

 odbc

 v2.15

 [image: Logo]

 Table of contents

 	ODBC Release Notes

 	User's Guides

 	Overview

 	Examples

 	Databases

 	Error handling

 	

 	Modules

 	odbc

ODBC Release Notes

This document describes the changes made to the odbc application.

 ODBC 2.15

 Improvements and New Features

	Figures in the documentation have been improved.
Own Id: OTP-19130 Aux Id: PR-7226

 ODBC 2.14.3

 Fixed Bugs and Malfunctions

	The order of libs in the Makefile has been changed to avoid finding the system's libei instead of Erlang's libei.
Own Id: OTP-19030 Aux Id: GH-8244, PR-8258

 Improvements and New Features

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 ODBC 2.14.2

 Improvements and New Features

	Use spec for API doc
Own Id: OTP-18926

 ODBC 2.14.1

 Improvements and New Features

	Allow larger column sizes than 8001 in case DB supports it.
Own Id: OTP-18539

 ODBC 2.14

 Improvements and New Features

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

 ODBC 2.13.5

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 ODBC 2.13.4

 Fixed Bugs and Malfunctions

	Fix compiler warnings produced by the clang compiler.
Own Id: OTP-17105 Aux Id: PR-2872

 ODBC 2.13.3.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 ODBC 2.13.3

 Fixed Bugs and Malfunctions

	Make sure odbc c-process exits when erlang process orders it to shutdown.
Own Id: OTP-17188 Aux Id: ERL-1448

 ODBC 2.13.2

 Fixed Bugs and Malfunctions

	Fixed usage of AC_CONFIG_AUX_DIRS() macros in configure script sources.
Own Id: OTP-17093 Aux Id: ERL-1447, PR-2948

 ODBC 2.13.1

 Improvements and New Features

	Changes in order to build on the Haiku operating system.
Thanks to Calvin Buckley
Own Id: OTP-16707 Aux Id: PR-2638

 ODBC 2.13

 Fixed Bugs and Malfunctions

	Fix various compiler warnings on 64-bit Windows.
Own Id: OTP-15800

 Improvements and New Features

	Rewrite due to the removal of erl_interface legacy functions.
Own Id: OTP-16544 Aux Id: OTP-16328

 ODBC 2.12.4.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 ODBC 2.12.4

 Improvements and New Features

	Minor adjustments made to build system for parallel configure.
Own Id: OTP-15340 Aux Id: OTP-14625

 ODBC 2.12.3

 Fixed Bugs and Malfunctions

	Enhance error handling to avoid stack corruption
Own Id: OTP-15667 Aux Id: ERL-808, PR-2065

 ODBC 2.12.2

 Fixed Bugs and Malfunctions

	Improved documentation.
Own Id: OTP-15190

 ODBC 2.12.1

 Fixed Bugs and Malfunctions

	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

 ODBC 2.12

 Improvements and New Features

	Change configure to skip odbc for old MACs, the change in PR-1227 is not
backwards compatible with old MACs, and we do not see a need to continue
support for such old versions. However it is still possible to make it work on
such machines using the --with-odbc configure option.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14083

 ODBC 2.11.3

 Fixed Bugs and Malfunctions

	ODBC build configure has been updated to accept Mac OS X El Capitan. Fixed by
Lee Bannard.
Own Id: OTP-13781

 ODBC 2.11.2

 Improvements and New Features

	Configure enhancement for better handling program paths used in the build
process
Own Id: OTP-13559

 ODBC 2.11.1

 Improvements and New Features

	New application variable to set timeout of internal communication setup
between the erlang code and the c-port program that interfaces the odbc
driver. This can be useful if you have an underlying system that is slow due
to heavy load at startup.
With this environment variable you can easily bypass and tailor odbc to the
needs of the underlying actual system without changing the configuration.
Which is a good thing because this value is very system specific.
Own Id: OTP-12935

 ODBC 2.11

 Improvements and New Features

	Change license text from Erlang Public License to Apache Public License v2
Own Id: OTP-12845

 ODBC 2.10.22

 Fixed Bugs and Malfunctions

	OS X Mavericks is based on Darwin version 13.x, and Yosemite on 14.x. Change
the ODBC configure.in script to recognize these versions.
Own Id: OTP-12260

 Improvements and New Features

	The commands longer than 127 chars sent to odbc server crashed it, e.g. a
connection string with driver path and some additional parameters.
Own Id: OTP-12346

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

 ODBC 2.10.21

 Fixed Bugs and Malfunctions

	Fix compiler warnings reported by LLVM
Own Id: OTP-12138

	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

 ODBC 2.10.20

 Fixed Bugs and Malfunctions

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	Removed warnings at compile time by adding missing include file (Thanks to
Anthony Ramine)
Own Id: OTP-11569

