mechanism takes care of the
transaction recovery if the commit protocol gets interrupted. Since all involved
tables are replicated symmetrically, the transaction is automatically recovered
by loading the involved tables from the same node at startup of a failing node.
It does not matter if the transaction was committed or terminated as long as the
ACID properties can be ensured. The lightweight commit protocol is non-blocking,
that is, the surviving participants and their coordinator finish the
transaction, even if any node crashes in the middle of the commit protocol.
If a node goes down in the middle of a dirty operation, the table load mechanism
ensures that the update is performed on all replicas, or none. Both asynchronous
dirty updates and synchronous dirty updates use the same recovery principle as
lightweight transactions.
If a transaction involves updates of asymmetrically replicated tables or updates
of the schema table, a heavyweight commit protocol is used. This protocol can
finish the transaction regardless of how the tables are replicated. The typical
use of a heavyweight transaction is when a replica is to be moved from one node
to another. Then ensure that the replica either is entirely moved or left as it
was. Do never end up in a situation with replicas on both nodes, or on no node
at all. Even if a node crashes in the middle of the commit protocol, the
transaction must be guaranteed to be atomic. The heavyweight commit protocol
involves more messages between the transaction coordinator and its participants
than a lightweight protocol, and it performs recovery work at startup to finish
the terminating or commit work.
The heavyweight commit protocol is also non-blocking, which allows the surviving
participants and their coordinator to finish the transaction regardless (even if
a node crashes in the middle of the commit protocol). When a node fails at
startup, Mnesia determines the outcome of the transaction and recovers it.
Lightweight protocols, heavyweight protocols, and dirty updates, are dependent
on other nodes to be operational to make the correct heavyweight transaction
recovery decision.
If Mnesia has not started on some of the nodes that are involved in the
transaction and neither the local node nor any of the already running nodes
know the outcome of the transaction, Mnesia waits for one, by default. In the
worst case scenario, all other involved nodes must start before Mnesia can
make the correct decision about the transaction and finish its startup.
Thus, Mnesia (on one node) can hang if a double fault occurs, that is, when
two nodes crash simultaneously and one attempts to start when the other refuses
to start, for example, because of a hardware error.
The maximum time that Mnesia waits for other nodes to respond with a
transaction recovery decision can be specified. The configuration parameter
max_wait_for_decision defaults to infinity, which can cause the indefinite
hanging as mentioned earlier. However, if the parameter is set to a definite
time period (for example, three minutes), Mnesia then enforces a transaction
recovery decision, if needed, to allow Mnesia to continue with its startup
procedure.
The downside of an enforced transaction recovery decision is that the decision
can be incorrect, because of insufficient information about the recovery
decisions from the other nodes. This can result in an inconsistent database
where Mnesia has committed the transaction on some nodes but terminated it on
others.
In fortunate cases, the inconsistency is only visible in tables belonging to a
specific application. However, if a schema transaction is inconsistently
recovered because of the enforced transaction recovery decision, the effects of
the inconsistency can be fatal. However, if the higher priority is availability
rather than consistency, it can be worth the risk.
If Mnesia detects an inconsistent transaction decision, an
{inconsistent_database, bad_decision, Node} system event is generated to give
the application a chance to install a fallback or other appropriate measures to
resolve the inconsistency. The default behavior of the Mnesia event handler is
the same as if the database became inconsistent as a result of partitioned
network (as described earlier).

 Backup, Restore, Fallback, and Disaster Recovery

The following functions are used to back up data, to install a backup as
fallback, and for disaster recovery:
	mnesia:backup_checkpoint(Name, Opaque, [Mod])
performs a backup of the tables included in the checkpoint.
	mnesia:backup(Opaque, [Mod]) activates a new checkpoint
that covers all Mnesia tables and performs a backup. It is performed with
maximum degree of redundancy (see also the function
mnesia:activate_checkpoint(Args),
{max, MaxTabs} and {min, MinTabs}).
	mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) can be used to read an existing backup,
create a backup from an existing one, or to copy a backup from one type media
to another.
	mnesia:uninstall_fallback() removes
previously installed fallback files.
	mnesia:restore(Opaque, Args) restores a set of tables
from a previous backup.
	mnesia:install_fallback(Opaque, [Mod]) can be
configured to restart Mnesia and the reload data tables, and possibly the
schema tables, from an existing backup. This function is typically used for
disaster recovery purposes, when data or schema tables are corrupted.

These functions are explained in the following sections. See also
Checkpoints, which describes the two functions
used to activate and deactivate checkpoints.

 Backup

Backup operation are performed with the following functions:
	mnesia:backup_checkpoint(Name, Opaque, [Mod])
	mnesia:backup(Opaque, [Mod])
	mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc)

By default, the actual access to the backup media is performed through module
mnesia_backup for both read and write. Currently mnesia_backup is
implemented with the standard library module disk_log. However, you can write
your own module with the same interface as mnesia_backup and configure
Mnesia so that the alternative module performs the actual accesses to the
backup media. The user can therefore put the backup on a media that Mnesia
does not know about, possibly on hosts where Erlang is not running. Use
configuration parameter -mnesia backup_module <module> for this purpose.
The source for a backup is an activated checkpoint. The backup function
mnesia:backup_checkpoint(Name, Opaque,[Mod]) is
most commonly used and returns ok or {error,Reason}. It has the following
arguments:
	Name is the name of an activated checkpoint. For details on how to include
table names in checkpoints, see the function
mnesia:activate_checkpoint(ArgList) in
Checkpoints.
	Opaque. Mnesia does not interpret this argument, but it is forwarded to
the backup module. The Mnesia default backup module mnesia_backup
interprets this argument as a local filename.
	Mod is the name of an alternative backup module.

