

 et

 v1.7.1

 [image: Logo]

 Table of contents

 	Event Tracer (ET) Release Notes

 	User's Guides

 	Introduction

 	Tutorial

 	Description

 	Advanced examples

 	

 	Modules

 	et

 	et_collector

 	et_selector

 	et_viewer

Event Tracer (ET) Release Notes

This document describes the changes made to the Event Tracer (ET) system from
version to version. The intention of this document is to list all
incompatibilities as well as all enhancements and bugfixes for every release of
Event Tracer (ET). Each release of Event Tracer (ET)thus constitutes one
section in this document. The title of each section is the version number of
Event Tracer (ET).

 ET 1.7.1

 Fixed Bugs and Malfunctions

	The dependencies for this application are now listed in the app file.
Own Id: OTP-18831 Aux Id: PR-7441

	Dialyzer warnings due to type specs added in dbg have been eliminated.
Own Id: OTP-18860

 Improvements and New Features

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 ET 1.7

 Improvements and New Features

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

 ET 1.6.5

 Improvements and New Features

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

 ET 1.6.4

 Fixed Bugs and Malfunctions

	The scroll bar of the et_viewer window could not be dragged all the way to the
top of the window. It would always stop at the second event. This is now
corrected.
Own Id: OTP-15463 Aux Id: ERL-780

 ET 1.6.3

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 ET 1.6.2

 Improvements and New Features

	Calls to erlang:get_stacktrace() are removed.
Own Id: OTP-14861

 ET 1.6.1

 Improvements and New Features

	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

 ET 1.6

 Improvements and New Features

	Update selector to utilize new garbage collection trace tags.
Own Id: OTP-13545

 ET 1.5.1

 Fixed Bugs and Malfunctions

	The et application must continue to use erlang:now/0 in order to obtain
timestamps that are consistent with timestamps obtained from tracing. The
application has been updated to suppress the warning for erlang:now/0.
Own Id: OTP-12780

 ET 1.5

 Fixed Bugs and Malfunctions

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	Removed gs based applications and gs based backends. The observer
application replaces the removed applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10915

 ET 1.4.4.5

 Improvements and New Features

	The encoding of the notes.xml file has been changed from latin1 to utf-8 to
avoid future merge problems.
Own Id: OTP-11310

 ET 1.4.4.4

 Improvements and New Features

	Use erlang:demonitor(Ref, [flush]) where applicable. Thanks to Loïc Hoguin.
Own Id: OTP-11039

	Rename and document lists:zf/2 as lists:filtermap/2. Thanks to Anthony Ramine.
Own Id: OTP-11078

 ET 1.4.4.3

 Improvements and New Features

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

 ET 1.4.4.2

 Fixed Bugs and Malfunctions

	Fix typo in ET doc (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-10119

 ET 1.4.4.1

 Improvements and New Features

	The GS applications is now deprecated and will be removed in the R16 release.
The following GS-based applications have been superseded by the Observer
application and will removed in R16: Appmon, Pman, Tv.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9907

 ET 1.4.4

 Fixed Bugs and Malfunctions

	Dialyzer warnings have been fixed.
Own Id: OTP-9470

 ET 1.4.3

 Fixed Bugs and Malfunctions

	The popup window 'contents viewer' did not display properly on Windows.
Own Id: OTP-9238

 ET 1.4.2

 Fixed Bugs and Malfunctions

	Fix error when module et was used in et_selector trace patterns.
Own Id: OTP-8904

 ET 1.4.1

 Fixed Bugs and Malfunctions

	Fixed broken links in the documentation.
Own Id: OTP-8796

 Improvements and New Features

	Fixed gui crash on windows.
Own Id: OTP-8830

 ET 1.4

 Improvements and New Features

	Thanks to Olle Mattsson the GUI parts are rewritten to use wxWidgets. For
the time being it is still possible to use the old GS based version of the
tool, but it is deprecated. The wxWidgets based version is started by
default.
A print function has been added, in order to enable printing of sequence
charts.
A new tutorial has been added to the documentation. It is based on
Jayson Vantuyl's article
http://souja.net/2009/04/making-sense-of-erlangs-event-tracer.html.
The functions et:trace_me/4 and et:trace_me/5 has been introduced in order
to replace the deprecated functions et:report_event/4 and
et:report_event/5. Hopefully the new names makes it a little more obvious
what the intended usage of the functions are.
The max_events configuration parameter to et_viewer is not used any more.
Now the event cache in the Viewer only contains those events that actually
are displayed in the GUI.
Own Id: OTP-8058

 ET 1.3.3

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the HTML frames are
removed.
Own Id: OTP-8201

 ET 1.3.2

 Improvements and New Features

	The start module in the app file has been corrected.
Own Id: OTP-8078

 ET 1.3.1

 Improvements and New Features

	Changed copyright
Own Id: OTP-7830

 ET 1.3

 Improvements and New Features

	Adjusted copyright
Own Id: OTP-6985

 ET 1.0.1

 Improvements and New Features

	Document source changed from SGML to XML.
Own Id: OTP-6774

 ET 1.0.0.1

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689

 Event Tracer (ET) 1.0

 Improvements and new features

This is the first release of the Event Tracer (ET) as a stand-alone
application separated from the Megaco application.

Introduction

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides
tools for collection and graphical viewing of trace data.
The viewed trace data is normally collected from Erlang trace ports or files.