	Apple has removed iODBC in OS X 10.9 Mavericks, but forgot to remove all
binaries, adopt configure so that will be possible to build odbc with own
installation.
Own Id: OTP-11630

 ODBC 2.10.19

 Fixed Bugs and Malfunctions

	Updated configure test for header files sql.h and sqlext.h to function
correctly on windows.
Own Id: OTP-11574

 ODBC 2.10.18

 Improvements and New Features

	Configure now also checks for the existence of the sql.h header file
Own Id: OTP-11483

 ODBC 2.10.17

 Fixed Bugs and Malfunctions

	The format of the xml source for documentation is corrected in order to
conform to the DTDs and to pass xmllint without errors.
Own Id: OTP-11193

 Improvements and New Features

	Introduced functionality for inspection of system and build configuration.
Own Id: OTP-11196

	Prevent odbcserver crash if it's executed and supplied incorrect data to
stdin. Thanks to Sergei Golovan.
Own Id: OTP-11233

 ODBC 2.10.16

 Improvements and New Features

	Fix a 64bit related bug in odbcserver. Thanks to Satoshi Kinoshita.
Own Id: OTP-10993

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

	Fix checking for odbc in standard locations when "with-odbc" flag present.
Thanks to Alexey Saltanov.
Own Id: OTP-11126

 ODBC 2.10.15

 Improvements and New Features

	Fixed calling odbc:param_query/3 and odbc:param_query/4 with unparameterized
query string and empty parameters list. Thanks to Danil Onishchenko.
Own Id: OTP-10798

 ODBC 2.10.14

 Improvements and New Features

	Under Unix enable TCP_NODELAY to disable Nagel's socket algorithm. Thanks to
Andy Richards
Impact: Performance gain on Unix systems
Own Id: OTP-10506

	Added extended_errors option to ODBC
When enabled, this option alters the return code of ODBC operations that
produce errors to include the ODBC error code as well as the native error
code, in addition to the ODBC reason field which is returned by default.
Thanks to Bernard Duggan.
Own Id: OTP-10603

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Fix aotocommit for Oracle ODBC driver in Linux. Thanks to Danil Onishchenko.
Own Id: OTP-10735

 ODBC 2.10.13

 Fixed Bugs and Malfunctions

	Add support for NULL value in odbc:param_query
Support atom 'null' in odbc:param_query as database NULL value Fix "ODBC:
received unexpected info:{tcp_closed, ...}" when connection is terminated.
Fix possible access violation with 64bit ODBC. Thanks to Maxim Zrazhevskiy
Own Id: OTP-10206

 ODBC 2.10.12

 Fixed Bugs and Malfunctions

	An ODBC process should exit normally if its client exits with 'shutdown'
There is nothing strange about the client shutting down, so the ODBC process
should exit normally to avoid generating a crash report for a non-problem.
(Thanks to Magnus Henoch)
Own Id: OTP-9716

 Improvements and New Features

	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

 ODBC 2.10.11

 Fixed Bugs and Malfunctions

	When using output parameters the internal odbc state was not correctly cleaned
causing the next call to param_query to misbehave.
Own Id: OTP-9444

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Improvements and New Features

	Add code to handle old ODBC drivers on solaris. Also adds tests with MySQL.
Own Id: OTP-8407

	Odbc now supports SQL_WLONGVARCHAR, thanks to Hanfei Shen for the patch.
Own Id: OTP-8493

 ODBC 2.10.10

 Fixed Bugs and Malfunctions

	Better error messages for connection issues.
Own Id: OTP-9111

 ODBC 2.10.9

 Improvements and New Features

	Ipv6 is now supported on Windows as well as on UNIX for internal socket
communication. (ODBC uses sockets instead of the "Erlang port pipes" as some
ODBC-drivers are known to mess with stdin/stdout.)
Loopback address constants are used when connecting the c-side to the
erlang-side over local socket API avoiding getaddrinfo problems, and the {ip,
loopback} option is added as a listen option on the erlang-side. Also cleaned
up the TIME_STAMP contribution.
Own Id: OTP-8917

 ODBC 2.10.8

 Improvements and New Features

	ODBC now handles the types SQL_WCHAR and SQL_WVARCHAR. Thanks to Juhani
Ränkimies. ODBC also has a new connection option to return all strings as
binaries and also expect strings to be binaries in the param_query function.
These changes provides some unicode support.
Own Id: OTP-7452

	Now supports SQL_TYPE_TIMESTAMP on the format {{YY, MM, DD}, {HH, MM,
SS}}. Thanks to Juhani Ränkimies.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8511

