

 erl_interface

 v5.5.2

 [image: Logo]

 Table of contents

 	Erl_interface Release Notes

 	User's Guides

 	Erl_Interface User's Guide

 	Command Line Tools

 	erl_call

 	References

 	ei

 	ei_connect

 	ei_global

Erl_interface Release Notes

This document describes the changes made to the Erl_interface application.

 Erl_Interface 5.5.2

 Improvements and New Features

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since terms that have a representation on the external term format larger than 2 GB cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.5.1

 Fixed Bugs and Malfunctions

	Fix bug where the system installed openssl/md5.h would be confused with the vendored md5.h.
Own Id: OTP-18931 Aux Id: GH-7987 PR-7989

 Erl_Interface 5.5

 Fixed Bugs and Malfunctions

	Fixed some benign compile warnings on Windows.
Own Id: OTP-18895

 Improvements and New Features

	Add support to encode maps with ei_x_format.
Own Id: OTP-18764 Aux Id: PR-7602

	Replaced old md5 implementation with an implementation from OpenSSL.
Own Id: OTP-18877

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.4

 Improvements and New Features

	As announced since the release of OTP 24, support for:
	version 4 node container types in the external term format are now
mandatory. That is, references supporting up to 5 32-bit integer
identifiers, and process and port identifiers with support for 64-bit data
storage. The distribution flag
DFLAG_V4_NC is therefor now
also mandatory. OTP has since OTP 24 supported this. Also note that the
external format produced by term_to_binary() and term_to_iovec() will
unconditionally produce pids, ports, and references supporting this larger
format.
	the new link protocol
introduced in OTP 23.3 is now mandatory. The distribution flag
DFLAG_UNLINK_ID is
therefor now also mandatory.

Due to the above, OTP 26 nodes will refuse to connect to OTP nodes from
releases prior to OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18140 Aux Id: PR-6072

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.3.2.1

 Improvements and New Features

	Replaced old md5 implementation with an implementation from OpenSSL.
Own Id: OTP-18877

 Erl_Interface 5.3.2

 Fixed Bugs and Malfunctions

	Fixed configure tests for a few ARM-specific instructions, which prevented the
emulator from being built on some platforms.
Own Id: OTP-18554

 Erl_Interface 5.3.1

 Fixed Bugs and Malfunctions

	Accept connection setup from OTP 23 and 24 nodes that are not using epmd.
Own Id: OTP-18404 Aux Id: GH-6595, PR-6625

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.3

 Fixed Bugs and Malfunctions

	erl_call no longer links against nsl on platforms where gethostbyname is
provided by libc.
Own Id: OTP-17846 Aux Id: PR-5558

 Improvements and New Features

	The following distribution flags are now mandatory: DFLAG_BIT_BINARIES,
DFLAG_EXPORT_PTR_TAG, DFLAG_MAP_TAGS, DFLAG_NEW_FLOATS, and
DFLAG_FUN_TAGS. This mainly concerns libraries or application that implement
the distribution protocol themselves.
Own Id: OTP-17318 Aux Id: PR-4972

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Removed use of node creation value zero as a wildcard. Also prevent zero from
being used as creation by erl_interface and jinterface nodes.
Own Id: OTP-17682 Aux Id: PR-5347

	Changed creation arguments, of function ei_connect_init and friends, from
type short to unsigned int for full 32-bit range.
Own Id: OTP-17802 Aux Id: PR-5347

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.2.2.1

 Improvements and New Features

	Replaced old md5 implementation with an implementation from OpenSSL.
Own Id: OTP-18877

 Erl_Interface 5.2.2

 Fixed Bugs and Malfunctions

	Avoid attempt build dynamic libs if config option --enable-ei-dynamic-lib is
not given.
Own Id: OTP-17987 Aux Id: GH-5781, PR-5787

 Erl_Interface 5.2.1

 Fixed Bugs and Malfunctions

	Fix compile error regarding gethostbyaddr_r on Android. Error introduced in
OTP 24.3.
Own Id: OTP-17975 Aux Id: PR-5763

 Erl_Interface 5.2

 Improvements and New Features

	Add --enable-ei-dynamic-lib configure option that will make erl_interface
also release a dynamic library version of libei.
Own Id: OTP-17883 Aux Id: PR-5601 ERIERL-724

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.1

 Improvements and New Features

	erl_call now prints an error when the arguments cannot be parsed.
Own Id: OTP-17626

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 5.0.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Erl_Interface 5.0

 Fixed Bugs and Malfunctions

	Two options have been added to erl_call. The -fetch_stdout option fetches
stdout data resulting from the code invoked by erl_call. The -fetch_stdout
option disables printing of the result term. In order to implement the first
of these two options a new function called ei_xrpc_from has been added to
erl_interface. For details see the erl_call documentation and
erl_interface documentation.
Own Id: OTP-17132

 Improvements and New Features

	Accept 64-bit process identifiers from external nodes. This is the first step
in an upgrade path toward using 64-bit pids in a future OTP release.
Own Id: OTP-16720 Aux Id: PR-2680

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	The registry functionality part of erl_interface has been removed. It was
as of OTP 23 deprecated and scheduled for removal in OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16970

	Accept references up to a size of 160-bits from remote nodes. This is the
first step in an upgrade path toward using references up to 160-bits in a
future OTP release.
Own Id: OTP-17005 Aux Id: OTP-16718

	Accept 64-bit port identifiers from external nodes. This is the first step in
an upgrade path toward using 64-bit port identifiers in a future OTP release.
Own Id: OTP-17007

	Support the new link protocol in order to be able to phase out the old link
protocol in the future. erl_interface does not support setting up or
removing links from the erl_interface side, so the bug present with the old
protocol did not effect erl_interface. This since both participants of a
link simultaneously needed to operate on the link in order to trigger the bug.
Own Id: OTP-17270 Aux Id: OTP-17127

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 4.0.3.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 4.0.3

 Fixed Bugs and Malfunctions

	Fix bug where sending of large data with eisend*/ei_rpc with infinite
timeout could fail when the tcp buffer becomes full.
Fault has existed since OTP-21.
Own Id: OTP-17358 Aux Id: ERLERL-610

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 4.0.2.1

 Fixed Bugs and Malfunctions

	Fix bug where sending of large data with eisend*/ei_rpc with infinite
timeout could fail when the tcp buffer becomes full.
Fault has existed since OTP-21.
Own Id: OTP-17358 Aux Id: ERLERL-610

 Erl_Interface 4.0.2

 Fixed Bugs and Malfunctions

	Integers outside of the range [-(1 bsl 32) - 1, (1 bsl 32) -1] were
previously intended to be printed in an internal bignum format by
ei_print_term() and ei_s_print_term(). Unfortunately the implementation
has been buggy since OTP R13B02 and since then produced results with random
content which also could crash the calling program.
This fix replaces the printing of the internal format with printing in
hexadecimal form and extend the range for printing in decimal form. Currently
integers in the range [-(1 bsl 64), (1 bsl 64)] are printed in decimal form
and integers outside of this range in Erlang hexadecimal form.
Own Id: OTP-17099 Aux Id: ERIERL-585

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 4.0.1

 Fixed Bugs and Malfunctions

	Fix erl_interface on windows to be compiled with correct flags to make
internal primitives reentrant.
Own Id: OTP-16740

	Fixed ei_get_type to set *size to zero for floats, pids, port and refs
according to documentation.
Own Id: OTP-16753 Aux Id: ERL-1288, PR-2678

	Fix ei_connect when using a dynamic node name to force usage of distribution
version 6.
This bug caused erl_call -R -address to not work properly.
Own Id: OTP-16786

 Improvements and New Features

	Changes in order to build on the Haiku operating system.
Thanks to Calvin Buckley
Own Id: OTP-16707 Aux Id: PR-2638

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 4.0

 Fixed Bugs and Malfunctions

	Fix various compiler warnings on 64-bit Windows.
Own Id: OTP-15800

	erl_call will now work properly on systems that cannot resolve their own
hostname.
Own Id: OTP-16604

	Various bug fixes:
	Internal error checking in various functions.
	ei_rpc() accepted any 2-tuple message as an rpc
response.
	ei_decode_ref() now refuse to write outside of
allocated memory in case a huge reference is decoded.
	ei_decode_ei_term() now reports the same term
types as ei_get_type().

Own Id: OTP-16623

 Improvements and New Features

	A client node can receive its node name dynamically from the node that it
first connects to. This featured can by used by
	starting with erl -sname undefined
	erl_interface functions ei_connect_init and friends
	erl_call -R

Own Id: OTP-13812

	Increased size of node incarnation numbers (aka "creation"), from 2 bits to 32
bits. This will reduce the risk of pids/ports/refs, from different node
incarnation with the same name, being mixed up.
Own Id: OTP-15603

	Fix various build issues when compiling Erlang/OTP to the IBM AIX platform.
Own Id: OTP-15866 Aux Id: PR-2110

	Improved node connection setup handshake protocol. Made possible to agree on
protocol version without dependence on epmd or other prior knowledge of peer
node version. Also added exchange of node incarnation ("creation") values and
expanded the distribution capability flag field from 32 to 64 bits.
Own Id: OTP-16229

	New erl_call option -address [Host]:Port to connect directly to a node
without being dependent on epmd to resolve the node name.
Own Id: OTP-16251

	As announced in OTP 22.0, the deprecated parts of erl_interface have now
been removed (essentially all C functions with prefix erl_).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16328

	As announced in OTP 22.0, the previously existing limited support for VxWorks
has now been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16329 Aux Id: OTP-15621

	New function ei_connect_host_port and friends to allow node connection
without being dependent on epmd for node name resolution.
Own Id: OTP-16496 Aux Id: OTP-16251

	A number of new functions have been added to the erl_interface API:
	ei_cmp_pids()
	ei_cmp_ports()
	ei_cmp_refs()
	ei_decode_iodata()
	ei_make_pid()
	ei_make_ref()

Own Id: OTP-16594

	Added a -timeout option to erl_call.
Own Id: OTP-16624

	The erl_interface registry functionality is deprecated as of OTP 23, and
will be removed in OTP 24. Reasonably new gcc compilers will issue
deprecation warnings when using this functionality. In order to disable these
warnings, define the macro EI_NO_DEPR_WARN.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16630

	Documentation improvements.
Own Id: OTP-16633

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 3.13.2.2

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 3.13.2.1

 Fixed Bugs and Malfunctions

	Fix bug where sending of large data with eisend*/ei_rpc with infinite
timeout could fail when the tcp buffer becomes full.
Fault has existed since OTP-21.
Own Id: OTP-17358 Aux Id: ERLERL-610

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 3.13.2.0.1

 Fixed Bugs and Malfunctions

	Fix bug where sending of large data with eisend*/ei_rpc with infinite
timeout could fail when the tcp buffer becomes full.
Fault has existed since OTP-21.
Own Id: OTP-17358 Aux Id: ERIERL-610

 Erl_Interface 3.13.2

 Fixed Bugs and Malfunctions

	Fix link error "multiple definition of `ei_default_socket_callbacks'" for gcc
version 10 or when built with gcc option -fno-common. Error exists since
OTP-21.3.
Own Id: OTP-16412 Aux Id: PR-2503

 Erl_Interface 3.13.1

 Fixed Bugs and Malfunctions

	Fix user supplied socket implementation for Windows and other platforms
without gcc atomics.
Own Id: OTP-16308

 Erl_Interface 3.13

 Fixed Bugs and Malfunctions

	Fix bugs in ei_print_term for binaries and bit strings causing incorrect
output.
Own Id: OTP-15917

	Fixed bug in ei_decode_fun for very old fun encoding format. Bug exist since
OTP 22.0.
Own Id: OTP-15996

 Improvements and New Features

	ei_print_term() now supports printing of maps and funs.
Own Id: OTP-15814

 Erl_Interface 3.12

 Fixed Bugs and Malfunctions

	The vxworks configure has been updated to respect the environment CFLAGS.
Own Id: OTP-15773

 Improvements and New Features

	Minor adjustments made to build system for parallel configure.
Own Id: OTP-15340 Aux Id: OTP-14625

	The limited support for VxWorks is deprecated as of OTP 22, and will be
removed in OTP 23.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15621

	The old legacy erl_interface library (functions with prefix erl_) is
deprecated as of OTP 22, and will be removed in OTP 23. This does not apply to
the ei library. Reasonably new gcc compilers will issue deprecation
warnings. In order to disable these warnings, define the macro
EI_NO_DEPR_WARN.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15622

	Added support to receive, decode, encode and send both bit strings and export
funs (fun M:F/A).
New functions ei_decode_bitstring and ei_encode_bitstring have been added
in order to decode and encode bit strings where the number of bits is not
necessary divisible by 8 (a whole number of bytes). The existing functions
ei_decode_fun and ei_encode_fun can now also handle export funs.
Before this change, bit strings and export funs sent to an erl_interface
c-node were encoded using an undocumented fallback tuple format. For bit
strings {Binary,BitsInLastByte} and for export funs {M,F}. Existing c-node
implementations expecting these tuples must be changed to instead use
ei_decode_bitstring and ei_decode_fun. As a temporary solution you can
also build erl_interface with macro EI_COMPAT=21 or call
ei_set_compat_rel(21) to receive the old fallback tuples.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15712 Aux Id: OTP-15774

 Erl_Interface 3.11.3.2

 Fixed Bugs and Malfunctions

	Fix bug where sending of large data with eisend*/ei_rpc with infinite
timeout could fail when the tcp buffer becomes full.
Fault has existed since OTP-21.
Own Id: OTP-17358 Aux Id: ERLERL-610

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 3.11.3.1

 Fixed Bugs and Malfunctions

	Fix link error "multiple definition of `ei_default_socket_callbacks'" for gcc
version 10 or when built with gcc option -fno-common. Error exists since
OTP-21.3.
Own Id: OTP-16412 Aux Id: PR-2503

 Known Bugs and Problems

	The ei API for decoding/encoding terms is not fully 64-bit compatible since
terms that have a representation on the external term format larger than 2 GB
cannot be handled.
Own Id: OTP-16607 Aux Id: OTP-16608

 Erl_Interface 3.11.3

 Fixed Bugs and Malfunctions

	erl_interface/ei refused to use node names with an alive name (the part of
the node name preceding the @ sign) longer than 63 characters and a host name
longer than 64 characters. The total amount of characters allowed in a node
name (alivename@hostname) was thus limited to 128 characters. These limits
applied both to the own node name as well as node names of other nodes.
Ordinary Erlang nodes limit the node name length to 256 characters, which
meant that you could not communicate with certain Erlang nodes due to their
node name used.
erl_interface/ei now allow the total amount of characters in a node name
to be up to 256 characters. These characters may be distributed between alive
name and host name in whatever way needed. That is, the maximum amount of
characters in the alive name may be 254 and the maximum amount of characters
in the host name may be 254, but in total the node name must not exceed 256
characters.
Own Id: OTP-15781 Aux Id: ERIERL-356

 Erl_Interface 3.11.2.1

 Fixed Bugs and Malfunctions

	erl_interface/ei refused to use node names with an alive name (the part of
the node name preceding the @ sign) longer than 63 characters and a host name
longer than 64 characters. The total amount of characters allowed in a node
name (alivename@hostname) was thus limited to 128 characters. These limits
applied both to the own node name as well as node names of other nodes.
Ordinary Erlang nodes limit the node name length to 256 characters, which
meant that you could not communicate with certain Erlang nodes due to their
node name used.
erl_interface/ei now allow the total amount of characters in a node name
to be up to 256 characters. These characters may be distributed between alive
name and host name in whatever way needed. That is, the maximum amount of
characters in the alive name may be 254 and the maximum amount of characters
in the host name may be 254, but in total the node name must not exceed 256
characters.
Own Id: OTP-15781 Aux Id: ERIERL-356