 Scope and Purpose

This manual describes the Event Tracer (ET) application, as a component of the
Erlang/Open Telecom Platform development environment. It is assumed that the
reader is familiar with the Erlang Development Environment, which is described
in a separate User's Guide.

 Prerequisites

The following prerequisites are required for understanding the material in the
Event Tracer (ET) User's Guide:
	familiarity with the Erlang system and Erlang programming in general and the
especially the art of Erlang tracing.

The application requires Erlang/OTP release R13BB or later. If you use the old
GS based GUI it does suffice with R7B.

 About This Manual

In addition to this introductory chapter, the Event Tracers User's Guide
contains the following chapters:
	Chapter 2: "Tutorial" provides a walk-through of the various parts of the
application. The tutorial is based on Jayson Vantuyl's article
http://souja.net/2009/04/making-sense-of-erlangs-event-tracer.html.
	Chapter 3: "Description" describes the architecture and typical usage of the
application.
	Chapter 4: "Advanced examples" gives some usage examples

 Where to Find More Information

Refer to the following documentation for more information about
Event Tracer (ET) and about the Erlang/OTP development system:
	the Reference Manual of the Event Tracer (ET).
	documentation of basic tracing in erlang:trace/3 and
erlang:trace_pattern/3 and then the utilities derived from these: dbg,
observer, invisio and et.
	Programming Erlang: Software for a Concurrent World by Joe Armstrong; ISBN:
978-1-93435-600-5

Tutorial

 Visualizing Message Sequence Charts

The easiest way of using ET, is to just use it as a graphical tool for
displaying message sequence charts. In order to do that you need to first start
a Viewer (which by default starts a Collector):
 {ok, ViewerPid} = et_viewer:start([{title,"Coffee Order"}]),
 CollectorPid = et_viewer:get_collector_pid(ViewerPid).

Then you send events to the Collector with the function
et_collector:report_event/6 like this:
 et_collector:report_event(CollectorPid,85,from,to,message,extra_stuff).
The Viewer will automatically pull events from the Collector and display
them on the screen.
The number (in this case 85) is an integer from 1 to 100 that specifies the
"detail level" of the message. The higher the number, the more important it is.
This provides a crude form of priority filtering.
The from, to, and message parameters are exactly what they sound like.
from and to are visualized in the Viewer as "lifelines", with the message
passing from one to the other. If from and to are the same value, then it is
displayed next to the lifeline as an "action". The extra_stuffvalue is simply
data that you can attach that will be displayed when someone actually clicks on
the action or message in the Viewer window.
The module et/examples/et_display_demo.erl illustrates how it can be used:

-module(et_display_demo).

-export([test/0]).

test() ->
 {ok, Viewer} = et_viewer:start([{title,"Coffee Order"}, {max_actors,10}]),
 Drink = {drink,iced_chai_latte},
 Size = {size,grande},
 Milk = {milk,whole},
 Flavor = {flavor,vanilla},
 C = et_viewer:get_collector_pid(Viewer),
 et_collector:report_event(C,99,customer,barrista1,place_order,[Drink,Size,Milk,Flavor]),
 et_collector:report_event(C,80,barrista1,register,enter_order,[Drink,Size,Flavor]),
 et_collector:report_event(C,80,register,barrista1,give_total,"$5"),
 et_collector:report_event(C,80,barrista1,barrista1,get_cup,[Drink,Size]),
 et_collector:report_event(C,80,barrista1,barrista2,give_cup,[]),
 et_collector:report_event(C,90,barrista1,customer,request_money,"$5"),
 et_collector:report_event(C,90,customer,barrista1,pay_money,"$5"),
 et_collector:report_event(C,80,barrista2,barrista2,get_chai_mix,[]),
 et_collector:report_event(C,80,barrista2,barrista2,add_flavor,[Flavor]),
 et_collector:report_event(C,80,barrista2,barrista2,add_milk,[Milk]),
 et_collector:report_event(C,80,barrista2,barrista2,add_ice,[]),
 et_collector:report_event(C,80,barrista2,barrista2,swirl,[]),
 et_collector:report_event(C,80,barrista2,customer,give_tasty_beverage,[Drink,Size]),
 ok.
When you run the et_display_demo:test(). function in the example above, the
Viewer window will look like this:
[image: Screenshot of the Viewer window]

 Four Modules

The event tracer framework is made up of four modules:
	et
	et_collector
	et_viewer
	et_selector

In addition, you'll probably want to familiarize yourself with the dbg module
and possibly seq_trace module as well.

 The Event Tracer Interface

The et module is not like other modules. It contains a function called
et:trace_me/5. Which is a function that does not do any useful stuff at all.
Its sole purpose is to be a function that is easy to trace. A call to it may be
something like:
 et:trace_me(85,from,to,message,extra_stuff).
The parameters to et:trace_me/5 are the same as to
et_collector:report_event/6 in the previous
chapter. The big difference between the two is in the semantics of the two
functions. The second actually reports an Event to the Collector while the
first does nothing, it just returns the atom hopefully_traced. In order to
make the parameters to et:trace_me/5 turn up in the Collector, tracing of
that function must be activated and the Collector must be registered as a
Tracer of the Raw Trace Data.
Erlang tracing is a seething pile of pain that involves reasonably complex
knowledge of clever ports, tracing return formats, and specialized tracing
MatchSpecs (which are really their own special kind of hell). The tracing
mechanism is very powerful indeed, but it can be hard to grasp.
Luckily there is a simplified way to start tracing of et:trace_me/5 function
calls. The idea is that you should instrument your code with calls to
et:trace_me/5 in strategic places where you have interesting information
available in your program. Then you just start the Collector with global
tracing enabled:
 et_viewer:start([{trace_global, true}, {trace_pattern, {et,max}}]).
This will start a Collector, a Viewer and also start the tracing of
et:trace_me/5 function calls. The Raw Trace Data is collected by the
Collector and a view of it is displayed on the screen by the Viewer. You can
define your own "views" of the data by implementing your own Filter functions
and register them in the Viewer.