 ODBC 2.10.7

 Fixed Bugs and Malfunctions

	The odbc application can now be compiled on FreeBSD. (Thanks to Kenji
Rikitake.)
Own Id: OTP-8444

 Improvements and New Features

	Cross compilation improvements and other build system improvements.
Most notable:
	Lots of cross compilation improvements. The old cross compilation support
was more or less non-existing as well as broken. Please, note that the cross
compilation support should still be considered as experimental. Also note
that old cross compilation configurations cannot be used without
modifications. For more information on cross compiling Erlang/OTP see the
$ERL_TOP/INSTALL-CROSS.md file.
	Support for staged install using
DESTDIR. The old
broken INSTALL_PREFIX has also been fixed. For more information see the
$ERL_TOP/INSTALL.md file.
	Documentation of the release target of the top Makefile. For more
information see the $ERL_TOP/INSTALL.md file.
	make install now by default creates relative symbolic links instead of
absolute ones. For more information see the $ERL_TOP/INSTALL.md file.
	$ERL_TOP/configure --help=recursive now works and prints help for all
applications with configure scripts.
	Doing make install, or make release directly after make all no longer
triggers miscellaneous rebuilds.
	Existing bootstrap system is now used when doing make install, or
make release without a preceding make all.
	The crypto and ssl applications use the same runtime library path when
dynamically linking against libssl.so and libcrypto.so. The runtime
library search path has also been extended.
	The configure scripts of erl_interface and odbc now search for thread
libraries and thread library quirks the same way as ERTS do.
	The configure script of the odbc application now also looks for odbc
libraries in lib64 and lib/64 directories when building on a 64-bit
system.
	The config.h.in file in the erl_interface application is now
automatically generated in instead of statically updated which reduces the
risk of configure tests without any effect.

(Thanks to Henrik Riomar for suggestions and testing)
(Thanks to Winston Smith for the AVR32-Linux cross configuration and testing)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8323

	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343

	odbc:param_query() now properly indicates if nothing was updated. (Thanks to
Paul Oliver.)
Own Id: OTP-8347

 Known Bugs and Problems

	The ODBC test cases are failing for linux and MacOSX There is problems with
setting of options on odbc-connections, and the odbcserver just exits with an
exit code.
Own Id: OTP-8407

 ODBC 2.10.6

 Fixed Bugs and Malfunctions

	Applied a patch from Andrew Thompson, which fixes some error cases.
Own Id: OTP-8291

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

 ODBC 2.10.5

 Fixed Bugs and Malfunctions

	A missing return statement in a non void function has been fixed in odbc.
(Thanks to Nico Kruber)
Own Id: OTP-7978

 ODBC 2.10.4

 Improvements and New Features

	param_query now handles the in_or_out parameter correctly.
Own Id: OTP-7720

	Changed the internal socket use so that it will become more robust to
non-functional ipv6 and fallback on ipv4.
Own Id: OTP-7721

 ODBC 2.10.3

 Improvements and New Features

	Configure update for mac.
Own Id: OTP-7418

 Known Bugs and Problems

	describe_table/[2,3] on mac gives an empty result
Own Id: OTP-7478

 ODBC 2.10.2

 Fixed Bugs and Malfunctions

	SQLINTEGERs where not retrieved correctly on 64 bit platforms as an SQLINTEGER
is defined to be a 32 bit integer and not a true long.
Own Id: OTP-7297

 ODBC 2.10.1

 Improvements and New Features

	Now supports out and input parameters for stored procedures.
Own Id: OTP-7019

	ODBC is now prebuilt for SLES10 in the commercial build and parameters to
error_logger:error_report/1 has been corrected.
Own Id: OTP-7294

	Parametrized queries will now work correctly when using Erlang R12B-2 on Linux
(SuSE 10.3), MySQL 5.0.45, myodbc 3.51 and unixODBC 2.2.12. Earlier it could
happen that an error was returned even though data was correctly inserted into
the database.
Own Id: OTP-7307

 Known Bugs and Problems

	SQLINTEGERs are not retrieved correctly on 64 bit platforms as an SQLINTEGER
seems to be defined to be a 32 bit integer and not a true long.
Own Id: OTP-7297

 ODBC 2.10

 Improvements and New Features

	Enhanced configure to among other things work better when there is a library
found but it is not usable e.i. 32 bit library in 64 bit build.
Own Id: OTP-7062

 ODBC 2.0.9

 Improvements and New Features

	The odbc application now has to be explicitly started and stopped e.i. it will
not automatically be started as a temporary application as it did before.
Although a practical feature when testing things in the shell, it is not
desirable that people take advantage of this and not start the odbc
application in a correct way in their products. Added functions to the odbc
API that calls application:start/stop.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6984