The function mnesia:backup(Opaque [,Mod]) activates a new
checkpoint that covers all Mnesia tables with maximum degree of redundancy and
performs a backup. Maximum redundancy means that each table replica has a
checkpoint retainer. Tables with property local_contents are backed up as they
look on the current node.
You can iterate over a backup, either to transform it into a new backup, or only
read it. The function mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc), which normally returns
{ok, LastAcc}, is used for both of these purposes.
Before the traversal starts, the source backup media is opened with
SourceMod:open_read(Source), and the target backup media is opened with
TargetMod:open_write(Target). The arguments are as follows:
	SourceMod and TargetMod are module names.
	Source and Target are opaque data used exclusively by the modules
SourceMod and TargetMod for initializing the backup media.
	Acc is an initial accumulator value.
	Fun(BackupItems, Acc) is applied to each item in the backup. The Fun must
return a tuple {ValGoodBackupItems, NewAcc}, where ValidBackupItems is a
list of valid backup items. NewAcc is a new accumulator value. The
ValidBackupItems are written to the target backup with the function
TargetMod:write/2.
	LastAcc is the last accumulator value, that is, the last NewAcc value that
was returned by Fun.

Also, a read-only traversal of the source backup can be performed without
updating a target backup. If TargetMod==read_only, no target backup is
accessed.
By setting SourceMod and TargetMod to different modules, a backup can be
copied from one backup media to another.
Valid BackupItems are the following tuples:
	{schema, Tab} specifies a table to be deleted.
	{schema, Tab, CreateList} specifies a table to be created. For more
information about CreateList, see mnesia:create_table/2.
	{Tab, Key} specifies the full identity of a record to be deleted.
	{Record} specifies a record to be inserted. It can be a tuple with Tab as
first field. Notice that the record name is set to the table name regardless
of what record_name is set to.

The backup data is divided into two sections. The first section contains
information related to the schema. All schema-related items are tuples where the
first field equals the atom schema. The second section is the record section.
Schema records cannot be mixed with other records and all schema records must be
located first in the backup.
The schema itself is a table and is possibly included in the backup. Each node
where the schema table resides is regarded as a db_node.
The following example shows how
mnesia:traverse_backup can be used to rename a
db_node in a backup file:
change_node_name(Mod, From, To, Source, Target) ->
 Switch =
 fun(Node) when Node == From -> To;
 (Node) when Node == To -> throw({error, already_exists});
 (Node) -> Node
 end,
 Convert =
 fun({schema, db_nodes, Nodes}, Acc) ->
 {[{schema, db_nodes, lists:map(Switch,Nodes)}], Acc};
 ({schema, version, Version}, Acc) ->
 {[{schema, version, Version}], Acc};
 ({schema, cookie, Cookie}, Acc) ->
 {[{schema, cookie, Cookie}], Acc};
 ({schema, Tab, CreateList}, Acc) ->
 Keys = [ram_copies, disc_copies, disc_only_copies],
 OptSwitch =
 fun({Key, Val}) ->
 case lists:member(Key, Keys) of
 true -> {Key, lists:map(Switch, Val)};
 false-> {Key, Val}
 end
 end,
 {[{schema, Tab, lists:map(OptSwitch, CreateList)}], Acc};
 (Other, Acc) ->
 {[Other], Acc}
 end,
 mnesia:traverse_backup(Source, Mod, Target, Mod, Convert, switched).

view(Source, Mod) ->
 View = fun(Item, Acc) ->
 io:format("~p.~n",[Item]),
 {[Item], Acc + 1}
 end,
 mnesia:traverse_backup(Source, Mod, dummy, read_only, View, 0).

 Restore

Tables can be restored online from a backup without restarting Mnesia. A
restore is performed with the function
mnesia:restore(Opaque, Args), where Args can contain the
following tuples:
	{module,Mod}. The backup module Mod is used to access the backup media. If
omitted, the default backup module is used.
	{skip_tables, TableList}, where TableList is a list of tables, which is
not to be read from the backup.
	{clear_tables, TableList}, where TableList is a list of tables, which is
to be cleared before the records from the backup are inserted. That is, all
records in the tables are deleted before the tables are restored. Schema
information about the tables is not cleared or read from the backup.
	{keep_tables, TableList}, where TableList is a list of tables, which is
not to be cleared before the records from the backup are inserted. That is,
the records in the backup are added to the records in the table. Schema
information about the tables is not cleared or read from the backup.
	{recreate_tables, TableList}, where TableList is a list of tables, which
is to be recreated before the records from the backup are inserted. The tables
are first deleted and then created with the schema information from the
backup. All the nodes in the backup need to be operational.
	{default_op, Operation}, where Operation is one of the operations
skip_tables, clear_tables, keep_tables, or recreate_tables. The
default operation specifies which operation is to be used on tables from the
backup that are not specified in any of the previous lists. If omitted, the
operation clear_tables is used.

The argument Opaque is forwarded to the backup module. It returns
{atomic, TabList} if successful, or the tuple {aborted, Reason} if there is
an error. TabList is a list of the restored tables. Tables that are restored
are write-locked during the restore operation. However, regardless of any lock
conflict caused by this, applications can continue to do their work during the
restore operation.
The restoration is performed as a single transaction. If the database is large,
it cannot always be restored online. The old database must then be restored by
installing a fallback, followed by a restart.