 Erl_Interface 3.11.2

 Fixed Bugs and Malfunctions

	Fix handling of Makefile dependencies so that parallel make works properly.
Own Id: OTP-15757

 Erl_Interface 3.11.1

 Fixed Bugs and Malfunctions

	Fixed two bugs in the erl_call program. A missing initialization (introduced
in erl_interface-3.11) which either caused a crash or failure to connect to
or start a node, and an incorrectly calculated timeout which could cause
failure to start an erlang node. These bugs only caused failures on some
platforms.
Own Id: OTP-15676 Aux Id: OTP-15442, ERL-881

 Erl_Interface 3.11

 Improvements and New Features

	Support for plugin of a
user supplied socket implementation has been added.
Own Id: OTP-15442 Aux Id: ERIERL-258

 Erl_Interface 3.10.4

 Fixed Bugs and Malfunctions

	Make ei_connect and friends also accept state ok_simultaneous during
handshake, which means the other node has initiated a connection setup that
will be cancelled in favor of this connection.
Own Id: OTP-15161 Aux Id: ERIERL-191

	Fixed bug in ei_receive_msg, ei_xreceive_msg, ei_receive_msg_tmo and
ei_xreceive_msg_tmo. The x->index was set to entire buffer size instead of
the number of bytes actually received.
Own Id: OTP-15171

	Fixed bug in ei_connect_init which could be provoked if called by concurrent
threads. ei_connect_init called posix interface gethostbyname which is
documented as not thread safe.
Own Id: OTP-15191

	Fixed bug in erl_compare_ext() ignoring the tail of lists of otherwise equal
content. Example: [a | b] and [a | c] compared equal and {[a], b} and
{[a], c} compared equal.
Own Id: OTP-15277 Aux Id: PR-1929

 Erl_Interface 3.10.3

 Fixed Bugs and Malfunctions

	Fix bug where calling erl_init on certain platforms could result in a buffer
overflow bug.
Own Id: OTP-15033

	Fixed erl_call -m to not deallocate module source binary before it has been
read.
Own Id: OTP-15105 Aux Id: ERL-629

 Improvements and New Features

	The program erl_call calls erl_eval:eval_str/1 when it used to call
lib:eval_str/1. This means that erl_call will fail when trying interact
with an Erlang node running Erlang/OTP 20 or earlier.
Own Id: OTP-15114 Aux Id: OTP-15072, ERL-634

 Erl_Interface 3.10.2.2

 Fixed Bugs and Malfunctions

	Fix handling of Makefile dependencies so that parallel make works properly.
Own Id: OTP-15757

 Erl_Interface 3.10.2.1

 Fixed Bugs and Malfunctions

	Make ei_connect and friends also accept state ok_simultaneous during
handshake, which means the other node has initiated a connection setup that
will be cancelled in favor of this connection.
Own Id: OTP-15161 Aux Id: ERIERL-191

 Erl_Interface 3.10.2

 Fixed Bugs and Malfunctions

	Fix bug in ei_connect functions that may cause failure due to insufficient
buffer space for gethostbyname_r.
Own Id: OTP-15022 Aux Id: ERIERL-163

	Optimize encoding/decoding for pure 7-bit ascii atoms.
Own Id: OTP-15023 Aux Id: ERIERL-150

 Erl_Interface 3.10.1

 Fixed Bugs and Malfunctions

	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

 Erl_Interface 3.10

 Fixed Bugs and Malfunctions

	Fix bug where gethostname would incorrectly fail with enametoolong on Linux.
Own Id: OTP-14310

 Improvements and New Features

	Remove generation of atoms in old latin1 external format in the distribution
between erlang nodes, erl_interface, and jinterface. The new utf8 format
for atoms was introduced in OTP R16. An OTP 20 node can therefore not connect
to nodes older than R16.
Atoms that can be encoded using latin1 are still encoded by term_to_binary()
using latin1 encoding. Note that all atoms will by default be encoded using
utf8 in a future Erlang/OTP release. For more information see the
documentation of erlang:term_to_binary/2.
Own Id: OTP-14337

 Erl_Interface 3.9.3

 Improvements and New Features

	Minor documentation update
Own Id: OTP-14233 Aux Id: PR-1343

 Erl_Interface 3.9.2

 Fixed Bugs and Malfunctions

	Fix ei_connect_init and ei_connect_xinit to adjust the creation argument
to be compatible with nodes older than OTP-19.
Own Id: OTP-13981

 Improvements and New Features

	Editorial documentation changes
Own Id: OTP-13980

 Erl_Interface 3.9.1

 Fixed Bugs and Malfunctions

	Look for .erlang.cookie in windows system directory if HOMEDRIVE and HOMEPATH
is not set. The same behaviour as the VM.
Own Id: OTP-13849

 Erl_Interface 3.9

 Fixed Bugs and Malfunctions

	Fix decoding of LLONG_MIN in erl_decode
Own Id: OTP-13666 Aux Id: ERL-158

	On windows ei_decode_ulong and ei_decode_long now correctly returns an
error when trying to decode a number that does not fit in a long. Fixed a bug
on windows where enabling ei tracing would cause a segmentation fault.
Own Id: OTP-13673

 Improvements and New Features

	Handle terms (pids,ports and refs) from nodes with a 'creation' value larger
than 3. This is a preparation of the distribution protocol to allow OTP 19
nodes to correctly communicate with future nodes (20 or higher). The
'creation' value differentiates different incarnations of the same node
(name).
Own Id: OTP-13488

 Erl_Interface 3.8.2

 Fixed Bugs and Malfunctions

	Fix Erl_Interface build error on Debian/Hurd and Debian/kFreeBSD. (Thanks to
Sergei Golovan)
Own Id: OTP-13328

 Improvements and New Features

	EPMD supports both IPv4 and IPv6
Also affects oldest supported windows version.
Own Id: OTP-13364

 Erl_Interface 3.8.1

 Improvements and New Features

	Fix the conditional selection of gethostbyname_r and gethostbyaddr_r.
Own Id: OTP-13188

 Erl_Interface 3.8

 Improvements and New Features

	Do not accept Nan and Infinity values
Erlang does not accept these values, so we return an error in the C interface
rather than letting them through to the Erlang VM, which rejects the message
with a somewhat cryptic "bad external term".
Own Id: OTP-12801

 Erl_Interface 3.7.20

 Fixed Bugs and Malfunctions

	Use C99 function isfinite() instead of finite() when available on non GCC
compilers.
Own Id: OTP-12268

 Improvements and New Features

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

	Added an .appup file for the application.
Own Id: OTP-12358 Aux Id: OTP-12178

 Erl_Interface 3.7.19

 Fixed Bugs and Malfunctions

	Added a .app file for the application.
Own Id: OTP-12178

 Erl_Interface 3.7.18

 Fixed Bugs and Malfunctions

	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

 Erl_Interface 3.7.17

 Fixed Bugs and Malfunctions

	Now works with Visual Studio.
Own Id: OTP-11984

 Erl_Interface 3.7.16

 Fixed Bugs and Malfunctions

	Fix memcheck warning in gen_challange (Thanks to Olivier Girondel)
Own Id: OTP-11608

 Erl_Interface 3.7.15

 Fixed Bugs and Malfunctions

	Silence warnings (Thanks to Anthony Ramine)
Own Id: OTP-11517

 Erl_Interface 3.7.14

 Improvements and New Features

	Introduced functionality for inspection of system and build configuration.
Own Id: OTP-11196

	Header and library files from ic and erl_interface are now installed into
usr/{include,lib}. Note that these directories are unversioned, so the
latest installed version will be the one in the directory.
Own Id: OTP-11284

	Fix location of true binary under Mac OSX. Thanks to Simon Cornish.
Own Id: OTP-11289

 Erl_Interface 3.7.13

 Improvements and New Features

	A guard was added to check if file descriptor is valid before closing it.
Own Id: OTP-11167

 Erl_Interface 3.7.12

 Fixed Bugs and Malfunctions

	Superfluous trailing comma in enum erlang_char_encoding causing compile error
for g++ with --pedantic option.
Own Id: OTP-10913 Aux Id: seq12264

 Erl_Interface 3.7.11

 Fixed Bugs and Malfunctions

	Revert the structs erlang_pid, erlang_port and erlang_ref as they were
before R16A (without node_org_enc) in order to be backward compatible with
user code that accesses the fields of these structs.
Own Id: OTP-10885 Aux Id: seq12256

 Erl_Interface 3.7.10

 Improvements and New Features

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Limited support for unicode atoms in the external format and in the internal
representation of the vm. This is a preparative feature in order to support
communication with future releases of Erlang/OTP that may create unicode
atoms.
Own Id: OTP-10753

 Erl_Interface 3.7.9

 Improvements and New Features

	Teach lib/erl_interface/configure.in to look for pthreads support in libc
(where it can be found on QNX)
A minor tweak such that this configure fails if you pass --enable-threads
and no pthreads support can be found.
(Thanks to Per Hedeland)
Own Id: OTP-10581

 Erl_Interface 3.7.8

 Improvements and New Features

	Detect when middle endian doubles are used by a platform and account for it
when decoding floats. (Thanks to Mike Sperber)
Own Id: OTP-10209

 Erl_Interface 3.7.7

 Fixed Bugs and Malfunctions

	Minor suppressions and fixes of compilation warnings
Own Id: OTP-10016

 Erl_Interface 3.7.6

 Fixed Bugs and Malfunctions

	An error when getting global names on OS X Lion has been fixed. The error
caused truncated strings to be returned from the function.
Own Id: OTP-9799

 Improvements and New Features

	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

	Eliminate use of deprecated regexp module
Own Id: OTP-9810

 Erl_Interface 3.7.5

 Fixed Bugs and Malfunctions

	Align ei buffer according to size of pointers
Own Id: OTP-9390

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

	Make comment and documentation reflect code in
erl_interface/src/misc/ei_decode_term.c (Thanks to Anneli Cuss)
Own Id: OTP-9559

 Improvements and New Features

	ei: integer overflow in string/atom encoding
ei_encode_atom() and ei_encode_string() use strlen() to get the length of the
buffer. As strlen() returns an unsigned long long and both ei functions take a
signed integer, the length fields may overflow.
Check so that the results of strlen can be held in a signed integer. (Thanks
to Michael Santos)
Own Id: OTP-9530

 Erl_Interface 3.7.4

 Fixed Bugs and Malfunctions

	Fix using sizeof() for array given as function argument
When using the sizeof() operator for an array given as function argument it
returns the size of the pointer. In this case, the affected function hex(char
digest[16], char buff[33]) will just print 4 or 8 byte instead of the full
length of 16 bytes, on 32bit and 64bit systems respectively. (Thanks to
Cristian greco)
Own Id: OTP-9151

	Initialize to and to_name in erl_receive_msg. (Thanks to Göran Larsson)
Own Id: OTP-9241

	erl_interface: fix compile error(Thanks to Michael Santos)
Own Id: OTP-9252

 Erl_Interface 3.7.3

 Fixed Bugs and Malfunctions

	Some malformed distribution messages could cause VM to crash, this is now
corrected.
Own Id: OTP-8993

	Strengthen string copy check (Thanks to Michael Santos).
Own Id: OTP-9071

	Strengthen atom length check when decoding atoms (Thanks to Michael Santos).
Own Id: OTP-9072

 Improvements and New Features

	Fix global registration. C node needed DFLAG_DIST_MONITOR_FLAT set when
connecting. Fix list compare in erl_compare_ext to return correct result.
(Thanks to Vitaliy Batichko and Evgeny Khirin)
Own Id: OTP-9015

 Erl_Interface 3.7.2

 Fixed Bugs and Malfunctions

	erl_call: remove get_hostent
get_hostent does not properly handle IPv4 addresses on little endian platforms
and fails with hostnames beginning with a number. Remove get_hostent and use
ei_gethostbyname directly since gethostbyname supports IPv4 addresses.
(Thanks to Michael Santos)
Own Id: OTP-8890

	teach ei_x_format to handle unary - and + (Thanks to Steve Vinoski)
Own Id: OTP-8891

	Fix zero byte allocation in registry. (Thanks to Michael Santos)
Own Id: OTP-8893

	Check the length of the node name to prevent an overflow. Memory error control
of ei_alloc_big. (Thanks to Michael Santos)
Own Id: OTP-8943

	erl_term_len() in erl_interface could returned too large values for integers
(since R14B) and too small values for refs (since R9B).
Own Id: OTP-8945

 Erl_Interface 3.7.1.1

 Fixed Bugs and Malfunctions

	The erl_interface tracelevel for erlang messages was incorrect. This has now
been fixed.
Own Id: OTP-8874

 Erl_Interface 3.7.1

 Fixed Bugs and Malfunctions

	Removed unused variable in ei_decode_term.c.
Fixed faulty deallocation in erl_call.
Own Id: OTP-8748

	ei_connect: correct man page examples (Thanks to Michael Santos)
Own Id: OTP-8813

	ei: prevent overflow in ei_connect_init and ei_xconnect
Add length check of the buffer before copying. (Thanks to Michael Santos)
Own Id: OTP-8814

	Remove DECLSPEC feature which fails on Windows Vista and use the fallback
implementation instead.
Own Id: OTP-8826

	erl_call: fix multiple buffer overflows (Thanks to Michael Santos)
Own Id: OTP-8827

 Improvements and New Features

	Fix incorrect writev iovec buffer handling in erl_interface (Thanks to Steve
Vinoski)
Own Id: OTP-8837

 Erl_Interface 3.7

 Improvements and New Features

	compact IEEE 754 double encoding in external binary format for ei
	Implement the compact IEEE 754 double encoding in external binary format for
ei. Encoding for ei now always produces the NEW_FLOAT_EXT format. Decoding
and term printing handle both the old ERL_FLOAT_EXT encoding and the new
NEW_FLOAT_EXT encoding.
	Legacy erl_interface code also handles the new encoding, but still produces
the ERL_FLOAT_EXT encoding by default.
	Also enable the DFLAG_NEW_FLOATS distribution flag.
	ei_get_type() will return ERL_FLOAT_EXT regardless if the external format is
encoded with ERL_FLOAT_EXT or NEW_FLOAT_EXT for doubles.
	Reduce the number of copies of the code for encoding and decoding doubles
throughout ei and erl_interface by instead calling the ei encoding and
decoding functions wherever possible.
	Restore commented-out float tests in ei_decode_SUITE and ei_encode_SUITE in
lib/erl_interface/test. Modify them to make them match the style of other
tests in the same suites.

These changes are based on an ei float patch from Serge Aleynikov originally
submitted against R12B-2 in July 2008 and reworked by Steve Vinoski May 2010.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8684

 Erl_Interface 3.6.5

 Improvements and New Features

	Document debug support.
Debug trace output for connection activity could be enabled setting the trace
level as an integer to the EI_TRACELEVEL environment variable. This option
could also be read and set from a running program using
ei_get_tracelevel(void) and ei_set_tracelevel(int).
Own Id: OTP-5037

	Cross compilation improvements and other build system improvements.
Most notable:
	Lots of cross compilation improvements. The old cross compilation support
was more or less non-existing as well as broken. Please, note that the cross
compilation support should still be considered as experimental. Also note
that old cross compilation configurations cannot be used without
modifications. For more information on cross compiling Erlang/OTP see the
$ERL_TOP/INSTALL-CROSS.md file.
	Support for staged install using
DESTDIR. The old
broken INSTALL_PREFIX has also been fixed. For more information see the
$ERL_TOP/INSTALL.md file.
	Documentation of the release target of the top Makefile. For more
information see the $ERL_TOP/INSTALL.md file.
	make install now by default creates relative symbolic links instead of
absolute ones. For more information see the $ERL_TOP/INSTALL.md file.
	$ERL_TOP/configure --help=recursive now works and prints help for all
applications with configure scripts.
	Doing make install, or make release directly after make all no longer
triggers miscellaneous rebuilds.
	Existing bootstrap system is now used when doing make install, or
make release without a preceding make all.
	The crypto and ssl applications use the same runtime library path when
dynamically linking against libssl.so and libcrypto.so. The runtime
library search path has also been extended.
	The configure scripts of erl_interface and odbc now search for thread
libraries and thread library quirks the same way as erts do.
	The configure script of the odbc application now also looks for odbc
libraries in lib64 and lib/64 directories when building on a 64-bit
system.
	The config.h.in file in the erl_interface application is now
automatically generated in instead of statically updated which reduces the
risk of configure tests without any effect.