	Changed Makefile.in so that odbc is not disabled on 64-bits architectures. It
was earlier disabled due to that it had never been tested in that environment.
Own Id: OTP-6987

 ODBC 2.0.8

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689

 ODBC 2.0.7

 Fixed Bugs and Malfunctions

	When using a parameterized query on a windows platform the data was inserted
in the table on the sql-server but the connection was lost, this seems to be
due to a compiler error that has now been worked around, but further
investigation is ongoing to verify that that really was the problem.
Own Id: OTP-5504

	param_query/[3,4] could return an unexpected row count for some drivers, in
this case a postgresdriver.
Own Id: OTP-6363

 ODBC 2.0.6

 Fixed Bugs and Malfunctions

	pthread header and library mismatch on linux systems (at least some SuSE and
Debian) with both NPTL and Linuxthreads libraries installed.
Own Id: OTP-5981

 Improvements and New Features

	Changed configure to find odbc in /usr/local too
Own Id: OTP-5966

 Known Bugs and Problems

	When using a parameterized query on a windows platform the data is inserted in
the table on the sql-server but for some reason the connection is lost.
Own Id: OTP-5504

 ODBC 2.0.5

 Fixed Bugs and Malfunctions

	Fixed bug, reported error when deleting nonexisting rows, thanks to Laura M.
Castro for reporting this.
Own Id: OTP-5759

 Known Bugs and Problems

	When using a parameterized query on a windows platform the data is inserted in
the table on the sql-server but for some reason the connection is lost.
Own Id: OTP-5504

 Odbc 2.0.4

 Improvements and New Features

	/usr was added as a default place for configure to look for the odbc library
on unix/linux platforms.
Own Id: OTP-5501

	A legacy timer in the c port program was set to infinity. All timeout handling
is handled by the erlang code and a extra timeout in the c code will just lead
to confusion if it is released.
Own Id: OTP-5502

 Known Bugs and Problems

	When using a parameterized query on a windows platform the data is inserted in
the table on the sql-server but for some reason the connection is lost.
Own Id: OTP-5504

 Odbc 2.0.3

 Improvements and New Features

	odbc now uses configure as all "normal" applications instead of providing
special Makefiles for each commercial supported platform. This also makes it
easier to build odbc on non supported platforms.
Own Id: OTP-5437

 odbc 2.0.2

 Fixed Bugs and Malfunctions

	When issuing a batch of queries and one of the queries fail the odbc port
program crashed. This is no longer the case.
Own Id: OTP-5176

 odbc 2.0.1

 Improvements and New Features

	Added use of the socket option TCP_NODELAY, as in the case of Erlang odbc the
Nagel algorithm will never help, but always cause an unnecessary delay.
Own Id: OTP-5100

 odbc 2.0

 Improvements and New Features

	Erlang ODBC now handles batches of queries and can return multiple result
sets.
Own Id: OTP-4642 Aux Id: seq7766

	The old interface that became deprecated in odbc 1.0 has now been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-4794

	The port program now sends different exit codes to Erlang when it exits due to
failure. This instead of sending the same exit code and then trying to write
to stderr. Erlang encodes the exit code to a descriptive atom.
Own Id: OTP-4813

	Erlang ODBC now supports parameterized queries for the most common ODBC data
types.
Own Id: OTP-4821

	SQL_NUMERIC and SQL_DECIMAL columns are converted to integer and float values
if possible.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-4826

	Result sets are now by default returned as a list of tuples which is the most
intuitive and useful mapping. To keep some degree of backwards compatibility
you may turn this off to get the old behavior that result sets are returned as
lists of lists. However do not use this in new code as it is considered a
deprecated feature that eventually will disappear.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-4850

	The odbc implementation now mostly uses sockets to communicate between the c
and the erlang process, this is to avoid a lot of problems arising from
different odbc-drivers doing strange things that disturbed the port-program
communication mechanism.
Own Id: OTP-4875

Overview

 Purpose

The purpose of the Erlang ODBC application is to provide the programmer with an
ODBC interface that has a Erlang/OTP touch and feel. So that the programmer may
concentrate on solving his/her actual problem instead of struggling with
pointers and memory allocation which is not very relevant for Erlang. This user
guide will give you some information about technical issues and provide some
examples of how to use the Erlang ODBC interface.

 About ODBC

Open Database Connectivity (ODBC) is a Microsoft standard for accessing
relational databases that has become widely used. The ODBC standard provides a
c-level application programming interface (API) for database access. It uses
Structured Query Language (SQL) as its database access language.