 Fallback

The function mnesia:install_fallback(Opaque, [Mod]) installs a backup as fallback. It uses the
backup module Mod, or the default backup module, to access the backup media.
The function returns ok if successful, or {error, Reason} if there is an
error.
Installing a fallback is a distributed operation, which is only performed on
all db_nodes. The fallback restores the database the next time the system is
started. If a Mnesia node with a fallback installed detects that Mnesia on
another node has died, it unconditionally terminates itself.
A fallback is typically used when a system upgrade is performed. A system
typically involves the installation of new software versions, and Mnesia
tables are often transformed into new layouts. If the system crashes during an
upgrade, it is highly probable that reinstallation of the old applications is
required, and restoration of the database to its previous state. This can be
done if a backup is performed and installed as a fallback before the system
upgrade begins.
If the system upgrade fails, Mnesia must be restarted on all db_nodes to
restore the old database. The fallback is automatically deinstalled after a
successful startup. The function
mnesia:uninstall_fallback() can also be used to
deinstall the fallback after a successful system upgrade. Again, this is a
distributed operation that is either performed on all db_nodes or none. Both
the installation and deinstallation of fallbacks require Erlang to be
operational on all db_nodes, but it does not matter if Mnesia is running or
not.

 Disaster Recovery

The system can become inconsistent as a result of a power failure. The UNIX
feature fsck can possibly repair the file system, but there is no guarantee
that the file content is consistent.
If Mnesia detects that a file has not been properly closed, possibly as a
result of a power failure, it tries to repair the bad file in a similar manner.
Data can be lost, but Mnesia can be restarted even if the data is
inconsistent. Configuration parameter -mnesia auto_repair <bool> can be used
to control the behavior of Mnesia at startup. If <bool> has the value
true, Mnesia tries to repair the file. If <bool> has the value false,
Mnesia does not restart if it detects a suspect file. This configuration
parameter affects the repair behavior of log files, DAT files, and the default
backup media.
Configuration parameter -mnesia dump_log_update_in_place <bool> controls the
safety level of the function mnesia:dump_log() By
default, Mnesia dumps the transaction log directly into the DAT files. If a
power failure occurs during the dump, this can cause the randomly accessed DAT
files to become corrupt. If the parameter is set to false, Mnesia copies the
DAT files and target the dump to the new temporary files. If the dump is
successful, the temporary files are renamed to their normal DAT suffixes. The
possibility for unrecoverable inconsistencies in the data files becomes much
smaller with this strategy. However, the actual dumping of the transaction log
becomes considerably slower. The system designer must decide whether speed or
safety is the higher priority.
Replicas of type disc_only_copies are only affected by this parameter during
the initial dump of the log file at startup. When designing applications with
very high requirements, it can be appropriate not to use disc_only_copies
tables at all. The reason for this is the random access nature of normal
operating system files. If a node goes down for a reason such as a power
failure, these files can be corrupted because they are not properly closed. The
DAT files for disc_only_copies are updated on a per transaction basis.
If a disaster occurs and the Mnesia database is corrupted, it can be
reconstructed from a backup. Regard this as a last resort, as the backup
contains old data. The data is hopefully consistent, but data is definitely lost
when an old backup is used to restore the database.

Combine Mnesia with SNMP

 Combine Mnesia and SNMP

Many telecommunications applications must be controlled and reconfigured
remotely. It is sometimes an advantage to perform this remote control with an
open protocol such as the Simple Network Management Protocol (SNMP). The
alternatives to this would be the following:
	Not being able to control the application remotely
	Using a proprietary control protocol
	Using a bridge that maps control messages in a proprietary protocol to a
standardized management protocol and conversely

All these approaches have different advantages and disadvantages. Mnesia
applications can easily be opened to the SNMP protocol. A direct 1-to-1 mapping
can be established between Mnesia tables and SNMP tables. This means that a
Mnesia table can be configured to be both a Mnesia table and an SNMP table. A
number of functions to control this behavior are described in the Reference
Manual.

Appendix A: Backup Callback Interface

 mnesia_backup Callback Behavior

%%
%%
%% This module contains one implementation of callback functions
%% used by Mnesia at backup and restore. The user may however
%% write an own module the same interface as mnesia_backup and
%% configure Mnesia so the alternate module performs the actual
%% accesses to the backup media. This means that the user may put
%% the backup on media that Mnesia does not know about, possibly
%% on hosts where Erlang is not running.
%%
%% The OpaqueData argument is never interpreted by other parts of
%% Mnesia. It is the property of this module. Alternate implementations
%% of this module may have different interpretations of OpaqueData.
%% The OpaqueData argument given to open_write/1 and open_read/1
%% are forwarded directly from the user.
%%
%% All functions must return {ok, NewOpaqueData} or {error, Reason}.
%%
%% The NewOpaqueData arguments returned by backup callback functions will
%% be given as input when the next backup callback function is invoked.
%% If any return value does not match {ok, _} the backup will be aborted.
%%
%% The NewOpaqueData arguments returned by restore callback functions will
%% be given as input when the next restore callback function is invoked
%% If any return value does not match {ok, _} the restore will be aborted.
%%
%%

-module(mnesia_backup).

-include_lib("kernel/include/file.hrl").

-export([
	 %% Write access
 open_write/1,
	 write/2,
	 commit_write/1,
	 abort_write/1,

	 %% Read access
 open_read/1,
	 read/1,
	 close_read/1
]).

%%
%% Backup callback interface
-record(backup, {tmp_file, file, file_desc}).