 The Collector and Viewer

These two pieces work in concert. Basically, the Collector receives
Raw Trace Data and processes it into Events in a et specific format
(defined in et/include/et.hrl). The Viewer interrogates the Collector and
displays an interactive representation of the data.
You might wonder why these aren't just one module. The Collector is a generic
full-fledged framework that allows processes to "subscribe" to the Events that
it collects. One Collector can serve several Viewers. The typical case is
that you have one Viewer that visualizes Events in one flavor and another
Viewer that visualizes them in another flavor. If you for example are tracing
a text based protocol like HTML (or Megaco/H.248) it would be useful to be
able to display the Events as plain text as well as the internal
representation of the message. The architecture does also allow you to implement
your own Viewer program as long as it complies to the protocol between the
Collector/Viewer protocol. Currently two kinds of Viewers exists. That is
the old GS based one and the new based on wxWidgets. But if you feel for it
you may implement your own Viewer, which for example could display the
Events as ASCII art or whatever you feel useful.
The Viewer will by default create a Collector for you. With a few options
and some configuration settings you can start collecting Events.
The Collector API does also allow you to save the collected Events to file
and later load them in a later session.

 The Selector

This is perhaps the most central module in the entirety of the et suite. The
Collector needs "filters" to convert the Raw Trace Data into "events" that
it can display. The et_selector module provides the default Filter and some
API calls to manage the Trace Pattern. The Selector provides various
functions that achieve the following:
	Convert Raw Trace Data into an appropriate Event
	Magically notice traces of the et:trace_me/5 function and make appropriate
Events
	Carefully prevent translating the Raw Trace Data twice
	Manage a Trace Pattern

The Trace Pattern is basically a tuple of a module and a detail level
(either an integer or the atom max for full detail). In most cases the
Trace Pattern {et,max} does suffice. But if you do not want any runtime
dependency of et you can implement your own trace_me/5 function in some
module and refer to that module in the Trace Pattern.
The specified module flows from your instantiation of the Viewer, to the
Collector that it automatically creates, gets stashed in as the
Trace Pattern, and eventually goes down into the bowels of the Selector.
The module that you specify gets passed down (eventually) into Selector's
default Filter. The format of the et:trace_me/5 function call is hardcoded
in that Filter.

 How To Put It Together

The Collector automatically registers itself to listen for trace Events, so
all you have to do is enable them.
For those people who want to do general tracing, consult the dbg module on how
to trace whatever you're interested in and let it work its magic. If you just
want et:trace_me/5 to work, do the following:
	Create a Collector
	Create a Viewer (this can do step #1 for you)
	Turn on and pare down debugging

The module et/examples/et_trace_demo.erl achieves this.

-module(et_trace_demo).

-export([test/0]).

test() ->
 et_viewer:start([
 {title,"Coffee Order"},
 {trace_global,true},
 {trace_pattern,{et,max}},
 {max_actors,10}
]),
 %% dbg:p(all,call),
 %% dbg:tpl(et, trace_me, 5, []),
 Drink = {drink,iced_chai_latte},
 Size = {size,grande},
 Milk = {milk,whole},
 Flavor = {flavor,vanilla},
 et:trace_me(99,customer,barrista1,place_order,[Drink,Size,Milk,Flavor]),
 et:trace_me(80,barrista1,register,enter_order,[Drink,Size,Flavor]),
 et:trace_me(80,register,barrista1,give_total,"$5"),
 et:trace_me(80,barrista1,barrista1,get_cup,[Drink,Size]),
 et:trace_me(80,barrista1,barrista2,give_cup,[]),
 et:trace_me(90,barrista1,customer,request_money,"$5"),
 et:trace_me(90,customer,barrista1,pay_money,"$5"),
 et:trace_me(80,barrista2,barrista2,get_chai_mix,[]),
 et:trace_me(80,barrista2,barrista2,add_flavor,[Flavor]),
 et:trace_me(80,barrista2,barrista2,add_milk,[Milk]),
 et:trace_me(80,barrista2,barrista2,add_ice,[]),
 et:trace_me(80,barrista2,barrista2,swirl,[]),
 et:trace_me(80,barrista2,customer,give_tasty_beverage,[Drink,Size]),
 ok.
Running through the above, the most important points are:
	Turn on global tracing
	Set a Trace Pattern
	Tell dbg to trace function Calls
	Tell it specifically to trace the et:trace_me/5 function

When you run the et_trace_demo:test() function above, the Viewer window will
look like this screenshot:
[image: Screenshot of the Viewer window]