 About the Erlang ODBC application

Provides an Erlang interface to communicate with relational SQL-databases. It is
built on top of Microsofts ODBC interface and therefore requires that you have
an ODBC driver to the database that you want to connect to. The Erlang ODBC
application is designed using the version 3.0 of the ODBC-standard, however
using the option {scrollable_cursors, off}for a connection has been known to
make it work for at least some 2.X drivers.

Examples

 Setting things up

As the Erlang ODBC application is dependent on third party products there are a
few administrative things that needs to be done before you can get things up and
running.
	The first thing you need to do, is to make sure you have an ODBC driver
installed for the database that you want to access. Both the client machine
where you plan to run your erlang node and the server machine running the
database needs the the ODBC driver. (In some cases the client and the server
may be the same machine).
	Secondly you might need to set environment variables and paths to appropriate
values. This may differ a lot between different os's, databases and ODBC
drivers. This is a configuration problem related to the third party product
and hence we cannot give you a standard solution in this guide.
	The Erlang ODBC application consists of both Erlang and C code. The C
code is delivered as a precompiled executable for windows, solaris and linux
(SLES10) in the commercial build. In the open source distribution it is built
the same way as all other application using configure and make. You may want
to provide the the path to your ODBC libraries using --with-odbc=PATH.

Note
The Erlang ODBC application should run on all Unix dialects including Linux,
Windows 2000, Windows XP and NT. But currently it is only tested for Solaris,
Windows 2000, Windows XP and NT.

 Using the Erlang API

The following dialog within the Erlang shell illustrates the functionality of
the Erlang ODBC interface. The table used in the example does not have any
relevance to anything that exist in reality, it is just a simple example. The
example was created using sqlserver 7.0 with servicepack 1 as database and the
ODBC driver for sqlserver with version 2000.80.194.00.
 1 > odbc:start().
 ok
Connect to the database
 2 > {ok, Ref} = odbc:connect("DSN=sql-server;UID=aladdin;PWD=sesame", []).
 {ok,<0.342.0>}
Create a table
 3 > odbc:sql_query(Ref, "CREATE TABLE EMPLOYEE (NR integer,
 FIRSTNAME char varying(20), LASTNAME char varying(20), GENDER char(1),
 PRIMARY KEY(NR))").
 {updated,undefined}
Insert some data
 4 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, 'Jane', 'Doe', 'F')").
 {updated,1}
Check what data types the database assigned for the columns. Hopefully this is
not a surprise, some times it can be! These are the data types that you should
use if you want to do a parameterized query.
 5 > odbc:describe_table(Ref, "EMPLOYEE").
 {ok, [{"NR", sql_integer},
 {"FIRSTNAME", {sql_varchar, 20}},
 {"LASTNAME", {sql_varchar, 20}}
 {"GENDER", {sql_char, 1}}]}
 Use a parameterized query to insert many rows in one go.
 6 > odbc:param_query(Ref,"INSERT INTO EMPLOYEE (NR, FIRSTNAME, "
 "LASTNAME, GENDER) VALUES(?, ?, ?, ?)",
 [{sql_integer,[2,3,4,5,6,7,8]},
 {{sql_varchar, 20},
 ["John", "Monica", "Ross", "Rachel",
 "Piper", "Prue", "Louise"]},
 {{sql_varchar, 20},
 ["Doe","Geller","Geller", "Green",
 "Halliwell", "Halliwell", "Lane"]},
 {{sql_char, 1}, ["M","F","M","F","F","F","F"]}]).
 {updated, 7}
Fetch all data in the table employee
 7> odbc:sql_query(Ref, "SELECT * FROM EMPLOYEE").
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],
 [{1,"Jane","Doe","F"},
 {2,"John","Doe","M"},
 {3,"Monica","Geller","F"},
 {4,"Ross","Geller","M"},
 {5,"Rachel","Green","F"},
 {6,"Piper","Halliwell","F"},
 {7,"Prue","Halliwell","F"},
 {8,"Louise","Lane","F"}]]}
Associate a result set containing the whole table EMPLOYEE to the connection.
The number of rows in the result set is returned.
 8 > odbc:select_count(Ref, "SELECT * FROM EMPLOYEE").
 {ok,8}
You can always traverse the result set sequential by using next
 9 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{1,"Jane","Doe","F"}]}
 10 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{2,"John","Doe","M"}]}
If your driver supports scrollable cursors you have a little more freedom, and
can do things like this.
 11 > odbc:last(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{8,"Louise","Lane","F"}]}
 12 > odbc:prev(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{7,"Prue","Halliwell","F"}]}
 13 > odbc:first(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{1,"Jane","Doe","F"}]}
 14 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{2,"John","Doe","M"}]}
Fetch the fields FIRSTNAMEand NRfor all female employees
 15 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'").
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},
 {"Monica",3},
 {"Rachel",5},
 {"Piper",6},
 {"Prue",7},
 {"Louise",8}]}
Fetch the fields FIRSTNAMEand NRfor all female employees and sort them on
the field FIRSTNAME.
 16 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'
 ORDER BY FIRSTNAME").
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},
 {"Louise",8},
 {"Monica",3},
 {"Piper",6},
 {"Prue",7},
 {"Rachel",5}]}
Associate a result set that contains the fields FIRSTNAME and NRfor all
female employees to the connection. The number of rows in the result set is
returned.
 17 > odbc:select_count(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'").
 {ok,6}
A few more ways of retrieving parts of the result set when the driver supports
scrollable cursors. Note that next will work even without support for scrollable
cursors.
 18 > odbc:select(Ref, {relative, 2}, 3).
 {selected,["FIRSTNAME","NR"],[{"Monica",3},{"Rachel",5},{"Piper",6}]}
 19 > odbc:select(Ref, next, 2).
 {selected,["FIRSTNAME","NR"],[{"Prue",7},{"Louise",8}]}
 20 > odbc:select(Ref, {absolute, 1}, 2).
 {selected,["FIRSTNAME","NR"],[{"Jane",1},{"Monica",3}]}
 21 > odbc:select(Ref, next, 2).
 {selected,["FIRSTNAME","NR"],[{"Rachel",5},{"Piper",6}]}
 22 > odbc:select(Ref, {absolute, 1}, 4).
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},{"Monica",3},{"Rachel",5},{"Piper",6}]}
Select, using a parameterized query.
 23 > odbc:param_query(Ref, "SELECT * FROM EMPLOYEE WHERE GENDER=?",
 [{{sql_char, 1}, ["M"]}]).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],
 [{2,"John", "Doe", "M"},{4,"Ross","Geller","M"}]}
Delete the table EMPLOYEE.
 24 > odbc:sql_query(Ref, "DROP TABLE EMPLOYEE").
 {updated,undefined}
Shut down the connection.
 25 > odbc:disconnect(Ref).
 ok
Shut down the application.
 26 > odbc:stop().
 =INFO REPORT==== 7-Jan-2004::17:00:59 ===
 application: odbc
 exited: stopped
 type: temporary