%% Opens backup media for write
%%
%% Returns {ok, OpaqueData} or {error, Reason}
open_write(OpaqueData) ->
 File = OpaqueData,
 Tmp = lists:concat([File,".BUPTMP"]),
 file:delete(Tmp),
 case disk_log:open([{name, make_ref()},
			{file, Tmp},
			{repair, false},
			{linkto, self()}]) of
	{ok, Fd} ->
	 {ok, #backup{tmp_file = Tmp, file = File, file_desc = Fd}};
	{error, Reason} ->
	 {error, Reason}
 end.

%% Writes BackupItems to the backup media
%%
%% Returns {ok, OpaqueData} or {error, Reason}
write(OpaqueData, BackupItems) ->
 B = OpaqueData,
 case disk_log:log_terms(B#backup.file_desc, BackupItems) of
 ok ->
 {ok, B};
 {error, Reason} ->
 abort_write(B),
 {error, Reason}
 end.

%% Closes the backup media after a successful backup
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
commit_write(OpaqueData) ->
 B = OpaqueData,
 case disk_log:sync(B#backup.file_desc) of
 ok ->
 case disk_log:close(B#backup.file_desc) of
 ok ->
 file:delete(B#backup.file),
		 case file:rename(B#backup.tmp_file, B#backup.file) of
		 ok ->
			 {ok, B#backup.file};
		 {error, Reason} ->
			 {error, Reason}
		 end;
 {error, Reason} ->
		 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

%% Closes the backup media after an interrupted backup
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
abort_write(BackupRef) ->
 Res = disk_log:close(BackupRef#backup.file_desc),
 file:delete(BackupRef#backup.tmp_file),
 case Res of
 ok ->
 {ok, BackupRef#backup.file};
 {error, Reason} ->
 {error, Reason}
 end.

%%
%% Restore callback interface

-record(restore, {file, file_desc, cont}).

%% Opens backup media for read
%%
%% Returns {ok, OpaqueData} or {error, Reason}
open_read(OpaqueData) ->
 File = OpaqueData,
 case file:read_file_info(File) of
	{error, Reason} ->
	 {error, Reason};
	_FileInfo -> %% file exists
	 case disk_log:open([{file, File},
				{name, make_ref()},
				{repair, false},
				{mode, read_only},
				{linkto, self()}]) of
		{ok, Fd} ->
		 {ok, #restore{file = File, file_desc = Fd, cont = start}};
		{repaired, Fd, _, {badbytes, 0}} ->
		 {ok, #restore{file = File, file_desc = Fd, cont = start}};
		{repaired, Fd, _, _} ->
		 {ok, #restore{file = File, file_desc = Fd, cont = start}};
		{error, Reason} ->
		 {error, Reason}
	 end
 end.

%% Reads BackupItems from the backup media
%%
%% Returns {ok, OpaqueData, BackupItems} or {error, Reason}
%%
%% BackupItems == [] is interpreted as eof
read(OpaqueData) ->
 R = OpaqueData,
 Fd = R#restore.file_desc,
 case disk_log:chunk(Fd, R#restore.cont) of
 {error, Reason} ->
 {error, {"Possibly truncated", Reason}};
 eof ->
 {ok, R, []};
 {Cont, []} ->
 read(R#restore{cont = Cont});
 {Cont, BackupItems, _BadBytes} ->
 {ok, R#restore{cont = Cont}, BackupItems};
 {Cont, BackupItems} ->
 {ok, R#restore{cont = Cont}, BackupItems}
 end.

%% Closes the backup media after restore
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
close_read(OpaqueData) ->
 R = OpaqueData,
 case disk_log:close(R#restore.file_desc) of
 ok -> {ok, R#restore.file};
 {error, Reason} -> {error, Reason}
 end.

Appendix B: Activity Access Callback Interface

 mnesia_access Callback Behavior

-module(mnesia_frag).

%% Callback functions when accessed within an activity
-export([
	 lock/4,
	 write/5, delete/5, delete_object/5,
	 read/5, match_object/5, all_keys/4,
	 select/5,select/6,select_cont/3,
	 index_match_object/6, index_read/6,
	 foldl/6, foldr/6, table_info/4,
	 first/3, next/4, prev/4, last/3,
	 clear_table/4
]).
%% Callback functions which provides transparent
%% access of fragmented tables from any activity
%% access context.

lock(ActivityId, Opaque, {table , Tab}, LockKind) ->
 case frag_names(Tab) of
	[Tab] ->
	 mnesia:lock(ActivityId, Opaque, {table, Tab}, LockKind);
	Frags ->
	 DeepNs = [mnesia:lock(ActivityId, Opaque, {table, F}, LockKind) ||
			 F <- Frags],
	 mnesia_lib:uniq(lists:append(DeepNs))
 end;

lock(ActivityId, Opaque, LockItem, LockKind) ->
 mnesia:lock(ActivityId, Opaque, LockItem, LockKind).

write(ActivityId, Opaque, Tab, Rec, LockKind) ->
 Frag = record_to_frag_name(Tab, Rec),
 mnesia:write(ActivityId, Opaque, Frag, Rec, LockKind).

delete(ActivityId, Opaque, Tab, Key, LockKind) ->
 Frag = key_to_frag_name(Tab, Key),
 mnesia:delete(ActivityId, Opaque, Frag, Key, LockKind).

delete_object(ActivityId, Opaque, Tab, Rec, LockKind) ->
 Frag = record_to_frag_name(Tab, Rec),
 mnesia:delete_object(ActivityId, Opaque, Frag, Rec, LockKind).

read(ActivityId, Opaque, Tab, Key, LockKind) ->
 Frag = key_to_frag_name(Tab, Key),
 mnesia:read(ActivityId, Opaque, Frag, Key, LockKind).