(Thanks to Henrik Riomar for suggestions and testing)
(Thanks to Winston Smith for the AVR32-Linux cross configuration and testing)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8323

	Change erroneous "\\0" in documentation files erl_notes.xml and
erl_eterm.xml.
Own Id: OTP-8326

	Allow erl_match() to match ERL_LONGLONG and ERL_U_LONGLONG terms (Thanks
to Scott Lystig Fritchie).
Own Id: OTP-8400

 Erl_Interface 3.6.4

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

 Erl_Interface 3.6.3

 Fixed Bugs and Malfunctions

	The manual states that erl_receive() return the reason in the ErlMessage
struct. This was not the case and the function is now corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-4969

	In send_exit.c an erroneous size of memory allocation could occur when
reallocating a buffer.
In ei_decode_trace.c the index could be updated when the decoding failed.
In ei_printterm.c the index could be updated when the decoding failed in
lists and tuples.
In ei_decode_term.c when decoding a double (ERL_FLOAT_EXT) no check was done
to ensure that the last of the 31 bytes was null terminated.
In ei_decode_term.c when decoding references, only the first 3 bytes are
read, but the index did not increment by the total size.
In ei_decode_fun.c no check of correct buffer allocation or data length was
done.
In ei_decode_string.c the integer list string case did not decode the NIL
tail correctly.
These errors has now been fixed. (Thanks to Romain Lenglet, Paul Mineiro and
Paul Guyot).
Own Id: OTP-6117

	ei_decode_big could be decoded with a garbage byte.
ei_encode_big and ei_x_encode_big is now available.
Own Id: OTP-7554

	The function erl_init_resolve() did not conform to C99 standard which caused
a build error on some platforms. This has now been fixed.
Own Id: OTP-8093

	Makefile.in has been updated to use the LDFLAGS environment variable (if
set). (Thanks to Davide Pesavento.)
Own Id: OTP-8157

 Improvements and New Features

	Added support for 64-bit integers in encoding/decoding.
Added support for better printouts of binaries.
Own Id: OTP-6091

 Erl_Interface 3.6.2

 Fixed Bugs and Malfunctions

	A problem with gethostbyname in erl_start.c could cause a buffer overflow.
This has now been fixed.
Clean up of code and removed compiler warnings.
Own Id: OTP-7978

 Erl_Interface 3.6.1

 Fixed Bugs and Malfunctions

	A faulty validation in ei_reg_getpval caused it to never return the
key-value. This has now been fixed. (Thanks to Matt Stancliff)
Own Id: OTP-7960

 Improvements and New Features

	Minor update to the configure script.
Own Id: OTP-7959

 Erl_Interface 3.6.1

 Improvements and New Features

	Minor update to the configure script.
Own Id: OTP-7959

 Erl_Interface 3.6

 Improvements and New Features

	Nodes belonging to different independent clusters can now co-exist on the same
host with the help of a new environment variable setting ERL_EPMD_PORT.
Own Id: OTP-7826

 Erl_Interface 3.5.9

 Fixed Bugs and Malfunctions

	A type-casting bug in ei_skip_term and ei_printterm on 64bit platforms
rendering undefined results is now corrected.
Own Id: OTP-7577

	A bug in the hostent copying code of erl_interface on MacOS X/Darwin is now
corrected.
Own Id: OTP-7593

	A problem with building erl_interface on FreeBSD has been fixed (Thanks to
Akira Kitada).
Own Id: OTP-7611

 Erl_Interface 3.5.8

 Fixed Bugs and Malfunctions

	Fixed bug in erl_interface when decoding broken data
Own Id: OTP-7448

 Erl_Interface 3.5.7

 Fixed Bugs and Malfunctions

	An erroneous freeing of memory could occur when using ei_x_format_wo_ver in
erl_interface, resulting in a segmentation fault.
Own Id: OTP-6795

	A faulty compare in erl_marshal has now been fixed. (Thanks to Simon Cornish
and Paul Mineiro)
Own Id: OTP-7368

 Erl_Interface 3.5.6

 Fixed Bugs and Malfunctions

	Minor documentation fixes.
Own Id: OTP-7183 Aux Id: OTP-7118

 Erl_Interface 3.5.5.4

 Fixed Bugs and Malfunctions

	The symbol __erl_errno was undefined in the single thread version of the ei
library, but is now defined.
Own Id: OTP-6887

	Corrected FreeBSD build error.
Own Id: OTP-7093

 Erl_Interface 3.5.5.3

 Improvements and New Features

	Calls to alloca in erl_marshal.c have been removed. A static buffer is now
used instead to store node names temporarily.
Own Id: OTP-6331 Aux Id: seq10468

	ei_print_term interprets a list of integers with values from 0 to 255 as a
string. If the original list contains the integer 0, this is considered
terminator of the string. This is incorrect. The function has now been
modified to not look for '\0' in a string, but always print all characters.
Own Id: OTP-6339 Aux Id: seq10492

 Erl_Interface 3.5.5.2

 Fixed Bugs and Malfunctions

	The combination of xeon processors with 64bit x86 extensions and a 32bit linux
could cause ei_decode_long and ei_decode_longlong to fail for the value
LONG_MIN and LONGLONG_MIN. The conversion is now made more portable.
Own Id: OTP-6216

 Erl_Interface 3.5.5.1

 Improvements and New Features

	Portability enhancements.
Own Id: OTP-6132

 Erl_Interface 3.5.5

 Fixed Bugs and Malfunctions

	Different (and old) config.guess files in the erts and erl_interface
applications would cause build problems on the new Intel-based iMacs. (Thanks
to Sebastion Strollo.)
Own Id: OTP-5967

	pthread header and library mismatch on linux systems (at least some SuSE and
Debian) with both NPTL and Linuxthreads libraries installed.
Own Id: OTP-5981

 Improvements and New Features

	Support for a C node to connect to an Erlang node on a standalone host has
been added.
Own Id: OTP-5883 Aux Id: seq10170

 Erl_interface 3.5.2

 Improvements and New Features

	A configuration test error caused erl_interface to be built without support
for threads. This has been corrected.
Own Id: OTP-5456

 Erl_interface 3.5.1

 Improvements and New Features

	Changes and improvements have been made to the build and test environment to
solve problems with failing erl_interface test cases.
Own Id: OTP-5295 Aux Id: OTP-5387

 Erl_interface 3.5

 Improvements and New Features

	Process identifiers and port identifiers have been made more unique.
Previously 18 bits were used as id in the internal representation of process
and port identifiers. Now 28 bits are used.
The maximum limit on the number of concurrently existing processes due to the
representation of pids has been increased to 268435456 processes. The same is
true for ports. This limit will at least on a 32-bit architecture be
impossible to reach due to memory shortage.
NOTE: By default, the ERTS, and the erl_interface, ei, and
jinterface libraries are now only guaranteed to be compatible with other
Erlang/OTP components from the same release. It is possible to set each
component in compatibility mode of an earlier release, though. See the
documentation for respective component on how to set it in compatibility mode.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-4968 Aux Id: OTP-4196

 Erl_interface 3.4.5

 Fixed Bugs and Malfunctions

	Corrections for mistakes done for patch erl_605/OTP-4874.
Own Id: OTP-4995 Aux Id: OTP-4874

 Erl_interface 3.4.4

 Fixed Bugs and Malfunctions

	A small optimization in ei_rpc*() was added and a bug in ei_decode_longlong()
was corrected.
Own Id: OTP-4784

 Erl_interface 3.4.2

 Fixed Bugs and Malfunctions

	Strings longer than 65535 bytes were encoded wrong in ei/erl_interface.
Own Id: OTP-4865 Aux Id: EABln07451

 Erl_interface 3.4.1

 Fixed Bugs and Malfunctions

	erl_call -a parsed erlang terms incorrectly due to a bug in ei_format, which
is now corrected.
Own Id: OTP-4777 Aux Id: seq8099

Erl_Interface User's Guide

 Introduction

The Erl_Interface library contains functions that help you integrate programs
written in C and Erlang. The functions in Erl_Interface support the following:
	Manipulation of data represented as Erlang data types
	Conversion of data between C and Erlang formats
	Encoding and decoding of Erlang data types for transmission or storage
	Communication between C nodes and Erlang processes
	Backup and restore of C node state to and from Mnesia

Note
By default, the Erl_Interface library is only guaranteed to be compatible
with other Erlang/OTP components from the same release as the libraries
themselves. For information about how to communicate with Erlang/OTP
components from earlier releases, see function
ei_set_compat_rel.

 Scope

In the following sections, these topics are described:
	Compiling your code for use with Erl_Interface
	Initializing Erl_Interface
	Encoding, decoding, and sending Erlang terms
	Building terms and patterns
	Pattern matching
	Connecting to a distributed Erlang node
	Using the Erlang Port Mapper Daemon (EPMD)
	Sending and receiving Erlang messages
	Remote procedure calls
	Using global names

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

 Compiling and Linking Your Code

To use any of the Erl_Interface functions, include the following line in your
code:
#include "ei.h"
Determine where the top directory of your OTP installation is. To find this,
start Erlang and enter the following command at the Eshell prompt:
Eshell V4.7.4 (abort with ^G)
1> code:root_dir().
/usr/local/otp
To compile your code, ensure that your C compiler knows where to find ei.h by
specifying an appropriate -I argument on the command line, or add it to the
CFLAGS definition in your Makefile. The correct value for this path is
$OTPROOT/lib/erl_interface-$EIVSN/include, where:
	$OTPROOT is the path reported by code:root_dir/0 in the example above.
	$EIVSN is the version of the Erl_Interface application, for example,
erl_interface-3.2.3.

Compiling the code:
$ cc -c -I/usr/local/otp/lib/erl_interface-3.2.3/include myprog.c
When linking:
	Specify the path to libei.a with -L$OTPROOT/lib/erl_interface-3.2.3/lib.
	Specify the name of the library with -lei.

Do this on the command line or add the flags to the LDFLAGS definition in your
Makefile.
Linking the code:
$ ld -L/usr/local/otp/lib/erl_interface-3.2.3/
 lib myprog.o -lei -o myprog
On some systems it can be necessary to link with some more libraries (for
example, libnsl.a and libsocket.a on Solaris, or wsock32.lib on Windows)
to use the communication facilities of Erl_Interface.
If you use the Erl_Interface functions in a threaded application based on
POSIX threads or Solaris threads, then Erl_Interface needs access to some of
the synchronization facilities in your threads package. You must specify extra
compiler flags to indicate which of the packages you use. Define _REENTRANT
and either STHREADS or PTHREADS. The default is to use POSIX threads if
_REENTRANT is specified.

 Initializing the Library

Before calling any of the other functions in the library, initialize it by
calling ei_init() exactly once.

 Encoding, Decoding, and Sending Erlang Terms

Data sent between distributed Erlang nodes is encoded in the Erlang external
format. You must therefore encode and decode Erlang terms into byte streams if
you want to use the distribution protocol to communicate between a C program and
Erlang.
The Erl_Interface library supports this activity. It has several C functions
that create and manipulate Erlang data structures. The following example shows
how to create and encode an Erlang tuple {tobbe,3928}:
ei_x_buff buf;
ei_x_new(&buf);
int i = 0;
ei_x_encode_tuple_header(&buf, 2);
ei_x_encode_atom(&buf, "tobbe");
ei_x_encode_long(&buf, 3928);
For a complete description, see the ei module.

 Building Terms

The previous example can be simplified by using the
ei_x_format_wo_ver function to create an Erlang
term:
ei_x_buff buf;
ei_x_new(&buf);
ei_x_format_wo_ver(&buf, "{~a,~i}", "tobbe", 3928);
For a complete description of the different format directives, see the the
ei_x_format_wo_ver function.
The following example is more complex:
ei_x_buff buf;
int i = 0;
ei_x_new(&buf);
ei_x_format_wo_ver(&buf,
 "[{name,~a},{age,~i},{data,[{adr,~s,~i}]}]",
 "madonna",
 21,
 "E-street", 42);
ei_print_term(stdout, buf.buff, &i);
ei_x_free(&buf);
As in the previous examples, it is your responsibility to free the memory
allocated for Erlang terms. In this example, ei_x_free() ensures that the data
pointed to by buf is released.

 Connecting to a Distributed Erlang Node

To connect to a distributed Erlang node, you must first initialize the
connection routine with one of the
ei_connect_init_* functions, which stores
information, such as the hostname, and node name for later use:
int identification_number = 99;
int creation=1;
char *cookie="a secret cookie string"; /* An example */
const char* node_name = "einode@durin";
const char *cookie = NULL;
short creation = time(NULL) + 1;
ei_cnode ec;
ei_connect_init(&ec,
 node_name,
 cookie,
 creation);
For more information, see the ei_connect module.
After initialization, you set up the connection to the Erlang node. To specify
the Erlang node you want to connect to, use the ei_connect_*() family of
functions. The following example sets up the connection and is to result in a
valid socket file descriptor:
int sockfd;
const char* node_name = "einode@durin"; /* An example */
if ((sockfd = ei_connect(&ec, nodename)) < 0)
 fprintf(stderr, "ERROR: ei_connect failed");

 Using EPMD

erts:epmd is the Erlang Port Mapper Daemon.
Distributed Erlang nodes register with epmd on the local host to indicate to
other nodes that they exist and can accept connections. epmd maintains a
register of node and port number information, and when a node wishes to connect
to another node, it first contacts epmd to find the correct port number to
connect to.
When you use ei_connect to connect to an Erlang node, a
connection is first made to epmd and, if the node is known, a connection is
then made to the Erlang node.
C nodes can also register themselves with epmd if they want other nodes in the
system to be able to find and connect to them.
Before registering with epmd, you must first create a listen socket and bind
it to a port. Then:
int pub = ei_publish(&ec, port);
pub is a file descriptor now connected to epmd. epmd monitors the other
end of the connection. If it detects that the connection has been closed, the
node becomes unregistered. So, if you explicitly close the descriptor or if your
node fails, it becomes unregistered from epmd.
Notice that on some systems a failed node is not detected by this mechanism, as
the operating system does not automatically close descriptors that were left
open when the node failed. If a node has failed in this way, epmd prevents you
from registering a new node with the old name, as it thinks that the old name is
still in use. In this case, you must close the port explicitly

 Sending and Receiving Erlang Messages

Use one of the following two functions to send messages:
	ei_send
	ei_reg_send

As in Erlang, messages can be sent to a pid or to a registered name. It is
easier to send a message to a registered name, as it avoids the problem of
finding a suitable pid.
Use one of the following two functions to receive messages:
	ei_receive
	ei_receive_msg

 Example of Sending Messages

In the following example, {Pid, hello_world} is sent to a registered process
my_server:
ei_x_buff buf;
ei_x_new_with_version(&buf);

ei_x_encode_tuple_header(&buf, 2);
ei_x_encode_pid(&buf, ei_self(ec));
ei_x_encode_atom(&buf, "Hello world");

ei_reg_send(&ec, fd, "my_server", buf.buff, buf.index);
The first element of the tuple that is sent is your own pid. This enables
my_server to reply. For more information about the primitives, see the
ei_connect module.