Description

 Overview

The two major components of the Event Tracer (ET) tool is a graphical sequence
chart viewer (et_viewer) and its backing storage (et_collector). One
Collector may be used as backing storage for several simultaneous Viewers
where each one may display a different view of the same trace data.
The interface between the Collector and its Viewers is public in order to
enable other types of Viewers. However in the following text we will focus on
usage of the et_viewer.
The main start function is et_viewer:start/1. By default it will start both an
et_collector and an et_viewer:
% erl -pa et/examples
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> {ok, Viewer} = et_viewer:start([]).
{ok,<0.40.0>}
A Viewer gets trace Events from its Collector by polling it regularly for
more Events to display. Events are for example reported to the Collector
with et_collector:report_event/6:
2> Collector = et_viewer:get_collector_pid(Viewer).
<0.39.0>
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,
3> "Start outer transaction"),
3> et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,
3> "New transaction id is 4711"),
3> et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,
3> "Acquire write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,
3> "You got the write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 60, my_shell, do_commit,
3> "Perform transaction commit"),
3> et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,
3> "Release all locks for transaction 4711"),
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,
3> "End of outer transaction"),
3> et_collector:report_event(Collector, 20, my_shell, end_outer,
3> "Transaction returned {atomic, ok}").
{ok,{table_handle,<0.39.0>,16402,trace_ts,
 #Fun<et_collector.0.62831470>}}
This actually is a simulation of the process Events caused by a Mnesia
transaction that writes a record in a local table:
mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).
At this stage when we have a couple of Events, it is time to show how it looks
like in the graphical interface of et_viewer:
[image: A simulated Mnesia transaction which writes one record]
In the sequence chart, the actors (which symbolically has performed the Event)
are shown as named vertical bars. The order of the actors may be altered by
dragging (hold mouse button 1 pressed during the operation) the name tag of an
actor and drop it elsewhere:
[image: Two actors has switched places]
An Event may be an action performed by one single actor (blue text label) or
it may involve two actors and is then depicted as an arrow directed from one
actor to another (red text label). Details of an Event can be shown by
clicking (press and release the mouse button 1) on the event label text or on
the arrow. When doing that a Contents Viewer window pops up. It may look like
this:
[image: Details of a write lock message]

 Filters and dictionary

The Event Tracer (ET) uses named filters in various contexts. An Event Trace
filter is an Erlang fun that takes some trace data as input and returns a
possibly modified version of it:
filter(TraceData) -> false | true | {true, NewEvent}

TraceData = Event | erlang_trace_data()
Event = #event{}
NewEvent = #event{}
The interface of the filter function is the same as the the filter functions for
the good old lists:filtermap/2. If the filter returns false it means that
the trace data should silently be dropped. true means that the trace data data
already is an Event Record and that it should be kept as it is. true means
that the TraceData already is an Event Record and that it should be kept as
it is. {true, NewEvent} means that the original trace data should be replaced
with Event. This provides means to get rid of unwanted Events as well as
enabling alternate views of an Event.
The first filter that the trace data is exposed for is the Collector Filter.
When a trace Event is reported with et_collector:report/2 (or
et_collector:report_event/5,6) the first thing that happens, is that a message
is sent to the Collector process to fetch a handle that contains some useful
stuff, such as the Collector Filter Fun and an Ets table identifier. Then the
Collector Filter Fun is applied and if it returns true (or
{true, NewEvent}), the Event will be stored in an Ets table. As an
optimization, subsequent calls to et_collector:report-functions can use the
handle directly instead of the Collector Pid.
All filters (registered in a Collector or in a Viewer) must be able to
handle an Event record as input. The Collector Filter (that is the filter
named all) is a little bit special, as its input also may be raw
Erlang Trace Data
The Collector manages a key/value based dictionary, where the filters are
stored. Updates of the dictionary is propagated to all subscribing processes.
When a Viewer is started it is registered as a subscriber of dictionary
updates.
In each Viewer there is only one filter that is active and all trace Events
that the Viewer gets from the Collector will pass thru that filter. By
writing clever filters it is possible to customize how the Events looks like
in the viewer. The following filter in et/examples/et_demo.erl replaces the
actor names mnesia_tm and mnesia_locker and leaves everything else in the
record as it was:

mgr_actors(E) when is_record(E, event) ->
 Actor = fun(A) ->
 case A of
 mnesia_tm -> trans_mgr;
 mnesia_locker -> lock_mgr;
 _ -> A
 end
 end,
 {true, E#event{from = Actor(E#event.from),
 to = Actor(E#event.to),
 contents = [{orig_from, E#event.from},
 {orig_to, E#event.to},
 {orig_contents, E#event.contents}]}}.
If we now add the filter to the running Collector:
4> Fun = fun(E) -> et_demo:mgr_actors(E) end.
#Fun<erl_eval.6.13229925>
5> et_collector:dict_insert(Collector, {filter, mgr_actors}, Fun).
ok
you will see that the Filter menu in all viewers have got a new entry called
mgr_actors. Select it, and a new Viewer window will pop up:
[image: The same trace data in a different view]
In order to see the nitty gritty details of an Event you may click on the
Event in order to start a Contents Viewer for that Event. In the
Contents Viewer there also is a filter menu that enables inspection of the
Event from other views than the one selected in the viewer. A click on the
new_tid Event will cause a Contents Viewer window to pop up, showing the
Event in the mgr_actors view:
[image: The trace Event in the mgr_actors view]
Select the all entry in the Filters menu and a new Contents Viewer window
will pop up showing the same trace Event in the collectors view:
[image: The same trace Event in the collectors view]

 Trace clients

As you have seen, it is possible to use the et_collector:report_event/5,6
functions explicitly. By using those functions you can write your own trace
client that reads trace data from any source stored in any format and just feed
the Collector with it. You may replace the default Collector Filter with a
filter that converts new exciting trace data formats to Event Records or you
may convert it to an Event Record before you invoke et_collector:report/2
and then rely on the default Collector Filter to handle the new format.
There are also existing functions in the API that reads from various sources and
calls et_collector:report/2:
	The trace Events that are hosted by the Collector may be stored to file
and later be loaded by selecting save and load entries in the Viewers
File menu or via the et_collector API.