match_object(ActivityId, Opaque, Tab, HeadPat, LockKind) ->
 MatchSpec = [{HeadPat, [], ['$_']}],
 select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, LockKind) ->
 do_select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind) ->
 init_select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind).

all_keys(ActivityId, Opaque, Tab, LockKind) ->
 Match = [mnesia:all_keys(ActivityId, Opaque, Frag, LockKind)
	 || Frag <- frag_names(Tab)],
 lists:append(Match).

clear_table(ActivityId, Opaque, Tab, Obj) ->
 [mnesia:clear_table(ActivityId, Opaque, Frag, Obj) || Frag <- frag_names(Tab)],
 ok.

index_match_object(ActivityId, Opaque, Tab, Pat, Attr, LockKind) ->
 Match =
	[mnesia:index_match_object(ActivityId, Opaque, Frag, Pat, Attr, LockKind)
	 || Frag <- frag_names(Tab)],
 lists:append(Match).

index_read(ActivityId, Opaque, Tab, Key, Attr, LockKind) ->
 Match =
	[mnesia:index_read(ActivityId, Opaque, Frag, Key, Attr, LockKind)
	 || Frag <- frag_names(Tab)],
 lists:append(Match).

foldl(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
 Fun2 = fun(Frag, A) ->
		 mnesia:foldl(ActivityId, Opaque, Fun, A, Frag, LockKind)
	 end,
 lists:foldl(Fun2, Acc, frag_names(Tab)).

foldr(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
 Fun2 = fun(Frag, A) ->
		 mnesia:foldr(ActivityId, Opaque, Fun, A, Frag, LockKind)
	 end,
 lists:foldr(Fun2, Acc, frag_names(Tab)).

table_info(ActivityId, Opaque, {Tab, Key}, Item) ->
 Frag = key_to_frag_name(Tab, Key),
 table_info2(ActivityId, Opaque, Tab, Frag, Item);
table_info(ActivityId, Opaque, Tab, Item) ->
 table_info2(ActivityId, Opaque, Tab, Tab, Item).

table_info2(ActivityId, Opaque, Tab, Frag, Item) ->
 case Item of
	size ->
	 SumFun = fun({_, Size}, Acc) -> Acc + Size end,
	 lists:foldl(SumFun, 0, frag_size(ActivityId, Opaque, Tab));
	memory ->
	 SumFun = fun({_, Size}, Acc) -> Acc + Size end,
	 lists:foldl(SumFun, 0, frag_memory(ActivityId, Opaque, Tab));
	base_table ->
	 lookup_prop(Tab, base_table);
	node_pool ->
	 lookup_prop(Tab, node_pool);
	n_fragments ->
	 FH = lookup_frag_hash(Tab),
	 FH#frag_state.n_fragments;
	foreign_key ->
	 FH = lookup_frag_hash(Tab),
	 FH#frag_state.foreign_key;
	foreigners ->
	 lookup_foreigners(Tab);
	n_ram_copies ->
	 length(val({Tab, ram_copies}));
	n_disc_copies ->
	 length(val({Tab, disc_copies}));
	n_disc_only_copies ->
	 length(val({Tab, disc_only_copies}));
	n_external_copies ->
	 length(val({Tab, external_copies}));

	frag_names ->
	 frag_names(Tab);
	frag_dist ->
	 frag_dist(Tab);
	frag_size ->
	 frag_size(ActivityId, Opaque, Tab);
	frag_memory ->
	 frag_memory(ActivityId, Opaque, Tab);
	_ ->
	 mnesia:table_info(ActivityId, Opaque, Frag, Item)
 end.

first(ActivityId, Opaque, Tab) ->
 case ?catch_val({Tab, frag_hash}) of
	{'EXIT', _} ->
	 mnesia:first(ActivityId, Opaque, Tab);
	FH ->
	 FirstFrag = Tab,
	 case mnesia:first(ActivityId, Opaque, FirstFrag) of
		'$end_of_table' ->
		 search_first(ActivityId, Opaque, Tab, 1, FH);
		Next ->
		 Next
	 end
 end.

search_first(ActivityId, Opaque, Tab, N, FH) when N < FH#frag_state.n_fragments ->
 NextN = N + 1,
 NextFrag = n_to_frag_name(Tab, NextN),
 case mnesia:first(ActivityId, Opaque, NextFrag) of
	'$end_of_table' ->
	 search_first(ActivityId, Opaque, Tab, NextN, FH);
	Next ->
	 Next
 end;
search_first(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

last(ActivityId, Opaque, Tab) ->
 case ?catch_val({Tab, frag_hash}) of
	{'EXIT', _} ->
	 mnesia:last(ActivityId, Opaque, Tab);
	FH ->
	 LastN = FH#frag_state.n_fragments,
	 search_last(ActivityId, Opaque, Tab, LastN, FH)
 end.

search_last(ActivityId, Opaque, Tab, N, FH) when N >= 1 ->
 Frag = n_to_frag_name(Tab, N),
 case mnesia:last(ActivityId, Opaque, Frag) of
	'$end_of_table' ->
	 PrevN = N - 1,
	 search_last(ActivityId, Opaque, Tab, PrevN, FH);
	Prev ->
	 Prev
 end;
search_last(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

prev(ActivityId, Opaque, Tab, Key) ->
 case ?catch_val({Tab, frag_hash}) of
	{'EXIT', _} ->
	 mnesia:prev(ActivityId, Opaque, Tab, Key);
	FH ->
	 N = key_to_n(FH, Key),
	 Frag = n_to_frag_name(Tab, N),
	 case mnesia:prev(ActivityId, Opaque, Frag, Key) of
		'$end_of_table' ->
		 search_prev(ActivityId, Opaque, Tab, N);
		Prev ->
		 Prev
	 end
 end.