 Example of Receiving Messages

In this example, {Pid, Something} is received.
erlang_msg msg;
int index = 0;
int version;
int arity = 0;
erlang_pid pid;
ei_x_buff buf;
ei_x_new(&buf);
for (;;) {
 int got = ei_xreceive_msg(fd, &msg, &x);
 if (got == ERL_TICK)
 continue;
 if (got == ERL_ERROR) {
 fprintf(stderr, "ei_xreceive_msg, got==%d", got);
 exit(1);
 }
 break;
}
ei_decode_version(buf.buff, &index, &version);
ei_decode_tuple_header(buf.buff, &index, &arity);
if (arity != 2) {
 fprintf(stderr, "got wrong message");
 exit(1);
}
ei_decode_pid(buf.buff, &index, &pid);
To provide robustness, a distributed Erlang node occasionally polls all its
connected neighbors in an attempt to detect failed nodes or communication links.
A node that receives such a message is expected to respond immediately with an
ERL_TICK message. This is done automatically by ei_xreceive_msg(). However,
when this has occurred, ei_xreceive_msg returns ERL_TICK to the caller
without storing a message into the erlang_msg structure.
When a message has been received, it is the caller's responsibility to free the
received message.
For more information, see the ei_connect and ei
modules.

 Remote Procedure Calls

An Erlang node acting as a client to another Erlang node typically sends a
request and waits for a reply. Such a request is included in a function call at
a remote node and is called a remote procedure call.
The following example checks if a specific Erlang process is alive:
int index = 0, is_alive;
ei_x_buff args, result;

ei_x_new(&result);
ei_x_new(&args);
ei_x_encode_list_header(&args, 1);
ei_x_encode_pid(&args, &check_pid);
ei_x_encode_empty_list(&args);

if (ei_rpc(&ec, fd, "erlang", "is_process_alive",
 args.buff, args.index, &result) < 0)
 handle_error();

if (ei_decode_version(result.buff, &index) < 0
 || ei_decode_bool(result.buff, &index, &is_alive) < 0)
 handle_error();
For more information about ei_rpc() and its companions ei_rpc_to() and
ei_rpc_from(), see the ei_connect module.

 Using Global Names

A C node has access to names registered through the global module in Kernel.
Names can be looked up, allowing the C node to send messages to named Erlang
services. C nodes can also register global names, allowing them to provide named
services to Erlang processes or other C nodes.
Erl_Interface does not provide a native implementation of the global service.
Instead it uses the global services provided by a "nearby" Erlang node. To use
the services described in this section, it is necessary to first open a
connection to an Erlang node.
To see what names there are:
char **names;
int count;
int i;

names = ei_global_names(&ec,fd,&count);

if (names)
 for (i=0; i<count; i++)
 printf("%s\n",names[i]);

free(names);
ei_global_names allocates and returns a buffer
containing all the names known to the global module in Kernel. count is
initialized to indicate the number of names in the array. The array of strings
in names is terminated by a NULL pointer, so it is not necessary to use
count to determine when the last name is reached.
It is the caller's responsibility to free the array. ei_global_names allocates
the array and all the strings using a single call to malloc(), so
free(names) is all that is necessary.
To look up one of the names:
ETERM *pid;
char node[256];
erlang_pid the_pid;

if (ei_global_whereis(&ec,fd,"schedule",&the_pid,node) < 0)
 fprintf(stderr, "ei_global_whereis error\n");
If "schedule" is known to the global module in Kernel, an Erlang pid is
written to the_pid. This pid that can be used to send messages to the schedule
service. Also, node is initialized to contain the name of the node where the
service is registered, so that you can make a connection to it by simply passing
the variable to ei_connect.
Before registering a name, you should already have registered your port number
with epmd. This is not strictly necessary, but if you neglect to do so, then
other nodes wishing to communicate with your service cannot find or connect to
your process.
Create a name that Erlang processes can use to communicate with your service:
ei_global_register(fd,servicename,ei_self(ec));
After registering the name, use ei_accept to wait
for incoming connections.
Note
Remember to free pid later with ei_x_free.

To unregister a name:
ei_global_unregister(&ec,fd,servicename);

erl_call

Call/start a distributed Erlang node.

 Description

erl_call makes it possible to start and/or communicate with a distributed
Erlang node. It is built on the Erl_Interface library as an example
application. Its purpose is to use a Unix shell script to interact with a
distributed Erlang node. It performs all communication with the Erlang rex
server, using the standard Erlang RPC facility. It does not require any special
software to be run at the Erlang target node.
The main use is to either start a distributed Erlang node or to make an ordinary
function call. However, it is also possible to pipe an Erlang module to
erl_call and have it compiled, or to pipe a sequence of Erlang expressions to
be evaluated (similar to the Erlang shell).
Options, which cause stdin to be read, can be used with advantage, as scripts
from within (Unix) shell scripts. Another nice use of erl_call could be from
(HTTP) CGI-bin scripts.

 erl_call <options>

Starts/calls Erlang.
Each option flag is described below with its name, type, and meaning.
	-a [Mod [Fun [Args]]]] - (Optional.) Applies the specified function
and returns the result. Mod must be specified. However, start and [] are
assumed for unspecified Fun and Args, respectively. Args is to be in the
same format as for erlang:apply/3 in ERTS except only a subset of all
terms are allowed. The allowed term types are: list (and string
representation of list, that is "example"), tuple, atom and number.
Notice that this flag takes exactly one argument, so quoting can be necessary
to group Mod, Fun, and Args in a manner dependent on the behavior of
your command shell.

	-address [Hostname:]Port - (One of -n, -name, -sname or -address
is required.) Hostname is the hostname of the machine that is running the
peer node that erl_call will communicate with. The default hostname is the
hostname of the local machine. Port is the port number of the node that
erl_call will communicate with. The -address flag cannot be combined with
any of the flags -n, -name, -sname or -s.
The -address flag is typically useful when one wants to call a node that is
running on machine without an accessible epmd
instance.

	-c Cookie - (Optional.) Use this option to specify a certain cookie.
If no cookie is specified, the ~/.erlang.cookie file is read and its content
is used as cookie. The Erlang node we want to communicate with must have the
same cookie.

	-d - (Optional.) Debug mode. This causes all I/O to be output to the
~/.erl_call.out.Nodename file, where Nodename is the node name of the
Erlang node in question.

	-e - (Optional.) Reads a sequence of Erlang expressions, separated by
comma (,) and ended with a full stop (.), from stdin until EOF (Control-D).
Evaluates the expressions and returns the result from the last expression.
Returns {ok,Result} on success.

	-fetch_stdout - (Optional.) Executes the code, specified with the -a
or -e option, in a new process that has a
group leader that forwards all stdout (standard
output) data so that it is printed to stdout of the erl_call process. This
means that stdout data that are written during the execution of the called
code, by the code and by descendant processes, will be forwarded (given that
the group leader has not been changed by a call to erlang:group_leader/2).
The printed data is UTF-8 encoded.
This option is only relevant combined with the -a or -e option.
See the documentation of the I/O protocol for
more information about the group leader concept.
Note
This option only works when erl_call is interacting with a node with a
version greater or equal to OTP-24.

	-h HiddenName - (Optional.) Specifies the name of the hidden node that
erl_call represents.

	-m - (Optional.) Reads an Erlang module from stdin and compiles it.

	-n Node - (One of -n, -name, -sname or -address is required.)
Has the same meaning as -name and can still be used for backward
compatibility reasons.

	-name Node - (One of -n, -name, -sname or -address is required.)
Node is the name of the peer node to be started or communicated with. It is
assumed that Node is started with erl -name, which means that fully
qualified long node names are used. If option -s is specified, an Erlang
node will (if necessary) be started with erl -name.

	-no_result_term - (Optional.) Do not print the result term. This
option is only relevant together with the options -a and -e.

	-q - (Optional.) Halts the Erlang node specified with switch -n.
This switch overrides switch -s.

	-r - (Optional.) Generates a random name of the hidden node that
erl_call represents.

	-R - (Optional.) Request a dynamic random name, of the hidden node
that erl_call represents, from the peer node. Supported since OTP 23. Prefer
-R over -r when doing repeated requests toward the same peer node.

	-s - (Optional.) Starts a distributed Erlang node if necessary. This
means that in a sequence of calls, where '-s' and '-n Node' are constant,
only the first call starts the Erlang node. This makes the rest of the
communication very fast. This flag is currently only available on Unix-like
platforms (Linux, Mac OS X, Solaris, and so on).

	-sname Node - (One of -n, -name, -sname or -address is
required.) Node is the name of the peer node to be started or communicated
with. It is assumed that Node is started with erl -sname, which means that
short node names are used. If option -s is specified, an Erlang node is
started (if necessary) with erl -sname.

	-timeout Seconds - (Optional.) Aborts the erl_call process after the
timeout expires. Note that this does not abort commands that have already been
started with -a, -e, or similar.

	-v - (Optional.) Prints a lot of verbose information. This is only
useful for the developer and maintainer of erl_call.

	-x ErlScript - (Optional.) Specifies another name of the Erlang
startup script to be used. If not specified, the standard erl startup script
is used.

 Examples

To start an Erlang node and call erlang:time/0:
erl_call -s -a 'erlang time' -n madonna
{18,27,34}
To terminate an Erlang node by calling erlang:halt/0:
erl_call -s -a 'erlang halt' -n madonna
To apply with many arguments:
erl_call -s -a 'lists seq [1,10]' -n madonna
To evaluate some expressions (the input ends with EOF (Control-D)):
erl_call -s -e -n madonna
statistics(runtime),
X=1,
Y=2,
{_,T}=statistics(runtime),
{X+Y,T}.
^D
{ok,{3,0}}
To compile a module and run it (again, the input ends with EOF (Control-D)):
(In the example, the output has been formatted afterwards.)
erl_call -s -m -a procnames -n madonna
-module(procnames).
-compile(export_all).
start() ->
 P = processes(),
 F = fun(X) -> {X,process_info(X,registered_name)} end,
 lists:map(F,[],P).
^D
[{<madonna@chivas.du.etx.ericsson.se,0,0>,
 {registered_name,init}},
 {<madonna@chivas.du.etx.ericsson.se,2,0>,
 {registered_name,erl_prim_loader}},
 {<madonna@chivas.du.etx.ericsson.se,4,0>,
 {registered_name,error_logger}},
 {<madonna@chivas.du.etx.ericsson.se,5,0>,
 {registered_name,application_controller}},
 {<madonna@chivas.du.etx.ericsson.se,6,0>,
 {registered_name,kernel}},
 {<madonna@chivas.du.etx.ericsson.se,7,0>,
 []},
 {<madonna@chivas.du.etx.ericsson.se,8,0>,
 {registered_name,kernel_sup}},
 {<madonna@chivas.du.etx.ericsson.se,9,0>,
 {registered_name,net_sup}},
 {<madonna@chivas.du.etx.ericsson.se,10,0>,
 {registered_name,net_kernel}},
 {<madonna@chivas.du.etx.ericsson.se,11,0>,
 []},
 {<madonna@chivas.du.etx.ericsson.se,12,0>,
 {registered_name,global_name_server}},
 {<madonna@chivas.du.etx.ericsson.se,13,0>,
 {registered_name,auth}},
 {<madonna@chivas.du.etx.ericsson.se,14,0>,
 {registered_name,rex}},
 {<madonna@chivas.du.etx.ericsson.se,15,0>,
 []},
 {<madonna@chivas.du.etx.ericsson.se,16,0>,
 {registered_name,file_server}},
 {<madonna@chivas.du.etx.ericsson.se,17,0>,
 {registered_name,code_server}},
 {<madonna@chivas.du.etx.ericsson.se,20,0>,
 {registered_name,user}},
 {<madonna@chivas.du.etx.ericsson.se,38,0>,
 []}]
To forward standard output without printing the result term (again, the input
ends with EOF (Control-D)):
erl_call -s -e -sname madonna -fetch_stdout -no_result_term
io:format("Number of schedulers: ~p~n", [erlang:system_info(schedulers)]),
io:format("Number of logical cores: ~p~n", [erlang:system_info(logical_processors_available)]).
^D
Number of schedulers: 8
Number of logical cores: 8

ei

Routines for handling the Erlang binary term format.

 Description

The library ei contains macros and functions to encode and decode the Erlang
binary term format.
ei allows you to convert atoms, lists, numbers, and binaries to and from the
binary format. This is useful when writing port programs and drivers. ei uses
a given buffer, no dynamic memory (except ei_decode_fun()) and is often quite
fast.
ei also handles C-nodes, C-programs that talks Erlang distribution with Erlang
nodes (or other C-nodes) using the Erlang distribution format.The ei library
is thread safe, and using threads, one process can handle multiple C-nodes.
The decode and encode functions use a buffer and an index into the buffer, which
points at the point where to encode and decode. The index is updated to point
right after the term encoded/decoded. No checking is done whether the term fits
in the buffer or not. If encoding goes outside the buffer, the program can
crash.
All functions take two parameters:
	buf is a pointer to the buffer where the binary data is or will be.
	index is a pointer to an index into the buffer. This parameter is
incremented with the size of the term decoded/encoded.

The data is thus at buf[*index] when an ei function is called.
All encode functions assume that the buf and index parameters point to a
buffer large enough for the data. Note that the binary term format uses variable-
length encoding so different values can require a different amount of space. For
example, smaller integer values can be more compact than larger ones. To get
the size of an encoded term, without encoding it, pass NULL instead of a
buffer pointer. Parameter index is incremented, but nothing will be encoded.
This is the way in ei to "preflight" term encoding.
There are also encode functions that use a dynamic buffer. It is often more
convenient to use these to encode data. All encode functions comes in two
versions; those starting with ei_x_ use a dynamic buffer of type
ei_x_buff.
All functions return 0 if successful, otherwise -1 (for example, if a term
is not of the expected type, or the data to decode is an invalid Erlang term).
Some of the decode functions need a pre-allocated buffer. This buffer must be
allocated large enough, and for non-compound types the
ei_get_type() function returns the size required (notice
that for strings an extra byte is needed for the NULL-terminator).

 Data Types

	ei_term
typedef struct {
 char ei_type;
 int arity;
 int size;
 union {
 long i_val;
 double d_val;
 char atom_name[MAXATOMLEN_UTF8];
 erlang_pid pid;
 erlang_port port;
 erlang_ref ref;
 } value;
} ei_term;
Structure written by ei_decode_ei_term(). The
ei_type field is the type of the term which equals to what
ei_get_type() sets *type to.

	ei_x_buff - A dynamically resized buffer. It is a
struct with two fields of interest for the user:
	char *buff - Pointer to the dynamically allocated buffer.

	int index - Offset to the next byte to write which also equals the
amount of bytes currently written.