 ok

Databases

 Databases

If you need to access a relational database such as sqlserver, mysql,
postgres, oracle, cybase etc. from your erlang application using the
Erlang ODBC interface is a good way to go about it.
The Erlang ODBC application should work for any relational database that has an
ODBC driver. But currently it is only regularly tested for sqlserver and
postgres.

 Database independence

The Erlang ODBC interface is in principal database independent, e.i. an erlang
program using the interface could be run without changes towards different
databases. But as SQL is used it is alas possible to write database dependent
programs. Even though SQL is an ANSI-standard meant to be database independent,
different databases have proprietary extensions to SQL defining their own data
types. If you keep to the ANSI data types you will minimize the problem. But
unfortunately there is no guarantee that all databases actually treats the ANSI
data types equivalently. For instance an installation of
Oracle Enterprise release 8.0.5.0.0 for unix will accept that you create a
table column with the ANSI data type integer, but when retrieving values from
this column the driver reports that it is of type SQL_DECIMAL(0, 38) and not
SQL_INTEGER as you may have expected.
Another obstacle is that some drivers do not support scrollable cursors which
has the effect that the only way to traverse the result set is sequentially,
with next, from the first row to the last, and once you pass a row you cannot go
back. This means that some functions in the interface will not work together
with certain drivers. A similar problem is that not all drivers support "row
count" for select queries, hence resulting in that the function
select_count/[3,4] will return {ok, undefined} instead of {ok, NrRows}
where NrRows is the number of rows in the result set.

 Data types

The following is a list of the ANSI data types. For details turn to the ANSI
standard documentation. Usage of other data types is of course possible, but you
should be aware that this makes your application dependent on the database you
are using at the moment.
	CHARACTER (size), CHAR (size)
	NUMERIC (precision, scale), DECIMAL (precision, scale), DEC (precision, scale
) precision - total number of digits, scale - total number of decimal places
	INTEGER, INT, SMALLINT
	FLOAT (precision)
	REAL
	DOUBLE PRECISION
	CHARACTER VARYING(size), CHAR VARYING(size)