search_prev(ActivityId, Opaque, Tab, N) when N > 1 ->
 PrevN = N - 1,
 PrevFrag = n_to_frag_name(Tab, PrevN),
 case mnesia:last(ActivityId, Opaque, PrevFrag) of
	'$end_of_table' ->
	 search_prev(ActivityId, Opaque, Tab, PrevN);
	Prev ->
	 Prev
 end;
search_prev(_ActivityId, _Opaque, _Tab, _N) ->
 '$end_of_table'.

next(ActivityId, Opaque, Tab, Key) ->
 case ?catch_val({Tab, frag_hash}) of
	{'EXIT', _} ->
	 mnesia:next(ActivityId, Opaque, Tab, Key);
	FH ->
	 N = key_to_n(FH, Key),
	 Frag = n_to_frag_name(Tab, N),
	 case mnesia:next(ActivityId, Opaque, Frag, Key) of
		'$end_of_table' ->
		 search_next(ActivityId, Opaque, Tab, N, FH);
		Prev ->
		 Prev
	 end
 end.

search_next(ActivityId, Opaque, Tab, N, FH) when N < FH#frag_state.n_fragments ->
 NextN = N + 1,
 NextFrag = n_to_frag_name(Tab, NextN),
 case mnesia:first(ActivityId, Opaque, NextFrag) of
	'$end_of_table' ->
	 search_next(ActivityId, Opaque, Tab, NextN, FH);
	Next ->
	 Next
 end;
search_next(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

Appendix C: Fragmented Table Hashing Callback Interface

 mnesia_frag_hash Callback Behavior

-module(mnesia_frag_hash).
-compile([{nowarn_deprecated_function, [{erlang,phash,2}]}]).

%% Fragmented Table Hashing callback functions
-export([
	 init_state/2,
	 add_frag/1,
	 del_frag/1,
	 key_to_frag_number/2,
	 match_spec_to_frag_numbers/2
]).
-record(hash_state,
	{n_fragments,
	 next_n_to_split,
	 n_doubles,
	 function}).

%%%
-spec init_state(Tab, State) -> NewState when
 Tab :: atom(),
 State :: term(),
 NewState :: term().
init_state(_Tab, State) when State == undefined ->
 #hash_state{n_fragments = 1,
		next_n_to_split = 1,
		n_doubles = 0,
		function = phash2}.

convert_old_state({hash_state, N, P, L}) ->
 #hash_state{n_fragments = N,
		next_n_to_split = P,
		n_doubles = L,
		function = phash}.

%%%

-spec add_frag(State :: term()) -> {NewState, IterFrags, AdditionalLockFrags} when
 NewState :: term(),
 IterFrags :: [integer()],
 AdditionalLockFrags :: [integer()].
add_frag(#hash_state{next_n_to_split = SplitN, n_doubles = L, n_fragments = N} = State) ->
 P = SplitN + 1,
 NewN = N + 1,
 State2 = case power2(L) + 1 of
		 P2 when P2 == P ->
		 State#hash_state{n_fragments = NewN,
				 n_doubles = L + 1,
				 next_n_to_split = 1};
		 _ ->
		 State#hash_state{n_fragments = NewN,
				 next_n_to_split = P}
	 end,
 {State2, [SplitN], [NewN]};
add_frag(OldState) ->
 State = convert_old_state(OldState),
 add_frag(State).

%%%

-spec del_frag(State :: term()) -> {NewState, IterFrags, AdditionalLockFrags} when
 NewState :: term(),
 IterFrags :: [integer()],
 AdditionalLockFrags :: [integer()].
del_frag(#hash_state{next_n_to_split = SplitN, n_doubles = L, n_fragments = N} = State) ->
 P = SplitN - 1,
 if
	P < 1 ->
	 L2 = L - 1,
	 MergeN = power2(L2),
	 State2 = State#hash_state{n_fragments = N - 1,
				 next_n_to_split = MergeN,
				 n_doubles = L2},
	 {State2, [N], [MergeN]};
	true ->
	 MergeN = P,
	 State2 = State#hash_state{n_fragments = N - 1,
				 next_n_to_split = MergeN},
	 {State2, [N], [MergeN]}
	end;
del_frag(OldState) ->
 State = convert_old_state(OldState),
 del_frag(State).

%%%
-spec key_to_frag_number(State, Key) -> Fragnum when
 State :: term(),
 Key :: term(),
 Fragnum :: integer().
key_to_frag_number(#hash_state{function = phash, n_fragments = N, n_doubles = L}, Key) ->
 A = erlang:phash(Key, power2(L + 1)),
 if
	A > N ->
	 A - power2(L);
	true ->
	 A
 end;
key_to_frag_number(#hash_state{function = phash2, n_fragments = N, n_doubles = L}, Key) ->
 A = erlang:phash2(Key, power2(L + 1)) + 1,
 if
	A > N ->
	 A - power2(L);
	true ->
	 A
 end;
key_to_frag_number(OldState, Key) ->
 State = convert_old_state(OldState),
 key_to_frag_number(State, Key).