An ei_x_buff is initialized by calling either ei_x_new()
or ei_x_new_with_version(). The memory used
by an initialized ei_x_buff is released by calling
ei_x_free().

	erlang_char_encoding
typedef enum {
 ERLANG_ASCII = 1,
 ERLANG_LATIN1 = 2,
 ERLANG_UTF8 = 4
} erlang_char_encoding;
The character encodings used for atoms. ERLANG_ASCII represents 7-bit ASCII.
Latin-1 and UTF-8 are different extensions of 7-bit ASCII. All 7-bit ASCII
characters are valid Latin-1 and UTF-8 characters. ASCII and Latin-1 both
represent each character by one byte. An UTF-8 character can consist of 1-4
bytes. Notice that these constants are bit-flags and can be combined with
bitwise OR.

	erlang_fun - Opaque data type representing an Erlang
fun.

	erlang_pid - Opaque data type representing an Erlang
process identifier.

	erlang_port - Opaque data type representing an Erlang
port identifier.

	erlang_ref - Opaque data type representing an Erlang
reference.

	erlang_trace - Opaque data type representing an Erlang
sequential trace token.

 ei_cmp_pids()

int ei_cmp_pids(erlang_pid *a, erlang_pid *b);
Compare two process identifiers. The comparison is done the same way as Erlang
does.
Returns 0 if a and b are equal. Returns a value less than 0 if a
compares as less than b. Returns a value larger than 0 if a compares as
larger than b.
Available since OTP 23.0

 ei_cmp_ports()

int ei_cmp_ports(erlang_port *a, erlang_port *b);
Compare two port identifiers. The comparison is done the same way as Erlang
does.
Returns 0 if a and b are equal. Returns a value less than 0 if a
compares as less than b. Returns a value larger than 0 if a compares as
larger than b.
Available since OTP 23.0

 ei_cmp_refs()

int ei_cmp_refs(erlang_ref *a, erlang_ref *b);
Compare two references. The comparison is done the same way as Erlang does.
Returns 0 if a and b are equal. Returns a value less than 0 if a
compares as less than b. Returns a value larger than 0 if a compares as
larger than b.
Available since OTP 23.0

 ei_decode_atom()

int ei_decode_atom(const char *buf, int *index, char *p);
Decodes an atom from the binary format. The NULL-terminated name of the atom
is placed at p. At most MAXATOMLEN bytes can be placed in the buffer.

 ei_decode_atom_as()

int ei_decode_atom_as(const char *buf, int *index, char *p, int plen,
 erlang_char_encoding want, erlang_char_encoding* was, erlang_char_encoding* result);
Decodes an atom from the binary format. The NULL-terminated name of the atom
is placed in buffer at p of length plen bytes.
The wanted string encoding is specified by want.
The original encoding used in the binary format (Latin-1 or UTF-8) can be
obtained from *was. The encoding of the resulting string (7-bit ASCII,
Latin-1, or UTF-8) can be obtained from *result. Both was and result can
be NULL. *result can differ from want if want is a bitwise OR'd
combination like ERLANG_LATIN1|ERLANG_UTF8 or if *result turns out to be
pure 7-bit ASCII (compatible with both Latin-1 and UTF-8).
This function fails if the atom is too long for the buffer or if it cannot be
represented with encoding want.
This function was introduced in Erlang/OTP R16 as part of a first step to
support UTF-8 atoms.
Available since OTP R16B

 ei_decode_bignum()

int ei_decode_bignum(const char *buf, int *index, mpz_t obj);
Decodes an integer in the binary format to a GMP mpz_t integer. To use this
function, the ei library must be configured and compiled to use the GMP
library.

 ei_decode_binary()

int ei_decode_binary(const char *buf, int *index, void *p, long *len);
Decodes a binary from the binary format. Parameter len is set to the actual
size of the binary. Notice that ei_decode_binary() assumes that there is
enough room for the binary. The size required can be fetched by
ei_get_type().

 ei_decode_bitstring()

int ei_decode_bitstring(const char *buf, int *index, const char **pp,
 unsigned int *bitoffsp, size_t *nbitsp);
Decodes a bit string from the binary format.
	pp - Either NULL or *pp returns a pointer to the first byte of the
bit string. The returned bit string is readable as long as the buffer pointed
to by buf is readable and not written to.

	bitoffsp - Either NULL or *bitoffsp returns the number of unused
bits in the first byte pointed to by *pp. The value of *bitoffsp is
between 0 and 7. Unused bits in the first byte are the most significant bits.

	nbitsp - Either NULL or *nbitsp returns the length of the bit string
in bits.

Returns 0 if it was a bit string term.
The number of bytes pointed to by *pp, which are part of the bit string, is
(*bitoffsp + *nbitsp + 7)/8. If (*bitoffsp + *bitsp)%8 > 0 then only
(*bitoffsp + *bitsp)%8 bits of the last byte are used. Unused bits in the last
byte are the least significant bits.
The values of unused bits in the first and last byte are undefined and cannot be
relied on.
Number of bits may be divisible by 8, which means a binary decodable by
ei_decode_binary is also decodable by ei_decode_bitstring.
Available since OTP 22.0

 ei_decode_boolean()

int ei_decode_boolean(const char *buf, int *index, int *p);
Decodes a boolean value from the binary format. A boolean is actually an atom,
true decodes 1 and false decodes 0.

 ei_decode_char()

int ei_decode_char(const char *buf, int *index, char *p);
Decodes a char (8-bit) integer between 0-255 from the binary format. For
historical reasons the returned integer is of type char. Your C code is to
consider the returned value to be of type unsigned char even if the C
compilers and system can define char to be signed.

 ei_decode_double()

int ei_decode_double(const char *buf, int *index, double *p);
Decodes a double-precision (64-bit) floating point number from the binary
format.

 ei_decode_ei_term()

int ei_decode_ei_term(const char* buf, int* index, ei_term* term);
Decodes any term, or at least tries to. If the term pointed at by *index in
buf fits in the term union, it is decoded, and the appropriate field in
term->value is set, and *index is incremented by the term size.
The function returns 1 on successful decoding, -1 on error, and 0 if the
term seems alright, but does not fit in the term structure. If 1 is
returned, the index is incremented, and term contains the decoded term.
The term structure contains the arity for a tuple or list, size for a binary,
string, or atom. It contains a term if it is any of the following: integer,
float, atom, pid, port, or ref.

 ei_decode_fun()

 free_fun()

int ei_decode_fun(const char *buf, int *index, erlang_fun *p);
void free_fun(erlang_fun* f);
Decodes a fun from the binary format. Parameter p is to be NULL or point to
an erlang_fun structure. This is the only decode function that allocates
memory. When the erlang_fun is no longer needed, it is to be freed with
free_fun. (This has to do with the arbitrary size of the environment for a
fun.)

 ei_decode_iodata()

int ei_decode_iodata(const char *buf, int *index, int *size, char *outbuf);
Decodes a term of the type iodata().
The iodata/0 term will be flattened an written into the buffer pointed to by
the outbuf argument. The byte size of the iodata is written into the integer
variable pointed to by the size argument. Both size and outbuf can be set
to NULL. The integer pointed to by the index argument is updated to refer to
the term following after the iodata/0 term regardless of the the state of
the size and the outbuf arguments.
Note that the buffer pointed to by the outbuf argument must be large enough if
a non NULL value is passed as outbuf. You typically want to call
ei_decode_iodata() twice. First with a non NULL size argument and a NULL
outbuf argument in order to determine the size of the buffer needed, and then
once again in order to do the actual decoding. Note that the integer pointed to
by index will be updated by the call determining the size as well, so you need
to reset it before the second call doing the actual decoding.
Returns 0 on success and -1 on failure. Failure might be either due to
invalid encoding of the term or due to the term not being of the type
iodata/0. On failure, the integer pointed to by the index argument will be
updated to refer to the sub term where the failure was detected.
Available since OTP 23.0

 ei_decode_list_header()

int ei_decode_list_header(const char *buf, int *index, int *arity);
Decodes a list header from the binary format. The number of elements is returned
in arity. The arity+1 elements follow (the last one is the tail of the list,
normally an empty list). If arity is 0, it is an empty list.
Notice that lists are encoded as strings if they consist entirely of integers in
the range 0..255. This function do not decode such strings, use
ei_decode_string() instead.

 ei_decode_long()

int ei_decode_long(const char *buf, int *index, long *p);
Decodes a long integer from the binary format. If the code is 64 bits, the
function ei_decode_long() is the same as ei_decode_longlong().

 ei_decode_longlong()

int ei_decode_longlong(const char *buf, int *index, long long *p);
Decodes a GCC long long or Visual C++ __int64 (64-bit) integer from the
binary format.

 ei_decode_map_header()

int ei_decode_map_header(const char *buf, int *index, int *arity);
Decodes a map header from the binary format. The number of key-value pairs is
returned in *arity. Keys and values follow in this order:
K1, V1, K2, V2, ..., Kn, Vn. This makes a total of arity*2 terms. If arity
is zero, it is an empty map. A correctly encoded map does not have duplicate
keys.
Available since OTP 17.0

 ei_decode_pid()

int ei_decode_pid(const char *buf, int *index, erlang_pid *p);
Decodes a process identifier (pid) from the binary format.

 ei_decode_port()

int ei_decode_port(const char *buf, int *index, erlang_port *p);
Decodes a port identifier from the binary format.

 ei_decode_ref()

int ei_decode_ref(const char *buf, int *index, erlang_ref *p);
Decodes a reference from the binary format.

 ei_decode_string()

int ei_decode_string(const char *buf, int *index, char *p);
Decodes a string from the binary format. A string in Erlang is a list of
integers between 0 and 255. Notice that as the string is just a list, sometimes
lists are encoded as strings by term_to_binary/1, even
if it was not intended.
The string is copied to p, and enough space must be allocated. The returned
string is NULL-terminated, so you must add an extra byte to the memory
requirement.

 ei_decode_trace()

int ei_decode_trace(const char *buf, int *index, erlang_trace *p);
Decodes an Erlang trace token from the binary format.

 ei_decode_tuple_header()

int ei_decode_tuple_header(const char *buf, int *index, int *arity);
Decodes a tuple header, the number of elements is returned in arity. The tuple
elements follow in order in the buffer.

 ei_decode_ulong()

int ei_decode_ulong(const char *buf, int *index, unsigned long *p);
Decodes an unsigned long integer from the binary format. If the code is 64 bits,
the function ei_decode_ulong() is the same as ei_decode_ulonglong().

 ei_decode_ulonglong()

int ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p);
Decodes a GCC unsigned long long or Visual C++ unsigned __int64 (64-bit)
integer from the binary format.

 ei_decode_version()

int ei_decode_version(const char *buf, int *index, int *version);
Decodes the version magic number for the Erlang binary term format. It must be
the first token in a binary term.

 ei_encode_atom()

 ei_encode_atom_len()

 ei_x_encode_atom()

 ei_x_encode_atom_len()

int ei_encode_atom(char *buf, int *index, const char *p);
int ei_encode_atom_len(char *buf, int *index, const char *p, int len);
int ei_x_encode_atom(ei_x_buff* x, const char *p);
int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len);
Encodes an atom in the binary format. Parameter p is the name of the atom in
Latin-1 encoding. Only up to MAXATOMLEN-1 bytes are encoded. The name is to be
NULL-terminated, except for the ei_x_encode_atom_len() function.

 ei_encode_atom_as()

Available since OTP R16B

 ei_encode_atom_len_as()

Available since OTP R16B

 ei_x_encode_atom_as()

Available since OTP R16B

 ei_x_encode_atom_len_as()

int ei_encode_atom_as(char *buf, int *index, const char *p,
 erlang_char_encoding from_enc, erlang_char_encoding to_enc);
int ei_encode_atom_len_as(char *buf, int *index, const char *p, int len,
 erlang_char_encoding from_enc, erlang_char_encoding to_enc);
int ei_x_encode_atom_as(ei_x_buff* x, const char *p,
 erlang_char_encoding from_enc, erlang_char_encoding to_enc);
int ei_x_encode_atom_len_as(ei_x_buff* x, const char *p, int len,
 erlang_char_encoding from_enc, erlang_char_encoding to_enc);
Encodes an atom in the binary format. Parameter p is the name of the atom with
character encoding from_enc (ASCII, Latin-1, or
UTF-8). The name must either be NULL-terminated or a function variant with a
len parameter must be used.
The encoding fails if p is not a valid string in encoding from_enc.
Argument to_enc is ignored. As from Erlang/OTP 20 the encoding is always done
in UTF-8 which is readable by nodes as old as Erlang/OTP R16.
Available since OTP R16B

 ei_encode_bignum()

 ei_x_encode_bignum()

int ei_encode_bignum(char *buf, int *index, mpz_t obj);
int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj);
Encodes a GMP mpz_t integer to binary format. To use this function, the ei
library must be configured and compiled to use the GMP library.

 ei_encode_binary()

 ei_x_encode_binary()

int ei_encode_binary(char *buf, int *index, const void *p, long len);
int ei_x_encode_binary(ei_x_buff* x, const void *p, long len);
Encodes a binary in the binary format. The data is at p, of len bytes
length.

 ei_encode_bitstring()

Available since OTP 22.0

 ei_x_encode_bitstring()

int ei_encode_bitstring(char *buf, int *index, const char *p, size_t bitoffs, size_t nbits);
int ei_x_encode_bitstring(ei_x_buff* x, const char *p, size_t bitoffs, size_t nbits);
Encodes a bit string in the binary format.
The data is at p. The length of the bit string is nbits bits. The first
bitoffs bits of the data at p are unused. The first byte which is part of
the bit string is p[bitoffs/8]. The bitoffs%8 most significant bits of the
first byte p[bitoffs/8] are unused.
The number of bytes which is part of the bit string is
(bitoffs + nbits + 7)/8. If (bitoffs + nbits)%8 > 0 then only
(bitoffs + nbits)%8 bits of the last byte are used. Unused bits in the last
byte are the least significant bits.
The values of unused bits are disregarded and does not need to be cleared.
Available since OTP 22.0

 ei_encode_boolean()

 ei_x_encode_boolean()

int ei_encode_boolean(char *buf, int *index, int p);
int ei_x_encode_boolean(ei_x_buff* x, int p);
Encodes a boolean value as the atom true if p is not zero, or false if p
is zero.

 ei_encode_char()

 ei_x_encode_char()

int ei_encode_char(char *buf, int *index, char p);
int ei_x_encode_char(ei_x_buff* x, char p);
Encodes a char (8-bit) as an integer between 0-255 in the binary format. For
historical reasons the integer argument is of type char. Your C code is to
consider the specified argument to be of type unsigned char even if the C
compilers and system may define char to be signed.

 ei_encode_double()

 ei_x_encode_double()

int ei_encode_double(char *buf, int *index, double p);
int ei_x_encode_double(ei_x_buff* x, double p);
Encodes a double-precision (64-bit) floating point number in the binary format.
Returns -1 if the floating point number is not finite.

 ei_encode_empty_list()

 ei_x_encode_empty_list()

int ei_encode_empty_list(char* buf, int* index);
int ei_x_encode_empty_list(ei_x_buff* x);
Encodes an empty list. It is often used at the tail of a list.

 ei_encode_fun()

 ei_x_encode_fun()

int ei_encode_fun(char *buf, int *index, const erlang_fun *p);
int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun);
Encodes a fun in the binary format. Parameter p points to an erlang_fun
structure. The erlang_fun is not freed automatically, the free_fun is to be
called if the fun is not needed after encoding.

 ei_encode_list_header()

 ei_x_encode_list_header()

int ei_encode_list_header(char *buf, int *index, int arity);
int ei_x_encode_list_header(ei_x_buff* x, int arity);
Encodes a list header, with a specified arity. The next arity+1 terms are the
elements (actually its arity cons cells) and the tail of the list. Lists and
tuples are encoded recursively, so that a list can contain another list or
tuple.
For example, to encode the list [c, d, [e | f]]:
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);
Note
It may seem that there is no way to create a list without knowing the number
of elements in advance. But indeed there is a way. Notice that the list
[a, b, c] can be written as [a | [b | [c]]]. Using this, a list can be
written as conses.