	It is also possible to perform live tracing of a running system by making use
of the built-in trace support in the Erlang emulator. These Erlang traces can
be directed to files or to ports. See the reference manual for
erlang:trace/3, erlang:trace_pattern/3, dbg and ttb for more info.
There are also corresponding trace client types that can read the Erlang trace
data format from such files or ports. The et_collector:start_trace_client/3
function makes use of these Erlang trace clients and redirects the trace data
to the Collector.
The default Collector Filter converts the raw Erlang trace data format into
Event Records. If you want to perform this differently you can of course
write your own Collector Filter from scratch. But it may probably save you
some efforts if you first apply the default filter in
et_selector:parse_event/2 before you apply your own conversions of its
output.

 Global tracing

Setting up an Erlang tracer on a set of nodes and connecting trace clients to
the ports of these tracers is not intuitive. In order to make this it easier the
Event Tracer has a notion of global tracing. When used, the et_collector
process will monitor Erlang nodes and when one connects, an Erlang tracer will
automatically be started on the newly connected node. A corresponding trace
client will also be started on the Collector node in order to automatically
forward the trace Events to the Collector. Set the boolean parameter
trace_global to true for either the et_collector or et_viewer in order
to activate the global tracing. There is no restriction on how many concurrent
(anonymous) collectors you can have, but you can only have one global
Collector as its name is registered in global.
In order to further simplify the tracing, you can make use of the
et:trace_me/4,5 functions. These functions are intended to be invoked from
other applications when there are interesting Events, in your application that
needs to be highlighted. The functions are extremely light weight as they do
nothing besides returning an atom. These functions are specifically designed to
be traced for. As the caller explicitly provides the values for the
Event Record fields, the default Collector Filter is able to automatically
provide a customized Event Record without any user defined filter functions.
In normal operation, the et:trace_me/4,5 calls are almost for free. When
tracing is needed, you can either activate tracing on these functions
explicitly. Or you can combine the usage of trace_global with the usage of
trace_pattern. When set, the trace_pattern will automatically be activated
on all connected nodes.
One nice thing with the trace_pattern is that it provides a very simple way of
minimizing the amount of generated trace data by allowing you to explicitly
control the detail level of the tracing. As you may have seen the et_viewer
have a slider called "Detail Level" that allows you to control the detail
level of the trace Events displayed in the Viewer. On the other hand if you
set a low detail level in the trace_pattern, lots of the trace data will never
be generated and thus not sent over the socket to the trace client and stored in
the Collector.

 Viewer window

Almost all functionality available in the et_viewer is also available via
shortcuts. Which key that has the same effect as selecting a menu entry is shown
enclosed in parentheses. For example pressing the key r is equivalent to
selecting the menu entry Viewer->Refresh.
File menu:
	Clear all events in the Collector - Deletes all Events stored in the
Collector and notifies all connected Viewers about this.
	Load events to the Collector from file - Loads the Collector with
Events from a file and notifies all connected Viewers about this.
	Save all events in the Collector to file - Saves all Events stored in the
Collector to file.
	Print setup - Enables editing of printer setting, such as paper and layout.
	Print current page - Prints the events on the current page. The page size
is dependent of the selected paper type.
	Print all pages - Prints all events. The page size is dependent of the
selected paper type.
	Close this Viewer - Closes this Viewer window, but keeps all other
Viewers windows and the Collector process.
	Close other Viewers, but this - Keeps this Viewer window and its
Collector process, but closes all other Viewers windowsconnected to the
same Collector.
	Close all Viewers and the Collector - Closes the Collector and all
Viewers connected to it.

Viewer menu:
	First - Scrolls this viewer to the first Event in the Collector.
	Last - Scrolls this viewer to the last Event in the Collector.
	Prev - Scrolls this viewer one page backwards.
	Next - Scrolls this viewer one page forward.
	Refresh - Clears this viewer and re-read its Events from the
Collector.
	Up - Scrolls a few Events backwards.
	Down - Scrolls a few Events forward.
	Display all actors. - Reset the settings for hidden and/or highlighted
actors.

Collector menu:
	First - Scrollsall viewers to the first Event in the Collector.
	Last - Scrolls all viewers to the last Event in the Collector.
	Prev - Scrolls all viewers one page backwards.
	Next - Scrolls all viewers one page forward.
	Refresh - Clears all viewers and re-read their Events from the
Collector.