When inputting data using sql_query/[2,3] the values will always be in string
format as they are part of an SQL-query. Example:
 odbc:sql_query(Ref, "INSERT INTO TEST VALUES(1, 2, 3)").
Note
Note that when the value of the data to input is a string, it has to be quoted
with '. Example:
odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, 'Jane', 'Doe', 'F')").
You may also input data using param_query/3,4 and
then the input data will have the Erlang type corresponding to the ODBC type of
the column.See ODBC to Erlang mapping
 When selecting data from a table, all data types are returned
from the database to the ODBC driver as an ODBC data type. The tables below
shows the mapping between those data types and what is returned by the Erlang
API.
	ODBC Data Type	Erlang Data Type
	SQL_CHAR(size)	String | Binary (configurable)
	SQL_WCHAR(size)	Unicode binary encoded as UTF16 little endian.
	SQL_NUMERIC(p,s) when (p >= 0 and p <= 9 and s == 0)	Integer
	SQL_NUMERIC(p,s) when (p >= 10 and p <= 15 and s == 0) or (s <= 15 and s > 0)	Float
	SQL_NUMERIC(p,s) when p >= 16	String
	SQL_DECIMAL(p,s) when (p >= 0 and p <= 9 and s == 0)	Integer
	SQL_DECIMAL(p,s) when (p >= 10 and p <= 15 and s == 0) or (s <= 15 and s > 0)	Float
	SQL_DECIMAL(p,s) when p >= 16	String
	SQL_INTEGER	Integer
	SQL_SMALLINT	Integer
	SQL_FLOAT	Float
	SQL_REAL	Float
	SQL_DOUBLE	Float
	SQL_VARCHAR(size)	String | Binary (configurable)
	SQL_WVARCHAR(size)	Unicode binary encoded as UTF16 little endian.

Table: Mapping of ODBC data types to the Erlang data types returned to the
Erlang application.
	ODBC Data Type	Erlang Data Type
	SQL_TYPE_DATE	String
	SQL_TYPE_TIME	String
	SQL_TYPE_TIMESTAMP	{{YY, MM, DD}, {HH, MM, SS}}
	SQL_LONGVARCHAR	String | Binary (configurable)
	SQL_WLONGVARCHAR(size)	Unicode binary encoded as UTF16 little endian.
	SQL_BINARY	String | Binary (configurable)
	SQL_VARBINARY	String | Binary (configurable)
	SQL_LONGVARBINARY	String | Binary (configurable)
	SQL_TINYINT	Integer
	SQL_BIT	Boolean

Table: Mapping of extended ODBC data types to the Erlang data types returned to
the Erlang application.
Note
To find out which data types will be returned for the columns in a table use
the function describe_table/2,3

 Batch handling

Grouping of SQL queries can be desirable in order to reduce network traffic.
Another benefit can be that the data source sometimes can optimize execution of
a batch of SQL queries.
Explicit batches an procedures described below will result in multiple results
being returned from sql_query/[2,3]. while with parameterized queries only one
result will be returned from param_query/[2,3].

 Explicit batches

The most basic form of a batch is created by semicolons separated SQL queries,
for example:
"SELECT * FROM FOO; SELECT * FROM BAR" or
"INSERT INTO FOO VALUES(1,'bar'); SELECT * FROM FOO"

 Procedures

Different databases may also support creating of procedures that contains more
than one SQL query. For example, the following SQLServer-specific statement
creates a procedure that returns a result set containing information about
employees that work at the department and a result set listing the customers of
that department.
 CREATE PROCEDURE DepartmentInfo (@DepartmentID INT) AS
 SELECT * FROM Employee WHERE department = @DepartmentID
 SELECT * FROM Customers WHERE department = @DepartmentID

 Parameterized queries

To effectively perform a batch of similar queries, you can use parameterized
queries. This means that you in your SQL query string will mark the places that
usually would contain values with question marks and then provide lists of
values for each parameter. For instance you can use this to insert multiple rows
into the EMPLOYEE table while executing only a single SQL statement, for
example code see "Using the Erlang API"
section in the "Getting Started" chapter.

Error handling

 Strategy

On a conceptual level starting a database connection using the Erlang ODBC API
is a basic client server application. The client process uses the API to start
and communicate with the server process that manages the connection. The
strategy of the Erlang ODBC application is that programming faults in the
application itself will cause the connection process to terminate
abnormally.(When a process terminates abnormally its supervisor will log
relevant error reports.) Calls to API functions during or after termination of
the connection process, will return {error, connection_closed}. Contextual
errors on the other hand will not terminate the connection it will only return
{error, Reason}to the client, where Reason may be any erlang term.

 Clients

The connection is associated with the process that created it and can only be
accessed through it. The reason for this is to preserve the semantics of result
sets and transactions when select_count/[2,3] is called or auto_commit is
turned off. Attempts to use the connection from another process will fail. This
will not effect the connection. On the other hand, if the client process dies
the connection will be terminated.