To encode a list, without knowing the arity in advance:
while (something()) {
 ei_x_encode_list_header(&x, 1);
 ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);

 ei_encode_long()

 ei_x_encode_long()

int ei_encode_long(char *buf, int *index, long p);
int ei_x_encode_long(ei_x_buff* x, long p);
Encodes a long integer in the binary format. If the code is 64 bits, the
function ei_encode_long() is the same as ei_encode_longlong().

 ei_encode_longlong()

 ei_x_encode_longlong()

int ei_encode_longlong(char *buf, int *index, long long p);
int ei_x_encode_longlong(ei_x_buff* x, long long p);
Encodes a GCC long long or Visual C++ __int64 (64-bit) integer in the binary
format.

 ei_encode_map_header()

Available since OTP 17.0

 ei_x_encode_map_header()

int ei_encode_map_header(char *buf, int *index, int arity);
int ei_x_encode_map_header(ei_x_buff* x, int arity);
Encodes a map header, with a specified arity. The next arity*2 terms encoded
will be the keys and values of the map encoded in the following order:
K1, V1, K2, V2, ..., Kn, Vn.
For example, to encode the map #{a => "Apple", b => "Banana"}:
ei_x_encode_map_header(&x, 2);
ei_x_encode_atom(&x, "a");
ei_x_encode_string(&x, "Apple");
ei_x_encode_atom(&x, "b");
ei_x_encode_string(&x, "Banana");
A correctly encoded map cannot have duplicate keys.
Available since OTP 17.0

 ei_encode_pid()

 ei_x_encode_pid()

int ei_encode_pid(char *buf, int *index, const erlang_pid *p);
int ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p);
Encodes an Erlang process identifier (pid) in the binary format. Parameter p
points to an erlang_pid structure which should either have been obtained
earlier with ei_decode_pid(),
ei_self() or created by
ei_make_pid().

 ei_encode_port()

 ei_x_encode_port()

int ei_encode_port(char *buf, int *index, const erlang_port *p);
int ei_x_encode_port(ei_x_buff* x, const erlang_port *p);
Encodes an Erlang port in the binary format. Parameter p points to an
erlang_port structure which should have been obtained earlier with
ei_decode_port(),

 ei_encode_ref()

 ei_x_encode_ref()

int ei_encode_ref(char *buf, int *index, const erlang_ref *p);
int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p);
Encodes an Erlang reference in the binary format. Parameter p points to an
erlang_ref structure which either should have been obtained earlier with
ei_decode_ref(), or created by
ei_make_ref().

 ei_encode_string()

 ei_encode_string_len()

 ei_x_encode_string()

 ei_x_encode_string_len()

int ei_encode_string(char *buf, int *index, const char *p);
int ei_encode_string_len(char *buf, int *index, const char *p, int len);
int ei_x_encode_string(ei_x_buff* x, const char *p);
int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len);
Encodes a string in the binary format. (A string in Erlang is a list, but is
encoded as a character array in the binary format.) The string is to be
NULL-terminated, except for the ei_x_encode_string_len() function.

 ei_encode_trace()

 ei_x_encode_trace()

int ei_encode_trace(char *buf, int *index, const erlang_trace *p);
int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p);
Encodes an Erlang trace token in the binary format. Parameter p points to a
erlang_trace structure which should have been obtained earlier with
ei_decode_trace().

 ei_encode_tuple_header()

 ei_x_encode_tuple_header()

int ei_encode_tuple_header(char *buf, int *index, int arity);
int ei_x_encode_tuple_header(ei_x_buff* x, int arity);
Encodes a tuple header, with a specified arity. The next arity terms encoded
will be the elements of the tuple. Tuples and lists are encoded recursively, so
that a tuple can contain another tuple or list.
For example, to encode the tuple {a, {b, {}}}:
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);

 ei_encode_ulong()

 ei_x_encode_ulong()

int ei_encode_ulong(char *buf, int *index, unsigned long p);
int ei_x_encode_ulong(ei_x_buff* x, unsigned long p);
Encodes an unsigned long integer in the binary format. If the code is 64 bits,
the function ei_encode_ulong() is the same as ei_encode_ulonglong().

 ei_encode_ulonglong()

 ei_x_encode_ulonglong()

int ei_encode_ulonglong(char *buf, int *index, unsigned long long p);
int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p);
Encodes a GCC unsigned long long or Visual C++ unsigned __int64 (64-bit)
integer in the binary format.

 ei_encode_version()

 ei_x_encode_version()

int ei_encode_version(char *buf, int *index);
int ei_x_encode_version(ei_x_buff* x);
Encodes a version magic number for the binary format. Must be the first token in
a binary term.

 ei_get_type()

int ei_get_type(const char *buf, const int *index, int *type, int *size);
Returns the type in *type and size in *size of the encoded term. For strings
and atoms, size is the number of characters not including the terminating
NULL. For binaries and bitstrings, *size is the number of bytes. For lists,
tuples and maps, *size is the arity of the object. For bignum integers,
*size is the number of bytes for the absolute value of the bignum. For other
types, *size is 0. In all cases, index is left unchanged.
Currently *type is one of:
	ERL_ATOM_EXT - Decode using either
ei_decode_atom(),
ei_decode_atom_as(), or
ei_decode_boolean().

	ERL_BINARY_EXT - Decode using either
ei_decode_binary(),
ei_decode_bitstring(), or
ei_decode_iodata().

	ERL_BIT_BINARY_EXT - Decode using
ei_decode_bitstring().

	ERL_FLOAT_EXT - Decode using
ei_decode_double().

	ERL_NEW_FUN_EXT, ERL_FUN_EXT, ERL_EXPORT_EXT -
Decode using ei_decode_fun().

	ERL_SMALL_INTEGER_EXT, ERL_INTEGER_EXT, ERL_SMALL_BIG_EXT, ERL_LARGE_BIG_EXT -
Decode using either ei_decode_char(),
ei_decode_long(),
ei_decode_longlong(),
ei_decode_ulong(),
ei_decode_ulonglong(), or
ei_decode_bignum().

	ERL_LIST_EXT, ERL_NIL_EXT -
Decode using either ei_decode_list_header(),
or ei_decode_iodata().

	ERL_STRING_EXT - Decode using either
ei_decode_string(), or
ei_decode_iodata().

	ERL_MAP_EXT - Decode using
ei_decode_map_header().

	ERL_PID_EXT - Decode using ei_decode_pid().

	ERL_PORT_EXT - Decode using ei_decode_port().

	ERL_NEW_REFERENCE_EXT - Decode using
ei_decode_ref().

	ERL_SMALL_TUPLE_EXT, ERL_LARGE_TUPLE_EXT
Decode using ei_decode_tuple_header().

Instead of decoding a term you can also skipped past it if you are not
interested in the data by usage of ei_skip_term().

 ei_init()

int ei_init(void);
Initialize the ei library. This function should be called once (and only once)
before calling any other functionality in the ei library.
On success zero is returned. On failure a posix error code is returned.
Available since OTP 21.3

 ei_print_term()

 ei_s_print_term()

int ei_print_term(FILE* fp, const char* buf, int* index);
int ei_s_print_term(char** s, const char* buf, int* index);
Prints a term, in clear text, to the file specified by fp, or the buffer
pointed to by s. It tries to resemble the term printing in the Erlang shell.
In ei_s_print_term(), parameter s is to point to a dynamically (malloc)
allocated string of BUFSIZ bytes or a NULL pointer. The string can be
reallocated (and *s can be updated) by this function if the result is more
than BUFSIZ characters. The string returned is NULL-terminated.
The return value is the number of characters written to the file or string, or
-1 if buf[index] does not contain a valid term. Unfortunately, I/O errors on
fp is not checked.
Argument index is updated, that is, this function can be viewed as a decode
function that decodes a term into a human-readable format.

 ei_set_compat_rel()

void ei_set_compat_rel(unsigned release_number);
In general, the ei library is guaranteed to be compatible with other
Erlang/OTP components that are 2 major releases older or newer than the ei
library itself.
Sometimes an exception to the above rule has to be made to make new features (or
even bug fixes) possible. A call to ei_set_compat_rel(release_number) sets the
ei library in compatibility mode of OTP release release_number.
The only useful value for release_number is currently 21. This will only be
useful and have an effect if bit strings or export funs are received from a
connected node. Before OTP 22, bit strings and export funs were not supported by
ei. They were instead encoded using an undocumented fallback tuple format when
sent from the emulator to ei:
	Bit string - The term <<42, 1:1>> was encoded as {<<42, 128>>, 1}.
The first element of the tuple is a binary and the second element denotes how
many bits of the last bytes are part of the bit string. In this example only
the most significant bit of the last byte (128) is part of the bit string.

	Export fun - The term fun lists:map/2 was encoded as {lists,map}. A
tuple with the module, function and a missing arity.

If ei_set_compat_rel(21) is not called then a connected emulator will send
bit strings and export funs correctly encoded. The functions
ei_decode_bitstring and
ei_decode_fun has to be used to decode such terms.
Calling ei_set_compat_rel(21) should only be done as a workaround to keep an
old implementation alive, which expects to receive the undocumented tuple
formats for bit strings and/or export funs.
Note
If this function is called, it can only be called once and must be called
before any other functions in the ei library are called.

 ei_skip_term()

int ei_skip_term(const char* buf, int* index);
Skips a term in the specified buffer; recursively skips elements of lists and
tuples, so that a full term is skipped. This is a way to get the size of an
Erlang term.
buf is the buffer.
index is updated to point right after the term in the buffer.
Note
This can be useful when you want to hold arbitrary terms: skip them and copy
the binary term data to some buffer.

Returns 0 on success, otherwise -1.

 ei_x_append()

 ei_x_append_buf()

int ei_x_append(ei_x_buff* x, const ei_x_buff* x2);
int ei_x_append_buf(ei_x_buff* x, const char* buf, int len);
Appends data at the end of buffer x.

 ei_x_format()

 ei_x_format_wo_ver()

int ei_x_format(ei_x_buff* x, const char* fmt, ...);
int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ...);
Formats a term, given as a string, to a buffer. Works like a sprintf for Erlang
terms. fmt contains a format string, with arguments like ~d, to insert terms
from variables. The following formats are supported (with the C types given):
~a An atom, char*
~c A character, char
~s A string, char*
~i An integer, int
~l A long integer, long int
~u A unsigned long integer, unsigned long int
~f A float, float
~d A double float, double float
~p An Erlang pid, erlang_pid*
For example, to encode a tuple with some stuff:
ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}
ei_x_format_wo_ver() formats into a buffer, without the initial version byte.
Change
Since OTP 26.2 maps can be encoded with syntax like "#{k1 => v1, k2 => v2}".

 ei_x_free()

int ei_x_free(ei_x_buff* x);
Deallocates the dynamically allocated content of the buffer referred by x.
After deallocation, the buff field is set to NULL.

 ei_x_new()

 ei_x_new_with_version()

int ei_x_new(ei_x_buff* x);
int ei_x_new_with_version(ei_x_buff* x);
Initialize the dynamically realizable buffer referred to by x. The fields of
the structure pointed to by parameter x is filled in, and a default buffer is
allocated. ei_x_new_with_version() also puts an initial version byte, which is
used in the binary format (so that ei_x_encode_version() will not be needed.)

 Debug Information

Some tips on what to check when the emulator does not seem to receive the terms
that you send:
	Be careful with the version header, use ei_x_new_with_version() when
appropriate.
	Turn on distribution tracing on the Erlang node.
	Check the result codes from ei_decode_-calls.

ei_connect

Communicate with distributed Erlang.

 Description

This module enables C-programs to communicate with Erlang nodes, using the
Erlang distribution over TCP/IP.
A C-node appears to Erlang as a hidden node. That is, Erlang processes that
know the name of the C-node can communicate with it in a normal manner, but the
node name is not shown in the listing provided by erlang:nodes/0 in ERTS.
The environment variable ERL_EPMD_PORT can be used to indicate which logical
cluster a C-node belongs to.

 Time-Out Functions

Most functions appear in a version with the suffix _tmo appended to the
function name. Those functions take an extra argument, a time-out in
milliseconds. The semantics is this: for each communication primitive involved
in the operation, if the primitive does not complete within the time specified,
the function returns an error and erl_errno is set to ETIMEDOUT. With
communication primitive is meant an operation on the socket, like connect,
accept, recv, or send.
Clearly the time-outs are for implementing fault tolerance, not to keep hard
real-time promises. The _tmo functions are for detecting non-responsive peers
and to avoid blocking on socket operations.
A time-out value of 0 (zero) means that time-outs are disabled. Calling a
_tmo function with the last argument as 0 is therefore the same thing as
calling the function without the _tmo suffix.
As with all other functions starting with ei_, you are not expected to put
the socket in non-blocking mode yourself in the program. Every use of
non-blocking mode is embedded inside the time-out functions. The socket will
always be back in blocking mode after the operations are completed (regardless
of the result). To avoid problems, leave the socket options alone. ei handles
any socket options that need modification.
In all other senses, the _tmo functions inherit all the return values and the
semantics from the functions without the _tmo suffix.

 User Supplied Socket Implementation

By default ei supplies a TCP/IPv4 socket interface that is used when
communicating. The user can however plug in his/her own IPv4 socket
implementation. This, for example, in order to communicate over TLS. A user
supplied socket implementation is plugged in by passing a
callback structure to either
ei_connect_init_ussi() or
ei_connect_xinit_ussi().
All callbacks in the ei_socket_callbacks structure should return zero on
success; and a posix error code on failure.
The addr argument of the listen, accept, and connect callbacks refer to
appropriate address structure for currently used protocol. Currently ei only
supports IPv4. That is, at this time addr always points to a
struct sockaddr_in structure.
 The
ei_socket_callbacks structure may be
enlarged in the future. All fields not set, needs to be zeroed out. Currently
the following fields exist:
	flags - Flags informing ei about the behaviour of the callbacks. Flags
should be bitwise or:ed together. If no flag, is set, the flags field should
contain 0. Currently, supported flags:
	EI_SCLBK_FLG_FULL_IMPL - If set, the accept(), connect(),
writev(), write(), and read() callbacks implements timeouts. The
timeout is passed in the tmo argument and is given in milli seconds. Note
that the tmo argument to these callbacks differ from the timeout arguments
in the ei API. Zero means a zero timeout. That is, poll and timeout
immediately unless the operation is successful. EI_SCLBK_INF_TMO (max
unsigned) means infinite timeout. The file descriptor is in blocking mode
when a callback is called, and it must be in blocking mode when the callback
returns.
If not set, ei will implement the timeout using select() in order to
determine when to call the callbacks and when to time out. The tmo
arguments of the accept(), connect(), writev(), write(), and
read() callbacks should be ignored. The callbacks may be called in
non-blocking mode. The callbacks are not allowed to change between blocking
and non-blocking mode. In order for this to work, select() needs to
interact with the socket primitives used the same way as it interacts with
the ordinary socket primitives. If this is not the case, the callbacks
need to implement timeouts and this flag should be set.

More flags may be introduced in the future.

	int (*socket)(void **ctx, void *setup_ctx) - Create a socket and a
context for the socket.
On success it should set *ctx to point to a context for the created socket.
This context will be passed to all other socket callbacks. This function will
be passed the same setup_context as passed to the preceding
ei_connect_init_ussi() or
ei_connect_xinit_ussi() call.
Note
During the lifetime of a socket, the pointer *ctx has to remain the
same. That is, it cannot later be relocated.

This callback is mandatory.

	int (*close)(void *ctx) - Close the socket identified by ctx and
destroy the context.
This callback is mandatory.

	int (*listen)(void *ctx, void *addr, int *len, int backlog) - Bind the
socket identified by ctx to a local interface and then listen on it.
The addr and len arguments are both input and output arguments. When
called addr points to an address structure of length *len containing
information on how to bind the socket. Upon return this callback should have
updated the structure referred by addr with information on how the socket
actually was bound. *len should be updated to reflect the size of *addr
updated. backlog identifies the size of the backlog for the listen socket.
This callback is mandatory.

	int (*accept)(void **ctx, void *addr, int *len, unsigned tmo) - Accept
connections on the listen socket identified by *ctx.
When a connection is accepted, a new context for the accepted connection
should be created and *ctx should be updated to point to the new context for
the accepted connection. When called addr points to an uninitialized address
structure of length *len. Upon return this callback should have updated this
structure with information about the client address. *len should be updated
to reflect the size of *addr updated.
If the EI_SCLBK_FLG_FULL_IMPL flag has been set, tmo contains timeout time
in milliseconds.
Note
During the lifetime of a socket, the pointer *ctx has to remain the
same. That is, it cannot later be relocated.