Filters and scaling menu:
	ActiveFilter (=) - Starts a new Viewer window with the same active filter
and scale as the current one.
	ActiveFilter (+) - Starts a new Viewer window with the same active filter
but a larger scale than the current one.
	ActiveFilter (-) - Starts a new Viewerwindow with the same active filter
but a smaller scale than the current one.
	all (0) - Starts a new Viewer with the Collector Filter as active
filter. It will cause all events in the collector to be viewed.
	AnotherFilter (2) - If more filters are inserted into the dictionary, these
will turn up here as entries in the Filters menu. The second filter will get
the shortcut number 2, the next one number 3 etc. The names are sorted.

Slider and radio buttons:
	Hide From=To - When true, this means that the Viewer will hide all
Events where the from-actor equals to its to-actor. These events are
sometimes called actions.
	Hide (excluded actors) - When true, this means that the Viewer will hide
all Events whose actors are marked as excluded. Excluded actors are normally
enclosed in round brackets when they are displayed in the Viewer.
	Detail level - This slider controls the resolution of the Viewer. Only
Events with a detail level smaller than the selected one (default=100=max)
are displayed.

Other features:
	Vertical scroll - Use mouse wheel and up/down arrows to scroll little. Use
page up/down and home/end buttons to scroll more.
	Display details of an event - Left mouse click on the event label or the
arrowand a new Contents Viewer window will pop up, displaying the contents
of an Event.
	Highlight actor (toggle) - Left mouse click on the actor name tag. The
actor name will be enclosed in square brackets []. When one or more actors
are highlighted, only events related to those actors are displayed. All others
are hidden.
	Exclude actor (toggle) - Right mouse click on the actor name tag. The actor
name will be enclosed in round brackets (). When an actor is excluded, all
events related to this actor is hidden. If the checkbox
Hide (excluded actors) is checked, even the name tags and corresponding
vertical line of excluded actors will be hidden.
	Move actor - Left mouse button drag and drop on actor name tag. Move the
actor by first clicking on the actor name, keeping the button pressed while
moving the cursor to a new location and release the button where the actor
should be moved to.
	Display all actors - Press the 'a' button. Reset the settings for hidden
and/or highlighted actors.

 Configuration

The Event Records in the Ets table are ordered by their timestamp. Which
timestamp that should be used is controlled via the event_order parameter.
Default is trace_ts which means the time when the trace data was generated.
event_ts means the time when the trace data was parsed (transformed into an
Event Record).

 Contents viewer window

File menu:
	Close - Close this window.
	Save - Save the contents of this window to file.

Filters menu:
	ActiveFilter - Start a new Contents Viewer window with the same active
filter.
	AnotherFilter (2) - If more filters are inserted into the dictionary, these
will turn up here as entries in the Filters menu. The second filter will be
number 2, the next one number 3 etc. The names are sorted.

Hide menu:
	Hide actor in viewer - Known actors are shown as a named vertical bars in
the Viewer window. By hiding the actor, its vertical bar will be removed and
the Viewer will be refreshed.
Hiding the actor is only useful if the max_actors threshold has been
reached, as it then will imply that the "hidden" actor will be displayed as if
it were "UNKNOWN". If the max_actors threshold not have been reached, the
actor will re-appear as a vertical bar in the Viewer.

	Show actor in viewer - This implies that the actor will be added as a known
actor in the Viewer with its own vertical bar.

Search menu:
	Forward from this event - Set this event to be the first event in the
viewer and change its display mode to be enter forward search mode. The actor
of this event (from, to or both) will be added to the list of selected actors.
	Reverse from this event - Set this event to be the first Event in the
Viewer and change its display mode to be enter reverse search mode. The
actor of this Event (from, to or both) will be added to the list of selected
actors. Observe, that the Events will be shown in reverse order.
	Abort search. Display all - Switch the display mode of the Viewer to show
all Events regardless of any ongoing searches. Abort the searches.

Advanced examples

 A simulated Mnesia transaction

The Erlang code for running the simulated Mnesia transaction example in the
previous chapter is included in the et/examples/et_demo.erl file:

sim_trans() ->
 sim_trans([]).

sim_trans(ExtraOptions) ->
 Options = [{dict_insert, {filter, mgr_actors}, fun mgr_actors/1}],
 {ok, Viewer} = et_viewer:start_link(Options ++ ExtraOptions),
 Collector = et_viewer:get_collector_pid(Viewer),
 et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,
 "Start outer transaction"),
 et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,
 "New transaction id is 4711"),
 et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,
 "Acquire write lock for {my_tab, key}"),
 et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,
 "You got the write lock for {my_tab, key}"),
 et_collector:report_event(Collector, 60, my_shell, do_commit,
 "Perform transaction commit"),
 et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,
 "Release all locks for transaction 4711"),
 et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,
 "End of outer transaction"),
 et_collector:report_event(Collector, 20, my_shell, end_outer,
 "Transaction returned {atomic, ok}"),
 {collector, Collector}.

mgr_actors(E) when is_record(E, event) ->
 Actor = fun(A) ->
 case A of
 mnesia_tm -> trans_mgr;
 mnesia_locker -> lock_mgr;
 _ -> A
 end
 end,
 {true, E#event{from = Actor(E#event.from),
 to = Actor(E#event.to),
 contents = [{orig_from, E#event.from},
 {orig_to, E#event.to},
 {orig_contents, E#event.contents}]}}.
If you invoke the et_demo:sim_trans() function, a Viewer window will pop up
and the sequence trace will be almost the same as if the following Mnesia
transaction would have been run:
mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).
And the viewer window will look like:
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> {ok, Viewer} = et_viewer:start([]).
{ok,<0.40.0>;}
2> et_demo:sim_trans().
{ok,{table_handle,<0.45.0>,24596,trace_ts,
 #Fun<et_collector.0.62831470>}}
[image: A simulated Mnesia transaction which writes one record]