%%%
-spec match_spec_to_frag_numbers(State, MatchSpec) -> Fragnums when
 State :: term(),
 MatchSpec :: ets:match_spec(),
 Fragnums :: [integer()].
match_spec_to_frag_numbers(#hash_state{n_fragments = N} = State, MatchSpec) ->
 case MatchSpec of
	[{HeadPat, _, _}] when is_tuple(HeadPat), tuple_size(HeadPat) > 2 ->
	 KeyPat = element(2, HeadPat),
	 case has_var(KeyPat) of
		false ->
		 [key_to_frag_number(State, KeyPat)];
		true ->
		 lists:seq(1, N)
	 end;
	_ ->
	 lists:seq(1, N)
 end;
match_spec_to_frag_numbers(OldState, MatchSpec) ->
 State = convert_old_state(OldState),
 match_spec_to_frag_numbers(State, MatchSpec).

power2(Y) ->
 1 bsl Y. % trunc(math:pow(2, Y)).

mnesia

A distributed key-value DBMS
The following are some of the most important and attractive capabilities
provided by Mnesia:
	A relational/object hybrid data model that is suitable for telecommunications
applications.
	A DBMS query language, Query List Comprehension (QLC) as an add-on library.
	Persistence. Tables can be coherently kept on disc and in the main memory.
	Replication. Tables can be replicated at several nodes.
	Atomic transactions. A series of table manipulation operations can be grouped
into a single atomic transaction.
	Location transparency. Programs can be written without knowledge of the actual
data location.
	Extremely fast real-time data searches.
	Schema manipulation routines. The DBMS can be reconfigured at runtime without
stopping the system.

This Reference Manual describes the Mnesia API. This includes functions that
define and manipulate Mnesia tables.
All functions in this Reference Manual can be used in any combination with
queries using the list comprehension notation. For information about the query
notation, see the qlc manual page in STDLIB.
Data in Mnesia is organized as a set of tables. Each table has a name that must
be an atom. Each table is made up of Erlang records. The user is responsible for
the record definitions. Each table also has a set of properties. The following
are some of the properties that are associated with each table:
	type. Each table can have set, ordered_set, or bag semantics. Notice
that currently ordered_set is not supported for disc_only_copies.
If a table is of type set, each key leads to either one or zero records.
If a new item is inserted with the same key as an existing record, the old
record is overwritten. However, if a table is of type bag, each key can map
to several records. All records in type bag tables are unique, only the keys
can be duplicated.

	record_name. All records stored in a table must have the same name. The
records must be instances of the same record type.

	ram_copies. A table can be replicated on a number of Erlang nodes. Property
ram_copies specifies a list of Erlang nodes where RAM copies are kept. These
copies can be dumped to disc at regular intervals. However, updates to these
copies are not written to disc on a transaction basis.

	disc_copies. This property specifies a list of Erlang nodes where the table
is kept in RAM and on disc. All updates of the table are performed in the
actual table and are also logged to disc. If a table is of type disc_copies
at a certain node, the entire table is resident in RAM memory and on disc.
Each transaction performed on the table is appended to a LOG file and
written into the RAM table.

	disc_only_copies. Some, or all, table replicas can be kept on disc only.
These replicas are considerably slower than the RAM-based replicas.

	index. This is a list of attribute names, or integers, which specify the
tuple positions on which Mnesia is to build and maintain an extra index table.

	local_content. When an application requires tables whose contents are local
to each node, local_content tables can be used. The table name is known to
all Mnesia nodes, but its content is unique on each node. This means that
access to such a table must be done locally. Set field local_content to
true to enable the local_content behavior. Default is false.

	majority. This attribute is true or false; default is false. When
true, a majority of the table replicas must be available for an update to
succeed. Majority checking can be enabled on tables with mission-critical
data, where it is vital to avoid inconsistencies because of network splits.

	snmp. Each (set-based) Mnesia table can be automatically turned into a
Simple Network Management Protocol (SNMP) ordered table as well. This property
specifies the types of the SNMP keys.

	attributes. The names of the attributes for the records that are inserted in
the table.

For information about the complete set of table properties and their details,
see mnesia:create_table/2.
This Reference Manual uses a table of persons to illustrate various examples.
The following record definition is assumed:
-record(person, {name,
 age = 0,
 address = unknown,
 salary = 0,
 children = []}),
The first record attribute is the primary key, or key for short.
The function descriptions are sorted in alphabetical order. It is recommended to
start to read about mnesia:create_table/2, mnesia:lock/2, and
 mnesia:activity/4 before you continue and learn about the rest.
Writing or deleting in transaction-context creates a local copy of each modified
record during the transaction. During iteration, that is, mnesia:foldl/4,
mnesia:foldr/4, mnesia:next/2, mnesia:prev/2, and mnesia:snmp_get_next_index/2, Mnesia
compensates for every written or deleted record, which can reduce the
performance.
If possible, avoid writing or deleting records in the same transaction before
iterating over the table.

 Configuration Parameters

Mnesia reads the following application configuration parameters:
	-mnesia access_module Module. The name of the Mnesia activity access
callback module. Default is mnesia.

	-mnesia auto_repair true | false. This flag controls if Mnesia automatically
tries to repair files that have not been properly closed. Default is true.

	-mnesia backup_module Module. The name of the Mnesia backup callback module.
Default is mnesia_backup.

	-mnesia debug Level. Controls the debug level of Mnesia. The possible values
are as follows:
	none - No trace outputs. This is the default.

	verbose - Activates tracing of important debug events. These events
generate {mnesia_info, Format, Args} system events. Processes can
subscribe to these events with mnesia:subscribe/1. The events are always
sent to the Mnesia event handler.

	debug - Activates all events at the verbose level plus full trace of
all debug events. These debug events generate {mnesia_info, Format, Args}
system events. Processes can subscribe to these events with
mnesia:subscribe/1. The events are always sent to the Mnesia event
handler. On this debug level, the Mnesia event handler starts subscribing to
updates in the schema table.

	trace - Activates all events at the debug level. On this level, the
Mnesia event handler starts subscribing to updates on all Mnesia tables.
This level is intended only for debugging small toy systems, as many large
events can be generated.

	false - An alias for none.

	true - An alias for debug.