This callback is mandatory.

	int (*connect)(void *ctx, void *addr, int len, unsigned tmo) - Connect
the socket identified by ctx to the address identified by addr.
When called addr points to an address structure of length len containing
information on where to connect.
If the EI_SCLBK_FLG_FULL_IMPL flag has been set, tmo contains timeout time
in milliseconds.
This callback is mandatory.

	int (*writev)(void *ctx, const void *iov, long iovcnt, ssize_t *len, unsigned tmo) -
Write data on the connected socket identified by ctx.
iov points to an array of struct iovec structures of length iovcnt
containing data to write to the socket. On success, this callback should set
*len to the amount of bytes successfully written on the socket.
If the EI_SCLBK_FLG_FULL_IMPL flag has been set, tmo contains timeout time
in milliseconds.
This callback is optional. Set the writev field in the the
ei_socket_callbacks structure to NULL if not implemented.

	int (*write)(void *ctx, const char *buf, ssize_t *len, unsigned tmo) -
Write data on the connected socket identified by ctx.
When called buf points to a buffer of length *len containing the data to
write on the socket. On success, this callback should set *len to the amount
of bytes successfully written on the socket.
If the EI_SCLBK_FLG_FULL_IMPL flag has been set, tmo contains timeout time
in milliseconds.
This callback is mandatory.

	int (*read)(void *ctx, char *buf, ssize_t *len, unsigned tmo) - Read
data on the connected socket identified by ctx.
buf points to a buffer of length *len where the read data should be
placed. On success, this callback should update *len to the amount of bytes
successfully read on the socket.
If the EI_SCLBK_FLG_FULL_IMPL flag has been set, tmo contains timeout time
in milliseconds.
This callback is mandatory.

	int (*handshake_packet_header_size)(void *ctx, int *sz) - Inform about
handshake packet header size to use during the Erlang distribution handshake.
On success, *sz should be set to the handshake packet header size to use.
Valid values are 2 and 4. Erlang TCP distribution use a handshake packet
size of 2 and Erlang TLS distribution use a handshake packet size of 4.
This callback is mandatory.

	int (*connect_handshake_complete)(void *ctx) - Called when a locally
started handshake has completed successfully.
This callback is optional. Set the connect_handshake_complete field in the
ei_socket_callbacks structure to NULL if not implemented.

	int (*accept_handshake_complete)(void *ctx) - Called when a remotely
started handshake has completed successfully.
This callback is optional. Set the accept_handshake_complete field in the
ei_socket_callbacks structure to NULL if not implemented.

	int (*get_fd)(void *ctx, int *fd) - Inform about file descriptor used by
the socket which is identified by ctx.
Note
During the lifetime of a socket, the file descriptor has to remain the
same. That is, repeated calls to this callback with the same context
should always report the same file descriptor.
The file descriptor has to be a real file descriptor. That is, no other
operation should be able to get the same file descriptor until it has been
released by the close() callback.

This callback is mandatory.

 Data Types

	ei_cnode - Opaque data type representing a C-node. A
ei_cnode structure is initialized by calling
ei_connect_init() or friends.

	ei_socket_callbacks
typedef struct {
 int flags;
 int (*socket)(void **ctx, void *setup_ctx);
 int (*close)(void *ctx);
 int (*listen)(void *ctx, void *addr, int *len, int backlog);
 int (*accept)(void **ctx, void *addr, int *len, unsigned tmo);
 int (*connect)(void *ctx, void *addr, int len, unsigned tmo);
 int (*writev)(void *ctx, const void *iov, int iovcnt, ssize_t *len, unsigned tmo);
 int (*write)(void *ctx, const char *buf, ssize_t *len, unsigned tmo);
 int (*read)(void *ctx, char *buf, ssize_t *len, unsigned tmo);
 int (*handshake_packet_header_size)(void *ctx, int *sz);
 int (*connect_handshake_complete)(void *ctx);
 int (*accept_handshake_complete)(void *ctx);
 int (*get_fd)(void *ctx, int *fd);
} ei_socket_callbacks;
Callbacks functions for a
User Supplied Socket Implementation.
Documentation of each field can be
found in the User Supplied Socket Implementation section above.

	ErlConnect
typedef struct {
 char ipadr[4]; /* Ip v4 address in network byte order */
 char nodename[MAXNODELEN];
} ErlConnect;
IP v4 address and nodename.

	Erl_IpAddr
typedef struct {
 unsigned s_addr; /* Ip v4 address in network byte order */
} Erl_IpAddr;
IP v4 address.

	erlang_msg
typedef struct {
 long msgtype;
 erlang_pid from;
 erlang_pid to;
 char toname[MAXATOMLEN+1];
 char cookie[MAXATOMLEN+1];
 erlang_trace token;
} erlang_msg;
Information about a message received via
ei_receive_msg() or friends.

 ei_gethostbyaddr()

 ei_gethostbyaddr_r()

 ei_gethostbyname()

 ei_gethostbyname_r()

struct hostent * ei_gethostbyaddr(const char *addr, int len, int type);
struct hostent * ei_gethostbyaddr_r(const char *addr, int length, int type,
 struct hostent *hostp, char *buffer, int buflen, int *h_errnop);
struct hostent * ei_gethostbyname(const char *name);
struct hostent * ei_gethostbyname_r(const char *name, struct hostent *hostp,
 char *buffer, int buflen, int *h_errnop);
Convenience functions for some common name lookup functions.

 ei_accept()

int ei_accept(ei_cnode *ec, int listensock, ErlConnect *conp);
Used by a server process to accept a connection from a client process.
	ec is the C-node structure.
	listensock is an open socket descriptor on which listen() has previously
been called.
	conp is a pointer to an ErlConnect struct.

On success, conp is filled in with the address and node name of the connecting
client and a file descriptor is returned. On failure, ERL_ERROR is returned
and erl_errno is set to EIO.

 ei_accept_tmo()

int ei_accept_tmo(ei_cnode *ec, int listensock, ErlConnect *conp, unsigned timeout_ms);
Equivalent to ei_accept with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_close_connection()

int ei_close_connection(int fd);
Closes a previously opened connection or listen socket.
Available since OTP 21.3

 ei_connect()

 ei_xconnect()

 ei_connect_host_port()

Available since OTP 23.0

 ei_xconnect_host_port()

int ei_connect(ei_cnode* ec, char *nodename);
int ei_xconnect(ei_cnode* ec, Erl_IpAddr adr, char *alivename);
int ei_connect_host_port(ei_cnode* ec, char *hostname, int port);
int ei_xconnect_host_port(ei_cnode* ec, Erl_IpAddr adr, int port);
Sets up a connection to an Erlang node.
ei_xconnect() requires the IP address of the remote host and the alive name of
the remote node to be specified. ei_connect() provides an alternative
interface and determines the information from the node name provided. The
ei_xconnect_host_port() function provides yet another alternative that will
work even if there is no EPMD instance on the host where the remote node is
running. The ei_xconnect_host_port() function requires the IP address and port
of the remote node to be specified. The ei_connect_host_port() function is an
alternative to ei_xconnect_host_port() that lets the user specify a hostname
instead of an IP address.
	adr is the 32-bit IP address of the remote host.
	alive is the alivename of the remote node.
	node is the name of the remote node.
	port is the port number of the remote node.

These functions return an open file descriptor on success, or a negative value
indicating that an error occurred. In the latter case they set erl_errno to
one of the following:
	EHOSTUNREACH - The remote host node is unreachable.

	ENOMEM - No more memory is available.

	EIO - I/O error.

Also, errno values from socket(2) and connect(2) system calls may be
propagated into erl_errno.
Example:
#define NODE "madonna@chivas.du.etx.ericsson.se"
#define ALIVE "madonna"
#define IP_ADDR "150.236.14.75"

/*** Variant 1 ***/
int fd = ei_connect(&ec, NODE);

/*** Variant 2 ***/
struct in_addr addr;
addr.s_addr = inet_addr(IP_ADDR);
fd = ei_xconnect(&ec, &addr, ALIVE);
Available since OTP 23.0

 ei_connect_init()

 ei_connect_init_ussi()

Available since OTP 21.3

 ei_connect_xinit()

 ei_connect_xinit_ussi()

int ei_connect_init(ei_cnode* ec, const char* this_node_name, const char *cookie, unsigned creation);
int ei_connect_init_ussi(ei_cnode* ec, const char* this_node_name, const char *cookie,
 unsigned creation, ei_socket_callbacks *cbs, int cbs_sz, void *setup_context);
int ei_connect_xinit(ei_cnode* ec, const char *thishostname, const char *thisalivename,
 const char *thisnodename, Erl_IpAddr thisipaddr, const char *cookie, unsigned creation);
int ei_connect_xinit_ussi(ei_cnode* ec, const char *thishostname, const char *thisalivename,
 const char *thisnodename, Erl_IpAddr thisipaddr, const char *cookie, unsigned creation,
 ei_socket_callbacks *cbs, int cbs_sz, void *setup_context);
Initializes the ec structure, to identify the node name and cookie of the
server. One of them must be called before other functions that works on the
ei_cnode type or a file descriptor associated with a connection to another
node is used.
	ec is a structure containing information about the C-node. It is used in
other ei functions for connecting and receiving data.

	this_node_name is the name of the C-node (the name before '@' in the full
node name).

	cookie is the cookie for the node.

	creation identifies a specific instance of a C-node. It can help prevent the
node from receiving messages sent to an earlier process with the same
registered name.
Note
The type of the creation argument was changed from short (16 bit) to
unsigned int (32 bit) in OTP 25. This should cause no practical problem
other than maybe a compiler warning.

	thishostname is the name of the machine we are running on. If long names are
to be used, they are to be fully qualified (that is, durin.erix.ericsson.se
instead of durin).

	thisalivename is the name of the local C-node (the name before '@' in the
full node name). Can be NULL (from OTP 23) to get a dynamically assigned
name from the peer node.

	thisnodename is the full name of the local C-node, that is, mynode@myhost.
Can be NULL if thisalivename is NULL.

	thispaddr if the IP address of the host.

	cbs is a pointer to a
callback structure implementing and
alternative socket interface.

	cbs_sz is the size of the structure pointed to by cbs.

	setup_context is a pointer to a structure that will be passed as second
argument to the socket callback in the cbs structure.

A C-node acting as a server is assigned a creation number when it calls
ei_publish().
A connection is closed by simply closing the socket. For information about how
to close the socket gracefully (when there are outgoing packets before close),
see the relevant system documentation.
These functions return a negative value indicating that an error occurred.
Example 1:
unsigned n = 0;
struct in_addr addr;
ei_cnode ec;
addr.s_addr = inet_addr("150.236.14.75");
if (ei_connect_xinit(&ec,
 "chivas",
 "madonna",
 "madonna@chivas.du.etx.ericsson.se",
 &addr;
 "cookie...",
 n++) < 0) {
 fprintf(stderr,"ERROR when initializing: %d",erl_errno);
 exit(-1);
}
Example 2:
if (ei_connect_init(&ec, "madonna", "cookie...", n++) < 0) {
 fprintf(stderr,"ERROR when initializing: %d",erl_errno);
 exit(-1);
}
Available since OTP 21.3

 ei_connect_tmo()

 ei_xconnect_tmo()

 ei_connect_host_port_tmo()

Available since OTP 23.0

 ei_xconnect_host_port_tmo()

int ei_connect_tmo(ei_cnode* ec, char *nodename, unsigned timeout_ms);
int ei_xconnect_tmo(ei_cnode* ec, Erl_IpAddr adr, char *alivename, unsigned timeout_ms);
int ei_connect_host_port_tmo(ei_cnode* ec, char *hostname, int port, unsigned ms);
int ei_xconnect_host_port_tmo(ei_cnode* ec, Erl_IpAddr adr, int port, unsigned ms);
Equivalent to ei_connect, ei_xconnect, ei_connect_host_port and
ei_xconnect_host_port with an optional time-out argument, see the description
at the beginning of this manual page.
Available since OTP 23.0

 ei_get_tracelevel()

Available since OTP R13B04

 ei_set_tracelevel()

int ei_get_tracelevel(void);
void ei_set_tracelevel(int level);
Used to set tracing on the distribution. The levels are different verbosity
levels. A higher level means more information. See also section
Debug Information.
These functions are not thread safe.
Available since OTP R13B04

 ei_listen()

Available since OTP 21.3

 ei_xlisten()

int ei_listen(ei_cnode *ec, int *port, int backlog);
int ei_xlisten(ei_cnode *ec, Erl_IpAddr adr, int *port, int backlog);
Used by a server process to setup a listen socket which later can be used for
accepting connections from client processes.
	ec is the C-node structure.
	adr is local interface to bind to.
	port is a pointer to an integer containing the port number to bind to. If
*port equals 0 when calling ei_listen(), the socket will be bound to an
ephemeral port. On success, ei_listen() will update the value of *port to
the port actually bound to.
	backlog is maximum backlog of pending connections.

ei_listen will create a socket, bind to a port on the local interface
identified by adr (or all local interfaces if ei_listen() is called), and
mark the socket as a passive socket (that is, a socket that will be used for
accepting incoming connections).
On success, a file descriptor is returned which can be used in a call to
ei_accept(). On failure, ERL_ERROR is returned and erl_errno is set to
EIO.
Available since OTP 21.3

 ei_make_pid()

int ei_make_pid(ei_cnode *ec, erlang_pid *pid);
Creates a new process identifier in the argument pid. This process identifier
refers to a conseptual process residing on the C-node identified by the argument
ec. On success 0 is returned. On failure ERL_ERROR is returned and
erl_errno is set.
The C-node identified by ec must have been initialized and must have received
a name prior to the call to ei_make_pid(). Initialization of the C-node is
done by a call to ei_connect_init() or
friends. If the name is dynamically assigned from the peer node, the C-node also
has to be connected.
Available since OTP 23.0

 ei_make_ref()

int ei_make_ref(ei_cnode *ec, erlang_ref *ref);
Creates a new reference in the argument ref. This reference originates from
the C-node identified by the argument ec. On success 0 is returned. On
failure ERL_ERROR is returned and erl_errno is set.
The C-node identified by ec must have been initialized and must have received
a name prior to the call to ei_make_ref(). Initialization of the C-node is
done by a call to ei_connect_init() or
friends. If the name is dynamically assigned from the peer node, the C-node also
has to be connected.
Available since OTP 23.0

 ei_publish()

int ei_publish(ei_cnode *ec, int port);
Used by a server process to register with the local name server EPMD, thereby
allowing other processes to send messages by using the registered name. Before
calling either of these functions, the process should have called bind() and
listen() on an open socket.
	ec is the C-node structure.
	port is the local name to register, and is to be the same as the port number
that was previously bound to the socket.
	addr is the 32-bit IP address of the local host.

To unregister with EPMD, simply close the returned descriptor. Do not use
ei_unpublish(), which is deprecated anyway.
On success, the function returns a descriptor connecting the calling process to
EPMD. On failure, -1 is returned and erl_errno is set to EIO.
Also, errno values from socket(2) and connect(2) system calls may be
propagated into erl_errno.

 ei_publish_tmo()

int ei_publish_tmo(ei_cnode *ec, int port, unsigned timeout_ms);
Equivalent to ei_publish with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_receive()

int ei_receive(int fd, unsigned char* bufp, int bufsize);
Receives a message consisting of a sequence of bytes in the Erlang external
format.
	fd is an open descriptor to an Erlang connection. It is obtained from a
previous ei_connect or ei_accept.
	bufp is a buffer large enough to hold the expected message.
	bufsize indicates the size of bufp.