 Timeouts

All request made by the client to the connection are synchronous. If the timeout
is used and expires the client process will exit with reason timeout. Probably
the right thing to do is let the client die and perhaps be restarted by its
supervisor. But if the client chooses to catch this timeout, it is a good idea
to wait a little while before trying again. If there are too many consecutive
timeouts that are caught the connection process will conclude that there is
something radically wrong and terminate the connection.

 Guards

All API-functions are guarded and if you pass an argument of the wrong type a
runtime error will occur. All input parameters to internal functions are trusted
to be correct. It is a good programming practise to only distrust input from
truly external sources. You are not supposed to catch these errors, it will only
make the code very messy and much more complex, which introduces more bugs and
in the worst case also covers up the actual faults. Put your effort on testing
instead, you should trust your own input.

 The whole picture

As the Erlang ODBC application relies on third party products and communicates
with a database that probably runs on another computer in the network there are
plenty of things that might go wrong. To fully understand the things that might
happen it facilitate to know the design of the Erlang ODBC application, hence
here follows a short description of the current design.
Note
Please note that design is something, that not necessarily will, but might
change in future releases. While the semantics of the API will not change as
it is independent of the implementation.
[image: Architecture of the Erlang odbc application]
When you do application:start(odbc) the only thing that happens is that a
supervisor process is started. For each call to the API function connect/2 a
process is spawned and added as a child to the Erlang ODBC supervisor. The
supervisors only tasks are to provide error-log reports, if a child process
should die abnormally, and the possibility to do a code change. Only the client
process has the knowledge to decide if this connection managing process should
be restarted.
The erlang connection process spawned by connect/2, will open a port to a
c-process that handles the communication with the database through Microsoft's
ODBC API. The erlang port will be kept open for exit signal propagation, if
something goes wrong in the c-process and it exits we want know as mush as
possible about the reason. The main communication with the c-process is done
through sockets. The C-process consists of two threads, the supervisor thread
and the database handler thread. The supervisor thread checks for shutdown
messages on the supervisor socket and the database handler thread receives
requests and sends answers on the database socket. If the database thread seems
to hang on some database call, the erlang control process will send a shutdown
message on the supervisor socket, in this case the c-process will exit. If the
c-process crashes/exits it will bring the erlang-process down too and vice versa
i.e. the connection is terminated.

 Error types

The types of errors that may occur can be divide into the following categories.
	Configuration problems - Everything from that the database was not set up
right to that the c-program that should be run through the erlang port was not
compiled for your platform.
	Errors discovered by the ODBC driver - If calls to the ODBC-driver fails due
to circumstances that cannot be controlled by the Erlang ODBC application
programmer, an error string will be dug up from the driver. This string will
be the Reason in the {error, Reason}return value. How good this error
message is will of course be driver dependent. Examples of such circumstances
are trying to insert the same key twice, invalid SQL-queries and that the
database has gone off line.
	Connection termination - If a connection is terminated in an abnormal way, or
if you try to use a connection that you have already terminated in a normal
way by calling disconnect/1, the return value will
be{error, connection_closed}. A connection could end abnormally because of
an programming error in the Erlang ODBC application, but also if the ODBC
driver crashes.
	Contextual errors - If API functions are used in the wrong context, the
Reason in the error tuple will be a descriptive atom. For instance if you
try to call the function last/[1,2]without first calling
select_count/[2,3]to associate a result set with the connection. If the
ODBC-driver does not support some functions, or if you disabled some
functionality for a connection and then try to use it.

odbc

Erlang ODBC application
This application provides an Erlang interface to communicate with relational
SQL-databases. It is built on top of Microsofts ODBC interface and therefore
requires that you have an ODBC driver to the database that you want to connect
to.
Note
The functions first/[1,2], last/[1,2], next/[1,2], prev[1,2] and
select/[3,4] assumes there is a result set associated with the connection to
work on. Calling the function select_count/[2,3] associates such a result
set with the connection. Calling select_count again will remove the current
result set association and create a new one. Calling a function which dose not
operate on an associated result sets, such as sql_query/[2,3], will remove
the current result set association.
Alas some drivers only support sequential traversal of the result set, e.i.
they do not support what in the ODBC world is known as scrollable cursors.
This will have the effect that functions such as first/[1,2], last/[1,2],
prev[1,2], etc will return {error, driver_does_not_support_function}

 Error Handling

The error handling strategy and possible errors sources are described in the
Erlang ODBC User's Guide.

 References

[1]: Microsoft ODBC 3.0, Programmer's Reference and SDK Guide
See also http://msdn.microsoft.com/

 Summary

 Types: Types used in ODBC application

 OEBPS/dist/epub-4WIP524F.js