	-mnesia core_dir Directory. The name of the directory where Mnesia core
files is stored, or false. Setting it implies that also RAM-only nodes
generate a core file if a crash occurs.

	-mnesia dc_dump_limit Number. Controls how often disc_copies tables are
dumped from memory. Tables are dumped when
filesize(Log) > (filesize(Tab)/Dc_dump_limit). Lower values reduce CPU
overhead but increase disk space and startup times. Default is 4.

	-mnesia dir Directory. The name of the directory where all Mnesia data is
stored. The directory name must be unique for the current node. Two nodes must
never share the the same Mnesia directory. The results are unpredictable.

	-mnesia dump_disc_copies_at_startup true | false. If set to false, this
disables the dumping of disc_copies tables during startup while tables are
being loaded. The default is true.

	-mnesia dump_log_load_regulation true | false. Controls if log dumps are to
be performed as fast as possible, or if the dumper is to do its own load
regulation. Default is false.
This feature is temporary and will be removed in a future release

	-mnesia dump_log_update_in_place true | false. Controls if log dumps are
performed on a copy of the original data file, or if the log dump is performed
on the original data file. Default is true

	 -mnesia dump_log_write_threshold Max.
Max is an integer that specifies the maximum number of writes allowed to the
transaction log before a new dump of the log is performed. Default is 1000
log writes.

	 -mnesia dump_log_time_threshold Max. Max
is an integer that specifies the dump log interval in milliseconds. Default is
3 minutes. If a dump has not been performed within dump_log_time_threshold
milliseconds, a new dump is performed regardless of the number of writes
performed.

	-mnesia event_module Module. The name of the Mnesia event handler callback
module. Default is mnesia_event.

	-mnesia extra_db_nodes Nodes specifies a list of nodes, in addition to the
ones found in the schema, with which Mnesia is also to establish contact.
Default is [] (empty list).

	-mnesia fallback_error_function {UserModule, UserFunc}. Specifies a
user-supplied callback function, which is called if a fallback is installed
and Mnesia goes down on another node. Mnesia calls the function with one
argument, the name of the dying node, for example,
UserModule:UserFunc(DyingNode). Mnesia must be restarted, otherwise the
database can be inconsistent. The default behavior is to terminate Mnesia.

	-mnesia max_wait_for_decision Timeout. Specifies how long Mnesia waits for
other nodes to share their knowledge about the outcome of an unclear
transaction. By default, Timeout is set to the atom infinity. This implies
that if Mnesia upon startup detects a "heavyweight transaction" whose outcome
is unclear, the local Mnesia waits until Mnesia is started on some (in the
worst case all) of the other nodes that were involved in the interrupted
transaction. This is a rare situation, but if it occurs, Mnesia does not guess
if the transaction on the other nodes was committed or terminated. Mnesia
waits until it knows the outcome and then acts accordingly.
If Timeout is set to an integer value in milliseconds, Mnesia forces
"heavyweight transactions" to be finished, even if the outcome of the
transaction for the moment is unclear. After Timeout milliseconds, Mnesia
commits or terminates the transaction and continues with the startup. This can
lead to a situation where the transaction is committed on some nodes and
terminated on other nodes. If the transaction is a schema transaction, the
inconsistency can be fatal.

	-mnesia no_table_loaders NUMBER. Specifies the number of parallel table
loaders during start. More loaders can be good if the network latency is high
or if many tables contain few records. Default is 2.

	-mnesia send_compressed Level. Specifies the level of compression to be used
when copying a table from the local node to another one. Default is 0.
Level must be an integer in the interval [0, 9], where 0 means no
compression and 9 means maximum compression. Before setting it to a non-zero
value, ensure that the remote nodes understand this configuration.

	-mnesia max_transfer_size Number. Specifies the estimated size in bytes of a
single packet of data to be used when copying a table from the local node to
another one. Default is 64000.

	-mnesia schema_location Loc. Controls where Mnesia looks for its schema.
Parameter Loc can be one of the following atoms:
	disc - Mandatory disc. The schema is assumed to be located in the
Mnesia directory. If the schema cannot be found, Mnesia refuses to start.
This is the old behavior.

	ram - Mandatory RAM. The schema resides in RAM only. At startup, a
tiny new schema is generated. This default schema only contains the
definition of the schema table and only resides on the local node. Since no
other nodes are found in the default schema, configuration parameter
extra_db_nodes must be used to let the node share its table definitions
with other nodes.
Parameter extra_db_nodes can also be used on disc based nodes.

	opt_disc - Optional disc. The schema can reside on disc or in RAM. If
the schema is found on disc, Mnesia starts as a disc-based node and the
storage type of the schema table is disc_copies. If no schema is found on
disc, Mnesia starts as a disc-less node and the storage type of the schema
table is ram_copies. Default value for the application parameter is
opt_disc.

First, the SASL application parameters are checked, then the command-line flags
are checked, and finally, the default value is chosen.

 See Also

application, dets, disk_log, ets, qlc

 Summary

 Types

 mnesia_frag_hash - mnesia v4.23.2

mnesia_frag_hash

Defines mnesia_frag_hash callback behavi