If a tick occurs, that is, the Erlang node on the other end of the connection
has polled this node to see if it is still alive, the function returns
ERL_TICK and no message is placed in the buffer. Also, erl_errno is set to
EAGAIN.
On success, the message is placed in the specified buffer and the function
returns the number of bytes actually read. On failure, the function returns
ERL_ERROR and sets erl_errno to one of the following:
	EAGAIN - Temporary error: Try again.

	EMSGSIZE - Buffer is too small.

	EIO - I/O error.

 ei_receive_encoded()

int ei_receive_encoded(int fd, char **mbufp, int *bufsz, erlang_msg *msg, int *msglen);
This function is retained for compatibility with code generated by the interface
compiler and with code following examples in the same application.
In essence, the function performs the same operation as ei_xreceive_msg, but
instead of using an ei_x_buff, the function expects a pointer to a character
pointer (mbufp), where the character pointer is to point to a memory area
allocated by malloc. Argument bufsz is to be a pointer to an integer
containing the exact size (in bytes) of the memory area. The function may
reallocate the memory area and will in such cases put the new size in *bufsz
and update *mbufp.
Returns either ERL_TICK or the msgtype field of the erlang_msg *msg. The
length of the message is put in *msglen. On error a value < 0 is returned.
It is recommended to use ei_xreceive_msg instead when possible, for the sake
of readability. However, the function will be retained in the interface for
compatibility and will not be removed in future releases without prior notice.

 ei_receive_encoded_tmo()

int ei_receive_encoded_tmo(int fd, char **mbufp, int *bufsz, erlang_msg *msg,
 int *msglen, unsigned timeout_ms);
Equivalent to ei_receive_encoded with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_receive_msg()

 ei_xreceive_msg()

int ei_receive_msg(int fd, erlang_msg* msg, ei_x_buff* x);
int ei_xreceive_msg(int fd, erlang_msg* msg, ei_x_buff* x);
Receives a message to the buffer in x. ei_xreceive_msg allows the buffer in
x to grow, but ei_receive_msg fails if the message is larger than the
pre-allocated buffer in x.
	fd is an open descriptor to an Erlang connection.
	msg is a pointer to an erlang_msg structure and contains information on
the message received.
	x is buffer obtained from ei_x_new.

On success, the functions return ERL_MSG and the
msg struct is initialized.
msgtype identifies the type of message, and is one of the following:
	ERL_SEND - Indicates that an ordinary send operation has occurred.
msg->to contains the pid of the recipient (the C-node).

	ERL_REG_SEND - A registered send operation occurred. msg->from
contains the pid of the sender.

	ERL_LINK or ERL_UNLINK - msg->to and msg->from contain the pids of
the sender and recipient of the link or unlink.

	ERL_EXIT - Indicates a broken link. msg->to and msg->from contain
the pids of the linked processes.

The return value is the same as for ei_receive.

 ei_receive_msg_tmo()

 ei_xreceive_msg_tmo()

int ei_receive_msg_tmo(int fd, erlang_msg* msg, ei_x_buff* x, unsigned imeout_ms);
int ei_xreceive_msg_tmo(int fd, erlang_msg* msg, ei_x_buff* x, unsigned timeout_ms);
Equivalent to ei_receive_msg and ei_xreceive_msg with an optional time-out
argument, see the description at the beginning of this manual page.

 ei_receive_tmo()

int ei_receive_tmo(int fd, unsigned char* bufp, int bufsize, unsigned timeout_ms);
Equivalent to ei_receive with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_reg_send()

int ei_reg_send(ei_cnode* ec, int fd, char* server_name, char* buf, int len);
Sends an Erlang term to a registered process.
	fd is an open descriptor to an Erlang connection.
	server_name is the registered name of the intended recipient.
	buf is the buffer containing the term in binary format.
	len is the length of the message in bytes.

Returns 0 if successful, otherwise -1. In the latter case it sets
erl_errno to EIO.
Example:
Send the atom "ok" to the process "worker":
ei_x_buff x;
ei_x_new_with_version(&x);
ei_x_encode_atom(&x, "ok");
if (ei_reg_send(&ec, fd, x.buff, x.index) < 0)
 handle_error();

 ei_reg_send_tmo()

int ei_reg_send_tmo(ei_cnode* ec, int fd, char* server_name, char* buf, int len,
 unsigned timeout_ms);
Equivalent to ei_reg_send with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_rpc()

 ei_rpc_to()

 ei_xrpc_to()

Available since OTP 24.0

 ei_rpc_from()

int ei_rpc(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
 int argbuflen, ei_x_buff *x);
int ei_rpc_to(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
 int argbuflen);
int ei_xrpc_to(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
 int argbuflen, int flags);
int ei_rpc_from(ei_cnode *ec, int fd, int timeout, erlang_msg *msg, ei_x_buff *x);
Supports calling Erlang functions on remote nodes. ei_rpc_to() sends an RPC
request to a remote node and ei_rpc_from() receives the results of such a
call. ei_rpc() combines the functionality of these two functions by sending an
RPC request and waiting for the results.
The ei_xrpc_to() function is equivalent to ei_rpc_to() when its flags
parameter is set to 0. When the flags parameter of ei_xrpc_to() is set to
EI_RPC_FETCH_STDOUT, stdout (standard output) data are forwarded. See the
documentation for the flags parameter for more information about the
EI_RPC_FETCH_STDOUT flag.
See also rpc:call/4 in Kernel.
	ec is the C-node structure previously initiated by a call to
ei_connect_init() or ei_connect_xinit().

	fd is an open descriptor to an Erlang connection.

	timeout is the maximum time (in milliseconds) to wait for results. Specify
ERL_NO_TIMEOUT to wait forever. ei_rpc() waits infinitely for the answer,
that is, the call will never time out.

	mod is the name of the module containing the function to be run on the
remote node.

	fun is the name of the function to run.

	argbuf is a pointer to a buffer with an encoded Erlang list, without a
version magic number, containing the arguments to be passed to the function.

	argbuflen is the length of the buffer containing the encoded Erlang list.

	msg is structure of type erlang_msg and contains information on the
message received. For a description of the erlang_msg format, see
ei_receive_msg.

	x points to the dynamic buffer that receives the result. For ei_rpc() this
is the result without the version magic number. For an ei_rpc_from() call
the result consists of a version magic number and a 2-tuple. The 2-tuple can
be in one of the following two forms:
	{rex,Reply} - This response value means that the RPC has completed.
The result value is the Reply term. This is the only type of response that
one can get from an RPC triggered by a call to ei_rpc_to() or
ei_xrpc_to() without the EI_RPC_FETCH_STDOUT flag. If the RPC was
triggered by a call to ei_xrpc_to() with the EI_RPC_FETCH_STDOUT flag
set, then all forwarded stdout data has been received.

	{rex_stdout,StdOutUTF8Binary} - This response value can only be
obtained if the RPC call was triggered by a call to ei_xrpc_to() with the
EI_RPC_FETCH_STDOUT flag set. This response value means that forwarded
stdout data has been received. The stdout data is stored in a binary and is
UTF-8 encoded. One may need to call ei_rpc_from() multiple times to read
all the stdout data. The stdout data is received in the same order as it was
written. All forwarded stdout data have been received when a {rex,Reply}
tuple has been obtained from an ei_rpc_from() call.

	flags The flag EI_RPC_FETCH_STDOUT is currently the only flag that is
supported by ei_xrpc_to(). When EI_RPC_FETCH_STDOUT is set, the called
function is executed in a new process with a
group leader that forwards all stdout data. This
means that stdout data that are written during the execution of the called
function, by the called function and by descendant processes, will be
forwarded (given that the group leader has not been changed by a call to
erlang:group_leader/2). The forwarded stdout data need to be collected by a
sequence of calls to ei_rpc_from(). See the description of the x parameter
for how ei_rpc_from() is used to receive stdout data. See the documentation
of the the I/O protocol, for more information
about the group leader concept.
Note
The flag EI_RPC_FETCH_STDOUT only works when interacting with a node with
a version greater or equal to OTP-24.

ei_rpc() returns the number of bytes in the result on success and -1 on
failure. ei_rpc_from() returns the number of bytes, otherwise one of
ERL_TICK, ERL_TIMEOUT, and ERL_ERROR. The functions ei_rpc_to() and
ei_xrpc_to() returns 0 if successful, otherwise -1. When failing, all four
functions set erl_errno to one of the following:
	EIO - I/O error.

	ETIMEDOUT - Time-out expired.

	EAGAIN - Temporary error: Try again.

Example:
Check to see if an Erlang process is alive:
int index = 0, is_alive;
ei_x_buff args, result;

ei_x_new(&result);
ei_x_new(&args);
ei_x_encode_list_header(&args, 1);
ei_x_encode_pid(&args, &check_pid);
ei_x_encode_empty_list(&args);

if (ei_rpc(&ec, fd, "erlang", "is_process_alive",
 args.buff, args.index, &result) < 0)
 handle_error();

if (ei_decode_version(result.buff, &index) < 0
 || ei_decode_bool(result.buff, &index, &is_alive) < 0)
 handle_error();

 ei_self()

erlang_pid * ei_self(ei_cnode *ec);
Retrieves a generic pid of the C-node. Every C-node has a (pseudo) pid used in
ei_send_reg, ei_rpc(), and others. This is contained in a field in the ec
structure. Do not modify this structure.
On success a pointer to the process identifier is returned. On failure NULL is
returned and erl_errno is set.
The C-node identified by ec must have been initialized and must have received
a name prior to the call to ei_self(). Initialization of the C-node is done by
a call to ei_connect_init() or friends. If
the name is dynamically assigned from the peer node, the C-node also has to be
connected.

 ei_send()

int ei_send(int fd, erlang_pid* to, char* buf, int len);
Sends an Erlang term to a process.
	fd is an open descriptor to an Erlang connection.
	to is the pid of the intended recipient of the message.
	buf is the buffer containing the term in binary format.
	len is the length of the message in bytes.

Returns 0 if successful, otherwise -1. In the latter case it sets
erl_errno to EIO.

 ei_send_encoded()

int ei_send_encoded(int fd, erlang_pid* to, char* buf, int len);
Works exactly as ei_send, the alternative name is retained for backward
compatibility. The function will not be removed without prior notice.

 ei_send_encoded_tmo()

int ei_send_encoded_tmo(int fd, erlang_pid* to, char* buf, int len, unsigned timeout_ms);
Equivalent to ei_send_encoded with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_send_reg_encoded()

int ei_send_reg_encoded(int fd, const erlang_pid *from, const char *to, const char *buf, int len);
This function is retained for compatibility with code generated by the interface
compiler and with code following examples in the same application.
The function works as ei_reg_send with one exception. Instead of taking
ei_cnode as first argument, it takes a second argument, an erlang_pid, which
is to be the process identifier of the sending process (in the Erlang
distribution protocol).
A suitable erlang_pid can be retrieved from the ei_cnode structure by
calling ei_self(cnode_pointer).

 ei_send_reg_encoded_tmo()

int ei_send_reg_encoded_tmo(int fd, const erlang_pid *from, const char *to, const char *buf,
 int len, unsigned timeout_ms);
Equivalent to ei_send_reg_encoded with an optional time-out argument, see the
description at the beginning of this manual page.

 ei_send_tmo()

int ei_send_tmo(int fd, erlang_pid* to, char* buf, int len, unsigned timeout_ms);
Equivalent to ei_send with an optional time-out argument, see the description
at the beginning of this manual page.

 ei_thisnodename()

 ei_thishostname()

 ei_thisalivename()

const char * ei_thisnodename(ei_cnode *ec);
const char * ei_thishostname(ei_cnode *ec);
const char * ei_thisalivename(ei_cnode *ec);
Can be used to retrieve information about the C-node. These values are initially
set with ei_connect_init() or ei_connect_xinit().
These function simply fetch the appropriate field from the ec structure. Read
the field directly will probably be safe for a long time, so these functions are
not really needed.

 ei_unpublish()

int ei_unpublish(ei_cnode *ec);
Can be called by a process to unregister a specified node from EPMD on the local
host. This is, however, usually not allowed, unless EPMD was started with flag
-relaxed_command_check, which it normally is not.
To unregister a node you have published, you should close the descriptor that
was returned by ei_publish().
Warning
This function is deprecated and will be removed in a future release.

ec is the node structure of the node to unregister.
If the node was successfully unregistered from EPMD, the function returns 0.
Otherwise, -1 is returned and erl_errno is set to EIO.

 ei_unpublish_tmo()

int ei_unpublish_tmo(ei_cnode *ec, unsigned timeout_ms);
Equivalent to ei_unpublish with an optional time-out argument, see the
description at the beginning of this manual page.

 Debug Information

If a connection attempt fails, the following can be checked:
	erl_errno.
	That the correct cookie was used
	That EPMD is running
	That the remote Erlang node on the other side is running the same version of
Erlang as the ei library
	That environment variable ERL_EPMD_PORT is set correctly

The connection attempt can be traced by setting a trace level by either using
ei_set_tracelevel or by setting environment variable EI_TRACELEVEL. The
trace levels have the following messages:
	1: Verbose error messages
	2: Above messages and verbose warning messages
	3: Above messages and progress reports for connection handling
	4: Above messages and progress reports for communication
	5: Above messages and progress reports for data conversion

ei_global

Access globally registered names.

 Description

This module provides support for registering, looking up, and unregistering
names in the global module. For more information, see
kernel:global.
Notice that the functions below perform an RPC using an open file descriptor
provided by the caller. This file descriptor must not be used for other traffic
during the global operation, as the function can then receive unexpected data
and fail.

 ei_global_names()

char **ei_global_names(ei_cnode *ec, int fd, int *count);
Retrieves a list of all known global names.
	ec is the ei_cnode representing the current cnode.
	fd is an open descriptor to an Erlang connection.
	count is the address of an integer, or NULL. If count is not NULL, it
is set by the function to the number of names found.

On success, the function returns an array of strings, each containing a single
registered name, and sets count to the number of names found. The array is
terminated by a single NULL pointer. On failure, the function returns NULL
and count is not modified.
Note
It is the caller's responsibility to free the array afterwards. It has been
allocated by the function with a single call to malloc(), so a single
free() is all that is necessary.

Available since OTP 23.0

 ei_global_register()

int ei_global_register(int fd, const char *name, erlang_pid *self);
Registers a name in global.
	fd is an open descriptor to an Erlang connection.
	name is the name to register in global.
	pid is the pid that is to be associated with name. This value is returned
by global when processes request the location of name.

Returns 0 on success, otherwise -1.
Available since OTP 23.0

 ei_global_unregister()

int ei_global_unregister(ei_cnode *ec, int fd, const char *name);
Unregisters a name from global.
	ec is the ei_cnode representing the current cnode.
	fd is an open descriptor to an Erlang connection.
	name is the name to unregister from global.

Returns 0 on success, otherwise -1.
Available since OTP 23.0

 ei_global_whereis()

int ei_global_whereis(ei_cnode *ec, int fd, const char *name, erlang_pid* pid, char *node);
Looks up a name in global.
	ec is the ei_cnode representing the current cnode.
	fd is an open descriptor to an Erlang connection.
	name is the name that is to be looked up in global.

The pid parameter is a pointer to a erlang_pid that the function will update
with the pid associated with the global name, if successful.
If node is not NULL, it is a pointer to a buffer where the function can fill
in the name of the node where name is found. node can be passed directly to
ei_connect() if necessary.
On success, the function returns 0, updates the erlang_pid pointed to by the
pid parameter, and the node parameter is initialized to the node name where
name is found. On failure, a negative number is returned.
Available since OTP 23.0

 OEBPS/assets/logo.png
EEEEEE

OEBPS/dist/epub-CB7BJMUW.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function c(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),c()});})();