 Some convenient functions used in the Mnesia transaction example

The module_as_actor filter converts the Event Records so the module names
becomes actors and the invoked functions becomes labels. If the information
about who the caller was it will be displayed as an arrow directed from the
caller to the callee. The [{message, {caller}}, {return_trace}] options to
dbg:tpl/2 function will imply the necessary information in the Erlang traces.
Here follows the module_as_actor filter:

module_as_actor(E) when is_record(E, event) ->
 case lists:keysearch(mfa, 1, E#event.contents) of
 {value, {mfa, {M, F, _A}}} ->
 case lists:keysearch(pam_result, 1, E#event.contents) of
 {value, {pam_result, {M2, _F2, _A2}}} ->
 {true, E#event{label = F, from = M2, to = M}};
 _ ->
 {true, E#event{label = F, from = M, to = M}}
 end;
 _ ->
 false
 end.
The plain_process_info filter does not alter the Event Records. It merely
ensures that the event not related to processes are skipped:

plain_process_info(E) when is_record(E, event) ->
 case E#event.label of
 send -> true;
 send_to_non_existing_process -> true;
 'receive' -> true;
 spawn -> true;
 exit -> true;
 link -> true;
 unlink -> true;
 getting_linked -> true;
 {seq_send, _Label} -> true;
 {seq_receive, _Label} -> true;
 {seq_print, _Label} -> true;
 {drop, _N} -> true;
 _ -> false
 end.
The plain_process_info_nolink filter does not alter the Event Records. It do
makes use of the plain_process_info , but do also ensure that the process info
related to linking and unlinking is skipped:

plain_process_info_nolink(E) when is_record(E, event) ->
 (E#event.label /= link) and
 (E#event.label /= unlink) and
 (E#event.label /= getting_linked) and
 plain_process_info(E).
In order to simplify the startup of an et_viewer process with the filters
mentioned above, plus some others (that also are found in
et/examples/et_demo.erl src/et_collector.erl the et_demo:start/0,1 functions
can be used:

start() ->
 start([]).

start(ExtraOptions) ->
 Options = [{trace_global, true},
 {parent_pid, undefined},
 {max_actors, infinity},
 {max_events, 1000},
 {active_filter, module_as_actor}],
 et_viewer:start_link(filters() ++ Options ++ ExtraOptions).
A simple one-liner starts the tool:
 erl -pa ../examples -s et_demo
The filters are included by the following parameters:

filters() ->
 [{dict_insert, {filter, module_as_actor},
 fun module_as_actor/1},
 {dict_insert, {filter, plain_process_info},
 fun plain_process_info/1},
 {dict_insert, {filter, plain_process_info_nolink},
 fun plain_process_info_nolink/1},
 {dict_insert, {filter, named_process_info},
 fun named_process_info/1},
 {dict_insert, {filter, named_process_info_nolink},
 fun named_process_info_nolink/1},
 {dict_insert, {filter, node_process_info},
 fun node_process_info/1},
 {dict_insert, {filter, node_process_info_nolink},
 fun node_process_info_nolink/1},
 {dict_insert, {filter, application_as_actor},
 fun application_as_actor/1}
].

 Erlang trace of a real Mnesia transaction

The following piece of code et_demo:trace_mnesia/0 activates call tracing of
both local and external function calls for all modules in the Mnesia
application. The call traces are configured cover all processes (both existing
and those that are spawned in the future) and include timestamps for trace data.
It do also activate tracing of process related events for Mnesia's static
processes plus the calling process (that is your shell). Please, observe that
the whereis/1 call in the following code requires that both the
traced Mnesia application and the et_viewer is running on the same node:

trace_mnesia() ->
 Modules = mnesia:ms(),
 Spec = [{message, {caller}}, {return_trace}],
 Flags = [send, 'receive', procs, timestamp],
 dbg:p(all, [call, timestamp]),
 [dbg:tpl(M, [{'_', [], Spec}]) || M <- Modules],
 LocallyRunningServers = [M || M <- Modules, whereis(M) /= undefined],
 [dbg:p(whereis(RS), Flags) || RS <- LocallyRunningServers],
 dbg:p(self(), Flags),
 LocallyRunningServers.
The et_demo:live_trans/0 function starts the global Collector, starts a
Viewer, starts Mnesia, creates a local table, activates tracing (as
described above) and registers the shell process is as 'my_shell' for clarity.
Finally a simple Mnesia transaction that writes a single record is run:

live_trans() ->
 live_trans([]).

live_trans(ExtraOptions) ->
 Options = [{title, "Mnesia tracer"},
	 {hide_actions, true},
	 {active_filter, named_process_info_nolink}],
 et_demo:start(Options ++ ExtraOptions),
 mnesia:start(),
 mnesia:create_table(my_tab, [{ram_copies, [node()]}]),
 et_demo:trace_mnesia(),
 register(my_shell, self()),

 mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).
Now we run the et_demo:live_trans/0 function:
erl -pa ../examples
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4]
 [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> et_demo:live_trans().
{atomic,ok}
Please, explore the different filters in order to see how the traced transaction
can be seen from different point of views:
[image: A real Mnesia transaction which writes one record]

 Erlang trace of Megaco startup

The Event Tracer (ET) tool was initially written in order to demonstrate how
messages where sent over the Megaco protocol. This were back in the old days
before the standard bodies of IETF and ITU had approved Megaco (also
called H.248) as an international standard.
In the Megaco application of Erlang/OTP, the code is carefully instrumented
with calls to et:trace_me/5. For each call a detail level is given in order to
enable dynamic control of the trace level in a simple manner.
The megaco_filter module implements a customized filter for Megaco messages.
It does also make use of trace_global combined with usage of the
trace_pattern:
-module(megaco_filter).
-export([start/0]).

start() ->
 Options =
 [{event_order, event_ts},
 {scale, 3},
 {max_actors, infinity},
 {trace_pattern, {megaco, max}},
 {trace_global, true},
 {dict_insert, {filter, megaco_filter}, fun filter/1},
 {active_filter, megaco_filter},
 {title, "Megaco tracer - Erlang/OTP"}],
 et_viewer:start(Options).
First we start an Erlang node with a global Collector and its Viewer.
erl -sname observer
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(observer@falco)1> megaco_filter:start().
{ok,<0.48.0>}
Secondly we start another Erlang node which we connect the observer node, before
we start the application that we want to trace. In this case we start a Media
Gateway Controller that listens for both TCP and UDP on the text and binary
ports for Megaco:
erl -sname mgc -pa ../../megaco/examples/simple
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(mgc@falco)1> net:ping(observer@falco).
pong
(mgc@falco)2> megaco:start().
ok
(mgc@falco)3> megaco_simple_mgc:start().
{ok,[{ok,2944,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_pretty_text_encoder,[],megaco_tcp,dynamic}},
 {ok,2944,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_pretty_text_encoder,[],megaco_udp,dynamic}},
 {ok,2945,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_binary_encoder,[],megaco_tcp,dynamic}},
 {ok,2945,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_binary_encoder,[],megaco_udp,dynamic}}]}
And finally we start an Erlang node for the Media Gateways and connect to the
observer node. Each Media Gateway connects to the controller and sends an
initial Service Change message. The controller accepts the gateways and sends a
reply to each one using the same transport mechanism and message encoding
according to the preference of each gateway. That is all combinations of TCP/IP
transport, UDP/IP transport, text encoding and ASN.1 BER encoding:
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(mg@falco)1> net:ping(observer@falco).
pong
(mg@falco)2> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_tb"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_ut"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_ub"},
 {error,{start_user,megaco_not_started}}}]
(mg@falco)3> megaco:start().
ok
(mg@falco)4> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_tb"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_ut"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_ub"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE,...}}}}]}]}}}]
The Megaco adopted viewer looks like this, when we have clicked on the
[gateway_tt] actor name in order to only display the events regarding that
actor:
[image: The viewer adopted for Megaco]
A pretty printed Megaco message looks like this:
[image: A textual Megaco message]
And the corresponding internal form for the same Megaco message looks like
this:
[image: The internal form of a Megaco message]

et

Main API of the Event Trace (ET) application
Interface module for the Event Trace (ET) application

 Summary

 Types

 et_collector - et v1.7.1

et_collector

Collect trace events and provide a backing storage appropriate for iteration
Interface module for the Event Trace (ET) application

 Summary

 Types

 et_selector - et v1.7.1

et_selector

Define event transforms and trace patterns

 Summary

 Types

 et_viewer - et v1.7.1

et_viewer

Displays a sequence chart for trace events (messages/actions)

 Summary

 Types

 OEBPS/assets/sim_trans_mgr_actors.png
L wx_viewer (filter: mgr_actors).

File Viewer Collector Filters andscaling Help

[Hide From=To il level
100

R

my_shell trans_mgr Lock_ngr
new_tia

try_urite lock

grantea
go_comnit

relesse tia

gelete_transaction

ena_outer

1© i

OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/megaco_filter.png
File Hide Search Fiters

Lases: send_request - multi transaction 1
eron gateway_tt

o preliminary mid

rransaction = 1 ¢
context = - {
Servicechange = root |
Services |
Method = Restart,

OEBPS/assets/logo.png
EEEEEE

OEBPS/assets/sim_trans_move_actor.png
‘et wix_viewer (filter: all)

File Viewer Collector

Fiters and scaling _ Help

[Hide From=To

[Hice (excluded actors)

my_shell anesia_locker

try_urite lock

go_comnit

relesse tia

gelete_transact

new_tia

grantea

ena_outer

16

OEBPS/assets/live_trans.png
Wnesia tracer (filter: named_process_info_nofink)

File Viewer Collector Filters andscaling Help

¥ Hide From=To il level
[Hice (excluded actors)

100

oo my_shell nesia_tn anesia_locker
new_tia

try_urite lock

grantea

relesse tia

gelete_transaction

cena

1250)

OEBPS/assets/sim_trans.png
‘et wix_viewer (filter: all)

File Viewer Collector

Fiters and scaling _ Help

[Hide From=To

[Hice (excluded actors)

my_shell anesia_tn

try_urite lock

new_tia

anesia_locker

go_comnit

relesse tia

grantea

gelete_transact

ena_outer

16

OEBPS/assets/megaco_collector.png
